1
|
Odendaal C, Reijngoud DJ, Bakker BM. How lipid transfer proteins and the mitochondrial membrane shape the kinetics of β-oxidation the liver. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149519. [PMID: 39428049 DOI: 10.1016/j.bbabio.2024.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
The mitochondrial fatty acid β-oxidation (mFAO) is important for producing ATP under conditions of energetic stress, such as fasting and cold exposure. The regulation of this pathway is dependent on the kinetic properties of the enzymes involved. To better understand pathway behaviour, accurate enzyme kinetics is required. Setting up and interpreting such proper assays requires a good understanding of what influences the enzymes' kinetics. Often, knowing the buffer composition, pH, and temperature is considered to be sufficient. Many mFAO enzymes are membrane-bound, however, and their kinetic properties depend on the composition and curvature of the mitochondrial membranes. These properties are, in turn, affected by metabolite concentrations, but are rarely accounted for in kinetic assays. Especially for carnitine palmitoyltransferase 1 (CPT1), this has been shown to be of great consequence. Moreover, the enzymes of the mFAO metabolise water-insoluble acyl-CoA derivatives, which become toxic at high concentrations. In vivo, these are carried across the cytosol by intracellular lipid transfer proteins (iLTPs), such as the fatty-acid and acyl-CoA-binding proteins (FABP and ACBP, respectively). In vitro, this is often mimicked by using bovine serum albumin (BSA), which differs from the iLPTs in terms of its binding behaviour and subcellular localisation patterns. In this review, we argue that the iLTPs and membrane properties cannot be ignored when measuring or interpreting the kinetics of mFAO enzymes. They should be considered fundamental to the activity of mFAO enzymes just as pH, buffer composition, and temperature are.
Collapse
Affiliation(s)
- Christoff Odendaal
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Barbara M Bakker
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
2
|
Chen L, Wang B, Li H, Mao J, Liang Z, Chen Y, Yu M, Liu Y, Liao Z, Yang Y, Wu X, Wang H, Yang Y, Xiang R, Zhang L, Li Z. Design, synthesis, and biological evaluation of novel highly selective non-carboxylic acid FABP1 inhibitors. Eur J Med Chem 2024; 276:116705. [PMID: 39067439 DOI: 10.1016/j.ejmech.2024.116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Histologic spectrum studies in patients revealed fatty acid binding proteins 1 (FABP1) as a potential new target for the treatment of metabolic associated fatty liver disease. However, there is no FABP1 inhibitor has been reported except the first-in-class FABP1 inhibitor bearing acid moiety reported by our laboratory. Herein, we firstly report the structure-activity relationship of novel non-carboxylic acid FABP1 inhibitors, which resulted in the identification of the potent and selective FABP1 inhibitor 30. The IC50 value of compound 30 for subtype FABP4 in the same family was greater than 80 μM. Moreover, compound 30 significantly alleviated the hepatic steatosis in DIO mice, which is equivalent to that of clinical drug obeticholic acid. This study might be provided a promising probe for the development of FABP1 inhibitors and thus can help to further elucidate the pharmacology of FABP1.
Collapse
Affiliation(s)
- Lianru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Hongming Li
- Fujian Provincial Key Laboratory of Hepatic Drug Research, Ningde, 355300, PR China
| | - Jianming Mao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhiling Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Mingyang Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zibin Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yuanqian Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xiaojing Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Huazheng Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yonghong Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ruojing Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Luyong Zhang
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Liu B, Wang Z, Liang M, Yang L. Rice Protein Reduces Triglyceride Levels through Modulating CD36, MTP, FATP, and FABP Expression in Growing and Adult Rats. Foods 2024; 13:2704. [PMID: 39272469 PMCID: PMC11395578 DOI: 10.3390/foods13172704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
To elucidate the effect of rice protein on the regulation of triglyceride transport to reduce triglyceride levels, growing and adult male Wistar rats were fed with casein and rice protein for 2 weeks. With the intake of rice protein, the gene and protein expressions of cluster determinant 36 (CD36), microsomal triglyceride transfer protein (MTP), fatty acid transport protein-2 (FATP-2), and fatty acid-binding protein-1 (FABP-1) were, respectively, downregulated in growing and adult rats, suggesting rice protein could effectively regulate triglyceride transport. As a result, rice protein significantly reduced plasma levels of triglyceride and fatty acids, while hepatic accumulations of triglyceride and fatty acids were also decreased via rice protein. The present study demonstrates that RP exerts regulatory effects on CD36, MTP, FATP-2, and FABP-1 expression in growing and adult rats, revealing a link to triglyceride-lowering actions and the modulations of triglyceride transport exerted by rice protein. Results suggest that the aging process cannot attenuate the depression of CD36, MTP, FATP, and FABP 19 expression to reduce triglyceride levels induced by rice protein.
Collapse
Affiliation(s)
- Bingxiao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhengxuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Mingcai Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Pelletier AN, Sanchez GP, Izmirly A, Watson M, Di Pucchio T, Carvalho KI, Filali-Mouhim A, Paramithiotis E, Timenetsky MDCST, Precioso AR, Kalil J, Diamond MS, Haddad EK, Kallas EG, Sekaly RP. A pre-vaccination immune metabolic interplay determines the protective antibody response to a dengue virus vaccine. Cell Rep 2024; 43:114370. [PMID: 38900640 PMCID: PMC11404042 DOI: 10.1016/j.celrep.2024.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Protective immunity to dengue virus (DENV) requires antibody response to all four serotypes. Systems vaccinology identifies a multi-OMICs pre-vaccination signature and mechanisms predictive of broad antibody responses after immunization with a tetravalent live attenuated DENV vaccine candidate (Butantan-DV/TV003). Anti-inflammatory pathways, including TGF-β signaling expressed by CD68low monocytes, and the metabolites phosphatidylcholine (PC) and phosphatidylethanolamine (PE) positively correlate with broadly neutralizing antibody responses against DENV. In contrast, expression of pro-inflammatory pathways and cytokines (IFN and IL-1) in CD68hi monocytes and primary and secondary bile acids negatively correlates with broad DENV-specific antibody responses. Induction of TGF-β and IFNs is done respectively by PC/PE and bile acids in CD68low and CD68hi monocytes. The inhibition of viral sensing by PC/PE-induced TGF-β is confirmed in vitro. Our studies show that the balance between metabolites and the pro- or anti-inflammatory state of innate immune cells drives broad and protective B cell response to a live attenuated dengue vaccine.
Collapse
Affiliation(s)
- Adam-Nicolas Pelletier
- RPM Bioinfo Solutions, Sainte-Thérèse, QC, Canada; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gabriela Pacheco Sanchez
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Abdullah Izmirly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Tiziana Di Pucchio
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Karina Inacio Carvalho
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Abdelali Filali-Mouhim
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | | | | | | | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Institute for Investigation in Immunology-Instituto Nacional de Ciência e Tecnologia-iii-INCT, São Paulo, SP, Brazil
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elias K Haddad
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Esper G Kallas
- Instituto Butantan, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, Hospital das Clínicas, School of Medicine, University of Sao Paulo, São Paulo 01246-903, Brazil
| | - Rafick Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Yabut KCB, Martynova A, Nath A, Zercher BP, Bush MF, Isoherranen N. Drugs Form Ternary Complexes with Human Liver Fatty Acid Binding Protein 1 (FABP1) and FABP1 Binding Alters Drug Metabolism. Mol Pharmacol 2024; 105:395-410. [PMID: 38580446 PMCID: PMC11114116 DOI: 10.1124/molpharm.124.000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Liver fatty acid binding protein 1 (FABP1) binds diverse endogenous lipids and is highly expressed in the human liver. Binding to FABP1 alters the metabolism and homeostasis of endogenous lipids in the liver. Drugs have also been shown to bind to rat FABP1, but limited data are available for human FABP1 (hFABP1). FABP1 has a large binding pocket, and up to two fatty acids can bind to FABP1 simultaneously. We hypothesized that drug binding to hFABP1 results in formation of ternary complexes and that FABP1 binding alters drug metabolism. To test these hypotheses, native protein mass spectrometry (MS) and fluorescent 11-(dansylamino)undecanoic acid (DAUDA) displacement assays were used to characterize drug binding to hFABP1, and diclofenac oxidation by cytochrome P450 2C9 (CYP2C9) was studied in the presence and absence of hFABP1. DAUDA binding to hFABP1 involved high (Kd,1 = 0.2 μM) and low (Kd,2 > 10 μM) affinity binding sites. Nine drugs bound to hFABP1 with equilibrium dissociation constant (Kd) values ranging from 1 to 20 μM. None of the tested drugs completely displaced DAUDA from hFABP1, and fluorescence spectra showed evidence of ternary complex formation. Formation of DAUDA-hFABP1-diclofenac ternary complex was verified with native MS. Docking predicted diclofenac binding in the portal region of FABP1 with DAUDA in the binding cavity. The catalytic rate constant of diclofenac hydroxylation by CYP2C9 was decreased by ∼50% (P < 0.01) in the presence of FABP1. Together, these results suggest that drugs form ternary complexes with hFABP1 and that hFABP1 binding in the liver will alter drug metabolism and clearance. SIGNIFICANCE STATEMENT: Many commonly prescribed drugs bind fatty acid binding protein 1 (FABP1), forming ternary complexes with FABP1 and the fluorescent fatty acid 11-(dansylamino)undecanoic acid. These findings suggest that drugs will bind to apo-FABP1 and fatty acid-bound FABP1 in the human liver. The high expression of FABP1 in the liver, together with drug binding to FABP1, may alter drug disposition processes in vivo.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Alice Martynova
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Abhinav Nath
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Benjamin P Zercher
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Matthew F Bush
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| |
Collapse
|
6
|
Yabut KCB, Martynova A, Nath A, Zercher BP, Bush MF, Isoherranen N. Drugs Form Ternary Complexes with Human Liver Fatty Acid Binding Protein (FABP1) and FABP1 Binding Alters Drug Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576032. [PMID: 38293009 PMCID: PMC10827205 DOI: 10.1101/2024.01.17.576032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Liver fatty acid binding protein (FABP1) binds diverse endogenous lipids and is highly expressed in the human liver. Binding to FABP1 alters the metabolism and homeostasis of endogenous lipids in the liver. Drugs have also been shown to bind to rat FABP1, but limited data is available for human FABP1 (hFABP1). FABP1 has a large binding pocket and multiple fatty acids can bind to FABP1 simultaneously. We hypothesized that drug binding to hFABP1 results in formation of ternary complexes and that FABP1 binding alters drug metabolism. To test these hypotheses native protein mass spectrometry (MS) and fluorescent 11-(dansylamino)undecanoic acid (DAUDA) displacement assays were used to characterize drug binding to hFABP1 and diclofenac oxidation by cytochrome P450 2C9 (CYP2C9) was studied in the presence and absence of hFABP1. DAUDA binding to hFABP1 involved high (Kd,1=0.2 µM) and low affinity (Kd,2 >10 µM) binding sites. Nine drugs bound to hFABP1 with Kd values ranging from 1 to 20 µM. None of the tested drugs completely displaced DAUDA from hFABP1 and fluorescence spectra showed evidence of ternary complex formation. Formation of DAUDA-diclofenac-hFABP1 ternary complex was verified with native MS. Docking placed diclofenac in the portal region of FABP1 with DAUDA in the binding cavity. Presence of hFABP1 decreased the kcat and Km,u of diclofenac with CYP2C9 by ~50% suggesting that hFABP1 binding in the liver will alter drug metabolism and clearance. Together, these results suggest that drugs form ternary complexes with hFABP1 and that hFABP1 interacts with CYP2C9.
Collapse
Affiliation(s)
- King Clyde B. Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Alice Martynova
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Benjamin P. Zercher
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Zou C, Wang C, Lu L. Advances in the study of subclinical AKI biomarkers. Front Physiol 2022; 13:960059. [PMID: 36091391 PMCID: PMC9449362 DOI: 10.3389/fphys.2022.960059] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a prevalent and serious illness in all clinical departments, with a high morbidity and death rate, particularly in intensive care units, where prevention and treatment are crucial. As a result, active prevention, early detection, and timely intervention for acute kidney injury are critical. The current diagnostic criteria for acute kidney injury are an increase in serum creatinine concentration and/or a decrease in urine output, although creatinine and urine output merely reflect changes in kidney function, and AKI suggests injury or damage, but not necessarily dysfunction. The human kidney plays a crucial functional reserve role, and dysfunction is only visible when more than half of the renal mass is impaired. Tubular damage markers can be used to detect AKI before filtration function is lost, and new biomarkers have shown a new subset of AKI patients known as "subclinical AKI." Furthermore, creatinine and urine volume are only marginally effective for detecting subclinical AKI. As a result, the search for new biomarkers not only identifies deterioration of renal function but also allows for the early detection of structural kidney damage. Several biomarkers have been identified and validated. This study discusses some of the most promising novel biomarkers of AKI, including CysC, NGAL, KIM-1, lL-18, L-FABP, IGFBP7, TIMP-2, Clusterin, and Penkid. We examine their performance in the diagnosis of subclinical AKI, limitations, and future clinical practice directions.
Collapse
Affiliation(s)
- Chenchen Zou
- Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Chentong Wang
- Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Lin Lu
- Department of Integrative Medicine-Geriatrics, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| |
Collapse
|
8
|
Chen Y, Agellon LB. Distinct Alteration of Gene Expression Programs in the Small Intestine of Male and Female Mice in Response to Ablation of Intestinal Fabp Genes. Genes (Basel) 2020; 11:genes11080943. [PMID: 32824144 PMCID: PMC7465894 DOI: 10.3390/genes11080943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty acid-binding proteins (Fabps) make up a family of widely distributed cytoplasmic lipid-binding proteins. The small intestine contains three predominant Fabp species, Fabp1, Fabp2, and Fabp6. Our previous studies showed that Fabp2 and Fabp6 gene-disrupted mice exhibited sexually dimorphic phenotypes. In this study, we carried out a systematic comparative analysis of the small intestinal transcriptomes of 10 week-old wild-type (WT) and Fabp gene-disrupted male and female mice. We found that the small intestinal transcriptome of male and female mice showed key differences in the gene expression profiles that affect major biological processes. The deletion of specific Fabp genes induced unique and sex-specific changes in the gene expression program, although some differentially expressed genes in certain genotypes were common to both sexes. Functional annotation and interaction network analyses revealed that the number and type of affected pathways, as well as the sets of interacting nodes in each of the Fabp genotypes, are partitioned by sex. To our knowledge, this is the first time that sex differences were identified and categorized at the transcriptome level in mice lacking different intestinal Fabps. The distinctive transcriptome profiles of WT male and female small intestine may predetermine the nature of transcriptional reprogramming that manifests as sexually dimorphic responses to the ablation of intestinal Fabp genes.
Collapse
|
9
|
Xu H, Gajda AM, Zhou YX, Panetta C, Sifnakis Z, Fatima A, Henderson GC, Storch J. Muscle metabolic reprogramming underlies the resistance of liver fatty acid-binding protein (LFABP)-null mice to high-fat feeding-induced decline in exercise capacity. J Biol Chem 2019; 294:15358-15372. [PMID: 31451493 DOI: 10.1074/jbc.ra118.006684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 08/21/2019] [Indexed: 11/06/2022] Open
Abstract
Liver fatty acid-binding protein (LFABP) binds long-chain fatty acids with high affinity and is abundantly expressed in the liver and small intestine. Although LFABP is thought to function in intracellular lipid trafficking, studies of LFABP-null (LFABP-/-) mice have also indicated a role in regulating systemic energy homeostasis. We and others have reported that LFABP-/- mice become more obese than wildtype (WT) mice upon high-fat feeding. Here, we show that despite increased body weight and fat mass, LFABP-/- mice are protected from a high-fat feeding-induced decline in exercise capacity, displaying an approximate doubling of running distance compared with WT mice. To understand this surprising exercise phenotype, we focused on metabolic alterations in the skeletal muscle due to LFABP ablation. Compared with WT mice, resting skeletal muscle of LFABP-/- mice had higher glycogen and intramuscular triglyceride levels as well as an increased fatty acid oxidation rate and greater mitochondrial enzyme activities, suggesting higher substrate availability and substrate utilization capacity. Dynamic changes in the respiratory exchange ratio during exercise indicated that LFABP-/- mice use more carbohydrate in the beginning of an exercise period and then switch to using lipids preferentially in the later stage. Consistently, LFABP-/- mice exhibited a greater decrease in muscle glycogen stores during exercise and elevated circulating free fatty acid levels postexercise. We conclude that, because LFABP is not expressed in muscle, its ablation appears to promote interorgan signaling that alters muscle substrate levels and metabolism, thereby contributing to the prevention of high-fat feeding-induced skeletal muscle impairment.
Collapse
Affiliation(s)
- Heli Xu
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Angela M Gajda
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Yin Xiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Cristina Panetta
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Zoe Sifnakis
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Anam Fatima
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Gregory C Henderson
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901.,Department of Exercise Science, Rutgers University, New Brunswick, New Jersey 08901
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901 .,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
10
|
Newberry EP, Xie Y, Lodeiro C, Solis R, Moritz W, Kennedy S, Barron L, Onufer E, Alpini G, Zhou T, Blaner WS, Chen A, Davidson NO. Hepatocyte and stellate cell deletion of liver fatty acid binding protein reveals distinct roles in fibrogenic injury. FASEB J 2019; 33:4610-4625. [PMID: 30576225 PMCID: PMC6404585 DOI: 10.1096/fj.201801976r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Abstract
Liver fatty acid binding protein (L-Fabp) modulates lipid trafficking in enterocytes, hepatocytes, and hepatic stellate cells (HSCs). We examined hepatocyte vs. HSC L-Fabp deletion in hepatic metabolic adaptation and fibrotic injury. Floxed L-Fabp mice were bred to different transgenic Cre mice or injected with adeno-associated virus type 8 (AAV8) Cre and fed diets to promote steatosis and fibrosis or were subjected to either bile duct ligation or CCl4 injury. Albumin-Cre-mediated L-Fabp deletion revealed recombination in hepatocytes and HSCs; these findings were confirmed with 2 other floxed alleles. Glial fibrillary acid protein-Cre and platelet-derived growth factor receptor β-Cre-mediated L-Fabp deletion demonstrated recombination only in HSCs. Mice with albumin promoter-driven Cre recombinase (Alb-Cre)-mediated or AAV8-mediated L-Fabp deletion were protected against food withdrawal-induced steatosis. Mice with Alb-Cre-mediated L-Fabp deletion were protected against high saturated fat-induced steatosis and fibrosis, phenocopying germline L-Fabp-/- mice. Mice with HSC-specific L-Fabp deletion exhibited retinyl ester depletion yet demonstrated no alterations in fibrosis. On the other hand, fibrogenic resolution after CCl4 administration was impaired in mice with Alb-Cre-mediated L-Fabp deletion. These findings suggest cell type-specific roles for L-Fabp in mitigating hepatic steatosis and in modulating fibrogenic injury and reversal.-Newberry, E. P., Xie, Y., Lodeiro, C., Solis, R., Moritz, W., Kennedy, S., Barron, L., Onufer, E., Alpini, G., Zhou, T., Blaner, W. S., Chen, A., Davidson, N. O. Hepatocyte and stellate cell deletion of liver fatty acid binding protein reveal distinct roles in fibrogenic injury.
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yan Xie
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carlos Lodeiro
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Roberto Solis
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - William Moritz
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan Kennedy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lauren Barron
- Pediatric Surgery Division, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily Onufer
- Pediatric Surgery Division, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gianfranco Alpini
- Department of Medical Physiology and Internal Medicine, Texas A&M University, Temple, Texas, USA
- Department of Internal Medicine, Texas A&M University, Temple, Texas, USA
| | - Tianhao Zhou
- Department of Medical Physiology and Internal Medicine, Texas A&M University, Temple, Texas, USA
- Department of Internal Medicine, Texas A&M University, Temple, Texas, USA
| | - William S. Blaner
- Department of Medicine, Columbia University, New York, New York, USA; and
| | - Anping Chen
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas O. Davidson
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Martin GG, Seeger DR, McIntosh AL, Chung S, Milligan S, Landrock D, Dangott LJ, Golovko MY, Murphy EJ, Kier AB, Schroeder F. Scp-2/Scp-x ablation in Fabp1 null mice differentially impacts hepatic endocannabinoid level depending on dietary fat. Arch Biochem Biophys 2018; 650:93-102. [PMID: 29763591 PMCID: PMC6033332 DOI: 10.1016/j.abb.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
Dysregulation of the hepatic endocannabinoid (EC) system and high fat diet (HFD) are associated with non-alcoholic fatty liver disease. Liver cytosol contains high levels of two novel endocannabinoid binding proteins-liver fatty acid binding protein (FABP1) and sterol carrier protein-2 (SCP-2). While Fabp1 gene ablation significantly increases hepatic levels of arachidonic acid (ARA)-containing EC and sex-dependent response to pair-fed high fat diet (HFD), the presence of SCP-2 complicates interpretation. These issues were addressed by ablating Scp-2/Scp-x in Fabp1 null mice (TKO). In control-fed mice, TKO increased hepatic levels of arachidonoylethanolamide (AEA) in both sexes. HFD impacted hepatic EC levels by decreasing AEA in TKO females and decreasing 2-arachidonoyl glycerol (2-AG) in WT of both sexes. Only TKO males on HFD had increased hepatic 2-AG levels. Hepatic ARA levels were decreased in control-fed TKO of both sexes. Changes in hepatic AEA/2-AG levels were not associated with altered amounts of hepatic proteins involved in AEA/2-AG synthesis or degradation. These findings suggested that ablation of the Scp-2/Scp-x gene in Fabp1 null mice exacerbated hepatic EC accumulation and antagonized the impact of HFD on hepatic EC levels-suggesting both proteins play important roles in regulating the hepatic EC system.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA.
| | - Drew R Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Sherrelle Milligan
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Lawrence J Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX 77843-2128, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Eric J Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA.
| |
Collapse
|
12
|
Milligan S, Martin GG, Landrock D, McIntosh AL, Mackie JT, Schroeder F, Kier AB. Ablating both Fabp1 and Scp2/Scpx (TKO) induces hepatic phospholipid and cholesterol accumulation in high fat-fed mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:323-338. [PMID: 29307784 DOI: 10.1016/j.bbalip.2017.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/13/2017] [Accepted: 12/31/2017] [Indexed: 01/16/2023]
Abstract
Although singly ablating Fabp1 or Scp2/Scpx genes may exacerbate the impact of high fat diet (HFD) on whole body phenotype and non-alcoholic fatty liver disease (NAFLD), concomitant upregulation of the non-ablated gene, preference for ad libitum fed HFD, and sex differences complicate interpretation. Therefore, these issues were addressed in male and female mice ablated in both genes (Fabp1/Scp2/Scpx null or TKO) and pair-fed HFD. Wild-type (WT) males gained more body weight as fat tissue mass (FTM) and exhibited higher hepatic lipid accumulation than WT females. The greater hepatic lipid accumulation in WT males was associated with higher hepatic expression of enzymes in glyceride synthesis, higher hepatic bile acids, and upregulation of transporters involved in hepatic reuptake of serum bile acids. While TKO had little effect on whole body phenotype and hepatic bile acid accumulation in either sex, TKO increased hepatic accumulation of lipids in both, specifically phospholipid and cholesteryl esters in males and females and free cholesterol in females. TKO-induced increases in glycerides were attributed not only to complete loss of FABP1, SCP2 and SCPx, but also in part to sex-dependent upregulation of hepatic lipogenic enzymes. These data with WT and TKO mice pair-fed HFD indicate that: i) Sex significantly impacted the ability of HFD to increase body weight, induce hepatic lipid accumulation and increase hepatic bile acids; and ii) TKO exacerbated the HFD ability to induce hepatic lipid accumulation, regardless of sex, but did not significantly alter whole body phenotype in either sex.
Collapse
Affiliation(s)
- Sherrelle Milligan
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Gregory G Martin
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Avery L McIntosh
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - John T Mackie
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Ann B Kier
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| |
Collapse
|
13
|
Tang R, Ao X, Zhong Y, Wang RL, Zhou QL. [Values of combination of urinary L-FABP and NGAL in early diagnosis of acute kidney injury after cardiac surgery in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:770-775. [PMID: 28697829 PMCID: PMC7389921 DOI: 10.7499/j.issn.1008-8830.2017.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the values of combination of urinary liver-type fatty acid-binding protein (L-FABP) and neutrophil gelatinase-associated lipocalin (NGAL) in early diagnosis of acute kidney injury (AKI) after cardiac surgery in children. METHODS A total of 97 children with congenital heart disease undergoing cardiopulmonary bypass surgery were enrolled. Serum and urine samples were collected before and after surgery. Levels of serum creatinine (Scr), urinary L-FABP, and urinary NGAL from AKI group (n=18) and non-AKI group (n=79) were measured, and the postoperative dynamic changes in these markers were compared between the two groups. The receiver operating characteristic (ROC) curve and the area under ROC curve (AUC) were used to assess the values of these markers alone or in combination in the prediction of postoperative AKI. RESULTS The levels of urinary L-FABP and NGAL in the AKI group were significantly higher than those in the non-AKI group at 2 and 6 hours after surgery, and the changes in their concentrations were earlier than Scr. The AUCs of urinary L-FABP alone in predicting AKI at 2 and 6 hours after surgery were 0.921 and 0.896 respectively, and those of urinary NGAL alone were 0.908 and 0.928 respectively. Those of their combination were 0.942 and 0.929 respectively. CONCLUSIONS Urinary L-FABP and NGAL significantly increase in the early stage of AKI after cardiac surgery in children, which are significantly earlier than the changes in Scr. They can be used to predict the occurrence of AKI in the early stage. A combination of the two biomarkers can further improve the accuracy of diagnosis.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | | | | | |
Collapse
|
14
|
Milligan S, Martin GG, Landrock D, McIntosh AL, Mackie JT, Schroeder F, Kier AB. Impact of dietary phytol on lipid metabolism in SCP2/SCPX/L-FABP null mice. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:291-304. [PMID: 27940000 PMCID: PMC5266609 DOI: 10.1016/j.bbalip.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/15/2016] [Accepted: 12/04/2016] [Indexed: 12/20/2022]
Abstract
In vitro studies suggest that liver fatty acid binding protein (L-FABP) and sterol carrier protein-2/sterol carrier protein-x (SCP2/SCPx) gene products facilitate uptake and metabolism and detoxification of dietary-derived phytol in mammals. However, concomitant upregulation of L-FABP in SCP2/SCPx null mice complicates interpretation of their physiological phenotype. Therefore, the impact of ablating both the L-FABP gene and SCP2/SCPx gene (L-FABP/SCP2/SCPx null or TKO) was examined in phytol-fed female wild-type (WT) and TKO mice. TKO increased hepatic total lipid accumulation, primarily phospholipid, by mechanisms involving increased hepatic levels of proteins in the phospholipid synthetic pathway. Concomitantly, TKO reduced expression of proteins in targeting fatty acids towards the triacylglycerol synthetic pathway. Increased hepatic lipid accumulation was not associated with any concomitant upregulation of membrane fatty acid transport/translocase proteins involved in fatty acid uptake (FATP2, FATP4, FATP5 or GOT) or cytosolic proteins involved in fatty acid intracellular targeting (ACBP). In addition, TKO exacerbated dietary phytol-induced whole body weight loss, especially lean tissue mass. Since individually ablating SCPx or SCP2/SCPx elicited concomitant upregulation of L-FABP, these findings with TKO mice help to resolve the contributions of SCP2/SCPx gene ablation on dietary phytol-induced whole body and hepatic lipid phenotype independent of concomitant upregulation of L-FABP.
Collapse
Affiliation(s)
- Sherrelle Milligan
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Gregory G Martin
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Danilo Landrock
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Avery L McIntosh
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - John T Mackie
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Ann B Kier
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| |
Collapse
|
15
|
Martin GG, Chung S, Landrock D, Landrock KK, Dangott LJ, Peng X, Kaczocha M, Murphy EJ, Kier AB, Schroeder F. Female Mice are Resistant to Fabp1 Gene Ablation-Induced Alterations in Brain Endocannabinoid Levels. Lipids 2016; 51:1007-20. [PMID: 27450559 PMCID: PMC5418128 DOI: 10.1007/s11745-016-4175-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in the brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing EC, i.e. arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: (1) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; (2) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or (3) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO).
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Xiaoxue Peng
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA.
| |
Collapse
|
16
|
Martin GG, Chung S, Landrock D, Landrock KK, Huang H, Dangott LJ, Peng X, Kaczocha M, Seeger DR, Murphy EJ, Golovko MY, Kier AB, Schroeder F. FABP-1 gene ablation impacts brain endocannabinoid system in male mice. J Neurochem 2016; 138:407-22. [PMID: 27167970 PMCID: PMC4961623 DOI: 10.1111/jnc.13664] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/14/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
Liver fatty acid-binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid-binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as oleoyl ethanolamide (OEA), PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* as a result of compensatory up-regulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid-binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. Fatty acid-binding protein-1 (FABP-1) is not detectable in brain but instead is highly expressed in liver. The possibility that FABP1 outside the central nervous system may regulate brain endocannabinoids arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) was examined in wild-type (WT) and FABP-1 null (LKO) male mice. LKO increased brain levels of arachidonic acid-containing endocannabinoids (AEA, 2-AG), correlating with increased free and total arachidonic acid in brain and serum. Read the Editorial Highlight for this article on page 371.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Sarah Chung
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Kerstin K. Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Lawrence J. Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128
| | - Xiaoxue Peng
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794
| | - Drew R. Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Eric J. Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| |
Collapse
|
17
|
Wang J, Bie J, Ghosh S. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile. J Lipid Res 2016; 57:1712-9. [PMID: 27381048 DOI: 10.1194/jlr.m069682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination.
Collapse
Affiliation(s)
- Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| | - Jinghua Bie
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| |
Collapse
|
18
|
Hambruch E, Kinzel O, Kremoser C. On the Pharmacology of Farnesoid X Receptor Agonists: Give me an “A”, Like in “Acid”. NUCLEAR RECEPTOR RESEARCH 2016. [DOI: 10.11131/2016/101207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Eva Hambruch
- Phenex Pharmaceuticals AG, Waldhofer Str. 104, 69123 Heidelberg, Germany
| | - Olaf Kinzel
- Phenex Pharmaceuticals AG, Waldhofer Str. 104, 69123 Heidelberg, Germany
| | - Claus Kremoser
- Phenex Pharmaceuticals AG, Waldhofer Str. 104, 69123 Heidelberg, Germany
| |
Collapse
|
19
|
Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kaczocha M, Murphy EJ, Atshaves BP, Kier AB. Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids 2016; 51:655-76. [PMID: 27117865 PMCID: PMC5408584 DOI: 10.1007/s11745-016-4155-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023]
Abstract
The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA.
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Shengrong Li
- Avanti Polar Lipids, 700 Industrial Park Dr., Alabaster, AL, 35007-9105, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Pharmacology, Physiology, and Therapeutics and Chemistry, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| |
Collapse
|
20
|
Martin GG, Landrock D, Landrock KK, Howles PN, Atshaves BP, Kier AB, Schroeder F. Relative contributions of L-FABP, SCP-2/SCP-x, or both to hepatic biliary phenotype of female mice. Arch Biochem Biophys 2015; 588:25-32. [PMID: 26541319 PMCID: PMC4683591 DOI: 10.1016/j.abb.2015.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/20/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
Both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed to function in hepatobiliary bile acid metabolism/accumulation. To begin to address this issue, the impact of ablating L-FABP (LKO) or SCP-2/SCP-x (DKO) individually or both together (TKO) was examined in female mice. Biliary bile acid levels were decreased in LKO, DKO, and TKO mice; however, hepatic bile acid concentration was decreased in LKO mice only. In contrast, biliary phospholipid level was decreased only in TKO mice, while biliary cholesterol levels were unaltered regardless of phenotype. The loss of either or both genes increased hepatic expression of the major bile acid synthetic enzymes (CYP7A1 and/or CYP27A1). Loss of L-FABP and/or SCP-2/SCP-x genes significantly altered the molecular composition of biliary bile acids, but not the proportion of conjugated/unconjugated bile acids or overall bile acid hydrophobicity index. These data suggested that L-FABP was more important in hepatic retention of bile acids, while SCP-2/SCP-x more broadly affected biliary bile acid and phospholipid levels.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA.
| |
Collapse
|
21
|
Newberry EP, Kennedy S, Xie Y, Luo J, Jiang H, Ory DS, Davidson NO. Phenotypic divergence in two lines of L-Fabp-/- mice reflects substrain differences and environmental modifiers. Am J Physiol Gastrointest Liver Physiol 2015; 309:G648-61. [PMID: 26251469 PMCID: PMC4609928 DOI: 10.1152/ajpgi.00170.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023]
Abstract
Phenotypic divergence in diet-induced obesity (DIO) and hepatic steatosis has been reported in two independently generated lines of L-Fabp(-/-) mice [New Jersey (NJ) L-Fabp(-/-) vs. Washington University (WU) L-Fabp(-/-) mice]. We performed side-by-side studies to examine differences between the lines and investigate the role of genetic background, intestinal microbiota, sex, and diet in the divergent phenotypes. Fasting-induced steatosis was attenuated in both L-Fabp(-/-) lines compared with C57BL/6J controls, with restoration of hepatic triglyceride levels following adenoviral L-Fabp rescue. Both lines were protected against DIO after high-saturated-fat diet feeding. Hepatic steatosis was attenuated in WU but not NJ L-Fabp(-/-) mice, although this difference between the lines disappeared upon antibiotic treatment and cohousing. In contrast, there was phenotypic divergence in L-Fabp(-/-) mice fed a high cocoa butter fat diet, with WU L-Fabp(-/-) mice, but not NJ L-Fabp(-/-) mice, showing protection against both DIO and hepatic steatosis, with some sex-dependent (female > male) differences. Dense mapping revealed no evidence of unintended targeting, duplications, or deletions surrounding the Fabp1 locus in either line and only minor differences in mRNA expression of genes located near the targeted allele. However, a C57BL/6 substrain screen showed that the NJ L-Fabp(-/-) line contains ∼40% C57BL/6N genomic DNA, despite reports that these mice were backcrossed six generations. Overall, these findings suggest that some of the phenotypic divergence between the two L-Fabp(-/-) lines may reflect unanticipated differences in genetic background, underscoring the importance of genetic background in phenotypic characterization.
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Susan Kennedy
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yan Xie
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jianyang Luo
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hui Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel S. Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas O. Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
22
|
Wang G, Bonkovsky HL, de Lemos A, Burczynski FJ. Recent insights into the biological functions of liver fatty acid binding protein 1. J Lipid Res 2015; 56:2238-47. [PMID: 26443794 DOI: 10.1194/jlr.r056705] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 12/18/2022] Open
Abstract
Over four decades have passed since liver fatty acid binding protein (FABP)1 was first isolated. There are few protein families for which most of the complete tertiary structures, binding properties, and tissue occurrences are described in such detail and yet new functions are being uncovered for this protein. FABP1 is known to be critical for fatty acid uptake and intracellular transport and also has an important role in regulating lipid metabolism and cellular signaling pathways. FABP1 is an important endogenous cytoprotectant, minimizing hepatocyte oxidative damage and interfering with ischemia-reperfusion and other hepatic injuries. The protein may be targeted for metabolic activation through the cross-talk among many transcriptional factors and their activating ligands. Deficiency or malfunction of FABP1 has been reported in several diseases. FABP1 also influences cell proliferation during liver regeneration and may be considered as a prognostic factor for hepatic surgery. FABP1 binds and modulates the action of many molecules such as fatty acids, heme, and other metalloporphyrins. The ability to bind heme is another cytoprotective property and one that deserves closer investigation. The role of FABP1 in substrate availability and in protection from oxidative stress suggests that FABP1 plays a pivotal role during intracellular bacterial/viral infections by reducing inflammation and the adverse effects of starvation (energy deficiency).
Collapse
Affiliation(s)
- GuQi Wang
- Jiangxi Normal University, Nanchang, Jiangxi, People's Republic of China Department of Biology, University of North Carolina at Charlotte, Charlotte, NC Carolinas HealthCare System, Charlotte, NC
| | - Herbert L Bonkovsky
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC Carolinas HealthCare System, Charlotte, NC Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Andrew de Lemos
- Carolinas HealthCare System, Charlotte, NC Wake Forest Baptist Medical Center, Winston-Salem, NC
| | | |
Collapse
|
23
|
Klipsic D, Landrock D, Martin GG, McIntosh AL, Landrock KK, Mackie JT, Schroeder F, Kier AB. Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation. Am J Physiol Gastrointest Liver Physiol 2015; 309:G387-99. [PMID: 26113298 PMCID: PMC4556946 DOI: 10.1152/ajpgi.00460.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/22/2015] [Indexed: 01/31/2023]
Abstract
While a high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x [double knockout (DKO)] would impact hepatic lipids (cholesterol and cholesteryl ester), especially in high-cholesterol-fed mice. DKO did not alter food consumption, and body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so in males. DKO-induced steatosis in control-fed wild-type (WT) mice was associated with 1) loss of SCP-2; 2) upregulation of liver fatty acid binding protein (L-FABP); 3) increased mRNA and/or protein levels of sterol regulatory element binding proteins (SREBP1 and SREBP2) as well as increased expression of target genes of cholesterol synthesis (Hmgcs1 and Hmgcr) and fatty acid synthesis (Acc1 and Fas); and 4) cholesteryl ester accumulation was also associated with increased acyl-CoA cholesterol acyltransferase-2 (ACAT2) in males. DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and glyceride accumulation, without further increasing SREBP1, SREBP2, or target genes. This exacerbation was associated both with loss of SCP-2 and concomitant downregulation of Ceh/Hsl, apolipoprotein B (ApoB), MTP, and/or L-FABP protein expression. DKO diminished the ability to secrete excess cholesterol into bile and oxidize cholesterol to bile acid for biliary excretion, especially in females. This suggested that SCP-2/SCP-x affects cholesterol transport to particular intracellular compartments, with ablation resulting in less to the endoplasmic reticulum for SREBP regulation, making more available for cholesteryl ester synthesis, for cholesteryl-ester storage in lipid droplets, and for bile salt synthesis and/or secretion. These alterations are significant findings, since they affect key processes in regulation of sterol metabolism.
Collapse
Affiliation(s)
- Devon Klipsic
- Department of Pathobiology, Texas A&M University, College Station, Texas; and
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, Texas; and
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - John T Mackie
- Department of Pathobiology, Texas A&M University, College Station, Texas; and
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, Texas; and
| |
Collapse
|
24
|
Abstract
Many of the compounds taken up by the liver are organic anions that circulate tightly bound to protein carriers such as albumin. The fenestrated sinusoidal endothelium of the liver permits these compounds to have access to hepatocytes. Studies to characterize hepatic uptake of organic anions through kinetic analyses, suggested that it was carrier-mediated. Attempts to identify specific transporters by biochemical approaches were largely unsuccessful and were replaced by studies that utilized expression cloning. These studies led to identification of the organic anion transport proteins (oatps), a family of 12 transmembrane domain glycoproteins that have broad and often overlapping substrate specificities. The oatps mediate Na(+)-independent organic anion uptake. Other studies identified a seven transmembrane domain glycoprotein, Na(+)/taurocholate transporting protein (ntcp) as mediating Na(+)-dependent uptake of bile acids as well as other organic anions. Although mutations or deficiencies of specific members of the oatp family have been associated with transport abnormalities, there have been no such reports for ntcp, and its physiologic role remains to be determined, although expression of ntcp in vitro recapitulates the characteristics of Na(+)-dependent bile acid transport that is seen in vivo. Both ntcp and oatps traffic between the cell surface and intracellular vesicular pools. These vesicles move through the cell on microtubules, using the microtubule based motors dynein and kinesins. Factors that regulate this motility are under study and may provide a unique mechanism that can alter the plasma membrane content of these transporters and consequently their accessibility to circulating ligands.
Collapse
Affiliation(s)
- Allan W Wolkoff
- The Herman Lopata Chair in Liver Disease Research, Professor of Medicine and Anatomy and Structural Biology, Associate Chair of Medicine for Research, Chief, Division of Gastroenterology and Liver Diseases, Director, Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| |
Collapse
|
25
|
Favretto F, Ceccon A, Zanzoni S, D'Onofrio M, Ragona L, Molinari H, Assfalg M. The unique ligand binding features of subfamily-II iLBPs with respect to bile salts and related drugs. Prostaglandins Leukot Essent Fatty Acids 2015; 95:1-10. [PMID: 25468388 DOI: 10.1016/j.plefa.2014.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/20/2014] [Indexed: 11/28/2022]
Abstract
Intracellular lipid binding proteins (iLBPs) are a family of evolutionarily related small cytoplasmic proteins implicated in the transcellular transport of lipophilic ligands. Subfamily-II iLBPs include the liver fatty acid binding protein (L-FABP), and the ileal and the liver and ileal bile acid binding proteins (L-BABP and I-BABP). Atomic-level investigations during the past 15-20 years have delivered relevant information on bile acid binding by this protein group, revealing unique features including binding cooperativity, promiscuity, and site selectivity. Using NMR spectroscopy and other biophysical techniques, our laboratories have contributed to an understanding of the molecular determinants of some of these properties and their generality among proteins from different animal species. We focused especially on formation of heterotypic complexes, considering the mixed compositions of physiological bile acid pools. Experiments performed with synthetic bile acid derivatives showed that iLBPs could act as targets for cell-specific contrast agents and, more generally, as effective carriers of amphiphilic drugs. This review collects the major findings related to bile salt interactions with iLBPs aiming to provide keys for a deeper understanding of protein-mediated intracellular bile salt trafficking.
Collapse
Affiliation(s)
- Filippo Favretto
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Alberto Ceccon
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Laura Ragona
- Institute for Macromolecular Studies, National Research Council, Via Bassini 15, Milan 20133, Italy
| | - Henriette Molinari
- Institute for Macromolecular Studies, National Research Council, Via Bassini 15, Milan 20133, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| |
Collapse
|
26
|
Favretto F, Santambrogio C, D'Onofrio M, Molinari H, Grandori R, Assfalg M. Bile salt recognition by human liver fatty acid binding protein. FEBS J 2015; 282:1271-88. [PMID: 25639618 DOI: 10.1111/febs.13218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.
Collapse
|
27
|
Martin GG, Atshaves BP, Landrock KK, Landrock D, Storey SM, Howles PN, Kier AB, Schroeder F. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1130-43. [PMID: 25277800 PMCID: PMC4254959 DOI: 10.1152/ajpgi.00209.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/28/2014] [Indexed: 01/31/2023]
Abstract
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Danilo Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ann B Kier
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas;
| |
Collapse
|
28
|
McIntosh AL, Huang H, Storey SM, Landrock KK, Landrock D, Petrescu AD, Gupta S, Atshaves BP, Kier AB, Schroeder F. Human FABP1 T94A variant impacts fatty acid metabolism and PPAR-α activation in cultured human female hepatocytes. Am J Physiol Gastrointest Liver Physiol 2014; 307:G164-76. [PMID: 24875102 PMCID: PMC4101680 DOI: 10.1152/ajpgi.00369.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/27/2014] [Indexed: 02/07/2023]
Abstract
Although human liver fatty acid-binding protein (FABP1) T94A variant has been associated with nonalcoholic fatty liver disease and reduced ability of fenofibrate to lower serum triglycerides (TG) to target levels, molecular events leading to this phenotype are poorly understood. Cultured primary hepatocytes from female human subjects expressing the FABP1 T94A variant exhibited increased neutral lipid (TG, cholesteryl ester) accumulation associated with (1) upregulation of total FABP1, a key protein stimulating mitochondrial glycerol-3-phosphate acyltransferase (GPAM), the rate-limiting enzyme in lipogenesis; (2) increased mRNA expression of key enzymes in lipogenesis (GPAM, LPIN2) in heterozygotes; (3) decreased mRNA expression of microsomal triglyceride transfer protein; (4) increased secretion of ApoB100 but not TG; (5) decreased long-chain fatty acid (LCFA) β-oxidation. TG accumulation was not due to any increase in LCFA uptake, de novo lipogenesis, or the alternate monoacylglycerol O-acyltransferase pathway in lipogenesis. Despite increased expression of total FABP1 mRNA and protein, fenofibrate-mediated FABP1 redistribution to nuclei and ligand-induced peroxisome proliferator-activated receptor (PPAR-α) transcription of LCFA β-oxidative enzymes (carnitine palmitoyltransferase 1A, carnitine palmitoyltransferase 2, and acyl-coenzyme A oxidase 1, palmitoyl) were attenuated in FABP1 T94A hepatocytes. Although the phenotype of FABP1 T94A variant human hepatocytes exhibits some similarities to that of FABP1-null or PPAR-α-null hepatocytes and mice, expression of FABP1 T94A variant did not abolish or reduce ligand binding. Thus the FABP1 T94A variant represents an altered/reduced function mutation resulting in TG accumulation.
Collapse
Affiliation(s)
| | - Huan Huang
- Departments of Physiology and Pharmacology, and
| | | | | | - Danilo Landrock
- Pathobiology, Texas A & M University, College Station, Texas
| | | | - Shipra Gupta
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Ann B Kier
- Pathobiology, Texas A & M University, College Station, Texas
| | | |
Collapse
|
29
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
30
|
Favretto F, Assfalg M, Gallo M, Cicero DO, D'Onofrio M, Molinari H. Ligand Binding Promiscuity of Human Liver Fatty Acid Binding Protein: Structural and Dynamic Insights from an Interaction Study with Glycocholate and Oleate. Chembiochem 2013; 14:1807-19. [DOI: 10.1002/cbic.201300156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/09/2022]
|
31
|
Transport and biological activities of bile acids. Int J Biochem Cell Biol 2013; 45:1389-98. [PMID: 23603607 DOI: 10.1016/j.biocel.2013.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/30/2013] [Accepted: 04/09/2013] [Indexed: 12/29/2022]
Abstract
Bile acids have emerged as important biological molecules that support the solubilization of various lipids and lipid-soluble compounds in the gut, and the regulation of gene expression and cellular function. Bile acids are synthesized from cholesterol in the liver and eventually released into the small intestine. The majority of bile acids are recovered in the distal end of the small intestine and then returned to the liver for reuse. The components of the mechanism responsible for the recycling of bile acids within the enterohepatic circulation have been identified whereas the mechanism for intracellular transport is less understood. Recently, the ileal lipid binding protein (ILBP; human gene symbol FABP6) was shown to be needed for the efficient transport of bile acids from the apical side to the basolateral side of enterocytes in the distal intestine. This review presents an overview of the transport of bile acids between the liver and the gut as well as within hepatocytes and enterocytes. A variety of pathologies is associated with the malfunction of the bile acid transport system.
Collapse
|
32
|
van der Velden LM, Golynskiy MV, Bijsmans ITGW, van Mil SWC, Klomp LWJ, Merkx M, van de Graaf SFJ. Monitoring bile acid transport in single living cells using a genetically encoded Förster resonance energy transfer sensor. Hepatology 2013; 57:740-52. [PMID: 22899095 DOI: 10.1002/hep.26012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/31/2012] [Indexed: 12/24/2022]
Abstract
UNLABELLED Bile acids are pivotal for the absorption of dietary lipids and vitamins and function as important signaling molecules in metabolism. Here, we describe a genetically encoded fluorescent bile acid sensor (BAS) that allows for spatiotemporal monitoring of bile acid transport in single living cells. Changes in concentration of multiple physiological and pathophysiological bile acid species were detected as robust changes in Förster resonance energy transfer (FRET) in a range of cell types. Specific subcellular targeting of the sensor demonstrated rapid influx of bile acids into the cytoplasm and nucleus, but no FRET changes were observed in the peroxisomes. Furthermore, expression of the liver fatty acid binding protein reduced the availability of bile acids in the nucleus. The sensor allows for single cell visualization of uptake and accumulation of conjugated bile acids, mediated by the Na(+)-taurocholate cotransporting protein (NTCP). In addition, cyprinol sulphate uptake, mediated by the putative zebrafish homologue of the apical sodium bile acid transporter, was visualized using a sensor based on the zebrafish farnesoid X receptor. The reversible nature of the sensor also enabled measurements of bile acid efflux in living cells, and expression of the organic solute transporter αβ (OSTαβ) resulted in influx and efflux of conjugated chenodeoxycholic acid. Finally, combined visualization of bile acid uptake and fluorescent labeling of several NTCP variants indicated that the sensor can also be used to study the functional effect of patient mutations in genes affecting bile acid homeostasis. CONCLUSION A genetically encoded fluorescent BAS was developed that allows intracellular imaging of bile acid homeostasis in single living cells in real time.
Collapse
Affiliation(s)
- Lieke M van der Velden
- Department of Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Petrescu AD, Huang H, Martin GG, McIntosh AL, Storey SM, Landrock D, Kier AB, Schroeder F. Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARα-regulated β-oxidative enzymes. Am J Physiol Gastrointest Liver Physiol 2013; 304:G241-56. [PMID: 23238934 PMCID: PMC3566512 DOI: 10.1152/ajpgi.00334.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver fatty acid binding protein (L-FABP) is the major soluble protein that binds very-long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) in hepatocytes. However, nothing is known about L-FABP's role in n-3 PUFA-mediated peroxisome proliferator activated receptor-α (PPARα) transcription of proteins involved in long-chain fatty acid (LCFA) β-oxidation. This issue was addressed in cultured primary hepatocytes from wild-type, L-FABP-null, and PPARα-null mice with these major findings: 1) PUFA-mediated increase in the expression of PPARα-regulated LCFA β-oxidative enzymes, LCFA/LCFA-CoA binding proteins (L-FABP, ACBP), and PPARα itself was L-FABP dependent; 2) PPARα transcription, robustly potentiated by high glucose but not maltose, a sugar not taken up, correlated with higher protein levels of these LCFA β-oxidative enzymes and with increased LCFA β-oxidation; and 3) high glucose altered the potency of n-3 relative to n-6 PUFA. This was not due to a direct effect of glucose on PPARα transcriptional activity nor indirectly through de novo fatty acid synthesis from glucose. Synergism was also not due to glucose impacting other signaling pathways, since it was observed only in hepatocytes expressing both L-FABP and PPARα. Ablation of L-FABP or PPARα as well as treatment with MK886 (PPARα inhibitor) abolished/reduced PUFA-mediated PPARα transcription of these genes, especially at high glucose. Finally, the PUFA-enhanced L-FABP distribution into nuclei with high glucose augmentation of the L-FABP/PPARα interaction reveals not only the importance of L-FABP for PUFA induction of PPARα target genes in fatty acid β-oxidation but also the significance of a high glucose enhancement effect in diabetes.
Collapse
Affiliation(s)
- Anca D. Petrescu
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Huan Huang
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Gregory G. Martin
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Avery L. McIntosh
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Stephen M. Storey
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Danilo Landrock
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Ann B. Kier
- 2Department of Pathobiology, Texas A&M University, TVMC, College Station, Texas
| | - Friedhelm Schroeder
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| |
Collapse
|
34
|
Smathers RL, Fritz KS, Galligan JJ, Shearn CT, Reigan P, Marks MJ, Petersen DR. Characterization of 4-HNE modified L-FABP reveals alterations in structural and functional dynamics. PLoS One 2012; 7:e38459. [PMID: 22701647 PMCID: PMC3368874 DOI: 10.1371/journal.pone.0038459] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/05/2012] [Indexed: 01/01/2023] Open
Abstract
4-Hydroxynonenal (4-HNE) is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd(1) = 0.395 µM and Kd(2) = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Rebecca L. Smathers
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kristofer S. Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - James J. Galligan
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Colin T. Shearn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael J. Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, United States of America
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
35
|
Storey SM, McIntosh AL, Huang H, Landrock KK, Martin GG, Landrock D, Payne HR, Atshaves BP, Kier AB, Schroeder F. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol 2012; 302:G824-39. [PMID: 22241858 PMCID: PMC3355564 DOI: 10.1152/ajpgi.00195.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 01/07/2012] [Indexed: 01/31/2023]
Abstract
A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null mice and hepatocytes. Taken together, these results suggest that L-FABP, particularly in the absence of SCP-2, plays a significant role in HDL-mediated cholesterol uptake in cultured primary hepatocytes.
Collapse
Affiliation(s)
- Stephen M Storey
- Department of Physiology and Pharmacology, Texas Veterinary Medical Center, Texas A & M University, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
McIntosh AL, Atshaves BP, Storey SM, Landrock KK, Landrock D, Martin GG, Kier AB, Schroeder F. Loss of liver FA binding protein significantly alters hepatocyte plasma membrane microdomains. J Lipid Res 2012; 53:467-480. [PMID: 22223861 PMCID: PMC3276470 DOI: 10.1194/jlr.m019919] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/21/2011] [Indexed: 12/13/2022] Open
Abstract
Although lipid-rich microdomains of hepatocyte plasma membranes serve as the major scaffolding regions for cholesterol transport proteins important in cholesterol disposition, little is known regarding intracellular factors regulating cholesterol distribution therein. On the basis of its ability to bind cholesterol and alter hepatic cholesterol accumulation, the cytosolic liver type FA binding protein (L-FABP) was hypothesized to be a candidate protein regulating these microdomains. Compared with wild-type hepatocyte plasma membranes, L-FABP gene ablation significantly increased the proportion of cholesterol-rich microdomains. Lack of L-FABP selectively increased cholesterol, phospholipid (especially phosphatidylcholine), and branched-chain FA accumulation in the cholesterol-rich microdomains. These cholesterol-rich microdomains are important, owing to enrichment therein of significant amounts of key transport proteins involved in uptake of cholesterol [SR-B1, ABCA-1, P-glycoprotein (P-gp), sterol carrier binding protein (SCP-2)], FA transport protein (FATP), and glucose transporters 1 and 2 (GLUT1, GLUT2) insulin receptor. L-FABP gene ablation enhanced the concentration of SCP-2, SR-B1, FATP4, and GLUT1 in the cholesterol-poor microdomains, with functional implications in HDL-mediated uptake and efflux of cholesterol. Thus L-FABP gene ablation significantly impacted the proportion of cholesterol-rich versus -poor microdomains in the hepatocyte plasma membrane and altered the distribution of lipids and proteins involved in cholesterol uptake therein.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University Texas Veterinary Medical Center, College Station, TX 77843; and
| | - Barbara P Atshaves
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A&M University Texas Veterinary Medical Center, College Station, TX 77843; and
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University Texas Veterinary Medical Center, College Station, TX 77843; and
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University Texas Veterinary Medical Center, College Station, TX 77843; and
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University Texas Veterinary Medical Center, College Station, TX 77843; and
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University Texas Veterinary Medical Center, College Station, TX 77843; and
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University Texas Veterinary Medical Center, College Station, TX 77843; and.
| |
Collapse
|
37
|
Lagakos WS, Gajda AM, Agellon L, Binas B, Choi V, Mandap B, Russnak T, Zhou YX, Storch J. Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G803-14. [PMID: 21350192 PMCID: PMC3094135 DOI: 10.1152/ajpgi.00229.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has long been known that mammalian enterocytes coexpress two members of the fatty acid-binding protein (FABP) family, the intestinal FABP (IFABP) and the liver FABP (LFABP). Both bind long-chain fatty acids and have similar though not identical distributions in the intestinal tract. While a number of in vitro properties suggest the potential for different functions, the underlying reasons for expression of both proteins in the same cells are not known. Utilizing mice genetically lacking either IFABP or LFABP, we directly demonstrate that each of the enterocyte FABPs participates in specific pathways of intestinal lipid metabolism. In particular, LFABP appears to target fatty acids toward oxidative pathways and dietary monoacylglycerols toward anabolic pathways, while IFABP targets dietary fatty acids toward triacylglycerol synthesis. The two FABP-null models also displayed differences in whole body response to fasting, with LFABP-null animals losing less fat-free mass and IFABP-null animals losing more fat mass relative to wild-type mice. The metabolic changes observed in both null models appear to occur by nontranscriptional mechanisms, supporting the hypothesis that the enterocyte FABPs are specifically trafficking their ligands to their respective metabolic fates.
Collapse
Affiliation(s)
- William Stacy Lagakos
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; ,4Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Angela Marie Gajda
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; ,4Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Luis Agellon
- 2School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada;
| | - Bert Binas
- 3Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea; and
| | - Victor Choi
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey;
| | - Bernadette Mandap
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey;
| | - Timothy Russnak
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey;
| | - Yin Xiu Zhou
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey;
| | - Judith Storch
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; ,4Rutgers Center for Lipid Research, New Brunswick, New Jersey
| |
Collapse
|
38
|
Yan J, Gong Y, Wang G, Gong Y, Burczynski FJ. Regulation of liver fatty acid binding protein expression by clofibrate in hepatoma cells. Biochem Cell Biol 2010; 88:957-67. [DOI: 10.1139/o10-151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) agonists such as clofibrate are known to affect liver fatty acid binding protein (L-FABP) levels, which in turn influence hepatocellular oxidant status. The mechanism of clofibrate’s modulation of L-FABP levels is not clear. In this study we used clofibrate (PPARα agonist), MK886 (PPARα antagonist), and GW9662 (PPARγ antagonist) in determining the regulating mechanism of L-FABP expression and its antioxidant activity in CRL-1548 hepatoma cells. Antioxidant activity was assessed by determining intracellular reactive oxygen species (ROS) using dichlorofluorescein (DCF) fluorescence. The effect of clofibrate on cytosolic activity of the intracellular antioxidant enzymes was also assessed. RT-PCR and mRNA stability assay showed that clofibrate treatment enhanced L-FABP mRNA stability, which resulted in increased L-FABP levels. A nuclear run-off assay and RT-PCR measurements of L-FABP mRNA revealed that clofibrate increased the L-FABP gene transcription rate. The increased L-FABP was associated with reduced cytosolic ROS. Levels of superoxide dismutase, glutathione peroxidase, and catalase were not affected by clofibrate treatment. L-FABP siRNA knockdown studies showed that a reduction in L-FABP expression was associated with increased DCF fluorescence. We conclude that clofibrate enhanced L-FABP gene transcription and mRNA stability, thus affecting L-FABP expression and ultimately cellular antioxidant activity.
Collapse
Affiliation(s)
- Jing Yan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yuewen Gong
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Guqi Wang
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yu Gong
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Frank J. Burczynski
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
39
|
Atshaves B, Martin G, Hostetler H, McIntosh A, Kier A, Schroeder F. Liver fatty acid-binding protein and obesity. J Nutr Biochem 2010; 21:1015-32. [PMID: 20537520 PMCID: PMC2939181 DOI: 10.1016/j.jnutbio.2010.01.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 12/17/2022]
Abstract
While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity and metabolic syndrome. Consequently, mammals evolved fatty acid-binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15-member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as in intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair fed a high-fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity.
Collapse
Affiliation(s)
- B.P. Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - G.G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - H.A. Hostetler
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - A.L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - A.B. Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - F. Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| |
Collapse
|
40
|
Storey SM, Atshaves BP, McIntosh AL, Landrock KK, Martin GG, Huang H, Ross Payne H, Johnson JD, Macfarlane RD, Kier AB, Schroeder F. Effect of sterol carrier protein-2 gene ablation on HDL-mediated cholesterol efflux from cultured primary mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol 2010; 299:G244-54. [PMID: 20395534 PMCID: PMC2904118 DOI: 10.1152/ajpgi.00446.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 04/13/2010] [Indexed: 01/31/2023]
Abstract
Although HDL-mediated cholesterol transport to the liver is well studied, cholesterol efflux from hepatocytes back to HDL is less well understood. Real-time imaging of efflux of 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino)-23,24-bisnor-5-cholen-3beta-ol (NBD-cholesterol), which is poorly esterified, and [(3)H]cholesterol, which is extensively esterified, from cultured primary hepatocytes of wild-type and sterol carrier protein-2 (SCP-2) gene-ablated mice showed that 1) NBD-cholesterol efflux was affected by the type of lipoprotein acceptor, i.e., HDL3 over HDL2; 2) NBD-cholesterol efflux was rapid (detected in 1-2 min) and resolved into fast [half time (t((1/2))) = 2.4 min, 6% of total] and slow (t((1/2)) = 26.5 min, 94% of total) pools, consistent with protein- and vesicle-mediated cholesterol transfer, respectively; 3) SCP-2 gene ablation increased efflux of NBD-cholesterol, as well as [(3)H]cholesterol, albeit less so due to competition by esterification of [(3)H]cholesterol, but not NBD-cholesterol; and 4) SCP-2 gene ablation increased initial rate (2.3-fold) and size (9.7-fold) of rapid effluxing sterol, suggesting an increased contribution of molecular cholesterol transfer. In addition, colocalization, double-immunolabeling fluorescence resonance energy transfer, and electron microscopy, as well as cross-linking coimmunoprecipitation, indicated that SCP-2 directly interacted with the HDL receptor, scavenger receptor class B type 1 (SRB1), in hepatocytes. Other membrane proteins in cholesterol efflux [SRB1 and ATP-binding cassettes (ABC) A-1, ABCG-1, ABCG-5, and ABCG-8] and several soluble/vesicle-associated proteins facilitating intracellular cholesterol trafficking (StARDs, NPCs, ORPs) were not upregulated. However, loss of SCP-2 elicited twofold upregulation of liver fatty acid-binding protein (L-FABP), a protein with lower affinity for cholesterol but higher cytosolic concentration than SCP-2. Ablation of SCP-2 and L-FABP decreased HDL-mediated NBD-cholesterol efflux. These results indicate that SCP-2 expression plays a significant role in HDL-mediated cholesterol efflux by regulating the size of rapid vs. slow cholesterol efflux pools and/or eliciting concomitant upregulation of L-FABP in cultured primary hepatocytes.
Collapse
Affiliation(s)
- Stephen M Storey
- Departmens of Physiology and Pharmacology, Texas Veterinary Medical Center, Texas A & M University, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schroeder F, Huang H, McIntosh AL, Atshaves BP, Martin GG, Kier AB. Caveolin, sterol carrier protein-2, membrane cholesterol-rich microdomains and intracellular cholesterol trafficking. Subcell Biochem 2010; 51:279-318. [PMID: 20213548 DOI: 10.1007/978-90-481-8622-8_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While the existence of membrane lateral microdomains has been known for over 30 years, interest in these structures accelerated in the past decade due to the discovery that cholesterol-rich microdomains serve important biological functions. It is increasingly appreciated that cholesterol-rich microdomains in the plasma membranes of eukaryotic cells represent an organizing nexus for multiple cellular proteins involved in transmembrane nutrient uptake (cholesterol, fatty acid, glucose, etc.), cell-signaling, immune recognition, pathogen entry, and many other roles. Despite these advances, however, relatively little is known regarding the organization of cholesterol itself in these plasma membrane microdomains. Although a variety of non-sterol markers indicate the presence of microdomains in the plasma membranes of living cells, none of these studies have demonstrated that cholesterol is enriched in these microdomains in living cells. Further, the role of cholesterol-rich membrane microdomains as targets for intracellular cholesterol trafficking proteins such as sterol carrier protein-2 (SCP-2) that facilitate cholesterol uptake and transcellular transport for targeting storage (cholesterol esters) or efflux is only beginning to be understood. Herein, we summarize the background as well as recent progress in this field that has advanced our understanding of these issues.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX, 77843-4466, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Atshaves BP, McIntosh AL, Storey SM, Landrock KK, Kier AB, Schroeder F. High dietary fat exacerbates weight gain and obesity in female liver fatty acid binding protein gene-ablated mice. Lipids 2009; 45:97-110. [PMID: 20035485 DOI: 10.1007/s11745-009-3379-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/24/2009] [Indexed: 01/01/2023]
Abstract
Since liver fatty acid binding protein (L-FABP) facilitates uptake/oxidation of long-chain fatty acids in cultured transfected cells and primary hepatocytes, loss of L-FABP was expected to exacerbate weight gain and/or obesity in response to high dietary fat. Male and female wild-type (WT) and L-FABP gene-ablated mice, pair-fed a defined isocaloric control or high fat diet for 12 weeks, consumed equal amounts of food by weight and kcal. Male WT mice gained weight faster than their female WT counterparts regardless of diet. L-FABP gene ablation enhanced weight gain more in female than male mice-an effect exacerbated by high fat diet. Dual emission X-ray absorptiometry revealed high-fat fed male and female WT mice gained mostly fat tissue mass (FTM). L-FABP gene ablation increased FTM in female, but not male, mice-an effect also exacerbated by high fat diet. Concomitantly, L-FABP gene ablation decreased serum beta-hydroxybutyrate in male and female mice fed the control diet and, even more so, on the high-fat diet. Thus, L-FABP gene ablation decreased fat oxidation and sensitized all mice to weight gain as whole body FTM and LTM-with the most gain observed in FTM of control vs high-fat fed female L-FABP null mice. Taken together, these results indicate loss of L-FABP exacerbates weight gain and/or obesity in response to high dietary fat.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
43
|
Martin GG, Atshaves BP, Huang H, McIntosh AL, Williams BJ, Pai PJ, Russell DH, Kier AB, Schroeder F. Hepatic phenotype of liver fatty acid binding protein gene-ablated mice. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1053-65. [PMID: 19815623 PMCID: PMC2850096 DOI: 10.1152/ajpgi.00116.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 10/06/2009] [Indexed: 01/31/2023]
Abstract
Although the function of liver fatty acid binding protein in hepatic fatty acid metabolism has been extensively studied, its potential role in hepatic cholesterol homeostasis is less clear. Although hepatic cholesterol accumulation was initially reported in L-FABP-null female mice, that study was performed with early N2 backcross generation mice. To resolve whether the hepatic cholesterol phenotype in these L-FABP(-/-) mice was attributable to genetic inhomogeneity, these L-FABP(-/-) mice were further backcrossed to C57Bl/6 mice up to the N10 (99.9% homogeneity) generation. Hepatic total cholesterol accumulation was observed in female, but not male, L-FABP(-/-) mice at all (N2, N4, N6, N10) backcross generations examined. The greater total cholesterol was due to increased hepatic levels of both unesterified (free) cholesterol and esterified cholesterol. Altered hepatic cholesterol accumulation correlated directly with L-FABP's ability to bind cholesterol with high affinity as shown by direct L-FABP binding of fluorescent cholesterol analogs (NBD-cholesterol, dansyl-cholesterol), a photoactivatable cholesterol analog [free cholesterol benzophenone (FCBP)], and free cholesterol (circular dichroism, isothermal titration microcalorimetry). One mole of fluorescent sterol was bound per mole of L-FABP. This was confirmed by photo-cross-linking studies with the photoactivatable cholesterol analog FCBP and by isothermal titration calorimetry with free cholesterol, which showed that L-FABP bound only one sterol molecule per L-FABP molecule. In contrast, the hepatic phenotype of male, but not female, L-FABP(-/-) mice was characterized by decreased hepatic triacylglycerol levels at all backcross generations examined. Taken together, these data support the hypothesis that L-FABP plays a role in physiological regulation of not only hepatic fatty acid metabolism, but also that of hepatic cholesterol.
Collapse
Affiliation(s)
- Gregory G Martin
- Dept. of Physiology & Pharmacology, Texas A&M Univ., College Station, 77843-4466, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yan J, Gong Y, She YM, Wang G, Roberts MS, Burczynski FJ. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity. J Lipid Res 2009; 50:2445-54. [PMID: 19474456 DOI: 10.1194/jlr.m900177-jlr200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocytes expressing liver fatty acid binding protein (L-FABP) are known to be more resistant to oxidative stress than those devoid of this protein. The mechanism for the observed antioxidant activity is not known. We examined the antioxidant mechanism of a recombinant rat L-FABP in the presence of a hydrophilic (AAPH) or lipophilic (AMVN) free radical generator. Recombinant L-FABP amino acid sequence and its amino acid oxidative products following oxidation were identified by MALDI quadrupole time-of-flight MS after being digested by endoproteinase Glu-C. L-FABP was observed to have better antioxidative activity when free radicals were generated by the hydrophilic generator than by the lipophilic generator. Oxidative modification of L-FABP included up to five methionine oxidative peptide products with a total of approximately 80 Da mass shift compared with native L-FABP. Protection against lipid peroxidation of L-FABP after binding with palmitate or alpha-bromo-palmitate by the AAPH or AMVN free radical generators indicated that ligand binding can partially block antioxidant activity. We conclude that the mechanism of L-FABP's antioxidant activity is through inactivation of the free radicals by L-FABP's methionine and cysteine amino acids. Moreover, exposure of the L-FABP binding site further promotes its antioxidant activity. In this manner, L-FABP serves as a hepatocellular antioxidant.
Collapse
Affiliation(s)
- Jing Yan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Atshaves BP, McIntosh AL, Martin GG, Landrock D, Payne HR, Bhuvanendran S, Landrock KK, Lyuksyutova OI, Johnson JD, Macfarlane RD, Kier AB, Schroeder F. Overexpression of sterol carrier protein-2 differentially alters hepatic cholesterol accumulation in cholesterol-fed mice. J Lipid Res 2009; 50:1429-47. [PMID: 19289417 DOI: 10.1194/jlr.m900020-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although in vitro studies suggest a role for sterol carrier protein-2 (SCP-2) in cholesterol trafficking and metabolism, the physiological significance of these observations remains unclear. This issue was addressed by examining the response of mice overexpressing physiologically relevant levels of SCP-2 to a cholesterol-rich diet. While neither SCP-2 overexpression nor cholesterol-rich diet altered food consumption, increased weight gain, hepatic lipid, and bile acid accumulation were observed in wild-type mice fed the cholesterol-rich diet. SCP-2 overexpression further exacerbated hepatic lipid accumulation in cholesterol-fed females (cholesterol/cholesteryl esters) and males (cholesterol/cholesteryl esters and triacyglycerol). Primarily in female mice, hepatic cholesterol accumulation induced by SCP-2 overexpression was associated with increased levels of LDL-receptor, HDL-receptor scavenger receptor-B1 (SR-B1) (as well as PDZK1 and/or membrane-associated protein 17 kDa), SCP-2, liver fatty acid binding protein (L-FABP), and 3alpha-hydroxysteroid dehydrogenase, without alteration of other proteins involved in cholesterol uptake (caveolin), esterification (ACAT2), efflux (ATP binding cassette A-1 receptor, ABCG5/8, and apolipoprotein A1), or oxidation/transport of bile salts (cholesterol 7alpha-hydroxylase, sterol 27alpha-hydroxylase, Na(+)/taurocholate cotransporter, Oatp1a1, and Oatp1a4). The effects of SCP-2 overexpression and cholesterol-rich diet was downregulation of proteins involved in cholesterol transport (L-FABP and SR-B1), cholesterol synthesis (related to sterol regulatory element binding protein 2 and HMG-CoA reductase), and bile acid oxidation/transport (via Oapt1a1, Oatp1a4, and SCP-x). Levels of serum and hepatic bile acids were decreased in cholesterol-fed SCP-2 overexpression mice, especially in females, while the total bile acid pool was minimally affected. Taken together, these findings support an important role for SCP-2 in hepatic cholesterol homeostasis.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, Texas Veterinary Medical Center, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
McIntosh AL, Atshaves BP, Hostetler HA, Huang H, Davis J, Lyuksyutova OI, Landrock D, Kier AB, Schroeder F. Liver type fatty acid binding protein (L-FABP) gene ablation reduces nuclear ligand distribution and peroxisome proliferator-activated receptor-alpha activity in cultured primary hepatocytes. Arch Biochem Biophys 2009; 485:160-73. [PMID: 19285478 DOI: 10.1016/j.abb.2009.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/29/2022]
Abstract
The effect of liver type fatty acid binding protein (L-FABP) gene ablation on the uptake and distribution of long chain fatty acids (LCFA) to the nucleus by real-time laser scanning confocal imaging and peroxisome proliferator-activated receptor-alpha (PPARalpha) activity was examined in cultured primary hepatocytes from livers wild-type L-FABP+/+ and gene ablated L-FABP-/- mice. Cultured primary hepatocytes from livers of L-FABP-/- mice exhibited: (i) reduced oxidation of palmitic acid, a common dietary long chain fatty acid (LCFA); (ii) reduced expression of fatty acid oxidative enzymes-proteins transcriptionally regulated by PPARalpha; (iii) reduced palmitic acid-induced PPARalpha co-immunoprecipitation with coactivator SRC-1 concomitant with increased PPARalpha co-immunoprecipitation with coinhibitor N-CoR; (iv) reduced palmitic acid-induced PPARalpha. Diminished PPARalpha activation in L-FABP null hepatocytes was associated with lower uptake of common dietary LCFA (palmitic acid as well as its fluorescent derivative BODIPY FL C(16)), reduced level of total unesterified LCFA, and real-time redistribution of BODIPY FL C(16) from the central nucleoplasm to the nuclear envelope. Taken together, these studies support the hypothesis that L-FABP may facilitate ligand (LCFA)-activated PPARalpha transcriptional activity at least in part by increasing total LCFA ligand available to PPARalpha for inducing PPARalpha-mediated transcription of proteins involved in LCFA metabolism.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, TVMC College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xie Y, Newberry EP, Kennedy SM, Luo J, Davidson NO. Increased susceptibility to diet-induced gallstones in liver fatty acid binding protein knockout mice. J Lipid Res 2009; 50:977-87. [PMID: 19136665 DOI: 10.1194/jlr.m800645-jlr200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quantitative trait mapping identified a locus colocalizing with L-Fabp, encoding liver fatty acid binding protein, as a positional candidate for murine gallstone susceptibility. When fed a lithogenic diet (LD) for 2 weeks, L-Fabp(-/-) mice became hypercholesterolemic with increased hepatic VLDL cholesterol secretion. Seventy-five percent of L-Fabp(-/-) mice developed solid gallstones compared with 6% of wild-type mice with an increased gallstone score (3.29 versus 0.62, respectively; P < 0.01). Hepatic free cholesterol content, biliary cholesterol secretion, and the cholesterol saturation index of hepatic bile were increased in LD-fed L-Fabp(-/-) mice. Chow-fed L-Fabp(-/-) mice demonstrated increased fecal bile acid (BA) excretion accompanied by decreased ileal Asbt expression. By contrast, there was an increased BA pool and decreased fecal BA excretion in LD-fed L-Fabp(-/-) mice, associated with increased proximal intestinal Asbt mRNA expression, suggesting that intestinal BA absorption was enhanced in LD-fed L-Fabp(-/-) mice. The increase in biliary BA secretion and enterohepatic pool size in LD-fed L-Fabp(-/-) mice was accompanied by downregulation of Cyp7a1 mRNA and increased intestinal mRNA abundance of Fgf-15, Fxr, and Fabp6. These findings suggest that changes in hepatic cholesterol metabolism and biliary lipid secretion as well as changes in enterohepatic BA metabolism increase gallstone susceptibility in LD fed L-Fabp(-/-) mice.
Collapse
Affiliation(s)
- Yan Xie
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
48
|
Martin GG, Atshaves BP, McIntosh AL, Payne HR, Mackie JT, Kier AB, Schroeder F. Liver fatty acid binding protein gene ablation enhances age-dependent weight gain in male mice. Mol Cell Biochem 2008; 324:101-15. [PMID: 19104910 DOI: 10.1007/s11010-008-9989-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 12/11/2008] [Indexed: 01/02/2023]
Abstract
Although studies performed in vitro and with transfected cells in culture suggest a role for liver fatty acid binding protein (L-FABP) in regulating fatty acid oxidation and fat deposition, the physiological significance of this possibility is not completely clear. To begin to address this question, the effect of L-FABP gene ablation on phenotype of standard rodent chow-fed male mice was examined with increasing age up to 18 months. While young (2-3 months old) L-FABP null mice displayed no visually obvious phenotype, with increasing age >9 months the L-FABP null mice were visibly larger, exhibiting increased body weight due to increased fat and lean tissue mass. Liver lipid concentrations were unaffected by L-FABP gene ablation with the exception of triacylglycerol, which was decreased by 74% in the livers of 3-month-old mice. Likewise, serum lipid levels were not altered in L-FABP null mice with the exception of triacylglycerol, which was increased in the serum of 18-month-old mice. Increased body weight, fat tissue mass, and lean tissue mass in 18-month-old L-FABP null mice were accompanied by increased hepatic levels of low-density lipoprotein (LDL) receptor, peroxisome proliferator-activated receptor (PPAR) alpha, and PPARalpha-regulated proteins such as fatty acid transport protein (FATP), fatty acid translocase (FAT/CD36), carnitine palmitoyl transferase I (CPT I), and lipoprotein lipase (LPL). A key enzyme in cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase, was down-regulated in L-FABP null mice. These findings were consistent with a proposed role for L-FABP as an important physiological regulator of PPARalpha.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
McIntosh AL, Atshaves BP, Huang H, Gallegos AM, Kier AB, Schroeder F. Fluorescence techniques using dehydroergosterol to study cholesterol trafficking. Lipids 2008; 43:1185-208. [PMID: 18536950 PMCID: PMC2606672 DOI: 10.1007/s11745-008-3194-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/09/2008] [Indexed: 12/22/2022]
Abstract
Cholesterol itself has very few structural/chemical features suitable for real-time imaging in living cells. Thus, the advent of dehydroergosterol [ergosta-5,7,9(11),22-tetraen-3beta-ol, DHE] the fluorescent sterol most structurally and functionally similar to cholesterol to date, has proven to be a major asset for real-time probing/elucidating the sterol environment and intracellular sterol trafficking in living organisms. DHE is a naturally occurring, fluorescent sterol analog that faithfully mimics many of the properties of cholesterol. Because these properties are very sensitive to sterol structure and degradation, such studies require the use of extremely pure (>98%) quantities of fluorescent sterol. DHE is readily bound by cholesterol-binding proteins, is incorporated into lipoproteins (from the diet of animals or by exchange in vitro), and for real-time imaging studies is easily incorporated into cultured cells where it co-distributes with endogenous sterol. Incorporation from an ethanolic stock solution to cell culture media is effective, but this process forms an aqueous dispersion of DHE crystals which can result in endocytic cellular uptake and distribution into lysosomes which is problematic in imaging DHE at the plasma membrane of living cells. In contrast, monomeric DHE can be incorporated from unilamellar vesicles by exchange/fusion with the plasma membrane or from DHE-methyl-beta-cyclodextrin (DHE-MbetaCD) complexes by exchange with the plasma membrane. Both of the latter techniques can deliver large quantities of monomeric DHE with significant distribution into the plasma membrane. The properties and behavior of DHE in protein-binding, lipoproteins, model membranes, biological membranes, lipid rafts/caveolae, and real-time imaging in living cells indicate that this naturally occurring fluorescent sterol is a useful mimic for probing the properties of cholesterol in these systems.
Collapse
Affiliation(s)
- Avery L. McIntosh
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Barbara P. Atshaves
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Huan Huang
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Adalberto M. Gallegos
- Department of Pathobiology Texas A&M University, TVMC College Station, TX 77843-4467
| | - Ann B. Kier
- Department of Pathobiology Texas A&M University, TVMC College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| |
Collapse
|
50
|
Martin GG, Atshaves BP, McIntosh AL, Mackie JT, Kier AB, Schroeder F. Liver fatty acid-binding protein gene-ablated female mice exhibit increased age-dependent obesity. J Nutr 2008; 138:1859-65. [PMID: 18806093 PMCID: PMC2835297 DOI: 10.1093/jn/138.10.1859] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous work conducted in our laboratory suggested a role for liver fatty acid-binding protein (L-FABP) in obesity that develops in aging female L-FABP gene-ablated (-/-) mice. To examine this possibility in more detail, cohorts of wild-type (+/+) and L-FABP (-/-) female mice were fed a standard, low-fat, nonpurified rodent diet for up to 18 mo. Various obesity-related parameters were examined, including body weight and fat and lean tissue mass. Obesity in (-/-) mice was associated with increased expression of nuclear receptors that induce PPARalpha (e.g. hepatocyte nuclear factor 1alpha, genotype effect) and of PPARalpha-regulated proteins involved in uptake of free (lipoprotein lipase and fatty acid transport protein, genotype, and/or age effect) and esterified (scavenger receptor class B type 1, genotype effect) long-chain fatty acids (LCFA). Hepatic total lipid and neutral lipid levels were not affected by age or genotype, consistent with absence of gross and histologic steatosis. There was increased mRNA expression of liver proteins involved in LCFA oxidation [mitochondrial 3-oxoacyl-CoA thiolase (genotype effect) and butyryl-CoA dehydrogenase (genotype and/or age effect)], increased expression of LCFA esterification enzymes [glycerol-3-phosphate acyltransferase (age x genotype effect) and acyl-CoA:cholesterol acyltransferase-2 (genotype and/or age effect)], and increased expression of proteins involved in intracellular transfer and secretion of esterified LCFA [liver microsomal triacylglycerol transfer protein (genotype effect), serum apolipoprotein (apo) B (genotype or age effect), and liver apoB (age and age x genotype effect)]. The data support a working model in which obesity development in these mice results from shifts toward reduced energy expenditure and/or more efficient energy uptake in the gut.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - Barbara P. Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - John T. Mackie
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467,To whom correspondence should be addressed: Department of Physiology & Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466. Phone: 979-862-1433, Fax: 979-862-4929,
| |
Collapse
|