1
|
Rahimi Darehbagh R, Khanmohammadi S, Rezaei N. The role of mitochondrial DNA variants and dysfunction in the pathogenesis and progression of multiple sclerosis. Mitochondrion 2025; 81:102002. [PMID: 39732186 DOI: 10.1016/j.mito.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/10/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). The etiology of MS remains elusive, with a complex interplay of genetic and environmental factors contributing to its pathogenesis. Recent studies showed mitochondrial DNA (mtDNA) as a potential player in the development and progression of MS. These studies encompassed mtDNA variants, copy number variations, and haplogroups. This narrative review aims to synthesize the current understanding of the role of mtDNA's in MS. The findings of this review suggest that mtDNA may indeed play a role in the development and progression of MS. Several studies have reported an association between mtDNA variants and increased susceptibility to MS, while others have found a link between mtDNA copy number variations and disease severity. Furthermore, specific mtDNA haplogroups have been demonstrated to confer protection against MS. MtDNA alterations may make neurons and oligodendrocytes more susceptible to inflammatory and oxidative stress, causing demyelination and axonal degeneration in MS patients. In conclusion, this review underscores the potential significance of mtDNA in the pathogenesis of MS and highlights the need for further research to fully elucidate its role. A deeper understanding of mtDNA's involvement in MS may pave the way for the development of novel therapeutic strategies to combat this debilitating disease.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran; Nanoclub Elites Association, Tehran, Iran; Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran
| | - Shaghayegh Khanmohammadi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
O'Connell F, Mylod E, Donlon NE, Davern M, Butler C, O'Connor N, Menon MS, Donohoe CL, Ravi N, Doherty DG, Dunne MR, Reynolds JV, Roche HM, O'Sullivan J. Adipose tissue from oesophageal adenocarcinoma patients is differentially affected by chemotherapy and chemoradiotherapy regimens altering immune cell phenotype and cancer cell metabolism. Transl Oncol 2025; 53:102302. [PMID: 39965288 DOI: 10.1016/j.tranon.2025.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Oesophageal adenocarcinoma (OAC) is a poor prognosis cancer with limited responses to standard of care treatments including chemotherapy and chemoradiotherapy. OAC has one of the strongest associations with obesity, its anatomical location surrounded by visceral adipose tissue has been postulated to intensify this association. Adipose tissue is a regulatory organ with many unknown downstream functions, including its direct response to chemotherapy and radiotherapy. To elucidate the role of visceral adipose tissue in this disease state, metabolic and secreted pro-inflammatory cytokines analysis was conducted on human ex-vivo adipose tissue explants following exposure to FLOT-chemotherapy and CROSS-chemoradiotherapy. To assess how these complex treated microenvironments impact cancer cell metabolism, dendritic cell, and macrophage phenotype, mitochondrial bioenergetics and surface markers expression were examined using seahorse technology and flow cytometry respectively. This study observed that chemotherapy and chemoradiotherapy differentially alter adipose tissue metabolism and secretome, with chemoradiotherapy increasing pro-inflammatory associated mediators (p<0.05). The chemoradiotherapy-treated adipose secretome increased cancer cell spare respiratory capacity and dendritic cell adhesion markers (p<0.05). In contrast, the chemotherapy-treated adipose microenvironment enhanced mitochondrial dysfunction in cancer cells, increasing their reliance on glycolysis and enhancing pro-inflammatory marker expression on LPS-primed macrophages (p<0.05). This study for the first time demonstrates how adipose tissue, and its microenvironment can be significantly impacted by chemotherapy and chemoradiotherapy. These alterations in the adipose secretome in response to therapeutic regimens elicited distinct effects on immune cell phenotype and cancer cells metabolism, raising the question, does the wider tumour microenvironment including the adipose milieu mitigate the efficacy of current treatments.
Collapse
Affiliation(s)
- Fiona O'Connell
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Eimear Mylod
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland; Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity College Dublin, St. James's Hospital, D08 W9RT Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland; Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity College Dublin, St. James's Hospital, D08 W9RT Dublin, Ireland
| | - Maria Davern
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland; Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity College Dublin, St. James's Hospital, D08 W9RT Dublin, Ireland
| | - Christine Butler
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Niamh O'Connor
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Meghana S Menon
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Claire L Donohoe
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Narayanasamy Ravi
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - John V Reynolds
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 C1P1 Dublin, Ireland; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| |
Collapse
|
3
|
Li Y, Zhang ZG, Chopp M, Liu Z, Golembieski W, Landschoot-Ward J, Zhang Y, Liu XS, Xin H. Labeling and isolating cell specific neuronal mitochondria and their functional analysis in mice post stroke. Exp Neurol 2025; 385:115126. [PMID: 39719208 DOI: 10.1016/j.expneurol.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Dendritic and axonal plasticity, which mediates neurobiological recovery after a stroke, critically depends on the mitochondrial function of neurons. To investigate, in vivo, neuronal mitochondrial function at the stroke recovery stage, we employed Mito-tag mice combined with cerebral cortical infection of AAV9 produced from plasmids carrying Cre-recombinase controlled by two neuronal promoters, synapsin-I (SYN1) and calmodulin-kinase IIa to induce expression of a hemagglutinin (HA)-tagged enhanced green fluorescence protein (EGFP) that localizes to mitochondrial outer membranes of SYN1 positive (SYN+) and CaMKIIa positive (CaMKIIa+) neurons. These mice were then subjected to permanent middle cerebral artery occlusion (MCAO) and sacrificed 14 days post stroke. Neuronal mitochondria were then selectively isolated from the fresh brain tissues excised from the ischemic core (IC), ischemic boundary zone (IBZ), as well as from the homologous contralateral hemisphere (CON) by anti-HA magnetic beads for functional analyses. We found that the bead pulled neuronal specific mitochondria were co-precipitated with GFP and enriched with mitochondrial markers, e.g. voltage-dependent anion channel, cytochrome C, and COX IV, but lacked the Golgi protein RCAS1 as well as endoplasmic reticulum markers: Heme‑oxygenase 1 and Calnexin, indicating that specific neuronal mitochondria have been selectively isolated. Western-blot data showed that oxidative phosphorylation (OXPHOS) components in SYN+ and CAMKII+ neuronal mitochondria were significantly decreased in the IBZ and further decreased in the IC compared to the contralateral tissue, which was associated with the significant reductions of mitochondrial function indicated by oxygen consumption rate (OCR) (p < 0.05, respectively, for both neuron types). These data suggest dysfunction of neuronal mitochondria post stroke is present during the stroke recovery stage. Collectively, for the first time, we demonstrated that using a Mito-tag mouse line combined with AAV9 carrying Cre recombinase approach, neuronal specific mitochondria can be efficiently isolated from the mouse brain to investigate their functional changes post stroke.
Collapse
Affiliation(s)
- Yanfeng Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America; Department of Physics, Oakland University, Rochester, MI 48309, United States of America
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - William Golembieski
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Julie Landschoot-Ward
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Hongqi Xin
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America.
| |
Collapse
|
4
|
Dong W, Zou Y, Zhao C, Huang T, Jiang W, Li F, Wu S. Glutathione-s-transferase regulates oxidative stress in Megalurothrips usitatus in response to environmental stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106299. [PMID: 40015891 DOI: 10.1016/j.pestbp.2025.106299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
The escalating environmental pollution, coupled with the degradation of the ozone layer, has led to an increase in ultraviolet radiation (UV) at the Earth's surface. There is also a growing accumulation of pesticide residues in the environment. These stressors are exerting a profound impact on insect populations. When insects are subjected to adverse environmental stressors, their antioxidant enzymes can quickly respond with appropriate feedback adjustments, facilitating their adaptation to environmental changes. Glutathione S-transferases (GST), integral members of a multifunctional supergene family in insects, are pivotal in countering environmental stress and detoxifying chemical agents. Through transcriptomic screening and RT-qPCR, this investigation identified MuGSTs1 as a gene whose expression is significantly altered under UV stress. The application of RNAi confirmed the gene's function in managing oxidative stress induced by UV and lambda-cyhalothrin. The research demonstrated that Megalurothrips usitatus, the M. usitatus, adapts to these stressors by modulating the activity of antioxidant enzymes, thereby exhibiting a robust adaptability to UV light and lambda-cyhalothrin exposure. Experimental silencing of MuGSTs1 has been shown to impair the M. usitatus's oxidative stress management, resulting in accelerated cellular apoptosis and an increased susceptibility to lambda-cyhalothrin, with sensitivity being augmented by a factor of 2.89. These findings provide a theoretical framework for understanding the adaptive mechanisms of insects to environmental stress.
Collapse
Affiliation(s)
- Wenbo Dong
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Youxing Zou
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Chenyang Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Tianbao Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Wayne Jiang
- Department of Entomology, Michigan State University, 48824 East Lansing, MI, USA
| | - Fen Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| |
Collapse
|
5
|
Borowiec BG, Robichaud KB, Craig PM. Interactive effects of elevated temperature and venlafaxine on mitochondrial respiration and enzymatic capacity in Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:737-750. [PMID: 39903854 DOI: 10.1093/etojnl/vgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Warming events are becoming more frequent and extreme in aquatic environments worldwide. Concurrently, many environments are polluted with biologically active compounds such as pharmaceuticals. Understanding how these challenges interact is critical for understanding the climate crisis, as contaminants may modulate how ectotherms respond to heat stress or vice versa. One potential site for these heat × contaminant interactions is the mitochondrion, which is central to metabolism, implicated in thermal tolerance, and evolutionarily conserved. Using high-resolution respirometry, we investigated how acute warming (to 35 °C, 40 °C, or 45 °C from 25 °C) impacted the respiration, coupling, and metabolic capacity of liver mitochondria isolated from Nile tilapia, and how exposure to environmentally relevant levels of the ubiquitous antidepressant venlafaxine modulated those effects. Mitochondria exposed to hotter temperatures had higher respiration rates and decreased respiratory control ratio compared to mitochondria exposed to cooler temperatures. The depressive effects of venlafaxine on respiration rates through complex I and II or complex II only (State 3 and State 4), as well as complex IV-linked respiration, were mild except in mitochondria exposed to high temperatures, suggesting an interactive effect of warming and contaminant exposure. Finally, we found that the maximal enzyme activity of intact mitochondria (represented by mitochondrial respiration) showed a different pattern of response to warming and venlafaxine compared to its underlying components (as reflected by the activity of succinate dehydrogenase [complex II] and cytochrome c oxidase [complex IV]), demonstrating the value of incorporating both interactive and reductive approaches in understanding how mitochondria cope with anthropogenic changes in the environment.
Collapse
Affiliation(s)
| | - Karyn B Robichaud
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Abu-Nada L, Liu Y, Saleh Al-Hamed F, Ouliass B, Millecamps M, Tran SD, Ferland G, Soleimani VD, Marino FT, Murshed M. Young bone marrow transplantation delays bone aging in old mice. Exp Gerontol 2025; 202:112704. [PMID: 39914580 DOI: 10.1016/j.exger.2025.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Recent discoveries have shown that systemic manipulations, such as parabiosis, blood exchange, and young plasma transfer, can counteract many hallmarks of aging. This rejuvenation effect has been attributed to circulatory factors produced by cells from both hematopoietic and non-hematopoietic lineages. However, the specific involvement of bone marrow (BM) or hematopoietic cells in producing such factors and their effects on aging is still unclear. We developed a model of aged mice with transplanted young or old BM cells and assessed the impact on the aging process, specifically on energy metabolism and bone remodeling parameters. The donor BM cell engraftment in the aged mice was confirmed by flow cytometry using a transplanted cell-specific marker (green fluorescent protein). Energy metabolism was assessed using Oxymax indirect calorimetry system after 3 months of transplantation. Tibiae and L3-L4 vertebrae were analyzed using micro-CT, a three-point bending test and bone histomorphometry. Moreover, bone marrow proteome was assessed using proteomics, and blood serum/plasma was collected and analyzed using the Luminex assay. Our results showed that while the effect on energy metabolism was insignificant, rejuvenating the BM through young bone marrow transplantation reversed age-associated low bone mass traits in old mice. Specifically, young bone marrow transplantation improved bone trabecular microarchitecture both in tibiae and vertebrae of old mice and increased the number of osteoblasts and osteoclasts compared to old bone marrow transplantation. In conclusion, young bone marrow cells may represent a future therapeutic strategy for age-related diseases such as osteoporosis. The findings of this study provide important insights into our understanding of aging.
Collapse
Affiliation(s)
- Lina Abu-Nada
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Younan Liu
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | | | - Bouchra Ouliass
- Montreal Heart Institute Research Centre, Montreal, QC, Canada
| | - Magali Millecamps
- ABC-Platform (Animal Behavioral Characterization) at Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | | | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Shriners hospital for children, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Li S, Yang H, Duan Y, Wu L, Hu C, Yu B, Zhao Y. Role of heat shock proteins in response to temperature stress and their effect on apoptosis in Drosophila melanogaster. Int J Biol Macromol 2025; 306:141320. [PMID: 39984102 DOI: 10.1016/j.ijbiomac.2025.141320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Temperature is a key ecological factor influencing insect development and survival. Temperature stress triggers insect cell apoptosis. However, factors surrounding the response of insects to various temperature stresses at different developmental stages remain unclear. The molecular mechanisms by which these factors reduce apoptosis are also not well understood. In this study, transcriptome sequencing and differential expression analysis were conducted on the W1118 strain of Drosophila melanogaster at various developmental stages under different temperature treatments (6 °C, 26 °C, 35 °C/37 °C). The analysis revealed that DmenHSP68 is a differentially expressed gene for different developmental stages and under different temperature stresses. The RNA interference (RNAi) suppression of DmenDNAJA1 (HSP40 family), DmenHSP68 (HSP70 family), and DmenHSP83 (HSP90 family) significantly decreased adult survival rates under temperature stress. RT-PCR results showed a significant upregulation of apoptosis-related genes. The levels of apoptosis markers, such as reactive oxygen species (ROS), cytochrome c (Cytc) levels, and Caspase-3 activity significantly increased, while adenosine triphosphate (ATP) levels significantly decreased. This study provides a theoretical foundation for further elucidation of the molecular mechanisms underlying apoptosis in Drosophila under different temperature stresses.
Collapse
Affiliation(s)
- Sicheng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Hao Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Yong Duan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Liang Wu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Chunyu Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Bo Yu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Yang Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Shi H, Cao Z, Wei K. Etomidate Induces Mitochondrial Dysfunction in Glioma Cancer Cells by Inhibiting Mitochondrial Biogenesis Mediated by CREB/PGC-1α. Biotechnol Appl Biochem 2025. [PMID: 39957363 DOI: 10.1002/bab.2722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025]
Abstract
Gliomas are one of the most prevalent types of solid tumors in the brain. Imbalances in mitochondrial metabolism have been implicated in the pathological progression of gliomas. Etomidate, an agonist of the γ-aminobutyric acid type A (GABAA) receptor, is widely used in clinical settings. In this study, we report a novel pharmacological function of etomidate in regulating mitochondrial metabolism in glioma cancer cells. U87 glioma tumor cells were treated with etomidate (0.5, 1.0, and 2.0 µg/mL) for 24 h. Quantitative real-time PCR, western blot analysis, mtDNA/nDNA ratio, MitoTracker Red staining, Complex I and IV activity, intracellular ATP levels, and mitochondrial respiration were assessed. First, etomidate exposure inhibited the expression of PGC-1α in U87 glioma tumor cells. Further investigation revealed that etomidate suppressed the expression of Nrf1 and TFAM, the two key executors of mitochondrial biogenesis. Etomidate treatment led to damage in mitochondrial biogenesis by decreasing the mtDNA/nDNA ratio, reducing the protein expression of cytochrome B, and lowering mitochondrial mass. These changes suggest impaired mitochondrial replication and function. Correspondingly, etomidate exposure induced a "loss of mitochondrial function" by diminishing the activities of Complex I and Complex IV, the mitochondrial respiratory rate (MRR), and ATP generation. These effects highlight the detrimental impact of etomidate on the energy metabolism of glioma cells. Mechanistically, etomidate inactivated the transcription factor CREB by reducing its phosphorylation at Ser133. Activation of CREB with the second messenger cAMP restored the expression of PGC-1α, the mtDNA/nDNA ratio, Complex IV activity, summarized mitochondrial respiratory rate (MRR), and ATP production. This suggests that CREB activation may serve as a potential therapeutic strategy to counteract etomidate's inhibitory effects on mitochondrial function in glioma cells. Our results suggest that damage to mitochondrial biogenesis is a key step in the anticancer properties of etomidate in gliomas, and the decrease in PGC-1α and its downstream molecules may be the critical mechanism behind this effect.
Collapse
Affiliation(s)
- Hailiang Shi
- Department of Neurosurgery, The First People's Hospital of Jiangxia District, Wuhan City, Wuhan, Hubei, China
| | - Zhongcheng Cao
- Department of Anesthesiology, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Kai Wei
- Department of Anesthesiology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, China
| |
Collapse
|
9
|
Ma Y, Sun Y, Ailikenjiang K, Lv C, Li X, Nie Y, Wang C, Xiong Y, Chen Y. Donafenib Induces Mitochondrial Dysfunction in Liver Cancer Cells via DRP1. Cell Biochem Biophys 2025:10.1007/s12013-024-01648-4. [PMID: 39937366 DOI: 10.1007/s12013-024-01648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2024] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) represents a significant global health challenge, characterized by a high incidence rate. Mitochondria have emerged as an important therapeutic target for HCC. Donafenib, a multi-receptor tyrosine kinase inhibitor, has been approved for the treatment of advanced HCC. However, the underlying mechanisms remain to be elucidated. In this study, we aim to investigate the effects of Donafenib on mitochondrial function in HCC cells. Firstly, we show that Donafenib induces mitochondrial oxidative stress in SNU-449 liver cancer cells by increasing mitochondrial ROS while reducing glutathione peroxidase (GPx) activity and the expression of Mn-SOD. We also demonstrate that Donafenib decreases mitochondrial membrane potential (MMP) and induces the opening of the mitochondrial permeability transition pore (mPTP). Furthermore, Donafenib reduces mitochondrial respiratory rate, COX IV activity, and ATP production. Notably, Donafenib induces mitochondrial fragmentation and reduces mitochondrial length by increasing the expression of DRP1, without affecting Mfn1 or Mfn2. Silencing of DRP1 protects against mitochondrial dysfunction induced by Donafenib, indicating that DRP1 plays a key role in mediating Donafenib's effects on mitochondrial function in HCC cells.
Collapse
Affiliation(s)
- Yuhua Ma
- Department of Pathology, Karamay Central Hospital, Karamay, Xinjiang, China
| | - Yougang Sun
- Department of General Surgery, Dushanzi People's Hospital, Karamay, Xinjiang, China
| | - Kayishaer Ailikenjiang
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China
| | - Chuanjiang Lv
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China
| | - Xiang Li
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China
| | - YunQiang Nie
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China
| | - Chang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China
| | - Yan Xiong
- Department of General Medicine, Karamay Central Hospital, Karamay, Xinjiang, China.
| | - Yong Chen
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China.
| |
Collapse
|
10
|
Sleep S, Hryciw D, Gunter J, Arany P, Tomy N, George R. Assessment of the influence of 660 and 808-nm PBM treatments on mitochondrial oxygen consumption of MG-63 osteoblast: a 3D cell culture study. Lasers Med Sci 2025; 40:84. [PMID: 39934542 DOI: 10.1007/s10103-025-04349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
This study explores the dose-dependent effects of 660-nm and 808-nm photobiomodulation (PBM) on mitochondrial oxygen respiration rate activity in MG-63 osteoblast cells using an innovative 3D in vitro spheroid model. MG-63 osteoblast cells were grown to 80% confluence and seeded in fish gelatin hydrogel (LunaGel™) to form 3D spheroids within 3-7 days. Spheroids were seeded on Seahorse microplates and incubated in a LunacrossLinker™ (visible light crosslinking system) for 2 min to give hydrogel a mid-stiffness of 3.5 kPa. Cells were exposed to PBM either 660-nm or 808-nm at panel setting of 5 J/cm2 and 15 J/cm2 and then assessed immediate (15 min before analysing) and 24 h time points. Mitochondrial activity was determined using an XFe96 Seahorse analyzer. Data distribution was assessed, and parametric or non-parametric tests and compared the mitochondrial respiratory capacity across different experimental conditions. The study indicated that 660-nm and 808-nm PBM could modulate mitochondrial functions in osteoblasts. The maximal respiratory rate for the fluency assessed at 808-nm wavelength was increased when cells were assessed immediate post. Interestingly, the 660-nm PBM-treated cells showed a decrease in oxygen consumption rate (OCR) at the basal and maximal bioenergetic state at all time points (immediate and 24 h.) and fluency compared to the untreated control. The effects of 660-nm and 808-nm wavelengths on osteoblast mitochondrial function suggest that PBM demonstrates differential modulation of osteoblast metabolism and bioenergetics depending on the wavelength. These findings have practical implications in both research and clinical settings, offering insights into selecting specific wavelengths for therapeutic applications.
Collapse
Affiliation(s)
| | | | - Jennifer Gunter
- Queensland University of Technology, Translational Research Institute, Brisbane, Australia
| | | | - Nifty Tomy
- National Centre for Disease Informatics and Research, Bangalore, India
| | - Roy George
- Griffith University, Southport, Australia.
| |
Collapse
|
11
|
Pyrczak-Felczykowska A, Herman-Antosiewicz A. Modification in Structures of Active Compounds in Anticancer Mitochondria-Targeted Therapy. Int J Mol Sci 2025; 26:1376. [PMID: 39941144 PMCID: PMC11818413 DOI: 10.3390/ijms26031376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer is a multifaceted disease characterised by uncontrolled cellular proliferation and metastasis, resulting in significant global mortality. Current therapeutic strategies, including surgery, chemotherapy, and radiation therapy, face challenges such as systemic toxicity and tumour resistance. Recent advancements have shifted towards targeted therapies that act selectively on molecular structures within cancer cells, reducing off-target effects. Mitochondria have emerged as pivotal targets in this approach, given their roles in metabolic reprogramming, retrograde signalling, and oxidative stress, all of which drive the malignant phenotype. Targeting mitochondria offers a promising strategy to address these mechanisms at their origin. Synthetic derivatives of natural compounds hold particular promise in mitochondrial-targeted therapies. Innovations in drug design, including the use of conjugates and nanotechnology, focus on optimizing these compounds for mitochondrial specificity. Such advancements enhance therapeutic efficacy while minimizing systemic toxicity, presenting a significant step forward in modern anticancer strategies.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
12
|
Singh S, Bruder A, Costa RM, Alves JV, Bharathi S, Goetzman ES, Bruder-Nascimento T. Vascular Contractility Relies on Integrity of Progranulin Pathway: Insights Into Mitochondrial Function. J Am Heart Assoc 2025; 14:e037640. [PMID: 39895524 DOI: 10.1161/jaha.124.037640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND The complex interplay between vascular contractility and mitochondrial function is central to cardiovascular disease. The progranulin gene (GRN) encodes glycoprotein PGRN (progranulin), a ubiquitous molecule with known anti-inflammatory property. However, the role of PGRN in cardiovascular disease remains undefined. In this study, we sought to dissect the significance of PGRN in the regulation vascular contractility and investigate the interface between PGRN and mitochondrial quality. METHODS AND RESULTS We used aortae from male and female C57BL6/J wild-type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) mice. Our results showed suppression of contractile activity in PGRN-/-, followed by reduced α-smooth muscle actin expression. Mechanistically, PGRN deficiency suppressed mitochondrial respiration, induced mitochondrial fission, and disturbed autophagy process and redox signaling, while restoration of PGRN levels in aortae from PGRN-/- mice via lentivirus delivery ameliorated contractility and boosted mitochondria activity. In addition, in vivo treatment with mitochondrial fission inhibitor restored mitochondrial quality and vascular contractility, while vascular smooth muscle cells overexpressing PGRN displayed higher lysosome biogenesis, accelerated mitophagy flux, and mitochondrial respiration accompanied by vascular hypercontractility. Finally, angiotensin II failed to induce vascular contractility in PGRN-/-, suggesting a key role of PGRN to maintain the vascular tone. CONCLUSIONS Our findings suggest that PGRN preserves the vascular contractility via regulating mitophagy flux, mitochondrial activity and dynamics, and redox signaling. Therefore, loss of PGRN function appears as a pivotal risk factor in cardiovascular disease.
Collapse
Affiliation(s)
- Shubhnita Singh
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh University of Pittsburgh Pittsburgh PA
- Children's Hospital of Philadelphia (CHOP) Department of Genetics at the University of Pennsylvania School of Medicine Philadelphia PA
- Department of Human Genetics, School of Public Health University of Pittsburgh PA
| | - Ariane Bruder
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh University of Pittsburgh Pittsburgh PA
- Department of Physiology & Cell Biology, School of Medicine University of South Alabama Mobile AL
| | - Rafael M Costa
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh University of Pittsburgh Pittsburgh PA
- Department of Physiology & Cell Biology, School of Medicine University of South Alabama Mobile AL
| | - Juliano V Alves
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh University of Pittsburgh Pittsburgh PA
| | - Sivakama Bharathi
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh University of Pittsburgh Pittsburgh PA
| | - Eric S Goetzman
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh University of Pittsburgh Pittsburgh PA
- Department of Human Genetics, School of Public Health University of Pittsburgh PA
- Genetic and Genomic Medicine Division at UPMC Children's Hospital of Pittsburgh University of Pittsburgh Pittsburgh PA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh University of Pittsburgh Pittsburgh PA
- Department of Physiology & Cell Biology, School of Medicine University of South Alabama Mobile AL
| |
Collapse
|
13
|
Parrotta ME, Colangeli L, Scipione V, Vitale C, Sbraccia P, Guglielmi V. Time Restricted Eating: A Valuable Alternative to Calorie Restriction for Addressing Obesity? Curr Obes Rep 2025; 14:17. [PMID: 39899119 PMCID: PMC11790783 DOI: 10.1007/s13679-025-00609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE OF REVIEW In this review, we summarize the molecular effects of time-restricted eating (TRE) and its possible role in appetite regulation. We also discuss the potential clinical benefits of TRE in obesity. RECENT FINDINGS TRE is an emerging dietary approach consisting in limiting food intake to a specific window of time each day. The rationale behind this strategy is to restore the circadian misalignment, commonly seen in obesity. Preclinical studies have shown that restricting food intake only during the active phase of the day can positively influence several cellular functions including senescence, mitochondrial activity, inflammation, autophagy and nutrients' sensing pathways. Furthermore, TRE may play a role by modulating appetite and satiety hormones, though further research is needed to clarify its exact mechanisms. Clinical trials involving patients with obesity or type 2 diabetes suggest that TRE can be effective for weight loss, but its broader effects on improving other clinical outcomes, such as cardiovascular risk factors, remain less certain. The epidemic proportions of obesity cause urgency to find dietary, pharmacological and surgical interventions that can be effective in the medium and long term. According to its molecular effects, TRE can be an interesting alternative to caloric restriction in the treatment of obesity, but the considerable variability across clinical trials regarding population, intervention, and follow-up duration makes it difficult to reach definitive conclusions.
Collapse
Affiliation(s)
| | - Luca Colangeli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Valeria Scipione
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carolina Vitale
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Valeria Guglielmi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
14
|
Qiu Y, Wang W, Wang Q, Xu J, Dai G, Bai Y, Zhang J. Activity Evaluation and Mode of Action of ICA Against Toxoplasma gondii In Vitro. Biomolecules 2025; 15:202. [PMID: 40001505 PMCID: PMC11853263 DOI: 10.3390/biom15020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Toxoplasmosis is a significant zoonotic parasitic disease. Currently, there is no effective vaccine available to prevent human infection, and treatment primarily relies on chemotherapy. However, the lack of specific therapeutic agents and the limitations of existing drugs highlight the urgent need for novel, safe, and effective anti-Toxoplasma gondii (T. gondii) medications. In this study, we evaluated the toxicity of ICA (N-(pyridin-2-yl)-4-(pyridine-2-yl)thiazol-2-amine) to host cells and assessed its inhibitory and anti-proliferative effects on T. gondii tachyzoites. We further investigated the impact of ICA on the ultrastructure of T. gondii using transmission electron microscopy (TEM). Additionally, we measured alterations in mitochondrial membrane potential, superoxide levels, and ATP levels in T. gondii to assess the effect of ICA on mitochondrial function. Our findings demonstrated that ICA exhibits a safe and effective inhibitory effect on T. gondii, with a selectivity index (SI) of 258.25. Notably, ICA demonstrated a more potent anti-proliferative effect than pyrimethamine (PYR). Ultrastructural observations revealed that ICA induces mitochondrial swelling and membrane rupture in T. gondii. Further investigations confirmed that ICA leads to mitochondrial dysfunction in T. gondii. In conclusion, our results suggest that ICA possesses the potential to serve as a lead compound for the development of novel anti-T. gondii therapies.
Collapse
Affiliation(s)
- Yanhua Qiu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (W.W.); (Q.W.); (J.X.); (G.D.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (W.W.); (Q.W.); (J.X.); (G.D.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Qing Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (W.W.); (Q.W.); (J.X.); (G.D.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jing Xu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (W.W.); (Q.W.); (J.X.); (G.D.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Guonian Dai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (W.W.); (Q.W.); (J.X.); (G.D.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (W.W.); (Q.W.); (J.X.); (G.D.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (W.W.); (Q.W.); (J.X.); (G.D.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
15
|
Oh JM, Kim G, Jeong J, Chun S. Compound K promotes thermogenic signature and mitochondrial biogenesis via the UCP1-SIRT3-PGC1α signaling pathway. Biomed Pharmacother 2025; 183:117838. [PMID: 39799670 DOI: 10.1016/j.biopha.2025.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Compound K (CK), an active ingredient in ginseng, has anti-cancer, anti-inflammatory, and antioxidant properties. However, its effects on thermogenesis and mitochondrial dynamics in white adipose tissue (WAT) adipocytes are not well understood. This study explores CK's impact on thermogenesis and mitochondrial metabolism in cold-exposed mice and mouse stromal vascular fraction (SVF) cells. CK increased the expression of UCP1 and other brown/beige adipocyte markers (Cd137, Cytb, Letm1, Pgc1α, Prdm16, Tbp1, Tbx1, Uqcrc1) and mitochondrial biogenesis/dynamics factors (Cidea, Cox8b, Cycs, Dio2, Drp1, Fis1, Fgf21, Nrf1, Sirt3, Tfam) in 3T3-L1/iWAT SVF cells. CK enhanced mitochondrial respiration, reduced mitochondrial ROS levels, and restored MMP in iWAT SVF cells, leading to the differentiation of WAT into beige adipocytes, and that was also observed in cold-exposed subcutaneous tissue. CK administration to cold-exposed mice reduced fat droplet size and increased the number of mitochondria. Additionally, CK stimulated non-shivering thermogenesis, indicated by the upregulation of thermogenic and mitochondrial division proteins. The browning effect of CK was nullified by SIRT3 knockdown, suggesting that CK induces beige remodeling of WAT by regulating mitochondrial dynamics and SIRT3 expression. These findings suggest CK's potential as a therapeutic agent for obesity and metabolic disorders that promotes the transformation of WAT into a metabolically active beige phenotype.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea
| | - Geonhyeong Kim
- Department of Orthopaedic Surgery, Seogwipo Medical Center, Seogwipo-si, Jeju-do 63585, South Korea
| | - Jiho Jeong
- Department of Orthopaedic Surgery, Seogwipo Medical Center, Seogwipo-si, Jeju-do 63585, South Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea.
| |
Collapse
|
16
|
Salagre D, Bajit H, Fernández-Vázquez G, Dwairy M, Garzón I, Haro-López R, Agil A. Melatonin induces fiber switching by improvement of mitochondrial oxidative capacity and function via NRF2/RCAN/MEF2 in the vastus lateralis muscle from both sex Zücker diabetic fatty rats. Free Radic Biol Med 2025; 227:322-335. [PMID: 39645208 DOI: 10.1016/j.freeradbiomed.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The positive role of melatonin in obesity control and skeletal muscle (SKM) preservation is well known. We recently showed that melatonin improves vastus lateralis muscle (VL) fiber oxidative phenotype. However, fiber type characterization, mitochondrial function, and molecular mechanisms that underlie VL fiber switching by melatonin are still undefined. Our study aims to investigate whether melatonin induces fiber switching by NRF2/RCAN/MEF2 pathway activation and mitochondrial oxidative metabolism modulation in the VL of both sex Zücker diabetic fatty (ZDF) rats. 5-Weeks-old male and female ZDF rats (N = 16) and their age-matched lean littermates (ZL) were subdivided into two subgroups: control (C) and orally treated with melatonin (M) (10 mg/kg/day) for 12 weeks. Interestingly, melatonin increased oxidative fibers amounts (Types I and IIa) counteracting the decreased levels found in the VL of obese-diabetic rats, and upregulated NRF2, calcineurin and MEF2 expression. Melatonin also restored the mitochondrial oxidative capacity increasing the respiratory control ratio (RCR) in both sex and phenotype rats through the reduction of the proton leak component of respiration (state 4). Melatonin also improved the VL mitochondrial phosphorylation coefficient and modulated the total oxygen consumption by enhancing complex I, III and IV activity, and fatty acid oxidation (FAO) in both sex obese-diabetic rats, decreasing in male and increasing in female the complex II oxygen consumption. These findings suggest that melatonin treatment induces fiber switching in SKM improving mitochondrial functionality by NRF2/RCAN/MEF2 pathway activation.
Collapse
Affiliation(s)
- Diego Salagre
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Habiba Bajit
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | | | - Mutaz Dwairy
- Department of Civil Engineering, Yarmuk University, 21163, Irbid, Jordan
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, BioHealth Institute Granada (IBs Granada), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Rocío Haro-López
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Ahmad Agil
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
17
|
Chourasia S, Petucci C, Shoffler C, Abbasian D, Wang H, Han X, Sivan E, Brandis A, Mehlman T, Malitsky S, Itkin M, Sharp A, Rotkopf R, Dassa B, Regev L, Zaltsman Y, Gross A. MTCH2 controls energy demand and expenditure to fuel anabolism during adipogenesis. EMBO J 2025; 44:1007-1038. [PMID: 39753955 PMCID: PMC11832942 DOI: 10.1038/s44318-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 02/19/2025] Open
Abstract
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites. Lipidomics analysis revealed a strategic adaptive reduction in membrane lipids and an increase in storage lipids in MTCH2 knockout cells. Importantly, MTCH2 knockout cells showed an increase in mitochondrial oxidative function, which may explain the higher energy demand. Interestingly, this imbalance in energy metabolism and reductive potential triggered by MTCH2-deletion prevents NIH3T3L1 preadipocytes from differentiating into mature adipocytes, an energy consuming reductive biosynthetic process. In summary, the loss of MTCH2 leads to increased mitochondrial oxidative activity and energy demand, creating a catabolic and oxidative environment that fails to fuel the anabolic processes required for lipid accumulation and adipocyte differentiation.
Collapse
Affiliation(s)
- Sabita Chourasia
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clarissa Shoffler
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dina Abbasian
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ayala Sharp
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Limor Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yehudit Zaltsman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Atan Gross
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
18
|
Chauhan S, Smith DR, Shariati-Ievari S, Srivastava A, Dhingra S, Aliani M, Fernyhough P. Muscarinic acetylcholine type 1 receptor antagonism activates TRPM3 to augment mitochondrial function and drive axonal repair in adult sensory neurons. Mol Metab 2025; 92:102083. [PMID: 39694091 PMCID: PMC11732569 DOI: 10.1016/j.molmet.2024.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE Antagonism of the muscarinic acetylcholine type 1 receptor (M1R) promotes sensory axon repair and is protective in peripheral neuropathy, however, the mechanism remains elusive. We investigated the role of the heat-sensing transient receptor potential melastatin-3 (TRPM3) cation channel in M1R antagonism-mediated nerve regeneration and explored the potential of TRPM3 activation to facilitate axonal plasticity. METHODS Dorsal root ganglion (DRG) neurons from adult control or diabetic rats were cultured and treated with TRPM3 agonists (CIM0216, pregnenolone sulfate) and M1R antagonists pirenzepine (PZ) or muscarinic toxin 7 (MT7). Ca2+ transients, mitochondrial respiration, AMP-activated protein kinase (AMPK) expression, and mitochondrial inner membrane potential were analyzed. The effect of M1R activation or blockade on TRPM3 activity mediated by phosphatidylinositol 4,5-bisphosphate (PIP2) was studied. Metabolic profiling of DRG neurons and human neuroblastoma SH-SY5Y cells was conducted. RESULTS M1R antagonism induced by PZ or MT7 increased Ca2+ influx in DRG neurons and was inhibited by TRPM3 antagonists or in the absence of extracellular Ca2+. TRPM3 agonists elevated Ca2+ levels, augmented mitochondrial respiration, AMPK activation and neurite outgrowth. M1R antagonism stimulated TRPM3 channel activity through inhibition of PIP2 hydrolysis to activate Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMPK, leading to augmented mitochondrial function and neuronal metabolism. DRG neurons with AAV-mediated shRNA knockdown of TRPM3 exhibited suppressed antimuscarinic drug-induced neurite outgrowth. TRPM3 agonists increased glycolysis and TCA cycle metabolites, indicating enhanced metabolism in DRG neurons and SH-SY5Y cells. CONCLUSIONS Activation of the TRPM3/CaMKKβ/AMPK pathway promoted collateral sprouting of sensory axons, positioning TRPM3 as a promising therapeutic target for peripheral neuropathy.
Collapse
Affiliation(s)
- Sanjana Chauhan
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada
| | - Shiva Shariati-Ievari
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - Abhay Srivastava
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Michel Aliani
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
19
|
Wen P, Sun Z, Gou F, Wang J, Fan Q, Zhao D, Yang L. Oxidative stress and mitochondrial impairment: Key drivers in neurodegenerative disorders. Ageing Res Rev 2025; 104:102667. [PMID: 39848408 DOI: 10.1016/j.arr.2025.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Mitochondrial dysfunction and oxidative stress are critical factors in the pathogenesis of neurodegenerative diseases. The complex interplay between these factors exacerbates neuronal damage and accelerates disease progression. In neurodegenerative diseases, mitochondrial dysfunction impairs ATP production and promotes the generation of reactive oxygen species (ROS). The accumulation of ROS further damages mitochondrial DNA, proteins, and lipids, creating a vicious cycle of oxidative stress and mitochondrial impairment. This review aims to elucidate the mechanisms by which mitochondrial dysfunction and oxidative stress lead to neurodegeneration, and to highlight potential therapeutic targets to mitigate their harmful effects.
Collapse
Affiliation(s)
- Pei Wen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qing Fan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
Grman M, Balazova M, Horvath A, Polcicova K, Ondacova K, Stepanovsky J, Sevcikova Tomaskova Z. Lithium compromises the bioenergetic reserve of cardiomyoblasts mitochondria. J Bioenerg Biomembr 2025; 57:27-38. [PMID: 39849208 PMCID: PMC11829843 DOI: 10.1007/s10863-024-10050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025]
Abstract
Lithium is used in the long-term treatment of bipolar disorder, exhibiting a beneficial effect on the neuronal cells. The concentration of lithium in the blood serum can vary and can easily approach a level that is related to cardiotoxic adverse effects. This is due to its narrow therapeutic index. In this study, we investigated the effect of higher than therapeutic dose of lithium. Rat cardiomyoblast cells were treated with 2 mM LiCl for 48 h, after which the mitochondrial parameters of the cells were analyzed. Lithium exposure reduced maximal respiratory capacity by diminishing reserve respiratory capacity (RRC), linked to a decrease in complex I (NADH dehydrogenase) activity and elevated superoxide radical levels. In addition, lithium treatment altered the composition of cellular membranes, including mitochondrial cardiolipin, a lipid essential for mitochondrial function. These findings suggest that impaired complex I activity, oxidative stress, and cardiolipin depletion collectively impair the ability of cells to meet high energy demands.
Collapse
Affiliation(s)
- Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Maria Balazova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 84005, Slovakia
| | - Anton Horvath
- Faculty of Natural Sciences, Comenius University, Mlynska dolina, Ilkovicova 6, Bratislava, 842 15, Slovakia
| | - Katarina Polcicova
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Katarina Ondacova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 840 05, Slovakia
| | - Jakub Stepanovsky
- Institute of Molecular Physiology and Genetics, Centre of Biosciences of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 840 05, Slovakia
- Faculty of Chemical and Food Technology, Slovak Technical University, Radlinskeho 9, Bratislava, 812 37, Slovakia
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Zuzana Sevcikova Tomaskova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 840 05, Slovakia.
| |
Collapse
|
21
|
Alkhatabi HA, Alhashmi M, Alkhatabi HA, Altayb HN. In Silico Analysis of Temperature-Induced Structural, Stability, and Flexibility Modulations in Camel Cytochrome c. Animals (Basel) 2025; 15:381. [PMID: 39943151 PMCID: PMC11815751 DOI: 10.3390/ani15030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cytochrome c is a critical protein in energy metabolism, and its structural adaptations to different temperatures play a key role in enabling species like the wild Bactrian camel (Camelus ferus) and the Arabian camel (Camelus dromedarius) to thrive in their respective cold and hot environments. This study investigates the structural, thermodynamic, and dynamic properties of cytochrome c at different temperatures. Thermal Titration Molecular Dynamics (TTMD) simulations, which involve analyzing protein behaviour across a range of temperatures, were carried out using GROMACS, with each simulation running for 100 nanoseconds, at 245 K, 280 K, 303 K, 308 K, and 320 K, to evaluate stability and flexibility. Structural alterations were indicated by an increase in root mean square deviations (RMSDs) to 0.4 nm at 320 K, as opposed to lower RMSD values (0.1-0.2 nm) at 245 K and 280 K. Root mean square fluctuation (RMSF) analyses revealed modest flexibility at 245 K and 280 K (0.1-0.2 nm) but considerable flexibility (0.3-0.4 nm) at 303 K and 320 K. Principal component analysis (PCA) found that the formational space was constrained at lower temperatures but expanded at higher temperatures. Entropy peaked at 280 K (13,816 J/mol) and then fell substantially at 320 K (451.765 J/mol), indicating diminished stability. These findings highlight cytochrome c adaptations for cold stability in Camelus ferus and thermal resilience in Camelus dromedarius, showing evolutionary strategies for harsh conditions.
Collapse
Affiliation(s)
- Heba A. Alkhatabi
- Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Hematology Research Unit (HRU), King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Alhashmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
- Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Hind Ali Alkhatabi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Hisham N. Altayb
- Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Takegawa R, Hayashida K, Murao A, Endo Y, Kuschner CE, Kazmi J, Nakamura E, Wang P, Becker LB. The role of homogenization cycles and Poloxamer 188 on the quality of mitochondria isolated for use in mitochondrial transplantation therapy. Sci Rep 2025; 15:3350. [PMID: 39870686 PMCID: PMC11772667 DOI: 10.1038/s41598-025-86760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Mitochondrial transplantation (MTx) offers a promising therapeutic approach to mitigate mitochondrial dysfunction in conditions such as ischemia-reperfusion (IR) injury. The quality and viability of donor mitochondria are critical to MTx success, necessitating the optimization of isolation protocols. This study aimed to assess a rapid mitochondrial isolation method, examine the relationship between mitochondrial size and membrane potential, and evaluate the potential benefits of Poloxamer 188 (P-188) in improving mitochondrial quality during the isolation process. Mitochondria were isolated from pectoral muscle biopsies of adult male Sprague-Dawley rats using an automated homogenizer. MitoTracker Deep Red (MTDR) staining and flow cytometry were used to assess mitochondrial purity, while the JC-1 assay evaluated membrane potential. Mitochondrial size groups were compared for membrane potential differences. Homogenization frequency and P-188 supplementation (1 mM) were assessed for their effects on mitochondrial membrane potential and particle size, and particle counts. The rapid isolation method yielded mitochondria that retained sufficient membrane potential to be effectively inhibited by carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a disruptor of mitochondrial membrane potential. Larger mitochondria exhibited significantly higher JC-1 ratios, indicating greater membrane potential. Excessive homogenization (10 cycles) reduced membrane potential compared to 3 cycles homogenization (P = 0.026). P-188 significantly increased the JC-1 ratio from 10.26 ± 2.57 to 33.78 ± 17.78 (P = 0.023). Particle size and count analysis revealed that 10 cycles homogenization significantly increased particle count compared to 3 cycles homogenization (P = 0.0001), but was associated with smaller particle sizes (P = 0.0031). The rapid mitochondrial isolation method produced viable mitochondria, with larger mitochondria exhibiting superior membrane potential. Reducing homogenization frequency and incorporating P-188 improved mitochondrial quality and preserved particle size. These strategies offer promising strategies for optimizing MTx protocols. Further refinement of these techniques is necessary for their clinical application in MTx therapy.
Collapse
Affiliation(s)
- Ryosuke Takegawa
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
| | - Atsushi Murao
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Yusuke Endo
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Cyrus E Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Jacob Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Eriko Nakamura
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| |
Collapse
|
23
|
Carteri RB. Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury. J Integr Neurosci 2025; 24:25292. [PMID: 39862005 DOI: 10.31083/jin25292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 01/27/2025] Open
Abstract
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials. Furthermore, mitochondrial metabolism produces signaling molecules such as reactive oxygen species (ROS), regulating calcium levels and controlling the expression profile of intrinsic pro-apoptotic effectors influenced by TBI. Hence, the set of these functions is widely referred to as 'mitochondrial function', although the complexity of the relationship between such components limits such a definition. In this review, we present mitochondria as a therapeutic target, focus on TBI, and discuss aspects of mitochondrial structure and function.
Collapse
Affiliation(s)
- Randhall Bruce Carteri
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil
- Department of Nutrition, Centro Universitário CESUCA, 94935-630 Cachoeirinha, Rio Grande do Sul (RS), Brazil
| |
Collapse
|
24
|
Nicholls DG. Commentary: Why do many cell biology papers contain fundamental bioenergetic errors? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149541. [PMID: 39828239 DOI: 10.1016/j.bbabio.2025.149541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
To professional bioenergeticists, the thermodynamic and kinetic constraints on mitochondrial function are self-evident. It is therefore profoundly concerning that high-profile cell biology papers continue to appear containing fundamental bioenergetic errors that appear to have evaded the scrutiny of the principal investigator, co-authors, editors and, apparently, at least some of the referees. The problem is not new, and seems to stem from a perception that bioenergetics is a 'difficult' subject, both at undergraduate level, if it is taught in any depth, and in research, where cell biologists are faced with biophysical concepts such as protonmotive force, ion flux, redox potential and Gibbs free energy.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, CA, United States of America.
| |
Collapse
|
25
|
Chen XJ, Yang YY, Pan ZC, Xu JZ, Jiang T, Zhang LL, Zhu KC, Zhang D, Song JX, Sheng CX, Sun LH, Tao B, Liu JM, Zhao HY. The inhibition of PINK1/Drp1-mediated mitophagy by hyperglycemia leads to impaired osteoblastogenesis in diabetes. iScience 2025; 28:111519. [PMID: 39758822 PMCID: PMC11699391 DOI: 10.1016/j.isci.2024.111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/01/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Impaired bone quality and increased fracture risk are cardinal features of the skeleton in diabetes mellitus. Hyperglycemia-induced oxidative stress is proposed as a potential underlying mechanism, but the precise pathogenic mechanism remains incompletely understood. In this investigation, osteoblasts under high glucose exhibited heightened levels of reactive oxygen species, impaired mitochondrial membrane potential, and profound inhibition of late-stage osteoblast differentiation. Further analyses uncovered that high glucose resulted in the downregulation of the PINK1/Drp1 pathway in osteoblasts, consequently leading to impaired mitophagy. Conversely, the upregulation of PINK1/Drp1 pathway activated mitophagy, which restored the differentiation capacity of osteoblasts. Notably, in an STZ-induced diabetic mouse model, BMP9 upregulated the expression of PINK1/Drp1 in the bone tissue, leading to an improvement in bone quality and bone mineral density. These findings suggest that the PINK1/Drp1 pathway might be a potential therapeutic target to enhance osteogenic differentiation and treat diabetic osteoporosis.
Collapse
Affiliation(s)
- Xiao-jing Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-ying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-can Pan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-zun Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-lin Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke-cheng Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-xi Song
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-xiang Sheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-hao Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-yan Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Palmeira-Mello MV, Mesdom P, Burckel P, Hidalgo S, Blacque O, Gasser G, Batista AA. Cytotoxic Ruthenium(II)-Diphosphine Complexes Affect the Mitochondrial Respiration of Lung Cancer Cells. Chembiochem 2025; 26:e202400734. [PMID: 39746130 DOI: 10.1002/cbic.202400734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
In this work, we studied six Ruthenium(II)-diphosphine compounds containing different mercapto ligands (N-S), with general formula [Ru(N-S)(dppm)2]Cl (dppm=1,1-bis(diphenylphosphino)methane). These compounds were characterized by several techniques (NMR [1H, 31P(1H), and 13C], HRMS, IR, UV-Vis and XRD) and their purity confirmed by elemental analysis. DLS experiments revealed low diameters and polydispersity indexes, and positive log P values in n-octanol/PBS indicated their preference for the organic phase. In general, these compounds are stable in different media over 48 h. Cytotoxicity experiments revealed promising IC50 values on A549 breast cancer cells, 0.48 μM and 0.80 μM for [Ru(mtz)(dppm)2]Cl (1) and [Ru(mmi)(dppm)2]Cl (2), respectively (mtz and mmi are 2-mercapto-2-thiazoline and mercapto-1-methylimidazole in their deprotonated form, respectively). Clonogenic and migration experiments indicated their antiproliferative and anti-migratory capacity. ICP-MS results indicated their cellular accumulation in the nucleus, with little amounts in mitochondria. No covalent DNA binding was observed by ICP-MS. JC-1 and cell Mito Stress test confirmed mitochondrial dysfunction, which was verified by mitochondrial membrane potential uncoupling and drastic alterations in the oxygen consumption rate. Taken together, our results provide crucial insights regarding the anticancer potential of ruthenium(II)-phosphine compounds.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departament of Chemistry, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University, 75005, Paris, France
| | - Pierre Mesdom
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University, 75005, Paris, France
| | - Pierre Burckel
- Institut de Physique du Globe de Paris, Biogéochimie à l'Anthropocène des Eléments et Contaminants Emergents, 75005, Paris, France
| | - Samia Hidalgo
- Institut de Physique du Globe de Paris, Biogéochimie à l'Anthropocène des Eléments et Contaminants Emergents, 75005, Paris, France
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University, 75005, Paris, France
| | - Alzir A Batista
- Departament of Chemistry, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
27
|
Zheng Q, Jin X, Nguyen TTM, Yi EJ, Park SJ, Yi GS, Yang SJ, Yi TH. Autophagy-Enhancing Properties of Hedyotis diffusa Extracts in HaCaT Keratinocytes: Potential as an Anti-Photoaging Cosmetic Ingredient. Molecules 2025; 30:261. [PMID: 39860131 PMCID: PMC11767327 DOI: 10.3390/molecules30020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics. Hedyotis diffusa (HD), as a medicinal plant, is renowned for its anti-inflammatory and anticancer properties; however, its effects on skin photoaging remain unclear. This study investigates HD's potential to counteract skin photoaging by restoring mitochondrial autophagy in keratinocytes. We used HPLC to detect the main chemical components in HD and, using a UVB-induced photoaging model in HaCaT keratinocytes, examined the effects of HD on reactive oxygen species (ROS) levels, Ca2+ concentration, mitochondrial membrane potential (MMP), apoptosis, and the cell cycle. Cellular respiration was further evaluated with the Seahorse XFp Analyzer, and RT-PCR and Western blotting were used to analyze the impact of HD on mitochondrial autophagy-related gene expression and signaling pathways. Our findings indicate that HD promotes autophagy by modulating the PI3K/AKT/mTOR and PINK/PARK2 pathways, which stabilizes mitochondrial quality, maintains MMP and Ca2+ balance, and reduces cytochrome c release. These effects relieve cell cycle arrest and prevent apoptosis associated with an increased BAX/BCL-2 ratio. Thus, HD holds promise as an effective anti-photoaging ingredient with potential applications in the development of cosmetic products.
Collapse
Affiliation(s)
- Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Xiangji Jin
- Department of Dermatology, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Se-Jig Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Gyeong-Seon Yi
- Department of Biopharmaceutical Biotechnology, Graduate School, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Su-Jin Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| |
Collapse
|
28
|
Pesta D, Anadol-Schmitz E, Sarabhai T, Op den Kamp Y, Gancheva S, Trinks N, Zaharia OP, Mastrototaro L, Lyu K, Habets I, Op den Kamp-Bruls YMH, Dewidar B, Weiss J, Schrauwen-Hinderling V, Zhang D, Gaspar RC, Strassburger K, Kupriyanova Y, Al-Hasani H, Szendroedi J, Schrauwen P, Phielix E, Shulman GI, Roden M. Determinants of increased muscle insulin sensitivity of exercise-trained versus sedentary normal weight and overweight individuals. SCIENCE ADVANCES 2025; 11:eadr8849. [PMID: 39742483 DOI: 10.1126/sciadv.adr8849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals. This observational study found that ATHL show higher insulin sensitivity, muscle mitochondrial content, and capacity, but lower activation of novel protein kinase C (nPKC) isoforms, despite higher diacylglycerol concentrations. Notably, sedentary but insulin sensitive OVWE feature lower plasma membrane-to-mitochondria sn-1,2-diacylglycerol ratios. In ATHL, calpain-2, which cleaves nPKC, negatively associates with PKCε activation and positively with insulin sensitivity along with higher GLUT4 and hexokinase II content. These findings contribute to explaining the athletes' paradox by demonstrating lower nPKC activation, increased calpain, and mitochondrial partitioning of bioactive diacylglycerols, the latter further identifying an obesity subtype with increased insulin sensitivity (NCT03314714).
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Evrim Anadol-Schmitz
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvo Op den Kamp
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivo Habets
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne M H Op den Kamp-Bruls
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Klaus Strassburger
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Leiden University Medical Center, Clinical Epidemiology, Leiden, Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
29
|
Larrea D, Tamucci KA, Kabra K, Velasco KR, Yun TD, Pera M, Montesinos J, Agrawal RR, Paradas C, Smerdon JW, Lowry ER, Stepanova A, Yoval-Sanchez B, Galkin A, Wichterle H, Area-Gomez E. Altered mitochondria-associated ER membrane (MAM) function shifts mitochondrial metabolism in amyotrophic lateral sclerosis (ALS). Nat Commun 2025; 16:379. [PMID: 39753538 PMCID: PMC11699139 DOI: 10.1038/s41467-024-51578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/12/2024] [Indexed: 01/06/2025] Open
Abstract
Mitochondrial function is modulated by its interaction with the endoplasmic reticulum (ER). Recent research indicates that these contacts are disrupted in familial models of amyotrophic lateral sclerosis (ALS). We report here that this impairment in the crosstalk between mitochondria and the ER impedes the use of glucose-derived pyruvate as mitochondrial fuel, causing a shift to fatty acids to sustain energy production. Over time, this deficiency alters mitochondrial electron flow and the active/dormant status of complex I in spinal cord tissues, but not in the brain. These findings suggest mitochondria-associated ER membranes (MAM domains) play a crucial role in regulating cellular glucose metabolism and that MAM dysfunction may underlie the bioenergetic deficits observed in ALS.
Collapse
Affiliation(s)
- Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Kirstin A Tamucci
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Khushbu Kabra
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin R Velasco
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Taekyung D Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marta Pera
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jorge Montesinos
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Carmen Paradas
- Department of Neurology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - John W Smerdon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily R Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Stepanova
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Belem Yoval-Sanchez
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Alexander Galkin
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
30
|
Chen J, Yang J, Ma J, Sun X, Wang Y, Luan C, Chen J, Liu W, Shan Q, Ma X. Troxerutin Delays Skin Keratinocyte Senescence Induced by Ionizing Radiation Both In Vitro and In Vivo. J Cosmet Dermatol 2025; 24:e16584. [PMID: 39291439 PMCID: PMC11743059 DOI: 10.1111/jocd.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUNDS With the increasing demand for beauty and a healthy lifespan, studies regarding anti-skin aging have drawn much more attention than ever before. Skin cellular senescence, the primary cause of skin aging, is characterized by a cell cycle arrest in proliferating cells along with a senescence-associated secretory phenotype (SASP), which can be triggered by various internal or external stimuli. AIMS Recent studies have made significant progress in the fields of anti-senescence and anti-aging. However, little is known about the roles and functions of natural compounds, particularly flavonoids, in skin cellular senescence studies. METHODS In this study, using strategies including ionizing radiation (IR), senescence-associated β galactosidase assay (SA-β-Gal), immunofluorescence (IF), flow cytometry, PCR array, as well as in vivo experiments, we investigated the effects and roles of troxerutin (Trx), a natural flavonoid, in skin keratinocyte senescence. RESULTS We found that Trx delays skin keratinocyte senescence induced by IR. Mechanistically, Trx protects the skin keratinocyte cells from senescence by alleviating reactive oxygen species (ROS) accumulation, mitochondrial dysfunction, and DNA damage caused by IR. In addition, Trx was also proved to relieve skin senescence and SASP secretion in vivo induced by IR stimulation. CONCLUSIONS Altogether, our findings pointed to a new function of Trx in delaying stress-induced skin keratinocyte senescence, and should thus provide theoretical foundations for exploring novel strategies against skin aging.
Collapse
Affiliation(s)
- Juping Chen
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Jinghui Yang
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Jiang Ma
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Xiaoming Sun
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Yuxuan Wang
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Changjiao Luan
- Department of LungThe Third People's Hospital of YangzhouYangzhouChina
| | - Jiaxiao Chen
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Weili Liu
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Qing Shan
- Department of GeriatricsThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Xingjie Ma
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| |
Collapse
|
31
|
Zhang J, Lin L. Immunoinfiltration Analysis of Mitochondrial Damage-Related Genes in Lung Adenocarcinoma and Construction of a Classification and Prognostic Model Integrated With WGCNA and Machine Learning Algorithms. Cancer Med 2025; 14:e70590. [PMID: 39823156 PMCID: PMC11737511 DOI: 10.1002/cam4.70590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) exhibits molecular heterogeneity, with mitochondrial damage affecting progression. The relationship between mitochondrial damage and immune infiltration, and Weighted Gene Co-expression Network Analysis (WGCNA)-derived biomarkers for LUAD classification and prognosis, remains unexplored. AIMS The objective of our research is to identify gene modules closely related to the clinical stages of LUAD using the WGCNA method. Based on the genes within these modules, we constructed machine learning (ML) models for classification and prognosis prediction, thereby facilitating precise diagnosis and personalized treatment of LUAD. MATERIALS & METHODS Using GeneCards and The Cancer Genome Atlas (TCGA) databases, we screened differentially expressed mitochondrial damage-related genes in LUAD. Immune cell infiltration patterns were assessed using Single-Sample Gene Set Enrichment Analysis (SSGSEA) method. Functional enrichment analyses were conducted to explore biological functions and signaling pathways. Gene modules related to clinical stages of LUAD were identified by WGCNA. ML models were constructed for classification and prognosis prediction, and validated in an independent Gene Expression Omnibus (GEO) dataset. RESULTS The study revealed a significant relationship between mitochondrial damage and immune infiltration in LUAD. We identified a gene module closely associated with the clinical stages of LUAD. The ML models for classification and prognosis that were constructed demonstrated good effectiveness and generalization capabilities. DISCUSSION Mitochondrial damage-related genes are crucial in LUAD progression and linked to immune infiltration. The gene module and models identified have potential applications in LUAD classification and prognosis, offering novel markers for precision medicine. CONCLUSION This study uncovers the relationship between mitochondrial damage and immune infiltration in LUAD, paving the way for molecular classification, prognosis prediction, and personalized treatment strategies.
Collapse
Affiliation(s)
- Jirong Zhang
- Department of GeriatricsThe Second Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - Lin Lin
- Department of Respiratory MedicineThe Second Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| |
Collapse
|
32
|
Konopko A, Łukomska A, Kucia M, Ratajczak MZ. The Different Responsiveness of C3- and C5-deficient Murine BM Cells to Oxidative Stress Explains Why C3 Deficiency, in Contrast to C5 Deficiency, Correlates with Better Pharmacological Mobilization and Engraftment of Hematopoietic Cells. Stem Cell Rev Rep 2025; 21:59-67. [PMID: 39340736 PMCID: PMC11762589 DOI: 10.1007/s12015-024-10792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The liver-derived circulating in peripheral blood and intrinsic cell-expressed complement known as complosome orchestrate the trafficking of hematopoietic stem/progenitor cells (HSPCs) both during pharmacological mobilization and homing/engraftment after transplantation. Our previous research demonstrated that C3 deficient mice are easy mobilizers, and their HSPCs engraft properly in normal mice. In contrast, C5 deficiency correlates with poor mobilization and defects in HSPCs' homing and engraftment. The trafficking of HSPCs during mobilization and homing/engraftment follows the sterile inflammation cues in the BM microenvironment caused by stress induced by pro-mobilizing drugs or myeloablative conditioning for transplantation. Therefore, to explain deficiencies in HSPC trafficking between C3-KO and C5-KO mice, we evaluated the responsiveness of C3 and C5 deficient cells to low oxidative stress. As reported, oxidative stress in BM is mediated by the activation of purinergic signaling, which is triggered by the elevated level of extracellular adenosine triphosphate (eATP) and by the activation of the complement cascade (ComC). In the current work, we noticed that BM lineage negative cells (lin-) isolated from C3-KO mice display several mitochondrial defects reflected by an impaired ability to adapt to oxidative stress. In contrast, C5-KO-derived BM cells show a high level of adaptation to this challenge. To support this data, C3-KO BM lin- cells were highly responsive to eATP stimulation, which correlates with enhanced levels of reactive oxygen species (ROS) generation and more efficient activation of intracellular Nlrp3 inflammasome. We conclude that the enhanced sensitivity of C3-KO mice cells to oxidative stress and better activation of the Nox2-ROS-Nlrp3 inflammasome signaling axis explains the molecular level differences in trafficking between C3- and C5-deficient HSPCs.
Collapse
Affiliation(s)
- Adrian Konopko
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland.
| | - Agnieszka Łukomska
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Kucia
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| |
Collapse
|
33
|
Romero-Zerbo SY, Valverde N, Claros S, Zamorano-Gonzalez P, Boraldi F, Lofaro FD, Lara E, Pavia J, Garcia-Fernandez M, Gago B, Martin-Montañez E. New molecular mechanisms to explain the neuroprotective effects of insulin-like growth factor II in a cellular model of Parkinson's disease. J Adv Res 2025; 67:349-359. [PMID: 38341032 PMCID: PMC11725160 DOI: 10.1016/j.jare.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION One of the hallmarks of Parkinsońs Disease (PD) is oxidative distress, leading to mitochondrial dysfunction and neurodegeneration. Insulin-like growth factor II (IGF-II) has been proven to have antioxidant and neuroprotective effects in some neurodegenerative diseases, including PD. Consequently, there isgrowing interest in understanding the different mechanisms involved in the neuroprotective effect of this hormone. OBJECTIVES To clarify the mechanism of action of IGF-II involved in the protective effect of this hormone. METHODS The present study was carried out on a cellular model PD based on the incubation of dopaminergic cells (SN4741) in a culture with the toxic 1-methyl-4-phenylpyridinium (MPP+), in the presence of IGF-II. This model undertakes proteomic analyses in order to understand which molecular cell pathways might be involved in the neuroprotective effect of IGF-II. The most important proteins found in the proteomic study were tested by Western blot, colorimetric enzymatic activity assay and immunocytochemistry. Along with the proteomic study, mitochondrial morphology and function were also studied by transmission electron microscopy and oxygen consumption rate. The cell cycle was also analysed using 7AAd/BrdU staining, and flow cytometry. RESULTS The results obtained indicate that MPP+, MPP++IGF-II treatment and IGF-II, when compared to control, modified the expression of 197, 246 proteins and 207 respectively. Some of these proteins were found to be involved in mitochondrial structure and function, and cell cycle regulation. Including IGF-II in the incubation medium prevents the cell damage induced by MPP+, recovering mitochondrial function and cell cycle dysregulation, and thereby decreasing apoptosis. CONCLUSION IGF-II improves mitochondrial dynamics by promoting the association of Mitofilin with mitochondria, regaining function and redox homeostasis. It also rebalances the cell cycle, reducing the amount of apoptosis and cell death by the regulation of transcription factors, such as Checkpoint kinase 1.
Collapse
Affiliation(s)
- Silvana-Yanina Romero-Zerbo
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Nadia Valverde
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Silvia Claros
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Pablo Zamorano-Gonzalez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Federica Boraldi
- Dipartimento di Scienze Della Vita. Patologia Generale, Universita di Modena e Reggio Emilia 4112, Italy
| | - Francesco-Demetrio Lofaro
- Dipartimento di Scienze Della Vita. Patologia Generale, Universita di Modena e Reggio Emilia 4112, Italy
| | - Estrella Lara
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Jose Pavia
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain.
| | - Maria Garcia-Fernandez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain.
| | - Belen Gago
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Elisa Martin-Montañez
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| |
Collapse
|
34
|
Bernard J, Tamouza R, Godin O, Berk M, Andreazza AC, Leboyer M. Mitochondria at the crossroad of dysregulated inflammatory and metabolic processes in bipolar disorders. Brain Behav Immun 2025; 123:456-465. [PMID: 39378969 DOI: 10.1016/j.bbi.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
In last few decades, considerable evidence has emphasized the significant involvement of mitochondria, often referred to as the "powerhouse of the cell," in the pathophysiology of bipolar disorder (BD). Given crucial mitochondrial functions in cellular metabolism and inflammation, both of which are compromised in BD, this perspective review examines the central role of mitochondria in inflammation and metabolism within the context of this disorder. We first describe the significance of mitochondria in metabolism before presenting the dysregulated inflammatory and metabolic processes. Then, we present a synthetic and hypothetical model of the importance of mitochondria in those dysfunctional pathways. The article also reviews different techniques for assessing mitochondrial function and discuss diagnostic and therapeutic implications. This review aims to improve the understanding of the inflammatory and metabolic comorbidities associated with bipolar disorders along with mitochondrial alterations within this context.
Collapse
Affiliation(s)
- Jérémy Bernard
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Ryad Tamouza
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Ophélia Godin
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, Mitochondrial Innovation Initiative (MITO2i) University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marion Leboyer
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France.
| |
Collapse
|
35
|
Brand T, Baumgarten BT, Denzinger S, Reinders Y, Kleindl M, Schanbacher C, Funk F, Gedik N, Jabbasseh M, Kleinbongard P, Dudek J, Szendroedi J, Tolstik E, Schuh K, Krüger M, Dobrev D, Cuello F, Sickmann A, Schmitt JP, Lorenz K. From Ca 2+ dysregulation to heart failure: β-adrenoceptor activation by RKIP postpones molecular damages and subsequent cardiac dysfunction in mice carrying mutant PLN R9C by correction of aberrant Ca 2+-handling. Pharmacol Res 2025; 211:107558. [PMID: 39742932 DOI: 10.1016/j.phrs.2024.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Impaired cardiomyocyte Ca2+ handling is a central hallmark of heart failure (HF), which causes contractile dysfunction and arrhythmias. However, the underlying molecular mechanisms and the precise contribution of defects in Ca2+-cycling regulation in the development of HF are still not completely resolved. Here, we used transgenic mice that express a human mutation in the cardiomyocyte Ca2+-regulator phospholamban (PLNR9C-tg) causing severe HF due to a reduction in Ca2+ reuptake into the sarco(endo)plasmic reticulum (SR). PLNR9C-induced HF is a rapidly progressing condition characterized by prominent Ca2+ cycling and relaxation defects and premature death of mutation carriers. We found that endoplasmic reticulum (ER) and mitochondrial function are affected even before transition to overt HF. Early correction of aberrant Ca2+ cycling by cardiac expression of the Raf kinase inhibitor protein (RKIP), an endogenous activator of β-adrenoceptors (βAR), delayed the cellular alterations, functional failure and prolonged lifespan. Our study highlights the importance of early and persistent correction of Ca2 + dynamics, not only for excitation/contraction coupling, but also for the prevention of rather irreparable events on cardiac energetics and ER stress adaptations. The latter may even impede with later onset of Ca2+-related therapeutic interventions and should gain more focus for HF treatment.
Collapse
Affiliation(s)
- Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany
| | - Bettina Tanitha Baumgarten
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Sabrina Denzinger
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Miriam Kleindl
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Constanze Schanbacher
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany
| | - Florian Funk
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, Essen 45122, Germany
| | - Mahmood Jabbasseh
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, Essen 45122, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg 97078, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Elen Tolstik
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Kai Schuh
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Martina Krüger
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany; Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States; Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Quebec, Canada
| | - Friederike Cuello
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany; Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Joachim P Schmitt
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany.
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg 97078, Germany.
| |
Collapse
|
36
|
Dias C, Lourenço CF, Laranjinha J, Ledo A. High-Resolution Respirometry Methodology for Bioenergetic and Metabolic Studies in Intact Brain Slices. Methods Mol Biol 2025; 2878:35-48. [PMID: 39546255 DOI: 10.1007/978-1-0716-4264-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The brain is critically dependent on energetic substrates as it consumes circa 20% of glucose and oxygen under normal physiological conditions. Although different cell types and at different locations might experience particular specificities in the utilization of these substrates, overall, mitochondrial oxidative phosphorylation supports the most efficient energy transduction process, enabling the complete oxidation of glucose to CO2 coupled to ATP synthesis in the presence of O2. Impairment of mitochondrial bioenergetics has been identified as an early event in many brain diseases and aging. Thus, novel methodologies to readily assess mitochondrial respiration in brain tissue, while preserving cellular and mitochondrial architecture and overcoming the serious drawbacks of studies using isolated mitochondrial preparations, are needed. Here we describe a methodology for studying functional parameters defining tissue metabolic respiration in brain hippocampal slices. The methodology can be used for physiological, pharmacological, and toxicological studies.
Collapse
Affiliation(s)
- Cândida Dias
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Cátia F Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Ledo
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
37
|
Queiroz ALF, Garcia CB, Silva JPMO, Cavalini DFA, Alexandrino AV, Cunha AF, Vercesi AE, Castilho RF, Shiguemoto GE. Preventive Effects of Resistance Training on Hemodynamics and Kidney Mitochondrial Bioenergetic Function in Ovariectomized Rats. Int J Mol Sci 2024; 26:266. [PMID: 39796122 PMCID: PMC11720031 DOI: 10.3390/ijms26010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Menopause occurs due to the depletion of the ovarian reserve, leading to a progressive decline in estrogen (E2) levels. This decrease in E2 levels increases the risk of developing several diseases and can coexist with chronic kidney disease (CKD). Arterial hypertension (AH) is another condition associated with menopause and may either contribute to or result from CKD. Ovariectomy (OVX) induces hypoestrogenism, which can lead to mitochondrial bioenergetic dysfunction in the kidneys. Previous studies have suggested that exercise training has beneficial effects on adults with CKD and AH. To investigate the effects of OVX and resistance training (RT) on hemodynamic parameters and mitochondrial bioenergetic function of the kidney, female Wistar rats were divided into ovariectomized (OVX) and intact (INT) groups. These rats were either kept sedentary (SED) or subjected to RT for thirteen weeks. The RT involved climbing a vertical ladder with a workload apparatus. Hemodynamic parameters were assessed via tail plethysmography. Mitochondrial respiratory function was evaluated with high-resolution respirometry. Gene expression related to the electron transport chain (ETC) and oxidative phosphorylation (OXPHOS) was evaluated by real-time qPCR. At week 13, key hemodynamic parameters (systolic blood pressure and mean arterial pressure) were significantly elevated in the OVX-SED group. Compared with those in the other groups, mitochondrial bioenergetics were impaired in the OVX-SED group. In contrast, the trained groups presented improved mitochondrial bioenergetic function compared with the sedentary groups. OVX led to reduced gene expression related to the mitochondrial ETC and OXPHOS, whereas RT both prevented this reduction and increased gene expression in the trained groups. Our results indicate that hypoestrogenism significantly decreases OXPHOS and ETC capacity in the kidneys of sedentary animals. However, RT effectively increased the expression of genes related to mitochondrial ETC and OXPHOS, thereby counteracting the effects of OVX.
Collapse
Affiliation(s)
- Anne L. F. Queiroz
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
- Post-Graduate Program of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil
| | - Christopher B. Garcia
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
| | - João P. M. O. Silva
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (J.P.M.O.S.); (A.F.C.)
| | - Diego F. A. Cavalini
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
| | - André V. Alexandrino
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (J.P.M.O.S.); (A.F.C.)
- Department of Biological Sicences, Central Paulista University Center (UNICEP), Campus São Carlos, São Carlos 13.570-300, SP, Brazil
| | - Anderson F. Cunha
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (J.P.M.O.S.); (A.F.C.)
| | - Anibal E. Vercesi
- Department of Pathology, University of Campinas (UNICAMP), Campinas 13.083-970, SP, Brazil; (A.E.V.); (R.F.C.)
| | - Roger F. Castilho
- Department of Pathology, University of Campinas (UNICAMP), Campinas 13.083-970, SP, Brazil; (A.E.V.); (R.F.C.)
| | - Gilberto E. Shiguemoto
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
- Post-Graduate Program of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil
| |
Collapse
|
38
|
Chen Y, Wei X, Ci X, Ji Y, Zhang J. Dysregulation of mitochondria, apoptosis and mitophagy in Leber's hereditary optic neuropathy with MT-ND1 3635G>A mutation. Gene 2024; 930:148853. [PMID: 39147111 DOI: 10.1016/j.gene.2024.148853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternal inherited disorder, primarily due to mitochondrial DNA (mtDNA) mutations. This investigation aimed to assess the pathogenicity of m.3635G>A alteration known to confer susceptibility to LHON. The disruption of electrostatic interactions among S110 of the MT-ND1 and the side chain of E4, along with the carbonyl backbone of M1 in the NDUFA1, was observed in complex I of cybrids with m.3635G>A. This disturbance affected the complex I assembly activity by changing the mitochondrial respiratory chain composition and function. In addition, the affected cybrids exhibited notable deficiencies in complex I activities, including impaired mitochondrial respiration and depolarization of its membrane potential. Apoptosis was also stimulated in the mutant group, as witnessed by the secretion of cytochrome c and activation of PARP, caspase 3, 7, and 9 compared to the control. Furthermore, the mutant group exhibited decreased levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PINK1/Parkin-dependent mitophagy. Overall, the current study has confirmed the crucial involvement of the alteration of the m.3635G>A gene in the development of LHON. These findings contribute to a deeper comprehension of the pathophysiological mechanisms underlying LHON, providing a fundamental basis for further research.
Collapse
Affiliation(s)
- Yingqi Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoyang Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaorui Ci
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Juanjuan Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
39
|
Rhodes EM, Yap KN, Hill GE, Hood WR. A Comparison of the Mitochondrial Performance between Migratory and Sedentary Mimid Thrushes. Integr Comp Biol 2024; 64:1859-1870. [PMID: 39122659 DOI: 10.1093/icb/icae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/19/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
Birds exhibit a variety of migration strategies. Because sustained flapping flight requires the production of elevated levels of energy compared to typical daily activities, migratory birds are well-documented to have several physiological adaptations to support the energy demands of migration. However, even though mitochondria are the source of ATP that powers flight, the respiratory performance of the mitochondria is almost unstudied in the context of migration. We hypothesized that migratory species would have higher mitochondrial respiratory performance during migration compared to species that do not migrate. To test this hypothesis, we compared variables related to mitochondrial respiratory function between two confamilial bird species-the migratory Gray Catbird (Dumetella carolinensis) and the non-migratory Northern Mockingbird (Mimus polyglottos). Birds were captured at the same location along the Alabama Gulf Coast, where we assumed that Gray Catbirds were migrants and where resident Northern Mockingbirds live year-round. We found a trend in citrate synthase activity, which suggests that Gray Catbirds have a greater mitochondrial volume in their pectoralis muscle, but we observed no other differences in mitochondrial respiration or complex enzymatic activities between individuals from the migrant vs. the non-migrant species. However, when we assessed the catbirds included in our study using well-established indicators of migratory physiology, birds fell into two groups: a group with physiological parameters indicating a physiology of birds engaged in migration and a group with the physiology of birds not migrating. Thus, our comparison included catbirds that appeared to be outside of migratory condition. When we compared the mitochondrial performance of these three groups, we found that the mitochondrial respiratory capacity of migrating catbirds was very similar to that of Northern Mockingbirds, while the catbirds judged to be not migrating were lowest. One explanation for these observations is these species display very different daily flight behaviors. While the mockingbirds we sampled were not breeding nor migrating, they are highly active birds, living in the open and engaging in flapping flights throughout each day. In contrast, Gray Catbirds live in shrubs and fly infrequently when not migrating. Such differences in baseline energy needs likely confounded our attempt to study adaptations to migration.
Collapse
Affiliation(s)
- Emma M Rhodes
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
40
|
Hood WR. Mechanisms that Alter Capacity for Adenosine Triphosphate Production and Oxidative Phosphorylation: Insights from Avian Migration. Integr Comp Biol 2024; 64:1811-1825. [PMID: 38844402 DOI: 10.1093/icb/icae065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 12/21/2024] Open
Abstract
Avian migration is among the most energetically demanding feats observed in animals. Studies evaluating the physiological underpinnings of migration have repeatedly shown that migratory birds display numerous adaptations that ultimately supply the flight muscle mitochondria with abundant fuel and oxygen during long-distance flights. To make use of this high input, the organs and mitochondria of migrants are predicted to display several traits that maximize their capacity to produce adenosine triphosphate (ATP). This review aims to introduce readers to several mechanisms by which organs and mitochondria can alter their capacity for oxidative phosphorylation and ATP production. The role of organ size, mitochondrial volume, substrate, and oxygen delivery to the electron transport system are discussed. A central theme of this review is the role of changes in electron chain complex activity, mitochondrial morphology and dynamics, and supercomplexes in allowing avian migrants and other taxa to alter the performance of the electron transport system with predictable shifts in demand. It is my hope that this review will serve as a springboard for future studies exploring the mechanisms that alter bioenergetic capacity across animal species.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
41
|
Hood WR. A Mitochondrial Perspective on the Demands of Reproduction. Integr Comp Biol 2024; 64:1611-1622. [PMID: 38772739 DOI: 10.1093/icb/icae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
The cost of supporting traits that increase mating opportunities and maximize the production of quality offspring is paid in energy. This currency of reproduction is enabled by bioenergetic adaptations that underlie the flexible changes in energy utilization that occur with reproduction. This review considers the traits that contribute to variation in the capacity of an organ to produce ATP. Further, it synthesizes findings from studies that have evaluated bioenergetic adaptations to the production of sexually selected traits and performance during reproduction and the role of change in mitochondrial respiratory performance in the tradeoff between reproduction and longevity. Cumulatively, these works provide evidence that in selecting for redder males, female finches will likely mate with a male with high mitochondrial respiratory performance and, potentially, a higher probability of mitonuclear compatibility. Females from diverse taxa allocate more to reproduction when the respiratory performance of mitochondria or density of the inner mitochondrial membrane in the liver or skeletal muscle is higher. Finally, reproduction does not appear to have persistent negative effects on mitochondrial respiratory performance, countering a role for mitochondria in the trade-off between reproduction and longevity. I close by noting that adaptations that improve mitochondrial respiratory performance appear vital for optimizing reproductive fitness.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, 36849, USA
| |
Collapse
|
42
|
Nossar LF, Lopes JA, Pereira-Acácio A, Costa-Sarmento G, Rachid R, Wendt CHC, Miranda K, Galina A, Rodrigues-Ferreira C, Muzi-Filho H, Vieyra A. Chronic undernutrition impairs renal mitochondrial respiration accompanied by intense ultrastructural damage in juvenile rats. Biochem Biophys Res Commun 2024; 739:150583. [PMID: 39182354 DOI: 10.1016/j.bbrc.2024.150583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
This study investigated whether chronic undernutrition alters the mitochondrial structure and function in renal proximal tubule cells, thus impairing fluid transport and homeostasis. We previously showed that chronic undernutrition downregulates the renal proximal tubules (Na++K+)ATPase, the main molecular machine responsible for fluid transport and ATP consumption. Male rats received a multifactorial deficient diet, the so-called Regional Basic Diet (RBD), mimicking those used in impoverished regions worldwide, from weaning to a juvenile age (3 months). The diet has a low content (8 %) of poor-quality proteins, low lipids, and no vitamins compared to control (CTR). We investigated citrate synthase activity, mitochondrial respiration (oxygraphy) in phosphorylating and non-phosphorylating conditions with different substrates/inhibitors, potential across the internal membrane (Δψ), and anion superoxide/H2O2 formation. The data were correlated with ultrastructural alterations evaluated using transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM). Citrate synthase activity decreased (∼50 %) in RBD rats, accompanied by a similar reduction in respiration in non-phosphorylating conditions, maximum respiratory capacity, and ATP synthesis. The Δψ generation and its dissipation after carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone remained unmodified in the survival mitochondria. H2O2 production increased (∼100 %) after Complex II energization. TEM demonstrated intense matrix vacuolization and disruption of cristae junctions in a subpopulation of RBD mitochondria, which was also demonstrated in the 3D analysis of FIB-SEM tomography. In conclusion, chronic undernutrition impairs mitochondrial functions in renal proximal tubules, with profound alterations in the matrix and internal membrane ultrastructure that culminate with the compromise of ATP supply for transport processes.
Collapse
Affiliation(s)
- Luiz F Nossar
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jarlene A Lopes
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Amaury Pereira-Acácio
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil
| | - Glória Costa-Sarmento
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Rachel Rachid
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Camila H C Wendt
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Kildare Miranda
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Antonio Galina
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Clara Rodrigues-Ferreira
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Humberto Muzi-Filho
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Adalberto Vieyra
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil; National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
43
|
Kowaltowski AJ, Abdulkader F. How and when to measure mitochondrial inner membrane potentials. Biophys J 2024; 123:4150-4157. [PMID: 38454598 PMCID: PMC11700358 DOI: 10.1016/j.bpj.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
The scientific literature on mitochondria has increased significantly over the years due to findings that these organelles have widespread roles in the onset and progression of pathological conditions such as metabolic disorders, neurodegenerative and cardiovascular diseases, inflammation, and cancer. Researchers have extensively explored how mitochondrial properties and functions are modified in different models, often using fluorescent inner mitochondrial membrane potential (ΔΨm) probes to assess functional mitochondrial aspects such as protonmotive force and oxidative phosphorylation. This review provides an overview of existing techniques to measure ΔpH and ΔΨm, highlighting their advantages, limitations, and applications. It discusses drawbacks of ΔΨm probes, especially when used without calibration, and conditions where alternative methods should replace ΔΨm measurements for the benefit of the specific scientific objectives entailed. Studies investigating mitochondria and their vast biological roles would be significantly advanced by the understanding of the correct applications as well as limitations of protonmotive force measurements and use of fluorescent ΔΨm probes, adopting more precise, artifact-free, sensitive, and quantitative measurements of mitochondrial functionality.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Fernando Abdulkader
- Departmento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Crino OL, Wild KH, Friesen CR, Leibold D, Laven N, Peardon AY, Recio P, Salin K, Noble DWA. From eggs to adulthood: sustained effects of early developmental temperature and corticosterone exposure on physiology and body size in an Australian lizard. J Exp Biol 2024; 227:jeb249234. [PMID: 39665281 DOI: 10.1242/jeb.249234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/02/2024] [Indexed: 12/13/2024]
Abstract
Developing animals are increasingly exposed to elevated temperatures as global temperatures rise as a result of climate change. Vertebrates can be affected by elevated temperatures during development directly, and indirectly through maternal effects (e.g. exposure to prenatal glucocorticoid hormones). Past studies have examined how elevated temperatures and glucocorticoid exposure during development independently affect vertebrates. However, exposure to elevated temperatures and prenatal corticosterone could have interactive effects on developing animals that affect physiology and life-history traits across life. We tested interactions between incubation temperature and prenatal corticosterone exposure in the delicate skink (Lampropholis delicata). We treated eggs with high or low doses of corticosterone and incubated eggs at 23°C (cool) or 28°C (warm). We measured the effects of these treatments on development time, body size and survival from hatching to adulthood and on adult hormone levels and mitochondrial respiration. We found no evidence for interactive effects of incubation temperature and prenatal corticosterone exposure on phenotype. However, incubation temperature and corticosterone treatment each independently decreased body size at hatching and these effects were sustained into the juvenile period and adulthood. Lizards exposed to low doses of corticosterone during development had elevated levels of baseline corticosterone as adults. Additionally, lizards incubated at cool temperatures had higher levels of baseline corticosterone and more efficient mitochondria as adults compared with lizards incubated at warm temperatures. Our results show that developmental conditions can have sustained effects on morphological and physiological traits in oviparous lizards but suggest that incubation temperature and prenatal corticosterone do not have interactive effects.
Collapse
Affiliation(s)
- Ondi L Crino
- College of Science and Engineering, Flinders University, Bedford Park, SA 5001, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Kristoffer H Wild
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- School of BioSciences , The University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences , University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dalton Leibold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Naomi Laven
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Amelia Y Peardon
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Pablo Recio
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Karine Salin
- Ifremer, Laboratory of Environmental Marine Sciences, University Brest, CNRS, IRD, 29280 Plouzané, France
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
45
|
Munteanu A, Gogulescu A, Șoica C, Mioc A, Mioc M, Milan A, Lukinich-Gruia AT, Pricop MA, Jianu C, Banciu C, Racoviceanu R. In Vitro and In Silico Evaluation of Syzygium aromaticum Essential Oil: Effects on Mitochondrial Function and Cytotoxic Potential Against Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:3443. [PMID: 39683236 DOI: 10.3390/plants13233443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
The current study proposes the in vitro and in silico anticancer evaluation of clove (Syzygium aromaticum L.) essential oil (CEO). The steam hydrodistillation method used yielded 10.7% (wt) CEO. GC-MS analysis revealed that the obtained oil is rich in eugenol (75%), β-caryophyllene (20%), and α- caryophyllene (2.8%) and also contains several other minor components accounting for approximately 1.5%. The DPPH-based scavenging antioxidant activity was assessed for the obtained CEO, exhibiting an IC50 value of 158 μg/mL. The cytotoxic effects of CEO, its major component eugenol, and CEO solubilized with Tween-20 and PEG-400 were tested against both noncancerous HaCaT cells and HT-29 human colorectal adenocarcinoma, RPMI-7951 melanoma, A431 skin carcinoma, and NCI-H460 non-small lung cancer cells, using the Alamar Blue and LDH assay after 48 h treatment. The Tween-20 and PEG-400 CEO formulations, at 200 μg/mL, recorded the highest cytotoxic and selective effects against RPMI-7951 (72.75% and 71.56%), HT-29 (71.51% and 45.43%), and A431 cells (61.62% and 59.65%). Furthermore, CEO disrupted mitochondrial function and uncoupled oxidative phosphorylation. This effect was more potent for the CEO against the RPMI-7951 and HT-29 cells, whereas for the other two tested cell lines, a more potent inhibition of mitochondrial function was attributed to eugenol. The present study is the first to specifically investigate the effects of CEO and Tween-20 and PEG-400 CEO formulations on the mitochondrial function of RPMI-7951, HT-29, A431, and NCI-H460 cancer cell lines using high-resolution respirometry, providing novel insights into their impact on mitochondrial respiration and bioenergetics in cancer cells. The results obtained may explain the increased ROS production observed in cancer cell lines treated with eugenol and CEO. Molecular docking identified potential protein targets, related to the CEO anticancer activity, in the form of PI3Kα, where the highest active theoretical inhibitor was calamenene (-7.5 kcal/mol). Docking results also showed that calamenene was the overall most active theoretical inhibitor for all docked proteins and indicated a potential presence of synergistic effects among all CEO constituents.
Collapse
Affiliation(s)
- Andreea Munteanu
- Department of Internal Medicine IV, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Armand Gogulescu
- Department XVI: Balneology, Medical Rehabilitation and Rheumatology, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Codruța Șoica
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Marius Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | | | - Maria-Alexandra Pricop
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
- Department of Applied Chemistry and Environmental Engineering and Inorganic Compounds, Faculty of Industrial Chemistry, Biotechnology and Environmental Engineering, Polytechnic University of Timisoara, Vasile Pârvan 6, 300223 Timisoara, Romania
| | - Calin Jianu
- Faculty of Food Engineering, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania"Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
46
|
Fan T, Zhu N, Li M, Wang Z, Lin X. CTRP6-mediated cardiac protection in heart failure via the AMPK/SIRT1/PGC-1α signalling pathway. Exp Physiol 2024; 109:2031-2045. [PMID: 39325807 DOI: 10.1113/ep092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Heart failure (HF) remains a significant global health concern with limited effective treatments available. C1q/TNF-related protein 6 (CTRP6) is a member of the CTRP family analogous to adiponectin and its role in HF pathogenesis remains unclear. Here, we investigated the impact of CTRP6 on HF progression. To mimic heart failure with reduced ejection fraction (HFrEF), we used isoproterenol injection in mice and administered adenovirus vectors expressing CTRP6 (Ad-CTRP6) via tail vein injection. We assessed cardiac function through echocardiography and histology. CTRP6's effects on hypertrophy, fibrosis, apoptosis, oxidative stress and mitochondrial function were analysed. Downstream pathways (phosphorylated AMP-activated protein kinase (p-AMPK), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) were studied in heart tissues. In vitro, isoproterenol-stimulated H9c2 cardiomyocytes were treated with CTRP6 to examine viability, apoptosis, F-actin and signalling proteins. Compound C was used to assess AMPK involvement. CTRP6 expression was lower in the plasma of HF patients. In an isoproterenol-induced HFrEF mouse model, adenovirus-mediated overexpression of CTRP6 ameliorated cardiac dysfunction and reduced cardiomyocyte apoptosis, oxidative stress, inflammation and myocardial injury markers. Mechanistically, CTRP6 activation of the AMPK/SIRT1/PGC-1α signalling pathway restored mitochondrial homeostasis, evidenced by reduced mitochondrial reactive oxygen species levels, increased ATP content, and enhanced mitochondrial complex I/III activities in cardiac tissues. In vitro studies using isoproterenol-stimulated H9c2 cardiomyocytes corroborated these findings, demonstrating that CTRP6 upregulation attenuated hypertrophy, apoptosis, oxidative stress and mitochondrial dysfunction. Furthermore, these effects were partially reversed by the AMPK inhibitor Compound C, implicating the involvement of the AMPK pathway in CTRP6-mediated cardioprotection. CTRP6 alleviates HF progression through the AMPK/SIRT1/PGC-1α signalling pathway.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ningjun Zhu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengli Li
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
47
|
Chauhan N, Dedman CJ, Baldreki C, Dowle AA, Larson TR, Rickaby REM. Contrasting species-specific stress response to environmental pH determines the fate of coccolithophores in future oceans. MARINE POLLUTION BULLETIN 2024; 209:117136. [PMID: 39427478 DOI: 10.1016/j.marpolbul.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Molecular mechanisms driving species-specific environmental sensitivity in coccolithophores are unclear but crucial in understanding species selection and adaptation to environmental change. This study examined proteomic and physiological changes in three species under varying pH conditions. We showed that changing pH drives intracellular oxidative stress and changes membrane potential. Upregulation in antioxidant, DNA repair and cell cycle-related protein-groups indicated oxidative damage across high (pH 8.8) and low pH (pH 7.6) compared to control pH (pH 8.2), and correlated with reduced growth rates. Upregulation of mitochondrial proteins suggested higher metabolite demand for restoring cellular homeostasis under pH-induced stress. Photosynthetic rates generally correlated with CO2 availability, driving higher net carbon fixation rates at low pH. The intracellular pH-buffering capacity of the coastal Chrysotila carterae and high metabolic adaptability in the bloom-forming Gephyrocapsa huxleyi will likely facilitate their adaptation to ocean acidification or artificial ocean alkalinisation. However, the pH sensitivity of the ancient open-ocean Coccolithus braarudii will possibly result in reduced growth and shrinking of its ecological niche.
Collapse
Affiliation(s)
- Nishant Chauhan
- Department of Earth Sciences, University of Oxford, UK; Department of Earth Sciences, University of Cambridge, UK.
| | - Craig J Dedman
- Department of Earth Sciences, University of Oxford, UK; School of Geography, Earth and Environmental Sciences, University of Plymouth, UK
| | - Chloë Baldreki
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Tony R Larson
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | | |
Collapse
|
48
|
Zhang Z, Zhou F, Lu M, Zhang D, Zhang X, Xu S, He Y. WTAP-mediated m 6A modification of TRIM22 promotes diabetic nephropathy by inducing mitochondrial dysfunction via ubiquitination of OPA1. Redox Rep 2024; 29:2404794. [PMID: 39314036 PMCID: PMC11423538 DOI: 10.1080/13510002.2024.2404794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes and is the most common cause of end-stage renal disease. Tripartite motif-containing (TRIM) proteins are a large family of E3 ubiquitin ligases that contribute to protein quality control by regulating the ubiquitin - proteasome system. However, the detailed mechanisms through which various TRIM proteins regulate downstream events have not yet been fully elucidated. The current research aimed to determine the function and mechanism of TRIM22 in DN. METHODS DN models were established by inducing HK-2 cells using high glucose (HG) and diabetic mice (db/db mice). Cell viability, apoptosis, mitochondrial reactive oxygen species, and mitochondrial membrane potential were detected by Cell Counting Kit-8 and flow cytometry, respectively. Pathological changes were evaluated using hematoxylin and eosin, periodic acid schiff and Masson staining. The binding between TRIM22 and optic atrophy 1 (OPA1) was analyzed using co-immunoprecipitation. The m6A level of TRIM22 5'UTR was detected using RNA immunoprecipitation. RESULTS TRIM22 was highly expressed in patients with DN. TRIM22 silencing inhibited HG-induced apoptosis and mitochondrial dysfunction in HK-2 cells. Promoting mitochondrial fusion alleviated TRIM22 overexpression-induced cell apoptosis, mitochondrial dysfunction in HK-2 cells, and kidney damage in mice. Mechanistically, TRIM22 interacted with OPA1 and induced its ubiquitination. Wilms tumor 1-associating protein (WTAP) promoted m6A modification of TRIM22 through the m6A reader insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). DISCUSSION TRIM22 silencing inhibited the progression of DN by interacting with OPA1 and inducing its ubiquitination. Furthermore, WTAP promoted m6A modification of TRIM22 via IGF2BP1.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Fengzhu Zhou
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Min Lu
- Department of Paediatrics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, People’s Republic of China
| | - Duanchun Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xinyi Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Siyu Xu
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yanming He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
49
|
Ortiz-Rodriguez JM, Bucci D, Tovar-Pascual L, Granata S, Spinaci M, Nesci S. Analysis of stallion spermatozoa metabolism using Agilent Seahorse XFp Technology. Anim Reprod Sci 2024; 271:107633. [PMID: 39509949 DOI: 10.1016/j.anireprosci.2024.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Sperm metabolism consists of a sophisticated network of biochemical reactions and varies between species, resulting in different metabolic strategies for ATP production to maintain sperm functionality. ATP can be produced through glycolysis or in the mitochondria by oxidative phosphorylation (OXPHOS). Since OXPHOS is the predominant metabolic pathway in horses spermatozoa, various assessments of mitochondrial activity are used to evaluate fertility, utilizing techniques such as fluorescent probes analysed via microscopy or flow cytometry, and polarographic electrode assays to measure current flow in response to an applied voltage. Though, these methods are limited by low throughput, as they assess mitochondrial activity at a single time point under a specific treatment condition. This study explores, for the first time, the application of the Agilent Seahorse XFp Technology to evaluate metabolism in stallion spermatozoa. This method enables real-time measurement of cellular metabolism across multiple samples or experimental conditions simultaneously. Ejaculates from eight different stallions were collected, and pools were prepared from three of them. Sperm viability and mitochondrial activity were evaluated by fluorescence microscopy, sperm motility by a computer-assisted sperm analysis system, and sperm metabolism was analysed via the Seahorse XFp analyser. Results confirmed a preference for OXPHOS over glycolysis in ATP production in stallion sperm, with mitochondria contributing significantly to total ATP generation. The Seahorse XFp Technology proved effective in evaluating equine sperm bioenergetics, offering insights into metabolic pathways critical for sperm function. In conclusion, this technology grants a new method for high-throughput analysis of sperm metabolism and quality, which could be applied to future reproductive studies in male equine fertility.
Collapse
Affiliation(s)
| | - Diego Bucci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Laura Tovar-Pascual
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Marcella Spinaci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
50
|
Min R, Zhang D, He M, Chen J, Yi X, Zhuang Y. Stress-induced premature senescence in high five cell cultures: a principal factor in cell-density effects. BIORESOUR BIOPROCESS 2024; 11:107. [PMID: 39585490 PMCID: PMC11589019 DOI: 10.1186/s40643-024-00824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The Baculovirus Expression Vector System (BEVS) is highly valued in vaccine development, protein engineering, and drug metabolism research due to its biosafety, operational convenience, rapid scalability, and capacity for self-assembling virus-like particles. However, increasing cell density at the time of inoculation severely compromises the production capacity of BEVS, resulting in the "cell density effect". This study aimed to explore the mechanisms of the cell density effect through time-series analysis of transcriptomes and proteomes, with the goal of overcoming or alleviating the decline in productivity caused by increased cell density. The dynamic analysis of the omics of High Five cells under different CCI (cell density at infection) conditions showed that the impact of the "cell density effect" increased over time, particularly affecting genetic information processing, error repair, protein expression regulation, and material energy metabolism. Omics analysis of the growth stage of High Five cells showed that after 36 h of culture (cell density of about 1 × 106 cells/mL), the expression of ribosome-related proteins decreased, resulting in a rapid decrease in protein synthesis capacity, which was a key indicator of cell aging. Senescence verification experiments showed that cells began to show obvious early aging characteristics after 36 h, resulting in a decrease in the host cell's ability to resist stress. Overexpression and siRNA inhibition studies showed that the ndufa12 gene was a potential regulatory target for restricting the "cell density effect". Our results suggested that stress-induced premature senescence in High Five cell cultures, resulting in reduced energy metabolism and protein synthesis capabilities, was a critical factor contributing to cell density effects, and ultimately affecting virus production. In conclusion, this study provided new insights into managing virus production limitations due to cell density effects and offered innovative strategies to mitigate the adverse effects of cellular aging in biomanufacturing technologies.
Collapse
Affiliation(s)
- Rui Min
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China
| | - Dahe Zhang
- Womei Biology Company, Limited, Suzhou, China
| | - Mingzhe He
- Womei Biology Company, Limited, Suzhou, China
| | - Jingyuan Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China
| |
Collapse
|