1
|
Pesta D, Anadol-Schmitz E, Sarabhai T, Op den Kamp Y, Gancheva S, Trinks N, Zaharia OP, Mastrototaro L, Lyu K, Habets I, Op den Kamp-Bruls YMH, Dewidar B, Weiss J, Schrauwen-Hinderling V, Zhang D, Gaspar RC, Strassburger K, Kupriyanova Y, Al-Hasani H, Szendroedi J, Schrauwen P, Phielix E, Shulman GI, Roden M. Determinants of increased muscle insulin sensitivity of exercise-trained versus sedentary normal weight and overweight individuals. SCIENCE ADVANCES 2025; 11:eadr8849. [PMID: 39742483 DOI: 10.1126/sciadv.adr8849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals. This observational study found that ATHL show higher insulin sensitivity, muscle mitochondrial content, and capacity, but lower activation of novel protein kinase C (nPKC) isoforms, despite higher diacylglycerol concentrations. Notably, sedentary but insulin sensitive OVWE feature lower plasma membrane-to-mitochondria sn-1,2-diacylglycerol ratios. In ATHL, calpain-2, which cleaves nPKC, negatively associates with PKCε activation and positively with insulin sensitivity along with higher GLUT4 and hexokinase II content. These findings contribute to explaining the athletes' paradox by demonstrating lower nPKC activation, increased calpain, and mitochondrial partitioning of bioactive diacylglycerols, the latter further identifying an obesity subtype with increased insulin sensitivity (NCT03314714).
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Evrim Anadol-Schmitz
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvo Op den Kamp
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivo Habets
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne M H Op den Kamp-Bruls
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Klaus Strassburger
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Leiden University Medical Center, Clinical Epidemiology, Leiden, Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Larrea D, Tamucci KA, Kabra K, Velasco KR, Yun TD, Pera M, Montesinos J, Agrawal RR, Paradas C, Smerdon JW, Lowry ER, Stepanova A, Yoval-Sanchez B, Galkin A, Wichterle H, Area-Gomez E. Altered mitochondria-associated ER membrane (MAM) function shifts mitochondrial metabolism in amyotrophic lateral sclerosis (ALS). Nat Commun 2025; 16:379. [PMID: 39753538 DOI: 10.1038/s41467-024-51578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/12/2024] [Indexed: 01/06/2025] Open
Abstract
Mitochondrial function is modulated by its interaction with the endoplasmic reticulum (ER). Recent research indicates that these contacts are disrupted in familial models of amyotrophic lateral sclerosis (ALS). We report here that this impairment in the crosstalk between mitochondria and the ER impedes the use of glucose-derived pyruvate as mitochondrial fuel, causing a shift to fatty acids to sustain energy production. Over time, this deficiency alters mitochondrial electron flow and the active/dormant status of complex I in spinal cord tissues, but not in the brain. These findings suggest mitochondria-associated ER membranes (MAM domains) play a crucial role in regulating cellular glucose metabolism and that MAM dysfunction may underlie the bioenergetic deficits observed in ALS.
Collapse
Affiliation(s)
- Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Kirstin A Tamucci
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Khushbu Kabra
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin R Velasco
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Taekyung D Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marta Pera
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jorge Montesinos
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Carmen Paradas
- Department of Neurology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - John W Smerdon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily R Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Stepanova
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Belem Yoval-Sanchez
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Alexander Galkin
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Romero-Zerbo SY, Valverde N, Claros S, Zamorano-Gonzalez P, Boraldi F, Lofaro FD, Lara E, Pavia J, Garcia-Fernandez M, Gago B, Martin-Montañez E. New molecular mechanisms to explain the neuroprotective effects of insulin-like growth factor II in a cellular model of Parkinson's disease. J Adv Res 2025; 67:349-359. [PMID: 38341032 DOI: 10.1016/j.jare.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION One of the hallmarks of Parkinsońs Disease (PD) is oxidative distress, leading to mitochondrial dysfunction and neurodegeneration. Insulin-like growth factor II (IGF-II) has been proven to have antioxidant and neuroprotective effects in some neurodegenerative diseases, including PD. Consequently, there isgrowing interest in understanding the different mechanisms involved in the neuroprotective effect of this hormone. OBJECTIVES To clarify the mechanism of action of IGF-II involved in the protective effect of this hormone. METHODS The present study was carried out on a cellular model PD based on the incubation of dopaminergic cells (SN4741) in a culture with the toxic 1-methyl-4-phenylpyridinium (MPP+), in the presence of IGF-II. This model undertakes proteomic analyses in order to understand which molecular cell pathways might be involved in the neuroprotective effect of IGF-II. The most important proteins found in the proteomic study were tested by Western blot, colorimetric enzymatic activity assay and immunocytochemistry. Along with the proteomic study, mitochondrial morphology and function were also studied by transmission electron microscopy and oxygen consumption rate. The cell cycle was also analysed using 7AAd/BrdU staining, and flow cytometry. RESULTS The results obtained indicate that MPP+, MPP++IGF-II treatment and IGF-II, when compared to control, modified the expression of 197, 246 proteins and 207 respectively. Some of these proteins were found to be involved in mitochondrial structure and function, and cell cycle regulation. Including IGF-II in the incubation medium prevents the cell damage induced by MPP+, recovering mitochondrial function and cell cycle dysregulation, and thereby decreasing apoptosis. CONCLUSION IGF-II improves mitochondrial dynamics by promoting the association of Mitofilin with mitochondria, regaining function and redox homeostasis. It also rebalances the cell cycle, reducing the amount of apoptosis and cell death by the regulation of transcription factors, such as Checkpoint kinase 1.
Collapse
Affiliation(s)
- Silvana-Yanina Romero-Zerbo
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Nadia Valverde
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Silvia Claros
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Pablo Zamorano-Gonzalez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Federica Boraldi
- Dipartimento di Scienze Della Vita. Patologia Generale, Universita di Modena e Reggio Emilia 4112, Italy
| | - Francesco-Demetrio Lofaro
- Dipartimento di Scienze Della Vita. Patologia Generale, Universita di Modena e Reggio Emilia 4112, Italy
| | - Estrella Lara
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Jose Pavia
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain.
| | - Maria Garcia-Fernandez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain.
| | - Belen Gago
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Elisa Martin-Montañez
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| |
Collapse
|
4
|
Dias C, Lourenço CF, Laranjinha J, Ledo A. High-Resolution Respirometry Methodology for Bioenergetic and Metabolic Studies in Intact Brain Slices. Methods Mol Biol 2025; 2878:35-48. [PMID: 39546255 DOI: 10.1007/978-1-0716-4264-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The brain is critically dependent on energetic substrates as it consumes circa 20% of glucose and oxygen under normal physiological conditions. Although different cell types and at different locations might experience particular specificities in the utilization of these substrates, overall, mitochondrial oxidative phosphorylation supports the most efficient energy transduction process, enabling the complete oxidation of glucose to CO2 coupled to ATP synthesis in the presence of O2. Impairment of mitochondrial bioenergetics has been identified as an early event in many brain diseases and aging. Thus, novel methodologies to readily assess mitochondrial respiration in brain tissue, while preserving cellular and mitochondrial architecture and overcoming the serious drawbacks of studies using isolated mitochondrial preparations, are needed. Here we describe a methodology for studying functional parameters defining tissue metabolic respiration in brain hippocampal slices. The methodology can be used for physiological, pharmacological, and toxicological studies.
Collapse
Affiliation(s)
- Cândida Dias
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Cátia F Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Ledo
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Bernard J, Tamouza R, Godin O, Berk M, Andreazza AC, Leboyer M. Mitochondria at the crossroad of dysregulated inflammatory and metabolic processes in bipolar disorders. Brain Behav Immun 2025; 123:456-465. [PMID: 39378969 DOI: 10.1016/j.bbi.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
In last few decades, considerable evidence has emphasized the significant involvement of mitochondria, often referred to as the "powerhouse of the cell," in the pathophysiology of bipolar disorder (BD). Given crucial mitochondrial functions in cellular metabolism and inflammation, both of which are compromised in BD, this perspective review examines the central role of mitochondria in inflammation and metabolism within the context of this disorder. We first describe the significance of mitochondria in metabolism before presenting the dysregulated inflammatory and metabolic processes. Then, we present a synthetic and hypothetical model of the importance of mitochondria in those dysfunctional pathways. The article also reviews different techniques for assessing mitochondrial function and discuss diagnostic and therapeutic implications. This review aims to improve the understanding of the inflammatory and metabolic comorbidities associated with bipolar disorders along with mitochondrial alterations within this context.
Collapse
Affiliation(s)
- Jérémy Bernard
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Ryad Tamouza
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Ophélia Godin
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, Mitochondrial Innovation Initiative (MITO2i) University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marion Leboyer
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France.
| |
Collapse
|
6
|
Brand T, Baumgarten BT, Denzinger S, Reinders Y, Kleindl M, Schanbacher C, Funk F, Gedik N, Jabbasseh M, Kleinbongard P, Dudek J, Szendroedi J, Tolstik E, Schuh K, Krüger M, Dobrev D, Cuello F, Sickmann A, Schmitt JP, Lorenz K. From Ca 2+ dysregulation to heart failure: β-adrenoceptor activation by RKIP postpones molecular damages and subsequent cardiac dysfunction in mice carrying mutant PLN R9C by correction of aberrant Ca 2+-handling. Pharmacol Res 2024; 211:107558. [PMID: 39742932 DOI: 10.1016/j.phrs.2024.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Impaired cardiomyocyte Ca2+ handling is a central hallmark of heart failure (HF), which causes contractile dysfunction and arrhythmias. However, the underlying molecular mechanisms and the precise contribution of defects in Ca2+-cycling regulation in the development of HF are still not completely resolved. Here, we used transgenic mice that express a human mutation in the cardiomyocyte Ca2+-regulator phospholamban (PLNR9C-tg) causing severe HF due to a reduction in Ca2+ reuptake into the sarco(endo)plasmic reticulum (SR). PLNR9C-induced HF is a rapidly progressing condition characterized by prominent Ca2+ cycling and relaxation defects and premature death of mutation carriers. We found that endoplasmic reticulum (ER) and mitochondrial function are affected even before transition to overt HF. Early correction of aberrant Ca2+ cycling by cardiac expression of the Raf kinase inhibitor protein (RKIP), an endogenous activator of β-adrenoceptors (βAR), delayed the cellular alterations, functional failure and prolonged lifespan. Our study highlights the importance of early and persistent correction of Ca2+ dynamics, not only for excitation/contraction coupling, but also for the prevention of rather irreparable events on cardiac energetics and ER stress adaptations. The latter may even impede with later onset of Ca2+-related therapeutic interventions and should gain more focus for HF treatment.
Collapse
Affiliation(s)
- Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Bettina Tanitha Baumgarten
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Sabrina Denzinger
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Miriam Kleindl
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Constanze Schanbacher
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Florian Funk
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, 45122, Essen, Germany
| | - Mahmood Jabbasseh
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, 45122, Essen, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Elen Tolstik
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Kai Schuh
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Martina Krüger
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States; Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Quebec, Canada
| | - Friederike Cuello
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany; Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Joachim P Schmitt
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany.
| |
Collapse
|
7
|
Rahimi Darehbagh R, Khanmohammadi S, Rezaei N. The role of mitochondrial DNA variants and dysfunction in the pathogenesis and progression of multiple sclerosis. Mitochondrion 2024; 81:102002. [PMID: 39732186 DOI: 10.1016/j.mito.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/10/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). The etiology of MS remains elusive, with a complex interplay of genetic and environmental factors contributing to its pathogenesis. Recent studies showed mitochondrial DNA (mtDNA) as a potential player in the development and progression of MS. These studies encompassed mtDNA variants, copy number variations, and haplogroups. This narrative review aims to synthesize the current understanding of the role of mtDNA's in MS. The findings of this review suggest that mtDNA may indeed play a role in the development and progression of MS. Several studies have reported an association between mtDNA variants and increased susceptibility to MS, while others have found a link between mtDNA copy number variations and disease severity. Furthermore, specific mtDNA haplogroups have been demonstrated to confer protection against MS. MtDNA alterations may make neurons and oligodendrocytes more susceptible to inflammatory and oxidative stress, causing demyelination and axonal degeneration in MS patients. In conclusion, this review underscores the potential significance of mtDNA in the pathogenesis of MS and highlights the need for further research to fully elucidate its role. A deeper understanding of mtDNA's involvement in MS may pave the way for the development of novel therapeutic strategies to combat this debilitating disease.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran; Nanoclub Elites Association, Tehran, Iran; Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran
| | - Shaghayegh Khanmohammadi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Li Y, Zhang ZG, Chopp M, Liu Z, Golembieski W, Landschoot-Ward J, Zhang Y, Liu XS, Xin H. Labeling and isolating cell specific neuronal mitochondria and their functional analysis in mice post stroke. Exp Neurol 2024; 385:115126. [PMID: 39719208 DOI: 10.1016/j.expneurol.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Dendritic and axonal plasticity, which mediates neurobiological recovery after a stroke, critically depends on the mitochondrial function of neurons. To investigate, in vivo, neuronal mitochondrial function at the stroke recovery stage, we employed Mito-tag mice combined with cerebral cortical infection of AAV9 produced from plasmids carrying Cre-recombinase controlled by two neuronal promoters, synapsin-I (SYN1) and calmodulin-kinase IIa to induce expression of a hemagglutinin (HA)-tagged enhanced green fluorescence protein (EGFP) that localizes to mitochondrial outer membranes of SYN1 positive (SYN+) and CaMKIIa positive (CaMKIIa+) neurons. These mice were then subjected to permanent middle cerebral artery occlusion (MCAO) and sacrificed 14 days post stroke. Neuronal mitochondria were then selectively isolated from the fresh brain tissues excised from the ischemic core (IC), ischemic boundary zone (IBZ), as well as from the homologous contralateral hemisphere (CON) by anti-HA magnetic beads for functional analyses. We found that the bead pulled neuronal specific mitochondria were co-precipitated with GFP and enriched with mitochondrial markers, e.g. voltage-dependent anion channel, cytochrome C, and COX IV, but lacked the Golgi protein RCAS1 as well as endoplasmic reticulum markers: Heme‑oxygenase 1 and Calnexin, indicating that specific neuronal mitochondria have been selectively isolated. Western-blot data showed that oxidative phosphorylation (OXPHOS) components in SYN+ and CAMKII+ neuronal mitochondria were significantly decreased in the IBZ and further decreased in the IC compared to the contralateral tissue, which was associated with the significant reductions of mitochondrial function indicated by oxygen consumption rate (OCR) (p < 0.05, respectively, for both neuron types). These data suggest dysfunction of neuronal mitochondria post stroke is present during the stroke recovery stage. Collectively, for the first time, we demonstrated that using a Mito-tag mouse line combined with AAV9 carrying Cre recombinase approach, neuronal specific mitochondria can be efficiently isolated from the mouse brain to investigate their functional changes post stroke.
Collapse
Affiliation(s)
- Yanfeng Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America; Department of Physics, Oakland University, Rochester, MI 48309, United States of America
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - William Golembieski
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Julie Landschoot-Ward
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Hongqi Xin
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America.
| |
Collapse
|
9
|
Chen Y, Wei X, Ci X, Ji Y, Zhang J. Dysregulation of mitochondria, apoptosis and mitophagy in Leber's hereditary optic neuropathy with MT-ND1 3635G>A mutation. Gene 2024; 930:148853. [PMID: 39147111 DOI: 10.1016/j.gene.2024.148853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternal inherited disorder, primarily due to mitochondrial DNA (mtDNA) mutations. This investigation aimed to assess the pathogenicity of m.3635G>A alteration known to confer susceptibility to LHON. The disruption of electrostatic interactions among S110 of the MT-ND1 and the side chain of E4, along with the carbonyl backbone of M1 in the NDUFA1, was observed in complex I of cybrids with m.3635G>A. This disturbance affected the complex I assembly activity by changing the mitochondrial respiratory chain composition and function. In addition, the affected cybrids exhibited notable deficiencies in complex I activities, including impaired mitochondrial respiration and depolarization of its membrane potential. Apoptosis was also stimulated in the mutant group, as witnessed by the secretion of cytochrome c and activation of PARP, caspase 3, 7, and 9 compared to the control. Furthermore, the mutant group exhibited decreased levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PINK1/Parkin-dependent mitophagy. Overall, the current study has confirmed the crucial involvement of the alteration of the m.3635G>A gene in the development of LHON. These findings contribute to a deeper comprehension of the pathophysiological mechanisms underlying LHON, providing a fundamental basis for further research.
Collapse
Affiliation(s)
- Yingqi Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoyang Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaorui Ci
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Juanjuan Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
10
|
Rhodes EM, Yap KN, Hill GE, Hood WR. A Comparison of the Mitochondrial Performance between Migratory and Sedentary Mimid Thrushes. Integr Comp Biol 2024; 64:1859-1870. [PMID: 39122659 DOI: 10.1093/icb/icae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/19/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
Birds exhibit a variety of migration strategies. Because sustained flapping flight requires the production of elevated levels of energy compared to typical daily activities, migratory birds are well-documented to have several physiological adaptations to support the energy demands of migration. However, even though mitochondria are the source of ATP that powers flight, the respiratory performance of the mitochondria is almost unstudied in the context of migration. We hypothesized that migratory species would have higher mitochondrial respiratory performance during migration compared to species that do not migrate. To test this hypothesis, we compared variables related to mitochondrial respiratory function between two confamilial bird species-the migratory Gray Catbird (Dumetella carolinensis) and the non-migratory Northern Mockingbird (Mimus polyglottos). Birds were captured at the same location along the Alabama Gulf Coast, where we assumed that Gray Catbirds were migrants and where resident Northern Mockingbirds live year-round. We found a trend in citrate synthase activity, which suggests that Gray Catbirds have a greater mitochondrial volume in their pectoralis muscle, but we observed no other differences in mitochondrial respiration or complex enzymatic activities between individuals from the migrant vs. the non-migrant species. However, when we assessed the catbirds included in our study using well-established indicators of migratory physiology, birds fell into two groups: a group with physiological parameters indicating a physiology of birds engaged in migration and a group with the physiology of birds not migrating. Thus, our comparison included catbirds that appeared to be outside of migratory condition. When we compared the mitochondrial performance of these three groups, we found that the mitochondrial respiratory capacity of migrating catbirds was very similar to that of Northern Mockingbirds, while the catbirds judged to be not migrating were lowest. One explanation for these observations is these species display very different daily flight behaviors. While the mockingbirds we sampled were not breeding nor migrating, they are highly active birds, living in the open and engaging in flapping flights throughout each day. In contrast, Gray Catbirds live in shrubs and fly infrequently when not migrating. Such differences in baseline energy needs likely confounded our attempt to study adaptations to migration.
Collapse
Affiliation(s)
- Emma M Rhodes
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
11
|
Hood WR. Mechanisms that Alter Capacity for Adenosine Triphosphate Production and Oxidative Phosphorylation: Insights from Avian Migration. Integr Comp Biol 2024; 64:1811-1825. [PMID: 38844402 DOI: 10.1093/icb/icae065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 12/21/2024] Open
Abstract
Avian migration is among the most energetically demanding feats observed in animals. Studies evaluating the physiological underpinnings of migration have repeatedly shown that migratory birds display numerous adaptations that ultimately supply the flight muscle mitochondria with abundant fuel and oxygen during long-distance flights. To make use of this high input, the organs and mitochondria of migrants are predicted to display several traits that maximize their capacity to produce adenosine triphosphate (ATP). This review aims to introduce readers to several mechanisms by which organs and mitochondria can alter their capacity for oxidative phosphorylation and ATP production. The role of organ size, mitochondrial volume, substrate, and oxygen delivery to the electron transport system are discussed. A central theme of this review is the role of changes in electron chain complex activity, mitochondrial morphology and dynamics, and supercomplexes in allowing avian migrants and other taxa to alter the performance of the electron transport system with predictable shifts in demand. It is my hope that this review will serve as a springboard for future studies exploring the mechanisms that alter bioenergetic capacity across animal species.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
12
|
Nossar LF, Lopes JA, Pereira-Acácio A, Costa-Sarmento G, Rachid R, Wendt CHC, Miranda K, Galina A, Rodrigues-Ferreira C, Muzi-Filho H, Vieyra A. Chronic undernutrition impairs renal mitochondrial respiration accompanied by intense ultrastructural damage in juvenile rats. Biochem Biophys Res Commun 2024; 739:150583. [PMID: 39182354 DOI: 10.1016/j.bbrc.2024.150583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
This study investigated whether chronic undernutrition alters the mitochondrial structure and function in renal proximal tubule cells, thus impairing fluid transport and homeostasis. We previously showed that chronic undernutrition downregulates the renal proximal tubules (Na++K+)ATPase, the main molecular machine responsible for fluid transport and ATP consumption. Male rats received a multifactorial deficient diet, the so-called Regional Basic Diet (RBD), mimicking those used in impoverished regions worldwide, from weaning to a juvenile age (3 months). The diet has a low content (8 %) of poor-quality proteins, low lipids, and no vitamins compared to control (CTR). We investigated citrate synthase activity, mitochondrial respiration (oxygraphy) in phosphorylating and non-phosphorylating conditions with different substrates/inhibitors, potential across the internal membrane (Δψ), and anion superoxide/H2O2 formation. The data were correlated with ultrastructural alterations evaluated using transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM). Citrate synthase activity decreased (∼50 %) in RBD rats, accompanied by a similar reduction in respiration in non-phosphorylating conditions, maximum respiratory capacity, and ATP synthesis. The Δψ generation and its dissipation after carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone remained unmodified in the survival mitochondria. H2O2 production increased (∼100 %) after Complex II energization. TEM demonstrated intense matrix vacuolization and disruption of cristae junctions in a subpopulation of RBD mitochondria, which was also demonstrated in the 3D analysis of FIB-SEM tomography. In conclusion, chronic undernutrition impairs mitochondrial functions in renal proximal tubules, with profound alterations in the matrix and internal membrane ultrastructure that culminate with the compromise of ATP supply for transport processes.
Collapse
Affiliation(s)
- Luiz F Nossar
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jarlene A Lopes
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Amaury Pereira-Acácio
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil
| | - Glória Costa-Sarmento
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Rachel Rachid
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Camila H C Wendt
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Kildare Miranda
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Antonio Galina
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Clara Rodrigues-Ferreira
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Humberto Muzi-Filho
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Adalberto Vieyra
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil; National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
13
|
Hood WR. A Mitochondrial Perspective on the Demands of Reproduction. Integr Comp Biol 2024; 64:1611-1622. [PMID: 38772739 DOI: 10.1093/icb/icae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
The cost of supporting traits that increase mating opportunities and maximize the production of quality offspring is paid in energy. This currency of reproduction is enabled by bioenergetic adaptations that underlie the flexible changes in energy utilization that occur with reproduction. This review considers the traits that contribute to variation in the capacity of an organ to produce ATP. Further, it synthesizes findings from studies that have evaluated bioenergetic adaptations to the production of sexually selected traits and performance during reproduction and the role of change in mitochondrial respiratory performance in the tradeoff between reproduction and longevity. Cumulatively, these works provide evidence that in selecting for redder males, female finches will likely mate with a male with high mitochondrial respiratory performance and, potentially, a higher probability of mitonuclear compatibility. Females from diverse taxa allocate more to reproduction when the respiratory performance of mitochondria or density of the inner mitochondrial membrane in the liver or skeletal muscle is higher. Finally, reproduction does not appear to have persistent negative effects on mitochondrial respiratory performance, countering a role for mitochondria in the trade-off between reproduction and longevity. I close by noting that adaptations that improve mitochondrial respiratory performance appear vital for optimizing reproductive fitness.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, 36849, USA
| |
Collapse
|
14
|
Kowaltowski AJ, Abdulkader F. How and when to measure mitochondrial inner membrane potentials. Biophys J 2024; 123:4150-4157. [PMID: 38454598 DOI: 10.1016/j.bpj.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
The scientific literature on mitochondria has increased significantly over the years due to findings that these organelles have widespread roles in the onset and progression of pathological conditions such as metabolic disorders, neurodegenerative and cardiovascular diseases, inflammation, and cancer. Researchers have extensively explored how mitochondrial properties and functions are modified in different models, often using fluorescent inner mitochondrial membrane potential (ΔΨm) probes to assess functional mitochondrial aspects such as protonmotive force and oxidative phosphorylation. This review provides an overview of existing techniques to measure ΔpH and ΔΨm, highlighting their advantages, limitations, and applications. It discusses drawbacks of ΔΨm probes, especially when used without calibration, and conditions where alternative methods should replace ΔΨm measurements for the benefit of the specific scientific objectives entailed. Studies investigating mitochondria and their vast biological roles would be significantly advanced by the understanding of the correct applications as well as limitations of protonmotive force measurements and use of fluorescent ΔΨm probes, adopting more precise, artifact-free, sensitive, and quantitative measurements of mitochondrial functionality.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Fernando Abdulkader
- Departmento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Chauhan S, Smith DR, Shariati-Ievari S, Srivastava A, Dhingra S, Aliani M, Fernyhough P. Muscarinic acetylcholine type 1 receptor antagonism activates TRPM3 to augment mitochondrial function and drive axonal repair in adult sensory neurons. Mol Metab 2024; 92:102083. [PMID: 39694091 DOI: 10.1016/j.molmet.2024.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE Antagonism of the muscarinic acetylcholine type 1 receptor (M1R) promotes sensory axon repair and is protective in peripheral neuropathy, however, the mechanism remains elusive. We investigated the role of the heat-sensing transient receptor potential melastatin-3 (TRPM3) cation channel in M1R antagonism-mediated nerve regeneration and explored the potential of TRPM3 activation to facilitate axonal plasticity. METHODS Dorsal root ganglion (DRG) neurons from adult control or diabetic rats were cultured and treated with TRPM3 agonists (CIM0216, pregnenolone sulfate) and M1R antagonists pirenzepine (PZ) or muscarinic toxin 7 (MT7). Ca2+ transients, mitochondrial respiration, AMP-activated protein kinase (AMPK) expression, and mitochondrial inner membrane potential were analyzed. The effect of M1R activation or blockade on TRPM3 activity mediated by phosphatidylinositol 4,5-bisphosphate (PIP2) was studied. Metabolic profiling of DRG neurons and human neuroblastoma SH-SY5Y cells was conducted. RESULTS M1R antagonism induced by PZ or MT7 increased Ca2+ influx in DRG neurons and was inhibited by TRPM3 antagonists or in the absence of extracellular Ca2+. TRPM3 agonists elevated Ca2+ levels, augmented mitochondrial respiration, AMPK activation and neurite outgrowth. M1R antagonism stimulated TRPM3 channel activity through inhibition of PIP2 hydrolysis to activate Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMPK, leading to augmented mitochondrial function and neuronal metabolism. DRG neurons with AAV-mediated shRNA knockdown of TRPM3 exhibited suppressed antimuscarinic drug-induced neurite outgrowth. TRPM3 agonists increased glycolysis and TCA cycle metabolites, indicating enhanced metabolism in DRG neurons and SH-SY5Y cells. CONCLUSIONS Activation of the TRPM3/CaMKKβ/AMPK pathway promoted collateral sprouting of sensory axons, positioning TRPM3 as a promising therapeutic target for peripheral neuropathy.
Collapse
Affiliation(s)
- Sanjana Chauhan
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada
| | - Shiva Shariati-Ievari
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - Abhay Srivastava
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Michel Aliani
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
16
|
Crino OL, Wild KH, Friesen CR, Leibold D, Laven N, Peardon AY, Recio P, Salin K, Noble DWA. From eggs to adulthood: sustained effects of early developmental temperature and corticosterone exposure on physiology and body size in an Australian lizard. J Exp Biol 2024; 227:jeb249234. [PMID: 39665281 DOI: 10.1242/jeb.249234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/02/2024] [Indexed: 12/13/2024]
Abstract
Developing animals are increasingly exposed to elevated temperatures as global temperatures rise as a result of climate change. Vertebrates can be affected by elevated temperatures during development directly, and indirectly through maternal effects (e.g. exposure to prenatal glucocorticoid hormones). Past studies have examined how elevated temperatures and glucocorticoid exposure during development independently affect vertebrates. However, exposure to elevated temperatures and prenatal corticosterone could have interactive effects on developing animals that affect physiology and life-history traits across life. We tested interactions between incubation temperature and prenatal corticosterone exposure in the delicate skink (Lampropholis delicata). We treated eggs with high or low doses of corticosterone and incubated eggs at 23°C (cool) or 28°C (warm). We measured the effects of these treatments on development time, body size and survival from hatching to adulthood and on adult hormone levels and mitochondrial respiration. We found no evidence for interactive effects of incubation temperature and prenatal corticosterone exposure on phenotype. However, incubation temperature and corticosterone treatment each independently decreased body size at hatching and these effects were sustained into the juvenile period and adulthood. Lizards exposed to low doses of corticosterone during development had elevated levels of baseline corticosterone as adults. Additionally, lizards incubated at cool temperatures had higher levels of baseline corticosterone and more efficient mitochondria as adults compared with lizards incubated at warm temperatures. Our results show that developmental conditions can have sustained effects on morphological and physiological traits in oviparous lizards but suggest that incubation temperature and prenatal corticosterone do not have interactive effects.
Collapse
Affiliation(s)
- Ondi L Crino
- College of Science and Engineering, Flinders University, Bedford Park, SA 5001, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Kristoffer H Wild
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- School of BioSciences , The University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences , University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dalton Leibold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Naomi Laven
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Amelia Y Peardon
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Pablo Recio
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Karine Salin
- Ifremer, Laboratory of Environmental Marine Sciences, University Brest, CNRS, IRD, 29280 Plouzané, France
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Munteanu A, Gogulescu A, Șoica C, Mioc A, Mioc M, Milan A, Lukinich-Gruia AT, Pricop MA, Jianu C, Banciu C, Racoviceanu R. In Vitro and In Silico Evaluation of Syzygium aromaticum Essential Oil: Effects on Mitochondrial Function and Cytotoxic Potential Against Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:3443. [PMID: 39683236 DOI: 10.3390/plants13233443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
The current study proposes the in vitro and in silico anticancer evaluation of clove (Syzygium aromaticum L.) essential oil (CEO). The steam hydrodistillation method used yielded 10.7% (wt) CEO. GC-MS analysis revealed that the obtained oil is rich in eugenol (75%), β-caryophyllene (20%), and α- caryophyllene (2.8%) and also contains several other minor components accounting for approximately 1.5%. The DPPH-based scavenging antioxidant activity was assessed for the obtained CEO, exhibiting an IC50 value of 158 μg/mL. The cytotoxic effects of CEO, its major component eugenol, and CEO solubilized with Tween-20 and PEG-400 were tested against both noncancerous HaCaT cells and HT-29 human colorectal adenocarcinoma, RPMI-7951 melanoma, A431 skin carcinoma, and NCI-H460 non-small lung cancer cells, using the Alamar Blue and LDH assay after 48 h treatment. The Tween-20 and PEG-400 CEO formulations, at 200 μg/mL, recorded the highest cytotoxic and selective effects against RPMI-7951 (72.75% and 71.56%), HT-29 (71.51% and 45.43%), and A431 cells (61.62% and 59.65%). Furthermore, CEO disrupted mitochondrial function and uncoupled oxidative phosphorylation. This effect was more potent for the CEO against the RPMI-7951 and HT-29 cells, whereas for the other two tested cell lines, a more potent inhibition of mitochondrial function was attributed to eugenol. The present study is the first to specifically investigate the effects of CEO and Tween-20 and PEG-400 CEO formulations on the mitochondrial function of RPMI-7951, HT-29, A431, and NCI-H460 cancer cell lines using high-resolution respirometry, providing novel insights into their impact on mitochondrial respiration and bioenergetics in cancer cells. The results obtained may explain the increased ROS production observed in cancer cell lines treated with eugenol and CEO. Molecular docking identified potential protein targets, related to the CEO anticancer activity, in the form of PI3Kα, where the highest active theoretical inhibitor was calamenene (-7.5 kcal/mol). Docking results also showed that calamenene was the overall most active theoretical inhibitor for all docked proteins and indicated a potential presence of synergistic effects among all CEO constituents.
Collapse
Affiliation(s)
- Andreea Munteanu
- Department of Internal Medicine IV, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Armand Gogulescu
- Department XVI: Balneology, Medical Rehabilitation and Rheumatology, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Codruța Șoica
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Marius Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | | | - Maria-Alexandra Pricop
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
- Department of Applied Chemistry and Environmental Engineering and Inorganic Compounds, Faculty of Industrial Chemistry, Biotechnology and Environmental Engineering, Polytechnic University of Timisoara, Vasile Pârvan 6, 300223 Timisoara, Romania
| | - Calin Jianu
- Faculty of Food Engineering, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania"Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
18
|
Salagre D, Bajit H, Fernández-Vázquez G, Dwairy M, Garzón I, Haro-López R, Agil A. Melatonin induces fiber switching by improvement of mitochondrial oxidative capacity and function via NRF2/RCAN/MEF2 in the vastus lateralis muscle from both sex Zücker diabetic fatty rats. Free Radic Biol Med 2024; 227:322-335. [PMID: 39645208 DOI: 10.1016/j.freeradbiomed.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The positive role of melatonin in obesity control and skeletal muscle (SKM) preservation is well known. We recently showed that melatonin improves vastus lateralis muscle (VL) fiber oxidative phenotype. However, fiber type characterization, mitochondrial function, and molecular mechanisms that underlie VL fiber switching by melatonin are still undefined. Our study aims to investigate whether melatonin induces fiber switching by NRF2/RCAN/MEF2 pathway activation and mitochondrial oxidative metabolism modulation in the VL of both sex Zücker diabetic fatty (ZDF) rats. 5-Weeks-old male and female ZDF rats (N = 16) and their age-matched lean littermates (ZL) were subdivided into two subgroups: control (C) and orally treated with melatonin (M) (10 mg/kg/day) for 12 weeks. Interestingly, melatonin increased oxidative fibers amounts (Types I and IIa) counteracting the decreased levels found in the VL of obese-diabetic rats, and upregulated NRF2, calcineurin and MEF2 expression. Melatonin also restored the mitochondrial oxidative capacity increasing the respiratory control ratio (RCR) in both sex and phenotype rats through the reduction of the proton leak component of respiration (state 4). Melatonin also improved the VL mitochondrial phosphorylation coefficient and modulated the total oxygen consumption by enhancing complex I, III and IV activity, and fatty acid oxidation (FAO) in both sex obese-diabetic rats, decreasing in male and increasing in female the complex II oxygen consumption. These findings suggest that melatonin treatment induces fiber switching in SKM improving mitochondrial functionality by NRF2/RCAN/MEF2 pathway activation.
Collapse
Affiliation(s)
- Diego Salagre
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Habiba Bajit
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | | | - Mutaz Dwairy
- Department of Civil Engineering, Yarmuk University, 21163, Irbid, Jordan
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, BioHealth Institute Granada (IBs Granada), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Rocío Haro-López
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Ahmad Agil
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
19
|
Fan T, Zhu N, Li M, Wang Z, Lin X. CTRP6-mediated cardiac protection in heart failure via the AMPK/SIRT1/PGC-1α signalling pathway. Exp Physiol 2024; 109:2031-2045. [PMID: 39325807 DOI: 10.1113/ep092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Heart failure (HF) remains a significant global health concern with limited effective treatments available. C1q/TNF-related protein 6 (CTRP6) is a member of the CTRP family analogous to adiponectin and its role in HF pathogenesis remains unclear. Here, we investigated the impact of CTRP6 on HF progression. To mimic heart failure with reduced ejection fraction (HFrEF), we used isoproterenol injection in mice and administered adenovirus vectors expressing CTRP6 (Ad-CTRP6) via tail vein injection. We assessed cardiac function through echocardiography and histology. CTRP6's effects on hypertrophy, fibrosis, apoptosis, oxidative stress and mitochondrial function were analysed. Downstream pathways (phosphorylated AMP-activated protein kinase (p-AMPK), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) were studied in heart tissues. In vitro, isoproterenol-stimulated H9c2 cardiomyocytes were treated with CTRP6 to examine viability, apoptosis, F-actin and signalling proteins. Compound C was used to assess AMPK involvement. CTRP6 expression was lower in the plasma of HF patients. In an isoproterenol-induced HFrEF mouse model, adenovirus-mediated overexpression of CTRP6 ameliorated cardiac dysfunction and reduced cardiomyocyte apoptosis, oxidative stress, inflammation and myocardial injury markers. Mechanistically, CTRP6 activation of the AMPK/SIRT1/PGC-1α signalling pathway restored mitochondrial homeostasis, evidenced by reduced mitochondrial reactive oxygen species levels, increased ATP content, and enhanced mitochondrial complex I/III activities in cardiac tissues. In vitro studies using isoproterenol-stimulated H9c2 cardiomyocytes corroborated these findings, demonstrating that CTRP6 upregulation attenuated hypertrophy, apoptosis, oxidative stress and mitochondrial dysfunction. Furthermore, these effects were partially reversed by the AMPK inhibitor Compound C, implicating the involvement of the AMPK pathway in CTRP6-mediated cardioprotection. CTRP6 alleviates HF progression through the AMPK/SIRT1/PGC-1α signalling pathway.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ningjun Zhu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengli Li
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
20
|
Chauhan N, Dedman CJ, Baldreki C, Dowle AA, Larson TR, Rickaby REM. Contrasting species-specific stress response to environmental pH determines the fate of coccolithophores in future oceans. MARINE POLLUTION BULLETIN 2024; 209:117136. [PMID: 39427478 DOI: 10.1016/j.marpolbul.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Molecular mechanisms driving species-specific environmental sensitivity in coccolithophores are unclear but crucial in understanding species selection and adaptation to environmental change. This study examined proteomic and physiological changes in three species under varying pH conditions. We showed that changing pH drives intracellular oxidative stress and changes membrane potential. Upregulation in antioxidant, DNA repair and cell cycle-related protein-groups indicated oxidative damage across high (pH 8.8) and low pH (pH 7.6) compared to control pH (pH 8.2), and correlated with reduced growth rates. Upregulation of mitochondrial proteins suggested higher metabolite demand for restoring cellular homeostasis under pH-induced stress. Photosynthetic rates generally correlated with CO2 availability, driving higher net carbon fixation rates at low pH. The intracellular pH-buffering capacity of the coastal Chrysotila carterae and high metabolic adaptability in the bloom-forming Gephyrocapsa huxleyi will likely facilitate their adaptation to ocean acidification or artificial ocean alkalinisation. However, the pH sensitivity of the ancient open-ocean Coccolithus braarudii will possibly result in reduced growth and shrinking of its ecological niche.
Collapse
Affiliation(s)
- Nishant Chauhan
- Department of Earth Sciences, University of Oxford, UK; Department of Earth Sciences, University of Cambridge, UK.
| | - Craig J Dedman
- Department of Earth Sciences, University of Oxford, UK; School of Geography, Earth and Environmental Sciences, University of Plymouth, UK
| | - Chloë Baldreki
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Tony R Larson
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | | |
Collapse
|
21
|
Zhang Z, Zhou F, Lu M, Zhang D, Zhang X, Xu S, He Y. WTAP-mediated m 6A modification of TRIM22 promotes diabetic nephropathy by inducing mitochondrial dysfunction via ubiquitination of OPA1. Redox Rep 2024; 29:2404794. [PMID: 39314036 PMCID: PMC11423538 DOI: 10.1080/13510002.2024.2404794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes and is the most common cause of end-stage renal disease. Tripartite motif-containing (TRIM) proteins are a large family of E3 ubiquitin ligases that contribute to protein quality control by regulating the ubiquitin - proteasome system. However, the detailed mechanisms through which various TRIM proteins regulate downstream events have not yet been fully elucidated. The current research aimed to determine the function and mechanism of TRIM22 in DN. METHODS DN models were established by inducing HK-2 cells using high glucose (HG) and diabetic mice (db/db mice). Cell viability, apoptosis, mitochondrial reactive oxygen species, and mitochondrial membrane potential were detected by Cell Counting Kit-8 and flow cytometry, respectively. Pathological changes were evaluated using hematoxylin and eosin, periodic acid schiff and Masson staining. The binding between TRIM22 and optic atrophy 1 (OPA1) was analyzed using co-immunoprecipitation. The m6A level of TRIM22 5'UTR was detected using RNA immunoprecipitation. RESULTS TRIM22 was highly expressed in patients with DN. TRIM22 silencing inhibited HG-induced apoptosis and mitochondrial dysfunction in HK-2 cells. Promoting mitochondrial fusion alleviated TRIM22 overexpression-induced cell apoptosis, mitochondrial dysfunction in HK-2 cells, and kidney damage in mice. Mechanistically, TRIM22 interacted with OPA1 and induced its ubiquitination. Wilms tumor 1-associating protein (WTAP) promoted m6A modification of TRIM22 through the m6A reader insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). DISCUSSION TRIM22 silencing inhibited the progression of DN by interacting with OPA1 and inducing its ubiquitination. Furthermore, WTAP promoted m6A modification of TRIM22 via IGF2BP1.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Fengzhu Zhou
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Min Lu
- Department of Paediatrics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, People’s Republic of China
| | - Duanchun Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xinyi Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Siyu Xu
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yanming He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
22
|
Ortiz-Rodriguez JM, Bucci D, Tovar-Pascual L, Granata S, Spinaci M, Nesci S. Analysis of stallion spermatozoa metabolism using Agilent Seahorse XFp Technology. Anim Reprod Sci 2024; 271:107633. [PMID: 39509949 DOI: 10.1016/j.anireprosci.2024.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Sperm metabolism consists of a sophisticated network of biochemical reactions and varies between species, resulting in different metabolic strategies for ATP production to maintain sperm functionality. ATP can be produced through glycolysis or in the mitochondria by oxidative phosphorylation (OXPHOS). Since OXPHOS is the predominant metabolic pathway in horses spermatozoa, various assessments of mitochondrial activity are used to evaluate fertility, utilizing techniques such as fluorescent probes analysed via microscopy or flow cytometry, and polarographic electrode assays to measure current flow in response to an applied voltage. Though, these methods are limited by low throughput, as they assess mitochondrial activity at a single time point under a specific treatment condition. This study explores, for the first time, the application of the Agilent Seahorse XFp Technology to evaluate metabolism in stallion spermatozoa. This method enables real-time measurement of cellular metabolism across multiple samples or experimental conditions simultaneously. Ejaculates from eight different stallions were collected, and pools were prepared from three of them. Sperm viability and mitochondrial activity were evaluated by fluorescence microscopy, sperm motility by a computer-assisted sperm analysis system, and sperm metabolism was analysed via the Seahorse XFp analyser. Results confirmed a preference for OXPHOS over glycolysis in ATP production in stallion sperm, with mitochondria contributing significantly to total ATP generation. The Seahorse XFp Technology proved effective in evaluating equine sperm bioenergetics, offering insights into metabolic pathways critical for sperm function. In conclusion, this technology grants a new method for high-throughput analysis of sperm metabolism and quality, which could be applied to future reproductive studies in male equine fertility.
Collapse
Affiliation(s)
| | - Diego Bucci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Laura Tovar-Pascual
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Marcella Spinaci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Min R, Zhang D, He M, Chen J, Yi X, Zhuang Y. Stress-induced premature senescence in high five cell cultures: a principal factor in cell-density effects. BIORESOUR BIOPROCESS 2024; 11:107. [PMID: 39585490 PMCID: PMC11589019 DOI: 10.1186/s40643-024-00824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The Baculovirus Expression Vector System (BEVS) is highly valued in vaccine development, protein engineering, and drug metabolism research due to its biosafety, operational convenience, rapid scalability, and capacity for self-assembling virus-like particles. However, increasing cell density at the time of inoculation severely compromises the production capacity of BEVS, resulting in the "cell density effect". This study aimed to explore the mechanisms of the cell density effect through time-series analysis of transcriptomes and proteomes, with the goal of overcoming or alleviating the decline in productivity caused by increased cell density. The dynamic analysis of the omics of High Five cells under different CCI (cell density at infection) conditions showed that the impact of the "cell density effect" increased over time, particularly affecting genetic information processing, error repair, protein expression regulation, and material energy metabolism. Omics analysis of the growth stage of High Five cells showed that after 36 h of culture (cell density of about 1 × 106 cells/mL), the expression of ribosome-related proteins decreased, resulting in a rapid decrease in protein synthesis capacity, which was a key indicator of cell aging. Senescence verification experiments showed that cells began to show obvious early aging characteristics after 36 h, resulting in a decrease in the host cell's ability to resist stress. Overexpression and siRNA inhibition studies showed that the ndufa12 gene was a potential regulatory target for restricting the "cell density effect". Our results suggested that stress-induced premature senescence in High Five cell cultures, resulting in reduced energy metabolism and protein synthesis capabilities, was a critical factor contributing to cell density effects, and ultimately affecting virus production. In conclusion, this study provided new insights into managing virus production limitations due to cell density effects and offered innovative strategies to mitigate the adverse effects of cellular aging in biomanufacturing technologies.
Collapse
Affiliation(s)
- Rui Min
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China
| | - Dahe Zhang
- Womei Biology Company, Limited, Suzhou, China
| | - Mingzhe He
- Womei Biology Company, Limited, Suzhou, China
| | - Jingyuan Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China
| |
Collapse
|
24
|
Nedel W, Strogulski NR, Kopczynski A, Portela LV. Assessment of mitochondrial function and its prognostic role in sepsis: a literature review. Intensive Care Med Exp 2024; 12:107. [PMID: 39585590 PMCID: PMC11589057 DOI: 10.1186/s40635-024-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Sepsis is characterized by a dysregulated and excessive systemic inflammatory response to infection, associated with vascular and metabolic abnormalities that ultimately lead to organ dysfunction. In immune cells, both non-oxidative and oxidative metabolic rates are closely linked to inflammatory responses. Mitochondria play a central role in supporting these cellular processes by utilizing metabolic substrates and synthesizing ATP through oxygen consumption. To meet fluctuating cellular demands, mitochondria must exhibit adaptive plasticity underlying bioenergetic capacity, biogenesis, fusion, and fission. Given their role as a hub for various cellular functions, mitochondrial alterations induced by sepsis may hold significant pathophysiological implications and impact on clinical outcomes. In patients, mitochondrial DNA concentration, protein expression levels, and bioenergetic profiles can be accessed via tissue biopsies or isolated peripheral blood cells. Clinically, monocytes and lymphocytes serve as promising matrices for evaluating mitochondrial function. These mononuclear cells are highly oxidative, mitochondria-rich, routinely monitored in blood, easy to collect and process, and show a clinical association with immune status. Hence, mitochondrial assessments in immune cells could serve as biomarkers for clinical recovery, immunometabolic status, and responsiveness to oxygen and vasopressor therapies in sepsis. These characteristics underscore mitochondrial parameters in both tissues and immune cells as practical tools for exploring underlying mechanisms and monitoring septic patients in intensive care settings. In this article, we examine pathophysiological aspects, key methods for measuring mitochondrial function, and prominent studies in this field.
Collapse
Affiliation(s)
- Wagner Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição (GHC), Porto Alegre, Brazil.
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Unidade de Terapia Intensiva, Hospital Nossa Senhora da Conceição, Av Francisco Trein, 596-primeiro andar, Porto Alegre, RS, Brazil.
| | - Nathan Ryzewski Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
25
|
Sharma G, Duarte S, Shen Q, Khemtong C. Analyses of mitochondrial metabolism in diseases: a review on 13C magnetic resonance tracers. RSC Adv 2024; 14:37871-37885. [PMID: 39606283 PMCID: PMC11600307 DOI: 10.1039/d4ra03605k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic diseases such as obesity, type 2 diabetes, and cardiovascular diseases have become a global health concern due to their widespread prevalence and profound impact on life expectancy, healthcare expenditures, and the overall economy. Devising effective treatment strategies and management plans for these diseases requires an in-depth understanding of the pathophysiology of the metabolic abnormalities associated with each disease. Mitochondrial dysfunction is intricately linked to a wide range of metabolic abnormalities and is considered an important biomarker for diseases. However, assessing mitochondrial functions in viable tissues remains a challenging task, with measurements of oxygen consumption rate (OCR) and ATP production being the most widely accepted approaches for evaluating the health of mitochondria in tissues. Measurements of cellular metabolism using carbon-13 (or 13C) tracers have emerged as a viable method for characterizing mitochondrial metabolism in a variety of organelles ranging from cultured cells to humans. Information on metabolic activities and mitochondrial functions can be obtained from magnetic resonance (MR) analyses of 13C-labeled metabolites in tissues and organs of interest. Combining novel 13C tracer technologies with advanced analytical and imaging tools in nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) offers the potential to detect metabolic abnormalities associated with mitochondrial dysfunction. These capabilities would enable accurate diagnosis of various metabolic diseases and facilitate the assessment of responses to therapeutic interventions, hence improving patient health and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center Dallas Texas USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center Dallas Texas USA
| | - Sergio Duarte
- Department of Surgery, University of Florida Gainesville FL USA
| | - Qingyang Shen
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| | - Chalermchai Khemtong
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| |
Collapse
|
26
|
Ramos MLM, Barrinha A, Araújo GRDS, Alves V, Andrade IBD, Corrêa-Junior D, Motta MCM, Almeida-Paes R, Frases S. Photodynamic therapy reduces viability, enhances itraconazole activity, and impairs mitochondrial physiology of Sporothrix brasiliensis. Microbes Infect 2024:105440. [PMID: 39557358 DOI: 10.1016/j.micinf.2024.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Sporothrix brasiliensis is the main agent of sporotrichosis in Brazil, with few therapeutic options. This study aimed to investigate the in vitro efficacy of photodynamic therapy using a diode laser (InGaAIP) in combination with the photosensitizer methylene blue against S. brasiliensis yeasts. Additionally, we evaluated the underexplored mitochondrial activity of S. brasiliensis and the impact of laser treatment on the fungal mitochondrial aspects post-treatment. Three strains of S. brasiliensis were used, including a non-wild-type strain to itraconazole. Yeast viability was determined by counting colony-forming units. For a comprehensive analysis of irradiated versus non-irradiated cells, we assessed combined therapy with itraconazole, scanning electron microscopy of cells, and mitochondrial activity. The latter included high-resolution respirometry, membrane potential analysis, and reactive oxygen species production. Methylene blue combined with photodynamic therapy inhibited the growth of the isolates, including the non-wild-type strain to itraconazole. Photodynamic therapy induced the production of reactive oxygen species, which negatively affected mitochondrial function, resulting in decreased membrane potential and cell death. Photodynamic therapy altered the ultrastructure and mitochondrial physiology of S. brasiliensis, suggesting a new therapeutic approach for sporotrichosis caused by this species.
Collapse
Affiliation(s)
- Mariana Lucy Mesquita Ramos
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Azuil Barrinha
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glauber Ribeiro de Sousa Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Sudhadevi T, Harijith A. Mitochondrial dysfunction in febrile illness and sepsis: no clear picture yet. Pediatr Res 2024:10.1038/s41390-024-03696-1. [PMID: 39511441 DOI: 10.1038/s41390-024-03696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anantha Harijith
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
28
|
Peng W, Chung KB, Lawrence BP, O'Banion MK, Dirksen RT, Wojtovich AP, Onukwufor JO. DMT1 knockout abolishes ferroptosis induced mitochondrial dysfunction in C. elegans amyloid β proteotoxicity. Free Radic Biol Med 2024; 224:785-796. [PMID: 39317269 PMCID: PMC11568904 DOI: 10.1016/j.freeradbiomed.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
Iron is critical for neuronal activity and metabolism, and iron dysregulation alters these functions in age-related neurodegenerative disorders, such as Alzheimer's disease (AD). AD is a chronic neurodegenerative disease characterized by progressive neuronal dysfunction, memory loss and decreased cognitive function. AD patients exhibit elevated iron levels in the brain compared to age-matched non-AD individuals. However, the degree to which iron overload contributes to AD pathogenesis is unclear. Here, we evaluated the involvement of ferroptosis, an iron-dependent cell death process, in mediating AD-like pathologies in C. elegans. Results showed that iron accumulation occurred prior to the loss of neuronal function as worms age. In addition, energetic imbalance was an early event in iron-induced loss of neuronal function. Furthermore, the loss of neuronal function was, in part, due to increased mitochondrial reactive oxygen species mediated oxidative damage, ultimately resulting in ferroptotic cell death. The mitochondrial redox environment and ferroptosis were modulated by pharmacologic processes that exacerbate or abolish iron accumulation both in wild-type worms and worms with increased levels of neuronal amyloid beta (Aβ). However, neuronal Aβ worms were more sensitive to ferroptosis-mediated neuronal loss, and this increased toxicity was ameliorated by limiting the uptake of ferrous iron through knockout of divalent metal transporter 1 (DMT1). In addition, DMT1 knockout completely suppressed phenotypic measures of Aβ toxicity with age. Overall, our findings suggest that iron-induced ferroptosis alters the mitochondrial redox environment to drive oxidative damage when neuronal Aβ is overexpressed. DMT1 knockout abolishes neuronal Aβ-associated pathologies by reducing neuronal iron uptake.
Collapse
Affiliation(s)
- Wilson Peng
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Kaitlin B Chung
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA, 14642
| | - M Kerry O'Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA, 14642
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Andrew P Wojtovich
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - John O Onukwufor
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA, 14642.
| |
Collapse
|
29
|
Macejova D, Kollar J, Bobal P, Otevrel J, Schuster D, Brtko J. Triphenyltin isoselenocyanate: a novel nuclear retinoid X receptor ligand with antiproliferative and cytotoxic properties in cell lines derived from human breast cancer. Mol Cell Biochem 2024; 479:3091-3106. [PMID: 38227157 PMCID: PMC11473623 DOI: 10.1007/s11010-023-04914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/03/2023] [Indexed: 01/17/2024]
Abstract
Several commercially available triorganotin compounds were previously found to function as agonist ligands for nuclear retinoid X receptor (RXR) molecules. Triphenyltin isoselenocyanate (TPT-NCSe), a novel selenium atom containing a derivative of triorganotin origin, was found to represent a new cognate bioactive ligand for RXRs. TPT-NCSe displayed a concentration- and time-dependent decrease in the cell viability in both human breast carcinoma MCF-7 (estrogen receptor positive) and MDA‑MB‑231 (triple negative) cell lines. Reactive oxygen species levels generated in response to TPT-NCSe were significantly higher in both carcinoma cell lines treated with TPT-NCSe when compared to mock-treated samples. Treatment with 500 nM TPT-NCSe caused a decrease in SOD1 and increased SOD2 mRNA in MCF-7 cells. The levels of SOD2 mRNA were more increased following the treatment with TPT-NCSe along with 1 μM all-trans retinoic acid (AtRA) in MCF-7 cells. An increased superoxide dismutase SOD1 and SOD2 mRNA levels were also detected in combination treatment of 500 nM TPT-NCSe and 1 μM AtRA in TPT-NCSe-treated MDA-MB-231 cells. The data have also shown that TPT-NCSe induces apoptosis via a caspase cascade triggered by the mitochondrial apoptotic pathway. TPT-NCSe modulates the expression levels of apoptosis‑related proteins, Annexin A5, Bcl‑2 and BAX family proteins, and finally, it enhances the expression levels of its cognate nuclear receptor subtypes RXRalpha and RXRbeta.
Collapse
Affiliation(s)
- Dana Macejova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Jakub Kollar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
| | - Pavel Bobal
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 612 00, Brno, Czech Republic
| | - Jan Otevrel
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 612 00, Brno, Czech Republic
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
| | - Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| |
Collapse
|
30
|
Hoch CR, Klinedinst NJ, Larimer K, Gottlieb SS. Heart failure related fatigue: An exploratory analysis of serum osmolality from the national health and nutrition examination survey. Heart Lung 2024; 68:284-290. [PMID: 39181102 DOI: 10.1016/j.hrtlng.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Fatigue is a prominent symptom of heart failure (HF). However, underlying mechanisms remain poorly understood. Fluid volume status has been suggested as a physiologic mechanism of HF-related fatigue. Serum osmolality may fluctuate with changes in volume status associated with neurohormonal dysregulation. The relationship of fatigue to serum osmolality has not been assessed in adults with HF. OBJECTIVES Describe the relationship between serum osmolality and fatigue in adults with HF. METHODS We analyzed two waves of cross-sectional data from the National Health and Nutrition Examination Survey (2015-2016 and 2017-2018). Adults who self-reported having HF without select co-morbid conditions known to contribute to fatigue were included. Data were weighted to provide US national estimates, and complex sample design used for analyses. Sequential logistic regression was used to isolate the effect of serum osmolality on the odds of having fatigue. RESULTS Data from the sample represented 1.4 million Americans with HF (58.5 % male; median age 68 years), of whom 1,001,589 (67.9 %) reported fatigue. Participants with fatigue had lower serum osmolality compared to those without fatigue (t = -3.04, p = .009). Higher serum osmolality was associated with 8.8 % lower odds of experiencing fatigue when controlling for sex and body mass index (OR = 0.912, p = .007, CI 0.857 - 0.972). CONCLUSIONS HF-related fatigue is associated with lower serum osmolality. Low serum osmolality may indicate excess volume and the presence of a heightened neurohormonal response, both of which may influence fatigue. Alternatively, serum osmolality may directly affect other physiologic changes that may contribute to fatigue.
Collapse
Affiliation(s)
- Christine R Hoch
- Assistant Professor, University of Delaware, School of Nursing, United States.
| | - N Jennifer Klinedinst
- Associate Professor, Department of Organizational Systems and Adult Health, University of Maryland, School of Nursing, United States.
| | - Karen Larimer
- Director of Clinical Operations Cardiosense, United States.
| | - Stephen S Gottlieb
- Professor of Medicine, University of Maryland, School of Medicine, United States.
| |
Collapse
|
31
|
Grayson C, Chalifoux O, Russo MDST, Avizonis DZ, Sterman S, Faerman B, Koufos O, Agellon LB, Mailloux RJ. Ablating the glutaredoxin-2 (Glrx2) gene protects male mice against non-alcoholic fatty liver disease (NAFLD) by limiting oxidative distress. Free Radic Biol Med 2024; 224:660-677. [PMID: 39278573 DOI: 10.1016/j.freeradbiomed.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
In the present study, we investigated the consequences of deleting the glutaredoxin-2 gene (Glrx2-/-) on the development of non-alcoholic fatty liver disease (NAFLD) in male and female C57BL6N mice fed a control (CD) or high-fat diet (HFD). We report that the HFD induced a significant increase in body mass in the wild-type (Wt) and Glrx2-/- male, but not female, mice, which was associated with the hypertrophying of the abdominal fat. Interestingly, while the Wt male mice fed the HFD developed NAFLD, the deletion of the Glrx2 gene mitigated vesicle formation, intrahepatic lipid accumulation, and fibrosis in the males. The protective effect associated with ablating the Glrx2 gene in male mice was due to enhancement of mitochondrial redox buffering capacity. Specifically, liver mitochondria from male Glrx2-/- fed a CD or HFD produced significantly less hydrogen peroxide (mtH2O2), had lower malondialdehyde levels, greater activities for glutathione peroxidase and thioredoxin reductase, and less protein glutathione mixed disulfides (PSSG) when compared to the Wt male mice fed the HFD. These effects correlated with the S-glutathionylation of α-ketoglutarate dehydrogenase (KGDH), a potent mtH2O2 source and key redox sensor in hepatic mitochondria. In comparison to the male mice, both Wt and Glrx2-/- female mice displayed almost complete resistance to HFD-induced body mass increases and the development of NAFLD, which was attributed to the superior redox buffering capacity of the liver mitochondria. Together, our findings show that modulation of mitochondrial S-glutathionylation signaling through Glrx2 augments resistance of male mice towards the development of NAFLD through preservation of mitochondrial redox buffering capacity. Additionally, our findings demonstrate the sex dimorphisms associated with the manifestation of NAFLD is related to the superior redox buffering capacity and modulation of the S-glutathionylome in hepatic mitochondria from female mice.
Collapse
Affiliation(s)
- Cathryn Grayson
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Olivia Chalifoux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Mariana De Sa Tavares Russo
- Goodman Cancer Institute, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada; Department of Medicine, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada
| | - Daina Zofija Avizonis
- Goodman Cancer Institute, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada; Department of Medicine, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada
| | - Samantha Sterman
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Ben Faerman
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Olivia Koufos
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Luis B Agellon
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada.
| |
Collapse
|
32
|
Mennuni M, Wilkie SE, Michon P, Alsina D, Filograna R, Lindberg M, Sanin DE, Rosenberger F, Schaaf A, Larsson E, Pearce EL, Larsson NG. High mitochondrial DNA levels accelerate lung adenocarcinoma progression. SCIENCE ADVANCES 2024; 10:eadp3481. [PMID: 39485842 PMCID: PMC11529711 DOI: 10.1126/sciadv.adp3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Lung adenocarcinoma is a common aggressive cancer and a leading cause of mortality worldwide. Here, we report an important in vivo role for mitochondrial DNA (mtDNA) copy number during lung adenocarcinoma progression in the mouse. We found that lung tumors induced by KRASG12D expression have increased mtDNA levels and enhanced mitochondrial respiration. To experimentally assess a possible causative role in tumor progression, we induced lung cancer in transgenic mice with a general increase in mtDNA copy number and found that they developed a larger tumor burden, whereas mtDNA depletion in tumor cells reduced tumor growth. Immune cell populations in the lung and cytokine levels in plasma were not affected by increased mtDNA levels. Analyses of large cancer databases indicate that mtDNA copy number is also important in human lung cancer. Our study thus reports experimental evidence for a tumor-intrinsic causative role for mtDNA in lung cancer progression, which could be exploited for development of future cancer therapies.
Collapse
Affiliation(s)
- Mara Mennuni
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stephen E. Wilkie
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauline Michon
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - David Alsina
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roberta Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Markus Lindberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - David E. Sanin
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Florian Rosenberger
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Munich, Germany
| | - Alina Schaaf
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erika L. Pearce
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Nantsupawat T, Gumrai P, Apaijai N, Phrommintikul A, Prasertwitayakij N, Chattipakorn SC, Chattipakorn N, Wongcharoen W. Atrial pacing improves mitochondrial function in peripheral blood mononuclear cells in patients with cardiac implantable electronic devices. Am J Physiol Heart Circ Physiol 2024; 327:H1146-H1152. [PMID: 39240255 PMCID: PMC11560073 DOI: 10.1152/ajpheart.00537.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Mitochondrial dysfunction contributes significantly to the development of atrial fibrillation (AF). Conflicting data regarding the atrial pacing and the risk of AF existed, and the impact of atrial pacing on mitochondrial function remains unknown. Therefore, we sought to examine the association between atrial pacing percentage and mitochondrial function in patients with cardiovascular implantable electronic devices (CIEDs) with atrial pacing capability. This is a cross-sectional study involving 183 patients with CIEDs with atrial pacing capability. The oxidative stress and mitochondrial function were determined in peripheral blood mononuclear cells (PBMCs). Among 183 patients, 55.7% had permanent pacemakers, 7.7% had defibrillators, and 36.6% had cardiac resynchronization therapy. Mean age was 67.5 ± 14.7 yr with 51% being male. Mean left ventricular ejection fraction (LVEF) was 53.9 ± 16.8%. We demonstrated that the presence of atrial pacing above 50% correlated with higher levels of mitochondrial spared respiratory capacity (P = 0.043) and coupling efficiency (P = 0.045). After adjusting with multiple linear regression for age, sex, LVEF, history of AF, sick sinus syndrome, comorbidities, estimated glomerular filtration rate (eGFR), cardiac resynchronization therapy (CRT), and percentage of ventricular pacing, our findings revealed a statistically significant association between a higher percentage of atrial pacing and increased spared respiratory capacity (β, 0.217, P = 0.046), lower nonmitochondrial respiration (β, -0.230; P = 0.023), and proton leak (β, -0.247; P = 0.022). We demonstrated that atrial pacing enhances mitochondrial performance in PBMCs and left ventricular contractile performance in patients with CIEDs. This observation may serve as an additional support for the preventive effect of atrial pacing in the prevention of atrial arrhythmia.NEW & NOTEWORTHY Atrial pacing enhances mitochondrial spare respiratory capacity and reduces proton leak. This finding may provide further evidence supporting the preventive role of atrial pacing in reducing the risk of atrial fibrillation in patients with cardiac implantable electronic devices.
Collapse
Affiliation(s)
- Teerapat Nantsupawat
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Pawut Gumrai
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arintaya Phrommintikul
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Narawudt Prasertwitayakij
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wanwarang Wongcharoen
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
34
|
Cheung PHH, Yuen TL, Tang TT, Leung HY, Lee TTW, Chan P, Cheng Y, Fung SY, Ye ZW, Chan CP, Jin DY. Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling. J Med Virol 2024; 96:e70062. [PMID: 39569434 DOI: 10.1002/jmv.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Exactly why human infection of avian influenza A virus H7N9 causes more severe disease in the elderly remains elusive. In this study, we found that H7N9 PB1-F2 is a pathogenic factor in 15-18-month-old BALB/C mice (aged mice) but not in 6-8-week-old young adult mice (young mice). Recombinant influenza A virus with H7N9 PB1-F2-knockout was less pathogenic in aged mice as indicated with delayed weight loss. In contrast, survival of young mice infected with this virus was diminished. Furthermore, tissue damage, inflammation, proinflammatory cytokine and 2'3'-cGAMP production in the lung were less pronounced in infected aged mice despite no change in viral titer. cGAS is known to produce 2'3'-cGAMP to boost proinflammatory cytokine expression through STING-NF-κB signaling. We found that H7N9 PB1-F2 promoted interferon β (IFNβ) and chemokine gene expression in cultured cells through the mitochondrial DNA-cGAS-STING-NF-κB pathway. H7N9 PB1-F2 formed protein aggregate and caused mitochondrial cristae collapse, complex V-dependent electron transport dysfunction, reverse electron transfer-dependent oxidized mitochondrial DNA release to the cytoplasm and activation of cGAS-STING-NF-κB signaling. PB1-F2 N57 truncation, which is frequently observed in human circulating strains, mitigated H7N9 PB1-F2-mediated mitochondrial dysfunction and cGAS activation. In addition, we found that PB1-F2 of pathogenic avian influenza viruses triggered more robust cGAS activation than their human-adapted descendants. Our findings provide one explanation to age-dependent pathogenesis of H7N9 infection.
Collapse
Affiliation(s)
| | - Tin-Long Yuen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Tze-Tung Tang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Ho-Yin Leung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Pearl Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Ma L, Fan YY, Li BL, Xu F, Zhao X. Antiallodynic and antihyperalgesic effects of decursin associated with correcting mitochondrial dysfunction and oxidative stress in type 1 diabetic mice. Chem Biol Interact 2024; 403:111249. [PMID: 39299373 DOI: 10.1016/j.cbi.2024.111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
A substantial proportion of diabetic patients suffer a debilitating and persistent pain state, known as peripheral painful neuropathy that necessitates improved therapy or antidote. Decursin, a major active ingredient from Angelica gigas Nakai, has been reported to possess antidepressant activity in preclinical studies. As antidepressants have been typically used as standard agents against persistent neuropathic pain, this study aimed to probe the effect of decursin on neuropathic pain associated with streptozotocin-induced type 1 diabetes in male C57BL6J mice. The Hargreaves test and the von Frey test were used to assess pain-like behaviors, shown as heat hyperalgesia and mechanical allodynia respectively. Chronic treatment of diabetic mice with decursin not only ameliorated the established symptoms of heat hyperalgesia and mechanical allodynia, but also arrested the development of these pain states given preemptively at low doses. Although decursin treatment hardly impacted on metabolic disturbance in diabetic mice, it ameliorated exacerbated oxidative stress in pain-associated tissues, improved mitochondrial bioenergetics in dorsal root ganglion neurons, and restored nerve conduction velocity and blood flow in sciatic nerves. Notably, the analgesic actions of decursin were modified by pharmacologically manipulating redox status and mitochondrial bioenergetics. These findings unveil the analgesic activity of decursin, an effect that is causally associated with its bioenergetics-enhancing and antioxidant effects, in mice with type 1 diabetes.
Collapse
Affiliation(s)
- Li Ma
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - You-Ya Fan
- Department of Pharmacology and Zhejiang Key Lab of Pathophysiology, Ningbo University, Health Science Center, Ningbo, Zhejiang Province, China
| | - Ben-Ling Li
- School of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang province, China
| | - Feng Xu
- Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Xin Zhao
- Department of Pharmacology and Zhejiang Key Lab of Pathophysiology, Ningbo University, Health Science Center, Ningbo, Zhejiang Province, China.
| |
Collapse
|
36
|
Gaviraghi A, Barletta ABF, Silva TLAE, Oliveira MP, Sorgine MHF, Oliveira MF. Activation of innate immunity selectively compromises mitochondrial complex I, proline oxidation, and flight activity in the major arbovirus vector Aedes aegypti. Mol Microbiol 2024; 122:683-703. [PMID: 38720451 DOI: 10.1111/mmi.15269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 11/26/2024]
Abstract
Aedes aegypti females are natural vectors of important arboviruses such as dengue, zika, and yellow fever. Mosquitoes activate innate immune response signaling pathways upon infection, as a resistance mechanism to fight pathogens and limit their propagation. Despite the beneficial effects of immune activation for insect vectors, phenotypic costs ultimately affect their fitness. However, the underlying mechanisms that mediate these fitness costs remain poorly understood. Given the high energy required to mount a proper immune response, we hypothesized that systemic activation of innate immunity would impair flight muscle mitochondrial function, compromising tissue energy demand and flight activity. Here, we investigated the dynamic effects of activation of innate immunity by intra-thoracic zymosan injection on A. aegypti flight muscle mitochondrial metabolism. Zymosan injection significantly increased defensin A expression in fat bodies in a time-dependent manner that compromised flight activity. Although oxidant levels in flight muscle were hardly altered, ATP-linked respiratory rates driven by mitochondrial pyruvate+proline oxidation were significantly reduced at 24 h upon zymosan injection. Oxidative phosphorylation coupling was preserved regardless of innate immune response activation along 24 h. Importantly, rotenone-sensitive respiration and complex I-III activity were specifically reduced 24 h upon zymosan injection. Also, loss of complex I activity compromised ATP-linked and maximal respiratory rates mediated by mitochondrial proline oxidation. Finally, the magnitude of innate immune response activation negatively correlated with respiratory rates, regardless of the metabolic states. Collectively, we demonstrate that activation of innate immunity is strongly associated with reduced flight muscle complex I activity with direct consequences to mitochondrial proline oxidation and flight activity. Remarkably, our results indicate a trade-off between dispersal and immunity exists in an insect vector, underscoring the potential consequences of disrupted flight muscle mitochondrial energy metabolism to arbovirus transmission.
Collapse
Affiliation(s)
- Alessandro Gaviraghi
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Ana Beatriz F Barletta
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Luiz Alves E Silva
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcos H F Sorgine
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus F Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Devi MB, Bhattacharya A, Kumar A, Singh CT, Das S, Sarma HK, Mukherjee AK, Khan MR. Potential probiotic Lactiplantibacillus plantarum strains alleviate TNF-α by regulating ADAM17 protein and ameliorate gut integrity through tight junction protein expression in in vitro model. Cell Commun Signal 2024; 22:520. [PMID: 39468700 PMCID: PMC11514838 DOI: 10.1186/s12964-024-01900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Lactiplantibacillus species are extensively studied for their ability to regulate host immune responses and functional therapeutic potentials. Nevertheless, there is a lack of understanding on the mechanisms of interactions with the hosts during immunoregulatory activities. METHODS Two Lactiplantibacillus plantarum strains MKMB01 and MKMB02 were tested for probiotic potential following Indian Council of Medical Research (ICMR) guidelines. Human colorectal adenocarcinoma cells such as HT-29, caco-2, and human monocytic cell THP-1 were also used to study the potential of MKMB01 and MKMB02 in regulating the host immune response when challenged with enteric pathogen Salmonella enterica typhimurium. Cells were pre-treated with MKMB01 and MKMB02 for 4 h and then stimulated with Salmonella. qRT-PCR and ELISA were used to analyze the genes and protein expression. Confocal microscopy and field emission scanning electron microscopy (FESEM) were used to visualize the effects. An Agilent Seahorse XF analyzer was used to determine real-time mitochondrial functioning. RESULTS Both probiotic strains could defend against Salmonella by maintaining gut integrity via expressing tight junction proteins (TJPs), MUC-2, and toll-like receptors (TLRs) negative regulators such as single Ig IL-1-related receptor (SIGIRR), toll-interacting protein (Tollip), interleukin-1 receptor-associated kinase (IRAK)-M, A20, and anti-inflammatory transforming growth factor-β and interleukin-10. Both strains also downregulated the expression of pro-inflammatory cytokines/chemokines interleukin-1β, monocyte chemoattractant protein (MCP)-1, tumor necrosis factor-alpha (TNF-α), interleukin 6, and nitric oxide (NO). Moreover, TNF-α sheddase protein, a disintegrin and metalloproteinase domain 17 (ADAM17), and its regulator iRhom2 were downregulated by both strains. Moreover, the bacteria also ameliorated Salmonella-induced mitochondrial dysfunction by restoring bioenergetic profiles, such as non-mitochondrial respiration, spare respiratory capacity (SRC), basal respiration, adenosine triphosphate (ATP) production, and maximal respiration. CONCLUSIONS MKMB01 and MKMB02 can reduce pathogen-induced gut-associated disorders and therefore should be further explored for their probiotic potential.
Collapse
Affiliation(s)
- M Bidyarani Devi
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Anupam Bhattacharya
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
| | - Arun Kumar
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
| | - Chingtham Thanil Singh
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Santanu Das
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
| | - Hridip Kumar Sarma
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Microbial Biotechnology and Protein Research laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India.
| |
Collapse
|
38
|
Reyna-Bolaños I, Solís-García EP, Vargas-Vargas MA, Peña-Montes DJ, Saavedra-Molina A, Cortés-Rojo C, Calderón-Cortés E. Polydatin Prevents Electron Transport Chain Dysfunction and ROS Overproduction Paralleled by an Improvement in Lipid Peroxidation and Cardiolipin Levels in Iron-Overloaded Rat Liver Mitochondria. Int J Mol Sci 2024; 25:11104. [PMID: 39456885 PMCID: PMC11508176 DOI: 10.3390/ijms252011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Increased intramitochondrial free iron is a key feature of various liver diseases, leading to oxidative stress, mitochondrial dysfunction, and liver damage. Polydatin is a polyphenol with a hepatoprotective effect, which has been attributed to its ability to enhance mitochondrial oxidative metabolism and antioxidant defenses, thereby inhibiting reactive oxygen species (ROS) dependent cellular damage processes and liver diseases. However, it has not been explored whether polydatin is able to exert its effects by protecting the phospholipid cardiolipin against damage from excess iron. Cardiolipin maintains the integrity and function of electron transport chain (ETC) complexes and keeps cytochrome c bound to mitochondria, avoiding uncontrolled apoptosis. Therefore, the effect of polydatin on oxidative lipid damage, ETC activity, cytochrome levels, and ROS production was explored in iron-exposed rat liver mitochondria. Fe2+ increased lipid peroxidation, decreased cardiolipin and cytochromes c + c1 and aa3 levels, inhibited ETC complex activities, and dramatically increased ROS production. Preincubation with polydatin prevented all these effects to a variable degree. These results suggest that the hepatoprotective mechanism of polydatin involves the attenuation of free radical production by iron, which enhances cardiolipin levels by counteracting membrane lipid peroxidation. This prevents the loss of cytochromes, improves ETC function, and decreases mitochondrial ROS production.
Collapse
Affiliation(s)
- Itzel Reyna-Bolaños
- Instituto Tecnológico Superior de Ciudad Hidalgo, Tecnológico Nacional de México, Ciudad Hidalgo 61100, Michoacán, Mexico; (I.R.-B.); (E.P.S.-G.)
| | - Elsa Paola Solís-García
- Instituto Tecnológico Superior de Ciudad Hidalgo, Tecnológico Nacional de México, Ciudad Hidalgo 61100, Michoacán, Mexico; (I.R.-B.); (E.P.S.-G.)
| | - Manuel Alejando Vargas-Vargas
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58260, Michoacán, Mexico
| |
Collapse
|
39
|
Machado JPD, de Almeida V, Zuardi AW, Hallak JEC, Crippa JA, Vieira AS. Cannabidiol modulates hippocampal genes involved in mitochondrial function, ribosome biogenesis, synapse organization, and chromatin modifications. Acta Neuropsychiatr 2024; 36:330-336. [PMID: 38528655 DOI: 10.1017/neu.2024.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the main cannabinoids present in Cannabis sativa female flowers. Previous investigation has already provided insights into the CBD molecular mechanism; however, there is no transcriptome data for CBD effects on hippocampal subfields. Here, we investigate transcriptomic changes in dorsal and ventral CA1 of adult mice hippocampus after 100 mg/kg of CBD administration (i.p.) for one or seven consecutive days. METHODS C57BL/6JUnib mice were treated with either vehicle or CBD for 1 or 7 days. The collected brains were sectioned, and the hippocampal sub-regions were laser microdissected for RNA-Seq analysis. RESULTS The transcriptome analysis following 7 days of CBD administration indicates the differential expression of 1559 genes in dCA1 and 2924 genes in vCA1. Furthermore, GO/KEGG analysis identified 88 significantly enriched biological process and 26 significantly enriched pathways for dCBD7, whereas vCBD7 revealed 128 enriched BPs and 24 pathways. CONCLUSION This dataset indicates a widespread decrease of electron transport chain and ribosome biogenesis transcripts in CA1, while chromatin modifications and synapse organization transcripts were increased following CBD administration for 7 days.
Collapse
Affiliation(s)
- João P D Machado
- Laboratory of Electrophysiology, Neurobiology and Behaviour, Dept Functional and Structural Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics,, Dept Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinsas, São Paulo, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André S Vieira
- Laboratory of Electrophysiology, Neurobiology and Behaviour, Dept Functional and Structural Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
40
|
El Gaafary M, Abdel-Baki PM, El-Halawany AM, Mohamed HM, Duweb A, Abdallah HM, Mohamed GA, Ibrahim SRM, Simmet T, Syrovets T. Prenylated xanthones from mangosteen (Garcinia mangostana) target oxidative mitochondrial respiration in cancer cells. Biomed Pharmacother 2024; 179:117365. [PMID: 39217837 DOI: 10.1016/j.biopha.2024.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Mangosteen (Garcinia mangostana) is well-known for its nutritional value and health benefits. Breast cancer is the most common cancer and the leading cause of cancer-related mortality among females worldwide. Here we show that the prenylated xanthones, α-mangostin, γ-mangostin, 9-hydroxycalabaxanthone (9-HCX), and garcinone E from the mangosteen pericarp exhibit cytotoxicity against a panel of human cancer cell lines including lung adenocarcinoma (A549), cervical carcinoma (HeLa), prostatic carcinoma (DU 145), pancreatic carcinoma (MIA PaCa-2), hepatocellular carcinoma (Hep G2), bladder urothelial cancer (5637), as well as the triple-negative breast cancer cells MDA-MB-231. In line with its higher predicted bioactivity score compared to other prenylated xanthones, 9-HCX induced the strongest antiproliferative and proapoptotic effects in MDA-MB-231 breast cancer xenografts in vivo. In different in vitro models, we demonstrate that prenylated xanthones from G. mangostana target mitochondria in cancer cells by inhibition of the mitochondrial respiratory chain complex II (α-mangostin, γ-mangostin, and garcinone E) and complex III (9-HCX) as shown in isolated mitochondria. Accordingly, oxidative mitochondrial respiration (OXPHOS) was inhibited, mitochondrial proton leak increased, and adenosine triphosphate (ATP) synthesis decreased as analyzed by Seahorse assay in MDA-MB-231 cells. Hence, the prenylated xanthones increased mitochondrial superoxide levels, induced mitochondrial membrane permeabilization, and initiated caspase 3/7-mediated apoptosis in MDA-MB-231 triple-negative breast cancer cells. Thus, prenylated xanthones from Garcinia mangostana exhibit anticancer activity based on interference with the mitochondrial respiration.
Collapse
Affiliation(s)
- Menna El Gaafary
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Passent M Abdel-Baki
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Ali M El-Halawany
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Heba M Mohamed
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Faculty of Health Sciences, Higher Colleges of Technology, Dubai, United Arab Emirates.
| | - Amira Duweb
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany; Department of Pharmacology, Faculty of Medicine, University of Tripoli, Tripoli, Libya.
| | - Hossam M Abdallah
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany; Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Thomas Simmet
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany.
| | - Tatiana Syrovets
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany.
| |
Collapse
|
41
|
Konopko A, Łukomska A, Kucia M, Ratajczak MZ. The Different Responsiveness of C3- and C5-deficient Murine BM Cells to Oxidative Stress Explains Why C3 Deficiency, in Contrast to C5 Deficiency, Correlates with Better Pharmacological Mobilization and Engraftment of Hematopoietic Cells. Stem Cell Rev Rep 2024:10.1007/s12015-024-10792-6. [PMID: 39340736 DOI: 10.1007/s12015-024-10792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The liver-derived circulating in peripheral blood and intrinsic cell-expressed complement known as complosome orchestrate the trafficking of hematopoietic stem/progenitor cells (HSPCs) both during pharmacological mobilization and homing/engraftment after transplantation. Our previous research demonstrated that C3 deficient mice are easy mobilizers, and their HSPCs engraft properly in normal mice. In contrast, C5 deficiency correlates with poor mobilization and defects in HSPCs' homing and engraftment. The trafficking of HSPCs during mobilization and homing/engraftment follows the sterile inflammation cues in the BM microenvironment caused by stress induced by pro-mobilizing drugs or myeloablative conditioning for transplantation. Therefore, to explain deficiencies in HSPC trafficking between C3-KO and C5-KO mice, we evaluated the responsiveness of C3 and C5 deficient cells to low oxidative stress. As reported, oxidative stress in BM is mediated by the activation of purinergic signaling, which is triggered by the elevated level of extracellular adenosine triphosphate (eATP) and by the activation of the complement cascade (ComC). In the current work, we noticed that BM lineage negative cells (lin-) isolated from C3-KO mice display several mitochondrial defects reflected by an impaired ability to adapt to oxidative stress. In contrast, C5-KO-derived BM cells show a high level of adaptation to this challenge. To support this data, C3-KO BM lin- cells were highly responsive to eATP stimulation, which correlates with enhanced levels of reactive oxygen species (ROS) generation and more efficient activation of intracellular Nlrp3 inflammasome. We conclude that the enhanced sensitivity of C3-KO mice cells to oxidative stress and better activation of the Nox2-ROS-Nlrp3 inflammasome signaling axis explains the molecular level differences in trafficking between C3- and C5-deficient HSPCs.
Collapse
Affiliation(s)
- Adrian Konopko
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland.
| | - Agnieszka Łukomska
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Kucia
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| |
Collapse
|
42
|
Reyes-Rosario D, Pardo JP, Guerra-Sánchez G, Vázquez-Meza H, López-Hernández G, Matus-Ortega G, González J, Baeza M, Romero-Aguilar L. Analysis of the Respiratory Activity in the Antarctic Yeast Rhodotorula mucilaginosa M94C9 Reveals the Presence of Respiratory Supercomplexes and Alternative Elements. Microorganisms 2024; 12:1931. [PMID: 39458241 PMCID: PMC11509550 DOI: 10.3390/microorganisms12101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The respiratory activities of mitochondrial complexes I, II, and IV were analyzed in permeabilized Rhodotorula mucilaginosa cells and isolated mitochondria, and the kinetic parameters K0.5 and Vmax were obtained. No difference in substrate affinities were found between mitochondria and permeabilized cells. The activities of the components of the mitochondrial respiratory chain of the Antarctic yeast R. mucilaginosa M94C9 were identified by in-gel activity and SDS-PAGE. The mitochondria exhibited activity for the classical components of the electron transport chain (Complexes I, II, III, and IV), and supercomplexes were formed by a combination of the respiratory complexes I, III, and IV. Unfortunately, the activities of the monomeric and dimeric forms of the F1F0-ATP synthase were not revealed by the in-gel assay, but the two forms of the ATP synthase were visualized in the SDS-PAGE. Furthermore, two alternative pathways for the oxidation of cytosolic NADH were identified: the alternative NADH dehydrogenase and the glycerol-3-phosphate dehydrogenase. In addition, an NADPH dehydrogenase and a lactate cytochrome b2 dehydrogenase were found. The residual respiratory activity following cyanide addition suggests the presence of an alternative oxidase in cells.
Collapse
Affiliation(s)
- Daniel Reyes-Rosario
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Georgina López-Hernández
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Genaro Matus-Ortega
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico;
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| |
Collapse
|
43
|
Raby A, Missiroli S, Sanatine P, Langui D, Pansiot J, Beaude N, Vezzana L, Saleh R, Marinello M, Laforge M, Pinton P, Buj-Bello A, Burgo A. Spastin regulates ER-mitochondrial contact sites and mitochondrial homeostasis. iScience 2024; 27:110683. [PMID: 39252960 PMCID: PMC11382127 DOI: 10.1016/j.isci.2024.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) emerged to play critical roles in numerous cellular processes, and their dysregulation has been associated to neurodegenerative disorders. Mutations in the SPG4 gene coding for spastin are among the main causes of hereditary spastic paraplegia (HSP). Spastin binds and severs microtubules, and the long isoform of this protein, namely M1, spans the outer leaflet of ER membrane where it interacts with other ER-HSP proteins. Here, we showed that overexpressed M1 spastin localizes in ER-mitochondria intersections and that endogenous spastin accumulates in MERCs. We demonstrated in different cellular models that downregulation of spastin enhances the number of MERCs, alters mitochondrial morphology, and impairs ER and mitochondrial calcium homeostasis. These effects are associated with reduced mitochondrial membrane potential, oxygen species levels, and oxidative metabolism. These findings extend our knowledge on the role of spastin in the ER and suggest MERCs deregulation as potential causes of SPG4-HSP disease.
Collapse
Affiliation(s)
- Amelie Raby
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | | | - Dominique Langui
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Julien Pansiot
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Nissai Beaude
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Lucie Vezzana
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Rachelle Saleh
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Martina Marinello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Mireille Laforge
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Ana Buj-Bello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Andrea Burgo
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
44
|
Chen J, Yang J, Ma J, Sun X, Wang Y, Luan C, Chen J, Liu W, Shan Q, Ma X. Troxerutin Delays Skin Keratinocyte Senescence Induced by Ionizing Radiation Both In Vitro and In Vivo. J Cosmet Dermatol 2024. [PMID: 39291439 DOI: 10.1111/jocd.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUNDS With the increasing demand for beauty and a healthy lifespan, studies regarding anti-skin aging have drawn much more attention than ever before. Skin cellular senescence, the primary cause of skin aging, is characterized by a cell cycle arrest in proliferating cells along with a senescence-associated secretory phenotype (SASP), which can be triggered by various internal or external stimuli. AIMS Recent studies have made significant progress in the fields of anti-senescence and anti-aging. However, little is known about the roles and functions of natural compounds, particularly flavonoids, in skin cellular senescence studies. METHODS In this study, using strategies including ionizing radiation (IR), senescence-associated β galactosidase assay (SA-β-Gal), immunofluorescence (IF), flow cytometry, PCR array, as well as in vivo experiments, we investigated the effects and roles of troxerutin (Trx), a natural flavonoid, in skin keratinocyte senescence. RESULTS We found that Trx delays skin keratinocyte senescence induced by IR. Mechanistically, Trx protects the skin keratinocyte cells from senescence by alleviating reactive oxygen species (ROS) accumulation, mitochondrial dysfunction, and DNA damage caused by IR. In addition, Trx was also proved to relieve skin senescence and SASP secretion in vivo induced by IR stimulation. CONCLUSIONS Altogether, our findings pointed to a new function of Trx in delaying stress-induced skin keratinocyte senescence, and should thus provide theoretical foundations for exploring novel strategies against skin aging.
Collapse
Affiliation(s)
- Juping Chen
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jinghui Yang
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiang Ma
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoming Sun
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yuxuan Wang
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Changjiao Luan
- Department of Lung, The Third People's Hospital of Yangzhou, Yangzhou, China
| | - Jiaxiao Chen
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weili Liu
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qing Shan
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xingjie Ma
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
45
|
Yoon JH, Kim YH, Jeong EY, Lee YH, Byun Y, Shin SS, Park JT. Senescence Rejuvenation through Reduction in Mitochondrial Reactive Oxygen Species Generation by Polygonum cuspidatum Extract: In Vitro Evidence. Antioxidants (Basel) 2024; 13:1110. [PMID: 39334769 PMCID: PMC11429016 DOI: 10.3390/antiox13091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress caused by reactive oxygen species (ROS) is one of the major causes of senescence. Strategies to reduce ROS are known to be important factors in reversing senescence, but effective strategies have not been found. In this study, we screened substances commonly used as cosmetic additives to find substances with antioxidant effects. Polygonum cuspidatum (P. cuspidatum) extract significantly reduced ROS levels in senescent cells. A novel mechanism was discovered in which P. cuspidatum extract reduced ROS, a byproduct of inefficient oxidative phosphorylation (OXPHOS), by increasing OXPHOS efficiency. The reduction in ROS by P. cuspidatum extract restored senescence-associated phenotypes and enhanced skin protection. Then, we identified polydatin as the active ingredient of P. cuspidatum extract that exhibited antioxidant effects. Polydatin, which contains stilbenoid polyphenols that act as singlet oxygen scavengers through redox reactions, increased OXPHOS efficiency and subsequently restored senescence-associated phenotypes. In summary, our data confirmed the effects of P. cuspidatum extract on senescence rejuvenation and skin protection through ROS reduction. This novel finding may be used as a treatment in senescence rejuvenation in clinical and cosmetic fields.
Collapse
Affiliation(s)
- Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
| | - Ye Hyang Kim
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Eun Young Jeong
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| | - Song Seok Shin
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
46
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
47
|
Chen W, Wu JY, Fan YY, Li BL, Yuan HB, Zhao X. Purpurin ameliorated neuropathic allodynia and hyperalgesia by modulating neuronal mitochondrial bioenergetics and redox status in type 1 diabetic mice. Eur J Pharmacol 2024; 978:176749. [PMID: 38897444 DOI: 10.1016/j.ejphar.2024.176749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
A substantial proportion of diabetic patients suffer a debilitating and persistent pain state, known as peripheral painful neuropathy that necessitates improved therapy or antidote. Purpurin, a natural anthraquinone compound from Rubia tinctorum L., has been reported to possess antidepressant activity in preclinical studies. As antidepressants have been typically used as standard agents against persistent neuropathic pain, this study aimed to probe the effect of purpurin on neuropathic pain associated with streptozotocin-induced type 1 diabetes in male C57BL6J mice. The Hargreaves test and the von Frey test were used to assess the pain-like behaviors, shown as heat hyperalgesia and mechanical allodynia respectively. Chronic treatment of diabetic mice with purpurin not only ameliorated the established symptoms of heat hyperalgesia and mechanical allodynia, but also arrested the development of these pain states given preemptively at low doses. Although purpurin treatment hardly impacted on metabolic disturbance in diabetic mice, it ameliorated exacerbated oxidative stress in pain-associated tissues, improved mitochondrial bioenergetics in dorsal root ganglion neurons and restored nerve conduction velocity in sciatic nerves. Notably, the analgesic actions of purpurin were modified by pharmacologically manipulating redox status and mitochondrial bioenergetics. These findings unveil the analgesic activity of purpurin, an effect that is causally associated with its bioenergetics-enhancing and antioxidant effects, in mice with type 1 diabetes.
Collapse
Affiliation(s)
- Wei Chen
- Department of Anesthesiology, The Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jia-Yi Wu
- Department of Pharmacology and Zhejiang Key Lab of Pathophysiology, Ningbo University, Health Science Center, Ningbo, Zhejiang province, China
| | - You-Ya Fan
- Department of Pharmacology and Zhejiang Key Lab of Pathophysiology, Ningbo University, Health Science Center, Ningbo, Zhejiang province, China
| | - Ben-Ling Li
- School of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang province, China
| | - Hong-Bin Yuan
- Department of Anesthesiology, The Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Xin Zhao
- Department of Pharmacology and Zhejiang Key Lab of Pathophysiology, Ningbo University, Health Science Center, Ningbo, Zhejiang province, China.
| |
Collapse
|
48
|
Kaur B, Miglioranza Scavuzzi B, Yang M, Yao J, Jia L, Abcouwer SF, Zacks DN. ER Stress and Mitochondrial Perturbations Regulate Cell Death in Retinal Detachment: Exploring the Role of HIF1α. Invest Ophthalmol Vis Sci 2024; 65:39. [PMID: 39325470 PMCID: PMC11437674 DOI: 10.1167/iovs.65.11.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Purpose Retinal detachment (RD) leads to photoreceptor (PR) hypoxia due to separation from the retinal pigment epithelium (RPE). Hypoxia stabilizes retinal hypoxia-inducible factor 1-alpha (HIF1α), crucial for PR survival during RD. This study explores the regulatory role of HIF1α in PR cell survival pathways during RD. Methods Experimental RD was created in C57BL/6J and HIF1αΔrod mice by injecting 1% hyaluronic acid into the subretinal space. The 661W photoreceptor cells were exposed to hypoxic conditions. Markers of endoplasmic reticulum stress (ERS), mitophagy, and accumulation of polyubiquinated proteins were evaluated using RT-PCR and western blot analyses. Cell death of PR cells was quantified using trypan blue exclusion assay and TUNEL staining. Retinal cell death was assessed using a DNA fragmentation assay. Results In C57BL/6J mice and 661W cells, there were increases in HIF1α protein levels: 2.2-fold after RD (P = 0.04) and threefold after hypoxia (P = 0.057). Both the in vivo and in vitro RD models showed increased protein expression of ERS markers (including BIP, CHOP, and IRE1α), mitophagy markers (Parkin, PINK, and FUNDC1), and polyubiquitinated proteins. In 661W cells, hypoxia resulted in a loss of mitochondrial membrane potential, an increase in mitochondrial reactive oxygen species, and a decrease in intracellular adenosine triphosphate levels. Lack of HIF1α in rods blocked the upregulation of mitophagy markers after RD. Conclusions RD results in the activation of ERS, mitophagy, mitochondrial dysfunction, and accumulation of polyubiquitinated proteins. Results suggest a role for HIF1α in activation of the mitophagy pathway after RD, which may serve to protect the PR cells.
Collapse
Affiliation(s)
- Bhavneet Kaur
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Bruna Miglioranza Scavuzzi
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Mengling Yang
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Jingyu Yao
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Lin Jia
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Steven F Abcouwer
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - David N Zacks
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
49
|
Baratzhanova G, Fournier A, Delannoy M, Baubekova A, Altynova N, Djansugurova L, Cakir-Kiefer C. The mode of action of different organochlorine pesticides families in mammalians. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104514. [PMID: 39033792 DOI: 10.1016/j.etap.2024.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Organochlorine pesticides (OCPs) show differences in their chemical structure, mechanism of toxicity, and target organisms. However, OCPs also have some common characteristics such as high persistence in the environment, bioaccumulation, and toxicity which lead to health issues. Nowadays, the toxicity of OCPs is well known, but we still do not know all the specific molecular mechanisms leading to their toxicity in mammalians. Therefore, this review aims to collect data about the mode of action of various classes of OCPs, highlighting their differences and common behavioural reactions in the human and animal body. To discuss the OCPs molecular pathways and fate in different systems of the body, three organochlorine insecticides were selected (Dichlorodiphenyltrichloroethane, Hexachlorocyclohexane and Chlordecone), regarding to their widespread use, with consequent effects on the ecosystem and human health. Their common biological responses at the molecular scale and their different interactions in human and animal bodies were highlighted and presented.
Collapse
Affiliation(s)
- Gulminyam Baratzhanova
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France; Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan.
| | - Agnès Fournier
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France
| | | | - Almagul Baubekova
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| | - Nazym Altynova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan
| | - Leyla Djansugurova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| | | |
Collapse
|
50
|
Kim MB, Lee J, Lee JY. Targeting Mitochondrial Dysfunction for the Prevention and Treatment of Metabolic Disease by Bioactive Food Components. J Lipid Atheroscler 2024; 13:306-327. [PMID: 39355406 PMCID: PMC11439752 DOI: 10.12997/jla.2024.13.3.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 10/03/2024] Open
Abstract
Dysfunctional mitochondria have been linked to the pathogenesis of obesity-associated metabolic diseases. Excessive energy intake impairs mitochondrial biogenesis and function, decreasing adenosine-5'-triphosphate production and negatively impacting metabolically active tissues such as adipose tissue, skeletal muscle, and the liver. Compromised mitochondrial function disturbs lipid metabolism and increases reactive oxygen species production in these tissues, contributing to the development of insulin resistance, type 2 diabetes, and non-alcoholic fatty liver disease. Recent studies have demonstrated the therapeutic potential of bioactive food components, such as resveratrol, quercetin, coenzyme Q10, curcumin, and astaxanthin, by enhancing mitochondrial function. This review provides an overview of the current understanding of how these bioactive compounds ameliorate mitochondrial dysfunction to mitigate obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|