1
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Ergul Erkec O, Huyut Z, Acikgoz E, Huyut MT. Effects of exogenous ghrelin treatment on oxidative stress, inflammation and histological parameters in a fat-fed streptozotocin rat model. Arch Physiol Biochem 2024:1-11. [PMID: 39324977 DOI: 10.1080/13813455.2024.2407551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
In this study, the anti-inflammatory, antioxidative, and protective effects of ghrelin were investigated in a fat-fed streptozotocin (STZ) rat model and compared with metformin, diabetes and the healthy control groups. Histopathological evaluations were performed on H&E-stained pancreas and brain sections. Biochemical parameters were investigated by enzyme-linked immunosorbent assay. Blood glucose levels were significantly decreased with ghrelin or metformin treatments than the diabetes group. STZ administration increased brain, renal and pancreatic IL-1β, TNF-α and MDA while decreasing GPX, CAT, SOD, and NGF levels. Ghrelin increased renal GPX, CAT, NGF pancreatic GPX, SOD, CAT, NGF and brain SOD, NGF while it decreased renal, pancreatic and brain IL-1β, TNF-α and MDA levels. Ghrelin reduced neuronal loss and degeneration in the cerebral cortex and hippocampus and greatly ameliorated diabetes-related damage in pancreas. In conclusion, the data suggested that ghrelin is an effective candidate as a protectant for reducing the adverse effects of diabetes.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Tahir Huyut
- Department of Biostatistics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
3
|
Fagundes RR, Zaldumbide A, Taylor CT. Role of hypoxia-inducible factor 1 in type 1 diabetes. Trends Pharmacol Sci 2024; 45:798-810. [PMID: 39127527 DOI: 10.1016/j.tips.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Type 1 diabetes (T1D) is a common autoimmune disease in which dysregulated glucose metabolism is a key feature. T1D is both poorly understood and in need of improved therapeutics. Hypoxia is frequently encountered in multiple tissues in T1D patients including the pancreas and sites of diabetic complications. Hypoxia-inducible factor (HIF)-1, a ubiquitous master regulator of the adaptive response to hypoxia, promotes glucose metabolism through transcriptional and non-transcriptional mechanisms and alters disease progression in multiple preclinical T1D models. However, how HIF-1 activation in β-cells of the pancreas and immune cells (two key cell types in T1D) ultimately affects disease progression remains controversial. We discuss recent advances in our understanding of the role of hypoxia/HIF-1-induced glycolysis in T1D and explore the possible use of drugs targeting this pathway as potential new therapeutics.
Collapse
Affiliation(s)
- Raphael R Fagundes
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Cormac T Taylor
- School of Medicine and Conway Institute of Biomolecular and Biomedical Research and Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Alshafei M, Morsi M, Reschke J, Rustenbeck I. The Proton Leak of the Inner Mitochondrial Membrane Is Enlarged in Freshly Isolated Pancreatic Islets. Biomedicines 2024; 12:1747. [PMID: 39200212 PMCID: PMC11351158 DOI: 10.3390/biomedicines12081747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
In a number of investigations on the mechanism of the metabolic amplification of insulin secretion, differences between the response of freshly isolated islets and of islets cultured for one day have been observed. Since no trivial explanation like insufficient numbers of viable cells after cell culture could be found, a more thorough investigation into the mechanisms responsible for the difference was made, concentrating on the function of the mitochondria as the site where the metabolism of nutrient stimulators of secretion forms the signals impacting on the transport and fusion of insulin granules. Using combinations of inhibitors of oxidative phosphorylation, we come to the conclusion that the mitochondrial membrane potential is lower and the exchange of mitochondrial reducing equivalents is faster in freshly isolated islets than in cultured islets. The significantly higher rate of oxygen consumption in fresh islets than in cultured islets (13 vs. 8 pmol/min/islet) was not caused by a different activity of the F1F0-ATPase, but by a larger proton leak. These observations raise the questions as to whether the proton leak is a physiologically regulated pathway and whether its larger size in fresh islets reflects the working condition of the islets within the pancreas.
Collapse
Affiliation(s)
- Mohammed Alshafei
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.A.); (M.M.); (J.R.)
| | - Mai Morsi
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.A.); (M.M.); (J.R.)
- Department of Pharmacology, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Julia Reschke
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.A.); (M.M.); (J.R.)
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.A.); (M.M.); (J.R.)
- PVZ-Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Marhl M. What do stimulated beta cells have in common with cancer cells? Biosystems 2024; 242:105257. [PMID: 38876357 DOI: 10.1016/j.biosystems.2024.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
This study investigates the metabolic parallels between stimulated pancreatic beta cells and cancer cells, focusing on glucose and glutamine metabolism. Addressing the significant public health challenges of Type 2 Diabetes (T2D) and cancer, we aim to deepen our understanding of the mechanisms driving insulin secretion and cellular proliferation. Our analysis of anaplerotic cycles and the role of NADPH in biosynthesis elucidates their vital functions in both processes. Additionally, we point out that both cell types share an antioxidative response mediated by the Nrf2 signaling pathway, glutathione synthesis, and UCP2 upregulation. Notably, UCP2 facilitates the transfer of C4 metabolites, enhancing reductive TCA cycle metabolism. Furthermore, we observe that hypoxic responses are transient in beta cells post-stimulation but persistent in cancer cells. By synthesizing these insights, the research may suggest novel therapeutic targets for T2D, highlighting the shared metabolic strategies of stimulated beta cells and cancer cells. This comparative analysis not only illuminates the metabolic complexity of these conditions but also emphasizes the crucial role of metabolic pathways in cell function and survival, offering fresh perspectives for tackling T2D and cancer challenges.
Collapse
Affiliation(s)
- Marko Marhl
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia; Faculty of Education, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
| |
Collapse
|
7
|
Grubelnik V, Zmazek J, Gosak M, Marhl M. The role of anaplerotic metabolism of glucose and glutamine in insulin secretion: A model approach. Biophys Chem 2024; 311:107270. [PMID: 38833963 DOI: 10.1016/j.bpc.2024.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
We propose a detailed computational beta cell model that emphasizes the role of anaplerotic metabolism under glucose and glucose-glutamine stimulation. This model goes beyond the traditional focus on mitochondrial oxidative phosphorylation and ATP-sensitive K+ channels, highlighting the predominant generation of ATP from phosphoenolpyruvate in the vicinity of KATP channels. It also underlines the modulatory role of H2O2 as a signaling molecule in the first phase of glucose-stimulated insulin secretion. In the second phase, the model emphasizes the critical role of anaplerotic pathways, activated by glucose stimulation via pyruvate carboxylase and by glutamine via glutamate dehydrogenase. It particularly focuses on the production of NADPH and glutamate as key enhancers of insulin secretion. The predictions of the model are consistent with empirical data, highlighting the complex interplay of metabolic pathways and emphasizing the primary role of glucose and the facilitating role of glutamine in insulin secretion. By delineating these crucial metabolic pathways, the model provides valuable insights into potential therapeutic targets for diabetes.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia
| | - Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; Alma Mater Europaea ECM, Slovenska ulica 17, 2000 Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; Faculty of Education, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia.
| |
Collapse
|
8
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreatic Antioxidative Defense and Heat Shock Proteins Prevent Islet of Langerhans Cell Death After Chronic Oral Exposure to Cadmium LOAEL Dose. Biol Trace Elem Res 2024; 202:3714-3730. [PMID: 37955768 DOI: 10.1007/s12011-023-03955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cadmium, a hazardous environmental contaminant, is associated with metabolic disease development. The dose with the lowest observable adverse effect level (LOAEL) has not been studied, focusing on its effect on the pancreas. We aimed to evaluate the pancreatic redox balance and heat shock protein (HSP) expression in islets of Langerhans of male Wistar rats chronically exposed to Cd LOAEL doses, linked to their survival. Male Wistar rats were separated into control and cadmium groups (drinking water with 32.5 ppm CdCl2). At 2, 3, and 4 months, glucose, insulin, and cadmium were measured in serum; cadmium and insulin were quantified in isolated islets of Langerhans; and redox balance was analyzed in the pancreas. Immunoreactivity analysis of p-HSF1, HSP70, HSP90, caspase 3 and 9, and cell survival was performed. The results showed that cadmium exposure causes a serum increase and accumulation of the metal in the pancreas and islets of Langerhans, hyperglycemia, and hyperinsulinemia, associated with high insulin production. Cd-exposed groups presented high levels of reactive oxygen species and lipid peroxidation. An augment in MT and GSH concentrations with the increased enzymatic activity of the glutathione system, catalase, and superoxide dismutase maintained a favorable redox environment. Additionally, islets of Langerhans showed a high immunoreactivity of HSPs and minimal immunoreactivity to caspase associated with a high survival rate of Langerhans islet cells. In conclusion, antioxidative and HSP pancreatic defense avoids cell death associated with Cd accumulation in chronic conditions; however, this could provoke oversynthesis and insulin release, which is a sign of insulin resistance.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ9, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico.
| |
Collapse
|
9
|
Srivastava N, Hu H, Peterson OJ, Vomund AN, Stremska M, Zaman M, Giri S, Li T, Lichti CF, Zakharov PN, Zhang B, Abumrad NA, Chen YG, Ravichandran KS, Unanue ER, Wan X. CXCL16-dependent scavenging of oxidized lipids by islet macrophages promotes differentiation of pathogenic CD8 + T cells in diabetic autoimmunity. Immunity 2024; 57:1629-1647.e8. [PMID: 38754432 PMCID: PMC11236520 DOI: 10.1016/j.immuni.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/18/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
The pancreatic islet microenvironment is highly oxidative, rendering β cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Hao Hu
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Orion J Peterson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Marta Stremska
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Zaman
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Shilpi Giri
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Pavel N Zakharov
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kodi S Ravichandran
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; VIB/UGent Inflammation Research Centre and Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Plötz T, Lenzen S. Mechanisms of lipotoxicity-induced dysfunction and death of human pancreatic beta cells under obesity and type 2 diabetes conditions. Obes Rev 2024; 25:e13703. [PMID: 38327101 DOI: 10.1111/obr.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 02/09/2024]
Abstract
The term "pancreatic beta-cell lipotoxicity" refers to the detrimental effects of free fatty acids (FFAs) on a wide variety of cellular functions. Basic research in the field has primarily analyzed the effects of palmitic acid and oleic acid. The focus on these two physiological FFAs, however, ignores differences in chain length and degree of saturation. In order to gain a comprehensive understanding of the lipotoxic mechanisms, a wide range of structurally related FFAs should be investigated. Structure-activity relationship analyses of FFAs in the human EndoC-βH1 beta-cell line have provided a deep insight into the mechanisms of beta-cell lipotoxicity. This review focuses on the effects of a wide range of FFAs with crucial structural determinants for the development of lipotoxicity in human beta cells and documents an association between increased triglyceride stores in obesity and in type 2 diabetes.
Collapse
Affiliation(s)
- Thomas Plötz
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Zhu W, Tanday N, Lafferty RA, Flatt PR, Irwin N. Novel enzyme-resistant pancreatic polypeptide analogs evoke pancreatic beta-cell rest, enhance islet cell turnover, and inhibit food intake in mice. Biofactors 2024. [PMID: 38635341 DOI: 10.1002/biof.2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Pancreatic polypeptide (PP) is a postprandial hormone secreted from pancreatic islets that activates neuropeptide Y4 receptors (NPY4Rs). PP is known to induce satiety but effects at the level of the endocrine pancreas are less well characterized. In addition, rapid metabolism of PP by dipeptidyl peptidase-4 (DPP-4) limits the investigation of the effects of the native peptide. Therefore, in the present study, five novel amino acid substituted and/or fatty acid derivatized PP analogs were synthesized, namely [P3]PP, [K13Pal]PP, [P3,K13Pal]PP, [N-Pal]PP, and [N-Pal,P3]PP, and their impact on pancreatic beta-cell function, as well as appetite regulation and glucose homeostasis investigated. All PP analogs displayed increased resistance to DPP-4 degradation. In addition, all peptides inhibited alanine-induced insulin secretion from BRIN-BD11 beta cells. Native PP and related analogs (10-8 and 10-6 M), and especially [P3]PP and [K13Pal]PP, significantly protected against cytokine-induced beta-cell apoptosis and promoted cellular proliferation, with effects dependent on the NPY4R for all peptides barring [N-Pal,P3]PP. In mice, all peptides, except [N-Pal]PP and [N-Pal,P3]PP, evoked a dose-dependent (25, 75, and 200 nmol/kg) suppression of appetite, with native PP and [P3]PP further augmenting glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) induced reductions of food intake. The PP peptides had no obvious detrimental effect on glucose tolerance and they did not noticeably impair the glucose-regulatory actions of GLP-1 or CCK. In conclusion, Pro3 amino acid substitution of PP, either alone or together with mid-chain acylation, creates PP analogs with benefits on beta-cell rest, islet cell turnover, and energy regulation that may be applicable to the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Wuyun Zhu
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Neil Tanday
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Ryan A Lafferty
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Peter R Flatt
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
12
|
Chen X, Zhou Q, Chen H, Bai J, An R, Zhang K, Zhang X, An H, Zhang J, Wang Y, Li M. Glutathione Induces Keap1 S-Glutathionylation and Mitigates Oscillating Glucose-Induced β-Cell Dysfunction by Activating Nrf2. Antioxidants (Basel) 2024; 13:400. [PMID: 38671848 PMCID: PMC11047546 DOI: 10.3390/antiox13040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Glutathione (GSH), a robust endogenous antioxidant, actively participates in the modulation of the redox status of cysteine residues in proteins. Previous studies have indicated that GSH can prevent β-cell failure and prediabetes caused by chronic oscillating glucose (OsG) administration. However, the precise mechanism underlying the protective effect is not well understood. Our current research reveals that GSH is capable of reversing the reduction in Nrf2 levels, as well as downstream genes Grx1 and HO-1, in the islet β-cells of rats induced by chronic OsG. In vitro experiments have further demonstrated that GSH can prevent β-cell dedifferentiation, apoptosis, and impaired insulin secretion caused by OsG. Additionally, GSH facilitates the translocation of Nrf2 into the nucleus, resulting in an upregulation of Nrf2-targeted genes such as GCLC, Grx1, HO-1, and NQO1. Notably, when the Nrf2 inhibitor ML385 is employed, the effects of GSH on OsG-treated β-cells are abrogated. Moreover, GSH enhances the S-glutathionylation of Keap1 at Cys273 and Cys288, but not Cys151, in OsG-treated β-cells, leading to the dissociation of Nrf2 from Keap1 and facilitating Nrf2 nuclear translocation. In conclusion, the protective role of GSH against OsG-induced β-cell failure can be partially attributed to its capacity to enhance Keap1 S-glutathionylation, thereby activating the Nrf2 signaling pathway. These findings provide novel insights into the prevention and treatment of β-cell failure in the context of prediabetes/diabetes, highlighting the potential of GSH.
Collapse
Affiliation(s)
- Xiufang Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Qian Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Huamin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Juan Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Ruike An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Keyi Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Xinyue Zhang
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Z.); (H.A.); (J.Z.)
| | - Hui An
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Z.); (H.A.); (J.Z.)
| | - Jitai Zhang
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Z.); (H.A.); (J.Z.)
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China;
| | - Ming Li
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Z.); (H.A.); (J.Z.)
| |
Collapse
|
13
|
Shcholok T, Eftekharpour E. Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models. BIOLOGY 2024; 13:180. [PMID: 38534450 DOI: 10.3390/biology13030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues occurs at the physiological levels of reactive oxygen species (ROS), but they are reduced by a supply of thiol antioxidant molecules including glutathione, glutaredoxin, and thioredoxin. While these molecules show complex compensatory roles in experimental conditions, transgenic animal models provide a comprehensive picture to pinpoint the role of each antioxidant. In this review, we have specifically focused on the available literature on thioredoxin-1 system transgenic models that include thioredoxin and thioredoxin reductase proteins. As the identification of thioredoxin protein targets is technically challenging, the true contribution of this system in maintaining cellular balance remains unidentified, including the role of this system in the brain.
Collapse
Affiliation(s)
- Tetiana Shcholok
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
14
|
Tanday N, Tarasov AI, Moffett RC, Flatt PR, Irwin N. Pancreatic islet cell plasticity: Pathogenic or therapeutically exploitable? Diabetes Obes Metab 2024; 26:16-31. [PMID: 37845573 DOI: 10.1111/dom.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting β-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of β-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing β-cell dedifferentiation or promoting the transdifferentiation of non-β-cells towards an insulin-positive β-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing β-cell loss or generating new β-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent β-cell decline in diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrei I Tarasov
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Nigel Irwin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| |
Collapse
|
15
|
Szkudelski T, Szkudelska K. The Anti-Diabetic Potential of Baicalin: Evidence from Rodent Studies. Int J Mol Sci 2023; 25:431. [PMID: 38203600 PMCID: PMC10779254 DOI: 10.3390/ijms25010431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Baicalin is a biologically active flavonoid compound that benefits the organism in various pathological conditions. Rodent studies have shown that this compound effectively alleviates diabetes-related disturbances in models of type 1 and type 2 diabetes. Baicalin supplementation limited hyperglycemia and improved insulin sensitivity. The anti-diabetic effects of baicalin covered the main insulin-sensitive tissues, i.e., the skeletal muscle, the adipose tissue, and the liver. In the muscle tissue, baicalin limited lipid accumulation and improved glucose transport. Baicalin therapy was associated with diminished adipose tissue content and increased mitochondrial biogenesis. Hepatic lipid accumulation and glucose output were also decreased as a result of baicalin supplementation. The molecular mechanism of the anti-diabetic action of this compound is pleiotropic and is associated with changes in the expression/action of pivotal enzymes and signaling molecules. Baicalin positively affected, among others, the tissue insulin receptor, glucose transporter, AMP-activated protein kinase, protein kinase B, carnitine palmitoyltransferase, acetyl-CoA carboxylase, and fatty acid synthase. Moreover, this compound ameliorated diabetes-related oxidative and inflammatory stress and reduced epigenetic modifications. Importantly, baicalin supplementation at the effective doses did not induce any side effects. Results of rodent studies imply that baicalin may be tested as an anti-diabetic agent in humans.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | | |
Collapse
|
16
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
17
|
Park JE, Han JS. Scopoletin protects INS-1 pancreatic β cells from glucotoxicity by reducing oxidative stress and apoptosis. Toxicol In Vitro 2023; 93:105665. [PMID: 37619648 DOI: 10.1016/j.tiv.2023.105665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
This study investigated whether scopoletin could protect INS-1 pancreatic β cells from apoptosis and oxidative stress caused by high glucose. Cells were pretreated with glucose (5.5 or 30 mM) and then treated with 0, 5, 10, 25, or 50 μM Scopoletin. Cell viability and insulin secretion were measured in addition to ROS, TBARS, NO and antioxidant enzymes. Western blot analysis and flow cytometric assessment of apoptosis were also carried out. High glucose of 30 mM caused glucotoxicity and cell death in INS-1 pancreatic β cells. However, 5, 10, 25 or 50 μM scopoletin increased the level of cell viability as concentrations increased. The levels of ROS, TBARS, and NO increased by high glucose were significantly decreased after scopoletin treatment. Scopoletin also raised antioxidant enzyme activities up against oxidative stress produced by high glucose. These effects influenced the apoptosis pathway, raising levels of anti-apoptotic protein, Bcl-2, and reducing levels of pro-apoptotic proteins, including JNK, Bax, cytochrome C, and caspase 9. Annexin V/propidium staining indicated that scopoletin significantly lowered high glucose-produced apoptosis. These results indicate that scopoletin can protect INS-1 pancreatic β cells from glucotoxicity caused by high glucose and have potential as a pharmaceutical material to protect the pancreatic β cells.
Collapse
Affiliation(s)
- Jae Eun Park
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
18
|
Tsikas D. GC-MS and GC-MS/MS measurement of malondialdehyde (MDA) in clinical studies: Pre-analytical and clinical considerations. J Mass Spectrom Adv Clin Lab 2023; 30:10-24. [PMID: 37637438 PMCID: PMC10458701 DOI: 10.1016/j.jmsacl.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Malondialdehyde (MDA; 1,3-propanedial, OHC-CH2-CHO) is one of the most frequently measured biomarkers of oxidative stress in plasma and serum. L-Arginine (Arg) is the substrate of nitric oxide synthases (NOS), which convert L-arginine to nitric oxide (NO) and L-citrulline. The Arg/NO pathway comprises several members, including the endogenous NOS-activity inhibitor asymmetric dimethylarginine (ADMA) and its major metabolite dimethyl amine (DMA), and nitrite and nitrate, the major NO metabolites. Reliable measurement of MDA and members of the Arg/NO pathway in plasma, serum, urine and in other biological samples, such as saliva and cerebrospinal fluid, is highly challenging both for analytical and pre-analytical reasons. In our group, we use validated gas chromatography-mass spectrometry (GC-MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) methods for the quantitative determination in clinical studies of MDA as a biomarker of oxidative stress, and various Arg/NO metabolites that describe the status of this pathway. Here, the importance of pre-analytical issues, which has emerged from the use of GC-MS and GC-MS/MS in clinico-pharmacological studies, is discussed. Paradigmatically, two studies on the long-term oral administration of L-arginine dihydrochloride to patients suffering from peripheral arterial occlusive disease (PAOD) or coronary artery disease (CAD) were considered. Pre-analytical issues that were addressed include blood sampling, plasma or serum storage, study design (notably in long-term studies), and the alternative of measuring MDA in human urine.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Hannover Medical School, Institute of Toxicology, Core Unit Proteomics, 30623 Hannover, Germany
| |
Collapse
|
19
|
Johansen VBI, Josefsen K, Antvorskov JC. The Impact of Dietary Factors during Pregnancy on the Development of Islet Autoimmunity and Type 1 Diabetes: A Systematic Literature Review. Nutrients 2023; 15:4333. [PMID: 37892409 PMCID: PMC10609322 DOI: 10.3390/nu15204333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
AIMS AND HYPOTHESIS The incidence of type 1 diabetes mellitus in children is considerably increasing in western countries. Thus, identification of the environmental determinants involved could ultimately lead to disease prevention. Here, we aimed to systematically review (PROSPERO ID: CRD42022362522) the current evidence of the association between maternal dietary factors during gestation and the risk of developing type 1 diabetes and/or islet autoimmunity (IA) in murine and human offspring. METHODS In accordance with PRISMA guidelines, the present systematic review searched PubMed and Scopus (n = 343) for different combinations of MeSH terms, such as type 1 diabetes, diet, islet autoimmunity, prenatal, nutrient, gluten, gliadin, vitamin, milk, and fibers. RESULTS We found that the most investigated dietary factors in the present literature were gluten, dietary advanced glycosylated end products (dAGEs), vitamin D, fatty acids, and iron. The results concerning prenatal exposure to a gluten-free environment showed a consistently protective effect on the development of IA. Prenatal exposures to vitamin D and certain fatty acids appeared to protect against the development of IA, whereas in utero iron and fat exposures correlated with increased risks of IA. CONCLUSION We conclude that a definite association is not established for most factors investigated as the literature represents a heterogeneous pool of data, although fetal exposures to some maternal dietary components, such as gluten, show consistent associations with increased risks of IA. We suggest that human prospective dietary intervention studies in both cohort and clinical settings are crucial to better evaluate critical and protective prenatal exposures from the maternal diet during pregnancy.
Collapse
Affiliation(s)
- Valdemar Brimnes Ingemann Johansen
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Biology, Faculty of Science, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (K.J.); (J.C.A.)
| | - Knud Josefsen
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (K.J.); (J.C.A.)
| | - Julie Christine Antvorskov
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (K.J.); (J.C.A.)
- Steno Diabetes Center, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark
| |
Collapse
|
20
|
Rajasekhar S, Subramanyam MVV, Asha Devi S. Grape seed proanthocyanidin extract suppresses oxidative stress in the rat pancreas of type-1 diabetes. Arch Physiol Biochem 2023; 129:1045-1057. [PMID: 33703969 DOI: 10.1080/13813455.2021.1894452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
AIM This study aimed to elucidate the effects of grape seed proanthocyanidin extract (GSPE) on oxidative stress (OS), antioxidant enzymes, free radicals and cytokines in the pancreas of T1DM rats. METHODS Two-month-old Wistar rats were assigned to the control (CON), CON + GSPE (CON + PA), diabetics (STZ, 60 mg/kg b.w.), diabetes + GSPE (STZ + PA), diabetes + insulin (STZ + INS, 3 U/day) and diabetics + GSPE and INS (STZ + INS + PA) groups. GSPE (75 mg/kg b.w.) was administered daily either alone or with INS for 8 weeks. RESULTS Glutathione was lowest in diabetics while it increased in the STZ + INS + PA (p < .001) group, similar to catalase activity (p < .05). Hydrogen peroxide, superoxide and lipid peroxidation increased with iNOS, TNF-α and IL-1β in the diabetic pancreases, while GSPE decreased (p < .001). Further, reduced β-cells/islet number was improved in diabetics (p < .001) with treatment. CONCLUSION This study suggests that GSPE with INS is effective in minimising OS and pancreatic degeneration in T1DM rats.
Collapse
Affiliation(s)
- Sanna Rajasekhar
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore, India
| | | | - Sambe Asha Devi
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore, India
| |
Collapse
|
21
|
Mesalam NM, Ibrahim MA, Mousa MR, Said NM. Selenium and vitamin E ameliorate lead acetate-induced hepatotoxicity in rats via suppression of oxidative stress, mRNA of heat shock proteins, and NF-kB production. J Trace Elem Med Biol 2023; 79:127256. [PMID: 37442019 DOI: 10.1016/j.jtemb.2023.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Lead exposure results in a terrible rise in heat shock protein levels. OBJECTIVE This research was conducted to look at the effects of lead poisoning on heat shock response, oxidative stress, and inflammatory markers in albino rats, as well as the power of selenium and vitamin E to resist lead toxic effects. METHODS Eight groups of albino rats are used. Each group contained six rats where the first group represented the negative control, and the other groups were treated with olive oil, vitamin E, selenium, lead, (vitamin E + lead), (selenium + lead), and (vitamin E + selenium + lead). All the treatments lasted for 28 days. Then, the mRNA expression of interested heat shock proteins (HSP90, HSP70, and HSP60) was assessed. For oxidative stress disruption, we investigated nitric oxide (NO) and malondialdehyde (MDA) content, and enzymatic and non-enzymatic antioxidants activity respectively in rat livers. RESULTS our results revealed the synergetic protective effect of the combination of two antioxidants (vitamin E and selenium) against lead poising. This was clear in regulating HSPs expression, inflammatory markers, glucose, lipid profile, liver functions, and antioxidant enzymes more than the treatment with one antioxidant. CONCLUSION Pb is a toxic material that can induce HSPs and inflammatory markers expression. Selenium and vitamin E can give excellent effects in ameliorating Pb toxicity when used together.
Collapse
Affiliation(s)
- Noura M Mesalam
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Marwa A Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Noha Mohamed Said
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
22
|
Pelligra A, Mrugala J, Griess K, Kirschner P, Nortmann O, Bartosinska B, Köster A, Krupenko NI, Gebel D, Westhoff P, Steckel B, Eberhard D, Herebian D, Belgardt BF, Schrader J, Weber APM, Krupenko SA, Lammert E. Pancreatic islet protection at the expense of secretory function involves serine-linked mitochondrial one-carbon metabolism. Cell Rep 2023; 42:112615. [PMID: 37294632 PMCID: PMC10592470 DOI: 10.1016/j.celrep.2023.112615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/11/2023] Open
Abstract
Type 2 diabetes is characterized by insulin hypersecretion followed by reduced glucose-stimulated insulin secretion (GSIS). Here we show that acute stimulation of pancreatic islets with the insulin secretagogue dextrorphan (DXO) or glibenclamide enhances GSIS, whereas chronic treatment with high concentrations of these drugs reduce GSIS but protect islets from cell death. Bulk RNA sequencing of islets shows increased expression of genes for serine-linked mitochondrial one-carbon metabolism (OCM) after chronic, but not acute, stimulation. In chronically stimulated islets, more glucose is metabolized to serine than to citrate, and the mitochondrial ATP/ADP ratio decreases, whereas the NADPH/NADP+ ratio increases. Activating transcription factor-4 (Atf4) is required and sufficient to activate serine-linked mitochondrial OCM genes in islets, with gain- and loss-of-function experiments showing that Atf4 reduces GSIS and is required, but not sufficient, for full DXO-mediated islet protection. In sum, we identify a reversible metabolic pathway that provides islet protection at the expense of secretory function.
Collapse
Affiliation(s)
- Angela Pelligra
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jessica Mrugala
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Kerstin Griess
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Philip Kirschner
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Oliver Nortmann
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Barbara Bartosinska
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andrea Köster
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Natalia I Krupenko
- University of North Carolina (UNC) Nutrition Research Institute, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Dominik Gebel
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sergey A Krupenko
- University of North Carolina (UNC) Nutrition Research Institute, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| |
Collapse
|
23
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Glucose-Lowering Effects of Imeglimin and Its Possible Beneficial Effects on Diabetic Complications. BIOLOGY 2023; 12:biology12050726. [PMID: 37237539 DOI: 10.3390/biology12050726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Mitochondrial dysfunction is a prominent pathological feature of type 2 diabetes, which contributes to β-cell mass reduction and insulin resistance. Imeglimin is a novel oral hypoglycemic agent with a unique mechanism of action targeting mitochondrial bioenergetics. Imeglimin reduces reactive oxygen species production, improves mitochondrial function and integrity, and also improves the structure and function of endoplasmic reticulum (ER), changes which enhance glucose-stimulated insulin secretion and inhibit the apoptosis of β-cells, leading to β-cell mass preservation. Further, imeglimin inhibits hepatic glucose production and ameliorates insulin sensitivity. Clinical trials into the effects of imeglimin monotherapy and combination therapy exhibited an excellent hypoglycemic efficacy and safety profile in type 2 diabetic patients. Mitochondrial impairment is closely associated with endothelial dysfunction, which is a very early event in atherosclerosis. Imeglimin improved endothelial dysfunction in patients with type 2 diabetes via both glycemic control-dependent and -independent mechanisms. In experimental animals, imeglimin improved cardiac and kidney function via an improvement in mitochondrial and ER function or/and an improvement in endothelial function. Furthermore, imeglimin reduced ischemia-induced brain damage. In addition to glucose-lowering effects, imeglimin can be a useful therapeutic option for diabetic complications in type 2 diabetic patients.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| |
Collapse
|
24
|
Argaev-Frenkel L, Rosenzweig T. Redox Balance in Type 2 Diabetes: Therapeutic Potential and the Challenge of Antioxidant-Based Therapy. Antioxidants (Basel) 2023; 12:antiox12050994. [PMID: 37237860 DOI: 10.3390/antiox12050994] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress is an important factor in the development of type 2 diabetes (T2D) and associated complications. Unfortunately, most clinical studies have failed to provide sufficient evidence regarding the benefits of antioxidants (AOXs) in treating this disease. Based on the known complexity of reactive oxygen species (ROS) functions in both the physiology and pathophysiology of glucose homeostasis, it is suggested that inappropriate dosing leads to the failure of AOXs in T2D treatment. To support this hypothesis, the role of oxidative stress in the pathophysiology of T2D is described, together with a summary of the evidence for the failure of AOXs in the management of diabetes. A comparison of preclinical and clinical studies indicates that suboptimal dosing of AOXs might explain the lack of benefits of AOXs. Conversely, the possibility that glycemic control might be adversely affected by excess AOXs is also considered, based on the role of ROS in insulin signaling. We suggest that AOX therapy should be given in a personalized manner according to the need, which is the presence and severity of oxidative stress. With the development of gold-standard biomarkers for oxidative stress, optimization of AOX therapy may be achieved to maximize the therapeutic potential of these agents.
Collapse
Affiliation(s)
| | - Tovit Rosenzweig
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
- Adison School of Medicine, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
25
|
Bu H, Li Z, Lu Y, Zhuang Z, Zhen Y, Zhang L. Deciphering the multifunctional role of dual leucine zipper kinase (DLK) and its therapeutic potential in disease. Eur J Med Chem 2023; 255:115404. [PMID: 37098296 DOI: 10.1016/j.ejmech.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023]
Abstract
Dual leucine zipper kinase (DLK, MAP3K12), a serine/threonine protein kinase, plays a key role in neuronal development, as it regulates axon regeneration and degeneration through its downstream kinase. Importantly, DLK is closely related to the pathogenesis of numerous neurodegenerative diseases and the induction of β-cell apoptosis that leads to diabetes. In this review, we summarize the current understanding of DLK function, and then discuss the role of DLK signaling in human diseases. Furthermore, various types of small molecule inhibitors of DLK that have been published so far are described in detail in this paper, providing some strategies for the design of DLK small molecule inhibitors in the future.
Collapse
Affiliation(s)
- Haiqing Bu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhiyao Zhuang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
26
|
Frørup C, Gerwig R, Svane CAS, Mendes Lopes de Melo J, Henriksen K, Fløyel T, Pociot F, Kaur S, Størling J. Characterization of the functional and transcriptomic effects of pro-inflammatory cytokines on human EndoC-βH5 beta cells. Front Endocrinol (Lausanne) 2023; 14:1128523. [PMID: 37113489 PMCID: PMC10126300 DOI: 10.3389/fendo.2023.1128523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/10/2023] [Indexed: 04/29/2023] Open
Abstract
Objective EndoC-βH5 is a newly established human beta-cell model which may be superior to previous model systems. Exposure of beta cells to pro-inflammatory cytokines is widely used when studying immune-mediated beta-cell failure in type 1 diabetes. We therefore performed an in-depth characterization of the effects of cytokines on EndoC-βH5 cells. Methods The sensitivity profile of EndoC-βH5 cells to the toxic effects of interleukin-1β (IL-1β), interferon γ (IFNγ) and tumor necrosis factor-α (TNFα) was examined in titration and time-course experiments. Cell death was evaluated by caspase-3/7 activity, cytotoxicity, viability, TUNEL assay and immunoblotting. Activation of signaling pathways and major histocompatibility complex (MHC)-I expression were examined by immunoblotting, immunofluorescence, and real-time quantitative PCR (qPCR). Insulin and chemokine secretion were measured by ELISA and Meso Scale Discovery multiplexing electrochemiluminescence, respectively. Mitochondrial function was evaluated by extracellular flux technology. Global gene expression was characterized by stranded RNA sequencing. Results Cytokines increased caspase-3/7 activity and cytotoxicity in EndoC-βH5 cells in a time- and dose-dependent manner. The proapoptotic effect of cytokines was primarily driven by IFNγ signal transduction. Cytokine exposure induced MHC-I expression and chemokine production and secretion. Further, cytokines caused impaired mitochondrial function and diminished glucose-stimulated insulin secretion. Finally, we report significant changes to the EndoC-βH5 transcriptome including upregulation of the human leukocyte antigen (HLA) genes, endoplasmic reticulum stress markers, and non-coding RNAs, in response to cytokines. Among the differentially expressed genes were several type 1 diabetes risk genes. Conclusion Our study provides detailed insight into the functional and transcriptomic effects of cytokines on EndoC-βH5 cells. This information should be useful for future studies using this novel beta-cell model.
Collapse
Affiliation(s)
- Caroline Frørup
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Rebekka Gerwig
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Joana Mendes Lopes de Melo
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kristine Henriksen
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Martins JRN, Lopes S, Hurtado HN, da Silva FN, Villard DR, Taboga SR, Souza KLA, Quesada I, Soriano S, Rafacho A. Acute and chronic effects of the organophosphate malathion on the pancreatic α and β cell viability, cell structure, and voltage-gated K + currents. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104046. [PMID: 36587778 DOI: 10.1016/j.etap.2022.104046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Studies indicate that the pesticide malathion may have a role in diabetes. Herein, we determined the effects of different concentrations of malathion on survival, ultrastructure, and electrophysiologic islet cell parameters. Acutely, high concentrations of malathion (0.5 or 1 mM) increased cell death in rat islet cells, while low concentrations (0.1 mM) caused signs of cell damage in pancreatic α and β cells. Exposure of RINm5F cells to malathion for 24 or 48 h confirmed the reduction in β-cell viability at lower concentrations (0.001-100 µM). Chronic exposure of mouse pancreatic α and β cells to 3 nM of malathion led to increased voltage-gated K+ (Kv) currents in α-cells. Our findings show a time and concentration dependency for the malathion effect on the reduction of islet cell viability and indicate that pancreatic α cells are more sensitive to malathion effects on Kv currents and cell death.
Collapse
Affiliation(s)
- J R N Martins
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - S Lopes
- Central Laboratory of Electron Microscopy LCME, PROPESQ, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - H N Hurtado
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - F N da Silva
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - D R Villard
- NUMPEX-BIO, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro (UFRJ), Campus UFRJ Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25245-390, Brazil
| | - S R Taboga
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| | - K L A Souza
- NUMPEX-BIO, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro (UFRJ), Campus UFRJ Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25245-390, Brazil
| | - I Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - S Soriano
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - A Rafacho
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil.
| |
Collapse
|
28
|
von Hanstein AS, Tsikas D, Lenzen S, Jörns A, Plötz T. Potentiation of Lipotoxicity in Human EndoC-βH1 β-Cells by Glucose is Dependent on the Structure of Free Fatty Acids. Mol Nutr Food Res 2023; 67:e2200582. [PMID: 36629272 DOI: 10.1002/mnfr.202200582] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Indexed: 01/12/2023]
Abstract
SCOPE Lipotoxicity is a significant element in the development of type 2 diabetes mellitus (T2DM). Since pro-diabetic nutritional patterns are associated with hyperglycemia as well as hyperlipidemia, the study analyzes the effects of combining these lipid and carbohydrate components with a special focus on the structural fatty acid properties such as increasing chain length (C16-C20) and degree of saturation with regard to the role of glucolipotoxicity in human EndoC-βH1 β-cells. METHODS AND RESULTS β-cell death induced by saturated FFAs is potentiated by high concentrations of glucose in a chain length-dependent manner starting with stearic acid (C18:0), whereas toxicity remains unchanged in the case of monounsaturated FFAs. Interference with FFA desaturation by overexpression and inhibition of stearoyl-CoA-desaturase, which catalyzes the rate-limiting step in the conversion of long-chain saturated into corresponding monounsaturated FFAs, does not affect the potentiating effect of glucose, but FFA desaturation reduces lipotoxicity and plays an important role in the formation of lipid droplets. Crucial elements underlying glucolipotoxicity are ER stress induction and cardiolipin peroxidation in the mitochondria. CONCLUSION In the context of nutrition, the data emphasize the importance of the lipid component in glucolipotoxicity related to the development of β-cell dysfunction and death in the manifestation of T2DM.
Collapse
Affiliation(s)
- Anna-Sophie von Hanstein
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany.,Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany.,Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Plötz
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
29
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|
30
|
Huang H, Drici L, Lassen PS, Palmisano G, Larsen MR. TiCPG - a strategy for the simultaneous enrichment of reversibly modified cysteine peptides, phosphopeptides, and sialylated N-Glycopeptides to study cytokines stimulated beta-cells. J Proteomics 2023; 273:104796. [PMID: 36538968 DOI: 10.1016/j.jprot.2022.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Diverse post-translational modifications (PTMs) regulate protein function and interaction to fine-tune biological processes. Reversible phosphorylation, cysteines (Cys) modifications, and N-linked glycosylation are all essentially involved in cellular signaling pathways, such as those initiated by the action of pro-inflammatory cytokines, which can induce pancreatic β-cell death and diabetes. Here we have developed a novel strategy for the simultaneous and comprehensive characterization of the proteome and three PTMs including reversibly modified Cysteines (rmCys), phosphorylation, and sialylated N-linked glycosylation from low amount of sample material. This strategy, termed TiCPG, is based on a combination of chemical labeling and titanium dioxide (TiO2) chromatography. We applied the TiCPG strategy to study the proteome and the three PTMs changes in β-cells subject to pro-inflammatory cytokines stimulation. It enabled quantitative analysis of 8346 rmCys sites, 10,321 phosphosites and 962 sialylated N-glycosites from 5496 proteins. Significant regulation was found on 100 proteins at the expression level, while 3020 PTM peptide isoforms from 1468 proteins were significantly regulated. The three PTMs were involved in cytokine mediated β-cell apoptosis, such as the NFκB and the inducible NO synthase signaling pathways. Overall, the TiCPG strategy is a cheap, straightforward, and powerful tool for studies targeting the three PTMs described above. SIGNIFICANCE: The present study presents a fast and easy method for quantitative assessment of the proteome and three PTMs from minimal amount of sample material. This simple method provides comprehensive and significant knowledge on biological systems and cellular signaling with relatively low analysis time, suitable for younger researchers and researchers that do not have direct access to LC-MSMS in their laboratories. From sub-milligram amount of material, we were able to map known cellular signaling events of proinflammatory cytokine effect on beta-cells and to discover novel PTMs involved in several known signaling pathways.
Collapse
Affiliation(s)
- Honggang Huang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Lylia Drici
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Pernille S Lassen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Departament of Parasitology, Institute of Biomedical Sciences - University of São Paulo, Avenida Prof. Lineu Prestes, 1374 - Edifício Biomédicas II, Cidade Universitária "Armando Salles Oliveira" - CEP, 05508-000 São Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
31
|
Yamashima T, Seike T, Oikawa S, Kobayashi H, Kido H, Yanagi M, Yamamiya D, Li S, Boontem P, Mizukoshi E. Hsp70.1 carbonylation induces lysosomal cell death for lifestyle-related diseases. Front Mol Biosci 2023; 9:1063632. [PMID: 36819480 PMCID: PMC9936620 DOI: 10.3389/fmolb.2022.1063632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease, type 2 diabetes, and non-alcoholic steatohepatitis (NASH) constitute increasingly prevalent disorders. Individuals with type 2 diabetes are well-known to be susceptible to Alzheimer's disease. Although the pathogenesis of each disorder is multifactorial and the causal relation remains poorly understood, reactive oxygen species (ROS)-induced lipid and protein oxidation conceivably plays a common role. Lipid peroxidation product was recently reported to be a key factor also for non-alcoholic steatohepatitis, because of inducing hepatocyte degeneration/death. Here, we focus on implication of the representative lipid-peroxidation product 'hydroxynonenal' for the cell degeneration/death of brain, pancreas, and liver. Since Hsp70.1 has dual roles as a chaperone and lysosomal membrane stabilizer, hydroxynonenal-mediated oxidative injury (carbonylation) of Hsp70.1 was highlighted. After intake of high-fat diets, oxidation of free fatty acids in mitochondria generates ROS which enhance oxidation of ω-6 polyunsaturated fatty acids (PUFA) involved within biomembranes and generate hydroxynonenal. In addition, hydroxynonenal is generated during cooking deep-fried foods with vegetable oils especially containing linoleic acids. These intrinsic and exogenous hydroxynonenal synergically causes an increase in its serum and organ levels to induce Hsp70.1 oxidation. As it is amphiphilic; being water-soluble but displays strong lipophilic characteristics, hydroxynonenal can diffuse within the cells and react with targets like senile and/or atheromatous plaques outside the cells. Hydroxynonenal can deepen and expand lysosomal injuries by facilitating 'calpain-mediated cleavage of the carbonylated Hsp70.1'. Despite the unique anatomical, physiological, and biochemical characteristics of each organ for its specific disease, there should be a common cascade of the cell degeneration/death which is caused by hydroxynonenal. This review aims to implicate hydroxynonenal-mediated Hsp70.1 carbonylation for lysosomal membrane permeabilization/rupture and the resultant cathepsin leakage for inducing cell degeneration/death. Given the tremendous number of worldwide people suffering various lifestyle-related diseases, it is valuable to consider how ω-6 PUFA-rich vegetable oils is implicated for the organ disorder.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,*Correspondence: Tetsumori Yamashima,
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Kido
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masahiro Yanagi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Daisuke Yamamiya
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shihui Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Piyakarn Boontem
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
32
|
Marrano N, Biondi G, Borrelli A, Rella M, Zambetta T, Di Gioia L, Caporusso M, Logroscino G, Perrini S, Giorgino F, Natalicchio A. Type 2 Diabetes and Alzheimer's Disease: The Emerging Role of Cellular Lipotoxicity. Biomolecules 2023; 13:183. [PMID: 36671568 PMCID: PMC9855893 DOI: 10.3390/biom13010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer's diseases (AD) represent major health issues that have reached alarming levels in the last decades. Although growing evidence demonstrates that AD is a significant comorbidity of T2D, and there is a ~1.4-2-fold increase in the risk of developing AD among T2D patients, the involvement of possible common triggers in the pathogenesis of these two diseases remains largely unknown. Of note, recent mechanistic insights suggest that lipotoxicity could represent the missing ring in the pathogenetic mechanisms linking T2D to AD. Indeed, obesity, which represents the main cause of lipotoxicity, has been recognized as a major risk factor for both pathological conditions. Lipotoxicity can lead to inflammation, insulin resistance, oxidative stress, ceramide and amyloid accumulation, endoplasmic reticulum stress, ferroptosis, and autophagy, which are shared biological events in the pathogenesis of T2D and AD. In the current review, we try to provide a critical and comprehensive view of the common molecular pathways activated by lipotoxicity in T2D and AD, attempting to summarize how these mechanisms can drive future research and open the way to new therapeutic perspectives.
Collapse
Affiliation(s)
- Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Borrelli
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Martina Rella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tommaso Zambetta
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ludovico Di Gioia
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariangela Caporusso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione Cardinale G. Panico, 73039 Lecce, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
33
|
Tranilast protects pancreatic β-cells from palmitic acid-induced lipotoxicity via FoxO-1 inhibition. Sci Rep 2023; 13:101. [PMID: 36596838 PMCID: PMC9810694 DOI: 10.1038/s41598-022-25428-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
Tranilast, an anti-allergic drug used in the treatment of bronchial asthma, was identified as an inhibitor of the transcription factor Forkhead box O-1 (FoxO-1) by high throughput chemical library screening in the present study. Based on FoxO-1's role in apoptotic cell death and differentiation, we examined the effect of tranilast on palmitic acid (PA)-induced cell damage in INS-1 cells. Tranilast substantially inhibited lipoapoptosis and restored glucose-stimulated insulin secretion under high PA exposure. Moreover, PA-mediated downregulation of PDX-1, MafA, and insulin expression was attenuated by tranilast. PA-induced oxidative and ER stress were also reduced in the presence of tranilast. These protective effects were accompanied by increased phosphorylation and decreased nuclear translocation of FoxO-1. Conversely, the effects of tranilast were diminished when treated in transfected cells with FoxO-1 phosphorylation mutant (S256A), suggesting that the tranilast-mediated effects are associated with inactivation of FoxO-1. Examination of the in vivo effects of tranilast using wild type and diabetic db/db mice showed improved glucose tolerance along with FoxO-1 inactivation in the pancreas of the tranilast-treated groups. Thus, we report here that tranilast has protective effects against PA-induced lipotoxic stress in INS-1 cells, at least partly, via FoxO-1 inactivation, which results in improved glucose tolerance in vivo.
Collapse
|
34
|
Qin Y, Huang Y, Li Y, Qin L, Wei Q, Chen X, Yang C, Zhang M. Association between systemic iron status and β-cell function and insulin sensitivity in patients with newly diagnosed type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1143919. [PMID: 37077360 PMCID: PMC10107407 DOI: 10.3389/fendo.2023.1143919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVE Abnormal iron metabolism is related to the risk of diabetes, but the underlying mechanism of this association remains uncertain. This study was conducted to evaluate the contributions of systemic iron status to β-cell function and insulin sensitivity of patients with newly diagnosed T2DM. METHODS A total of 162 patients with newly diagnosed T2DM and 162 healthy controls were enrolled in the study. Basic characteristics, biochemical indicators, and iron metabolism biomarkers, including serum iron (SI), ferritin (SF), transferrin (Trf), and transferrin saturation (TS), were collected. All patients underwent a 75 g oral glucose tolerance test. A series of parameters for assessing β-cell function and insulin sensitivity were calculated. The multivariate stepwise linear regression model was used to investigate the contributions of iron metabolism to β-cell function and insulin sensitivity. RESULTS Compared with healthy controls, patients with newly diagnosed T2DM had significantly higher levels of SF. Among the diabetic patients, the SI and TS levels were higher, and the percentage of Trf levels below normal values was lower in men than in women. In all diabetic patients, SF was the independent risk factor associated with impaired β-cell function. Further stratification analysis showed that Trf was an independent protective factor for β-cell function in male patients, while SF was an independent risk factor for impaired β-cell function in female patients. However, systemic iron status did not affect insulin sensitivity. CONCLUSION Elevated SF levels and decreased Trf levels had a profound effect on impaired β-cell function in Chinese patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
- Yao Qin
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiting Huang
- Department of Clinical Nutrition, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxiao Li
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Qin
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianying Wei
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanhui Yang
- Department of Endocrinology, the First People’s Hospital of Lianyungang, Lianyungang, China
| | - Mei Zhang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Mei Zhang,
| |
Collapse
|
35
|
Stancill JS, Corbett JA. Hydrogen peroxide detoxification through the peroxiredoxin/thioredoxin antioxidant system: A look at the pancreatic β-cell oxidant defense. VITAMINS AND HORMONES 2022; 121:45-66. [PMID: 36707143 PMCID: PMC10058777 DOI: 10.1016/bs.vh.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS), such as hydrogen peroxide, are formed when molecular oxygen obtains additional electrons, increasing its reactivity. While low concentrations of hydrogen peroxide are necessary for regulation of normal cellular signaling events, high concentrations can be toxic. To maintain this balance between beneficial and deleterious concentrations of hydrogen peroxide, cells utilize antioxidants. Our recent work supports a primary role for peroxiredoxin, thioredoxin, and thioredoxin reductase as the oxidant defense pathway used by insulin-producing pancreatic β-cells. These three players work in an antioxidant cycle based on disulfide exchange, with oxidized targets ultimately being reduced using electrons provided by NADPH. Peroxiredoxins also participate in hydrogen peroxide-based signaling through disulfide exchange with redox-regulated target proteins. This chapter will describe the catalytic mechanisms of thioredoxin, thioredoxin reductase, and peroxiredoxin and provide an in-depth look at the roles these enzymes play in antioxidant defense pathways of insulin-secreting β-cells. Finally, we will evaluate the physiological relevance of peroxiredoxin-mediated hydrogen peroxide signaling as a regulator of β-cell function.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
36
|
Kose T, Sharp PA, Latunde-Dada GO. Upregulation of Nrf2 Signalling and the Inhibition of Erastin-Induced Ferroptosis by Ferulic Acid in MIN6 Cells. Int J Mol Sci 2022; 23:ijms232415886. [PMID: 36555529 PMCID: PMC9787535 DOI: 10.3390/ijms232415886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a regulated cell death process characterised by the iron-dependent accumulation of oxidised polyunsaturated fatty acid-containing phospholipids. Its initiation is complicated and involves reactive oxygen species (ROS) and a loss of the activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4). These play critical roles in the development of ferroptotic cell damage by lipid peroxidation. Antioxidant therapy is a promising therapeutic strategy to prevent or even reverse the progression of ferroptosis. This study was designed to demonstrate the protective effect of ferulic acid (FA) against oxidative stress and erastin-mediated ferroptosis in murine MIN6 cells. Cells were treated with FA or its metabolite ferulic acid 4-O-sulfate disodium salt (FAS) and 20 μM of erastin. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, iron levels were measured by inductively coupled plasma mass spectrometry (ICP-MS), ROS levels were determined by a dihydrodichlorofluorescein (H2DCF) cell-permeant probe, and glutathione and lipid peroxidation were assayed with commercially available kits. The phenolic acids enhanced cell viability in erastin-treated MIN6 cells in a dose-dependent manner. Furthermore, MIN6 cells exposed to erastin alone showed elevated levels of iron and ROS, glutathione (GSH) depletion, and lipid peroxidation (p < 0.05) compared to cells that were protected by co-treatment with FA or FAS. The treatment of MIN6 cells with FA or FAS following exposure to erastin increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) protein levels. Consequently, levels of its downstream antioxidant proteins, HO-1, NQO1, GCLC, and GPX4, increased. FA and FAS greatly decreased erastin-induced ferroptosis in the presence of the Nrf2 inhibitor, ML385, through the regulation of Nrf2 response genes. In conclusion, these results show that FA and FAS protect MIN6 cells from erastin-induced ferroptosis by the Nrf2 antioxidant protective mechanism.
Collapse
Affiliation(s)
- Tugba Kose
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King’s College London, London SE1 9NH, UK
| | - Paul A. Sharp
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King’s College London, London SE1 9NH, UK
| | - Gladys O. Latunde-Dada
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King’s College London, London SE1 9NH, UK
- Correspondence: ; Tel.: +44-(0)-20-7848-4256
| |
Collapse
|
37
|
c-Abl tyrosine kinase inhibition attenuate oxidative stress-induced pancreatic β-Cell dysfunction via glutathione antioxidant system. Transl Res 2022; 249:74-87. [PMID: 35697276 DOI: 10.1016/j.trsl.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Chronic oxidative stress, which is caused by aberrant non-receptor tyrosine kinase (c-Abl) signaling, plays a key role in the progression of β-cell loss in diabetes mellitus. Recent studies, however, have linked ferroptotic-like death to the β-cell loss in diabetes mellitus. Here, we report that oxidative stress-driven reduced/oxidized glutathione (GSH/GSSG) loss and proteasomal degradation of glutathione peroxidase 4 (GPX4) promote ferroptotic-like cell damage through increased lipid peroxidation. Mechanistically, treatment with GNF2, a non-ATP competitive c-Abl kinase inhibitor, selectively preserves β-cell function by inducing the orphan nuclear receptor estrogen-related receptor gamma (ERRγ). ERRγ-driven glutaminase 1 (GLS1) expression promotes the elevation of the GSH/GSSG ratio, and this increase leads to the inhibition of lipid peroxidation by GPX4. Strikingly, pharmacological inhibition of ERRγ represses the expression of GLS1 and reverses the GSH/GSSG ratio linked to mitochondrial dysfunction and increased lipid peroxidation mediated by GPX4 degradation. Inhibition of GLS1 suppresses the ERRγ agonist DY131-induced GSH/GSSG ratio linked to ferroptotic-like death owing to the loss of GPX4. Furthermore, immunohistochemical analysis showed enhanced ERRγ and GPX4 expression in the pancreatic islets of GNF2-treated mice compared to that in streptozotocin-treated mice. Altogether, our results provide the first evidence that the orphan nuclear receptor ERRγ-induced GLS1 expression augments the glutathione antioxidant system, and its downstream signaling leads to improved β-cell function and survival under oxidative stress conditions.
Collapse
|
38
|
Evidence of the different effect of mercury and cadmium on the hIAPP aggregation process. Biophys Chem 2022; 290:106880. [DOI: 10.1016/j.bpc.2022.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
|
39
|
Chemistry of Hydrogen Peroxide Formation and Elimination in Mammalian Cells, and Its Role in Various Pathologies. STRESSES 2022. [DOI: 10.3390/stresses2030019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrogen peroxide (H2O2) is a compound involved in some mammalian reactions and processes. It modulates and signals the redox metabolism of cells by acting as a messenger together with hydrogen sulfide (H2S) and the nitric oxide radical (•NO), activating specific oxidations that determine the metabolic response. The reaction triggered determines cell survival or apoptosis, depending on which downstream metabolic pathways are activated. There are several ways to produce H2O2 in cells, and cellular systems tightly control its concentration. At the cellular level, the accumulation of hydrogen peroxide can trigger inflammation and even apoptosis, and when its concentration in the blood reaches toxic levels, it can lead to bioenergetic failure. This review summarizes existing research from a chemical perspective on the role of H2O2 in various enzymatic pathways and how this biochemistry leads to physiological or pathological responses.
Collapse
|
40
|
Stancill JS, Hansen PA, Mathison AJ, Schmidt EE, Corbett JA. Deletion of Thioredoxin Reductase Disrupts Redox Homeostasis and Impairs β-Cell Function. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac034. [PMID: 35873655 PMCID: PMC9301323 DOI: 10.1093/function/zqac034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have been implicated as mediators of pancreatic β-cell damage. While β-cells are thought to be vulnerable to oxidative damage, we have shown, using inhibitors and acute depletion, that thioredoxin reductase, thioredoxin, and peroxiredoxins are the primary mediators of antioxidant defense in β-cells. However, the role of this antioxidant cycle in maintaining redox homeostasis and β-cell survival in vivo remains unclear. Here, we generated mice with a β-cell specific knockout of thioredoxin reductase 1 (Txnrd1fl/fl; Ins1Cre/+ , βKO). Despite blunted glucose-stimulated insulin secretion, knockout mice maintain normal whole-body glucose homeostasis. Unlike pancreatic islets with acute Txnrd1 inhibition, βKO islets do not demonstrate increased sensitivity to ROS. RNA-sequencing analysis revealed that Txnrd1-deficient β-cells have increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated genes, and altered expression of genes involved in heme and glutathione metabolism, suggesting an adaptive response. Txnrd1-deficient β-cells also have decreased expression of factors controlling β-cell function and identity which may explain the mild functional impairment. Together, these results suggest that Txnrd1-knockout β-cells compensate for loss of this essential antioxidant pathway by increasing expression of Nrf2-regulated antioxidant genes, allowing for protection from excess ROS at the expense of normal β-cell function and identity.
Collapse
Affiliation(s)
| | - Polly A Hansen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Edward E Schmidt
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MN 59717, USA,Redox Biology Laboratory, University of Veterinary Medicine, Budapest 1078, Hungary
| | | |
Collapse
|
41
|
Yip L, Alkhataybeh R, Taylor C, Fuhlbrigge R, Fathman CG. Identification of Novel Disease-Relevant Genes and Pathways in the Pathogenesis of Type 1 Diabetes: A Potential Defect in Pancreatic Iron Homeostasis. Diabetes 2022; 71:1490-1507. [PMID: 35499603 PMCID: PMC9233262 DOI: 10.2337/db21-0948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022]
Abstract
Multiple pathways contribute to the pathophysiological development of type 1 diabetes (T1D); however, the exact mechanisms involved are unclear. We performed differential gene expression analysis in pancreatic islets of NOD mice versus age-matched congenic NOD.B10 controls to identify genes that may contribute to disease pathogenesis. Novel genes related to extracellular matrix development and glucagon and insulin signaling/secretion were changed in NOD mice during early inflammation. During "respective" insulitis, the expression of genes encoding multiple chemosensory olfactory receptors were upregulated, and during "destructive" insulitis, the expression of genes involved in antimicrobial defense and iron homeostasis were downregulated. Islet inflammation reduced the expression of Hamp that encodes hepcidin. Hepcidin is expressed in β-cells and serves as the key regulator of iron homeostasis. We showed that Hamp and hepcidin levels were lower, while iron levels were higher in the pancreas of 12-week-old NOD versus NOD.B10 mice, suggesting that a loss of iron homeostasis may occur in the islets during the onset of "destructive" insulitis. Interestingly, we showed that the severity of NOD disease correlates with dietary iron intake. NOD mice maintained on low-iron diets had a lower incidence of hyperglycemia, while those maintained on high-iron diets had an earlier onset and higher incidence of disease, suggesting that high iron exposure combined with a loss of pancreatic iron homeostasis may exacerbate NOD disease. This mechanism may explain the link seen between high iron exposure and the increased risk for T1D in humans.
Collapse
Affiliation(s)
- Linda Yip
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA
| | | | | | | | | |
Collapse
|
42
|
Moens C, Muller CJF, Bouwens L. In vitro comparison of various antioxidants and flavonoids from Rooibos as beta cell protectants against lipotoxicity and oxidative stress-induced cell death. PLoS One 2022; 17:e0268551. [PMID: 35580081 PMCID: PMC9113568 DOI: 10.1371/journal.pone.0268551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress and lipotoxicity effects on pancreatic β cells play a major role in the pathogenesis of type 2 diabetes (T2D). Flavonoids and antioxidants are under study for their cytoprotective effects and antidiabetic potential. In this study, we aimed to compare the protective effect of the Rooibos components aspalathin, isoorientin, 3-hydroxyphloretin (3-OH) and green Rooibos extract (GRT) itself, and exendin-4 and N-acetylcysteine (NAC) as reference molecules, against lipotoxicity and oxidative stress. The insulin-producing β cell line INS1E was exposed to hydrogen peroxide or streptozotocin (STZ) to induce oxidative stress, and palmitate to induce lipotoxicity. Cell viability was assessed by a MTS cell viability assay. Antioxidant response and antiapoptotic gene expression was performed by qRT-PCR. Glucose transporter 2 (GLUT 2) transporter inhibition was assessed through 2-NBDG uptake. GRT and the flavonoids aspalathin and 3-hydroxyphloretin offered significant protection against oxidative stress and lipotoxicity. GRT downregulated expression of pro-apoptotic genes Txnip and Ddit3. The flavonoids aspalathin and 3-hydroxyphloretin also downregulated these genes and in addition upregulated expression of antioxidant response genes Hmox1, Nqo1 and Sod1. Isoorientin gave no cytoprotection. Cytoprotection by Rooibos components was significantly higher than by NAC or exendin-4. Rooibos components strongly protect INS1E β cells against diabetogenic stress. Cytoprotection was associated with the upregulation of antioxidant response genes of the NRF2/KEAP1 pathway or suppression of the TXN system. The Rooibos molecules offered better protection against these insults than exendin-4 and NAC, making them interesting candidates as β cell cytoprotectants for therapeutic or nutraceutical applications.
Collapse
Affiliation(s)
- Céline Moens
- Cell Differentiation Lab, Vrije Universiteit Brussel, Jette, Brussels, Belgium
- * E-mail:
| | - Christo J. F. Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Western Cape, Tygerberg, South Africa
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, South Africa
| | - Luc Bouwens
- Cell Differentiation Lab, Vrije Universiteit Brussel, Jette, Brussels, Belgium
| |
Collapse
|
43
|
Is Type 2 Diabetes a Primary Mitochondrial Disorder? Cells 2022; 11:cells11101617. [PMID: 35626654 PMCID: PMC9140179 DOI: 10.3390/cells11101617] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is the most common endocrine disturbance in inherited mitochondrial diseases. It is essential to increase awareness of the correct diagnosis and treatment of diabetes in these patients and screen for the condition in family members, as diabetes might appear with distinctive clinical features, complications and at different ages of onset. The severity of mitochondrial-related diabetes is likely to manifest on a large scale of phenotypes depending on the location of the mutation and whether the number of affected mitochondria copies (heteroplasmy) reaches a critical threshold. Regarding diabetes treatment, the first-choice treatment for type 2 diabetes (T2D), metformin, is not recommended because of the risk of lactic acidosis. The preferred treatment for diabetes in patients with mitochondrial disorders is SGLT-2i and mitochondrial GLP-1-related substances. The tight relationship between mitochondrial dysfunction, reduced glucose-stimulated insulin secretion (GSIS), and diabetes development in human patients is acknowledged. However, despite the well-characterized role of mitochondria in GSIS, there is a relative lack of data in humans implicating mitochondrial dysfunction as a primary defect in T2D. Our recent studies have provided data supporting the significant role of the mitochondrial respiratory-chain enzyme, cytochrome c oxidase (COX), in regulating GSIS in a rodent model of T2D, the Cohen diabetic sensitive (CDs) rat. The nutritionally induced diabetic CDs rat demonstrates several features of mitochondrial diseases: markedly reduced COX activity in several tissues, increased reactive oxygen production, decreased ATP generation, and increased lactate dehydrogenase expression in islets. Moreover, our data demonstrate that reduced islet-COX activity precedes the onset of diabetes, suggesting that islet-COX deficiency is the primary defect causing diabetes in this model. This review examines the possibility of including T2D as a primary mitochondrial-related disease. Understanding the critical interdependence between diabetes and mitochondrial dysfunction, centering on the role of COX, may open novel avenues to diagnose and treat diabetes in patients with mitochondrial diseases and mitochondrial dysfunction in diabetic patients.
Collapse
|
44
|
Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid Redox Signal 2022; 36:920-952. [PMID: 34180254 PMCID: PMC9125579 DOI: 10.1089/ars.2021.0113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
45
|
Dettmer R, Niwolik I, Cirksena K, Yoshimoto T, Tang Y, Mehmeti I, Gurgul-Convey E, Naujok O. Proinflammatory cytokines induce rapid, NO-independent apoptosis, expression of chemotactic mediators and interleukin-32 secretion in human pluripotent stem cell-derived beta cells. Diabetologia 2022; 65:829-843. [PMID: 35122482 PMCID: PMC8960637 DOI: 10.1007/s00125-022-05654-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to examine the effects of proinflammatory cytokines on cells of different developmental stages during the generation of stem cell-derived beta cells (SC-beta cells) from human pluripotent stem cells (hPSCs). We wanted to find out to what extent human SC-beta cells are suitable as an experimental cellular model and, with regard to a possible therapeutic use, whether SC-beta cells have a comparable vulnerability to cytokines as bona fide beta cells. METHODS hPSCs were differentiated towards pancreatic organoids (SC-organoids) using a 3D production protocol. SC-beta cells and non-insulin-producing cells were separated by FACS and differential gene expression profiles of purified human SC-beta cells, progenitor stages and the human beta cell line EndoC-βH1, as a reference, were determined after 24 h incubation with the proinflammatory cytokines IL-1β, TNF-α and IFN-γ via a transcriptome microarray. Furthermore, we investigated apoptosis based on caspase cleavage, the generation of reactive oxygen species and activation of mitogen-activated protein-kinase (MAPK) stress-signalling pathways. RESULTS A 24 h exposure of SC-beta cells to proinflammatory cytokines resulted in significant activation of caspase 3/7 and apoptosis via the extrinsic and intrinsic apoptosis signalling pathways. At this time point, SC-beta cells showed a markedly higher sensitivity towards proinflammatory cytokines than non-insulin-producing cells and EndoC-βH1 cells. Furthermore, we were able to demonstrate the generation of reactive oxygen species and rule out the involvement of NO-mediated stress. A transient activation of stress-signalling pathways p38 mitogen-activated protein kinases (p38) and c-Jun N-terminal kinase (JNK) was already observed after 10 min of cytokine exposure. The transcriptome analysis revealed that the cellular response to proinflammatory cytokines increased with the degree of differentiation of the cells. Cytokines induced the expression of multiple inflammatory mediators including IL-32, CXCL9 and CXCL10 in SC-beta cells and in non-insulin-producing cells. CONCLUSIONS/INTERPRETATION Our results indicate that human SC-beta cells respond to proinflammatory cytokines very similarly to human islets. Due to the fast and fulminant cellular response of SC-beta cells, we conclude that SC-beta cells represent a suitable model for diabetes research. In light of the immaturity of SC-beta cells, they may be an attractive model for developmentally young beta cells as they are, for example, present in patients with early-onset type 1 diabetes. The secretion of chemotactic signals may promote communication between SC-beta cells and immune cells, and non-insulin-producing cells possibly participate in the overall immune response and are thus capable of amplifying the immune response and further stimulating inflammation. We demonstrated that cytokine-treated SC-organoids secrete IL-32, which is considered a promising candidate for type 1 diabetes onset. This underlines the need to ensure the survival of SC-beta cells in an autoimmune environment such as that found in type 1 diabetes.
Collapse
Affiliation(s)
- Rabea Dettmer
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Isabell Niwolik
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Karsten Cirksena
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Toshiaki Yoshimoto
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Yadi Tang
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
46
|
Latifi E, Mohammadpour AA, Fathi Hafshejani B, Nourani H. Ferula assa-foetida oleo gum resin ethanolic extract alleviated the pancreatic changes and antioxidant status in streptozotocin-induced diabetic rats: A biochemical, histopathological, and ultrastructural study. J Food Biochem 2022; 46:e14191. [PMID: 35474229 DOI: 10.1111/jfbc.14191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/11/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023]
Abstract
The current research examines the effects of administration of 150 and 250 mg/kg body weight/day of ethanolic Ferula assa-foetida L. oleo gum resin extract (FAE) for 42 days in streptozotocin-induced diabetes in rats. On day 42, all rats were euthanized; HOMA-β, HOMA-IR, and QUICKI levels in pancreas were examined histopathologically and ultrastructurally . Low-dose FAE (150 mg/kg) treatment resulted in significant improvement in serum glucose, insulin and superoxide dismutase, glutathione, and catalase levels (p < .05). It also improved β-cell function, restored pancreatic β-cells, and reduced insulin resistance compared to the diabetic control rats. Necrotic and degenerative alterations in the islets, pyknotic β-cell nuclei, β-cell degranulation, reduced islet cellular density, and significant vacuolation were found in the islets of STZ-diabetic control group ratsby the histomorphological and ultrastructural examination. The pancreatic histomorphology of low dose of FAE-treated diabetic rats showed remarkable improvements in the islets, such as the β-cell number and the area of the pancreatic islets. PRACTICAL APPLICATIONS: The experiment revealed that Ferula assa-foetida L. may exert antihyperglycemic activity in STZ diabetes via β-cell regeneration and its high antioxidant capacity. This work elucidates the role of Ferula assa-foetida L. in diabetes management. Ferula assa-foetida L. gum extract improved the morphological changes of the diabetic pancreas and stimulated the regeneration of the β cells. The findings demonstrated positive results for the long-term cure of diabetes. Additionally, this study showed the potential of isolating nutraceuticals for the development of medications.
Collapse
Affiliation(s)
- Ebrahim Latifi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Ali Mohammadpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Behrooz Fathi Hafshejani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hosein Nourani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
47
|
Lenzen S, Lushchak VI, Scholz F. The pro-radical hydrogen peroxide as a stable hydroxyl radical distributor: lessons from pancreatic beta cells. Arch Toxicol 2022; 96:1915-1920. [PMID: 35416515 PMCID: PMC9151569 DOI: 10.1007/s00204-022-03282-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
The toxic potential of H2O2 is limited, even if intracellular concentrations of H2O2 under conditions of oxidative stress increase to the micromolar concentration range. Its toxicity is mostly restricted to the oxidation of highly reactive thiol groups, some of which are functionally very important. Subsequently, the HO· radical is generated spontaneously from H2O2 in the Fenton reaction. The HO· radical is extremely toxic and destroys any biological structure. Due to the high reactivity, its action is limited to a locally restricted site of its generation. On the other hand, H2O2 with its stability and long half-life can reach virtually any site and distribute its toxic effect all over the cell. Thereby HO·, in spite of its ultra-short half-life (10-9 s), can execute its extraordinary toxic action at any target of the cell. In this oxidative stress scenario, H2O2 is the pro-radical, that spreads the toxic action of the HO· radical. It is the longevity of the H2O2 molecule allowing it to distribute its toxic action from the site of origin all over the cell and may even mediate intercellular communication. Thus, H2O2 acts as a spreader by transporting it to sites where the extremely short-lived toxic HO· radical can arise in the presence of "free iron". H2O2 and HO· act in concert due to their different complementary chemical properties. They are dependent upon each other while executing the toxic effects in oxidative stress under diabetic metabolic conditions in particular in the highly vulnerable pancreatic beta cell, which in contrast to many other cell types is so badly protected against oxidative stress due to its extremely low H2O2 inactivating enzyme capacity.
Collapse
Affiliation(s)
- Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany. .,Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.,I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Fritz Scholz
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
48
|
Kannan P, Karthikeyan P, Subramaniam N, Mohan T, Gopinath B, Chakrapani LN, Palanivelu S, Raghunathan M, Periandavan K. Gymnemic acid protects murine pancreatic β-cells by moderating hyperglycemic stress-induced inflammation and apoptosis in type 1 diabetic rats. J Biochem Mol Toxicol 2022; 36:e23050. [PMID: 35343011 DOI: 10.1002/jbt.23050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Type 1 diabetes is a chronic immune-mediated disease caused by pancreatic β-cell dysfunction with consequent severe insulin deficiency. Exacerbated blood glucose levels can cause oxidative stress in the pancreatic β-cells, which leads to inflammation, and apoptosis resulting in islet dysfunction. Although massive studies have been carried out to elucidate the causative factors for β-cell damage in diabetes, the therapeutic approach to pancreatic β-cell damage has not been extensively studied. Hence, the present study has been designed to delineate the role of gymnemic acid (GA) in protecting pancreatic β-cells in diabetic animals, with special reference to inflammation and apoptosis. Our data revealed that the treatment with GA significantly reverted the alteration in both biochemical and histochemical observations in young diabetic rats. Moreover, treatment with the GA downregulates the expression of proinflammatory markers (nuclear factor-κB, tumor necrosis factor-α, interleukin-[IL]-6, and IL-1β), proapoptotic proteins (Bax, cytochrome c, and cleaved caspase-3), as well as upregulates the expression of antiapoptotic protein Bcl-2 in diabetic rats. These findings suggest that the anti-inflammatory and antiapoptotic nature of GA mitigates β-cell damage in hyperglycemic rats.
Collapse
Affiliation(s)
- Pugazhendhi Kannan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Porkodi Karthikeyan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Nirmala Subramaniam
- Department of Biochemistry, University of Madras, Guindy Campus, Guindy, Chennai, India
| | - Thangarajeswari Mohan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Bhavani Gopinath
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Lakshmi N Chakrapani
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Shanthi Palanivelu
- Department of Pathology, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Malathi Raghunathan
- Department of Pathology, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| |
Collapse
|
49
|
Ferroptosis as a Novel Determinant of β-Cell Death in Diabetic Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3873420. [PMID: 35320979 PMCID: PMC8938062 DOI: 10.1155/2022/3873420] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
The main pathological hallmark of diabetes is the loss of functional β-cells. Among several types of β-cell death in diabetes, the involvement of ferroptosis remains elusive. Therefore, we investigated the potential of diabetes-mimicking factors: high glucose (HG), proinflammatory cytokines, hydrogen peroxide (H2O2), or diabetogenic agent streptozotocin (STZ) to induce ferroptosis of β-cells in vitro. Furthermore, we tested the contribution of ferroptosis to injury of pancreatic islets in an STZ-induced in vivo diabetic model. All in vitro treatments increased loss of Rin-5F cells along with the accumulation of reactive oxygen species, lipid peroxides and iron, inactivation of NF-E2-related factor 2 (Nrf2), and decrease in glutathione peroxidase 4 expression and mitochondrial membrane potential (MMP). Ferrostatin 1 (Fer-1), ferroptosis inhibitor, diminished the above-stated effects and rescued cells from death in case of HG, STZ, and H2O2 treatments, while failed to increase MMP and to attenuate cell death after the cytokines' treatment. Moreover, Fer-1 protected pancreatic islets from STZ-induced injury in diabetic in vivo model, since it decreased infiltration of macrophages and accumulation of lipid peroxides and increased the population of insulin-positive cells. Such results revealed differences between diabetogenic stimuli in determining the destiny of β-cells, emerging HG, H2O2, and STZ, but not cytokines, as contributing factors to ferroptosis and shed new light on an antidiabetic strategy based on Nrf2 activation. Thus, targeting ferroptosis in diabetes might be a promising new approach for preservation of the β-cell population. Our results obtained from in vivo study strongly justify this approach.
Collapse
|
50
|
Kadam DA, Kalamkar SD, Saraf A, Pathan I, Acharya J, Pekhale K, Shouche Y, Lole K, Ghaskadbi S, Ashma R. SNPs in the catalase promoter: a study based on Indian diabetic individuals. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|