1
|
Cui Y, Han D, Bai X, Shi W. Development and applications of enzymatic peptide and protein ligation. J Pept Sci 2025; 31:e3657. [PMID: 39433441 DOI: 10.1002/psc.3657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Chemical synthesis of complex peptides and proteins continues to play increasingly important roles in industry and academia, where strategies for covalent ligation of two or more peptide fragments to produce longer peptides and proteins in convergent manners have become critical. In recent decades, efficient and site-selective ligation strategies mediated by exploiting the biocatalytic capacity of nature's diverse toolkit (i.e., enzymes) have been widely recognized as a powerful extension of existing chemical strategies. In this review, we present a chronological overview of the development of proteases, transpeptidases, transglutaminases, and ubiquitin ligases. We survey the different properties between the ligation reactions of various enzymes, including the selectivity and efficiency of the reaction, the ligation "scar" left in the product, the type of amide bond formed (natural or isopeptide), the synthetic availability of the reactants, and whether the enzymes are orthogonal to another. This review also describes how the inherent specificity of these enzymes can be exploited for peptide and protein ligation.
Collapse
Affiliation(s)
- Yan Cui
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Dongyang Han
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xuerong Bai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Weiwei Shi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Saii K, Prat-Duran J, Simonsen U, Knudsen AR, Funder JA, Buus NH, Pinilla E. Sex-mediated effects of transglutaminase 2 inhibition on endothelial function in human resistance arteries from diabetic and non-diabetic patients. Clin Sci (Lond) 2025; 139:1-14. [PMID: 39665157 DOI: 10.1042/cs20242001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Transglutaminase 2 (TG2) is an enzyme with multiple conformations. In its open conformation, TG2 exhibits transamidase activity linked to fibrosis, arterial remodeling, and endothelial dysfunction, a process enhanced by high glucose in endothelial cells. However, the closed conformation of TG2 contributes to transmembrane signaling and nitric oxide (NO)-dependent vasorelaxation. LDN 27219, a reversible allosteric inhibitor, stabilizes TG2 in its closed conformation. We examined whether pharmacological modulation of TG2 into its closed conformation induces vasorelaxation and enhances endothelium-dependent and independent relaxation in resistance arteries from age-matched diabetic (n = 14) and non-diabetic patients (n = 14) (age 71 (Standard Error of the Mean: ± 2)). Subcutaneous arteries (diameter 133-1013 µm) were isolated from abdominal fat biopsies. TG2 mRNA expression and transamidase activity were assessed via RT-qPCR and 5-biotin(amido)pentylamine (5-BP) incorporation, while vascular reactivity was measured using wire myography. TG2 mRNA was highly expressed without significant differences between the groups and LDN 27219 induced concentration-dependent vasorelaxation in arteries from both groups. Sex-specific analysis revealed that potentiation of acetylcholine-induced vasorelaxation by LDN 27219 was driven by increased TG2 expression in non-diabetic females, whereas no effect was observed in arteries from non-diabetic males. Among diabetic patients, LDN 27219 increased maximal acetylcholine-induced vasorelaxation in males only. LDN 27219 did not affect endothelium-independent relaxation to sodium nitroprusside in either group. In conclusion, TG2 is expressed in human resistance arteries, and LDN 27219 induced vasorelaxation, selectively enhancing ACh relaxation in non-diabetic females, likely owing to increased TG2 expression. This finding underscores the importance of sex differences in TG2 modulation of vasorelaxation.
Collapse
Affiliation(s)
- Khatera Saii
- Personalised Medicine, Department of Biomedicine, Aarhus University, Denmark
| | - Judit Prat-Duran
- Personalised Medicine, Department of Biomedicine, Aarhus University, Denmark
| | - Ulf Simonsen
- Personalised Medicine, Department of Biomedicine, Aarhus University, Denmark
| | | | | | - Niels Henrik Buus
- Personalised Medicine, Department of Biomedicine, Aarhus University, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Estéfano Pinilla
- Personalised Medicine, Department of Biomedicine, Aarhus University, Denmark
| |
Collapse
|
3
|
Sun R, Li H, Chen Y, Hu M, Wang J. Tubuloside A alleviates postmyocardial infarction cardiac fibrosis by inhibiting TGM2: Involvement of inflammation and mitochondrial pathway apoptosis. Int Immunopharmacol 2024; 143:113324. [PMID: 39393274 DOI: 10.1016/j.intimp.2024.113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Cardiac fibrosis is associated with myocardial remodeling following myocardial infarction (MI), which can lead to heart failure, arrhythmias, and even death. This study aimed to determine the effects of tubuloside A (TA) on cardiac fibrosis after MI and elucidate their underlying molecular mechanisms. Rats were divided into the following groups: sham (fake surgery), MI, MI + 1 mg/kg TA, and MI + 3 mg/kg TA. Compared with MI, the addition of TA significantly reduced mortality, improved cardiac function, decreased infarct size, and inhibited myocardial injury and fibrosis. To verify the direct targets of TA, we used cellular thermal shift assay and drug affinity responsive target stability to analyze drug-protein interactions and discovered that TA can bind directly to TGM2 and inhibit its enzymatic activity. Furthermore, to investigate whether TA can inhibit the TGF-β1-mediated activation of cardiac fibroblasts (CFs) through TGM2, we overexpressed TGM2 in CF cells and treated them with TA. We found that TA inhibited the activity of TGM2 in CF cells and reduced α-SMA, collagen-I, and collagen-III levels, thereby inhibiting the progression of fibrosis. Similarly, we found that TA could exert anti-inflammatory and antiapoptotic effects by inhibiting TGM2. Overall, we demonstrated that TA is a potential candidate drug for inhibiting the impacts of myocardial infarction and cardiac fibrosis, reducing postinfarction fibrosis by inhibiting the NF-κB signaling pathway and suppressing mitochondrial pathway-mediated apoptosis. Therefore, focusing on drug discovery strategies for TA may provide a promising therapeutic approach for MI.
Collapse
Affiliation(s)
- Runfeng Sun
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Hua Li
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Yun Chen
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Ming Hu
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Jiaping Wang
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China.
| |
Collapse
|
4
|
Delgado T, Emerson J, Hong M, Keillor JW, Johnson GVW. Pharmacological Inhibition of Astrocytic Transglutaminase 2 Facilitates the Expression of a Neurosupportive Astrocyte Reactive Phenotype in Association with Increased Histone Acetylation. Biomolecules 2024; 14:1594. [PMID: 39766301 PMCID: PMC11673777 DOI: 10.3390/biom14121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury. Recently, it has been demonstrated that ablation of astrocytic transglutaminase 2 (TG2) shifts reactive astrocytes towards a phenotype that improves neuronal injury outcomes both in vitro and in vivo. Additionally, in an in vivo mouse model, pharmacological inhibition of TG2 with the irreversible inhibitor VA4 phenocopied the neurosupportive effects of TG2 deletion in astrocytes. In this study, we extended our comparisons of VA4 treatment and TG2 deletion to provide insights into the mechanisms by which TG2 attenuates neurosupportive astrocytic function after injury. Using a neuron-astrocyte co-culture model, we found that VA4 treatment improves the ability of astrocytes to support neurite outgrowth on an injury-relevant matrix, as we previously showed for astrocytic TG2 deletion. We hypothesize that TG2 mediates its influence on astrocytic phenotype through transcriptional regulation, and our previous RNA sequencing suggests that TG2 is primarily transcriptionally repressive in astrocytes, although it can facilitate both up- and downregulation of gene expression. Therefore, we asked whether VA4 inhibition could alter TG2's interaction with Zbtb7a, a transcription factor that we previously identified as a functionally relevant TG2 nuclear interactor. We found that VA4 significantly decreased the interaction of TG2 and Zbtb7a. Additionally, we assessed the effect of TG2 deletion and VA4 treatment on transcriptionally permissive histone acetylation and found significantly greater acetylation in both experimental groups. Consistent with these findings, our present proteomic analysis further supports the predominant transcriptionally repressive role of TG2 in astrocytes. Our proteomic data additionally unveiled pronounced changes in lipid and antioxidant metabolism in astrocytes with TG2 deletion or inhibition, which likely contribute to the enhanced neurosupportive function of these astrocytes.
Collapse
Affiliation(s)
- Thomas Delgado
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| | - Jacen Emerson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| | - Matthew Hong
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N6N5, Canada;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| |
Collapse
|
5
|
Hao R, Niu X, Jiang X, Liu K, Ma X, Chen C. Transglutaminase-triggered dual gradients of mechanical and biochemical cues self-assembling peptide hydrogel for guiding MC3T3-E1 cell behaviors. Int J Biol Macromol 2024; 285:138281. [PMID: 39631574 DOI: 10.1016/j.ijbiomac.2024.138281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/18/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The mechanical properties and bioactive motif densities of extracellular matrix materials play crucial roles in regulating cell behaviors, such as cell adhesion, migration, proliferation, and differentiation. However, current studies on cellular responses to ECM predominantly concentrated on polymer hydrogels featuring a single factor, such as the mechanical strength, the types of bioactive motifs, and the morphology of the polymers. This limited focus may overlook the complex interplay of multiple factors. Here, we developed dual gradient peptide Q3GT-I3K hydrogels with tunable mechanical strength (0.3-4.0 kPa) and different density of bioactive motif (0.45-3.67 mM) by enzymatic crosslinking. These hydrogels can mimic the viscoelasticity of natural soft tissues. The properties of mechanical strength and cell responsive motif density could be controlled by modulating the proportion of the substrates in the enzymatic reaction. MC3T3 cells significantly differentiated into osteoblasts after seeded on the Q3GT-I3K hydrogel (2.8 kPa, 1.83 mM Q3GT) for 21 days, identifying from the elevated expression of alkaline phosphatase and substantial calcium nodule formation. Importantly, the engineered hydrogels exert a synergistic effect on the cell behaviors such as early adhesion, late proliferation, and differentiation of MC3T3-E1 cells. This paper introduces a new strategy for designing tissue engineering scaffold materials with specific functions.
Collapse
Affiliation(s)
- Ruirui Hao
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, 1999 Taishan Road, Heze, 274000, China; State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xiwen Niu
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, 1999 Taishan Road, Heze, 274000, China
| | - Xinrui Jiang
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, 1999 Taishan Road, Heze, 274000, China
| | - Kang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaoyue Ma
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| |
Collapse
|
6
|
Delgado T, Emerson J, Hong M, Keillor JW, Johnson GVW. Pharmacological inhibition of astrocytic transglutaminase 2 facilitates the expression of a neurosupportive astrocyte reactive phenotype in association with increased histone acetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589192. [PMID: 38659783 PMCID: PMC11042235 DOI: 10.1101/2024.04.15.589192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury. Recently, it has been demonstrated that ablation of astrocytic transglutaminase 2 (TG2) modulates the phenotype of reactive astrocytes in a way that improves neuronal injury outcomes both in vitro and in vivo. In an in vivo mouse model, pharmacological inhibition of TG2 with the irreversible inhibitor VA4 phenocopies the neurosupportive effects of TG2 deletion in astrocytes. In this study, we provide insights into the mechanisms by which TG2 deletion or inhibition result in a more neurosupportive astrocytic phenotype. Using a neuron-astrocyte co-culture model, we show that VA4 treatment improves the ability of astrocytes to support neurite outgrowth on an injury-relevant matrix. To better understand how pharmacologically altering TG2 affects its ability to regulate reactive astrocyte phenotypes, we assessed how VA4 inhibition impacts TG2's interaction with Zbtb7a, a transcription factor we have previously identified as a functionally relevant TG2 nuclear interactor. The results of these studies demonstrate that VA4 significantly decreases the interaction of TG2 and Zbtb7a. TG2's interactions with Zbtb7a, as well as a wide range of other transcription factors and chromatin regulatory proteins, suggest that TG2 may act as an epigenetic regulator to modulate gene expression. To begin to understand if TG2-mediated epigenetic modification may impact astrocytic phenotypes in our models, we interrogated the effect of TG2 deletion and VA4 treatment on histone acetylation and found significantly greater acetylation in both experimental groups. Consistent with these findings, previous RNA-sequencing and our present proteomic analysis also supported a predominant transcriptionally suppressive role of TG2 in astrocytes. Our proteomic data additionally unveiled pronounced changes in lipid and antioxidant metabolism in astrocytes with TG2 deletion or inhibition, which likely contribute to the enhanced neurosupportive function of these astrocytes.
Collapse
Affiliation(s)
- Thomas Delgado
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Jacen Emerson
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Matthew Hong
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N6N5, Canada
| | - Gail VW Johnson
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| |
Collapse
|
7
|
Wetten PA, Klinsky OG, Michaut MA. Dithiothreitol prevents the spontaneous release of cortical granules in in vitro aged mouse oocytes by protecting regulatory proteins of cortical granules exocytosis and thickening the cortical actin cytoskeleton. Theriogenology 2024; 229:53-65. [PMID: 39163803 DOI: 10.1016/j.theriogenology.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
In assisted fertility protocols, in vitro culture conditions mimic physiological conditions to preserve gametes in the best conditions. After collection, oocytes are maintained in a culture medium inside the incubator until in vitro fertilization (IVF) is performed. This time outside natural and physiological conditions exposes oocytes to an oxidative stress that renders in vitro aging. It has been described that in vitro aging produces a spontaneous cortical granule (CG) release decreasing the fertilization rate of oocytes. Nevertheless, this undesirable phenomenon has not been investigated, let alone prevented. In this work, we characterized the spontaneous CG secretion in in vitro aged oocytes. Using immunofluorescence indirect, quantification, and functional assays, we showed that the expression of regulatory proteins of CG exocytosis was affected. Our results demonstrated that in vitro oocyte aging by 4 and 8 h altered the expression and localization of alpha-SNAP and reduced the expression of NSF and Complexin. These alterations were prevented by supplementing culture medium with dithiothreitol (DTT), which in addition to having a protective effect on those proteins, also had an unexpected effect on the actin cytoskeleton. Indeed, DTT addition thickened the cortical layer of fibrillar actin. Both DTT effects, together, prevented the spontaneous secretion of CG and recovered the IVF rate in in vitro aged oocytes. We propose the use of DTT in culture media to avoid the spontaneous CG secretion and to improve the success rate of IVF protocols in in vitro aged oocytes.
Collapse
Affiliation(s)
- Paula Alida Wetten
- Laboratorio de Biología Reproductiva y Molecular (LaBRYM), Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Omar Guillermo Klinsky
- Laboratorio de Biología Reproductiva y Molecular (LaBRYM), Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Marcela Alejandra Michaut
- Laboratorio de Biología Reproductiva y Molecular (LaBRYM), Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
8
|
Delgado T, Emerson J, Hong M, Keillor JW, Johnson GVW. Pharmacological inhibition of astrocytic transglutaminase 2 facilitates the expression of a neurosupportive astrocyte reactive phenotype in association with increased histone acetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.06.527263. [PMID: 36798305 PMCID: PMC9934526 DOI: 10.1101/2023.02.06.527263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury. Recently, it has been demonstrated that ablation of astrocytic transglutaminase 2 (TG2) modulates the phenotype of reactive astrocytes in a way that improves neuronal injury outcomes both in vitro and in vivo. In an in vivo mouse model, pharmacological inhibition of TG2 with the irreversible inhibitor VA4 phenocopies the neurosupportive effects of TG2 deletion in astrocytes. In this study, we provide insights into the mechanisms by which TG2 deletion or inhibition result in a more neurosupportive astrocytic phenotype. Using a neuron-astrocyte co-culture model, we show that VA4 treatment improves the ability of astrocytes to support neurite outgrowth on an injury-relevant matrix. To better understand how pharmacologically altering TG2 affects its ability to regulate reactive astrocyte phenotypes, we assessed how VA4 inhibition impacts TG2's interaction with Zbtb7a, a transcription factor we have previously identified as a functionally relevant TG2 nuclear interactor. The results of these studies demonstrate that VA4 significantly decreases the interaction of TG2 and Zbtb7a. TG2's interactions with Zbtb7a, as well as a wide range of other transcription factors and chromatin regulatory proteins, suggest that TG2 may act as an epigenetic regulator to modulate gene expression. To begin to understand if TG2-mediated epigenetic modification may impact astrocytic phenotypes in our models, we interrogated the effect of TG2 deletion and VA4 treatment on histone acetylation and found significantly greater acetylation in both experimental groups. Consistent with these findings, previous RNA-sequencing and our present proteomic analysis also supported a predominant transcriptionally suppressive role of TG2 in astrocytes. Our proteomic data additionally unveiled pronounced changes in lipid and antioxidant metabolism in astrocytes with TG2 deletion or inhibition, which likely contribute to the enhanced neurosupportive function of these astrocytes.
Collapse
Affiliation(s)
- Thomas Delgado
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Jacen Emerson
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Matthew Hong
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N6N5, Canada
| | - Gail VW Johnson
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| |
Collapse
|
9
|
Moore EJ, Rice M, Roy G, Zhang W, Marelli M. Emerging conjugation strategies and protein engineering technologies aim to improve ADCs in the fight against cancer. Xenobiotica 2024; 54:469-491. [PMID: 39329289 DOI: 10.1080/00498254.2024.2339993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 09/28/2024]
Abstract
Antibody drug conjugates are an exciting therapeutic modality that combines the targeting specificity of antibodies with potent cytotoxins to selectively kill cancer cells. The targeting component improves efficacy and protects non-target cells from the harmful effects of the payload. To date 15 ADCs have been approved by regulatory agencies for commercial use and shown to be valuable tools in the treatment of cancer.The assembly of an ADC requires the chemical ligation of a linker-payload to an antibody. Conventional conjugation methods targeting accessible lysines and cysteines have produced all the ADCs currently on the market. While successful, technologies aiming to improve the homogeneity and stability of ADCs are being developed and tested.Here we provide a review of developing methods for ADC construction. These include enzymatic methods, oligosaccharide remodelling, and technologies using genetic code expansion techniques. The virtues and limitations of each technology are discussed.Emerging conjugation technologies are being applied to produce new formats of ADCs with enhanced functionality including bispecific ADCs, dual-payload ADCs, and nanoparticles for targeted drug delivery. The benefits of these novel formats are highlighted.
Collapse
|
10
|
Laperdrix C, Duhieu S, Haftek M. Chondroitin/dermatan sulphate proteoglycan, desmosealin, showing affinity to desmosomes. Int J Cosmet Sci 2024; 46:494-505. [PMID: 39113319 DOI: 10.1111/ics.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/04/2024] [Indexed: 08/10/2024]
Abstract
Objective Desmosomes are the most prominent interkeratinocyte junctions. The correct barrier function of stratified epithelia such as epidermis depends on their expression. During epidermal differentiation, the molecular composition of desmosomes evolves and so do their physical and chemical properties. Desquamation of corneocytes at the surface of the stratum corneum depends on an orderly degradation of desmosomes by endogenous enzymes. This process may be regulated by glycosylated molecules. We focused on the detection and characterization of potentially implicated players bearing ‘sugar’ characteristics. Methods Using an original monoclonal antibody and biochemical methods, we partially characterized a proteoglycan of the exclusively chondroitin/dermatan sulphate type, secreted into the interkeratinocyte spaces, that is incorporated into the extracellular parts of desmosomes in quantities proportional to the degree of cell differentiation, as visualized with immuno-electron microscopy. Results This antigen, that we named desmosealin, displays biochemical and immunocytochemical characteristics that clearly differentiate it from known desmosomal elements. Unlike so far described epidermal proteoglycans, which belong to the heparan sulphate family, desmosealin displays chondroitin/dermatan sulphate glycosaminoglycan chains. It can be detected within the extracellular ‘cores’ of desmosomes in the upper viable epidermal layers and in corneodesmosomes from the lowermost part of the stratum corneum. Conclusion Extensive integration of proteoglycans into the extracellular parts of desmosomes at the late stages of keratinocyte maturation is likely of functional importance. Given its biochemical profile, its pattern of expression in the epidermis and its desmosomal localization, desmosealin may emerge as a key element in the regulation of desmosome processing, epidermal cohesion and formation of a functional epidermal barrier.
Collapse
Affiliation(s)
- Céline Laperdrix
- Tissue Biology and Therapeutic Engineering Laboratory (LBTI), UMR 5305 CNRS and Lyon1 University, Lyon, France
| | - Stéphane Duhieu
- Tissue Biology and Therapeutic Engineering Laboratory (LBTI), UMR 5305 CNRS and Lyon1 University, Lyon, France
| | - Marek Haftek
- Tissue Biology and Therapeutic Engineering Laboratory (LBTI), UMR 5305 CNRS and Lyon1 University, Lyon, France
| |
Collapse
|
11
|
Moreno SE, Enwerem-Lackland I, Dreaden K, Massee M, Koob TJ, Harper JR. Human amniotic membrane modulates collagen production and deposition in vitro. Sci Rep 2024; 14:15998. [PMID: 38987293 PMCID: PMC11237048 DOI: 10.1038/s41598-024-64364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Pathological fibrosis is a significant complication of surgical procedures resulting from the accumulation of excess collagen at the site of repair which can compromise the tissue architecture and severely impede the function of the affected tissue. Few prophylactic treatments exist to counteract this process; however, the use of amniotic membrane allografts has demonstrated promising clinical outcomes. This study aimed to identify the underlying mechanism of action by utilizing relevant models that accurately represent the pathophysiology of the disease state. This study employed a pro-fibrotic in vitro system using TGFβ1 stimulation and macromolecular crowding techniques to evaluate the mechanism by which amniotic membrane allografts regulate collagen biosynthesis and deposition. Following treatment with dehydrated human amnion chorion membrane (DHACM), subsequent RNA sequencing and functional enrichment with Reactome pathway analysis indicated that amniotic membranes are indeed capable of regulating genes associated with the composition and function of the extracellular matrix. Furthermore, macromolecular crowding was used in vitro to expand the evaluation to include both the effects of DHACM and a lyophilized human amnion/chorion membrane (LHACM). DHACM and LHACM regulate the TGFβ pathway and myofibroblast differentiation. Additionally, both DHACM and LHACM modulate the production, secretion, and deposition of collagen type I, a primary target for pathological fibrosis. These observations support the hypothesis that amniotic membranes may interrupt pathological fibrosis by regulating collagen biosynthesis and associated pathways.
Collapse
Affiliation(s)
- Sarah E Moreno
- MIMEDX Group, Inc., 1775 West Oak Commons Court NE, Marietta, GA, 30062, USA
| | | | | | - Michelle Massee
- MIMEDX Group, Inc., 1775 West Oak Commons Court NE, Marietta, GA, 30062, USA.
| | - Thomas J Koob
- MIMEDX Group, Inc., 1775 West Oak Commons Court NE, Marietta, GA, 30062, USA
| | - John R Harper
- MIMEDX Group, Inc., 1775 West Oak Commons Court NE, Marietta, GA, 30062, USA
| |
Collapse
|
12
|
Yang-Jensen KC, Jørgensen SM, Chuang CY, Davies MJ. Modification of extracellular matrix proteins by oxidants and electrophiles. Biochem Soc Trans 2024; 52:1199-1217. [PMID: 38778764 PMCID: PMC11346434 DOI: 10.1042/bst20230860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The extracellular matrix (ECM) is critical to biological architecture and determines cellular properties, function and activity. In many situations it is highly abundant, with collagens and elastin being some of the most abundant proteins in mammals. The ECM comprises of multiple different protein species and sugar polymers, with both different isoforms and post-translational modifications (PTMs) providing a large variety of microenvironments that play a key role in determining tissue structure and health. A number of the PTMs (e.g. cross-links) present in the ECM are critical to integrity and function, whereas others are deleterious to both ECM structure and associated cells. Modifications induced by reactive oxidants and electrophiles have been reported to accumulate in some ECM with increasing age. This accumulation can be exacerbated by disease, and in particular those associated with acute or chronic inflammation, obesity and diabetes. This is likely to be due to higher fluxes of modifying agents in these conditions. In this focused review, the role and effects of oxidants and other electrophiles on ECM are discussed, with a particular focus on the artery wall and atherosclerotic cardiovascular disease. Modifications generated on ECM components are reviewed, together with the effects of these species on cellular properties including adhesion, proliferation, migration, viability, metabolic activity, gene expression and phenotype. Increasing data indicates that ECM modifications are both prevalent in human and mammalian tissues and play an important role in disease development and progression.
Collapse
Affiliation(s)
- Karen C. Yang-Jensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sara M. Jørgensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Gama Cavalcante AL, Dari DN, Izaias da Silva Aires F, Carlos de Castro E, Moreira Dos Santos K, Sousa Dos Santos JC. Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications. RSC Adv 2024; 14:17946-17988. [PMID: 38841394 PMCID: PMC11151160 DOI: 10.1039/d4ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties, which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and adapted to both enzymes and support requirements for optimal efficiency. This review provides a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols. It covers methods, challenges, advantages, and future perspectives, starting with general aspects of magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials, highlighting advantages, challenges, and potential applications. Further sections explore the industrial use of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and contributing to manufacturing optimization.
Collapse
Affiliation(s)
- Antônio Luthierre Gama Cavalcante
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Francisco Izaias da Silva Aires
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Erico Carlos de Castro
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Kaiany Moreira Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará Campus do Pici, Bloco 940 Fortaleza CEP 60455760 CE Brazil
| |
Collapse
|
14
|
Chen C, Tao W, Jiang D, Yang Y, Liang T, Gu Q, Xu Y, Zhao J, Zhou X, Fan X. Enzymatic functionalization of decellularized tilapia skin scaffolds with enhanced skin regeneration. SOFT MATTER 2024; 20:3508-3519. [PMID: 38595302 DOI: 10.1039/d3sm01742g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The decellularized tilapia skin (dTS) has gained significant attention as a promising material for tissue regeneration due to its ability to provide unique structural and functional components that support cell growth, adhesion, and proliferation. However, the clinical application of dTS is limited by its low mechanical strength and rapid biodegradability. Herein, we prepare a novel RGD (arginine-glycine-aspartic acid) functionalized dTS scaffold (dTS/RGD) by using transglutaminase (TGase) crosslinking. The developed dTS/RGD scaffold possesses excellent properties, including a medium porosity of ∼59.2%, a suitable degradation rate of approximately 80% over a period of two weeks, and appropriate mechanical strength with a maximum tensile stress of ∼46.36 MPa which is much higher than that of dTS (∼32.23 MPa). These properties make the dTS/RGD scaffold ideal for promoting cell adhesion and proliferation, thereby accelerating skin wound healing in a full-thickness skin defect model. Such an enzymatic cross-linking strategy provides a favorable microenvironment for wound healing and holds great potential for application in skin regeneration engineering.
Collapse
Affiliation(s)
- Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Wenwen Tao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Di Jiang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Yanyan Yang
- Shandong Marine Resource and Environment Research Institute, 216 Changjiang Road, Yantai Economic Development Zone, Yantai 264006, China
| | - Tiantian Liang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Qilong Gu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Yuran Xu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Junjuan Zhao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Xing Zhou
- Qingdao West Coast New Area Marine Development Bureau, Qingdao 266400, China
| | - Xinglong Fan
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
15
|
Ege D, Boccaccini AR. Investigating the Effect of Processing and Material Parameters of Alginate Dialdehyde-Gelatin (ADA-GEL)-Based Hydrogels on Stiffness by XGB Machine Learning Model. Bioengineering (Basel) 2024; 11:415. [PMID: 38790283 PMCID: PMC11117982 DOI: 10.3390/bioengineering11050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
To address the limitations of alginate and gelatin as separate hydrogels, partially oxidized alginate, alginate dialdehyde (ADA), is usually combined with gelatin to prepare ADA-GEL hydrogels. These hydrogels offer tunable properties, controllable degradation, and suitable stiffness for 3D bioprinting and tissue engineering applications. Several processing variables affect the final properties of the hydrogel, including degree of oxidation, gelatin content and type of crosslinking agent. In addition, in 3D-printed structures, pore size and the possible addition of a filler to make a hydrogel composite also affect the final physical and biological properties. This study utilized datasets from 13 research papers, encompassing 33 unique combinations of ADA concentration, gelatin concentration, CaCl2 and microbial transglutaminase (mTG) concentrations (as crosslinkers), pore size, bioactive glass (BG) filler content, and one identified target property of the hydrogels, stiffness, utilizing the Extreme Boost (XGB) machine learning algorithm to create a predictive model for understanding the combined influence of these parameters on hydrogel stiffness. The stiffness of ADA-GEL hydrogels is notably affected by the ADA to GEL ratio, and higher gelatin content for different ADA gel concentrations weakens the scaffold, likely due to the presence of unbound gelatin. Pore size and the inclusion of a BG particulate filler also have a significant impact on stiffness; smaller pore sizes and higher BG content lead to increased stiffness. The optimization of ADA-GEL composition and the inclusion of BG fillers are key determinants to tailor the stiffness of these 3D printed hydrogels, as found by the analysis of the available data.
Collapse
Affiliation(s)
- Duygu Ege
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
- Institute of Biomedical Engineering, Bogazici University, Rasathane St., Kandilli, 34684 İstanbul, Turkey
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
| |
Collapse
|
16
|
Chen R, Fang T, Liu N, Shi X, Wang J, Yu H. Transglutaminase 3 suppresses proliferation and cisplatin resistance of cervical cancer cells by inactivation of the PI3K/AKT pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2269-2280. [PMID: 37812238 DOI: 10.1007/s00210-023-02757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Recent studies have shown that dysregulation of transglutaminase 3 (TGM3) is related to the aggressive progression of several cancer types. Our study aimed to determine the function of TGM3 in cervical cancer (CC) tumorigenesis. Gene expression profiles GSE63514, GSE9750, GSE46857 and GSE67522 were obtained from the Gene Expression Omnibus (GEO) database. Overlapping differential expressed genes (DEGs) in CC were screened using GEO2R online tool and Venn diagram software. The Kaplan-Meier plotter was used to determine overall survival. TGM3 expression was analyzed based on GEO and The Cancer Genome Atlas (TCGA) databases, qRT-PCR and western blot analyses. Cell proliferation was evaluated by CCK-8 and EdU incorporation assays. The half-maximal inhibitory concentration (IC50) value of cisplatin and cell apoptosis was assessed by CCK-8 and TUNEL assays, respectively. P-glycoprotein (P-gp) expression and the changes of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway were examined using western blot analysis. We identified 3 overlapping DEGs, including TGM3, glutathione peroxidase 3 (GPX3), and alpha B-crystallin (CRYAB), which were downregulated in CC tissues. TGM3 expression was reduced in CC cells and related to the poor prognosis of CC patients. TGM3 overexpression retarded the proliferation, reduced IC50 value of cisplatin, accelerated cisplatin-induced apoptosis, and inhibited cisplatin-induced P-gp level in CC cells. Furthermore, TGM3 overexpression suppressed the PI3K/Akt pathway in CC cells. Moreover, treatment with 740Y-P, a PI3K activator, abolished the effect of TGM3 overexpression on proliferation and cisplatin resistance in CC cells. In conclusion, overexpression of TGM3 suppressed proliferation and cisplatin resistance in CC cells by blocking the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ruipu Chen
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China.
| | - Tingyu Fang
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Na Liu
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Xuejiao Shi
- Department of Nursing, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Junsen Wang
- Department of Operating, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Huaping Yu
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| |
Collapse
|
17
|
Ariyoshi R, Matsuzaki T, Sato R, Minamihata K, Hayashi K, Koga T, Orita K, Nishioka R, Wakabayashi R, Goto M, Kamiya N. Engineering the Propeptide of Microbial Transglutaminase Zymogen: Enabling Substrate-Dependent Activation for Bioconjugation Applications. Bioconjug Chem 2024; 35:340-350. [PMID: 38421254 DOI: 10.1021/acs.bioconjchem.3c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Microbial transglutaminase (MTG) from Streptomyces mobaraensis is a powerful biocatalytic glue for site-specific cross-linking of a range of biomolecules and synthetic molecules that have an MTG-reactive moiety. The preparation of active recombinant MTG requires post-translational proteolytic digestion of a propeptide that functions as an intramolecular chaperone to assist the correct folding of the MTG zymogen (MTGz) in the biosynthesis. Herein, we report engineered active zymogen of MTG (EzMTG) that is expressed in soluble form in the host Escherichia coli cytosol and exhibits cross-linking activity without limited proteolysis of the propeptide. We found that the saturation mutagenesis of residues K10 or Y12 in the propeptide domain generated several active MTGz mutants. In particular, the K10D/Y12G mutant exhibited catalytic activity comparable to that of mature MTG. However, the expression level was low, possibly because of decreased chaperone activity and/or the promiscuous substrate specificity of MTG, which is potentially harmful to the host cells. The K10R/Y12A mutant exhibited specific substrate-dependent reactivity toward peptidyl substrates. Quantitative analysis of the binding affinity of the mutated propeptides to the active site of MTG suggested an inverse relationship between the binding affinity and the catalytic activity of EzMTG. Our proof-of-concept study provides insights into the design of a new biocatalyst using the MTGz as a scaffold and a potential route to high-throughput screening of EzMTG mutants for bioconjugation applications.
Collapse
Affiliation(s)
- Ryutaro Ariyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Takashi Matsuzaki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Ryo Sato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kounosuke Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Taisei Koga
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kensei Orita
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Riko Nishioka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Ciulla MG, Marchini A, Gazzola J, Forouharshad M, Pugliese R, Gelain F. In Situ Transglutaminase Cross-Linking Improves Mechanical Properties of Self-Assembling Peptides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:1723-1734. [PMID: 38346174 DOI: 10.1021/acsabm.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The development of three-dimensional (3D) biomaterials that mimic natural tissues is required for efficiently restoring physiological functions of injured tissues and organs. In the field of soft hydrogels, self-assembled peptides (SAPs) stand out as distinctive biomimetic scaffolds, offering tunable properties. They have garnered significant attention in nanomedicine due to their innate ability to self-assemble, resulting in the creation of fibrous nanostructures that closely mimic the microenvironment of the extracellular matrix (ECM). This unique feature ensures their biocompatibility and bioactivity, making them a compelling area of study over the past few decades. As they are soft hydrogels, approaches are necessary to enhance the stiffness and resilience of the SAP materials. This work shows an enzymatic strategy to selectively increase the stiffness and resiliency of functionalized SAPs using transglutaminase (TGase) type 2, an enzyme capable of triggering the formation of isopeptide bonds. To this aim, we synthesized a set of SAP sequences and characterized their cross-linking via rheological experiments, atomic force microscopy (AFM), thioflavin-T binding assay, and infrared spectroscopy (ATR-FTIR) tests. The results showed an improvement of the storage modulus of cross-linked SAPs at no cost of the maximum stress-at-failure. Further, in in vitro tests, we examined and validated the TGase capability to cross-link SAPs without hampering seeded neural stem cells (hNSCs) viability and differentiation, potentially leaving the door open for safe in situ cross-linking reactions in vivo.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Amanda Marchini
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Jacopo Gazzola
- Department of Biotechnology and Biosciences, University of Milan - Bicocca, 20125 Milan, Italy
| | - Mahdi Forouharshad
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Raffaele Pugliese
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| |
Collapse
|
19
|
El Alaoui M, Sivado E, Jallas AC, Mebarki L, Dyson MR, Perrez F, Valsesia-Wittmann S, El Alaoui S. Antibody and antibody fragments site-specific conjugation using new Q-tag substrate of bacterial transglutaminase. Cell Death Discov 2024; 10:79. [PMID: 38360912 PMCID: PMC10869684 DOI: 10.1038/s41420-024-01845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
During the last few years Antibody-Drug Conjugates (ADCs) have become one of the most active and very promising therapeutic weapons. Lessons learned from the traditional chemical conjugations (via lysine or cysteine residues of the antibodies) and the clinical studies of the developed ADCs have recently paved the way to the improvement of the conjugation technologies. Use of site-specific conjugation is considered as the promising path for improving the design and development of homogeneous ADCs with controlled Drug-Antibody ratio (DAR). Moreover, some of these conjugations can be applied to antibody fragments such as Fab, scfv and VHH for which random and chemical conjugation showed significant limitations. In this study, we identified a novel small peptide substrate (Q-tag) with high affinity and specificity of bacterial transglutaminase which can be genetically fused to different formats of antibodies of interest for the development of enzymatic site-specific conjugation we named "CovIsolink" platform. We describe the synthesis of chemically defined drugs conjugation in which the site and stoichiometry of conjugation are controlled using a genetically encoded Q-tag peptide with specific amino acids which serves as a substrate of bacterial transglutaminase. This approach has enabled the generation of homogeneous conjugates with DAR 1,7 for full IgG and 0,8 drug ratio for Fab, scfv and VHH antibody fragments without the presence of significant amounts of unconjugated antibody and fragments. As a proof of concept, Q-tagged anti Her-2 (human IgG1 (Trastuzumab) and the corresponding fragments (Fab, scfv and VHH) were engineered and conjugated with different aminated-payloads. The corresponding Cov-ADCs were evaluated in series of in vitro and in vivo assays, demonstrating similar tumor cell killing potency as Trastuzumab emtansine (Kadcyla®) even with lower drug-to-antibody ratio (DAR).
Collapse
Affiliation(s)
| | - Eva Sivado
- Covalab, 1B Rue Jacques Monod, 69500, Bron, France
- Centre Léon Bérard, INSERM 1296 Radiations : défense, Santé et environnement, 28 rue Laennec, 69008, Lyon, France
| | - Anne-Catherine Jallas
- Centre Léon Bérard, INSERM 1296 Radiations : défense, Santé et environnement, 28 rue Laennec, 69008, Lyon, France
| | | | - Michael R Dyson
- IONTAS Ltd, Babraham Research Campus, Babraham, Cambridge, CB22 3AT, UK
| | - Franck Perrez
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Sandrine Valsesia-Wittmann
- Centre Léon Bérard, INSERM 1296 Radiations : défense, Santé et environnement, 28 rue Laennec, 69008, Lyon, France
| | | |
Collapse
|
20
|
Yen LJ, Chen YC, Wang KC, Shih MC, Li CL, Yu SJ, Lu LY. Hydroxychloroquine exacerbates imiquimod-induced psoriasis-like dermatitis through stimulating overexpression of IL-6 in keratinocytes. Immunopharmacol Immunotoxicol 2024; 46:128-137. [PMID: 38059657 DOI: 10.1080/08923973.2023.2281283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Hydroxychloroquine (HCQ) is a US Food and Drug Administration (FDA)-approved treatment for systemic lupus erythematosus (SLE) through inhibition of antigen presentation and subsequent reduction in T cell activation. Psoriasis relapse after antimalarial therapy have been reported in up to 18% of patients with psoriasis. Here, we explored the role of HCQ on exacerbating dermatitis utilizing an imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model. METHODS Thirty-six C57BL/6 female mice were divided into six groups: wild-type control, IMQ-Only, pre-treat HCQ (30 mg/kg and 60 mg/kg HCQ), and co-treat HCQ with IMQ (30 mg/kg and 60 mg/kg HCQ). Besides control, all were topically treated with IMQ for 5 days. Pharmacological effects and mechanisms of HCQ were assessed by clinical severity of dermatitis, histopathology, and flow cytometry. HaCaT cells were co-treated with both HCQ and recombinant IL-17A, followed by the detection of proinflammatory cytokine expression and gene profiles through enzyme-linked immunosorbent assay and next-generation sequencing. RESULTS In the pre-treated and co-treated HCQ groups, skin redness and scaling were significantly increased compared to the IMQ-Only group, and Th17 cell expression was also upregulated. Acanthosis and CD11b+IL23+ dendritic cell (DC) infiltration were observed in the HCQ treatment group. IL-6 overexpression was detected in both the HaCaT cells and skin from the experimental mice. Psoriasis-related genes were regulated after being co-treated with HCQ and recombinant IL-17A in HaCaT cells. CONCLUSIONS HCQ exacerbates psoriasis-like skin inflammation by increasing the expression of IL-6, stimulating DC infiltration, and promoting Th17 expression in the microenvironment of the skin. KEY MESSAGES This study provided possible mechanisms for inducing psoriasis during HCQ treatment through an animal model.
Collapse
Affiliation(s)
- Ling-Jung Yen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, Taiwan
- Department of Nursing, Meiho University, Pingtung City, Taiwan
| | - Ying-Chin Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - Kai-Chun Wang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, Taiwan
- The Doctoral Program of Clinical and Experimental Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Meng-Chieh Shih
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - Chia-Ling Li
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Sheng-Jie Yu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ling-Ying Lu
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| |
Collapse
|
21
|
Wodtke R, Laube M, Hauser S, Meister S, Ludwig FA, Fischer S, Kopka K, Pietzsch J, Löser R. Preclinical evaluation of an 18F-labeled N ε-acryloyllysine piperazide for covalent targeting of transglutaminase 2. EJNMMI Radiopharm Chem 2024; 9:1. [PMID: 38165538 PMCID: PMC10761660 DOI: 10.1186/s41181-023-00231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.
Collapse
Affiliation(s)
- Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany.
| |
Collapse
|
22
|
Kim S, Kim S, Kim S, Kim N, Lee SW, Yi H, Lee S, Sim T, Kwon Y, Lee HS. Affinity-Directed Site-Specific Protein Labeling and Its Application to Antibody-Drug Conjugates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306401. [PMID: 38032124 PMCID: PMC10811483 DOI: 10.1002/advs.202306401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Chemically modified proteins have diverse applications; however, conventional chemo-selective methods often yield heterogeneously labeled products. To address this limitation, site-specific protein labeling holds significant potential, driving extensive research in this area. Nevertheless, site-specific modification of native proteins remains challenging owing to the complexity of their functional groups. Therefore, a method for site-selective labeling of intact proteins is aimed to design. In this study, a novel approach to traceless affinity-directed intact protein labeling is established, which leverages small binding proteins and genetic code expansion technology. By applying this method, a site-specific antibody labeling with a drug, which leads to the production of highly effective antibody-drug conjugates specifically targeting breast cancer cell lines is achieved. This approach enables traceless conjugation of intact target proteins, which is a critical advantage in pharmaceutical applications. Furthermore, small helical binding proteins can be easily engineered for various target proteins, thereby expanding their potential applications in diverse fields. This innovative approach represents a significant advancement in site-specific modification of native proteins, including antibodies. It also bears immense potential for facilitating the development of therapeutic agents for various diseases.
Collapse
Affiliation(s)
- Sooin Kim
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Sanggil Kim
- New Drug Development CenterOsong Medical Innovation Foundation123 Osongsaengmyeong‐ro, Heungdeok‐guCheongjuChungbuk28160Republic of Korea
| | - Sangji Kim
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Sang Won Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Hanbin Yi
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Seungeun Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Taebo Sim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Yongseok Kwon
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyun Soo Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
23
|
Li Z, Xing S, Liu J, Wu X, Zhang S, Ma D, Liu X. Chaperonin co-expression and chemical modification enables production of active microbial transglutaminase from E. coli cytoplasm. Int J Biol Macromol 2023; 253:127355. [PMID: 37838118 DOI: 10.1016/j.ijbiomac.2023.127355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/16/2023]
Abstract
Microbial transglutaminase (MTG) is a usable enzyme for biomacromolecule modification. In the present study, a "molecular chaperonin" strategy was developed to produce MTG in E. coli cytoplasm with high expression level and a "small molecule-mediated chemical modification" strategy was adopted to strip propeptide chaperonin efficiently during purification. Propeptide (Pro) was expressed separately as a chaperonin to facilitate MTG expression in E. coli cytoplasm with a yield up to 300 mg or about 9 kU from 1 L fed-batch culture. Furthermore, small molecular chemicals were applied to interfere the interaction between MTG and Pro. Chemical acetylation was identified as a suitable method to strip Pro resulting in pure MTG with high specific activity up to 49.6 U/mg. The purified acetylated MTG was characterized by MS analysis. The deconvoluted mass and Peptide Sequence Tags analysis confirmed acetylation on amino groups of MTG protein. Finally, the applications of obtained MTG were demonstrated via protein polymerization of bovine serum albumin and PEGylation of human interferon-α2b. Our method provides MTG with high purity and specific activity as well as unique merit with masked amino groups thus avoiding self-polymerization and cross-linking between MTG and substrates.
Collapse
Affiliation(s)
- Zitao Li
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China
| | - Shuang Xing
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China
| | - Jing Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China; School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276826, China
| | - Xiaocong Wu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China
| | - Sichao Zhang
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China
| | - Di Ma
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China
| | - Xianwei Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China.
| |
Collapse
|
24
|
Lin M, Huang Y, Orihara K, Chibana H, Kajiwara S, Chen X. A Putative NADPH Oxidase Gene in Unicellular Pathogenic Candida glabrata Is Required for Fungal ROS Production and Oxidative Stress Response. J Fungi (Basel) 2023; 10:16. [PMID: 38248926 PMCID: PMC10817436 DOI: 10.3390/jof10010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Most previous studies on fungal NADPH oxidases (Nox) focused on multicellular fungi and highlighted the important roles of Nox-derived reactive oxygen species (ROS) in cellular differentiation and signaling communication. However, there are few reports about Nox in unicellular fungi. A novel NOX ortholog, CAGL0K05863g (named CgNOX1), in Candida glabrata was investigated in this study. Deletion of CgNOX1 led to a decrease in both intracellular and extracellular ROS production. In addition, the Cgnox1∆ mutant exhibited hypersensitivity to hydrogen peroxide and menadione. Also, the wild-type strain showed higher levels of both CgNOX1 mRNA expression and ROS production under oxidative stress. Moreover, the absence of CgNOX1 resulted in impaired ferric reductase activity. Although there was no effect on in vitro biofilm formation, the CgNOX1 mutant did not produce hepatic apoptosis, which might be mediated by fungal Nox-derived ROS during co-incubation. Together, these results indicated that the novel NOX gene plays important roles in unicellular pathogenic C. glabrata and its interaction with host cells.
Collapse
Affiliation(s)
- Maoyi Lin
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (M.L.); (Y.H.); (K.O.); (S.K.)
| | - Yao Huang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (M.L.); (Y.H.); (K.O.); (S.K.)
| | - Kanami Orihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (M.L.); (Y.H.); (K.O.); (S.K.)
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba 263-8522, Japan;
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (M.L.); (Y.H.); (K.O.); (S.K.)
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (M.L.); (Y.H.); (K.O.); (S.K.)
| |
Collapse
|
25
|
Lerner A, Benzvi C, Vojdani A. Cross-reactivity and sequence similarity between microbial transglutaminase and human tissue antigens. Sci Rep 2023; 13:17526. [PMID: 37845267 PMCID: PMC10579360 DOI: 10.1038/s41598-023-44452-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Microbial transglutaminase (mTG) is a bacterial survival factor, frequently used as a food additive to glue processed nutrients. As a result, new immunogenic epitopes are generated that might drive autoimmunity. Presently, its contribution to autoimmunity through epitope similarity and cross-reactivity was investigated. Emboss Matcher was used to perform sequence alignment between mTG and various antigens implicated in many autoimmune diseases. Monoclonal and polyclonal antibodies made specifically against mTG were applied to 77 different human tissue antigens using ELISA. Six antigens were detected to share significant homology with mTG immunogenic sequences, representing major targets of common autoimmune conditions. Polyclonal antibody to mTG reacted significantly with 17 out of 77 tissue antigens. This reaction was most pronounced with mitochondrial M2, ANA, and extractable nuclear antigens. The results indicate that sequence similarity and cross-reactivity between mTG and various tissue antigens are possible, supporting the relationship between mTG and the development of autoimmune disorders 150W.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel.
- Ariel University, Ariel, Israel.
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| | | |
Collapse
|
26
|
Zhong Z, Li Z, Li Y, Jiang L, Kong Q, Chen W, Feng S. RhoA vesicle trafficking-mediated transglutaminase 2 membrane translocation promotes IgA1 mesangial deposition in IgA nephropathy. JCI Insight 2023; 8:e160374. [PMID: 37811653 PMCID: PMC10619437 DOI: 10.1172/jci.insight.160374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Transglutaminase 2 (TGase2) has been shown to contribute to the mesangial IgA1 deposition in a humanized mouse model of IgA nephropathy (IgAN), but the mechanism is not fully understood. In this study, we found that inhibition of TGase2 activity could dramatically decrease the amount of polymeric IgA1 (pIgA1) isolated from patients with IgAN that interacts with human mesangial cells (HMC). TGase2 was expressed both in the cytosol and on the membrane of HMC. Upon treatment with pIgA1, there were more TGase2 recruited to the membrane. Using a cell model of mesangial deposition of pIgA1, we identified 253 potential TGase2-associated proteins in the cytosolic fraction and observed a higher concentration of cellular vesicles and increased expression of Ras homolog family member A (RhoA) in HMC after pIgA1 stimulation. Both the amount of pIgA1 deposited on HMC and membrane TGase2 level were decreased by inhibition of the vesicle trafficking pathway. Mechanistically, TGase2 was found to be coprecipitated with RhoA in the cellular vesicles. Membrane TGase2 expression was greatly increased by overexpression of RhoA, while it was reduced by knockdown of RhoA. Our in vitro approach demonstrated that TGase2 was transported from the cytosol to the membrane through a RhoA-mediated vesicle-trafficking pathway that can facilitate pIgA1 interaction with mesangium in IgAN.
Collapse
Affiliation(s)
- Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yanjie Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lanping Jiang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Qingyu Kong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Shaozhen Feng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
27
|
Soltani F, Kaartinen MT. Transglutaminases in fibrosis-overview and recent advances. Am J Physiol Cell Physiol 2023; 325:C885-C894. [PMID: 37642242 DOI: 10.1152/ajpcell.00322.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Transglutaminases (TGs) are a family of protein cross-linking enzymes that are capable of stiffening and insolubilizing proteins and creating protein networks, and thereby altering biological functions of proteins. Their role in fibrosis progression has been widely investigated with a focus on kidney, lung, liver, and heart where activity is triggered by various stimuli including hypoxia, inflammation, and hyperglycemia. TG2 has been considered one of the key enzymes in the pathogenesis of fibrosis mainly through transforming growth factor beta (TGF-beta) signaling and matrix cross-linking mechanisms. Although TG2 has been most widely studied in this context, the involvement of other TGs, TG1 and Factor XIII-A (FXIII-A), is beginning to emerge. This mini-review highlights the major steps taken in the TG and fibrosis research and summarizes the most recent advances and contributions of TG2, TG1, and FXIII-A to the progression of fibrosis in various animal models. Also, their mechanisms of action as well as therapeutic prospects are discussed.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Mari T Kaartinen
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences), McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Malkomes P, Lunger I, Oppermann E, Lorenz J, Faqar-Uz-Zaman SF, Han J, Bothur S, Ziegler P, Bankov K, Wild P, Bechstein WO, Rieger MA. Transglutaminase 2 is associated with adverse colorectal cancer survival and represents a therapeutic target. Cancer Gene Ther 2023; 30:1346-1354. [PMID: 37443286 PMCID: PMC10581896 DOI: 10.1038/s41417-023-00641-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Molecular markers for predicting prognosis of colorectal cancer (CRC) patients are urgently needed for effective disease management. We reported previously that the multifunctional enzyme Transglutaminase 2 (TGM2) is essential for CRC cell survival by inactivation of the tumor suppressor p53. Based on these data, we determined the clinical relevance of TGM2 expression and explored its potential as prognostic marker and therapeutic target in CRC. We profiled TGM2 protein expression in tumor samples of 279 clinically characterized CRC patients using immunohistochemical staining. TGM2 expression was upregulated in matched tumor samples in comparison to normal tissue. A strong TGM2 expression was associated with advanced tumor stages and predicted worse prognosis regarding progression-free and overall-survival, even at early stages. Inhibition of TGM2 in CRC cell lines by the inhibitors LDN27219 and Tyrphostin resulted in a strong reduction of cancer cell proliferation and tumorsphere formation in vitro by induction of p53-mediated apoptosis. Primary patient-derived tumorsphere formation was significantly reduced by inhibition of TGM2. Treatment of mice with TGM2 inhibitors exhibited a significant deceleration of tumor progression. Our data indicate that high TGM2 expression in CRC is associated with worse prognosis and may serve as a therapeutic target in CRC patients with strong TGM2 expression.
Collapse
Affiliation(s)
- Patrizia Malkomes
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilaria Lunger
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Elsie Oppermann
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Johannes Lorenz
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Sara Fatima Faqar-Uz-Zaman
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Jiaoyan Han
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Sabrina Bothur
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Paul Ziegler
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Peter Wild
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Wolf Otto Bechstein
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Michael A Rieger
- Frankfurt Cancer Institute, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany.
- Cardio-Pulmonary-Institute, Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Lin X, Long S, Yan C, Zou X, Zhang G, Zou J, Wu G. Therapeutic potential of vasculogenic mimicry in urological tumors. Front Oncol 2023; 13:1202656. [PMID: 37810976 PMCID: PMC10551447 DOI: 10.3389/fonc.2023.1202656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Angiogenesis is an essential process in the growth and metastasis of cancer cells, which can be hampered by an anti-angiogenesis mechanism, thereby delaying the progression of tumors. However, the benefit of this treatment modality could be restricted, as most patients tend to develop acquired resistance during treatment. Vasculogenic mimicry (VM) is regarded as a critical alternative mechanism of tumor angiogenesis, where studies have demonstrated that patients with tumors supplemented with VM generally have a shorter survival period and a poorer prognosis. Inhibiting VM may be an effective therapeutic strategy to prevent cancer progression, which could prove helpful in impeding the limitations of lone use of anti-angiogenic therapy when performed concurrently with other anti-tumor therapies. This review summarizes the mechanism of VM signaling pathways in urological tumors, i.e., prostate cancer, clear cell renal cell carcinoma, and bladder cancer. Furthermore, it also summarizes the potential of VM as a therapeutic strategy for urological tumors.
Collapse
Affiliation(s)
- Xinyu Lin
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Sheng Long
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Congcong Yan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gengqing Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
30
|
Niemelä O, Bloigu A, Bloigu R, Nivukoski U, Kultti J, Pohjasniemi H. Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder. Int J Mol Sci 2023; 24:13124. [PMID: 37685930 PMCID: PMC10487441 DOI: 10.3390/ijms241713124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Recent data have emphasized the role of inflammation and intestinal immunoglobulin A (IgA) responses in the pathogenesis of alcoholic liver disease (ALD). In order to further explore such associations, we compared IgA titers against antigens targeted to ethanol metabolites and tissue transglutaminase with pro- and anti-inflammatory mediators of inflammation, markers of liver status, transferrin protein desialylation and extracellular matrix metabolism in alcohol-dependent patients with or without liver disease and in healthy controls. Serum IgAs against protein adducts with acetaldehyde (HbAch-IgA), the first metabolite of ethanol, and tissue transglutaminase (tTG-IgA), desialylated transferrin (CDT), pro- and anti-inflammatory cytokines, markers of liver status (GT, ALP) and extracellular matrix metabolism (PIIINP, PINP, hyaluronic acid, ICTP and CTx) were measured in alcohol-dependent patients with (n = 83) or without (n = 105) liver disease and 88 healthy controls representing either moderate drinkers or abstainers. In ALD patients, both tTG-IgA and HbAch-IgA titers were significantly higher than those in the alcoholics without liver disease (p < 0.0005 for tTG-IgA, p = 0.006 for Hb-Ach-IgA) or in healthy controls (p < 0.0005 for both comparisons). The HbAch-IgA levels in the alcoholics without liver disease also exceeded those found in healthy controls (p = 0.0008). In ROC analyses, anti-tTG-antibodies showed an excellent discriminative value in differentiating between ALD patients and healthy controls (AUC = 0.95, p < 0.0005). Significant correlations emerged between tTG-IgAs and HbAch-IgAs (rs = 0.462, p < 0.0005), CDT (rs = 0.413, p < 0.0001), GT (rs = 0.487, p < 0.0001), alkaline phosphatase (rs = 0.466, p < 0.0001), serum markers of fibrogenesis: PIIINP (rs = 0.634, p < 0.0001), hyaluronic acid (rs = 0.575, p < 0.0001), ICTP (rs = 0.482, p < 0.0001), pro-inflammatory cytokines IL-6 (rs = 0.581, p < 0.0001), IL-8 (rs = 0.535, p < 0.0001) and TNF-α (rs = 0.591, p < 0.0001), whereas significant inverse correlations were observed with serum TGF-β (rs = -0.366, p < 0.0001) and CTx, a marker of collagen degradation (rs = -0.495, p < 0.0001). The data indicate that the induction of IgA immune responses toward ethanol metabolites and tissue transglutaminaseis a characteristic feature of patients with AUD and coincides with the activation of inflammation, extracellular matrix remodeling and the generation of aberrantly glycosylated proteins. These processes appear to work in concert in the sequence of events leading from heavy drinking to ALD.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Aini Bloigu
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Risto Bloigu
- Infrastructure of Population Studies, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Ulla Nivukoski
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Johanna Kultti
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Heidi Pohjasniemi
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
31
|
Yuan J, Liu Y, Zhao F, Mu Y, Tian X, Liu H, Zhang K, Zhao J, Wang Y. Hepatic Proteomics Analysis Reveals Attenuated Endoplasmic Reticulum Stress in Lactiplantibacillus plantarum-Treated Oxidatively Stressed Broilers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37486617 DOI: 10.1021/acs.jafc.3c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Endoplasmic reticulum (ER) stress plays important roles in oxidative stress (OS), contributing to liver injury. Lactiplantibacillus plantarum P8 (P8) was reported to regulate broiler OS and the gut microbiota in broilers, but its roles in hepatic ER stress remain unclear. In the present study, the role of P8 in liver OS and ER stress was evaluated, and proteomics was performed to determine the mechanism. Results revealed that P8 treatment decreased liver OS and ER stress in dexamethasone (DEX)-induced oxidatively stressed broilers. Proteomics showed that differentially expressed proteins (DEPs) induced by DEX cover the "cellular response to unfold protein" term. Moreover, the DEPs (GGT5, TXNDC12, and SRM) between DEX- and DEX + P8-treated broilers were related to OS and ER stress and enriched in the glutathione metabolism pathway. RT-qPCR further confirmed the results of proteomics. In conclusion, P8 attenuates hepatic OS and ER stress by regulating GGT5, TXNDC12, SRM, and glutathione metabolism in broilers.
Collapse
Affiliation(s)
- Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Fan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuxin Mu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinyu Tian
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| |
Collapse
|
32
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
33
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
34
|
Tran KA, DeOre BJ, Ikejiani D, Means K, Paone LS, De Marchi L, Suprewicz Ł, Koziol K, Bouyer J, Byfield FJ, Jin Y, Georges P, Fischer I, Janmey PA, Galie PA. Matching mechanical heterogeneity of the native spinal cord augments axon infiltration in 3D-printed scaffolds. Biomaterials 2023; 295:122061. [PMID: 36842339 PMCID: PMC10292106 DOI: 10.1016/j.biomaterials.2023.122061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Scaffolds delivered to injured spinal cords to stimulate axon connectivity often match the anisotropy of native tissue using guidance cues along the rostral-caudal axis, but current approaches do not mimic the heterogeneity of host tissue mechanics. Although white and gray matter have different mechanical properties, it remains unclear whether tissue mechanics also vary along the length of the cord. Mechanical testing performed in this study indicates that bulk spinal cord mechanics do differ along anatomical level and that these differences are caused by variations in the ratio of white and gray matter. These results suggest that scaffolds recreating the heterogeneity of spinal cord tissue mechanics must account for the disparity between gray and white matter. Digital light processing (DLP) provides a means to mimic spinal cord topology, but has previously been limited to printing homogeneous mechanical properties. We describe a means to modify DLP to print scaffolds that mimic spinal cord mechanical heterogeneity caused by variation in the ratio of white and gray matter, which improves axon infiltration compared to controls exhibiting homogeneous mechanical properties. These results demonstrate that scaffolds matching the mechanical heterogeneity of white and gray matter improve the effectiveness of biomaterials transplanted within the injured spinal cord.
Collapse
Affiliation(s)
- Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Brandon J DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - David Ikejiani
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Kristen Means
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Louis S Paone
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Laura De Marchi
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Katarina Koziol
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Julien Bouyer
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Fitzroy J Byfield
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Jin
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Penelope Georges
- Council on Science and Technology, Princeton University, Princeton, NJ, USA
| | - Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA.
| |
Collapse
|
35
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
36
|
Čižmárová B, Hubková B, Tomečková V, Birková A. Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. Int J Mol Sci 2023; 24:ijms24076324. [PMID: 37047297 PMCID: PMC10094312 DOI: 10.3390/ijms24076324] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Phytochemicals represent a large and diverse group of naturally occurring compounds, bioactive nutrients, or phytonutrients produced by plants, widely found in fruits, vegetables, whole grains products, legumes, beans, herbs, seeds, nuts, tea, and dark chocolate. They are classified according to their chemical structures and functional properties. Flavonoids belong to the phenolic class of phytochemicals with potential solid pharmacological effects as modulators of multiple signal transduction pathways. Their beneficial effect on the human body is associated with their antioxidant, anti-inflammatory, antimutagenic, and anticarcinogenic properties. Flavonoids are also widely used in various nutritional, pharmaceutical, medical, and cosmetic applications. In our review, we discuss the positive effect of flavonoids on chronic skin diseases such as vitiligo, psoriasis, acne, and atopic dermatitis.
Collapse
|
37
|
Emerson J, Delgado T, Girardi P, Johnson GVW. Deletion of Transglutaminase 2 from Mouse Astrocytes Significantly Improves Their Ability to Promote Neurite Outgrowth on an Inhibitory Matrix. Int J Mol Sci 2023; 24:6058. [PMID: 37047031 PMCID: PMC10094709 DOI: 10.3390/ijms24076058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Astrocytes are the primary support cells of the central nervous system (CNS) that help maintain the energetic requirements and homeostatic environment of neurons. CNS injury causes astrocytes to take on reactive phenotypes with an altered overall function that can range from supportive to harmful for recovering neurons. The characterization of reactive astrocyte populations is a rapidly developing field, and the underlying factors and signaling pathways governing which type of reactive phenotype that astrocytes take on are poorly understood. Our previous studies suggest that transglutaminase 2 (TG2) has an important role in determining the astrocytic response to injury. Selectively deleting TG2 from astrocytes improves functional outcomes after CNS injury and causes widespread changes in gene regulation, which is associated with its nuclear localization. To begin to understand how TG2 impacts astrocytic function, we used a neuron-astrocyte co-culture paradigm to compare the effects of TG2-/- and wild-type (WT) mouse astrocytes on neurite outgrowth and synapse formation. Neurons were grown on a control substrate or an injury-simulating matrix comprised of inhibitory chondroitin sulfate proteoglycans (CSPGs). Compared to WT astrocytes, TG2-/- astrocytes supported neurite outgrowth to a significantly greater extent only on the CSPG matrix, while synapse formation assays showed mixed results depending on the pre- and post-synaptic markers analyzed. We hypothesize that TG2 regulates the supportive functions of astrocytes in injury conditions by modulating gene expression through interactions with transcription factors and transcription complexes. Based on the results of a previous yeast two-hybrid screen for TG2 interactors, we further investigated the interaction of TG2 with Zbtb7a, a ubiquitously expressed transcription factor. Co-immunoprecipitation and colocalization analyses confirmed the interaction of TG2 and Zbtb7a in the nucleus of astrocytes. Overexpression or knockdown of Zbtb7a levels in WT and TG2-/- astrocytes revealed that Zbtb7a robustly influenced astrocytic morphology and the ability of astrocytes to support neuronal outgrowth, which was significantly modulated by the presence of TG2. These findings support our hypothesis that astrocytic TG2 acts as a transcriptional regulator to influence astrocytic function, with greater influence under injury conditions that increase its expression, and Zbtb7a likely contributes to the overall effects observed with astrocytic TG2 deletion.
Collapse
Affiliation(s)
| | | | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave., Box 604, Rochester, NY 14620, USA
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave., Box 604, Rochester, NY 14620, USA
| |
Collapse
|
38
|
Almugadam SH, Trentini A, Maritati M, Contini C, Manfrinato MC, Cervellati C, Bellini T, Hanau S. A Calcium- and GTP-Dependent Transglutaminase in Leishmania infantum. Vet Sci 2023; 10:vetsci10030234. [PMID: 36977273 PMCID: PMC10053793 DOI: 10.3390/vetsci10030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
While human and animal leishmaniasis affect several millions of people worldwide, L. infantum is the species responsible for visceral leishmaniasis in Europe, Middle East, and America. Antileishmanial drugs present issues associated with drug toxicity and increasing parasite resistance. Therefore, the study of this parasite with a focus on new potential drug targets is extremely useful. Accordingly, we purified and characterized a transglutaminase (TGase) from L. infantum promastigotes. While Tgases are known to be involved in cell death and autophagy, it appears that these functions are very important for parasites' virulence. For the first time, we showed a Ca2+- and GTP-dependent TGase in Leishmania corresponding to a 54 kDa protein, which was purified by two chromatographic steps: DEAE-Sepharose and Heparin-Sepharose. Using polyclonal antibodies against a 50-amino-acid conserved region of the catalytic core of human TGase 2, we revealed two other bands of 66 and 75 kDa. The 54 kDa band appears to be different from the previously reported TGase, which was shown to be Ca2+- independent. Future research should address the identification of the purified enzyme sequence and, subsequently, its cloning to more comprehensively investigate its pathophysiological function and possible differences from mammal enzymes.
Collapse
Affiliation(s)
- Shawgi Hago Almugadam
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
- Faculty of Medical Laboratory Sciences, University of Khartoum, Nile Avenue, P.O. Box 321, Khartoum 51111, Sudan
| | - Alessandro Trentini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Martina Maritati
- Infectious Diseases and Dermatology, Department of Medical Sciences, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Carlo Contini
- Infectious Diseases and Dermatology, Department of Medical Sciences, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Maria Cristina Manfrinato
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Tiziana Bellini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Stefania Hanau
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
39
|
Mamun MAA, Cao W, Nakamura S, Maruyama JI. Large-scale identification of genes involved in septal pore plugging in multicellular fungi. Nat Commun 2023; 14:1418. [PMID: 36932089 PMCID: PMC10023807 DOI: 10.1038/s41467-023-36925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Multicellular filamentous fungi have septal pores that allow cytoplasmic exchange, and thus connectivity, between neighboring cells in the filament. Hyphal wounding and other stress conditions induce septal pore closure to minimize cytoplasmic loss. However, the composition of the septal pore and the mechanisms underlying its function are not well understood. Here, we set out to identify new septal components by determining the subcellular localization of 776 uncharacterized proteins in a multicellular ascomycete, Aspergillus oryzae. The set of 776 uncharacterized proteins was selected on the basis that their genes were present in the genomes of multicellular, septal pore-bearing ascomycetes (three Aspergillus species, in subdivision Pezizomycotina) and absent/divergent in the genomes of septal pore-lacking ascomycetes (yeasts). Upon determining their subcellular localization, 62 proteins were found to localize to the septum or septal pore. Deletion of the encoding genes revealed that 23 proteins are involved in regulating septal pore plugging upon hyphal wounding. Thus, this study determines the subcellular localization of many uncharacterized proteins in A. oryzae and, in particular, identifies a set of proteins involved in septal pore function.
Collapse
Affiliation(s)
| | - Wei Cao
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Shugo Nakamura
- Department of Information Networking for Innovation and Design, Faculty of Information Networking for Innovation and Design, Toyo University, Tokyo, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
40
|
Implications of Transglutaminase-Mediated Protein Serotonylation in the Epigenetic Landscape, Small Cell Lung Cancer, and Beyond. Cancers (Basel) 2023; 15:cancers15041332. [PMID: 36831672 PMCID: PMC9954789 DOI: 10.3390/cancers15041332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
In the case of small-cell lung carcinoma, the highly metastatic nature of the disease and the propensity for several chromatin modifiers to harbor mutations suggest that epigenetic manipulation may also be a promising route for oncotherapy, but histone deacetylase inhibitors on their own do not appear to be particularly effective, suggesting that there may be other regulatory parameters that dictate the effectiveness of vorinostat's reversal of histone deacetylation. Recent discoveries that serotonylation of histone H3 alters the permissibility of gene expression have led to renewed attention to this rare modification, as facilitated by transglutaminase 2, and at the same time introduce new questions about whether this modification belongs to a part of the concerted cohort of regulator events for modulating the epigenetic landscape. This review explores the mechanistic details behind protein serotonylation and its possible connections to the epigenome via histone modifications and glycan interactions and attempts to elucidate the role of transglutaminase 2, such that optimizations to existing histone deacetylase inhibitor designs or combination therapies may be devised for lung and other types of cancer.
Collapse
|
41
|
Glycomimetic Peptides as Therapeutic Tools. Pharmaceutics 2023; 15:pharmaceutics15020688. [PMID: 36840010 PMCID: PMC9966187 DOI: 10.3390/pharmaceutics15020688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The entry of peptides into glycobiology has led to the development of a unique class of therapeutic tools. Although numerous and well-known peptides are active as endocrine regulatory factors that bind to specific receptors, and peptides have been used extensively as epitopes for vaccine production, the use of peptides that mimic sugars as ligands of lectin-type receptors has opened a unique approach to modulate activity of immune cells. Ground-breaking work that initiated the use of peptides as tools for therapy identified sugar mimetics by screening phage display libraries. The peptides that have been discovered show significant potential as high-avidity, therapeutic tools when synthesized as multivalent structures. Advantages of peptides over sugars as drugs for immune modulation will be illustrated in this review.
Collapse
|
42
|
Sun X, Yan X, Chen D, Liu X, Wu Y. Efficacy and safety of microbial transglutaminase-induced scleral stiffening invivo. Exp Eye Res 2023; 227:109387. [PMID: 36646298 DOI: 10.1016/j.exer.2023.109387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The purpose of this study was to investigate the efficacy and safety of microbial transglutaminases (mTGases) during scleral collagen cross-linking (CXL) in vivo. Sixteen New Zealand white albino rabbits were treated with sub-Tenon's injections of 2 ml of 1 U/ml mTGases in the right eye and 2 ml of phosphate buffer saline (PBS) in the left eye. The rabbits were killed 2 weeks after the injection, and all eyeballs, including some scleral strips, were processed. The elastic modulus was measured with a biomaterials tester. Histopathological analysis and transmission electron microscopy (TEM) were used for the morphological observations. The elastic modulus of the mTGase-treated sclera was 15.79 ± 2.93 MPa, and that of the control was 6.91 ± 2.23 MPa, indicating an increase of 129% after the mTGases treatment (P < 0.05). The density of the scleral collagen bundles and diameter of the collagen fibrils increased compared with those in the control group. No apoptosis was detected in the retina or posterior sclera by TUNEL staining, and no histological damage was observed on the TEM scan. This study is based on a short-term study on animal models. These results indicate that mTGase-mediated scleral CXL is a promising approach to effectively stiffen the sclera and safe enough for retina, and may be a useful treatment modality for strengthening scleral tissue.
Collapse
Affiliation(s)
- Xiaona Sun
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing, 100034, China; Department of Ophthalmology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100034, China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Duo Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyu Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuan Wu
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing, 100034, China.
| |
Collapse
|
43
|
MAFLD and Celiac Disease in Children. Int J Mol Sci 2023; 24:ijms24021764. [PMID: 36675276 PMCID: PMC9866925 DOI: 10.3390/ijms24021764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated systemic disorder elicited by the ingestion of gluten whose clinical presentation ranges from the asymptomatic form to clinical patterns characterized by multiple systemic involvement. Although CD is a disease more frequently diagnosed in patients with symptoms of malabsorption such as diarrhea, steatorrhea, weight loss, or failure to thrive, the raised rate of overweight and obesity among general pediatric and adult populations has increased the possibility to diagnose celiac disease in obese patients as well. Consequently, it is not difficult to also find obesity-related disorders in patients with CD, including "metabolic associated fatty liver disease" (MAFLD). The exact mechanisms linking these two conditions are not yet known. The going assumption is that a gluten-free diet (GFD) plays a pivotal role in determining an altered metabolic profile because of the elevated content of sugars, proteins, saturated fats, and complex carbohydrates, and the higher glycemic index of gluten-free products than gluten-contained foods, predisposing individuals to the development of insulin resistance. However, recent evidence supports the hypothesis that alterations in one of the components of the so-called "gut-liver axis" might contribute to the increased afflux of toxic substances to the liver triggering the liver fat accumulation and to the subsequent hepatocellular damage. The aim of this paper was to describe the actual knowledge about the factors implicated in the pathogenesis of hepatic steatosis in pediatric patients with CD. The presented review allows us to conclude that the serological evaluations for CD with anti-transglutaminase antibodies, should be a part of the general workup in the asymptomatic patients with "non-alcoholic fatty liver disease" (NAFLD) when metabolic risk factors are not evident, and in the patients with steatohepatitis when other causes of liver disease are excluded.
Collapse
|
44
|
Chakraborty A, Halder B, Mondal S, Barrett A, Zhi W, Csanyi G, Sabbatini ME. NADPH oxidase 1 in chronic pancreatitis-activated pancreatic stellate cells facilitates the progression of pancreatic cancer. Am J Cancer Res 2023; 13:118-142. [PMID: 36777508 PMCID: PMC9906081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/12/2022] [Indexed: 02/14/2023] Open
Abstract
Patients suffering from chronic pancreatitis (CP) have a higher risk of pancreatic ductal adenocarcinoma (PDAC) compared to the general population. For instance, the presence of an activated pancreatic stellate cell (PaSC)-rich stroma in CP has facilitated the progression of non-invasive pancreatic intraepithelial neoplasia (PanIN) lesions to invasive PDAC. We have previously found that in a mouse model of CP, NADPH oxidase 1 (Nox1) in activated PaSCs forms fibrotic tissue and up-regulates both matrix metalloproteinase (MMP) 9 and the transcription factor Twist1. Yet, the role and mechanism of Nox1 in activated PaSCs from mice with CP (CP-activated PaSCs) in the progression of PDAC is unknown. For that, we tested the ability of Nox1 in CP-activated PaSCs to facilitate the growth of pancreatic cancer cells, and the mechanisms involved in these effects by identifying proteins in the secretome of CP-activated PaSCs whose production were Nox1-dependent. We found that, in vitro, Nox1 evoked a pro-invasive and cancer-promoting phenotype in CP-activated PaSCs via Twist1/MMP-9 expression, causing changes in the extracellular matrix composition. In vivo, Nox1 in CP-activated PaSCs facilitated tumor growth and stromal expansion. Using mass spectrometry, we identified proteins protecting from endoplasmic reticulum, oxidative and metabolic stresses in the secretome of CP-activated PaSCs whose production was Nox1-dependent, including peroxiredoxins (Prdx1 and Prdx4), and thioredoxin reductase 1. In conclusion, inhibiting the Nox1 signaling in activated PaSCs from patients with CP at early stages can reduce the reorganization of extracellular matrix, and the protection of neoplastic cells from cellular stresses, ameliorating the progression of PDAC.
Collapse
Affiliation(s)
- Ananya Chakraborty
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Bithika Halder
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Souravi Mondal
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Amanda Barrett
- Department of Surgical Pathology, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Gabor Csanyi
- Department of Pharmacology and Toxicology, and Vascular Biology Center, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Maria E Sabbatini
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| |
Collapse
|
45
|
The Impact of Nε-Acryloyllysine Piperazides on the Conformational Dynamics of Transglutaminase 2. Int J Mol Sci 2023; 24:ijms24021650. [PMID: 36675164 PMCID: PMC9865645 DOI: 10.3390/ijms24021650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
In addition to the classic functions of proteins, such as acting as a biocatalyst or binding partner, the conformational states of proteins and their remodeling upon stimulation need to be considered. A prominent example of a protein that undergoes comprehensive conformational remodeling is transglutaminase 2 (TGase 2), the distinct conformational states of which are closely related to particular functions. Its involvement in various pathophysiological processes, including fibrosis and cancer, motivates the development of theranostic agents, particularly based on inhibitors that are directed toward the transamidase activity. In this context, the ability of such inhibitors to control the conformational dynamics of TGase 2 emerges as an important parameter, and methods to assess this property are in great demand. Herein, we describe the application of the switchSENSE® principle to detect conformational changes caused by three irreversibly binding Nε-acryloyllysine piperazides, which are suitable radiotracer candidates of TGase 2. The switchSENSE® technique is based on DNA levers actuated by alternating electric fields. These levers are immobilized on gold electrodes with one end, and at the other end of the lever, the TGase 2 is covalently bound. A novel computational method is introduced for describing the resulting lever motion to quantify the extent of stimulated conformational TGase 2 changes. Moreover, as a complementary biophysical method, native polyacrylamide gel electrophoresis was performed under similar conditions to validate the results. Both methods prove the occurrence of an irreversible shift in the conformational equilibrium of TGase 2, caused by the binding of the three studied Nε-acryloyllysine piperazides.
Collapse
|
46
|
Guo T, Wantono C, Tan Y, Deng F, Duan T, Liu D. Regulators, functions, and mechanotransduction pathways of matrix stiffness in hepatic disease. Front Physiol 2023; 14:1098129. [PMID: 36711017 PMCID: PMC9878334 DOI: 10.3389/fphys.2023.1098129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The extracellular matrix (ECM) provides physical support and imparts significant biochemical and mechanical cues to cells. Matrix stiffening is a hallmark of liver fibrosis and is associated with many hepatic diseases, especially liver cirrhosis and carcinoma. Increased matrix stiffness is not only a consequence of liver fibrosis but is also recognized as an active driver in the progression of fibrotic hepatic disease. In this article, we provide a comprehensive view of the role of matrix stiffness in the pathological progression of hepatic disease. The regulators that modulate matrix stiffness including ECM components, MMPs, and crosslinking modifications are discussed. The latest advances of the research on the matrix mechanics in regulating intercellular signaling and cell phenotype are classified, especially for hepatic stellate cells, hepatocytes, and immunocytes. The molecular mechanism that sensing and transducing mechanical signaling is highlighted. The current progress of ECM stiffness's role in hepatic cirrhosis and liver cancer is introduced and summarized. Finally, the recent trials targeting ECM stiffness for the treatment of liver disease are detailed.
Collapse
Affiliation(s)
- Ting Guo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Cindy Wantono
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Tianying Duan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu,
| |
Collapse
|
47
|
Single and double Pickering emulsions stabilized by sodium caseinate: Effect of crosslinking density. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Deep Association between Transglutaminase 1 and Tissue Eosinophil Infiltration Leading to Nasal Polyp Formation and/or Maintenance with Fibrin Polymerization in Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2022; 23:ijms232112955. [DOI: 10.3390/ijms232112955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Transglutaminase (TGM) isoform catalyze the cross-linking reaction of identical or different substrate proteins. Eosinophil has been recognized in chronic rhinosinusitis with nasal polyps (CRSwNP) forming tissue eosinophil in nasal polyp (NP), and TGM isoforms are suggested to be associated with a critical role in asthma and other allergic conditions. The aim of this study was to reveal the association of specific TGM isoform with both the tissue eosinophil infiltration deeply concerning with the intractable severity of CRSwNP and the fibrin polymerization ability of TGM isoform associated with the tissue eosinophil infiltration, which lead to NP formation and/or maintenance in CRSwNP. NP tissues (CRSwNP group) and uncinate process (UP) (control group) were collected from patients with CRSwNP and control subjects. We examined: (1) the expression level of TGM isoforms by using a real-time polymerase chain reaction (PCR) and the comparison to the issue eosinophil count in the CRSwNP group, (2) the location of specific TGM isoform in the mucosal tissue using immunohistochemistry, (3) the inflammatory cell showing the colocalization of specific TGM isoform in Laser Scanning Confocal Microscopy (LSCM) imaging, and (4) the fibrin polymerase activity of specific TGM isoform using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). A certain level of TGM 1, 2, 3, 5 expression was present in both the CRSwNP group and the control group. Only TGM 1 expression showed a positive significant correlation with the tissue eosinophil count in the CRSwNP group. The localization of TGM 1 in NP (CRSwNP) laid mainly in a submucosal layer as inflammatory cells and was at the cytoplasm in the tissue eosinophil. Fibrin polymerase activity of TGM 1 showed the same polymerase ability of factor XIIIA. TGM 1 might influence the NP formation and/or maintenance in CRSwNP related to the tissue eosinophil infiltration, which formed fibrin mesh composing NP stroma.
Collapse
|
49
|
Lukasak BJ, Mitchener MM, Kong L, Dul BE, Lazarus CD, Ramakrishnan A, Ni J, Shen L, Maze I, Muir TW. TGM2-mediated histone transglutamination is dictated by steric accessibility. Proc Natl Acad Sci U S A 2022; 119:e2208672119. [PMID: 36256821 PMCID: PMC9618071 DOI: 10.1073/pnas.2208672119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies have identified serotonylation of glutamine-5 on histone H3 (H3Q5ser) as a novel posttranslational modification (PTM) associated with active transcription. While H3Q5ser is known to be installed by tissue transglutaminase 2 (TGM2), the substrate characteristics affecting deposition of the mark, at the level of both chromatin and individual nucleosomes, remain poorly understood. Here, we show that histone serotonylation is excluded from constitutive heterochromatic regions in mammalian cells. Biochemical studies reveal that the formation of higher-order chromatin structures associated with heterochromatin impose a steric barrier that is refractory to TGM2-mediated histone monoaminylation. A series of structure-activity relationship studies, including the use of DNA-barcoded nucleosome libraries, shows that steric hindrance also steers TGM2 activity at the nucleosome level, restricting monoaminylation to accessible sites within histone tails. Collectively, our data indicate that the activity of TGM2 on chromatin is dictated by substrate accessibility rather than by primary sequence determinants or by the existence of preexisting PTMs, as is the case for many other histone-modifying enzymes.
Collapse
Affiliation(s)
| | | | - Lingchun Kong
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Barbara E. Dul
- Department of Chemistry, Princeton University, Princeton, NJ 08540
| | - Cole D. Lazarus
- Department of Chemistry, Princeton University, Princeton, NJ 08540
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jizhi Ni
- Department of Chemistry, Princeton University, Princeton, NJ 08540
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- HHMI, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08540
| |
Collapse
|
50
|
Kolligundla LP, Gupta S, Lata S, Mulukala SKN, Killaka P, Akif M, Pasupulati AK. Identification of Novel GTP Analogs as Potent and Specific Reversible Inhibitors for Transglutaminase 2. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2123917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lakshmi P. Kolligundla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Samriddhi Gupta
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Surabhi Lata
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sandeep K. N. Mulukala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Praneeth Killaka
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mohd Akif
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil K. Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|