1
|
Rached G, Saliba Y, Maddah D, Hajal J, Smayra V, Bakhos J, Groschner K, Birnbaumer L, Fares N. TRPC3 Regulates Islet Beta-Cell Insulin Secretion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204846. [PMID: 36642838 PMCID: PMC9951314 DOI: 10.1002/advs.202204846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Insulin release is tightly controlled by glucose-stimulated calcium (GSCa) through hitherto equivocal pathways. This study investigates TRPC3, a non-selective cation channel, as a critical regulator of insulin secretion and glucose control. TRPC3's involvement in glucose-stimulated insulin secretion (GSIS) is studied in human and animal islets. TRPC3-dependent in vivo insulin secretion is investigated using pharmacological tools and Trpc3-/- mice. TRPC3's involvement in islet glucose uptake and GSCa is explored using fluorescent glucose analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose and calcium imaging. TRPC3 modulation by a small-molecule activator, GSK1702934A, is evaluated in type 2 diabetic mice. TRPC3 is functionally expressed in human and mouse islet beta cells. TRPC3-controlled insulin secretion is KATP -independent and primarily mediated by diacylglycerol channel regulation of the cytosolic calcium oscillations following glucose stimulation. Conversely, glucose uptake in islets is independent of TRPC3. TRPC3 pharmacologic inhibition and knockout in mice lead to defective insulin secretion and glucose intolerance. Subsequently, TRPC3 activation through targeted small-molecule enhances insulin secretion and alleviates diabetes hallmarks in animals. This study imputes a function for TRPC3 at the onset of GSIS. These insights strengthen one's knowledge of insulin secretion physiology and set forth the TRPC3 channel as an appealing candidate for drug development in the treatment of diabetes.
Collapse
Affiliation(s)
- Gaëlle Rached
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Youakim Saliba
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Dina Maddah
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Joelle Hajal
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Viviane Smayra
- Faculty of MedicineSaint Joseph UniversitySaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Jules‐Joel Bakhos
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Klaus Groschner
- Gottfried‐Schatz‐Research‐Centre‐BiophysicsMedical University of GrazGraz8010Austria
| | - Lutz Birnbaumer
- School of Medical SciencesInstitute of Biomedical Research (BIOMED)Catholic University of ArgentinaBuenos AiresC1107AAZArgentina
- Signal Transduction LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkDurhamNCC1107AAZUSA
| | - Nassim Fares
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| |
Collapse
|
2
|
Close AF, Chae H, Jonas JC. The lack of functional nicotinamide nucleotide transhydrogenase only moderately contributes to the impairment of glucose tolerance and glucose-stimulated insulin secretion in C57BL/6J vs C57BL/6N mice. Diabetologia 2021; 64:2550-2561. [PMID: 34448880 DOI: 10.1007/s00125-021-05548-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Nicotinamide nucleotide transhydrogenase (NNT) is involved in mitochondrial NADPH production and its spontaneous inactivating mutation (NntTr [Tr, truncated]) is usually considered to be the main cause of the lower glucose tolerance of C57BL/6J vs C57BL/6N mice. However, the impact of this mutation on glucose tolerance remains disputed. Here, we singled out the impact of NntTr from that of other genetic variants between C57BL/6J and C57BL/6N mice on mitochondrial glutathione redox state (EGSH), glucose-stimulated insulin secretion (GSIS) and glucose tolerance. METHODS Male and female N5BL/6J mice that express wild-type Nnt (NntWT) or NntTr (N5-WT and N5-Tr mice) on the C57BL/6J genetic background were obtained by crossing N5BL/6J NntWT/Tr heterozygous mice. C57BL/6J and C57BL/6N mice were from Janvier Labs. The Nnt genotype was confirmed by PCR and the genetic background by whole genome sequencing of one mouse of each type. Glucose tolerance was assessed by IPGTT, ITT and fasting/refeeding tests. Stimulus-secretion coupling events and GSIS were measured in isolated pancreatic islets. Cytosolic and mitochondrial EGSH were measured using the fluorescent redox probe GRX1-roGFP2 (glutaredoxin 1 fused to redox-sensitive enhanced GFP). RESULTS The Nnt genotype and genetic background of each type of mouse were confirmed. As reported previously in C57BL/6N vs C57BL/6J islets, the glucose regulation of mitochondrial (but not cytosolic) EGSH and of NAD(P)H autofluorescence was markedly improved in N5-WT vs N5-Tr islets, confirming the role of NNT in mitochondrial redox regulation. However, ex vivo GSIS was only 1.2-1.4-times higher in N5-WT vs N5-Tr islets, while it was 2.4-times larger in C57BL/6N vs N5-WT islets, questioning the role of NNT in GSIS. In vivo, the ITT results did not differ between N5-WT and N5-Tr or C57BL/6N mice. However, the glucose excursion during an IPGTT was only 15-20% lower in female N5-WT mice than in N5-Tr and C57BL/6J mice and remained 3.5-times larger than in female C57BL/6N mice. Similar observations were made during a fasting/refeeding test. A slightly larger (~30%) impact of NNT on glucose tolerance was found in males. CONCLUSIONS/INTERPRETATION Although our results confirm the importance of NNT in the regulation of mitochondrial redox state by glucose, they markedly downsize the role of NNT in the alteration of GSIS and glucose tolerance in C57BL/6J vs C57BL/6N mice. Therefore, documenting an NntWT genotype in C57BL/6 mice does not provide proof that their glucose tolerance is as good as in C57BL/6N mice.
Collapse
Affiliation(s)
- Anne-Françoise Close
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Heeyoung Chae
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Jonas
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
3
|
Vilas-Boas EA, Carlein C, Nalbach L, Almeida DC, Ampofo E, Carpinelli AR, Roma LP, Ortis F. Early Cytokine-Induced Transient NOX2 Activity Is ER Stress-Dependent and Impacts β-Cell Function and Survival. Antioxidants (Basel) 2021; 10:antiox10081305. [PMID: 34439552 PMCID: PMC8389306 DOI: 10.3390/antiox10081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023] Open
Abstract
In type 1 diabetes (T1D) development, proinflammatory cytokines (PIC) released by immune cells lead to increased reactive oxygen species (ROS) production in β-cells. Nonetheless, the temporality of the events triggered and the role of different ROS sources remain unclear. Isolated islets from C57BL/6J wild-type (WT), NOX1 KO and NOX2 KO mice were exposed to a PIC combination. We show that cytokines increase O2•− production after 2 h in WT and NOX1 KO but not in NOX2 KO islets. Using transgenic mice constitutively expressing a genetically encoded compartment specific H2O2 sensor, we show, for the first time, a transient increase of cytosolic/nuclear H2O2 in islet cells between 4 and 5 h during cytokine exposure. The H2O2 increase coincides with the intracellular NAD(P)H decrease and is absent in NOX2 KO islets. NOX2 KO confers better glucose tolerance and protects against cytokine-induced islet secretory dysfunction and death. However, NOX2 absence does not counteract the cytokine effects in ER Ca2+ depletion, Store-Operated Calcium Entry (SOCE) increase and ER stress. Instead, the activation of ER stress precedes H2O2 production. As early NOX2-driven ROS production impacts β-cells’ function and survival during insulitis, NOX2 might be a potential target for designing therapies against early β-cell dysfunction in the context of T1D onset.
Collapse
Affiliation(s)
- Eloisa A. Vilas-Boas
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Christopher Carlein
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Davidson C. Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Angelo R. Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Leticia P. Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| |
Collapse
|
4
|
Nunes Marsiglio-Librais G, Aparecida Vilas-Boas E, Carlein C, Hoffmann MDA, Roma LP, Carpinelli AR. Evidence for NADPH oxidase activation by GPR40 in pancreatic β-cells. Redox Rep 2021; 25:41-50. [PMID: 32354273 PMCID: PMC7241480 DOI: 10.1080/13510002.2020.1757877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: Investigate the involvement of the fatty acids receptor GPR40 in the assembly and activation of NADPH oxidase and the implications on pancreatic β-cell function. Methods: BRIN-BD11 β-cells were exposed to GPR40 agonist (GW9508) or linoleic acid in different glucose concentrations. Superoxide and H2O2 were analyzed, respectively, by DHE fluorescence and by fluorescence of the H2O2 sensor, roGFP2-Orp1. Protein contents of p47phox in plasma membrane and cytosol were analyzed by western blot. NADPH oxidase role was evaluated by p22phox siRNA or by pharmacological inhibition with VAS2870. NOX2 KO islets were used to measure total cytosolic calcium and insulin secretion. Results: GW9508 and linoleic acid increased superoxide and H2O2 contents at 5.6 and 8.3 mM of glucose. In addition, in 5.6 mM, but not at 16.7 mM of glucose, activation of GPR40 led to the translocation of p47phox to the plasma membrane. Knockdown of p22phox abolished the increase in superoxide after GW9508 and linoleic acid. No differences in insulin secretion were found between wild type and NOX2 KO islets treated with GW9508 or linoleic acid. Discussion: We report for the first time that acute activation of GPR40 leads to NADPH oxidase activation in pancreatic β-cells, without impact on insulin secretion.
Collapse
Affiliation(s)
| | - Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | - Christopher Carlein
- Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | | | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
5
|
Vilas-Boas EA, Karabacz N, Marsiglio-Librais GN, Valle MMR, Nalbach L, Ampofo E, Morgan B, Carpinelli AR, Roma LP. Chronic activation of GPR40 does not negatively impact upon BRIN-BD11 pancreatic β-cell physiology and function. Pharmacol Rep 2020; 72:1725-1737. [PMID: 32274767 PMCID: PMC7704488 DOI: 10.1007/s43440-020-00101-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Free fatty acids (FFAs) are known for their dual effects on insulin secretion and pancreatic β-cell survival. Short-term exposure to FFAs, such as palmitate, increases insulin secretion. On the contrary, long-term exposure to saturated FFAs results in decreased insulin secretion, as well as triggering oxidative stress and endoplasmic reticulum (ER) stress, culminating in cell death. The effects of FFAs can be mediated either via their intracellular oxidation and consequent effects on cellular metabolism or via activation of the membrane receptor GPR40. Both pathways are likely to be activated upon both short- and long-term exposure to FFAs. However, the precise role of GPR40 in β-cell physiology, especially upon chronic exposure to FFAs, remains unclear. METHODS We used the GPR40 agonist (GW9508) and antagonist (GW1100) to investigate the impact of chronically modulating GPR40 activity on BRIN-BD11 pancreatic β-cells physiology and function. RESULTS We observed that chronic activation of GPR40 did not lead to increased apoptosis, and both proliferation and glucose-induced calcium entry were unchanged compared to control conditions. We also observed no increase in H2O2 or superoxide levels and no increase in the ER stress markers p-eIF2α, CHOP and BIP. As expected, palmitate led to increased H2O2 levels, decreased cell viability and proliferation, as well as decreased metabolism and calcium entry. These changes were not counteracted by the co-treatment of palmitate-exposed cells with the GPR40 antagonist GW1100. CONCLUSIONS Chronic activation of GPR40 using GW9508 does not negatively impact upon BRIN-BD11 pancreatic β-cells physiology and function. The GPR40 antagonist GW1100 does not protect against the deleterious effects of chronic palmitate exposure. We conclude that GPR40 is probably not involved in mediating the toxicity associated with chronic palmitate exposure.
Collapse
Affiliation(s)
- Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.,Department of Biophysics, Center for Human and Molecular Biology, Saarland University, Universität Des Saarlandes, CIPMM, Geb. 48, 66421, Homburg/Saar, Germany
| | - Noémie Karabacz
- Department of Biophysics, Center for Human and Molecular Biology, Saarland University, Universität Des Saarlandes, CIPMM, Geb. 48, 66421, Homburg/Saar, Germany
| | | | - Maíra Melo Rezende Valle
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology, Saarland University, Universität Des Saarlandes, CIPMM, Geb. 48, 66421, Homburg/Saar, Germany.
| |
Collapse
|
6
|
Roma LP, Jonas JC. Nutrient Metabolism, Subcellular Redox State, and Oxidative Stress in Pancreatic Islets and β-Cells. J Mol Biol 2019; 432:1461-1493. [PMID: 31634466 DOI: 10.1016/j.jmb.2019.10.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Insulin-secreting pancreatic β-cells play a critical role in blood glucose homeostasis and the development of type 2 diabetes (T2D) in the context of insulin resistance. Based on data obtained at the whole cell level using poorly specific chemical probes, reactive oxygen species (ROS) such as superoxide and hydrogen peroxide have been proposed to contribute to the stimulation of insulin secretion by nutrients (positive role) and to the alterations of cell survival and secretory function in T2D (negative role). This raised the controversial hypothesis that any attempt to decrease β-cell oxidative stress and apoptosis in T2D would further impair insulin secretion. Over the last decade, the development of genetically-encoded redox probes that can be targeted to cellular compartments of interest and are specific of redox couples allowed the evaluation of short- and long-term effects of nutrients on β-cell redox changes at the subcellular level. The data indicated that the nutrient regulation of β-cell redox signaling and ROS toxicity is far more complex than previously thought and that the subcellular compartmentation of these processes cannot be neglected when evaluating the mechanisms of ROS production or the efficacy of antioxidant enzymes and antioxidant drugs under glucolipotoxic conditions and in T2D. In this review, we present what is currently known about the compartmentation of redox homeostatic systems and tools to investigate it. We then review data about the effects of nutrients on β-cell subcellular redox state under normal conditions and in the context of T2D and discuss challenges and opportunities in the field.
Collapse
Affiliation(s)
- Leticia P Roma
- Universität des Saarlandes, Biophysics Department, Center for Human and Molecular Biology, Kirbergerstrasse Building 48, 66421, Homburg/Saar, Germany
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), B-1200 Brussels, Belgium.
| |
Collapse
|
7
|
Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid Redox Signal 2019; 31:722-751. [PMID: 30450940 PMCID: PMC6708273 DOI: 10.1089/ars.2018.7656] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Significance: Type 2 diabetes development involves multiple changes in β-cells, related to the oxidative stress and impaired redox signaling, beginning frequently by sustained overfeeding due to the resulting lipotoxicity and glucotoxicity. Uncovering relationships among the dysregulated metabolism, impaired β-cell "well-being," biogenesis, or cross talk with peripheral insulin resistance is required for elucidation of type 2 diabetes etiology. Recent Advances: It has been recognized that the oxidative stress, lipotoxicity, and glucotoxicity cannot be separated from numerous other cell pathology events, such as the attempted compensation of β-cell for the increased insulin demand and dynamics of β-cell biogenesis and its "reversal" at dedifferentiation, that is, from the concomitantly decreasing islet β-cell mass (also due to transdifferentiation) and low-grade islet or systemic inflammation. Critical Issues: At prediabetes, the compensation responses of β-cells, attempting to delay the pathology progression-when exaggerated-set a new state, in which a self-checking redox signaling related to the expression of Ins gene expression is impaired. The resulting altered redox signaling, diminished insulin secretion responses to various secretagogues including glucose, may lead to excretion of cytokines or chemokines by β-cells or excretion of endosomes. They could substantiate putative stress signals to the periphery. Subsequent changes and lasting glucolipotoxicity promote islet inflammatory responses and further pathology spiral. Future Directions: Should bring an understanding of the β-cell self-checking and related redox signaling, including the putative stress signal to periphery. Strategies to cure or prevent type 2 diabetes could be based on the substitution of the "wrong" signal by the "correct" self-checking signal.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Wohua Z, Weiming X. Glutaredoxin 2 (GRX2) deficiency exacerbates high fat diet (HFD)-induced insulin resistance, inflammation and mitochondrial dysfunction in brain injury: A mechanism involving GSK-3β. Biomed Pharmacother 2019; 118:108940. [DOI: 10.1016/j.biopha.2019.108940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
|
9
|
Pacher KAS, Camargo TF, Andrade TAM, Barbosa-Sampaio HCL, Amaral MECD. Involvement of M1 and M3 receptors in isolated pancreatic islets function during weight cycling in ovariectomized rats. Biochem Cell Biol 2019; 97:647-654. [PMID: 30707596 DOI: 10.1139/bcb-2018-0306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We investigated the structural and functional adaptations of the pancreas during weight cycling in animals submitted to hypoestrogenism. Female Wistar rats were distributed among the following test groups: ShamAL (AL, ad libitum); OVXAL (ovariectomized); and OVXcycle (dietary restriction with weight cycling). The ShamAL and OVXAL groups received commercial feed ad libitum, whereas the OVXcycle group received 21 days of commercial feed ad libitum, and 21 days of caloric restriction, with caloric intake amounting to 40% of the amount of feed consumed by the rats in the OVXAL group. The tolerance tests for glucose and insulin were applied. After euthanasia, the pancreas and adipose tissue were collected. The disappearance of glucose during the insulin assay occurred at a higher rate in tissues from the OVXcycle group, compared with the OVXAL group. Fasting glycemia and perirenal adipose tissue were lower in the OVXcycle group. By comparison with the ShamAL and OVXAL groups, the OVXcycle group showed higher protein expression of the M1 and M3 receptors and SOD1-2, as well as higher carbachol-induced insulin secretion. Under highly stimulatory conditions with 16.7 mmol/L glucose, the OVXAL and OVXcycle groups presented lower insulin secretion compared with the ShamAL group. Morphological analysis revealed higher iron deposition in the OVXAL islets by comparison with the OVXcycle group. These results show that ovariectomy accelerated the loss of pancreatic islet function, and that weight cycling could restore the function of the islets.
Collapse
Affiliation(s)
- Kayo Augusto Salandin Pacher
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, São Paulo, Brazil
| | - Thaís Furtado Camargo
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, São Paulo, Brazil
| | | | | | | |
Collapse
|
10
|
Deglasse JP, Roma LP, Pastor-Flores D, Gilon P, Dick TP, Jonas JC. Glucose Acutely Reduces Cytosolic and Mitochondrial H 2O 2 in Rat Pancreatic Beta Cells. Antioxid Redox Signal 2019; 30:297-313. [PMID: 29756464 DOI: 10.1089/ars.2017.7287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aims: Whether H2O2 contributes to the glucose-dependent stimulation of insulin secretion (GSIS) by pancreatic β cells is highly controversial. We used two H2O2-sensitive probes, roGFP2-Orp1 (reduction/oxidation-sensitive enhanced green fluorescent protein fused to oxidant receptor peroxidase 1) and HyPer (hydrogen peroxide sensor) with its pH-control SypHer, to test the acute effects of glucose, monomethyl succinate, leucine with glutamine, and α-ketoisocaproate on β cell cytosolic and mitochondrial H2O2 concentrations. We then tested the effects of low H2O2 and menadione concentrations on insulin secretion. Results: RoGFP2-Orp1 was more sensitive than HyPer to H2O2 (response at 2-5 vs. 10 μM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15 μM exogenous H2O2. The glucose effects were not affected by overexpression of catalase, mitochondrial catalase, or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5 mM glucose in the cytosol and 10 mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H2O2 (1-15 μM) did not affect insulin secretion. By contrast, menadione (1-5 μM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20 mM glucose. Innovation: Subcellular changes in β cell H2O2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H2O2 levels in β cells and promote degradation of exogenously supplied H2O2 in both cytosolic and mitochondrial compartments. Conclusion: The GSIS occurs independently of a detectable increase in β cell cytosolic or mitochondrial H2O2 levels.
Collapse
Affiliation(s)
- Jean-Philippe Deglasse
- 1 Université catholique de Louvain, Institute of experimental and clinical research , Pole of endocrinology, diabetes and nutrition, Brussels, Belgium
| | - Leticia Prates Roma
- 2 Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany .,3 Department of Biophysics, Center for Human and Molecular Biology, Saarland University , Homburg, Germany
| | - Daniel Pastor-Flores
- 2 Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Patrick Gilon
- 1 Université catholique de Louvain, Institute of experimental and clinical research , Pole of endocrinology, diabetes and nutrition, Brussels, Belgium
| | - Tobias P Dick
- 2 Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Jean-Christophe Jonas
- 1 Université catholique de Louvain, Institute of experimental and clinical research , Pole of endocrinology, diabetes and nutrition, Brussels, Belgium
| |
Collapse
|
11
|
Gao H, Duan Y, Fu X, Xie H, Liu Y, Yuan H, Zhou M, Xie C. Comparison of efficacy of SHENQI compound and rosiglitazone in the treatment of diabetic vasculopathy analyzing multi-factor mediated disease-causing modules. PLoS One 2018; 13:e0207683. [PMID: 30521536 PMCID: PMC6283585 DOI: 10.1371/journal.pone.0207683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis-predominant vasculopathy is a common complication of diabetes with high morbidity and high mortality, which is ruining the patient's daily life. As is known to all, traditional Chinese medicine (TCM) SHENQI compound and western medicine rosiglitazone play an important role in the treatment of diabetes. In particular, SHENQI compound has a significant inhibitory effect on vascular lesions. Here, to explore and compare the therapeutic mechanism of SHENQI compound and rosiglitazone on diabetic vasculopathy, we first built 7 groups of mouse models. The behavioral, physiological and pathological morphological characteristics of these mice showed that SHENQI compound has a more comprehensive curative effect than rosiglitazone and has a stronger inhibitory effect on vascular lesions. While rosiglitazone has a more effective but no significant effect on hypoglycemic. Further, based on the gene expression of mice in each group, we performed differential expression analysis. The functional enrichment analysis of these differentially expressed genes (DEGs) revealed the potential pathogenesis and treatment mechanisms of diabetic angiopathy. In addition, we found that SHENQI compound mainly exerts comprehensive effects by regulating MCM8, IRF7, CDK7, NEDD4L by pivot regulator analysis, while rosiglitazone can rapidly lower blood glucose levels by targeting PSMD3, UBA52. Except that, we also identified some pivot TFs and ncRNAs for these potential disease-causing DEG modules, which may the mediators bridging drugs and modules. Finally, similar to pivot regulator analysis, we also identified the regulation of some drugs (e.g. bumetanide, disopyramide and glyburide etc.) which have been shown to have a certain effect on diabetes or diabetic angiopathy, proofing the scientific and objectivity of this study. Overall, this study not only provides an in-depth comparison of the efficacy of SHENQI compound and rosiglitazone in the treatment of diabetic vasculopathy, but also provides clinicians and drug designers with valuable theoretical guidance.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/pathology
- Cardiovascular Agents/therapeutic use
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Diabetic Angiopathies/drug therapy
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/pathology
- Disease Models, Animal
- Drugs, Chinese Herbal/therapeutic use
- Gene Expression/drug effects
- Humans
- Hypoglycemic Agents/therapeutic use
- Male
- Medicine, Chinese Traditional
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Phytotherapy
- Rosiglitazone/therapeutic use
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Hong Gao
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Duan
- Department Two of Endocrinology, Teaching Hospital, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Xiaoxu Fu
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Liu
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haipo Yuan
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyang Zhou
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- * E-mail:
| |
Collapse
|
12
|
Petry SF, Sun LM, Knapp A, Reinl S, Linn T. Distinct Shift in Beta-Cell Glutaredoxin 5 Expression Is Mediated by Hypoxia and Lipotoxicity Both In Vivo and In Vitro. Front Endocrinol (Lausanne) 2018; 9:84. [PMID: 29593651 PMCID: PMC5857561 DOI: 10.3389/fendo.2018.00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/22/2018] [Indexed: 01/04/2023] Open
Abstract
Histomorphological and functional alterations in pancreatic islet composition directly correlate with hyperglycemia severity. Progressive deterioration of metabolic control in subjects suffering from type 2 diabetes is predominantly caused by impaired beta-cell functionality. The glutaredoxin system is supposed to wield protective properties for beta-cells. Therefore, we sought to identify a correlation between the structural changes observed in diabetic pancreatic islets with altered glutaredoxin 5 expression, in order to determine an underlying mechanism of beta-cell impairment. Islets of db/db mice presenting with uncontrolled diabetes were assessed in terms of morphological structure and insulin, glucagon, and glutaredoxin 5 expression. MIN6 cell function and glutaredoxin 5 expression were analyzed after exposure to oleic acid and hypoxia. Islets of diabese mice were marked by typical remodeling and distinct reduction of, and shifts, in localization of glutaredoxin 5-positive cells. These islets featured decreased glutaredoxin 5 as well as insulin and glucagon content. In beta-cell culture, glutaredoxin 5 protein and mRNA expression were decreased by hypoxia and oleic acid but not by leptin treatment. Our study demonstrates that glutaredoxin 5 expression patterns are distinctively altered in islets of rodents presenting with uncontrolled diabesity. In vitro, reduction of islet-cell glutaredoxin 5 expression was mediated by hypoxia and oleic acid. Thus, glutaredoxin 5-deficiency in islets during diabetes may be caused by lipotoxicity and hypoxia.
Collapse
Affiliation(s)
- Sebastian Friedrich Petry
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
- *Correspondence: Sebastian Friedrich Petry,
| | - Lia Mingzhe Sun
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Anna Knapp
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Sabrina Reinl
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
13
|
Petry SF, Sharifpanah F, Sauer H, Linn T. Differential expression of islet glutaredoxin 1 and 5 with high reactive oxygen species production in a mouse model of diabesity. PLoS One 2017; 12:e0176267. [PMID: 28542222 PMCID: PMC5443478 DOI: 10.1371/journal.pone.0176267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 01/14/2023] Open
Abstract
The onset and progression of diabetes mellitus type 2 is highly contingent on the amount of functional beta-cell mass. An underlying cause of beta-cell decay in diabetes is oxidative stress, which markedly affects the insulin producing pancreatic cells due to their poor antioxidant defence capacity. Consequently, disturbances of cellular redox signaling have been implicated to play a major role in beta-cell loss in diabetes mellitus type 2. There is evidence suggesting that the glutaredoxin (Grx) system exerts a protective role for pancreatic islets, but the exact mechanisms have not yet been elucidated. In this study, a mouse model for diabetes mellitus type 2 was used to gain further insight into the significance of Grx for the islets of Langerhans in the diabetic metabolism. We have observed distinct differences in the expression levels of Grx in pancreatic islets between obese, diabetic db mice and lean, non-diabetic controls. This finding is the first report about a decrease of Grx expression levels in pancreatic islets of diabetic mice which was accompanied by declining insulin secretion, increase of reactive oxygen species (ROS) production level, and cell cycle alterations. These data demonstrate the essential role of the Grx system for the beta-cell during metabolic stress which may provide a new target for diabetes mellitus type 2 treatment.
Collapse
Affiliation(s)
- Sebastian Friedrich Petry
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
- * E-mail:
| | - Fatemeh Sharifpanah
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
14
|
Abstract
Pancreatic islet β cells secrete insulin in response to nutrient secretagogues, like glucose, dependent on calcium influx and nutrient metabolism. One of the most intriguing qualities of β cells is their ability to use metabolism to amplify the amount of secreted insulin independent of further alterations in intracellular calcium. Many years studying this amplifying process have shaped our current understanding of β cell stimulus-secretion coupling; yet, the exact mechanisms of amplification have been elusive. Recent studies utilizing metabolomics, computational modeling, and animal models have progressed our understanding of the metabolic amplifying pathway of insulin secretion from the β cell. New approaches will be discussed which offer in-roads to a more complete model of β cell function. The development of β cell therapeutics may be aided by such a model, facilitating the targeting of aspects of the metabolic amplifying pathway which are unique to the β cell.
Collapse
Affiliation(s)
- Michael A Kalwat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
15
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
16
|
Santos LR, Muller C, de Souza AH, Takahashi HK, Spégel P, Sweet IR, Chae H, Mulder H, Jonas JC. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells. Mol Metab 2017; 6:535-547. [PMID: 28580284 PMCID: PMC5444111 DOI: 10.1016/j.molmet.2017.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 11/17/2022] Open
Abstract
Objective The glucose stimulation of insulin secretion (GSIS) by pancreatic β-cells critically depends on increased production of metabolic coupling factors, including NADPH. Nicotinamide nucleotide transhydrogenase (NNT) typically produces NADPH at the expense of NADH and ΔpH in energized mitochondria. Its spontaneous inactivation in C57BL/6J mice was previously shown to alter ATP production, Ca2+ influx, and GSIS, thereby leading to glucose intolerance. Here, we tested the role of NNT in the glucose regulation of mitochondrial NADPH and glutathione redox state and reinvestigated its role in GSIS coupling events in mouse pancreatic islets. Methods Islets were isolated from female C57BL/6J mice (J-islets), which lack functional NNT, and genetically close C57BL/6N mice (N-islets). Wild-type mouse NNT was expressed in J-islets by adenoviral infection. Mitochondrial and cytosolic glutathione oxidation was measured with glutaredoxin 1-fused roGFP2 probes targeted or not to the mitochondrial matrix. NADPH and NADH redox state was measured biochemically. Insulin secretion and upstream coupling events were measured under dynamic or static conditions by standard procedures. Results NNT is largely responsible for the acute glucose-induced rise in islet NADPH/NADP+ ratio and decrease in mitochondrial glutathione oxidation, with a small impact on cytosolic glutathione. However, contrary to current views on NNT in β-cells, these effects resulted from a glucose-dependent reduction in NADPH consumption by NNT reverse mode of operation, rather than from a stimulation of its forward mode of operation. Accordingly, the lack of NNT in J-islets decreased their sensitivity to exogenous H2O2 at non-stimulating glucose. Surprisingly, the lack of NNT did not alter the glucose-stimulation of Ca2+ influx and upstream mitochondrial events, but it markedly reduced both phases of GSIS by altering Ca2+-induced exocytosis and its metabolic amplification. Conclusion These results drastically modify current views on NNT operation and mitochondrial function in pancreatic β-cells.
Collapse
Key Words
- AT2, aldrithiol
- C57BL/6J mice
- C57BL/6N mice
- CMV, cytomegalovirus
- DTT, dithiotreitol
- Dz, diazoxide
- FCCP, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone
- GRX1, glutaredoxin 1
- GRX1-roGFP2
- GSIS, glucose stimulation of insulin secretion
- Glucose metabolism
- IDH, isocitrate dehydrogenase
- Insulin secretion
- KRB, Krebs solution
- ME, malic enzyme
- Mitochondrial shuttles
- NNT, nicotinamide nucleotide transhydrogenase
- OCR, oxygen consumption rate
- Pancreatic islet
- Redox-sensitive GFP
- Stimulus-secretion coupling
- WT, wild-type
- [Ca2+]i, intracellular Ca2+ concentration
Collapse
Affiliation(s)
- Laila R.B. Santos
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Carole Muller
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Arnaldo H. de Souza
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Hilton K. Takahashi
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Peter Spégel
- Lund University, Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Malmö, 205 02, Sweden
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis, Lund, 221 00, Sweden
| | - Ian R. Sweet
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Heeyoung Chae
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Hindrik Mulder
- Lund University, Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Malmö, 205 02, Sweden
| | - Jean-Christophe Jonas
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
- Corresponding author. Université catholique de Louvain, UCL/SSS/IREC/EDIN, Avenue Hippocrate 55, B1.55.06, B-1200, Brussels, Belgium.Université catholique de LouvainUCL/SSS/IREC/EDINAvenue Hippocrate 55B1.55.06BrusselsB-1200Belgium
| |
Collapse
|
17
|
De Marchi U, Hermant A, Thevenet J, Ratinaud Y, Santo-Domingo J, Barron D, Wiederkehr A. A novel ATP-synthase-independent mechanism coupling mitochondrial activation to exocytosis in insulin-secreting cells. J Cell Sci 2017; 130:1929-1939. [PMID: 28404787 DOI: 10.1242/jcs.200741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/11/2017] [Indexed: 12/16/2022] Open
Abstract
Pancreatic β-cells sense glucose, promoting insulin secretion. Glucose sensing requires the sequential stimulation of glycolysis, mitochondrial metabolism and Ca2+ entry. To elucidate how mitochondrial activation in β-cells contributes to insulin secretion, we compared the effects of glucose and the mitochondrial substrate methylsuccinate in the INS-1E insulin-secreting cell line at the respective concentrations at which they maximally activate mitochondrial respiration. Both substrates induced insulin secretion with distinct respiratory profiles, mitochondrial hyperpolarization, NADH production and ATP-to-ADP ratios. In contrast to glucose, methylsuccinate failed to induce large [Ca2+] rises and exocytosis proceeded largely independently of mitochondrial ATP synthesis. Both glucose- and methylsuccinate-induced secretion was blocked by diazoxide, indicating that Ca2+ is required for exocytosis. Dynamic assessment of the redox state of mitochondrial thiols revealed a less marked reduction in response to methylsuccinate than with glucose. Our results demonstrate that insulin exocytosis can be promoted by two distinct mechanisms one of which is dependent on mitochondrial ATP synthesis and large Ca2+ transients, and one of which is independent of mitochondrial ATP synthesis and relies on small Ca2+ signals. We propose that the combined effects of Ca2+ and redox reactions can trigger insulin secretion by these two mechanisms.
Collapse
Affiliation(s)
- Umberto De Marchi
- Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, Lausanne CH-1015, Switzerland
| | - Aurelie Hermant
- Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, Lausanne CH-1015, Switzerland
| | - Jonathan Thevenet
- Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, Lausanne CH-1015, Switzerland
| | - Yann Ratinaud
- Natural Bioactives and screening, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building H, Lausanne CH-1015, Switzerland
| | - Jaime Santo-Domingo
- Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, Lausanne CH-1015, Switzerland
| | - Denis Barron
- Natural Bioactives and screening, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building H, Lausanne CH-1015, Switzerland
| | - Andreas Wiederkehr
- Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, Lausanne CH-1015, Switzerland
| |
Collapse
|
18
|
Abstract
The balance of oxidants and antioxidants within the cell is crucial for maintaining health, and regulating physiological processes such as signalling. Consequently, imbalances between oxidants and antioxidants are now understood to lead to oxidative stress, a physiological feature that underlies many diseases. These processes have spurred the field of chemical biology to develop a plethora of sensors, both small-molecule and fluorescent protein-based, for the detection of specific oxidizing species and general redox balances within cells. The mitochondrion, in particular, is the site of many vital redox reactions. There is therefore a need to target redox sensors to this particular organelle. It has been well established that targeting mitochondria can be achieved by the use of a lipophilic cation-targeting group, or by utilizing natural peptidic mitochondrial localization sequences. Here, we review how these two approaches have been used by a number of researchers to develop mitochondrially localized fluorescent redox sensors that are already proving useful in providing insights into the roles of reactive oxygen species in the mitochondria.
Collapse
Affiliation(s)
| | | | - Elizabeth J. New
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
19
|
Gerber PA, Rutter GA. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxid Redox Signal 2017; 26:501-518. [PMID: 27225690 PMCID: PMC5372767 DOI: 10.1089/ars.2016.6755] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. CRITICAL ISSUES Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn2+ concentrations and thus susceptibility to hypoxia and oxidative stress. FUTURE DIRECTIONS Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.
Collapse
Affiliation(s)
- Philipp A. Gerber
- Department of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
de Souza AH, Santos LRB, Roma LP, Bensellam M, Carpinelli AR, Jonas JC. NADPH oxidase-2 does not contribute to β-cell glucotoxicity in cultured pancreatic islets from C57BL/6J mice. Mol Cell Endocrinol 2017; 439:354-362. [PMID: 27664519 DOI: 10.1016/j.mce.2016.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022]
Abstract
High glucose-induced oxidative stress and increased NADPH oxidase-2 (NOX2) activity may contribute to the progressive decline of the functional β-cell mass in type 2 diabetes. To test that hypothesis, we characterized, in islets from male NOX2 knockout (NOX2-KO) and wild-type (WT) C57BL/6J mice cultured for up to 3 weeks at 10 or 30 mmol/l glucose (G10 or G30), the in vitro effects of glucose on cytosolic oxidative stress using probes sensing glutathione oxidation (GRX1-roGFP2), thiol oxidation (roGFP1) or H2O2 (roGFP2-Orp1), on β-cell stimulus-secretion coupling events and on β-cell apoptosis. After 1-2 days of culture in G10, the glucose stimulation of insulin secretion (GSIS) was ∼1.7-fold higher in NOX2-KO vs. WT islets at 20-30 mmol/l glucose despite similar rises in NAD(P)H and intracellular calcium concentration ([Ca2+]i) and no differences in cytosolic GRX1-roGFP2 oxidation. After long-term culture at G10, roGFP1 and roGFP2-Orp1 oxidation and β-cell apoptosis remained low, and the glucose-induced rises in NAD(P)H, [Ca2+]i and GSIS were similarly preserved in both islet types. After prolonged culture at G30, roGFP1 and roGFP2-Orp1 oxidation increased in parallel with β-cell apoptosis, the glucose sensitivity of the NADPH, [Ca2+]i and insulin secretion responses increased, the maximal [Ca2+]i response decreased, but maximal GSIS was preserved. These responses were almost identical in both islet types. In conclusion, NOX2 is a negative regulator of maximal GSIS in C57BL/6J mouse islets, but it does not detectably contribute to the in vitro glucotoxic induction of cytosolic oxidative stress and alterations of β-cell survival and function.
Collapse
Affiliation(s)
- Arnaldo H de Souza
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Laila R B Santos
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium
| | - Leticia P Roma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mohammed Bensellam
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium
| | - Angelo R Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jean-Christophe Jonas
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium.
| |
Collapse
|
21
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
22
|
Ferdaoussi M, Dai X, Jensen MV, Wang R, Peterson BS, Huang C, Ilkayeva O, Smith N, Miller N, Hajmrle C, Spigelman AF, Wright RC, Plummer G, Suzuki K, Mackay JP, van de Bunt M, Gloyn AL, Ryan TE, Norquay LD, Brosnan MJ, Trimmer JK, Rolph TP, Kibbey RG, Manning Fox JE, Colmers WF, Shirihai OS, Neufer PD, Yeh ETH, Newgard CB, MacDonald PE. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. J Clin Invest 2015; 125:3847-60. [PMID: 26389676 DOI: 10.1172/jci82498] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/24/2015] [Indexed: 01/02/2023] Open
Abstract
Insulin secretion from β cells of the pancreatic islets of Langerhans controls metabolic homeostasis and is impaired in individuals with type 2 diabetes (T2D). Increases in blood glucose trigger insulin release by closing ATP-sensitive K+ channels, depolarizing β cells, and opening voltage-dependent Ca2+ channels to elicit insulin exocytosis. However, one or more additional pathway(s) amplify the secretory response, likely at the distal exocytotic site. The mitochondrial export of isocitrate and engagement with cytosolic isocitrate dehydrogenase (ICDc) may be one key pathway, but the mechanism linking this to insulin secretion and its role in T2D have not been defined. Here, we show that the ICDc-dependent generation of NADPH and subsequent glutathione (GSH) reduction contribute to the amplification of insulin exocytosis via sentrin/SUMO-specific protease-1 (SENP1). In human T2D and an in vitro model of human islet dysfunction, the glucose-dependent amplification of exocytosis was impaired and could be rescued by introduction of signaling intermediates from this pathway. Moreover, islet-specific Senp1 deletion in mice caused impaired glucose tolerance by reducing the amplification of insulin exocytosis. Together, our results identify a pathway that links glucose metabolism to the amplification of insulin secretion and demonstrate that restoration of this axis rescues β cell function in T2D.
Collapse
|
23
|
Liu X, Han S, Yang Y, Kang J, Wu J. Glucose-induced glutathione reduction in mitochondria is involved in the first phase of pancreatic β-cell insulin secretion. Biochem Biophys Res Commun 2015; 464:730-6. [PMID: 26164230 DOI: 10.1016/j.bbrc.2015.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 11/16/2022]
Abstract
Glucose can acutely reduce mitochondrial glutathione redox state in rat islets. However, whether glucose-stimulated mitochondrial glutathione redox state relates to glucose-stimulated insulin secretion (GSIS) remains unknown. We used genetically encoded redox-sensitive GFPs to target the mitochondria to monitor glutathione redox changes during GSIS in rat pancreatic β-cells. The results showed that mitochondrial glutathione was more reduced during GSIS, whereas inhibition of this glutathione reduction impaired insulin secretion. In isolated rat pancreatic islets glutathione reduction in mitochondria and the first phase of GSIS were concurrence at the early stage of glucose-stimulation. Our results suggest that the glucose-induced glutathione reduction in mitochondria is primarily required for the first phase of GSIS.
Collapse
Affiliation(s)
- Xiaojing Liu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Shuai Han
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ying Yang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
24
|
Krause M, Bock PM, Takahashi HK, Homem De Bittencourt PI, Newsholme P. The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin Sci (Lond) 2015; 128:789-803. [PMID: 25881670 DOI: 10.1042/cs20140695] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The 70 kDa heat-shock protein (HSP70) family is important for a dynamic range of cellular processes that include protection against cell stress, modulation of cell signalling, gene expression, protein synthesis, protein folding and inflammation. Within this family, the inducible 72 kDa and the cognate 73 kDa forms are found at the highest level. HSP70 has dual functions depending on location. For example, intracellular HSP70 (iHSP70) is anti-inflammatory whereas extracellular HSP70 (eHSP70) has a pro-inflammatory function, resulting in local and systemic inflammation. We have recently identified a divergence in the levels of eHSP70 and iHSP70 in subjects with diabetes compared with healthy subjects and also reported that eHSP70 was correlated with insulin resistance and pancreatic β-cell dysfunction/death. In the present review, we describe possible mechanisms by which HSP70 participates in cell function/dysfunction, including the activation of NADPH oxidase isoforms leading to oxidative stress, focusing on the possible role of HSPs and signalling in pancreatic islet α- and β-cell physiological function in health and Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mauricio Krause
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Martins Bock
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hilton Kenji Takahashi
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem De Bittencourt
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Philip Newsholme
- ‡School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia
| |
Collapse
|
25
|
Qureshi FM, Dejene EA, Corbin KL, Nunemaker CS. Stress-induced dissociations between intracellular calcium signaling and insulin secretion in pancreatic islets. Cell Calcium 2015; 57:366-375. [PMID: 25861744 DOI: 10.1016/j.ceca.2015.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/09/2015] [Indexed: 12/22/2022]
Abstract
In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion.
Collapse
Affiliation(s)
- Farhan M Qureshi
- Department of Medicine, University of Virginia, Charlottesville, VA.,Department of Chemistry, University of Virginia, Charlottesville, VA
| | - Eden A Dejene
- Department of Medicine, University of Virginia, Charlottesville, VA.,Department of Chemistry, University of Virginia, Charlottesville, VA
| | - Kathryn L Corbin
- Department of Medicine, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
26
|
Abstract
OBJECTIVES The aim of the study was to evaluate the potential changes induced by fish oil (FO) supplementation on the redox status of pancreatic islets from healthy rats. To test whether these effects were due to eicosapentaenoic acid and docosahexaenoic acid (ω-3), in vitro experiments were performed. METHODS Rats were supplemented with FO, and pancreatic islets were obtained. Islets were also treated in vitro with palmitate (P) or eicosapentaenoic acid + docosahexaenoic acid (ω-3). Insulin secretion (GSIS), glucose oxidation, protein expression, and superoxide content were analyzed. RESULTS The FO group showed a reduction in superoxide content. Moreover, FO reduced the expression of NAD(P)H oxidase subunits and increased superoxide dismutase, without altering β-cell function. Palmitate increased β-cell reactive oxygen species (ROS) production, apoptosis, and impaired GSIS. Under these conditions, ω-3 triggered a parallel reduction in ROS production and β-cell apoptosis induced by P and protected against the impairment in GSIS. There was no difference in mitochondrial ROS production. CONCLUSIONS Our results show that ω-3 protect pancreatic islets from alterations induced by P. In vivo FO supplementation modulates the redox state of pancreatic β-cell. Considering that in vitro effects do not involve mitochondrial superoxide production, we can speculate that this protection might involve NAD(P)H oxidase activity.
Collapse
|
27
|
Cruzat VF, Keane KN, Scheinpflug AL, Cordeiro R, Soares MJ, Newsholme P. Alanyl-glutamine improves pancreatic β-cell function following ex vivo inflammatory challenge. J Endocrinol 2015; 224:261-71. [PMID: 25550445 DOI: 10.1530/joe-14-0677] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity-associated diabetes and concomitant inflammation may compromise pancreatic β-cell integrity and function. l-glutamine and l-alanine are potent insulin secretagogues, with antioxidant and cytoprotective properties. Herein, we studied whether the dipeptide l-alanyl-l-glutamine (Ala-Gln) could exert protective effects via sirtuin 1/HUR (SIRT1/HUR) signalling in β-cells, against detrimental responses following ex vivo stimulation with inflammatory mediators derived from macrophages (IMMs). The macrophages were derived from blood obtained from obese subjects. Macrophages were exposed (or not) to lipopolysaccharide (LPS) to generate a pro-inflammatory cytokine cocktail. The cytokine profile was determined following analysis by flow cytometry. Insulin-secreting BRIN-BD11 β-cells were exposed to IMMs and then cultured with or without Ala-Gln for 24 h. Chronic insulin secretion, the l-glutamine-glutathione (GSH) axis, and the level of insulin receptor β (IR-β), heat shock protein 70 (HSP70), SIRT1/HUR, CCAAT-enhancer-binding protein homologous protein (CHOP) and cytochrome c oxidase IV (COX IV) were evaluated. Concentrations of cytokines, including interleukin 1β (IL1β), IL6, IL10 and tumour necrosis factor alpha (TNFα) in the IMMs, were higher following exposure to LPS. Subsequently, when β-cells were exposed to IMMs, chronic insulin secretion, and IR-β and COX IV levels were decreased, but these effects were partially or fully attenuated by the addition of Ala-Gln. The glutamine-GSH axis and HSP70 levels, which were compromised by IMMs, were also restored by Ala-Gln, possibly due to protection of SIRT1/HUR levels, and a reduction of CHOP expression. Using an ex vivo inflammatory approach, we have demonstrated Ala-Gln-dependent β-cell protection mediated by coordinated effects on the glutamine-GSH axis, and the HSP pathway, maintenance of mitochondrial metabolism and stimulus-secretion coupling essential for insulin release.
Collapse
Affiliation(s)
- Vinicius Fernandes Cruzat
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| | - Kevin Noel Keane
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| | - Anita Lavarda Scheinpflug
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| | - Robson Cordeiro
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| | - Mario J Soares
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| | - Philip Newsholme
- School of Biomedical SciencesDirectorate of NutritionDietetics and Food Technology, School of Public Health, Curtin Health Innovation Research Institute of Ageing and Chronic Disease - Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845
| |
Collapse
|