1
|
Zhao L, Li S, Wang X, Zhang L, Zhang J, Liu X, Hu Y, Xian X, Zhang F, Li W, Zhang M. The AGEs/RAGE Signaling Pathway Regulates NLRP3-Mediated Neuronal Pyroptosis After MCAO Injury in Lepr-/- Obese Rats. J Inflamm Res 2024; 17:6935-6954. [PMID: 39372588 PMCID: PMC11453143 DOI: 10.2147/jir.s476458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Background Obesity is recognized as a primary risk factor for cerebral ischemia, which has shown a significant increase in its incidence among obese patients. The exact mechanism by which obesity exacerbates cerebral ischemic injury is not fully understood though. The present study validated the hypothesis that obesity mediates pyroptosis by the AGEs/RAGE signaling pathway to exacerbate cerebral ischemic injury. Methods Leptin receptor knockout (Lepr-/- ) rats were used in this study to construct an obesity model, and the middle cerebral artery occlusion (MCAO) models of ischemic stroke were established in Lepr-/- obese rats and their wild-type (WT) littermates respectively. Zea-Longa score, TTC and H&E staining were utilized to evaluate the neurological impairment. Western Blot, immunohistochemistry, and immunofluorescence were used to detect protein expressions. Transmission electron microscopy was used to observe the pores in the neuronal cell membrane in the ischemic penumbra cortex. Results Compared with WT littermates, Lepr-/- obese rats exhibited exacerbated neuronal injury after MCAO, with higher expressions of NLRP3 inflammasome and pyroptosis-related proteins in the cortical tissue of the penumbra. Moreover, more GSDMD pores were observed on the neuronal cell membranes of Lepr-/- obese rats according to the electron microscopy. Inhibition of NLRP3 inflammasome expression with MCC950 inhibited neuronal pyroptosis after cerebral ischemia in Lepr-/- obese rats, thus reducing neuronal injury. We also found that compared with WT littermates, the levels of AGEs and RAGE in the cortex of Lepr-/- obese rats are significantly higher, with further increase after cerebral ischemia. Inhibition of AGEs/RAGE signaling pathway with FPS-ZM1 reduced the NLRP3 inflammasome-mediated neuronal pyroptosis in Lepr-/- obese rats, thereby mitigating the neuronal damage after cerebral ischemia. Conclusion The AGEs/RAGE signaling pathway is involved in the exacerbation of cerebral ischemic injury in Lepr-/- obese rats via regulating NLRP3-mediated neuronal pyroptosis.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Department of Obstetrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People’s Republic of China
| | - Shichao Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Experimental Diagnostic Center for Infectious Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People’s Republic of China
| | - Xiaoyu Wang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Lingyan Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Jingge Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Xiyun Liu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Yuyan Hu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Xiaohui Xian
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Wenbin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| |
Collapse
|
2
|
Fu C, Shen W, Li W, Wang P, Liu L, Dong Y, He J, Fan D. Engineered β-glycosidase from Hyperthermophilic Sulfolobus solfataricus with Improved Rd-hydrolyzing Activity for Ginsenoside Compound K Production. Appl Biochem Biotechnol 2024; 196:3800-3816. [PMID: 37782456 DOI: 10.1007/s12010-023-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Hyperthermophilic Sulfolobus solfataricus β-glycosidase (SS-βGly), with higher stability and activity than mesophilic enzymes, has potential for industrial ginsenosides biotransformation. However, its relatively low ginsenoside Rd-hydrolyzing activity limits the production of pharmaceutically active minor ginsenoside compound K (CK). In this study, first, we used molecular docking to predict the key enzyme residues that may hypothetically interact with ginsenoside Rd. Then, based on sequence alignment and alanine scanning mutagenesis approach, key variant sites were identified that might improve the enzyme catalytic efficiency. The enzyme catalytic efficiency (kcat/Km) and substrate affinity (Km) of the N264D variant enzyme for ginsenoside Rd increased by 60% and decreased by 17.9% compared with WT enzyme, respectively, which may be due to a decrease in the binding free energy (∆G) between the variant enzyme and substrate Rd. In addition, Markov state models (MSM) analysis during the whole 1000-ns MD simulations indicated that altering N264 to D made the variant enzyme achieve a more stable SS-βGly conformational state than the wild-type (WT) enzyme and corresponding Rd complex. Under identical conditions, the relative activities and the CK conversion rates of the N264D enzyme were 1.7 and 1.9 folds higher than those of the WT enzyme. This study identified an excellent hyperthermophilic β-glycosidase candidate for industrial biotransformation of ginsenosides.
Collapse
Affiliation(s)
- Chenchen Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Wenfeng Shen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Weina Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China.
| | - Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yangfang Dong
- Shaanxi Giant Biogene Co., Ltd, Xi'an, 710065, Shaanxi, China
| | - Jing He
- Xi'an Giant Biogene Co., Ltd, Xi'an, 710065, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China.
| |
Collapse
|
3
|
Zhang L, He S, Liu L, Huang J. Saponin monomers: Potential candidates for the treatment of type 2 diabetes mellitus and its complications. Phytother Res 2024; 38:3564-3582. [PMID: 38715375 DOI: 10.1002/ptr.8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR), has become one of the most serious health challenges of the 21st century, with considerable economic and societal implications worldwide. Considering the inevitable side effects of conventional antidiabetic drugs, natural ingredients exhibit promising therapeutic efficacy and can serve as safer and more cost-effective alternatives for the management of T2DM. Saponins are a structurally diverse class of amphiphilic compounds widely distributed in many popular herbal medicinal plants, some animals, and marine organisms. There are many saponin monomers, such as ginsenoside compound K, ginsenoside Rb1, ginsenoside Rg1, astragaloside IV, glycyrrhizin, and diosgenin, showing great efficacy in the treatment of T2DM and its complications in vivo and in vitro. However, although the mechanisms of action of saponin monomers at the animal and cell levels have been gradually elucidated, there is a lack of clinical data, which hinders the development of saponin-based antidiabetic drugs. Herein, the main factors/pathways associated with T2DM and the comprehensive underlying mechanisms and potential applications of these saponin monomers in the management of T2DM and its complications are reviewed and discussed, aiming to provide fundamental data for future high-quality clinical studies and trials.
Collapse
Affiliation(s)
- Lvzhuo Zhang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Qianjiang Central Hospital Affiliated to Yangtze University, Qianjiang, Hubei, China
| | - Shifeng He
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiangrong Huang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| |
Collapse
|
4
|
He S, Shi J, Chai H, Ma L, Pei H, Zhang P, Shi D, Li H. Mechanisms with network pharmacology approach of Ginsenosides in Alzheimer's disease. Heliyon 2024; 10:e26642. [PMID: 38434355 PMCID: PMC10906400 DOI: 10.1016/j.heliyon.2024.e26642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss, cognitive disorder, language dysfunction, and mental disability. The main neuropathological changes in AD mainly include amyloid plaque deposition, neurofibrillary tangles, synapse loss, and neuron reduction. However, the current anti-AD drugs do not demonstrate a favorable effect in altering the pathological course of AD. Moreover, long-term use of these drugs is usually accompanied with various side effects. Ginsenosides are the major active constituents of ginseng and have protective effects on AD through various mechanisms in both in vivo and in vitro studies. In this review, we focused on discussing the therapeutic potential effects and the mechanisms of pharmacological activities of ginsenosides in AD, to provide new insight for further research and clinical application of ginsenosides in the future. Recent studies on the pharmacological effects and mechanisms of ginsenosides were retrieved from Chinese National Knowledge Infrastructure, National Science and Technology Library, Wanfang Data, Elsevier, ScienceDirect, PubMed, SpringerLink, and the Web of Science database up to April 2023 using relevant keywords. Network pharmacology and bioinformatics analysis were used to predict the therapeutic effects and mechanisms of ginsenosides against AD. Ginsenosides presented a wide range of therapeutic and biological activities, including alleviating Aβ deposition, decreasing tau hyperphosphorylation, regulating the cholinergic system, resisting oxidative stress, modulating Ca2+ homeostasis, as well as anti-inflammation and anti-apoptosis in neurons, respectively. For further developing the therapeutic potential as well as clinical applications, the network pharmacology approach was combined with a summary of published studies.
Collapse
Affiliation(s)
- Shan He
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Chai
- Hepingli Hospital, Beijing, China
| | - Lina Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Wang T, Hao L, Yang K, Feng W, Guo Z, Liu M, Xiao R. Fecal microbiota transplantation derived from mild cognitive impairment individuals impairs cerebral glucose uptake and cognitive function in wild-type mice: Bacteroidetes and TXNIP-GLUT signaling pathway. Gut Microbes 2024; 16:2395907. [PMID: 39262376 PMCID: PMC11404573 DOI: 10.1080/19490976.2024.2395907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
Gut microbiome dysbiosis has been widely implicated in cognitive impairment, but the identity of the specific bacterial taxa and mechanisms are not fully elucidated. Brain glucose hypometabolism coincides with the cognitive decline. This study explored the link among cognition, gut microbiota and glucose uptake based on the fecal microbiota transplantation from mild cognitive impairment individuals (MCI-FMT) and investigated whether similar mechanisms were involved in 27-hydroxycholesterol (27-OHC)-induced cognitive decline. Our results showed that the MCI-FMT mice exhibited learning and memory decline and morphological lesions in the brain and colon tissues. There were reduced 18F-fluorodeoxyglucose uptake, downregulated expression of glucose transporters (GLUT1,3,4) and upregulated negative regulator of glucose uptake (TXNIP) in the brain. MCI-FMT altered the bacterial composition and diversity of the recipient mice, and the microbial signatures highlighted by the increased abundance of Bacteroides recapitulated the negative effects of MCI bacterial colonization. However, inhibiting Bacteroidetes or TXNIP increased the expression of GLUT1 and GLUT4, significantly improving brain glucose uptake and cognitive performance in 27-OHC-treated mice. Our study verified that cognitive decline and abnormal cerebral glucose uptake were associated with gut microbiota dysbiosis; we also revealed the involvement of Bacteroidetes and molecular mechanisms of TXNIP-related glucose uptake in cognitive deficits caused by 27-OHC.
Collapse
Affiliation(s)
- Tao Wang
- School of Public Health, Capital Medical University, Beijing, China
| | - Ling Hao
- School of Public Health, Capital Medical University, Beijing, China
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Kexin Yang
- School of Public Health, Capital Medical University, Beijing, China
| | - Wenjing Feng
- School of Public Health, Capital Medical University, Beijing, China
| | - Zhiting Guo
- School of Public Health, Capital Medical University, Beijing, China
| | - Miao Liu
- School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Choi S, Kim T. Compound K-An immunomodulator of macrophages in inflammation. Life Sci 2023; 323:121700. [PMID: 37068708 DOI: 10.1016/j.lfs.2023.121700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Compound K (CK) is a secondary ginsenoside biotransformed from ginseng. This review discusses the function of CK as a potential ligand of the glucocorticoid receptor and a regulator of macrophage inflammatory responses. We provide findings on the ability of CK to inhibit the activation of M1 macrophages and promote the activation and differentiation of M2 macrophages. In addition, the effect of inhibiting the inflammasome response was collected. We summarized the evidences that CK is effective in the treatment of various inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, dermatitis, asthma, chronic obstructive pulmonary disease, sepsis associated encephalopathy, atherosclerosis, inflammatory bowel disease, and diabetes. These findings suggest the potential of CK as a therapeutic agent that can resolve inflammation and restore homeostasis.
Collapse
Affiliation(s)
- Susanna Choi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
7
|
Wang P, Tang C, Liu Y, Yang J, Fan D. Biotransformation of High Concentrations of Ginsenoside Substrate into Compound K by β-glycosidase from Sulfolobus solfataricus. Genes (Basel) 2023; 14:genes14040897. [PMID: 37107655 PMCID: PMC10138176 DOI: 10.3390/genes14040897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The rare ginsenoside Compound K (CK) is an attractive ingredient in traditional medicines, cosmetics, and the food industry because of its various biological activities. However, it does not exist in nature. The commonly used method for the production of CK is enzymatic conversion. In order to further improve the catalytic efficiency and increase the CK content, a thermostable β-glycosidase from Sulfolobus solfataricus was successfully expressed in Pichia pastoris and secreted into fermentation broth. The recombinant SS-bgly in the supernatant showed enzyme activity of 93.96 U/mg at 120 h when using pNPG as substrate. The biotransformation conditions were optimized at pH 6.0 and 80 °C, and its activity was significantly enhanced in the presence of 3 mM Li+. When the substrate concentration was 10 mg/mL, the recombinant SS-bgly completely converted the ginsenoside substrate to CK with a productivity of 507.06 μM/h. Moreover, the recombinant SS-bgly exhibited extraordinary tolerance against high substrate concentrations. When the ginsenoside substrate concentration was increased to 30 mg/mL, the conversion could still reach 82.5% with a productivity of 314.07 μM/h. Thus, the high temperature tolerance, resistance to a variety of metals, and strong substrate tolerance make the recombinant SS-bgly expressed in P. pastoris a potential candidate for the industrial production of the rare ginsenoside CK.
Collapse
Affiliation(s)
- Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Congcong Tang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Jing Yang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
8
|
Liu P, Zhang Z, Cai Y, Yang Y, Yuan J, Chen Q. Inhibition of the pyroptosis-associated inflammasome pathway: The important potential mechanism of ginsenosides in ameliorating diabetes and its complications. Eur J Med Chem 2023; 253:115336. [PMID: 37031528 DOI: 10.1016/j.ejmech.2023.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Diabetes mellitus (DM) and its complications have become an important global public health issue, affecting human health and negatively impacting life and lifespan. Pyroptosis is a recently discovered form of pro-inflammatory programmed cell death (PCD). To date, pyroptosis-associated inflammasome pathways have been identified primarily in the canonical and non-canonical inflammasome pathway, apoptotic caspase-mediated pathway, granzyme-mediated pathway, and streptococcal pyrogenic exotoxin B (SpeB)-mediated pathway. The activation of diabetes-mediated pyroptosis-associated factors play an important role in the pathophysiology of DM and its complications. Studies have shown that ginsenosides exert significant protective effects on DM and its complications. Through inhibiting the activation of pyroptosis-associated inflammasome pathways, and then the DM and its complications are improved. This review summarizes the subtypes of ginsenosides and their chemical characteristics, pharmacokinetics and side effects, the main pyroptosis-associated inflammasome pathways that have been discovered to date, and the potential mechanism of different subtypes of ginsenosides in the treatment of DM and its complications (such as diabetic cardiomyopathy, diabetic nephropathy, diabetic liver injury, diabetic retinopathy, and diabetic ischemic stroke) via anti-pyroptosis-associated inflammasome pathways. These findings may provide ideas for further research to explore ginsenoside mechanism in improving DM and its complications. However, many pyroptosis-associated inflammasome pathways and targets involved in the occurrence and development of DM and its complications are still unknown. In the future, further studies using in vitro cell models, in vivo animal models, and human disease models can be used to further elucidate the mechanism of ginsenosides in the treatment of DM and its complications.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China
| | - Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yunjiao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Jun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
9
|
Wang Z, Zhang Z, Liu J, Guo M, Li H. Panax Ginseng in the treatment of Alzheimer's disease and vascular dementia. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
10
|
Chen XM, Lin GX, Wang X, Ma HY, Wang RS, Wang SM, Tang D. Beneficial effects of ginsenosides on diabetic nephropathy: A systematical review and meta-analysis of preclinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115860. [PMID: 36341813 DOI: 10.1016/j.jep.2022.115860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/20/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng is one of the most widely used herbs in the world for the treatment of various diseases, and ginsenoside is the representative bioactive component in ginseng. There have been many in vivo studies on ginsenoside for the treatment of diabetic nephropathy (DN), the most common diabetic microvascular complication and the main cause of diabetic morbidity and mortality. AIM OF THE STUDY The purpose of this study is to evaluate the efficacy of ginsenosides on DN by preclinical evidence and meta-analysis. Meanwhile, the main possible action mechanisms of ginsenosides against DN were also summarized. MATERIALS AND METHODS We systematically searched PubMed, WOS, Embase, Cochrane, WanFang, Cqvip, CNKI and CBM databases from January 1, 2000, to November 15, 2021, to evaluate the animal experiments of ginsenosides for the treatment of DN. Finally, 30 animal experiments were included. Twelve outcome measures, including renal function indicators (24-h urine protein, serum creatinine, urea nitrogen, creatinine clearance, uric acid, urinary albumin to creatinine ratio), oxidative stress biomarkers (GPX, MDA, SOD), inflammatory factors (IL-1, IL-6, TNF-α) were obtained by using RevMan 5.4 software for meta-analysis. RESULTS The results showed that except for no significant difference in CCr, other indicators such as 24h UP, SCr, blood urea nitrogen, uric acid and UACR were significantly decreased. It showed that ginsenoside could improve renal function in diabetes. Meanwhile ginsenoside significantly up-regulated antioxidant enzymes SOD and GPX, down-regulated MDA and inflammatory factors IL-1, IL-6 and TNF-α, indicating that ginsenoside may have antioxidant and anti-inflammatory effects. CONCLUSION Ginsenoside can protect against the renal failure in diabetes through anti-inflammation, anti-oxidation, anti-renal fibrosis, anti-apoptosis/pyroptosis, regulation of blood glucose/lipid metabolism, etc. Which provides preclinical evidence for the application of ginsenoside in the treatment of DN.
Collapse
Affiliation(s)
- Xiao-Mei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gui-Xuan Lin
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xue Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hong-Yan Ma
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ru-Shang Wang
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Wu M, Liao W, Zhang R, Gao Y, Chen T, Hua L, Cai F. PTP1B Inhibitor Claramine Rescues Diabetes-Induced Spatial Learning and Memory Impairment in Mice. Mol Neurobiol 2023; 60:524-544. [PMID: 36319905 DOI: 10.1007/s12035-022-03079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Accumulating clinical and epidemiological studies indicate that learning and memory impairment is more prevalent among people with diabetes mellitus (DM). PTP1B is a member of protein tyrosine phosphatase family and participates in a variety of pathophysiological effects including inflammatory, insulin signaling pathway, and learning and memory. This study was aimed to investigate the effects of CA, a specific inhibitor of PTP1B, on spatial learning and memory impairment in diabetic mice caused by high-fat diet and injection of streptozotocin. We found that the protein expressions of PTP1B increased in hippocampal CA1, CA3, and PFC regions of diabetic mice. Network pharmacology results showed that PTP1B might be one of the key targets between diabetes and cognitive dysfunction, and CA might alleviate DM-induced cognitive dysfunction. Animal experiments showed that CA ameliorated DM-induced spatial learning and memory impairment, and improved glucose and lipid metabolic disorders. Moreover, administration of CA alleviated hippocampal structure damage and enhanced the expressions of synaptic proteins, including PSD-95, SYN-1, and SYP in diabetic mice. Furthermore, CA treatment not only significantly down-regulated the expressions of PTP1B and NLRP3 inflammatory related proteins (NLRP3, ASC, Caspase-1, COX-2, IL-1β, and TNF-α), but also significantly up-regulated the expressions of insulin signaling pathway-related proteins (p-IRS1, p-PI3K, p-AKT, and p-GSK-3β) in diabetic mice. Taken together, these results suggested that PTP1B might be a targeted strategy to rescue learning and memory deficits in DM, possibly through inhibition of NLRP3 inflammasome and regulation of insulin signaling pathway.
Collapse
Affiliation(s)
- Mengyu Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Wenli Liao
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yuting Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Tao Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Liangliang Hua
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
12
|
Tian Y, Feng X, Zhou Z, Qin S, Chen S, Zhao J, Hou J, Liu D. Ginsenoside Compound K Ameliorates Osteoarthritis by Inhibiting the Chondrocyte Endoplasmic Reticulum Stress-Mediated IRE1α-TXNIP-NLRP3 Axis and Pyroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1499-1509. [PMID: 36630614 DOI: 10.1021/acs.jafc.2c06134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Osteoarthritis (OA) is a common joint disease, and studies have reported that the endoplasmic reticulum stress (ERS) in chondrocytes caused by the cartilage tissue damage could mediate the activation of Nod-like receptor protein 3 (NLRP3) inflammasomes through inositol-requiring enzyme 1 alpha (IRE1α) and thioredoxin interacting protein (TXNIP). Ginsenoside compound K (CK) has an inhibitory effect on IRE1α activation. However, the role of IRE1α-TXNIP and its interaction with CK are still unclear. In this study, we examined the role and mechanism of action of CK in OA. We found that CK ameliorated OA and ERS in IL-1β-treated chondrocytes and a monoiodoacetate-induced rat OA model. The effect of CK on inflammation, pyroptosis, and ERS was blocked by the ERS inducer tunicamycin. In conclusion, CK hindered OA progression by inhibiting the ERS-IRE1α-TXNIP-NLRP3 axis. Overall, our data indicate that CK could be useful in the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yicheng Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xinyuan Feng
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Sen Qin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jihui Zhao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianglin Hou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
13
|
Sajadimajd S, Deravi N, Forouhar K, Rahimi R, Kheirandish A, Bahramsoltani R. Endoplasmic reticulum as a therapeutic target in type 2 diabetes: Role of phytochemicals. Int Immunopharmacol 2023; 114:109508. [PMID: 36495694 DOI: 10.1016/j.intimp.2022.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorders characterized by insulin resistance and β-cell dysfunction with an increasing worldwide incidence. Several studies have revealed that long-term glucotoxicity results in β-cell failure and death through induction of endoplasmic reticulum (ER) stress. Owing to the chronic progression of T2DM and the low effectiveness of antidiabetic drugs in long-term use, medicinal plants and their secondary metabolites seem to be the promising alternatives. Here we have provided a comprehensive review regarding the role of phytochemicals to alleviate ER stress in T2DM. Ginsenoside compound K, baicalein, quercetin, isopulegol, kaempferol, liquiritigenin, aspalathin, and tyrosol have demonstrated remarkable improvement of T2DM via modulation of ER stress. Arctigenin and total glycosides of peony have been shown to be effective in the treatment of diabetic retinopathy through modulation of ER stress. The effectiveness of grape seed proanthocyanidins and wolfberry is also shown in the relief of diabetic neuropathy and retinopathy. Resveratrol is involved in the prevention of atherosclerosis via ER stress modulation. Taken together, the data described herein revealed the capability of herbal constituents to prevent different complications of T2DM via a decrease in ER stress which open new doors to the treatment of diabetes.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Forouhar
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Kheirandish
- Department of Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roodabeh Bahramsoltani
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
14
|
Li M, Yao L, He M, Huang H, Zheng H, Ma S, Zhong Z, Yu S, Sun M, Wang H. "Adjust Zang and arouse spirit" electroacupuncture ameliorates cognitive impairment by reducing endoplasmic reticulum stress in db/db mice. Front Endocrinol (Lausanne) 2023; 14:1185022. [PMID: 37152933 PMCID: PMC10154981 DOI: 10.3389/fendo.2023.1185022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Diabetic cognitive impairment (DCI) is a chronic complication of the central nervous system (CNS) caused by diabetes that affects learning and memory capacities over time. Recently, acupuncture has been shown to improve cognitive impairment in streptozotocin-induced diabetic rats. However, the effects of electroacupuncture on DCI and its underlying mechanism have not yet been elucidated in detail. Methods In this study, we used db/db mice as DCI animal models which showed low cognitive, learning and memory functions. Electroacupuncture significantly ameliorated DCI, which is reflected by better spatial learning and memory function using behavioral tests. The db/db mice with cognitive impairment were randomly divided into a model group (Mod) and an electroacupuncture treatment group (Acup), while db/m mice were used as a normal control group (Con). First, the mice were subjected to behavioural tests using the Morris water maze (MWM), and body weight, blood glucose, insulin, triglycerides (TG) and total cholesterol (TC) were observed; HE, Nissl, and TUNEL staining were used to observe the morphological changes and neuronal apoptosis in the mice hippocampus; Finally, Western blot and rt-PCR were applied to detect the essential proteins and mRNA of ERS and insulin signalling pathway, as well as the expression levels of Tau and Aβ. Results Electroacupuncture significantly ameliorated DCI, which is reflected by better spatial learning and memory function using behavioral tests. Moreover, electroacupuncture attenuated diabetes-induced morphological structure change, neuronal apoptosis in the hippocampus of db/db mice. Our results revealed that electroacupuncture could regulate the expression levels of Tau and Aβ by improving hippocampal ERS levels in db/db mice, inhibiting JNK activation, attenuating IRS1 serine phosphorylation, and restoring normal transduction of the insulin signaling pathway. Discussion In summary, ERS and insulin signaling pathway paly causal roles in DCI development. Electroacupuncture can significantly alleviate the pathogenesis of DCI, improve mice's learning and memory ability, and improve cognitive dysfunction. This study adds to our understanding of the effect of acupuncture on DCI and opens the door to further research on DCI.
Collapse
Affiliation(s)
- Mengyuan Li
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Lin Yao
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Min He
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Haipeng Huang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haizhu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Shuo Yu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Mengmeng Sun
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
- *Correspondence: Hongfeng Wang, ; Mengmeng Sun,
| | - Hongfeng Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Hongfeng Wang, ; Mengmeng Sun,
| |
Collapse
|
15
|
Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer's Disease: a Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation 2023; 46:56-87. [PMID: 36006570 PMCID: PMC9403980 DOI: 10.1007/s10753-022-01730-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. The etiology and pathology of AD are complicated, variable, and yet to be completely discovered. However, the involvement of inflammasomes, particularly the NLRP3 inflammasome, has been emphasized recently. NLRP3 is a critical pattern recognition receptor involved in the expression of immune responses and has been found to play a significant role in the development of various immunological and neurological disorders such as multiple sclerosis, ulcerative colitis, gout, diabetes, and AD. It is a multimeric protein which releases various cytokines and causes caspase-1 activation through the process known as pyroptosis. Increased levels of cytokines (IL-1β and IL-18), caspase-1 activation, and neuropathogenic stimulus lead to the formation of proinflammatory microglial M1. Progressive researches have also shown that besides loss of neurons, the pathophysiology of AD primarily includes amyloid beta (Aβ) accumulation, generation of oxidative stress, and microglial damage leading to activation of NLRP3 inflammasome that eventually leads to neuroinflammation and dementia. It has been suggested in the literature that suppressing the activity of the NLRP3 inflammasome has substantial potential to prevent, manage, and treat Alzheimer's disease. The present review discusses the functional composition, various models, signaling molecules, pathways, and evidence of NLRP3 activation in AD. The manuscript also discusses the synthetic drugs, their clinical status, and projected natural products as a potential therapeutic approach to manage and treat NLRP3 mediated AD.
Collapse
|
16
|
Shin SW, Cho IH. Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome. J Ginseng Res 2023; 47:23-32. [PMID: 36213093 PMCID: PMC9529349 DOI: 10.1016/j.jgr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.
Collapse
Affiliation(s)
- Seo Won Shin
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ik Hyun Cho
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea,Corresponding author. D.V.M. & Ph.D. Department of Convergence Medical Science and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
17
|
Jing G, Zuo J, Fang Q, Yuan M, Xia Y, Jin Q, Liu Y, Wang Y, Zhang Z, Liu W, Wu X, Song X. Erbin protects against sepsis-associated encephalopathy by attenuating microglia pyroptosis via IRE1α/Xbp1s-Ca 2+ axis. J Neuroinflammation 2022; 19:237. [PMID: 36171629 PMCID: PMC9520943 DOI: 10.1186/s12974-022-02598-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/16/2022] [Indexed: 06/27/2024] Open
Abstract
Background Microglia pyroptosis-mediated neuroinflammation is thought to be the crucial pathogenesis of sepsis-associated encephalopathy (SAE). Erbin has been reported to be associated with various inflammatory diseases. However, the role of Erbin in SAE and the relationship between Erbin and microglia pyroptosis are unknown. In this study, we investigated the promising role and underlying molecular mechanism of Erbin in the regulation of microglia pyroptosis. Methods WT and Erbin knockout mice underwent cecum ligation perforation (CLP) to induce SAE. Primary mouse microglia and BV2 cells were treated with LPS/nigericin in vitro. Behavioral tests were performed to evaluate cognitive function. Nissl staining and transmission electron microscopy were used to assess histological and structural lesions. ELISA and qPCR were carried out to detect neuroinflammation. Western blot and immunofluorescence were used to analyze protein expression. Flow cytometry and confocal microscopy were utilized to observe the Ca2+ changes in the cytoplasm and endoplasmic reticulum (ER). To further explore the underlying mechanism, STF083010 was administered to block the IRE1α/Xbp1s pathway. Results Erbin deletion resulted in more pronounced neuronal damage and cognitive impairment in mice that underwent CLP. Erbin knockout promoted microglial pyroptosis and inflammatory cytokines secretion in vivo and in vitro, which was mediated by activation of the IRE1α/Xbp1s. Treatment with the selective inhibitor STF083010 significantly inhibited IRE1α/Xbp1s pathway activity, decreased intracytoplasmic Ca2+, attenuated microglial pyroptosis, reduced pro-inflammatory cytokine secretion, lessened neuronal damage, and improved cognitive function. Conclusions In SAE, Erbin inhibits IRE1/Xbp1s pathway activity and reduces the ER Ca2+ influx to the cytoplasm, reducing microglial pyroptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02598-5.
Collapse
Affiliation(s)
- Guoqing Jing
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Zuo
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing Fang
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun Xia
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiyan Jin
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuping Liu
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanlin Wang
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zongze Zhang
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanhong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Xuemin Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12:1310. [PMID: 36139149 PMCID: PMC9496100 DOI: 10.3390/biom12091310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment (CI) is one of the major clinical features of many neurodegenerative diseases. It can be aging-related or even appear in non-central nerve system (CNS) diseases. CI has a wide spectrum that ranges from the cognitive complaint with normal screening tests to mild CI and, at its end, dementia. Ginsenosides, agents extracted from a key Chinese herbal medicine (ginseng), show great promise as a new therapeutic option for treating CI. This review covered both clinical trials and preclinical studies to summarize the possible mechanisms of how ginsenosides affect CI in different diseases. It shows that ginsenosides can modulate signaling pathways associated with oxidative stress, apoptosis, inflammation, synaptic plasticity, and neurogenesis. The involved signaling pathways mainly include the PI3K/Akt, CREB/BDNF, Keap1/Nrf2 signaling, and NF-κB/NLRP3 inflammasome pathways. We hope to provide a theoretical basis for the treatment of CI for related diseases by ginsenosides.
Collapse
Affiliation(s)
- Hui Feng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Mei Xue
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300073, China
| | - Shiqi Cheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Yue Hu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| |
Collapse
|
19
|
Research progress of targeting NLRP3 inflammasome in peripheral nerve injury and pain. Int Immunopharmacol 2022; 110:109026. [DOI: 10.1016/j.intimp.2022.109026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023]
|
20
|
Jin CY, Yu SW, Yin JT, Yuan XY, Wang XG. Corresponding risk factors between cognitive impairment and type 1 diabetes mellitus: a narrative review. Heliyon 2022; 8:e10073. [PMID: 35991978 PMCID: PMC9389196 DOI: 10.1016/j.heliyon.2022.e10073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a type of diabetes caused by the destruction of pancreatic β cells and the absolute lack of insulin secretion. T1DM usually starts in adolescence or develops directly as a severe disease state of ketoacidosis. T1DM and its complications make many people suffer and have psychological problems, which make us have to pay more attention to the prevention and early control of T1DM. Cognitive impairment (CI) is one of the major complications of T1DM. It can further develop into Alzheimer's disease, which can seriously affect the quality of life of the elderly. Furthermore, the relationship between T1DM and CI is unclear. Hence, we conducted a narrative review of the existing literature through a PubMed search. We summarized some risk factors that may be associated with the cognitive changes in T1DM patients, including onset age and duration, education and gender, glycemic states, microvascular complications, glycemic control, neuropsychology and emotion, intestinal flora, dyslipidemia, sleep quality. We aimed to provide some content related to CI in T1DM, and hoped that it could play a role in early prediction and treatment to reduce the prevalence. Corresponding risk factors between cognitive impairment and type 1 diabetes mellitus. Duration and age; Education and gender and Glycemic states. Diabetic ketoacidosis; Microvascular complications and Glycemic control–HbA1c. Neuropsychology and emotion; Intestinal flora; Dyslipidemia and Sleep Quality.
Collapse
Affiliation(s)
- Chen-Yang Jin
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, PR China
| | - Shi-Wen Yu
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, PR China
| | - Jun-Ting Yin
- The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116027, PR China
| | - Xiao-Ying Yuan
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian 116044, PR China
- Department of Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, PR China
- Corresponding author.
| | - Xu-Gang Wang
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, PR China
- Corresponding author.
| |
Collapse
|
21
|
HSPB8 Overexpression Ameliorates Cognitive Impairment in Diabetic Mice via Inhibiting NLRP3 Inflammation Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9251835. [PMID: 35958024 PMCID: PMC9359860 DOI: 10.1155/2022/9251835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with an elevated risk of cognitive impairment. And the underlying mechanism remains unillustrated. HSPB8 is a member of the small heat shock protein family. In this study, we found that the expression of HSPB8 was upregulated in the hippocampus of high − fat diet (HFD) + streptozotocin (STZ) − induced diabetic mice and N2a cells exposed to high glucose. Overexpression of HSPB8 relieved cognitive decline in DM mice. Mechanically, HSPB8 overexpression in the hippocampus of diabetic mice inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation via dephosphorylating mitochondrial fission-associated protein dynamin-related protein 1 (DRP1) at the phosphorylated site Ser616 (p-Drp1S616). Furthermore, HSPB8 overexpression increased mitochondrial membrane potential (MMP) and reduced oxidative stress. These results indicate a protective effect of HSPB8 in the hippocampus of diabetic mice and N2a cells exposed to high glucose. Overexpression of HSPB8 might be a useful strategy for treating T2DM-related cognitive decline.
Collapse
|
22
|
Li MX, Wei QQ, Lu HJ. Progress on the Elucidation of the Antinociceptive Effect of Ginseng and Ginsenosides in Chronic Pain. Front Pharmacol 2022; 13:821940. [PMID: 35264958 PMCID: PMC8899510 DOI: 10.3389/fphar.2022.821940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Ginseng (Panax ginseng C.A. Meyer) is a traditional Oriental herbal drug widely used in East Asia. Its main active ingredients are ginsenosides whose constituents are known to have various pharmacological activities such as anticancer, antinociception, and neuroprotection. The analgesic effects of ginsenosides, such as Rg1, Rg2, and Rb1, as well as compound K, are well known and the analgesic mechanism of action in inflammatory pain models is thought to be the down regulation of pro-inflammatory cytokine expression (TNF-α IL-1β, and IL-6). Several studies have also demonstrated that ginsenosides regulate neuropathic pain through the modulation of estrogen receptors. Recently, an increasing number of pathways have emerged in relation to the antinociceptive effect of ginseng and ginsenosides. Therefore, this review presents our current understanding of the effectiveness of ginseng in chronic pain and how its active constituents regulate nociceptive responses and their mechanisms of action.
Collapse
Affiliation(s)
- Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| |
Collapse
|
23
|
Modulatory Properties of Food and Nutraceutical Components Targeting NLRP3 Inflammasome Activation. Nutrients 2022; 14:nu14030490. [PMID: 35276849 PMCID: PMC8840562 DOI: 10.3390/nu14030490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammasomes are key intracellular multimeric proteins able to initiate the cellular inflammatory signaling pathway. NLRP3 inflammasome represents one of the main protein complexes involved in the development of inflammatory events, and its activity has been largely demonstrated to be connected with inflammatory or autoinflammatory disorders, including diabetes, gouty arthritis, liver fibrosis, Alzheimer’s disease, respiratory syndromes, atherosclerosis, and cancer initiation. In recent years, it has been demonstrated how dietary intake and nutritional status represent important environmental elements that can modulate metabolic inflammation, since food matrices are an important source of several bioactive compounds. In this review, an updated status of knowledge regarding food bioactive compounds as NLRP3 inflammasome modulators is discussed. Several chemical classes, namely polyphenols, organosulfurs, terpenes, fatty acids, proteins, amino acids, saponins, sterols, polysaccharides, carotenoids, vitamins, and probiotics, have been shown to possess NLRP3 inflammasome-modulating activity through in vitro and in vivo assays, mainly demonstrating an anti-NLRP3 inflammasome activity. Plant foods are particularly rich in important bioactive compounds, each of them can have different effects on the pathway of inflammatory response, confirming the importance of the nutritional pattern (food model) as a whole rather than any single nutrient or functional compound.
Collapse
|
24
|
Liu J, Deng Z, Yu Z, Zhou W, Yuan Q. The circRNA circ-Nbea participates in regulating diabetic encephalopathy. Brain Res 2022; 1774:147702. [PMID: 34695392 DOI: 10.1016/j.brainres.2021.147702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/02/2022]
Abstract
Circular RNAs (circRNAs) play key roles in various pathogenic and biological processes in human disease. However, the effect of circRNAs on the development of diabetic encephalopathy (DE) remains largely unknown. Therefore, the aim of this study was to investigate changes in the expression of circRNAs and their potential mechanism in DE formation. Compared with db/m mice, spatial learning/memory, dendritic spines, and synaptic plasticity were all impaired in the hippocampus of the db/db mice. In addition, the dendritic spine density of neurons was significantly decreased after treatment with advanced glycation end-products (AGEs). We used high-throughput RNA sequencing (RNA-Seq) to detect circRNA expression in DE, and the results revealed that 183 circRNAs were significantly altered in primary hippocampal neurons treated with AGEs. Three circRNAs were chosen for detection using quantitative real-time polymerase chain reaction (qRT-PCR), including circ-Smox (chr2: 131511984-131516443), circ-Nbea (mmu-chr3: 56079859-56091120), and circ-Setbp1 (chr18: 79086551-79087180), and circ-Nbea expression was significantly decreased. According to the bioinformatics prediction and detection using qRT-PCR and double luciferase assays, circ-Nbea sponges miR-128-3p. Based on these results, we speculated that a newly identified circRNA, circ-Nbea, may play an important role in the development of DE, and the mechanism is mediated by sponging miR-128-3p. This study provides new insight into the treatment of DE.
Collapse
Affiliation(s)
- Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science&Technology, Wuhan, Hubei, China.
| | - Zhifang Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science&Technology, Wuhan, Hubei, China
| | - Zhijun Yu
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China
| | - Weipin Zhou
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China
| | - Qiong Yuan
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China.
| |
Collapse
|
25
|
Jiao H, Jia J. Ginsenoside compound K acts via LRP1 to alleviate Amyloid β 42-induced neuroinflammation in microglia by suppressing NF-κB. Biochem Biophys Res Commun 2021; 590:14-19. [PMID: 34968779 DOI: 10.1016/j.bbrc.2021.12.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), has caused a mass of disability and mortality in elder populations, which increases global health burden. There are still limited effective disease-modifying drugs. Alleviating microglia-evoked neuroinflammation has become a promising treatment strategy for AD. Ginsenoside Compound K has been demonstrated to exhibit anti-inflammatory and neuroprotective benefits. Here we measured the effects of Ginsenoside Compound K in inhibiting amyloid-induced microglia inflammation and the possible molecular mechanisms and target of action in vitro. METHODS The cytotoxicity of all chemical reagents on BV2 cells were evaluated using the MTT assay. qRT-PCR and ELISA were carried out to detect the inflammatory cytokines levels. Western blot was utilized to determine the effect of Ginsenoside Compound K on the nuclear factor-κB (NF-κB) p65 nuclear translocation. Antagonist Receptor Associated Protein (RAP) was used to verify the engagement of low-density lipoprotein receptor-related protein 1(LRP1). RESULTS Ginsenoside Compound K diminished inflammatory cytokine production and reversed NF-κB p65 nuclear translocation induced by Aβ42 oligomers. LRP1 expression was up-regulated by Ginsenoside Compound K. When LRP1 was blocked by antagonist RAP, the protective effect of Ginsenoside Compound K was massively eliminated. CONCLUSION These observations provide evidence for anti-inflammatory effect of Ginsenoside Compound K through NF-κB pathway via LRP1 activation, and support further evaluation of Ginsenoside Compound K as a potential effective modulator for AD.
Collapse
Affiliation(s)
- Haishan Jiao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, China; Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
| |
Collapse
|
26
|
Huo S, Ren J, Ma Y, Ozathaley A, Yuan W, Ni H, Li D, Liu Z. Upregulation of TRPC5 in hippocampal excitatory synapses improves memory impairment associated with neuroinflammation in microglia knockout IL-10 mice. J Neuroinflammation 2021; 18:275. [PMID: 34836549 PMCID: PMC8620645 DOI: 10.1186/s12974-021-02321-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the transient receptor potential canonical (TRPC) protein family are widely distributed in the hippocampus of mammals and exert respective and cooperative influences on the functions of neurons. The relationship between specific TRPC subtypes and neuroinflammation is receiving increasing attention. METHODS Using Cx3cr1CreERIL-10-/- transgenic mice and their littermates to study the relationship between TRPC channels and memory impairment. RESULTS We demonstrated that Cx3cr1CreERIL-10-/- mice displayed spatial memory deficits in object location recognition (OLR) and Morris water maze (MWM) tasks. The decreased levels of TRPC4 and TRPC5 in the hippocampal regions were verified via reverse transcription polymerase chain reaction, western blotting, and immunofluorescence tests. The expression of postsynaptic density protein 95 (PSD95) and synaptophysin in the hippocampus decreased with an imbalance in the local inflammatory environment in the hippocampus. The number of cells positive for ionized calcium-binding adaptor molecule 1 (Iba1), a glial fibrillary acidic protein (GFAP), increased with the high expression of interleukin 6 (IL-6) in Cx3cr1CreERIL-10-/- mice. The nod-like receptor protein 3 (NLRP3) inflammasome was also involved in this process, and the cytokines IL-1β and IL-18 activated by NLRP3 were also elevated by western blotting. The co-localization of TRPC5 and calmodulin-dependent protein kinase IIα (CaMKIIα) significantly decreased TRPC5 expression in excitatory neurons. AAV9-CaMKIIα-TRPC5 was used to upregulate TRPC5 in excitatory neurons in the hippocampus. CONCLUSIONS The results showed that the upregulation of TRPC5 improved the memory performance of Cx3cr1CreERIL-10-/- mice related to inhibiting NLRP3 inflammasome-associated neuroinflammation.
Collapse
Affiliation(s)
- Shiji Huo
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Jiling Ren
- Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Yunqing Ma
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Ahsawle Ozathaley
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Wenjian Yuan
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Hong Ni
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
| | - Dong Li
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
| | - Zhaowei Liu
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China.
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China.
| |
Collapse
|
27
|
Ajoolabady A, Wang S, Kroemer G, Klionsky DJ, Uversky VN, Sowers JR, Aslkhodapasandhokmabad H, Bi Y, Ge J, Ren J. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocr Rev 2021; 42:839-871. [PMID: 33693711 DOI: 10.1210/endrev/bnab006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death. Although a wide array of cellular processes such as persistent autophagy, dysregulated mitophagy, and secretion of proinflammatory cytokines may contribute to the onset and progression of cardiometabolic diseases, it is well perceived that ER stress also evokes the onset and development of cardiometabolic diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and chronic kidney disease (CKD). Meanwhile, these pathological conditions further aggravate ER stress, creating a rather vicious cycle. Here in this review, we aimed at summarizing and updating the available information on ER stress in CVDs, diabetes mellitus, obesity, and CKD, hoping to offer novel insights for the management of these cardiometabolic comorbidities through regulation of ER stress.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - James R Sowers
- Dalton and Diabetes and Cardiovascular Center, University of Missouri Columbia, Columbia, Missouri 65212, USA
| | | | - Yaguang Bi
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
28
|
Treatment with Autophagy Inducer Trehalose Alleviates Memory and Behavioral Impairments and Neuroinflammatory Brain Processes in db/db Mice. Cells 2021; 10:cells10102557. [PMID: 34685538 PMCID: PMC8533743 DOI: 10.3390/cells10102557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy attenuation has been found in neurodegenerative diseases, aging, diabetes mellitus, and atherosclerosis. In experimental models of neurodegenerative diseases, the correction of autophagy in the brain reverses neuronal and behavioral deficits and hence seems to be a promising therapy for neuropathologies. Our aim was to study the effect of an autophagy inducer, trehalose, on brain autophagy and behavior in a genetic model of diabetes with signs of neuronal damage (db/db mice). A 2% trehalose solution was administered as drinking water during 24 days of the experiment. Expressions of markers of autophagy (LC3-II), neuroinflammation (IBA1), redox state (NOS), and neuronal density (NeuN) in the brain were assessed by immunohistochemical analysis. For behavioral phenotyping, the open field, elevated plus-maze, tail suspension, pre-pulse inhibition, and passive avoidance tests were used. Trehalose caused a slight reduction in increased blood glucose concentration, considerable autophagy activation, and a decrease in the neuroinflammatory response in the brain along with improvements of exploration, locomotor activity, anxiety, depressive-like behavior, and fear learning and memory in db/db mice. Trehalose exerted some beneficial peripheral and systemic effects and partially reversed behavioral alterations in db/db mice. Thus, trehalose as an inducer of mTOR-independent autophagy is effective at alleviating neuronal and behavioral disturbances accompanying experimental diabetes.
Collapse
|
29
|
Mvubu NE, Chiliza TE. Exploring the Use of Medicinal Plants and Their Bioactive Derivatives as Alveolar NLRP3 Inflammasome Regulators during Mycobacterium tuberculosis Infection. Int J Mol Sci 2021; 22:ijms22179497. [PMID: 34502407 PMCID: PMC8431520 DOI: 10.3390/ijms22179497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful intracellular pathogen that is responsible for the highest mortality rate among diseases caused by bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to contribute to the early inflammatory response that is needed for an effective anti-TB response through production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. However, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation that is pathological to the host. Several studies have explored the use of medicinal plants and/or their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated factors, thus reducing immunopathological response in the host. This review describes the molecular mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection. Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their derivatives will also be explored, thus offering a novel perspective on the alternative control strategies of M. tuberculosis-induced immunopathology.
Collapse
|
30
|
Yang W, Zhou J, Harindintwali JD, Yu X. Production of minor ginsenosides by combining Stereum hirsutum and cellulase. PLoS One 2021; 16:e0255899. [PMID: 34358262 PMCID: PMC8345839 DOI: 10.1371/journal.pone.0255899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Minor ginsenosides (MGs) (include ginsenoside F2, Compound K, PPT, etc), which are generally not produced by ginseng plants naturally, are obtained by deglycosylation of major ginsenosides. However, the conventional processes used to produce deglycosylated ginsenosides focus on the use of intestinal microorganisms for transformation. In this study, an edible and medicinal mushroom Stereum hirsutum JE0512 was screened from 161 β-glucosidase-producing soil microorganisms sourced from wild ginseng using the plate coloration method. Furthermore, JE0512 was used for the production of CK from ginseng extracts (GE) in solid-state fermentation (SSF) using 20 g corn bran as substrate, 4 g GE, and 20% inoculation volume, and the results showed that the highest CK content was 29.13 mg/g. After combining S. hirsutum JE0512 with cellulase (Aspergillus niger), the MGs (F2, CK, and PPT) content increased from 1.66 to 130.79 mg/g in the final products. Our results indicate that the Stereum genus has the potential to biotransform GE into CK and the combination of S. hirsutum JE0512 and cellulase could pave the way for the production of MGs from GE.
Collapse
Affiliation(s)
- Wenhua Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianli Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaobin Yu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
31
|
Bai X, Zhang M. Traditional Chinese Medicine Intervenes in Vascular Dementia: Traditional Medicine Brings New Expectations. Front Pharmacol 2021; 12:689625. [PMID: 34194332 PMCID: PMC8236843 DOI: 10.3389/fphar.2021.689625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular dementia (VD) is one of the most common forms of dementia, referring to a group of symptoms that mainly manifest as advanced neurocognitive dysfunction induced by cerebrovascular disease (CVD). A significant number of studies have shown that traditional Chinese medicine (TCM) has a clinical impact on VD and thus has promising prospects. There have been many discussions regarding the pharmacological mechanisms involved in treatment of the kidney, elimination of turbidity, and promotion of blood circulation. TCM has a prominent effect on improving patients' cognitive function and quality of life. In this review, we summarize the pathogenesis of VD in modern medicine and TCM, traditional prescriptions, single-agent effective ingredients and their pharmacological mechanisms for treating VD, highlight TCM's characteristics, and discuss TCM's multi-targeted mechanism for the treatment of VD.
Collapse
Affiliation(s)
| | - Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Li ZR, Han YS, Liu Z, Zhao HQ, Liu J, Yang H, Wang YH. GR/NF-κB signaling pathway regulates hippocampal inflammatory responses in diabetic rats with chronic unpredictable mild stress. Eur J Pharmacol 2021; 895:173861. [PMID: 33465356 DOI: 10.1016/j.ejphar.2021.173861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Clinical studies have shown that diabetes can present with underlying depression, and a combination of the two can lead to emotional, memory and cognitive disorders, closely associated with hippocampal neuroinflammation. However, the mechanism underlying the development of hippocampal neuroinflammation under the above condition remains elusive. The aims of this study were to explore the pathogenesis of diabetes combined with depression, and the effect of dexamethasone (Dex), a glucocorticoid receptor (GR) agonist, on hippocampal neuroinflammation in diabetic rats with chronic unpredictable mild stress (CUMS). Therefore, rats were intragastrically fed on a high-fat diet (10% cholesterol 10 ml/kg) for 14 days and thereafter injected with 38 mg/kg of streptozotocin on the 15th day to induce diabetes. Dex treatment of the diabetic and CUMS rats ameliorated the depression-associated behavior in the respective rats. Apart from enhanced depressive behavior, diabetes-depressed condition also up-regulated the expression of hippocampus microglia chemokine Ⅰ receptor (CX3CR1) and secretion of several pro-inflammatory factors, in particular, interleukin 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor - α (TNF-α). Hematoxylin-eosin staining revealed inflammatory damages in the hippocampus. Western blot analysis further revealed repression of GR proteins converse to the nuclear factor kappa-B (NF-κB) proteins, which were up-regulated. Intriguingly, Dex reversed the above events by inhibiting inflammatory reactions in the hippocampus. Consequently, played an antidepressant effect in diabetic and CUMS model rats. Overall, findings of this research suggest that the physiopathology of diabetes with stress cormobity are mediated by inflammatory reactions in the hippocampus. In particular, the responses are associated with regulation of GR/NF-κB signaling pathway.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Behavior, Animal
- Blood Glucose/metabolism
- Chronic Disease
- Cytokines/metabolism
- Depression/metabolism
- Depression/physiopathology
- Depression/prevention & control
- Depression/psychology
- Dexamethasone/pharmacology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Glucocorticoids/pharmacology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/physiopathology
- Inflammation/metabolism
- Inflammation/physiopathology
- Inflammation/prevention & control
- Inflammation/psychology
- Inflammation Mediators/metabolism
- Lipids/blood
- Morris Water Maze Test
- NF-kappa B/metabolism
- Open Field Test
- Rats, Sprague-Dawley
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/metabolism
- Signal Transduction
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Rats
Collapse
Affiliation(s)
- Zi-Rong Li
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuan-Shan Han
- Department of Experimental Center for Medical Innovation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhuo Liu
- Department of Education and Science, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| | - Hong-Qing Zhao
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jian Liu
- Department of Experimental Center for Medical Innovation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Yang
- Department of Experimental Center for Medical Innovation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yu-Hong Wang
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
33
|
Liu B, Yu J. Anti-NLRP3 Inflammasome Natural Compounds: An Update. Biomedicines 2021; 9:136. [PMID: 33535473 PMCID: PMC7912743 DOI: 10.3390/biomedicines9020136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex that recognizes various danger or stress signals from pathogens, the host, and the environment, leading to activation of caspase-1 and inducing inflammatory responses. This pro-inflammatory protein complex plays critical roles in pathogenesis of a wide range of diseases including neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Therefore, intensive efforts have been devoted to understanding its activation mechanisms and to searching for its specific inhibitors. Approximately forty natural compounds with anti-NLRP3 inflammasome properties have been identified. Here, we provide an update about new natural compounds that have been identified within the last three years to inhibit the NLRP3 inflammasome and offer an overview of the underlying molecular mechanisms of their anti-NLRP3 inflammasome activities.
Collapse
Affiliation(s)
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
34
|
Lu Y, An T, Tian H, Gao X, Wang F, Wang S, Ma K. Depression with Comorbid Diabetes: What Evidence Exists for Treatments Using Traditional Chinese Medicine and Natural Products? Front Pharmacol 2021; 11:596362. [PMID: 33568996 PMCID: PMC7868339 DOI: 10.3389/fphar.2020.596362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Comorbidity between diabetes mellitus (DM) and depression, two chronic and devastating diseases spreading worldwide, has been confirmed by a large body of epidemiological and clinical studies. Due to the bidirectional relationship between DM and depression, this comorbidity leads to poorer outcomes in both conditions. Given the adverse effects and limited effectiveness of the existing therapies for depression associated with diabetes, the development of novel therapeutic drugs with more potency and fewer side effects is still the most important goal. Hence, many researchers have made great efforts to investigate the potential usefulness of traditional Chinese medicine (TCM) and natural products, including natural extracts and purified compounds, in the treatment of comorbid depression in diabetes. Here, we reviewed the related literature on TCM and natural products that can remedy the comorbidity of diabetes and depression and presented them on the basis of their mechanism of action, focusing on shared risk factors, including insulin resistance, oxidative stress and inflammation, and nervous disturbances. In short, this review suggests that TCM and natural products could expand the therapeutic alternatives to ameliorate the association between DM and depressive disorders.
Collapse
Affiliation(s)
- Yanting Lu
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China.,College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hu Tian
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xueqin Gao
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Furong Wang
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shijun Wang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China.,College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China.,College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
35
|
Kim SA, Jeong EB, Oh DK. Complete Bioconversion of Protopanaxadiol-Type Ginsenosides to Compound K by Extracellular Enzymes from the Isolated Strain Aspergillus tubingensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:315-324. [PMID: 33372793 DOI: 10.1021/acs.jafc.0c07424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A compound K-producing fungus was isolated from meju (fermented soybean brick) and identified as the generally recognized as safe (GRAS) strain Aspergillus tubingensis. The extracellular enzymes obtained after the cultivation of 6 days in the medium with 20 g/L citrus pectin as an inducer showed the highest compound K-producing activity among the inducers tested. Under the optimized conditions of 0.05 mM MgSO4, 55 °C, pH 4.0, 13.4 mM protopanaxadiol (PPD)-type ginsenosides, and 11 mg/mL enzymes, the extracellular enzymes from A. tubingensis completely converted PPD-type ginsenosides in the ginseng extract to 13.4 mM (8.35 mg/mL) compound K after 20 h, with the highest concentration and productivity among the results reported so far. As far as we know, this is the first GRAS enzyme to completely convert all PPD-type ginsenosides to compound K.
Collapse
Affiliation(s)
- Se-A Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eun-Bi Jeong
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
36
|
Meta-analysis of cognitive and behavioral tests in leptin- and leptin receptor-deficient mice. Neurosci Res 2020; 170:217-235. [PMID: 33316303 DOI: 10.1016/j.neures.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 01/19/2023]
Abstract
Leptin is a hormone produced by adipocytes that regulates food intake and metabolism. Leptin-related gene-deficient mice, such as db/db and ob/ob mice, are widely used to study diabetes and its related diseases. However, broad effects of leptin appear to cause variability in behavioral test results. We performed a meta-analysis of major behavioral tests in db/db and ob/ob mice. These mice exhibited significant impairments in the Morris water maze, forced swim, novel object recognition, Y-maze, tail suspension, and light-dark box tests, whereas the elevated plus maze and open field tests did not reveal significant changes. We also performed correlation and regression analyses between the animals' performances and the experimental protocols and conditions. The memory-related tests were characterized by the correlations of their results with animal age, while the performances in the elevated plus-maze and forced swim tests were affected by the width of the devices used. In conclusion, db/db and ob/ob mice mainly exhibit memory deficits and depression-like behavior, although experimenters should be aware of animal age and device size in conducting experiments.
Collapse
|
37
|
Sharma A, Lee HJ. Ginsenoside Compound K: Insights into Recent Studies on Pharmacokinetics and Health-Promoting Activities. Biomolecules 2020; 10:E1028. [PMID: 32664389 PMCID: PMC7407392 DOI: 10.3390/biom10071028] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ginseng (Panax ginseng) is an herb popular for its medicinal and health properties. Compound K (CK) is a secondary ginsenoside biotransformed from major ginsenosides. Compound K is more bioavailable and soluble than its parent ginsenosides and hence of immense importance. The review summarizes health-promoting in vitro and in vivo studies of CK between 2015 and 2020, including hepatoprotective, anti-inflammatory, anti-atherosclerosis, anti-diabetic, anti-cancer, neuroprotective, anti-aging/skin protective, and others. Clinical trial data are minimal and are primarily based on CK-rich fermented ginseng. Besides, numerous preclinical and clinical studies indicating the pharmacokinetic behavior of CK, its parent compound (Rb1), and processed ginseng extracts are also summarized. With the limited evidence available from animal and clinical studies, it can be stated that CK is safe and well-tolerated. However, lower water solubility, membrane permeability, and efflux significantly diminish the efficacy of CK and restrict its clinical application. We found that the use of nanocarriers and cyclodextrin for CK delivery could overcome these limitations as well as improve the health benefits associated with them. However, these derivatives have not been clinically evaluated, thus requiring a safety assessment for human therapy application. Future studies should be aimed at investigating clinical evidence of CK.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Korea
| |
Collapse
|