1
|
Song G, Yang Z, Huang Y, Bai H, Lv F, Wang S. Chemically engineered exogenous organic reactions in living cells for in situ fluorescence imaging and biomedical applications. J Mater Chem B 2024. [PMID: 39485083 DOI: 10.1039/d4tb01925c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The unique microenvironment within living cells, characterized by high glutathione levels, reactive oxygen species concentrations, and active enzymes, facilitates the execution of chemical reactions. Recent advances in organic chemistry and chemical biology have leveraged living cells as reactors for chemical synthesis. This review summarizes recent reports on key intracellular in situ synthesis processes, including the synthesis of near-infrared fluorescent dyes, intracellular oxidative cross-linking, bioorthogonal reactions, and intracellular polymerization reactions. These methods have been applied to fluorescence imaging, tumor treatment, and the enhancement of biological functions. Finally, we discuss the challenges and opportunities in the field of in situ intracellular synthesis. We aim to guide the design of chemical molecules for in situ synthesis, improving the efficiency and control of artificial reactions in living cells, and ultimately achieving cell factory-like exogenous biological synthesis, biological function enhancement, and biomedical applications.
Collapse
Affiliation(s)
- Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Chen J, Qi S, Wang Z, Hu L, Liu J, Huang G, Peng Y, Fang Z, Wu Q, Hu Y, Guo K. Ene-Reductase-Catalyzed Aromatization of Simple Cyclohexanones to Phenols. Angew Chem Int Ed Engl 2024; 63:e202408359. [PMID: 39106109 DOI: 10.1002/anie.202408359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/09/2024]
Abstract
Direct aromatization of cyclohexanones to synthesize substituted phenols represents a significant challenge in modern synthetic chemistry. Herein, we describe a novel ene-reductase (TsER) catalytic system that converts substituted cyclohexanones into the corresponding phenols. This process involves the successive dehydrogenation of two saturated carbon-carbon bonds within the six-membered ring of cyclohexanones and utilizes molecular oxygen to drive the reaction cycle. It demonstrates a versatile and efficient approach for the synthesis of substituted phenols, providing a valuable complement to existing chemical methodologies.
Collapse
Affiliation(s)
- Jie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Shaofang Qi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Zhiguo Wang
- Institute of Aging Research, Hangzhou Normal University, Zhejiang, Hangzhou, 311121, PR China
| | - Liran Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Jialing Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Guixiang Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Yongzhen Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou, 310027, PR China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 210009, PR China
| |
Collapse
|
3
|
Li ZL, Pei S, Chen Z, Huang TY, Wang XD, Shen L, Chen X, Wang QQ, Wang DX, Ao YF. Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity. Nat Commun 2024; 15:8778. [PMID: 39389964 PMCID: PMC11467325 DOI: 10.1038/s41467-024-53048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Biocatalysis is an attractive approach for the synthesis of chiral pharmaceuticals and fine chemicals, but assessing and/or improving the enantioselectivity of biocatalyst towards target substrates is often time and resource intensive. Although machine learning has been used to reveal the underlying relationship between protein sequences and biocatalytic enantioselectivity, the establishment of substrate fitness space is usually disregarded by chemists and is still a challenge. Using 240 datasets collected in our previous works, we adopt chemistry and geometry descriptors and build random forest classification models for predicting the enantioselectivity of amidase towards new substrates. We further propose a heuristic strategy based on these models, by which the rational protein engineering can be efficiently performed to synthesize chiral compounds with higher ee values, and the optimized variant results in a 53-fold higher E-value comparing to the wild-type amidase. This data-driven methodology is expected to broaden the application of machine learning in biocatalysis research.
Collapse
Affiliation(s)
- Zi-Lin Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuxin Pei
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Ziying Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Teng-Yu Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai, China.
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai, China.
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China.
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Naim M, Mohammat MF, Mohd Ariff PNA, Uzir MH. Biocatalytic approach for the synthesis of chiral alcohols for the development of pharmaceutical intermediates and other industrial applications: A review. Enzyme Microb Technol 2024; 180:110483. [PMID: 39033578 DOI: 10.1016/j.enzmictec.2024.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Biocatalysis has emerged as a strong tool for the synthesis of active pharmaceutical ingredients (APIs). In the early twentieth century, whole cell biocatalysis was used to develop the first industrial biocatalytic processes, and the precise work of enzymes was unknown. Biocatalysis has evolved over the years into an essential tool for modern, cost-effective, and sustainable pharmaceutical manufacturing. Meanwhile, advances in directed evolution enable the rapid production of process-stable enzymes with broad substrate scope and high selectivity. Large-scale synthetic pathways incorporating biocatalytic critical steps towards >130 APIs of authorized pharmaceuticals and drug prospects are compared in terms of steps, reaction conditions, and scale with the corresponding chemical procedures. This review is designed on the functional group developed during the reaction forming alcohol functional groups. Some important biocatalyst sources, techniques, and challenges are described. A few APIs and their utilization in pharmaceutical drugs are explained here in this review. Biocatalysis has provided shorter, more efficient, and more sustainable alternative pathways toward existing small molecule APIs. Furthermore, non-pharmaceutical applications of biocatalysts are also mentioned and discussed. Finally, this review includes the future outlook and challenges of biocatalysis. In conclusion, Further research and development of promising enzymes are required before they can be used in industry.
Collapse
Affiliation(s)
- Mohd Naim
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| | - Mohd Fazli Mohammat
- Centre for Chemical Synthesis & Polymer Technology, Institute of Science (IoS), Kompleks Inspirasi, Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan 40450, Malaysia.
| | - Putri Nur Arina Mohd Ariff
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| | - Mohamad Hekarl Uzir
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| |
Collapse
|
6
|
Li F, Xu Y, Liu Y, Kan W, Piao Y, Han W, Li Z, Wang Z, Wang L. Switching engineered Vitreoscilla hemoglobin into carbene transferase for enantioselective SH insertion. Int J Biol Macromol 2024; 278:134756. [PMID: 39147340 DOI: 10.1016/j.ijbiomac.2024.134756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
An attractive strategy for efficiently forming CS bonds is through the use of diazo compounds SH insertion. However, achieving good enantioselective control in this reaction within a biocatalytic system has proven to be challenging. This study aimed to enhance the activity and enantioselectivity of to enable asymmetric SH insertion. The researchers conducted site-saturation mutagenesis (SSM) on 5 amino acid residues located around the iron carbenoid intermediate within a distance of 5 Å, followed by iterative saturation mutagenesis (ISM) of beneficial mutants. Through this process, the beneficial variant VHbSH(P54R/V98W) was identified through screening with 4-(methylmercapto) phenol as the substrate. This variant exhibited up to 4-fold higher catalytic efficiency and 6-fold higher enantioselectivity compared to the wild-type VHb. Computational studies were also conducted to elucidate the detailed mechanism of this asymmetric SH insertion, explaining how active-site residues accelerate this transformation and provide stereocontrol.
Collapse
Affiliation(s)
- Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Yuyang Liu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Wenbo Kan
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Yuming Piao
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Weiwei Han
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Zhengqiang Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China.
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China.
| |
Collapse
|
7
|
Yehorova D, Di Geronimo B, Robinson M, Kasson PM, Kamerlin SCL. Using residue interaction networks to understand protein function and evolution and to engineer new proteins. Curr Opin Struct Biol 2024; 89:102922. [PMID: 39332048 DOI: 10.1016/j.sbi.2024.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Residue interaction networks (RINs) provide graph-based representations of interaction networks within proteins, providing important insight into the factors driving protein structure, function, and stability relationships. There exists a wide range of tools with which to perform RIN analysis, taking into account different types of interactions, input (crystal structures, simulation trajectories, single proteins, or comparative analysis across proteins), as well as formats, including standalone software, web server, and a web application programming interface (API). In particular, the ability to perform comparative RIN analysis across protein families using "metaRINs" provides a valuable tool with which to dissect protein evolution. This, in turn, highlights hotspots to avoid (or target) for in vitro evolutionary studies, providing a powerful framework that can be exploited to engineer new proteins.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA
| | - Bruno Di Geronimo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA
| | - Michael Robinson
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Peter M Kasson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Fersht Dr NW, Atlanta GA 30332, USA; Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Shina C L Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA; Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden.
| |
Collapse
|
8
|
Schäfer F, Lückemeier L, Glorius F. Improving reproducibility through condition-based sensitivity assessments: application, advancement and prospect. Chem Sci 2024:d4sc03017f. [PMID: 39263664 PMCID: PMC11382186 DOI: 10.1039/d4sc03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
The fluctuating reproducibility of scientific reports presents a well-recognised issue, frequently stemming from insufficient standardisation, transparency and a lack of information in scientific publications. Consequently, the incorporation of newly developed synthetic methods into practical applications often occurs at a slow rate. In recent years, various efforts have been made to analyse the sensitivity of chemical methodologies and the variation in quantitative outcome observed across different laboratory environments. For today's chemists, determining the key factors that really matter for a reaction's outcome from all the different aspects of chemical methodology can be a challenging task. In response, we provide a detailed examination and customised recommendations surrounding the sensitivity screen, offering a comprehensive assessment of various strategies and exploring their diverse applications by research groups to improve the practicality of their methodologies.
Collapse
Affiliation(s)
- Felix Schäfer
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Lukas Lückemeier
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Frank Glorius
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
9
|
Wang A, Wang Y, You Y, Huang Z, Zhang X, Li S, Chen H. One-Pot Biocatalytic Conversion of Chemically Inert Hydrocarbons into Chiral Amino Acids through Internal Cofactor and H 2O 2 Recycling. Angew Chem Int Ed Engl 2024:e202410260. [PMID: 39187620 DOI: 10.1002/anie.202410260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Chemically inert hydrocarbons are the primary feedstocks used in the petrochemical industry and can be converted into more intricate and valuable chemicals. However, two major challenges impede this conversion process: selective activation of C-H bonds in hydrocarbons and systematic functionalization required to synthesize complex structures. To address these issues, we developed a multi-enzyme cascade conversion system based on internal cofactor and H2O2 recycling to achieve the one-pot deep conversion from heptane to chiral (S)-2-aminoheptanoic acid under mild conditions. First, a hydrogen-borrowing-cycle-based NADH regeneration method and H2O2 in situ generation and consumption strategy were applied to realize selective C-H bond oxyfunctionalization, converting heptane into 2-hydroxyheptanoic acid. Integrating subsequent reductive amination driven by the second hydrogen-borrowing cycle, (S)-2-aminoheptanoic acid was finally accumulated at 4.57 mM with eep>99 %. Hexane, octane, 2-methylheptane, and butylbenzene were also successfully converted into the corresponding chiral amino acids with eep>99 %. Overall, the conversion system employed internal cofactor and H2O2 recycling, with O2 as the oxidant and ammonium as the amination reagent to fulfill the enzymatic conversion from chemically inert hydrocarbons into chiral amino acids under environmentally friendly conditions, which is a highly challenging transformation in traditional organic synthesis.
Collapse
Affiliation(s)
- Aiwen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yongze Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yuanxiang You
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhiqing Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Hui Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
10
|
Sharma M, Patton ZE, Shoemaker CR, Bacsa J, Biegasiewicz KF. N-Halogenation by Vanadium-Dependent Haloperoxidases Enables 1,2,4-Oxadiazole Synthesis. Angew Chem Int Ed Engl 2024:e202411387. [PMID: 39183368 DOI: 10.1002/anie.202411387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Nitrogen-containing compounds are valuable synthetic intermediates and targets in nearly every chemical industry. While methods for nitrogen-carbon and nitrogen-heteroatom bond formation have primarily relied on nucleophilic nitrogen atom reactivity, molecules containing nitrogen-halogen bonds allow for electrophilic or radical reactivity modes at the nitrogen center. Despite the growing synthetic utility of nitrogen-halogen bond-containing compounds, selective catalytic strategies for their synthesis are largely underexplored. We recently discovered that the vanadium-dependent haloperoxidase (VHPO) class of enzymes are a suitable biocatalyst platform for nitrogen-halogen bond formation. Herein, we show that VHPOs perform selective halogenation of a range of substituted benzamidine hydrochlorides to produce the corresponding N'-halobenzimidamides. This biocatalytic platform is applied to the synthesis of 1,2,4-oxadiazoles from the corresponding N-acylbenzamidines in high yield and with excellent chemoselectivity. Finally, the synthetic applicability of this biotechnology is demonstrated in an extension to nitrogen-nitrogen bond formation and the chemoenzymatic synthesis of the Duchenne muscular dystrophy drug, ataluren.
Collapse
Affiliation(s)
- Manik Sharma
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| | - Zoe E Patton
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
| | - Carlie R Shoemaker
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
| | - Kyle F Biegasiewicz
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| |
Collapse
|
11
|
Xue J, Dou Z, Sun Z, Luo T, Chen X, Ni Y, Xu G. Biocatalytic Stereoselective Synthesis of Chiral Precursors for Liposoluble β 1 Receptor Blocker Nebivolol. J Org Chem 2024; 89:11043-11047. [PMID: 39042018 DOI: 10.1021/acs.joc.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Asymmetric reduction of 2-chloro-1-(6-fluorochroman-2-yl)ethan-1-one (NEB-7) into 2-chloro-1-(6-fluorochroman-2-yl)ethan-1-ol (NEB-8) is the crucial step for synthesis of liposoluble β1 receptor blocker nebivolol. Four efficient and stereoselective alcohol dehydrogenases were identified, enabling the stereoselective synthesis of all enantiomers of NEB-8 at a substrate loading of 137 g·L-1 with ee values of >99% and high space-time yields. This study provides novel biocatalysts for the efficient synthesis of nebivolol precursors and uncovers the molecular basis for enantioselectivity manipulation by parametrization of Prelog's rule.
Collapse
Affiliation(s)
- Jiayu Xue
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Zhe Dou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, Zhejiang P. R. China
| | - Zewen Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Tianwei Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Xiaoyu Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| |
Collapse
|
12
|
Yu J, Zhang Q, Zhao B, Wang T, Zheng Y, Wang B, Zhang Y, Huang X. Repurposing Visible-Light-Excited Ene-Reductases for Diastereo- and Enantioselective Lactones Synthesis. Angew Chem Int Ed Engl 2024; 63:e202402673. [PMID: 38656534 DOI: 10.1002/anie.202402673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Repurposing enzymes to catalyze non-natural asymmetric transformations that are difficult to achieve using traditional chemical methods is of significant importance. Although radical C-O bond formation has emerged as a powerful approach for constructing oxygen-containing compounds, controlling the stereochemistry poses a great challenge. Here we present the development of a dual bio-/photo-catalytic system comprising an ene-reductase and an organic dye for achieving stereoselective lactonizations. By integrating directed evolution and photoinduced single electron oxidation, we repurposed engineered ene-reductases to steer non-natural radical C-O formations (one C-O bond for hydrolactonizations and lactonization-alkylations while two C-O bonds for lactonization-oxygenations). This dual catalysis gave a new approach to a diverse array of enantioenhanced 5- and 6-membered lactones with vicinal stereocenters, part of which bears a quaternary stereocenter (up to 99 % enantiomeric excess, up to 12.9 : 1 diastereomeric ratio). Detailed mechanistic studies, including computational simulations, uncovered the synergistic effect of the enzyme and the externally added organophotoredox catalyst Rh6G.
Collapse
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Qiaoyu Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Beibei Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Tianhang Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037, Nanjing, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Yan Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Xiaoqiang Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| |
Collapse
|
13
|
Sudar M, Milčić N, Česnik Katulić M, Szekrenyi A, Hernández K, Fekete M, Wardenga R, Majerić Elenkov M, Qi Y, Charnock S, Vasić-Rački Đ, Fessner WD, Clapés P, Findrik Blažević Z. Cascade enzymatic synthesis of a statin side chain precursor - the role of reaction engineering in process optimization. RSC Adv 2024; 14:21158-21173. [PMID: 38966813 PMCID: PMC11223575 DOI: 10.1039/d4ra01633e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
Statins are an important class of drugs used to lower blood cholesterol levels and are often used to combat cardiovascular disease. In view of the importance of safe and reliable supply and production of statins in modern medicine and the global need for sustainable processes, various biocatalytic strategies for their synthesis have been investigated. In this work, a novel biocatalytic route to a statin side chain precursor was investigated in a one-pot cascade reaction starting from the protected alcohol N-(3-hydroxypropyl)-2-phenylacetamide, which is oxidized to the corresponding aldehyde in the first reaction step, and then reacts with two equivalents of acetaldehyde to form the final product N-(2-((2S,4S,6S)-4,6-dihydroxytetrahydro-2H-pyran-2-yl)ethyl)-2-phenylacetamide (phenylacetamide-lactol). To study this complex reaction, an enzyme reaction engineering approach was used, i.e. the kinetics of all reactions occurring in the cascade (including side reactions) were determined. The obtained kinetic model together with the simulations gave an insight into the system and indicated the best reactor mode for the studied reaction, which was fed-batch with acetaldehyde feed to minimize its negative effect on the enzyme activity during the reaction. The mathematical model of the process was developed and used to simulate different scenarios and to find the reaction conditions (enzyme and coenzyme concentration, substrate feed concentration and flow rate) at which the highest yield of phenylacetamide-lactol (75%) can be obtained. In the end, our goal was to show that this novel cascade route is an interesting alternative for the synthesis of the statin side chain precursor and that is why we also calculated an initial estimate of the potential value addition.
Collapse
Affiliation(s)
- Martina Sudar
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Nevena Milčić
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Morana Česnik Katulić
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Anna Szekrenyi
- Technische Universität Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Karel Hernández
- Institute of Advanced Chemistry of Catalonia, Biotransformation and Bioactive Molecules Group, IQAC-CSIC Jordi Girona 18-26 08034 Barcelona Spain
| | - Melinda Fekete
- Enzymicals AG Walther-Rathenau-Straße 49b 17489 Greifswald Germany
- piCHEM Forschungs-und Entwicklungs GmbH Parkring 3 8074 Raaba-Grambach Austria
| | - Rainer Wardenga
- Enzymicals AG Walther-Rathenau-Straße 49b 17489 Greifswald Germany
| | | | - Yuyin Qi
- Prozomix Ltd Haltwhistle Northumberland NE49 9HA UK
| | | | - Đurđa Vasić-Rački
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Wolf-Dieter Fessner
- Technische Universität Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Pere Clapés
- Institute of Advanced Chemistry of Catalonia, Biotransformation and Bioactive Molecules Group, IQAC-CSIC Jordi Girona 18-26 08034 Barcelona Spain
| | - Zvjezdana Findrik Blažević
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| |
Collapse
|
14
|
Sorgenfrei FA, Sloan JJ, Weissensteiner F, Zechner M, Mehner NA, Ellinghaus TL, Schachtschabel D, Seemayer S, Kroutil W. Solvent concentration at 50% protein unfolding may reform enzyme stability ranking and process window identification. Nat Commun 2024; 15:5420. [PMID: 38926341 PMCID: PMC11208486 DOI: 10.1038/s41467-024-49774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
As water miscible organic co-solvents are often required for enzyme reactions to improve e.g., the solubility of the substrate in the aqueous medium, an enzyme is required which displays high stability in the presence of this co-solvent. Consequently, it is of utmost importance to identify the most suitable enzyme or the appropriate reaction conditions. Until now, the melting temperature is used in general as a measure for stability of enzymes. The experiments here show, that the melting temperature does not correlate to the activity observed in the presence of the solvent. As an alternative parameter, the concentration of the co-solvent at the point of 50% protein unfolding at a specific temperature T in shortc U 50 T is introduced. Analyzing a set of ene reductases,c U 50 T is shown to indicate the concentration of the co-solvent where also the activity of the enzyme drops fastest. Comparing possible rankings of enzymes according to melting temperature andc U 50 T reveals a clearly diverging outcome also depending on the specific solvent used. Additionally, plots ofc U 50 versus temperature enable a fast identification of possible reaction windows to deduce tolerated solvent concentrations and temperature.
Collapse
Affiliation(s)
- Frieda A Sorgenfrei
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Jeremy J Sloan
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | - Florian Weissensteiner
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Marco Zechner
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Niklas A Mehner
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | | | | | - Stefan Seemayer
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany.
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- Department of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- BioTechMed Graz, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
15
|
Hagedoorn PL, Pabst M, Hanefeld U. The metal cofactor: stationary or mobile? Appl Microbiol Biotechnol 2024; 108:391. [PMID: 38910188 PMCID: PMC11194214 DOI: 10.1007/s00253-024-13206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
Metal cofactors are essential for catalysis and enable countless conversions in nature. Interestingly, the metal cofactor is not always static but mobile with movements of more than 4 Å. These movements of the metal can have different functions. In the case of the xylose isomerase and medium-chain dehydrogenases, it clearly serves a catalytic purpose. The metal cofactor moves during substrate activation and even during the catalytic turnover. On the other hand, in class II aldolases, the enzymes display resting states and active states depending on the movement of the catalytic metal cofactor. This movement is caused by substrate docking, causing the metal cofactor to take the position essential for catalysis. As these metal movements are found in structurally and mechanistically unrelated enzymes, it has to be expected that this metal movement is more common than currently perceived. KEY POINTS: • Metal ions are essential cofactors that can move during catalysis. • In class II aldolases, the metal cofactors can reside in a resting state and an active state. • In MDR, the movement of the metal cofactor is essential for substrate docking.
Collapse
Affiliation(s)
- Peter-Leon Hagedoorn
- Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Martin Pabst
- Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Ulf Hanefeld
- Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| |
Collapse
|
16
|
Luo Z, Qiao L, Chen H, Mao Z, Wu S, Ma B, Xie T, Wang A, Pei X, Sheldon RA. Precision Engineering of the Co-immobilization of Enzymes for Cascade Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202403539. [PMID: 38556813 DOI: 10.1002/anie.202403539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The design and orderly layered co-immobilization of multiple enzymes on resin particles remain challenging. In this study, the SpyTag/SpyCatcher binding pair was fused to the N-terminus of an alcohol dehydrogenase (ADH) and an aldo-keto reductase (AKR), respectively. A non-canonical amino acid (ncAA), p-azido-L-phenylalanine (p-AzF), as the anchor for covalent bonding enzymes, was genetically inserted into preselected sites in the AKR and ADH. Employing the two bioorthogonal counterparts of SpyTag/SpyCatcher and azide-alkyne cycloaddition for the immobilization of AKR and ADH enabled sequential dual-enzyme coating on porous microspheres. The ordered dual-enzyme reactor was subsequently used to synthesize (S)-1-(2-chlorophenyl)ethanol asymmetrically from the corresponding prochiral ketone, enabling the in situ regeneration of NADPH. The reactor exhibited a high catalytic conversion of 74 % and good reproducibility, retaining 80 % of its initial activity after six cycles. The product had 99.9 % ee, which that was maintained in each cycle. Additionally, the double-layer immobilization method significantly increased the enzyme loading capacity, which was approximately 1.7 times greater than that of traditional single-layer immobilization. More importantly, it simultaneously enabled both the purification and immobilization of multiple enzymes on carriers, thus providing a convenient approach to facilitate cascade biocatalysis.
Collapse
Affiliation(s)
- Zhiyuan Luo
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Li Qiao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Haomin Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Zhili Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Shujiao Wu
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Bianqin Ma
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand PO Wits., 2050, Johannesburg, South Africa
- Department of Biotechnology, Section BOC, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
17
|
Xu Y, Li F, Xie H, Liu Y, Han W, Wu J, Cheng L, Wang C, Li Z, Wang L. Directed evolution of Escherichia coli surface-displayed Vitreoscilla hemoglobin as an artificial metalloenzyme for the synthesis of 5-imino-1,2,4-thiadiazoles. Chem Sci 2024; 15:7742-7748. [PMID: 38784746 PMCID: PMC11110144 DOI: 10.1039/d4sc00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Artificial metalloenzymes (ArMs) are constructed by anchoring organometallic catalysts to an evolvable protein scaffold. They present the advantages of both components and exhibit considerable potential for the in vivo catalysis of new-to-nature reactions. Herein, Escherichia coli surface-displayed Vitreoscilla hemoglobin (VHbSD-Co) that anchored the cobalt porphyrin cofactor instead of the original heme cofactor was used as an artificial thiourea oxidase (ATOase) to synthesize 5-imino-1,2,4-thiadiazoles. After two rounds of directed evolution using combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy, the evolved six-site mutation VHbSD-Co (6SM-VHbSD-Co) exhibited significant improvement in catalytic activity, with a broad substrate scope (31 examples) and high yields with whole cells. This study shows the potential of using VHb ArMs in new-to-nature reactions and demonstrates the applicability of E. coli surface-displayed methods to enhance catalytic properties through the substitution of porphyrin cofactors in hemoproteins in vivo.
Collapse
Affiliation(s)
- Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Yuyang Liu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Weiwei Han
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Lei Cheng
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University Changchun 130023 P. R. China
| | - Zhengqiang Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| |
Collapse
|
18
|
Shen Q, Yan J, Han Y, Zhang Z, Li H, Kong D, Shi J, Cui C, Zhang W. Peroxygenase-Enabled Reductive Kinetic Resolution for the Enantioenrichment of Organoperoxides. Angew Chem Int Ed Engl 2024; 63:e202401590. [PMID: 38477082 DOI: 10.1002/anie.202401590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Enantiomerically pure organoperoxides serve as valuable precursors in organic transformations. Herein, we present the first examples of unspecific peroxygenase catalyzed kinetic resolution of racemic organoperoxides through asymmetric reduction. Through meticulous investigation of the reaction conditions, it is shown that the unspecific peroxygenase from Agrocybe aegerita (AaeUPO) exhibits robust catalytic activity in the kinetic resolution reactions of the model substrate with turnover numbers up to 60000 and turnover frequency of 5.6 s-1. Various aralkyl organoperoxides were successfully resolved by AaeUPO, achieving excellent enantioselectivities (e.g., up to 99 % ee for the (S)-organoperoxide products). Additionally, we screened commercial peroxygenase variants to obtain the organoperoxides with complementary chirality, with one mutant yielding the (R)-products. While unspecific peroxygenases have been extensively demonstrated as a powerful oxidative catalysts, this study highlights their usefulness in catalyzing the reduction of organoperoxides and providing versatile chiral synthons.
Collapse
Affiliation(s)
- Qianqian Shen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Juzhang Yan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Yuchen Han
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Zaoxiao Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Dulin Kong
- School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Chengsen Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| |
Collapse
|
19
|
Fu H, Hyster TK. From Ground-State to Excited-State Activation Modes: Flavin-Dependent "Ene"-Reductases Catalyzed Non-natural Radical Reactions. Acc Chem Res 2024; 57:1446-1457. [PMID: 38603772 DOI: 10.1021/acs.accounts.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Enzymes are desired catalysts for chemical synthesis, because they can be engineered to provide unparalleled levels of efficiency and selectivity. Yet, despite the astonishing array of reactions catalyzed by natural enzymes, many reactivity patterns found in small molecule catalysts have no counterpart in the living world. With a detailed understanding of the mechanisms utilized by small molecule catalysts, we can identify existing enzymes with the potential to catalyze reactions that are currently unknown in nature. Over the past eight years, our group has demonstrated that flavin-dependent "ene"-reductases (EREDs) can catalyze various radical-mediated reactions with unparalleled levels of selectivity, solving long-standing challenges in asymmetric synthesis.This Account presents our development of EREDs as general catalysts for asymmetric radical reactions. While we have developed multiple mechanisms for generating radicals within protein active sites, this account will focus on examples where flavin mononucleotide hydroquinone (FMNhq) serves as an electron transfer radical initiator. While our initial mechanistic hypotheses were rooted in electron-transfer-based radical initiation mechanisms commonly used by synthetic organic chemists, we ultimately uncovered emergent mechanisms of radical initiation that are unique to the protein active site. We will begin by covering intramolecular reactions and discussing how the protein activates the substrate for reduction by altering the redox-potential of alkyl halides and templating the charge transfer complex between the substrate and flavin-cofactor. Protein engineering has been used to modify the fundamental photophysics of these reactions, highlighting the opportunity to tune these systems further by using directed evolution. This section highlights the range of coupling partners and radical termination mechanisms available to intramolecular reactions.The next section will focus on intermolecular reactions and the role of enzyme-templated ternary charge transfer complexes among the cofactor, alkyl halide, and coupling partner in gating electron transfer to ensure that it only occurs when both substrates are bound within the protein active site. We will highlight the synthetic applications available to this activation mode, including olefin hydroalkylation, carbohydroxylation, arene functionalization, and nitronate alkylation. This section also discusses how the protein can favor mechanistic steps that are elusive in solution for the asymmetric reductive coupling of alkyl halides and nitroalkanes. We are aware of several recent EREDs-catalyzed photoenzymatic transformations from other groups. We will discuss results from these papers in the context of understanding the nuances of radical initiation with various substrates.These biocatalytic asymmetric radical reactions often complement the state-of-the-art small-molecule-catalyzed reactions, making EREDs a valuable addition to a chemist's synthetic toolbox. Moreover, the underlying principles studied with these systems are potentially operative with other cofactor-dependent proteins, opening the door to different types of enzyme-catalyzed radical reactions. We anticipate that this Account will serve as a guide and inspire broad interest in repurposing existing enzymes to access new transformations.
Collapse
Affiliation(s)
- Haigen Fu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
20
|
Maestro A, Malviya BK, Auer G, Ötvös SB, Kappe CO. A robust heterogeneous chiral phosphoric acid enables multi decagram scale production of optically active N, S-ketals. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:4593-4599. [PMID: 38654978 PMCID: PMC11033974 DOI: 10.1039/d4gc00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Asymmetric organocatalysis has been recognized as one of the "top 10 emerging technologies" in chemistry by IUPAC in 2019. Its potential to make chemical processes more sustainable is promising, but there are still challenges that need to be addressed. Developing new and reliable enantioselective processes for reproducing batch reactions on a large scale requires a combination of chemical and technical solutions. In this manuscript, we combine a robust immobilized chiral phosphoric acid with a new packed-bed reactor design. This combination allows scaling up of the enantioselective addition of thiols to imines from a few milligrams to a multi-decagram scale in a continuous flow process without physical or chemical degradation of the catalyst.
Collapse
Affiliation(s)
- Aitor Maestro
- Department of Organic Chemistry I, University of the Basque Country, UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
| | - Bhanwar K Malviya
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| | - Gerald Auer
- Department of Earth Sciences, University of Graz, NAWI Graz Geocenter A-8010 Graz Austria
| | - Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| |
Collapse
|
21
|
Tian J, Zhou S, Chen Y, Zhao Y, Li S, Yang P, Xu X, Chen Y, Cheng X, Yang J. Synthesis of Chiral Sulfoxides by A Cyclic Oxidation-Reduction Multi-Enzymatic Cascade Biocatalysis. Chemistry 2024; 30:e202304081. [PMID: 38288909 DOI: 10.1002/chem.202304081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 02/16/2024]
Abstract
Optically pure sulfoxides are valuable organosulfur compounds extensively employed in medicinal and organic synthesis. In this study, we present a biocatalytic oxidation-reduction cascade system designed for the preparation of enantiopure sulfoxides. The system involves the cooperation of a low-enantioselective chimeric oxidase SMO (styrene monooxygenase) with a high-enantioselective reductase MsrA (methionine sulfoxide reductase A), facilitating "non-selective oxidation and selective reduction" cycles for prochiral sulfide oxidation. The regeneration of requisite cofactors for MsrA and SMO was achieved via a cascade catalysis process involving three auxiliary enzymes, sustained by cost-effective D-glucose. Under the optimal reaction conditions, a series of heteroaryl alkyl, aryl alkyl and dialkyl sulfoxides in R configuration were synthesized through this "one-pot, one step" cascade reaction. The obtained compounds exhibited high yields of >90 % and demonstrated enantiomeric excess (ee) values exceeding 90 %. This study represents an unconventional and efficient biocatalytic way in utilizing the low-enantioselective oxidase for the synthesis of enantiopure sulfoxides.
Collapse
Affiliation(s)
- Jin Tian
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Shihuan Zhou
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yanli Chen
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yuyan Zhao
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Song Li
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Piao Yang
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Xianlin Xu
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Xiaoling Cheng
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| |
Collapse
|
22
|
Gopal MR, Kunjapur AM. Harnessing biocatalysis to achieve selective functional group interconversion of monomers. Curr Opin Biotechnol 2024; 86:103093. [PMID: 38417202 DOI: 10.1016/j.copbio.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
Polymeric materials are ubiquitous to modern life. However, reliance of petroleum for polymeric building blocks is not sustainable. The synthesis of macromolecules from recalcitrant polymer waste feedstocks, such as plastic waste and lignocellulosic biomass, presents an opportunity to bypass the use of petroleum-based feedstocks. However, the deconstruction and transformation of these alternative feedstocks remained limited until recently. Herein, we highlight examples of monomers liberated from the deconstruction of recalcitrant polymers, and more extensively, we showcase the state-of-the-art in biocatalytic technologies that are enabling synthesis of diverse upcycled monomeric starting materials for a wide variety of macromolecules. Overall, this review emphasizes the importance of functional group interconversion as a promising strategy by which biocatalysis can aid the diversification and upcycling of monomers.
Collapse
Affiliation(s)
- Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA.
| |
Collapse
|
23
|
Zhang Q, Pan B, Yang P, Tian J, Zhou S, Xu X, Dai Y, Cheng X, Chen Y, Yang J. Engineering of methionine sulfoxide reductase A with simultaneously improved stability and activity for kinetic resolution of chiral sulfoxides. Int J Biol Macromol 2024; 260:129540. [PMID: 38244733 DOI: 10.1016/j.ijbiomac.2024.129540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Methionine sulfoxide reductase A (MsrA) has emerged as promising biocatalysts in the enantioselective kinetic resolution of racemic (rac) sulfoxides. In this study, we engineered robust MsrA variants through directed evolution, demonstrating substantial improvements of thermostability. Mechanism analysis reveals that the enhanced thermostability results from the strengthening of intracellular interactions and increase in molecular compactness. Moreover, these variants demonstrated concurrent improvements in catalytic activities, and notably, these enhancements in stability and activity collectively contributed to a significant improvement in enzyme substrate tolerance. We achieved kinetic resolution on a series of rac-sulfoxides with high enantioselectivity under initial substrate concentrations reaching up to 93.0 g/L, representing a great improvement in the aspect of the substrate concentration for biocatalytic preparation of chiral sulfoxide. Hence, the simultaneously improved thermostability, activity and substrate tolerance of MsrA represent an excellent biocatalyst for the green synthesis of optically pure sulfoxides.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Brain Science, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Bochen Pan
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Piao Yang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jin Tian
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shihuan Zhou
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xianlin Xu
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yangxue Dai
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaoling Cheng
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiawei Yang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| |
Collapse
|
24
|
Qin Z, Zhou Y, Li Z, Höhne M, Bornscheuer UT, Wu S. Production of Biobased Ethylbenzene by Cascade Biocatalysis with an Engineered Photodecarboxylase. Angew Chem Int Ed Engl 2024; 63:e202314566. [PMID: 37947487 DOI: 10.1002/anie.202314566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one-pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non-natural three-enzyme cascade for one-pot conversion of biobased l-phenylalanine into ethylbenzene. The key rate-limiting photodecarboxylase was subjected to structure-guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3-fold higher productivity. With this improved photodecarboxylase, an optimized two-cell sequential process was developed to convert l-phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one-pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals.
Collapse
Affiliation(s)
- Zhaoyang Qin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
| | - Yi Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Matthias Höhne
- Institute of Chemistry, Technische Universität Berlin, Müller-Breslau-Str. 10, 10623, Berlin, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Shuke Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17489, Greifswald, Germany
| |
Collapse
|
25
|
Rogge T, Zhou Q, Porter NJ, Arnold FH, Houk KN. Iron Heme Enzyme-Catalyzed Cyclopropanations with Diazirines as Carbene Precursors: Computational Explorations of Diazirine Activation and Cyclopropanation Mechanism. J Am Chem Soc 2024; 146:2959-2966. [PMID: 38270588 DOI: 10.1021/jacs.3c06030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The mechanism of cyclopropanations with diazirines as air-stable and user-friendly alternatives to commonly employed diazo compounds within iron heme enzyme-catalyzed carbene transfer reactions has been studied by means of density functional theory (DFT) calculations of model systems, quantum mechanics/molecular mechanics (QM/MM) calculations, and molecular dynamics (MD) simulations of the iron carbene and the cyclopropanation transition state in the enzyme active site. The reaction is initiated by a direct diazirine-diazo isomerization occurring in the active site of the enzyme. In contrast, an isomerization mechanism proceeding via the formation of a free carbene intermediate in lieu of a direct, one-step isomerization process was observed for model systems. Subsequent reaction with benzyl acrylate takes place through stepwise C-C bond formation via a diradical intermediate, delivering the cyclopropane product. The origin of the observed diastereo- and enantioselectivity in the enzyme was investigated through MD simulations, which indicate a preferred formation of the cis-cyclopropane by steric control.
Collapse
Affiliation(s)
- Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Nicholas J Porter
- Division of Chemistry and Chemical Engineering, Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
26
|
Salama S, Mostafa HS, Husseiny S, Sebak M. Actinobacteria as Microbial Cell Factories and Biocatalysts in The Synthesis of Chiral Intermediates and Bioactive Molecules; Insights and Applications. Chem Biodivers 2024; 21:e202301205. [PMID: 38155095 DOI: 10.1002/cbdv.202301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Actinobacteria are one of the most intriguing bacterial phyla in terms of chemical diversity and bioactivities of their reported biomolecules and natural products, including various types of chiral molecules. Actinobacterial genera such as Detzia, Mycobacterium, and Streptomyces are among the microbial sources targeted for selective reactions such as asymmetric biocatalysis catalyzed by whole cells or enzymes induced in their cell niche. Remarkably, stereoselective reactions catalyzed by actinobacterial whole cells or their enzymes include stereoselective oxidation, stereoselective reduction, kinetic resolution, asymmetric hydrolysis, and selective transamination, among others. Species of actinobacteria function with high chemo-, regio-, and enantio-selectivity under benign conditions, which could help current industrial processing. Numerous selective enzymes were either isolated from actinobacteria or expressed from actinobacteria in other microbes and hence exploited in the production of pure organic compounds difficult to obtain chemically. In addition, different species of actinobacteria, especially Streptomyces species, function as natural producers of chiral molecules of therapeutic importance. Herein, we discuss some of the most outstanding contributions of actinobacteria to asymmetric biocatalysis, which are important in the organic and/or pharmaceutical industries. In addition, we highlight the role of actinobacteria as microbial cell factories for chiral natural products with insights into their various biological potentialities.
Collapse
Affiliation(s)
- Sara Salama
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| | - Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Samah Husseiny
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62517, Beni-Suef, Egypt
| | - Mohamed Sebak
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| |
Collapse
|
27
|
Li J, Kumar A, Lewis JC. Non-native Intramolecular Radical Cyclization Catalyzed by a B 12 -Dependent Enzyme. Angew Chem Int Ed Engl 2023; 62:e202312893. [PMID: 37874184 PMCID: PMC11328698 DOI: 10.1002/anie.202312893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Despite the unique reactivity of vitamin B12 and its derivatives, B12 -dependent enzymes remain underutilized in biocatalysis. In this study, we repurposed the B12 -dependent transcription factor CarH to enable non-native radical cyclization reactions. An engineered variant of this enzyme, CarH*, catalyzes the formation γ- and δ-lactams through either redox-neutral or reductive ring closure with marked enhancement of reactivity and selectivity relative to the free B12 cofactor. CarH* also catalyzes an unusual spirocyclization by dearomatization of pendant arenes to produce bicyclic 1,3-diene products instead of 1,4-dienes provided by existing methods. These results and associated mechanistic studies highlight the importance of protein scaffolds for controlling the reactivity of B12 and expanding the synthetic utility of B12 -dependent enzymes.
Collapse
Affiliation(s)
- Jianbin Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Amardeep Kumar
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
28
|
Zheng J, Shen Z, Gao JM, Zhou J, Gu Y. Enzymatic Photodecarboxylation on Secondary and Tertiary Carboxylic Acids. Org Lett 2023; 25:8564-8569. [PMID: 38019531 DOI: 10.1021/acs.orglett.3c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Photoenzymatic decarboxylation of bulky secondary and tertiary carboxylic acids catalyzed by engineered Chlorella variabilis fatty acid photodecarboxylase (CvFAP) is reported. Rational design and directed evolution of wild-type CvFAP are used to improve the reactivity and expand potential applications. Moreover, engineered CvFAP can catalyze light-driven kinetic resolution of α-substituted carboxylic acid. Our work sheds light on the production of chiral building blocks and bioactive molecules from bulky carboxylic acids via the photoenzymatic way.
Collapse
Affiliation(s)
- Jie Zheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Zhuanglin Shen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jiahai Zhou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
| | - Yang Gu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
29
|
Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Enzymatic Oxy- and Amino-Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202309012. [PMID: 37639631 DOI: 10.1002/anie.202309012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fatma Feyza Özgen
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
30
|
Zhang X, Li F, Li R, Zhao N, Liu D, Xu Y, Wang L, Wang D, Zhao R. B7 Induces Apoptosis in Colorectal Cancer Cells by Regulating the Expression of Caspase-3 and Inhibits Autophagy. Onco Targets Ther 2023; 16:867-883. [PMID: 37915320 PMCID: PMC10617530 DOI: 10.2147/ott.s429128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Purpose Heterocyclic compounds are organic compounds with heterocyclic structures, which are common in drug molecules. They include pyrazines with diverse functions, including anti-cancer, antimicrobial, antidiabetic, and anticholinergic activities. In this study a new small molecular compound B7 based on tetrazolium substituted pyrazine was synthesized and its effect on the progression of colorectal cancer (CRC) and its potential mechanism were investigated. Methods We synthesized a series of tetrazolium-substituted pyrazine compounds by chemoenzymatic method. NCM460 (Human), HCT116 (Human), SW480 (Human) cell lines were selected to analyse the inhibitory effect of B7 on CRC by CCK-8, apoptosis, cell migration and invasion, qPCR, Western blotting, molecular docking, immunofluorescence. Moreover, a CRC xenograft model of mice was used to analyzed the role of B7 in vivo. Results Among these compounds, 3-methyl-5je-6-bis (1H-tetrazole-5-yl) pyrazine-2-carboxylic acid (B7) inhibited CRC cell proliferation and induced apoptosis. The expression of Caspase-3 was increased after B7 treatment. In addition, the mitochondria abnormalities was observed in B7 group due to decrease the expression of Beclin-1. In addition, B7 inhibited the migration and invasion in CRC cells. Finally, the results showed that B7 had anti-tumor activity in CRC xenograft model of mice. Conclusion In summary, compound B7 was synthesized efficiently using tetrazolium-substituted pyrazine via a chemoenzymatic method. Moreover, B7 have ability to regulate the expression of Caspase-3 which induced apoptosis in CRC cells. In addition, decreased Beclin-1 expression after B7 treatment, indicating inhibited autophagy. This study showed that B7 effectively induced apoptosis and inhibited autophagy in CRC cells.
Collapse
Affiliation(s)
- Xinyi Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, People’s Republic of China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130023, People’s Republic of China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, People’s Republic of China
| | - Nan Zhao
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130023, People’s Republic of China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, People’s Republic of China
| | - Yuelin Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130023, People’s Republic of China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130023, People’s Republic of China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, People’s Republic of China
| | - Ruihong Zhao
- Department of Gastroenterology Endoscopy Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
31
|
Yu H, Zhang X, Acevedo-Rocha CG, Li A, Reetz MT. Protein engineering using mutability landscapes: Controlling site-selectivity of P450-catalyzed steroid hydroxylation. Methods Enzymol 2023; 693:191-229. [PMID: 37977731 DOI: 10.1016/bs.mie.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Directed evolution and rational design have been used widely in engineering enzymes for their application in synthetic organic chemistry and biotechnology. With stereoselectivity playing a crucial role in catalysis for the synthesis of valuable chemical and pharmaceutical compounds, rational design has not achieved such wide success in this specific area compared to directed evolution. Nevertheless, one bottleneck of directed evolution is the laborious screening efforts and the observed trade-offs in catalytic profiles. This has motivated researchers to develop more efficient protein engineering methods. As a prime approach, mutability landscaping avoids such trade-offs by providing more information of sequence-function relationships. Here, we describe an application of this efficient protein engineering method to improve the regio-/stereoselectivity and activity of P450BM3 for steroid hydroxylation, while keeping the mutagenesis libraries small so that they will require only minimal screening.
Collapse
Affiliation(s)
- Huili Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Carlos G Acevedo-Rocha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China.
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Muelheim, Germany; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, P. R. China.
| |
Collapse
|
32
|
Zhou H, Chuang P, Xu L, Wu Q. Asymmetric Synthesis of Bulky N-Cyclopropylmethyl-1-aryl-1-phenylmethylamines Catalyzed by Engineered Imine Reductases. Org Lett 2023; 25:6688-6692. [PMID: 37671859 DOI: 10.1021/acs.orglett.3c02542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Enzymatic reduction of diphenylmethanimine derivatives has rarely been reported owing to their steric hindrance. Herein, imine reductase (IRED) from Nocardia cyriacigeorgica rationally engineered with an efficient strategy of focused rational iterative site-specific mutagenesis (FRISM) was selected for the reduction of a series of N-cyclopropylmethyl-1-aryl-1-phenylmethylimines. Two highly enantioselective IRED variants were identified, providing various bulky amine products with moderate to high yields and high ee values (up to >99%). This work provided an effective method to construct these important pharmaceutical intermediates.
Collapse
Affiliation(s)
- Haonan Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Peihsuan Chuang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Leyan Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
33
|
Sahlin J, Wu C, Buscemi A, Schärer C, Nazemi SA, S K R, Herrera-Reinoza N, Jung TA, Shahgaldian P. Nanobiocatalysts with inbuilt cofactor recycling for oxidoreductase catalysis in organic solvents. NANOSCALE ADVANCES 2023; 5:5036-5044. [PMID: 37705789 PMCID: PMC10496889 DOI: 10.1039/d3na00413a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
The major stumbling block in the implementation of oxidoreductase enzymes in continuous processes is their stark dependence on costly cofactors that are insoluble in organic solvents. We describe a chemical strategy that allows producing nanobiocatalysts, based on an oxidoreductase enzyme, that performs biocatalytic reactions in hydrophobic organic solvents without external cofactors. The chemical design relies on the use of a silica-based carrier nanoparticle, of which the porosity can be exploited to create an aqueous reservoir containing the cofactor. The nanoparticle core, possessing radial-centred pore channels, serves as a cofactor reservoir. It is further covered with a layer of reduced porosity. This layer serves as a support for the immobilisation of the selected enzyme yet allowing the diffusion of the cofactor from the nanoparticle core. The immobilised enzyme is, in turn, shielded by an organosilica layer of controlled thickness fully covering the enzyme. Such produced nanobiocatalysts are shown to catalyse the reduction of a series of relevant ketones into the corresponding secondary alcohols, also in a continuous flow fashion.
Collapse
Affiliation(s)
- Jenny Sahlin
- Institute of Chemistry and Bioanalytics, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH-4132 Switzerland
| | - Congyu Wu
- Institute of Chemistry and Bioanalytics, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH-4132 Switzerland
| | - Andrea Buscemi
- Institute of Chemistry and Bioanalytics, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH-4132 Switzerland
| | - Claude Schärer
- Institute of Chemistry and Bioanalytics, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH-4132 Switzerland
| | - Seyed Amirabbas Nazemi
- Institute of Chemistry and Bioanalytics, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH-4132 Switzerland
| | - Rejaul S K
- Institute of Physics, University of Basel Klingelbergstrasse 82 Basel CH-4056 Switzerland
| | - Nataly Herrera-Reinoza
- Laboratory for X-ray Nanoscience and Technologies, Paul Scherrer Institute Forschungsstrasse 111 Villigen CH-5232 Switzerland
| | - Thomas A Jung
- Institute of Physics, University of Basel Klingelbergstrasse 82 Basel CH-4056 Switzerland
- Laboratory for X-ray Nanoscience and Technologies, Paul Scherrer Institute Forschungsstrasse 111 Villigen CH-5232 Switzerland
| | - Patrick Shahgaldian
- Institute of Chemistry and Bioanalytics, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH-4132 Switzerland
- Swiss Nanoscience Institute Klingelbergstrasse 82 Basel CH-4056 Switzerland
| |
Collapse
|
34
|
Hilberath T, van Oosten R, Victoria J, Brasselet H, Alcalde M, Woodley JM, Hollmann F. Toward Kilogram-Scale Peroxygenase-Catalyzed Oxyfunctionalization of Cyclohexane. Org Process Res Dev 2023; 27:1384-1389. [PMID: 37496955 PMCID: PMC10367066 DOI: 10.1021/acs.oprd.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 07/28/2023]
Abstract
Mol-scale oxyfunctionalization of cyclohexane to cyclohexanol/cyclohexanone (KA-oil) using an unspecific peroxygenase is reported. Using AaeUPO from Agrocybe aegerita and simple H2O2 as an oxidant, cyclohexanol concentrations of more than 300 mM (>60% yield) at attractive productivities (157 mM h-1, approx. 15 g L-1 h-1) were achieved. Current limitations of the proposed biooxidation system have been identified paving the way for future improvements and implementation.
Collapse
Affiliation(s)
- Thomas Hilberath
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Remco van Oosten
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Juliet Victoria
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Hugo Brasselet
- Atlant.
Innov., Koornmarkt 52, 2611 EH Delft, The Netherlands
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, 28049 Madrid, Spain
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
35
|
Zhang W, Guan W, Martinez Alvarado JI, Novaes LFT, Lin S. Deep Electroreductive Chemistry: Harnessing Carbon- and Silicon-based Reactive Intermediates in Organic Synthesis. ACS Catal 2023; 13:8038-8048. [PMID: 38707967 PMCID: PMC11067979 DOI: 10.1021/acscatal.3c01174] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This Viewpoint outlines our recent contribution in electroreductive synthesis. Specifically, we leveraged deeply reducing potentials provided by electrochemistry to generate radical and anionic intermediates from readily available alkyl halides and chlorosilanes. Harnessing the distinct reactivities of radicals and anions, we have achieved several challenging transformations to construct C-C, C-Si, and Si-Si bonds. We highlight the mechanistic design principle that underpinned the development of each transformation and provide a view forward on future opportunities in growing area of reductive electrosynthesis.
Collapse
Affiliation(s)
| | | | | | - Luiz F. T. Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
36
|
Aoun AR, Mupparapu N, Nguyen DN, Kim TH, Nguyen CM, Pan Z, Elshahawi SI. Structure-guided Mutagenesis Reveals the Catalytic Residue that Controls the Regiospecificity of C6-Indole Prenyltransferases. ChemCatChem 2023; 15:e202300423. [PMID: 37366495 PMCID: PMC10292028 DOI: 10.1002/cctc.202300423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 06/28/2023]
Abstract
Indole is a significant structural moiety and functionalization of the C-H bond in indole-containing molecules expands their chemical space, and modifies their properties and/or activities. Indole prenyltransferases (IPTs) catalyze the direct regiospecific installation of prenyl, C5 carbon units, on indole-derived compounds. IPTs have shown relaxed substrate flexibility enabling them to be used as tools for indole functionalization. However, the mechanism by which certain IPTs target a specific carbon position is not fully understood. Herein, we use structure-guided site-directed mutagenesis, in vitro enzymatic reactions, kinetics and structural-elucidation of analogs to verify the key catalytic residues that control the regiospecificity of all characterized regiospecific C6 IPTs. Our results also demonstrate that substitution of PriB_His312 to Tyr leads to the synthesis of analogs prenylated at different positions than C6. This work contributes to understanding of how certain IPTs can access a challenging position in indole-derived compounds.
Collapse
Affiliation(s)
- Ahmed R Aoun
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Diem N Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Tae Ho Kim
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Christopher M Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Zhengfeiyue Pan
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| |
Collapse
|
37
|
Smithwick ER, Wilson RH, Chatterjee S, Pu Y, Dalluge JJ, Damodaran AR, Bhagi-Damodaran A. Electrostatically regulated active site assembly governs reactivity in non-heme iron halogenases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542349. [PMID: 37292651 PMCID: PMC10245910 DOI: 10.1101/2023.05.25.542349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-heme iron halogenases (NHFe-Hals) catalyze the direct insertion of a chloride/bromide ion at an unactivated carbon position using a high-valent haloferryl intermediate. Despite more than a decade of structural and mechanistic characterization, how NHFe-Hals preferentially bind specific anions and substrates for C-H functionalization remains unknown. Herein, using lysine halogenating BesD and HalB enzymes as model systems, we demonstrate strong positive cooperativity between anion and substrate binding to the catalytic pocket. Detailed computational investigations indicate that a negatively charged glutamate hydrogen-bonded to iron's equatorial-aqua ligand acts as an electrostatic lock preventing both lysine and anion binding in the absence of the other. Using a combination of UV-Vis spectroscopy, binding affinity studies, stopped-flow kinetics investigations, and biochemical assays, we explore the implication of such active site assembly towards chlorination, bromination, and azidation reactivities. Overall, our work highlights previously unknown features regarding how anion-substrate pair binding govern reactivity of iron halogenases that are crucial for engineering next-generation C-H functionalization biocatalysts.
Collapse
Affiliation(s)
- Elizabeth R. Smithwick
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - R. Hunter Wilson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Sourav Chatterjee
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Yu Pu
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Joseph J. Dalluge
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Anoop Rama Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
38
|
Butler ND, Anderson SR, Dickey RM, Nain P, Kunjapur AM. Combinatorial gene inactivation of aldehyde dehydrogenases mitigates aldehyde oxidation catalyzed by E. coli resting cells. Metab Eng 2023; 77:294-305. [PMID: 37100193 DOI: 10.1016/j.ymben.2023.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
Aldehydes are attractive chemical targets both as end products in the flavors and fragrances industry and as intermediates due to their propensity for C-C bond formation. Here, we identify and address unexpected oxidation of a model collection of aromatic aldehydes, including many that originate from biomass degradation. When diverse aldehydes are supplemented to E. coli cells grown under aerobic conditions, as expected they are either reduced by the wild-type MG1655 strain or stabilized by a strain engineered for reduced aromatic aldehyde reduction (the E. coli RARE strain). Surprisingly, when these same aldehydes are supplemented to resting cell preparations of either E. coli strain, under many conditions we observe substantial oxidation. By performing combinatorial inactivation of six candidate aldehyde dehydrogenase genes in the E. coli genome using multiplexed automatable genome engineering (MAGE), we demonstrate that this oxidation can be substantially slowed, with greater than 50% retention of 6 out of 8 aldehydes when assayed 4 h after their addition. Given that our newly engineered strain exhibits reduced oxidation and reduction of aromatic aldehydes, we dubbed it the E. coli ROAR strain. We applied the new strain to resting cell biocatalysis for two kinds of reactions - the reduction of 2-furoic acid to furfural and the condensation of 3-hydroxy-benzaldehyde and glycine to form a beta hydroxylated non-standard amino acid. In each case, we observed substantial improvements in product titer 20 h after reaction initiation (9-fold and 10-fold, respectively). Moving forward, the use of this strain to generate resting cells should allow aldehyde product isolation, further enzymatic conversion, or chemical reactivity under cellular contexts that better accommodate aldehyde toxicity.
Collapse
Affiliation(s)
- Neil D Butler
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Shelby R Anderson
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Priyanka Nain
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA.
| |
Collapse
|
39
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology. Int J Biol Macromol 2023; 240:124526. [PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the enzymes' dynamics, mechanisms, and unique features. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
40
|
Wang S, Wu X, Fang J, Zhang F, Liu Y, Liu H, He Y, Luo M, Li R. Direct Z-Scheme Polymer/Polymer Double-Shell Hollow Nanostructures for Efficient NADH Regeneration and Biocatalytic Artificial Photosynthesis under Visible Light. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Song Wang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xiewen Wu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Jing Fang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Feng Zhang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Yanli Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yu He
- Zigong Advanced Carbon Materials Industrial Technology Research Institute, Zigong, Sichuan 643000, P. R. China
| | - Min Luo
- Zigong Advanced Carbon Materials Industrial Technology Research Institute, Zigong, Sichuan 643000, P. R. China
| | - Run Li
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
41
|
Becker M, Ziemińska-Stolarska A, Markowska D, Lütz S, Rosenthal K. Comparative Life Cycle Assessment of Chemical and Biocatalytic 2'3'-Cyclic GMP-AMP Synthesis. CHEMSUSCHEM 2023; 16:e202201629. [PMID: 36416867 DOI: 10.1002/cssc.202201629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Life cycle assessments (LCAs) can provide insights into the environmental impact of production processes. In this study, a comparative LCA was performed for the synthesis of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) in an early development stage. The cyclic dinucleotide (CDN) is of interest for pharmaceutical applications such as cancer immunotherapy. CDNs can be synthesized either by enzymes or chemical catalysis. It is not known which of the routes is more sustainable as both routes have their advantages and disadvantages, such as a poor yield for the chemical synthesis and low titers for the biocatalytic synthesis. The synthesis routes were compared for the production of 200 g 2'3'-cGAMP based on laboratory data to assess the environmental impacts. The biocatalytic synthesis turned out to be superior to the chemical synthesis in all considered categories by at least one magnitude, for example, a global warming potential of 3055.6 kg CO2 equiv. for the enzymatic route and 56454.0 kg CO2 equiv. for the chemical synthesis, which is 18 times higher. This study demonstrates the value of assessment at an early development stage, when the choice between different routes is still possible.
Collapse
Affiliation(s)
- Martin Becker
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | | | - Dorota Markowska
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924, Lodz, Poland
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Katrin Rosenthal
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| |
Collapse
|
42
|
p-Xylene Oxidation to Terephthalic Acid: New Trends. Molecules 2023; 28:molecules28041922. [PMID: 36838910 PMCID: PMC9961377 DOI: 10.3390/molecules28041922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Large-scale terephthalic acid production from the oxidation of p-xylene is an especially important process in the polyester industry, as it is mainly used in polyethylene terephthalate (PET) manufacturing, a polymer that is widely used in fibers, films, and plastic products. This review presents and discusses catalytic advances and new trends in terephthalic acid production (since 2014), innovations in terephthalic acid purification processes, and simulations of reactors and reaction mechanisms.
Collapse
|
43
|
Breukelaar W, Polidori N, Singh A, Daniel B, Glueck SM, Gruber K, Kroutil W. Mechanistic Insights into the Ene-Reductase-Catalyzed Promiscuous Reduction of Oximes to Amines. ACS Catal 2023; 13:2610-2618. [PMID: 36846821 PMCID: PMC9942197 DOI: 10.1021/acscatal.2c06137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Indexed: 02/08/2023]
Abstract
The biocatalytic reduction of the oxime moiety to the corresponding amine group has only recently been found to be a promiscuous activity of ene-reductases transforming α-oximo β-keto esters. However, the reaction pathway of this two-step reduction remained elusive. By studying the crystal structures of enzyme oxime complexes, analyzing molecular dynamics simulations, and investigating biocatalytic cascades and possible intermediates, we obtained evidence that the reaction proceeds via an imine intermediate and not via the hydroxylamine intermediate. The imine is reduced further by the ene-reductase to the amine product. Remarkably, a non-canonical tyrosine residue was found to contribute to the catalytic activity of the ene-reductase OPR3, protonating the hydroxyl group of the oxime in the first reduction step.
Collapse
Affiliation(s)
- Willem
B. Breukelaar
- Department
of Chemistry, NAWI Graz, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Nakia Polidori
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Amit Singh
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Bastian Daniel
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Silvia M. Glueck
- Department
of Chemistry, NAWI Graz, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Karl Gruber
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße 50, 8010 Graz, Austria,Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria,BioTechMed
Graz, 8010 Graz, Austria,
| | - Wolfgang Kroutil
- Department
of Chemistry, NAWI Graz, University of Graz, Heinrichstraße 28, 8010 Graz, Austria,Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria,BioTechMed
Graz, 8010 Graz, Austria,
| |
Collapse
|
44
|
Meng X, Liu Y, Yang L, Li R, Wang H, Shen Y, Wei D. Rational identification of a high catalytic efficiency leucine dehydrogenase and process development for efficient synthesis of l-phenylglycine. Biotechnol J 2023; 18:e2200465. [PMID: 36738237 DOI: 10.1002/biot.202200465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/01/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Enzymatic asymmetric synthesis of chiral amino acids has great industrial potential. However, the low catalytic efficiency of high-concentration substrates limits their industrial application. Herein, using a combination of substrate catalytic efficiency prediction based on "open to closed" conformational change and substrate specificity prediction, a novel leucine dehydrogenase (TsLeuDH), with high substrate catalytic efficiency toward benzoylformic acid (BFA) for producing l-phenylglycine (l-Phg), was directly identified from 4695 putative leucine dehydrogenases in a public database. The specific activity of TsLeuDH was determined to be as high as 4253.8 U mg-1 . Through reaction process optimization, a high-concentration substrate (0.7 m) was efficiently and completely converted within 90 min in a single batch, without any external coenzyme addition. Moreover, a continuous flow-feeding approach was designed using gradient control of the feed rate to reduce substrate accumulation. Finally, the highest overall substrate concentration of up to 1.2 m BFA could be aminated to l-Phg with conversion of >99% in 3 h, demonstrating that this new combination of enzyme process development is promising for large-scale application of l-Phg.
Collapse
Affiliation(s)
- Xiangqi Meng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Lin Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Rui Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Lugtenburg T, Gran-Scheuch A, Drienovská I. Non-canonical amino acids as a tool for the thermal stabilization of enzymes. Protein Eng Des Sel 2023; 36:gzad003. [PMID: 36897290 PMCID: PMC10064326 DOI: 10.1093/protein/gzad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Biocatalysis has become a powerful alternative for green chemistry. Expanding the range of amino acids used in protein biosynthesis can improve industrially appealing properties such as enantioselectivity, activity and stability. This review will specifically delve into the thermal stability improvements that non-canonical amino acids (ncAAs) can confer to enzymes. Methods to achieve this end, such as the use of halogenated ncAAs, selective immobilization and rational design, will be discussed. Additionally, specific enzyme design considerations using ncAAs are discussed along with the benefits and limitations of the various approaches available to enhance the thermal stability of enzymes.
Collapse
Affiliation(s)
- Tim Lugtenburg
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Alejandro Gran-Scheuch
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Ivana Drienovská
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
46
|
Moving towards the Application of Biocatalysis in Food Waste Biorefinery. FERMENTATION 2023. [DOI: 10.3390/fermentation9010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Waste valorization is an important strategy to reduce environmental pollution and dependency on petroleum-based fuels. In this regard, utilization of food waste as a versatile and low-cost resource is important. Several advanced catalytic methods for the valorization of food waste have been widely investigated for the production of liquid biofuels. Along this line, chemical catalysts have been explored for the synthesis of liquid biofuels. Chemo-catalysis is mainly metal based, which requires harsh process conditions. Alternatively, biocatalysts are currently being investigated as a result of several advantages such as mild reaction conditions, recyclability, selectivity and biodegradability. In this work, recent biocatalytic technologies for the preparation of liquid biofuels through food waste valorization are discussed thoroughly. Lipases are employed for the synthesis of biodiesel and the upgradation of bio-oil, whereas methane mono-oxygenases could be explored for the production of methanol via the oxidation of methane generated from food wastes. Industrial production of ethanol from food waste using bioconversion technologies is a success story. To date, there has been no specific report on the use of food waste for propanol preparation using enzymes. The ABE process (Acetone–Butanol–Ethanol) (using suitable microorganisms) is used for butanol preparation, where the vacuum stripping system is integrated to remove butanol from the broth and circumvent inhibition. The synthesis of hydrocarbon fuels from fatty acids and triglycerides can be carried out using enzymes, such as carboxylic acid reductase and fatty acid photodecarboxylase (an algal photoenzyme). Both carboxylic acid reductase and fatty acid photodecarboxylase have not yet been applied in the direct valorization of food wastes. Furthermore, limitations of the reported methods, societal and economic aspects and a fresh perspective on the subject, along with important examples, are described.
Collapse
|
47
|
Henehan GTM, Ryan BJ, Eser BE, Li N, Guo Z, Kinsella GK. Editorial: Green chemistry biocatalysis. Front Bioeng Biotechnol 2023; 11:1158275. [PMID: 36890918 PMCID: PMC9987032 DOI: 10.3389/fbioe.2023.1158275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Affiliation(s)
- Gary T M Henehan
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
| | - Barry J Ryan
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
| | | | - Ning Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Aarhus, Denmark
| | - Gemma K Kinsella
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
48
|
Qiao J, Yang D, Feng Y, Wei W, Liu X, Zhang Y, Zheng J, Ying X. Engineering a Bacillus subtilis esterase for selective hydrolysis of d, l-menthyl acetate in an organic solvent-free system †. RSC Adv 2023; 13:10468-10475. [PMID: 37021103 PMCID: PMC10068921 DOI: 10.1039/d3ra00490b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Esterase/lipase-catalyzed selective hydrolysis of d, l-menthyl esters has become one of the promising approaches for producing l-menthol, one of the most important flavoring chemicals with extensive uses. However, the activity and l-enantioselectivity of the biocatalyst are not sufficient for meeting the industrial requirements. Herein, a highly active para-nitrobenzyl esterase from Bacillus subtilis 168 (pnbA-BS) was cloned and then engineered to enhance its l-enantioselectivity. On the basis of the strategy tailoring the steric exclusion effect and structural flexibility of the region adjacent to the substrate, the substitution of Ala400 to Pro caused a remarkable improvement in the E value from 1.0 to 466.6. The variant A400P was purified and further confirmed with strict l-enantioselectivity in the selective hydrolysis of d, l-menthyl acetate, whereas the improved l-enantioselectivity caused decreased activity. To develop an efficient, easy-to-use, and green methodology, organic solvent was omitted and substrate constant feeding was integrated into the whole-cell catalyzed system. During the catalytic process, the selective hydrolysis of 1.0 M d, l-menthyl acetate in 14 h offered a conversion of 48.9%, e.e.p value of >99%, and space-time yield of 160.52 g (l d)−1. Esterase/lipase-catalyzed selective hydrolysis of d, l-menthyl esters has become one of the promising approaches for producing l-menthol, one of the most important flavoring chemicals with extensive uses.![]()
Collapse
Affiliation(s)
- Jingjing Qiao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Duxia Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Yingting Feng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Wan Wei
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Xun Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | | |
Collapse
|
49
|
Rajakumara E, Saniya D, Bajaj P, Rajeshwari R, Giri J, Davari MD. Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis. Int J Mol Sci 2022; 24:ijms24010214. [PMID: 36613657 PMCID: PMC9820634 DOI: 10.3390/ijms24010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Cytochrome P450s are heme-containing enzymes capable of the oxidative transformation of a wide range of organic substrates. A protein scaffold that coordinates the heme iron, and the catalytic pocket residues, together, determine the reaction selectivity and regio- and stereo-selectivity of the P450 enzymes. Different substrates also affect the properties of P450s by binding to its catalytic pocket. Modulating the redox potential of the heme by substituting iron-coordinating residues changes the chemical reaction, the type of cofactor requirement, and the stereoselectivity of P450s. Around hundreds of P450s are experimentally characterized, therefore, a mechanistic understanding of the factors affecting their catalysis is increasingly vital in the age of synthetic biology and biotechnology. Engineering P450s can enable them to catalyze a variety of chemical reactions viz. oxygenation, peroxygenation, cyclopropanation, epoxidation, nitration, etc., to synthesize high-value chiral organic molecules with exceptionally high stereo- and regioselectivity and catalytic efficiency. This review will focus on recent studies of the mechanistic understandings of the modulation of heme redox potential in the engineered P450 variants, and the effect of small decoy molecules, dual function small molecules, and substrate mimetics on the type of chemical reaction and the catalytic cycle of the P450 enzymes.
Collapse
Affiliation(s)
- Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
- Correspondence: (E.R.); (M.D.D.)
| | - Dubey Saniya
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
| | - Priyanka Bajaj
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), NH-44, Balanagar, Hyderabad 500037, India
| | - Rajanna Rajeshwari
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot Campus, GKVK, Bengaluru 560064, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
- Correspondence: (E.R.); (M.D.D.)
| |
Collapse
|
50
|
Wu T, Wang Y, Zhang N, Yin D, Xu Y, Nie Y, Mu X. Reshaping Substrate-Binding Pocket of Leucine Dehydrogenase for Bidirectionally Accessing Structurally Diverse Substrates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian223800, China
| | - Yinmiao Wang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Ningxin Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Dejing Yin
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian223800, China
| |
Collapse
|