1
|
Rasizadeh R, Shiri Aghbash P, Mokhtarzadeh A, Poortahmasebi V, Ahangar Oskouee M, Sadri Nahand J, Amini M, Zahra Bahojb Mahdavi S, Hossein Yari A, Bannazadeh Baghi H. Novel strategies in HPV‑16‑related cervical cancer treatment: An in vitro study of combined siRNA-E5 with oxaliplatin and ifosfamide chemotherapy. Gene 2025; 932:148904. [PMID: 39218415 DOI: 10.1016/j.gene.2024.148904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cervical cancer, primarily caused by HPV infection, remains a global health concern. Current treatments face challenges including drug resistance and toxicity. This study investigates combining E5-siRNA with chemotherapy drugs, Oxaliplatin and Ifosfamide, to enhance treatment efficacy in HPV-16 positive cervical cancer cells, targeting E5 oncoprotein to overcome limitations of existing therapies. METHODS The CaSki cervical cancer cell line was transfected with E5-siRNA, and subsequently treated with Oxaliplatin/Ifosfamide. Quantitative real-time PCR was employed to assess the expression of related genes including p53, MMP2, Nanog, and Caspases. Cell apoptosis, cell cycle progression, and cell viability were evaluated using Annexin V/PI staining, DAPI staining, and MTT test, respectively. Furthermore, stemness ability was determined through a colony formation assay, and cell motility was assessed by wound healing assay. RESULTS E5-siRNA transfection significantly reduced E5 mRNA expression in CaSki cells compared to the control group. The MTT assay revealed that monotherapy with E5-siRNA, Oxaliplatin, or Ifosfamide had moderate effects on cell viability. However, combination therapy showed synergistic effects, reducing the IC50 of Oxaliplatin from 11.42 × 10-8 M (45.36 μg/ml) to 6.71 × 10-8 M (26.66 μg/ml) and Ifosfamide from 12.52 × 10-5 M (32.7 μg/ml) to 8.206 × 10-5 M (21.43 μg/ml). Flow cytometry analysis demonstrated a significant increase in apoptosis for combination treatments, with apoptosis rates rising from 11.02 % (Oxaliplatin alone) and 16.98 % (Ifosfamide alone) to 24.8 % (Oxaliplatin + E5-siRNA) and 34.9 % (Ifosfamide + E5-siRNA). The sub-G1 cell population increased from 15.7 % (Oxaliplatin alone) and 18 % (Ifosfamide alone) to 21.9 % (Oxaliplatin + E5-siRNA) and 27.1 % (Ifosfamide + E5-siRNA), indicating cell cycle arrest. The colony formation assay revealed a substantial decrease in the number of colonies following combination treatment. qRT-PCR analysis showed decreased expression of stemness-related genes CD44 and Nanog, and migration-related genes MMP2 and CXCL8 in the combination groups. Apoptosis-related genes Casp-3, Casp-9, and pP53 showed increased expression following combination therapy, while BAX expression increased and BCL2 expression decreased relative to the control. CONCLUSION The study demonstrates that combining E5-siRNA with Oxaliplatin or Ifosfamide enhances the efficacy of chemotherapy in HPV-16 positive cervical cancer cells. This synergistic approach effectively targets multiple aspects of cancer cell behavior, including proliferation, apoptosis, migration, and stemness. The findings suggest that this combination strategy could potentially allow for lower chemotherapy doses, thereby reducing toxicity while maintaining therapeutic efficacy. This research provides valuable insights into targeting HPV E5 as a complementary approach to existing therapies focused on E6 and E7 oncoproteins, opening new avenues for combination therapies in cervical cancer treatment.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetic, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahin Ahangar Oskouee
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amir Hossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Lin Z, Assaraf YG, Kwok HF. Peptides for microbe-induced cancers: latest therapeutic strategies and their advanced technologies. Cancer Metastasis Rev 2024; 43:1315-1336. [PMID: 39008152 DOI: 10.1007/s10555-024-10197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.
Collapse
Affiliation(s)
- Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Instituteof Technology, Haifa, 3200003, Israel
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
3
|
Trugilo KP, Cebinelli GCM, Castilha EP, da Silva MR, Berti FCB, de Oliveira KB. The role of transforming growth factor β in cervical carcinogenesis. Cytokine Growth Factor Rev 2024; 80:12-23. [PMID: 39482191 DOI: 10.1016/j.cytogfr.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Human papillomavirus (HPV) is involved in virtually all cases of cervical cancer. However, HPV alone is not sufficient to cause malignant development. The effects of chronic inflammation and the interaction of immune components with the microenvironment infected with the high-risk HPV type (HR) may contribute to cancer development. Transforming growth factor β (TGFB) appears to play an important role in cervical carcinogenesis. Protein and mRNA levels of this cytokine gradually increase as normal tissue develops into malignant tissue and are closely related to the severity of HPV infection. At the onset of infection, TGFB can inhibit the proliferation of infected cells and viral amplification by inhibiting cell growth and downregulating the transcriptional activity of the long control region (LCR) of HPV, thereby reducing the expression of early genes. When infected cells progress to a malignant phenotype, the response to the cell growth inhibitory effect of TGFB1 is lost and the suppression of E6 and E7 expression decreases. Subsequently, TGFB1 expression is upregulated by high levels of E6 and E7 oncoproteins, leading to an increase in TGFB1 in the tumor microenvironment, where this molecule promotes epithelial-to-mesenchymal transition (EMT), cell motility, angiogenesis, and immunosuppression. This interaction between HPV oncoproteins and TGFB1 is an important mechanism promoting the development and progression of cervical cancer.
Collapse
Affiliation(s)
- Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | - Mariane Ricciardi da Silva
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| |
Collapse
|
4
|
Brooke G, Wendel S, Banerjee A, Wallace N. Opportunities to advance cervical cancer prevention and care. Tumour Virus Res 2024; 18:200292. [PMID: 39490532 PMCID: PMC11566706 DOI: 10.1016/j.tvr.2024.200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Cervical cancer (CaCx) is a major public health issue, with over 600,000 women diagnosed annually. CaCx kills someone every 90 s, mostly in low- and middle-income countries. There are effective yet imperfect mechanisms to prevent CaCx. Since human papillomavirus (HPV) infections cause most CaCx, they can be prevented by vaccination. Screening methodologies can identify premalignant lesions and allow interventions before a CaCx develops. However, these tools are less feasible in resource-poor environments. Additionally, current screening modalities cannot triage lesions based on their relative risk of progression, which results in overtreatment. CaCx care relies heavily on genotoxic agents that cause severe side effects. This review discusses ways that recent technological advancements could be leveraged to improve CaCx care and prevention.
Collapse
Affiliation(s)
- Grant Brooke
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sebastian Wendel
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Abhineet Banerjee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas Wallace
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
5
|
Jin J, Li S, Huang H, Li J, Lyu Y, Ran Y, Chang H, Zhao X. Development of human papillomavirus and its detection methods (Review). Exp Ther Med 2024; 28:382. [PMID: 39161614 PMCID: PMC11332130 DOI: 10.3892/etm.2024.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 08/21/2024] Open
Abstract
Human papillomavirus (HPV) infection plays an important role in cervical cancer. HPV is classified within the Papillomaviridae family and is a non-enveloped, small DNA virus. HPV infection can be classified into two distinct scenarios: i) With or without integration into the host chromosomes. Detection of its infection can be useful in the study of cervical lesions. In the present review, the structural and functional features of HPV, HPV typing, infection and transmission mode, the risk factors for cervical susceptibility to infection and HPV detection methods are described in detail. The development of HPV detection methods may have far-reaching significance in the prevention and treatment of cervical disease. This review summarizes the advantages and limitations of each HPV detection method.
Collapse
Affiliation(s)
- Jian Jin
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shujuan Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Hehuan Huang
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Junqi Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yunwei Ran
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Hui Chang
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shanxi 710049, P.R. China
| | - Xin Zhao
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
6
|
Ferré VM, Coppée R, Gbeasor-Komlanvi FA, Vacher S, Bridier-Nahmias A, Bucau M, Salou M, Lameiras S, Couvelard A, Dagnra AC, Bieche I, Descamps D, Ekouevi DK, Ghosn J, Charpentier C. Viral whole genome sequencing reveals high variations in APOBEC3 editing between HPV risk categories. J Med Virol 2024; 96:e70002. [PMID: 39400339 DOI: 10.1002/jmv.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
High-risk human papillomavirus (HPV) infections are responsible for cervical cancer. However, little is known about the differences between HPV types and risk categories regarding their genetic diversity and particularly APOBEC3-induced mutations - which contribute to the innate immune response to HPV. Using a capture-based next-generation sequencing, 156 HPV whole genome sequences covering 43 HPV types were generated from paired cervical and anal swabs of 30 Togolese female sex workers (FSWs) sampled in 2017. Genetic diversity and APOBEC3-induced mutations were assessed at the viral whole genome and gene levels. Thirty-four pairwise sequence comparisons covering 24 HPV types in cervical and anal swabs revealed identical infections in the two anatomical sites. Differences in genetic diversity among HPV types was observed between patients. The E6 gene was significantly less conserved in low-risk HPVs (lrHPVs) compared to high-risk HPVs (hrHPVs) (p = 0.009). APOBEC3-induced mutations were found to be more common in lrHPVs than in hrHPVs (p = 0.005), supported by our data and by using large HPV sequence collections from the GenBank database. Focusing on the most common lrHPVs 6 and 11 and hrHPVs 16 and 18, APOBEC3-induced mutations were predominantly found in the E4 and E6 genes in lrHPVs, but were almost absent in these genes in hrHPVs. The variable APOBEC3 mutational signatures could contribute to the different oncogenic potentials between HPVs. Further studies are needed to conclusively determine whether APOBEC3 editing levels are associated to the carcinogenic potential of HPVs at the type and sublineage scales.
Collapse
Affiliation(s)
- Valentine Marie Ferré
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| | - Romain Coppée
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
| | - Fifonsi A Gbeasor-Komlanvi
- Département de Santé Publique, Université de Lomé, Faculté des Sciences de la Santé, Lomé, Togo
- Centre Africain de Recherche en Epidémiologie et en Santé Publique (CARESP), Lomé, Togo
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | | | - Margot Bucau
- Département de Pathologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
| | - Mounerou Salou
- Université de Lomé, Centre de Biologie Moléculaire et d'Immunologie, Lomé, Togo
| | - Sonia Lameiras
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, Paris, France
| | - Anne Couvelard
- Département de Pathologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
- Université de Paris, Centre of Research on Inflammation, Paris, INSERM U1149, France
| | - Anoumou Claver Dagnra
- Université de Lomé, Centre de Biologie Moléculaire et d'Immunologie, Lomé, Togo
- Programme national de lutte contre le sida et les infections sexuellement transmissibles, Lomé, Togo
| | - Ivan Bieche
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
- INSERM U1016, Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, Paris, France
| | - Diane Descamps
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| | - Didier K Ekouevi
- Département de Santé Publique, Université de Lomé, Faculté des Sciences de la Santé, Lomé, Togo
- ISPED, Université de Bordeaux & Centre INSERM U1219 - Bordeaux Population Health, Bordeaux, France
| | - Jade Ghosn
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Maladies Infectieuses et Tropicales, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
| | - Charlotte Charpentier
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| |
Collapse
|
7
|
Montero S, Sandigo-Saballos I, Tom C, Lee H. Poor Acceptance of the Revised Classification of Premalignant Anal Lesions Following the LAST Standardized Project. Am Surg 2024; 90:2419-2423. [PMID: 38641876 DOI: 10.1177/00031348241248793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
INTRODUCTION The Lower Anogenital Squamous Terminology (LAST) Project recommended unified classification for HPV-associated squamous lesions of the lower anogenital tract, using a 2-tiered nomenclature in 2013. Adherence to the new nomenclature worldwide is unknown. This study aims to assess the trend of the use of the two-tiered High Squamous Intraepithelial Lesion and Low Squamous Intraepithelial Lesion (HSIL/LSIL) as opposed to the traditional three-tiered Anal Intraepithelial Neoplasia (AIN I/II/III) classification as suggested by the LAST Project. METHODS A literature search on full-text English language studies of premalignant anal lesion was performed on PubMed from 2002-2022. The studies were categorized by continent, and the prevalence of HSIL/LSIL classification vs AIN I/II/III was calculated. RESULTS 546 studies and 251 studies were identified using the AIN I/II/II and the HSIL/LSIL classification respectively. Global trend suggested a statistically significant downward trend in the use of the two-tiered nomenclature system in publications globally. Regional trend including North America, Europe, and other (Asia and Latin America) showed variance in adoption of the two-tiered nomenclature system. CONCLUSION Despite multidisciplinary collaborative effort, adherence to the recommendations to use the two-tiered system for HPV-associated premalignant anal lesions continues to be suboptimal. Further efforts are needed to identify the cause of poor adherence to be able to create strategies that reinforces unification of terminology and integration of LAST the recommendations.
Collapse
Affiliation(s)
- Stefania Montero
- Division of Colon and Rectal Surgery, Department of Surgery, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Isabela Sandigo-Saballos
- Division of Colon and Rectal Surgery, Department of Surgery, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Cynthia Tom
- Division of Colon and Rectal Surgery, Department of Surgery, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hanjoo Lee
- Division of Colon and Rectal Surgery, Department of Surgery, Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
8
|
Rao A, Stosic MS, Mohanty C, Suresh D, Wang AR, Lee DL, Nickel KP, Chandrashekar DS, Kimple RJ, Lambert PF, Kendziorski C, Rounge TB, Iyer G. Targeted inhibition of BET proteins in HPV16-positive head and neck squamous cell carcinoma reveals heterogeneous transcriptional responses. Front Oncol 2024; 14:1440836. [PMID: 39301555 PMCID: PMC11410754 DOI: 10.3389/fonc.2024.1440836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Human papillomaviruses (HPV), most commonly HPV16, are associated with a subset of head and neck squamous cell carcinoma (HNSCC) tumors, primarily oropharyngeal carcinomas, with integration of viral genomes into host chromosomes associated with worse survival outcomes. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. The role of BET protein-mediated transcription of viral-cellular genes in the viral-HNSCC genomes needs to be better understood. Using a combination of TAME-Seq, qRT-PCR, and immunoblot analyses, we show that BET inhibition downregulates E6 and E7 significantly, with heterogeneity in the downregulation of viral transcription across different HPV+ HNSCC cell lines. Chemical BET inhibition was phenocopied with the knockdown of BRD4, mirroring the downregulation of viral E6 and E7 expression. We found that BET inhibition directly downregulated c-Myc and E2F expression and induced CDKN1A (p21) expression, leading to a G1-cell cycle arrest with apoptotic activity. Overall, our studies demonstrate that BET inhibition regulates both E6 and E7 viral and key cellular cell cycle regulator E2F gene expression and cellular gene expression in HPV-associated HNSCC and highlight the potential of BET inhibitors as a therapeutic strategy for this disease while also underscoring the importance of considering the heterogeneity in cellular responses to BET inhibition.
Collapse
Affiliation(s)
- Aakarsha Rao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Milan S. Stosic
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Dhruthi Suresh
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Albert R. Wang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Denis L. Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Darshan S. Chandrashekar
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Trine B. Rounge
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
- Norwegian Institute of Public Health, Cancer Registry of Norway, Oslo, Norway
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
9
|
Ji T, Liu Y, Li Y, Li C, Han Y. Viral vector-based therapeutic HPV vaccines. Clin Exp Med 2024; 24:199. [PMID: 39196444 PMCID: PMC11358221 DOI: 10.1007/s10238-024-01470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Replication-defective viral vector vaccines have several advantages over conventional subunit vaccines, including potent antibody responses, cellular responses critical for eliminating pathogen-infected cells, and the induction of highly immunogenic and durable immune responses without adjuvants. The Human papillomavirus (HPV), a microorganism with over 200 genotypes, plays a crucial role in inducing human tumors, with the majority of HPV-related malignancies expressing HPV proteins. Tumors associated with HPV infection, most of which result from HPV16 infection, include those affecting the cervix, anus, vagina, penis, vulva, and oropharynx. In recent years, the development of therapeutic HPV vaccines utilizing viral vectors for the treatment of premalignant lesions or tumors caused by HPV infection has experienced rapid growth, with numerous research pipelines currently underway. Simultaneously, screening for optimal antigens requires more basic research and more optimized methods. In terms of preclinical research, we present the various models used to assess vaccine efficacy, highlighting their respective advantages and disadvantages. Further, we present current research status of therapeutic vaccines using HPV viral vectors, especially the indications, initial efficacy, combination drugs, etc. In general, this paper summarizes current viral vector therapeutic HPV vaccines in terms of HPV infection, antigen selection, vectors, efficacy evaluation, and progress in clinical trials.
Collapse
Affiliation(s)
- Teng Ji
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchuan Liu
- The Second Clinical Medical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutong Li
- The Second Clinical Medical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanfen Li
- The Second Clinical Medical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingyan Han
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Taguchi A, Yoshimoto D, Kusakabe M, Baba S, Kawata A, Miyamoto Y, Mori M, Sone K, Hirota Y, Osuga Y. Impact of human papillomavirus types on uterine cervical neoplasia. J Obstet Gynaecol Res 2024; 50:1283-1288. [PMID: 38852606 DOI: 10.1111/jog.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Human papillomavirus (HPV) is a major cause of cervical cancer. As the natural history of HPV-associated cervical lesions is HPV genotype-dependent, it is important to understand the characteristics of these genotypes and to manage them accordingly. Among high-risk HPVs, HPV16 and 18 are particularly aggressive, together accounting for 70% of HPV genotypes detected in cervical cancer. Other than HPV16 and 18, HPV31, 33, 35, 45, 52, and 58 are also at a high risk of progression to cervical intraepithelial neoplasia (CIN)3 or higher. Recent studies have shown that the natural history of HPV16, 18, 52, and 58, which are frequently detected in Japan, depends on the HPV genotype. For example, HPV16 tends to progress in a stepwise fashion from CIN1 to CIN3, while HPV52 and 58 are more likely to persist in the CIN1 to CIN2 state. Among the high-risk HPVs, HPV18 has some peculiar characteristics different from those of other high-risk HPV types; the detection rate in precancerous lesions is much lower than those of other high-risk HPVs, and it is frequently detected in highly malignant adenocarcinoma and small cell carcinoma. Recent findings demonstrate that HPV18 may be characterized by latent infection and carcinogenesis in stem cell-like cells. In this context, this review outlines the natural history of HPV-infected cervical lesions and the characteristics of each HPV genotype.
Collapse
Affiliation(s)
- Ayumi Taguchi
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center Osaka University, Osaka, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Yoshimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Misako Kusakabe
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Baba
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mayuyo Mori
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Ravi Prakash SM, Jha RK, Chawla R, Kupendra S, Kamarthi N, Jugade SC, Tiwari HD. Assessment of the Impact of HPV Infection on the Incidence and Prognosis of Oral Cancers. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S2733-S2736. [PMID: 39346458 PMCID: PMC11426607 DOI: 10.4103/jpbs.jpbs_298_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 10/01/2024] Open
Abstract
Objectives The purpose of this research was to evaluate, in a tertiary care context, the effects of human papillomavirus (HPV) infection on the incidence and prognosis of oral malignancies. Methods At a tertiary care hospital, 100 patients who received an oral cancer diagnosis between 2020 and 2022 were the subject of a retrospective analysis. Medical records were used to gather clinicopathological data, and histopathological specimens' molecular analyses were used to ascertain the HPV infection status. To assess the variations in overall and disease-free survival between HPV-positive [HPV+] and HPV-negative [HPV-] patients, survival analysis was done. Results Of the oral malignancies that tested positive for HPV, 25% were caused by strains HPV-16 and HPV-18. Patients who tested positive for HPV had unique clinicopathological characteristics, such as a decreased prevalence of lymph node involvement, nonkeratinizing histology, and younger age at diagnosis. When compared to HPV- patients, HPV+ patients had substantially better overall survival (P = 0.032) and disease-free survival (P = 0.047) according to survival analysis. Conclusion The incidence and prognosis of oral malignancies are significantly impacted by HPV infection, as demonstrated by current data. When compared to HPV- cancers, HPV+ tumors have different clinicopathological characteristics and improved survival rates. These findings have implications for therapy selection and prognostication, and they highlight the significance of HPV testing in the therapeutic management of oral malignancies. To understand the underlying molecular pathways and provide tailored therapeutics for oral malignancies that are HPV+, more research is required.
Collapse
Affiliation(s)
| | - Rohit Kumar Jha
- Department of Surgical Oncology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Riddhi Chawla
- School of Dentistry, Central Asian University, Tashkent, Uzbekistan
| | - Sushma Kupendra
- Department of Oral and Maxillofacial Surgery, HKDET'S Dental College, Hospital and Research Centre, Humnabad, Karnataka, India
| | - Nagaraju Kamarthi
- Department of Oral Medicine and Radiology, Subharti Dental College, Subharti University, Meerut, Uttar Pradesh, India
| | - Shraddha C Jugade
- Department of Oral Medicine and Radiology, Dr. D Y Patil Dental College and Hospital, Dr. D Y Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Heena Dixit Tiwari
- Rashtriya Kishore Swasthya Karyakram Consultant, District Medical and Health Office, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
12
|
Ssedyabane F, Niyonzima N, Nambi Najjuma J, Birungi A, Atwine R, Tusubira D, Randall TC, Castro CM, Lee H, Ngonzi J. Prevalence of cervical intraepithelial lesions and associated factors among women attending a cervical cancer clinic in Western Uganda; results based on Pap smear cytology. SAGE Open Med 2024; 12:20503121241252265. [PMID: 38764539 PMCID: PMC11100407 DOI: 10.1177/20503121241252265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction There are high incidence and mortality rates of cervical cancer among females in East Africa. This is exacerbated by limited up-to-date data on premalignant lesions and associated factors in this setting. In this study, we determined the prevalence of cervical intraepithelial lesions and associated factors among women attending the Mbarara Regional Referral Hospital cervical cancer clinic in Southwestern Uganda. Methods In this cross-sectional study, 364 participants were recruited from among women attending the Mbarara Regional Referral Hospital cervical cancer clinic from 1 April to 30 June 2023. On consent, the study nurse collected demographic data and Pap smears, which were microscopically examined and reported by a laboratory scientist and a pathologist following the Bethesda grading system (2014). Statistical analyses were done in STATA version 17, using proportions, Chi-square, bivariate, and multivariate logistic regression analysis to determine associated factors at ⩽0.05 significance level. Results The mean age of participants was 41.9 years. A third of all study participants (37.6%, 132/351) were contraceptive users, mostly hormonal contraceptives (87.1%, 115/132). Almost 88% (307/351) had an unknown Human Papilloma Virus status. The prevalence of cervical intraepithelial lesions among our study participants was 6.6% (23/351), of which 73.9% (17/23) were low-grade squamous intraepithelial lesions. More than half (9/17, 52.9%) of low-grade squamous intraepithelial lesions were active hormonal contraceptive users. Use of hormonal contraceptives (OR: 3.032, p: 0.0253), use of intrauterine devices (OR: 6.284, p: 0.039), and any family history of cervical cancer (OR: 4.144, p: 0.049) were significantly associated with cervical intraepithelial lesions. Conclusion The prevalence of cervical intraepithelial lesions was 6.6%, lower than global estimates. Use of hormonal and intrauterine device contraceptives, as well as family history of cervical cancer, were significantly associated with cervical intraepithelial lesions among our study population. Prospective studies are recommended to further understand associations between different types of intrauterine devices and hormonal contraceptives, and cervical lesions.
Collapse
Affiliation(s)
- Frank Ssedyabane
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science of Science and Technology, Mbarara, Uganda
| | | | - Josephine Nambi Najjuma
- Department of Nursing, Mbarara University of Science of Science and Technology, Mbarara, Uganda
| | - Abraham Birungi
- Department of Pathology, Mbarara University of Science of Science and Technology, Mbarara Uganda
| | - Raymond Atwine
- Department of Pathology, Mbarara University of Science of Science and Technology, Mbarara Uganda
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science of Science and Technology, Mbarara, Uganda
| | - Thomas C Randall
- Department of Global Health and Social Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cesar M Castro
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Ngonzi
- Department of Obstetrics and Gynecology, Mbarara University of Science of Science and Technology, Mbarara, Uganda
| |
Collapse
|
13
|
Janjua D, Thakur K, Aggarwal N, Chaudhary A, Yadav J, Chhokar A, Tripathi T, Joshi U, Senrung A, Bharti AC. Prognostic and therapeutic potential of STAT3: Opportunities and challenges in targeting HPV-mediated cervical carcinogenesis. Crit Rev Oncol Hematol 2024; 197:104346. [PMID: 38608913 DOI: 10.1016/j.critrevonc.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Cervical cancer (CaCx) ranks as the fourth most prevalent cancer among women globally. Persistent infection of high-risk human papillomaviruses (HR-HPVs) is major etiological factor associated with CaCx. Signal Transducer and Activator of Transcription 3 (STAT3), a prominent member of the STAT family, has emerged as independent oncogenic driver. It is a target of many oncogenic viruses including HPV. How STAT3 influences HPV viral gene expression or gets affected by HPV is an area of active investigation. A better understanding of host-virus interaction will provide a prognostic and therapeutic window for CaCx control and management. In this comprehensive review, we delve into carcinogenic role of STAT3 in development of HPV-induced CaCx. With an emphasis on fascinating interplay between STAT3 and HPV genome, the review explores the diverse array of opportunities and challenges associated with this field to harness the prognostic and therapeutic potential of STAT3 in CaCx.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
14
|
Dellino M, Pinto G, D’Amato A, Barbara F, Di Gennaro F, Saracino A, Laganà AS, Vimercati A, Malvasi A, Malvasi VM, Cicinelli E, Vitagliano A, Cascardi E, Pinto V. Analogies between HPV Behavior in Oral and Vaginal Cavity: Narrative Review on the Current Evidence in the Literature. J Clin Med 2024; 13:1429. [PMID: 38592283 PMCID: PMC10932293 DOI: 10.3390/jcm13051429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Human genital papilloma virus infection is the most prevalent sexually transmitted infection in the world. It is estimated that more than 75% of sexually active women contract this infection in their lifetime. In 80% of young women, there is the clearance of the virus within 18-24 months. In developed countries, oral squamous cell carcinoma (OSCC) is now the most frequent human papilloma virus (HPV)-related cancer, having surpassed cervical cancer, and it is predicted that by 2030 most squamous cell carcinomas will be the HPV-related rather than non-HPV-related form. However, there are currently no screening programs for oral cavity infection. While the natural history of HPV infection in the cervix is well known, in the oropharynx, it is not entirely clear. Furthermore, the prevalence of HPV in the oropharynx is unknown. Published studies have found wide-ranging prevalence estimates of 2.6% to 50%. There are also conflicting results regarding the percentage of women presenting the same type of HPV at two mucosal sites, ranging from 0 to 60%. Additionally, the question arises as to whether oral infection can develop from genital HPV infection, through oral and genital contact or by self-inoculation, or whether it should be considered an independent event. However, there is still no consensus on these topics, nor on the relationship between genital and oral HPV infections. Therefore, this literature review aims to evaluate whether there is evidence of a connection between oral and cervical HPV, while also endorsing the usefulness of the screening of oral infection in patients with high-risk cervical HPV as a means of facilitating the diagnosis and early management of HPV-related oral lesions. Finally, this review emphasizes the recommendation for the use of the HPV vaccines in primary prevention in the male and female population as the most effective means of successfully counteracting the increasing incidence of OSCC to date.
Collapse
Affiliation(s)
- Miriam Dellino
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Grazia Pinto
- Dentistry Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, 70124 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Francesco Barbara
- Unit of Otolaryngology, Department of Ophtalmology and Otolaryngology, University of Bari, 70124 Bari, Italy;
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University Hospital Polyclinic, University of Bari, Piazza Giulio Cesare n. 11, 70124 Bari, Italy; (F.D.G.); (A.S.)
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University Hospital Polyclinic, University of Bari, Piazza Giulio Cesare n. 11, 70124 Bari, Italy; (F.D.G.); (A.S.)
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Antonella Vimercati
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Antonio Malvasi
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | | | - Ettore Cicinelli
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Amerigo Vitagliano
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Eliano Cascardi
- Pathology Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Piazza Giulio Cesare 11, 70121 Bari, Italy;
| | - Vincenzo Pinto
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| |
Collapse
|
15
|
Wattanathavorn W, Seki M, Suzuki Y, Buranapraditkun S, Kitkumthorn N, Sasivimolrattana T, Bhattarakosol P, Chaiwongkot A. Downregulation of LAMB3 Altered the Carcinogenic Properties of Human Papillomavirus 16-Positive Cervical Cancer Cells. Int J Mol Sci 2024; 25:2535. [PMID: 38473784 DOI: 10.3390/ijms25052535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Nearly all cervical cancer cases are caused by infection with high-risk human papillomavirus (HR-HPV) types. The mechanism of cervical cell transformation is related to the powerful action of viral oncoproteins and cellular gene alterations. Transcriptomic data from cervical cancer and normal cervical cells were utilized to identify upregulated genes and their associated pathways. The laminin subunit beta-3 (LAMB3) mRNAwas overexpressed in cervical cancer and was chosen for functional analysis. The LAMB3 was predominantly expressed in the extracellular region and the plasma membrane, which play a role in protein binding and cell adhesion molecule binding, leading to cell migration and tissue development. LAMB3 was found to be implicated in the pathway in cancer and the PI3K-AKT signaling pathway. LAMB3 knockdown decreased cell migration, invasion, anchorage-dependent and anchorage-independent cell growth and increased the number of apoptotic cells. These effects were linked to a decrease in protein levels involved in the PI3K-AKT signaling pathway and an increase in p53 protein. This study demonstrated that LAMB3 could promote cervical cancer cell migration, invasion and survival.
Collapse
Affiliation(s)
- Warattaya Wattanathavorn
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Applied Medical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Chiba, Japan
| | - Supranee Buranapraditkun
- King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, 1873 Rama IV Road, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | | | - Parvapan Bhattarakosol
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Applied Medical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Arkom Chaiwongkot
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Applied Medical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
16
|
Wang Z, Liu C, Liu W, Lv X, Hu T, Yang F, Yang W, He L, Huang X. Long-read sequencing reveals the structural complexity of genomic integration of HPV DNA in cervical cancer cell lines. BMC Genomics 2024; 25:198. [PMID: 38378450 PMCID: PMC10877919 DOI: 10.1186/s12864-024-10101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Cervical cancer (CC) causes more than 311,000 deaths annually worldwide. The integration of human papillomavirus (HPV) is a crucial genetic event that contributes to cervical carcinogenesis. Despite HPV DNA integration is known to disrupt the genomic architecture of both the host and viral genomes in CC, the complexity of this process remains largely unexplored. RESULTS In this study, we conducted whole-genome sequencing (WGS) at 55-65X coverage utilizing the PacBio long-read sequencing platform in SiHa and HeLa cells, followed by comprehensive analyses of the sequence data to elucidate the complexity of HPV integration. Firstly, our results demonstrated that PacBio long-read sequencing effectively identifies HPV integration breakpoints with comparable accuracy to targeted-capture Next-generation sequencing (NGS) methods. Secondly, we constructed detailed models of complex integrated genome structures that included both the HPV genome and nearby regions of the human genome by utilizing PacBio long-read WGS. Thirdly, our sequencing results revealed the occurrence of a wide variety of genome-wide structural variations (SVs) in SiHa and HeLa cells. Additionally, our analysis further revealed a potential correlation between changes in gene expression levels and SVs on chromosome 13 in the genome of SiHa cells. CONCLUSIONS Using PacBio long-read sequencing, we have successfully constructed complex models illustrating HPV integrated genome structures in SiHa and HeLa cells. This accomplishment serves as a compelling demonstration of the valuable capabilities of long-read sequencing in detecting and characterizing HPV genomic integration structures within human cells. Furthermore, these findings offer critical insights into the complex process of HPV16 and HPV18 integration and their potential contribution to the development of cervical cancer.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chen Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wanxin Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xinyi Lv
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ting Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fan Yang
- Wuhan Kandwise Biotechnology, Inc. Wuhan, Hubei, China
| | - Wenhui Yang
- Wuhan Kandwise Biotechnology, Inc. Wuhan, Hubei, China
| | - Liang He
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
17
|
Trammel J, Amusan O, Hultgren A, Raikhy G, Bodily JM. Epidermal growth factor receptor-dependent stimulation of differentiation by human papillomavirus type 16 E5. Virology 2024; 590:109952. [PMID: 38103269 PMCID: PMC10842332 DOI: 10.1016/j.virol.2023.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Human papillomaviruses (HPVs) infect keratinocytes of stratified squamous epithelia, and persistent infection with high-risk HPV types, such as HPV16, may lead to the development of malignancies. HPV evades host immunity in part by linking its gene expression to the host differentiation program, and therefore relies on differentiation to complete its life cycle. Based on previous reports indicating that the HPV16 protein E5 is important in the late stages of the differentiation-dependent life cycle, we found that organotypic cultures harboring HPV16 genomes lacking E5 showed reduced markers of terminal differentiation compared to wild type HPV16-containing cultures. We found that epidermal growth factor receptor (EGFR) levels and activation were increased in an E5-depdendent manner in these tissues, and that EGFR promoted terminal differentiation and expression of the HPV16 L1 gene. These findings suggest a function for E5 in preserving the ability of HPV16 containing keratinocytes to differentiate, thus facilitating the production of new virus progeny.
Collapse
Affiliation(s)
- Jessica Trammel
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA
| | - Oluwamuyiwa Amusan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA
| | - Allison Hultgren
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA; School of Medicine, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA
| | - Gaurav Raikhy
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
18
|
Chen B, Wang Y, Wu Y, Xu T. Effect of HPV Oncoprotein on Carbohydrate and Lipid Metabolism in Tumor Cells. Curr Cancer Drug Targets 2024; 24:987-1004. [PMID: 38284713 DOI: 10.2174/0115680096266981231215111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024]
Abstract
High-risk HPV infection accounts for 99.7% of cervical cancer, over 90% of anal cancer, 50% of head and neck cancers, 40% of vulvar cancer, and some cases of vaginal and penile cancer, contributing to approximately 5% of cancers worldwide. The development of cancer is a complex, multi-step process characterized by dysregulation of signaling pathways and alterations in metabolic pathways. Extensive research has demonstrated that metabolic reprogramming plays a key role in the progression of various cancers, such as cervical, head and neck, bladder, and prostate cancers, providing the material and energy foundation for rapid proliferation and migration of cancer cells. Metabolic reprogramming of tumor cells allows for the rapid generation of ATP, aiding in meeting the high energy demands of HPV-related cancer cell proliferation. The interaction between Human Papillomavirus (HPV) and its associated cancers has become a recent focus of investigation. The impact of HPV on cellular metabolism has emerged as an emerging research topic. A significant body of research has shown that HPV influences relevant metabolic signaling pathways, leading to cellular metabolic alterations. Exploring the underlying mechanisms may facilitate the discovery of biomarkers for diagnosis and treatment of HPV-associated diseases. In this review, we introduced the molecular structure of HPV and its replication process, discussed the diseases associated with HPV infection, described the energy metabolism of normal cells, highlighted the metabolic features of tumor cells, and provided an overview of recent advances in potential therapeutic targets that act on cellular metabolism. We discussed the potential mechanisms underlying these changes. This article aims to elucidate the role of Human Papillomavirus (HPV) in reshaping cellular metabolism and the application of metabolic changes in the research of related diseases. Targeting cancer metabolism may serve as an effective strategy to support traditional cancer treatments, as metabolic reprogramming is crucial for malignant transformation in cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- The Second Hospital of Jilin University, Changchun, China
| | - Yishi Wu
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Sharma S, Chauhan D, Kumar S, Kumar R. Impact of HPV strains on molecular mechanisms of cervix cancer. Microb Pathog 2024; 186:106465. [PMID: 38036109 DOI: 10.1016/j.micpath.2023.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE Cervical cancer accounts for a high number of deaths worldwide. Risk factors are extensive for cervix cancer but Human papillomavirus (HPV) plays a prime role in its development. Different strains of HPV are prevalent globally, which show different grades of mortality and morbidity among women. This study is planned to evaluate the molecular mechanism of different strains of HPV infection and progression leading to cervix cancer. METHODS This review includes different research articles on cervix cancer progression reported from India and all over the world. RESULTS HPV 16 and 18 are prevalent strains using heparan sulfate-independent and dependent pathways for viral replication inside the cell. It also uses transcription mechanisms through NF-kappa B, FOXA-1, and AP-1 genes while strains like HPV-35, 45, and 52 are also predominant in India, which showed a very slow mechanism of progression due to which mortality rate is low after their infection with these strains. CONCLUSION HPV uses E6 and E7 proteins which activate NF-kappa B and AP-1 pathway which suppresses the tumor suppressor gene and activates cytokine production, causing inflammation and leading to a decrease in apoptosis due to Caspase-3 activation. In contrast, the E7 protein involves HOXA genes and decreases apoptotic factors due to which mortality and incidence rates are low in viruses that use E7 motifs. Some HPV strains employ the cap-dependent pathway, which is also associated with lower mortality and infection rates.
Collapse
Affiliation(s)
- Sunidhi Sharma
- Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.
| | - Disha Chauhan
- Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.
| | - Sunil Kumar
- Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.
| | - Ranjit Kumar
- Nagaland University, Lumami, Nagaland, 798627, India.
| |
Collapse
|
20
|
Romero-Masters JC, Muehlbauer LK, Hayes M, Grace M, Shishkova E, Coon JJ, Munger K, Lambert PF. MmuPV1 E6 induces cell proliferation and other hallmarks of cancer. mBio 2023; 14:e0245823. [PMID: 37905801 PMCID: PMC10746199 DOI: 10.1128/mbio.02458-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The Mus musculus papillomavirus 1 (MmuPV1) E6 and E7 proteins are required for MmuPV1-induced disease. Our understanding of the activities of MmuPV1 E6 has been based on affinity purification/mass spectrometry studies where cellular interacting partners of MmuPV1 E6 were identified, and these studies revealed that MmuPV1 E6 can inhibit keratinocyte differentiation through multiple mechanisms. We report that MmuPV1 E6 encodes additional activities including the induction of proliferation, resistance to density-mediated growth arrest, and decreased dependence on exogenous growth factors. Proteomic and transcriptomic analyses provided evidence that MmuPV1 E6 increases the expression and steady state levels of a number of cellular proteins that promote cellular proliferation and other hallmarks of cancer. These results indicate that MmuPV1 E6 is a major driver of MmuPV1-induced pathogenesis.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Laura K. Muehlbauer
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Evgenia Shishkova
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Actis S, Cazzaniga M, Bounous VE, D'Alonzo M, Rosso R, Accomasso F, Minella C, Biglia N. Emerging evidence on the role of breast microbiota on the development of breast cancer in high-risk patients. Carcinogenesis 2023; 44:718-725. [PMID: 37793149 DOI: 10.1093/carcin/bgad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
Cancer is a multi-factorial disease, and the etiology of breast cancer (BC) is due to a combination of both genetic and environmental factors. Breast tissue shows a unique microbiota, Proteobacteria and Firmicutes are the most abundant bacteria in breast tissue, and several studies have shown that the microbiota of healthy breast differs from that of BC. Breast microbiota appears to be correlated with different characteristics of the tumor, and prognostic clinicopathologic features. It also appears that there are subtle differences between the microbial profiles of the healthy control and high-risk patients. Genetic predisposition is an extremely important risk factor for BC. BRCA1/2 germline mutations and Li-Fraumeni syndrome are DNA repair deficiency syndromes inherited as autosomal dominant characters that substantially increase the risk of BC. These syndromes exhibit incomplete penetrance of BC expression in carrier subjects. The action of breast microbiota on carcinogenesis might explain why women with a mutation develop cancer and others do not. Among the potential biological pathways through which the breast microbiota may affect tumorigenesis, the most relevant appear to be DNA damage caused by colibactin and other bacterial-derived genotoxins, β-glucuronidase-mediated estrogen deconjugation and reactivation, and HPV-mediated cancer susceptibility. In conclusion, in patients with a genetic predisposition, an unfavorable breast microbiota may be co-responsible for the onset of BC. Prospectively, the ability to modulate the microbiota may have an impact on disease onset and progression in patients at high risk for BC.
Collapse
Affiliation(s)
- Silvia Actis
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | | | - Valentina Elisabetta Bounous
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Marta D'Alonzo
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Roberta Rosso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Francesca Accomasso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Carola Minella
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Nicoletta Biglia
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| |
Collapse
|
22
|
Sobhi Amjad Z, Shojaeian A, Sadri Nahand J, Bayat M, Taghizadieh M, Rostamian M, Babaei F, Moghoofei M. Oncoviruses: Induction of cancer development and metastasis by increasing anoikis resistance. Heliyon 2023; 9:e22598. [PMID: 38144298 PMCID: PMC10746446 DOI: 10.1016/j.heliyon.2023.e22598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The phenomenon of cell death is a vital aspect in the regulation of aberrant cells such as cancer cells. Anoikis is a kind of cell death that occurs when cells get separated from the extracellular matrix. Some cancer cells can inhibit anoikis in order to progress metastasis. One of the key variables that might be implicated in anoikis resistance (AR) is viral infections. The most important viruses involved in this process are Epstein-Barr virus, human papillomavirus, hepatitis B virus, human herpes virus 8, human T-cell lymphotropic virus type 1, and hepatitis C virus. A better understanding of how carcinogenic viruses suppress anoikis might be helpful in developing an effective treatment for virus-associated cancers. In the current study, we review the role of the mentioned viruses and their gene products in anoikis inhibition.
Collapse
Affiliation(s)
- Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mosayeb Rostamian
- Nosocomial Infections Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Babaei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
23
|
Jain M, Yadav D, Jarouliya U, Chavda V, Yadav AK, Chaurasia B, Song M. Epidemiology, Molecular Pathogenesis, Immuno-Pathogenesis, Immune Escape Mechanisms and Vaccine Evaluation for HPV-Associated Carcinogenesis. Pathogens 2023; 12:1380. [PMID: 38133265 PMCID: PMC10745624 DOI: 10.3390/pathogens12121380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Human papillomavirus (HPV) is implicated in over 90% of cervical cancer cases, with factors like regional variability, HPV genotype, the population studied, HPV vaccination status, and anatomical sample collection location influencing the prevalence and pathology of HPV-induced cancer. HPV-16 and -18 are mainly responsible for the progression of several cancers, including cervix, anus, vagina, penis, vulva, and oropharynx. The oncogenic ability of HPV is not only sufficient for the progression of malignancy, but also for other tumor-generating steps required for the production of invasive cancer, such as coinfection with other viruses, lifestyle factors such as high parity, smoking, tobacco chewing, use of contraceptives for a long time, and immune responses such as stimulation of chronic stromal inflammation and immune deviation in the tumor microenvironment. Viral evasion from immunosurveillance also supports viral persistence, and virus-like particle-based prophylactic vaccines have been licensed, which are effective against high-risk HPV types. In addition, vaccination awareness programs and preventive strategies could help reduce the rate and incidence of HPV infection. In this review, we emphasize HPV infection and its role in cancer progression, molecular and immunopathogenesis, host immune response, immune evasion by HPV, vaccination, and preventive schemes battling HPV infection and HPV-related cancers.
Collapse
Affiliation(s)
- Meenu Jain
- Department of Microbiology, Viral Research and Diagnostic Laboratory, Gajra Raja Medical College, Gwalior 474009, Madhya Pradesh, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Urmila Jarouliya
- SOS in Biochemistry, Jiwaji University, Gwalior 474011 Madhya Pradesh, India;
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto, CA 94305, USA;
| | - Arun Kumar Yadav
- Department of Microbiology, Guru Gobind Singh Medical College and Hospital, Baba Farid University of Health Sciences, Faridkot 151203, Punjab, India;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
24
|
Li X, Wei X, Liu X, Wang N, Xu F, Liu X, Li Y, Zhou Y, Tang H, Bian M, Hou Y, Zhang L, Wang W, Liu Q. The analysis of HPV integration sites based on nanopore sequencing and the profiling changes along the course of photodynamic therapy. BMC Cancer 2023; 23:1052. [PMID: 37914994 PMCID: PMC10621124 DOI: 10.1186/s12885-023-11538-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
OBJECTIVE To detect the HPV genotype and integration sites in patients with high-risk HPV infection at different stages of photodynamic therapy using nanopore technology and to evaluate the treatment effect. METHODS Four patients with HPV infection were selected and subjected to photodynamic therapy, and cervical exfoliated cell was sampled at before treatment, after three courses of treatment and six courses of treatment, their viral abundance and insertion sites were analyzed by nanopore technology, and pathological examinations were performed before and after treatment. In this study, we developed a novel assay that combined viral sequence enrichment and Nanopore sequencing for identification of HPV genotype and integration sites at once. The assay has obvious advantages over qPCR or NGS-based methods, as it has better sensitivity after viral sequences enrichment and can generate long-reads (kb to Mb) for better detection rate of structure variations, moreover, fast turn-around time for real-time viral sequencing and analysis. RESULTS The pathological grade was reduced in all four patients after photodynamic therapy. Virus has been cleared in two cases after treatment, the virus amount reduced after treatment but not completely cleared in one case, and two type viruses were cleared and one type virus persisted after treatment in the last patient with multiple infection. Viral abundance and the number of integration sites were positively correlated. Gene enrichment analysis showed complete viral clearance in 1 patient and 3 patients required follow-up. CONCLUSION Nanopore sequencing can effectively monitor the abundance of HPV viruses and integration sites to show the presence status of viruses, and combined with the results of gene enrichment analysis, the treatment effect can be dynamically assessed.
Collapse
Affiliation(s)
- Xiulan Li
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiaoke Wei
- Geneis, Bldg A, 5 Guangshun North Street, Beijing, 100102, China
| | - Xin Liu
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Nan Wang
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Fuqiang Xu
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xingyu Liu
- Geneis, Bldg A, 5 Guangshun North Street, Beijing, 100102, China
| | - Yanmei Li
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yuxiang Zhou
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Huadong Tang
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Meina Bian
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Ying Hou
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lili Zhang
- Geneis, Bldg A, 5 Guangshun North Street, Beijing, 100102, China.
| | - Weiwei Wang
- Geneis, Bldg A, 5 Guangshun North Street, Beijing, 100102, China.
| | - Qing Liu
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
25
|
Zheng LL, Zheng LY, Chen C, Wang YT, Chen SF, Zhong QQ, Zhang Y, Li X. High-risk human papillomavirus distribution in different cytological classification women. Microbes Infect 2023; 25:105214. [PMID: 37666475 DOI: 10.1016/j.micinf.2023.105214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
High-risk human papillomavirus (HR-HPV) infection is a major cause of infection-related cancer worldwide. 3101 HR-HPV-positive females were retrospectively analyzed and grouped using the cervical cytological screening (ThinPrep cytological test, TCT) evaluations combined with colposcopy. The HPV16 infection rate is the highest in all groups. HPV16 was the most frequent in each group, with significant differences between the four groups (χ2 = 23.41, P = 0.0001). The distribution of HPV16 and HPV33 correlated with the pathologic stage in each group. The mixed infection rate of mRNA testing differs significantly between groups (P < 0.01, χ2 = 17.44, P = 0.002). HR-HPV infection duration of less than six months accounted for 87.65%, 6 and 12 months of persistent infection (28.28%), and more than one year of continuous infection accounted for only 16.48%. The top three HPV types in a group with a duration of more than 12 months were HPV52 (3.03%), HPV16 (2.55%), and HPV39 (1.58%). The least clearance types were HPV39 (63.48%), 56 (69.54%), and 52 (71.44%) more than 12 months. This study revealed the region's primary pathogenic subtypes on different cervical lesions and provided the basis for diagnosing and treating HPV infection.
Collapse
Affiliation(s)
- Li-Li Zheng
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China.
| | - Li-Yuan Zheng
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Chao Chen
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Yi-Ting Wang
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Shuang-Feng Chen
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Qian-Qian Zhong
- Department of Clinical Laboratory, Liaocheng City Dongchangfu District Maternal and Child Health Hospital, Liaocheng, 252000, Shandong, China
| | - Yan Zhang
- Department of Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China.
| | - Xue Li
- Department of Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China.
| |
Collapse
|
26
|
Clarke MA. HPV Testing and its Role in Cervical Cancer Screening. Clin Obstet Gynecol 2023; 66:448-469. [PMID: 37650662 DOI: 10.1097/grf.0000000000000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The recognition that persistent infection with carcinogenic human papillomavirus (HPV) is a necessary cause of cervical precancer and cancer has led to the introduction of HPV testing into cervical cancer screening, either as a primary screening test or in conjunction with cervical cytology (i.e., co-testing). HPV testing has much higher sensitivity for detection of cervical precancer and provides greater long-term reassurance if negative compared to cytology. However, most HPV infections are transient, and do not progress to invasive cancer, thus triage tests are required to identify individuals who should be referred to colposcopy for diagnostic evaluation. This chapter begins with a description of the biology, natural history, and epidemiology of HPV as a foundation for understanding the role of HPV in cervical carcinogenesis. This section is followed by a detailed discussion regarding the introduction of HPV-based testing and triage into cervical cancer screening and management. Summarized triage tests include cervical cytology, HPV genotyping, p16/Ki-67 dual stain, and HPV and cellular methylation markers. The final section of this chapter includes an important discussion on cervical cancer disparities, particularly within the United States, followed by concluding remarks.
Collapse
Affiliation(s)
- Megan A Clarke
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
27
|
Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, Kanoujiya S, Gupta AK, Sinha S, Ruokolainen J, Kesari KK, Gupta PK. Recent Updates on Viral Oncogenesis: Available Preventive and Therapeutic Entities. Mol Pharm 2023; 20:3698-3740. [PMID: 37486263 PMCID: PMC10410670 DOI: 10.1021/acs.molpharmaceut.2c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
Collapse
Affiliation(s)
- Shivam Chowdhary
- Department
of Industrial Microbiology, Sam Higginbottom
University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh India
| | - Rahul Deka
- Department
of Bioengineering and Biotechnology, Birla
Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kingshuk Panda
- Department
of Applied Microbiology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Abhishikt David Solomon
- Department
of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Jimli Das
- Centre
for
Biotechnology and Bioinformatics, Dibrugarh
University, Assam 786004, India
| | - Supriya Kanoujiya
- School
of
Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Kumar Gupta
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi 110029, India
| | - Somya Sinha
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
- Division
of Research and Development, Lovely Professional
University, Phagwara 144411, Punjab, India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
- Faculty
of Health and Life Sciences, INTI International
University, Nilai 71800, Malaysia
| |
Collapse
|
28
|
Zhang Z, Zhu Q. WD Repeat and HMG Box DNA Binding Protein 1: An Oncoprotein at the Hub of Tumorigenesis and a Novel Therapeutic Target. Int J Mol Sci 2023; 24:12494. [PMID: 37569867 PMCID: PMC10420296 DOI: 10.3390/ijms241512494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
WD repeat and HMG-box DNA binding protein 1 (WDHD1) is a highly conserved gene from yeast to humans. It actively participates in DNA replication, playing a crucial role in DNA damage repair and the cell cycle, contributing to centromere formation and sister chromosome segregation. Notably, several studies have implicated WDHD1 in the development and progression of diverse tumor types, including esophageal carcinoma, pulmonary carcinoma, and breast carcinoma. Additionally, the inhibitor of WDHD1 has been found to enhance radiation sensitivity, improve drug resistance, and significantly decrease tumor cell proliferation. This comprehensive review aims to provide an overview of the molecular structure, biological functions, and regulatory mechanisms of WDHD1 in tumors, thereby establishing a foundation for future investigations and potential clinical applications of WDHD1.
Collapse
Affiliation(s)
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China;
| |
Collapse
|
29
|
Zhou K, Yuzhakov O, Behloul N, Wang D, Bhagat L, Chu D, Zhang X, Cheng X, Fan L, Huang X, Mirabella T. HPV16 E6/E7 -based mRNA vaccine is therapeutic in mice bearing aggressive HPV-positive lesions. Front Immunol 2023; 14:1213285. [PMID: 37503351 PMCID: PMC10368880 DOI: 10.3389/fimmu.2023.1213285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
HPV (Human papillomavirus) affects 600,000 people worldwide each year. Almost all cervical cancers are associated with a past HPV infection. In particular, the positivity to the high-risk type HPV16 is detected in most of the invasive cervical cancers. FDA has approved prophylactic vaccines that protect against new HPV16 infections, but do not induce immunity in those patients with established infections or neoplasms. To date, no therapeutic vaccine targeting HPV16-associated lesions has been authorized. We have developed an mRNA-based vaccine against the HPV16 late oncoproteins E6 and E7, which are abundantly and exclusively expressed in high-grade squamous intraepithelial lesions (HSILs), a stage of the cervical disease that precedes the progression to carcinoma. Our in vitro and in vivo studies demonstrated that the translated mRNA is functional and elicits an antigen-specific adaptive immune response. Upon immunization with the vaccine, mice with HPV16+ lesions exhibited tumor growth inhibition, extension of lifespan, and development of a protective immune memory. In light of these results and the remarkable clinical success of mRNA vaccines against SARS-CoV2, we believe that our mRNA-based therapeutic vaccine has the potential to offer a non-invasive treatment alternative to the current standard of care for HPV16+ HSILs.
Collapse
Affiliation(s)
- Kun Zhou
- R&D Department, GeneLeap Biotechnology, Woburn, MA, United States
| | - Olga Yuzhakov
- R&D Department, GeneLeap Biotechnology, Woburn, MA, United States
| | | | - Dehua Wang
- R&D Department, Nanjing GeneLeap Biotechnology, Nanjing, China
| | - Lakshmi Bhagat
- R&D Department, GeneLeap Biotechnology, Woburn, MA, United States
| | - Dafeng Chu
- R&D Department, GeneLeap Biotechnology, Woburn, MA, United States
| | - Xinyue Zhang
- R&D Department, GeneLeap Biotechnology, Woburn, MA, United States
| | - Xinwei Cheng
- R&D Department, Nanjing GeneLeap Biotechnology, Nanjing, China
| | - Lusheng Fan
- R&D Department, GeneLeap Biotechnology, Woburn, MA, United States
| | - Xinyu Huang
- R&D Department, GeneLeap Biotechnology, Woburn, MA, United States
| | | |
Collapse
|
30
|
Kreijne JE, Goetgebuer RL, Erler NS, De Boer NK, Siebers AG, Dijkstra G, van Kemenade FA, Hoentjen F, Oldenburg B, van der Meulen AE, Ponsioen CIJ, Pierik MJ, van der Woude CJ, de Vries AC. Cumulative exposure to immunomodulators increases risk of cervical neoplasia in women with inflammatory bowel disease. Aliment Pharmacol Ther 2023; 58:207-217. [PMID: 37221820 DOI: 10.1111/apt.17555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Women with inflammatory bowel disease (IBD) are at increased risk of high-grade cervical intraepithelial neoplasia and cervical cancer (CIN2+). AIM To assess the association between cumulative exposure to immunomodulators (IM) and biologic agents (BIO) for IBD and CIN2+ METHODS: Adult women diagnosed with IBD before December 31st 2016 in the Dutch IBD biobank with available cervical records in the nationwide cytopathology database were identified. CIN2+ incidence rates in IM- (i.e., thiopurines, methotrexate, tacrolimus and cyclosporine) and BIO- (anti-tumour necrosis factor, vedolizumab and ustekinumab) exposed patients were compared to unexposed patients and risk factors were assessed. Cumulative exposure to immunosuppressive drugs was evaluated in extended time-dependent Cox-regression models. RESULTS The study cohort comprised 1981 women with IBD: 99 (5%) developed CIN2+ during median follow-up of 17.2 years [IQR 14.6]. In total, 1305 (66%) women were exposed to immunosuppressive drugs (IM 58%, BIO 40%, IM and BIO 33%). CIN2+ risk increased per year of exposure to IM (HR 1.16, 95% CI 1.08-1.25). No association was observed between cumulative exposure to BIO or both BIO and IM and CIN2+. In multivariate analysis, smoking (HR 2.73, 95%CI 1.77-4.37) and 5-yearly screening frequency (HR 1.74, 95% CI 1.33-2.27) were also risk factors for CIN2+ detection. CONCLUSION Cumulative exposure to IM is associated with increased risk of CIN2+ in women with IBD. In addition to active counselling of women with IBD to participate in cervical screening programs, further assessment of the benefit of intensified screening of women with IBD on long-term IM exposure is warranted.
Collapse
Affiliation(s)
- J E Kreijne
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - R L Goetgebuer
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - N S Erler
- Department of Biostatistics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - N K De Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - A G Siebers
- PALGA, The nationwide network and registry of histo- and cytopathology in the Netherlands, Houten, the Netherlands
| | - G Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen and University of Groningen, Gastroenterology and Hepatology, Groningen, the Netherlands
| | - F A van Kemenade
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - F Hoentjen
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - B Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A E van der Meulen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - C I J Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - M J Pierik
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - C J van der Woude
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A C de Vries
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
31
|
López-Ansio M, Ramos-García P, González-Moles MÁ. Prognostic and Clinicopathological Significance of the Loss of Expression of Retinoblastoma Protein (pRb) in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3132. [PMID: 37370742 DOI: 10.3390/cancers15123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This systematic review and meta-analysis aims to evaluate the scientific evidence on the implications of retinoblastoma protein (pRb) alterations in oral cancer, in order to determine its prognostic and clinicopathological significance. PubMed, Embase, Web of Science, and Scopus were searched for studies published before February 2022, with no restrictions by publication date or language. The quality of the studies using the Quality in Prognosis Studies tool (QUIPS tool). Meta-analysis was conducted to achieve the proposed objectives, as well as heterogeneity, subgroup, meta-regression, and small study-effects analyses. Twenty studies that met the inclusion criteria (2451 patients) were systematically reviewed and meta-analyzed. Our results were significant for the association between the loss of pRb expression and a better overall survival (HR = 0.79, 95%CI = 0.64-0.98, p = 0.03), whereas no significant results were found for disease-free survival or clinico-pathological parameters (T/N status, clinical stage, histological grade). In conclusion, our evidence-based results demonstrate that loss of pRb function is a factor associated with improved survival in patients with OSCC. Research lines that should be developed in the future are highlighted.
Collapse
Affiliation(s)
- María López-Ansio
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
32
|
Ashique S, Hussain A, Fatima N, Altamimi MA. HPV pathogenesis, various types of vaccines, safety concern, prophylactic and therapeutic applications to control cervical cancer, and future perspective. Virusdisease 2023:1-19. [PMID: 37363362 PMCID: PMC10208188 DOI: 10.1007/s13337-023-00824-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/01/2023] [Indexed: 06/28/2023] Open
Abstract
Over 98% of cervical cancers (CC) are caused by regular infections with "high risk" genotype of the human papilloma virus (HPV). However, this is not always the causative factor. Therefore, production of HPV vaccinations represents a significant chance to minimize the risk of CC. Phase III studies for a number of preventative HPV vaccines based on L1-virus-like particle (VLPs) have just been completed and the preliminary results are very convincing. However, there are a lot of practical concerns that need to be resolved before the use of these vaccinations. These vaccines were challenged with obvious queries such as protection time, subject receiving vaccines, time of vaccination, and how to include them into ongoing screening programs. Although these vaccines were 90% effective at preventing HPV infection as these offered only modest advantages for the removal of pre-existing infections. New advancements in the creation of therapeutic vaccinations have been explored for further improvement and post-vaccination surveillance. Therapeutic vaccines attempted to boost cell-mediated immunities and these are detrimental to the infected cell as opposed to neutralizing antibodies (different from prophylactic vaccines).
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, School of Pharmacy, Bharat Institute of Technology (BIT), Meerut, Uttar Pradesh 250103 India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Neda Fatima
- Department of Pharmacology, Sai College of Pharmacy, Mau, Uttar Pradesh 275102 India
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
33
|
Sarkar MK, Uppala R, Zeng C, Billi AC, Tsoi LC, Kidder A, Xing X, Perez White BE, Shao S, Plazyo O, Sirobhushanam S, Xing E, Jiang Y, Gallagher KA, Voorhees JJ, Kahlenberg JM, Gudjonsson JE. Keratinocytes sense and eliminate CRISPR DNA through STING/IFN-κ activation and APOBEC3G induction. J Clin Invest 2023; 133:e159393. [PMID: 36928117 PMCID: PMC10145927 DOI: 10.1172/jci159393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
CRISPR/Cas9 has been proposed as a treatment for genetically inherited skin disorders. Here we report that CRISPR transfection activates STING-dependent antiviral responses in keratinocytes, resulting in heightened endogenous interferon (IFN) responses through induction of IFN-κ, leading to decreased plasmid stability secondary to induction of the cytidine deaminase gene APOBEC3G. Notably, CRISPR-generated KO keratinocytes had permanent suppression of IFN-κ and IFN-stimulated gene (ISG) expression, secondary to hypermethylation of the IFNK promoter region by the DNA methyltransferase DNMT3B. JAK inhibition via baricitinib prior to CRISPR transfection increased transfection efficiency, prevented IFNK promoter hypermethylation, and restored normal IFN-κ activity and ISG responses. This work shows that CRISPR-mediated gene correction alters antiviral responses in keratinocytes, has implications for future gene therapies for inherited skin diseases using CRISPR technology, and suggests pharmacologic JAK inhibition as a tool for facilitating and attenuating inadvertent selection effects in CRISPR/Cas9 therapeutic approaches.
Collapse
Affiliation(s)
| | - Ranjitha Uppala
- Department of Dermatology, and
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | - Shuai Shao
- Department of Dermatology, and
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, China
| | | | - Sirisha Sirobhushanam
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Yanyun Jiang
- Department of Dermatology, and
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology, and
| | | | - J. Michelle Kahlenberg
- Department of Dermatology, and
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
- Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, and
- Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
34
|
Ramos da Silva J, Bitencourt Rodrigues K, Formoso Pelegrin G, Silva Sales N, Muramatsu H, de Oliveira Silva M, Porchia BFMM, Moreno ACR, Aps LRMM, Venceslau-Carvalho AA, Tombácz I, Fotoran WL, Karikó K, Lin PJC, Tam YK, de Oliveira Diniz M, Pardi N, de Souza Ferreira LC. Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci Transl Med 2023; 15:eabn3464. [PMID: 36867683 DOI: 10.1126/scitranslmed.abn3464] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
As mRNA vaccines have proved to be very successful in battling the coronavirus disease 2019 (COVID-19) pandemic, this new modality has attracted widespread interest for the development of potent vaccines against other infectious diseases and cancer. Cervical cancer caused by persistent human papillomavirus (HPV) infection is a major cause of cancer-related deaths in women, and the development of safe and effective therapeutic strategies is urgently needed. In the present study, we compared the performance of three different mRNA vaccine modalities to target tumors associated with HPV-16 infection in mice. We generated lipid nanoparticle (LNP)-encapsulated self-amplifying mRNA as well as unmodified and nucleoside-modified non-replicating mRNA vaccines encoding a chimeric protein derived from the fusion of the HPV-16 E7 oncoprotein and the herpes simplex virus type 1 glycoprotein D (gDE7). We demonstrated that single low-dose immunizations with any of the three gDE7 mRNA vaccines induced activation of E7-specific CD8+ T cells, generated memory T cell responses capable of preventing tumor relapses, and eradicated subcutaneous tumors at different growth stages. In addition, the gDE7 mRNA-LNP vaccines induced potent tumor protection in two different orthotopic mouse tumor models after administration of a single vaccine dose. Last, comparative studies demonstrated that all three gDE7 mRNA-LNP vaccines proved to be superior to gDE7 DNA and gDE7 recombinant protein vaccines. Collectively, we demonstrated the immunogenicity and therapeutic efficacy of three different mRNA vaccines in extensive comparative experiments. Our data support further evaluation of these mRNA vaccines in clinical trials.
Collapse
Affiliation(s)
- Jamile Ramos da Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karine Bitencourt Rodrigues
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Guilherme Formoso Pelegrin
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Natiely Silva Sales
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Hiromi Muramatsu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariângela de Oliveira Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Bruna F M M Porchia
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Laboratory of Tumor Immunology, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil.,ImunoTera Soluções Terapêuticas Ltda., São Paulo, SP 05508-000, Brazil
| | - Ana Carolina Ramos Moreno
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Luana Raposo M M Aps
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,ImunoTera Soluções Terapêuticas Ltda., São Paulo, SP 05508-000, Brazil
| | - Aléxia Adrianne Venceslau-Carvalho
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - István Tombácz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wesley Luzetti Fotoran
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T1Z3, Canada
| | - Mariana de Oliveira Diniz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Norbert Pardi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Scientific Platform Pasteur USP, University of São Paulo, São Paulo, SP, 05508-020, Brazil
| |
Collapse
|
35
|
McInnis C, Bhatia S, Vijaykumar B, Tian Q, Sun Y, Leistritz-Edwards D, Quinn CT, Uppaluri R, Egloff AM, Srinivasan L, Pregibon DC, Coyle AJ, Hanna GJ. Identification of HPV16 E1 and E2-specific T cells in the oropharyngeal cancer tumor microenvironment. J Immunother Cancer 2023; 11:jitc-2023-006721. [PMID: 36990508 PMCID: PMC10069587 DOI: 10.1136/jitc-2023-006721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND High-risk human papillomavirus (HPV) is a primary cause of an increasing number of oropharyngeal squamous cell carcinomas (OPSCCs). The viral etiology of these cancers provides the opportunity for antigen-directed therapies that are restricted in scope compared with cancers without viral components. However, specific virally-encoded epitopes and their corresponding immune responses are not fully defined. METHODS To understand the OPSCC immune landscape, we conducted a comprehensive single-cell analysis of HPV16+ and HPV33+ primary tumors and metastatic lymph nodes. We used single-cell analysis with encoded peptide-human leukocyte antigen (HLA) tetramers to analyze HPV16+ and HPV33+ OPSCC tumors, characterizing the ex vivo cellular responses to HPV-derived antigens presented in major Class I and Class II HLA alleles. RESULTS We identified robust cytotoxic T-cell responses to HPV16 proteins E1 and E2 that were shared across multiple patients, particularly in HLA-A*01:01 and HLA-B*08:01. Responses to E2 were associated with loss of E2 expression in at least one tumor, indicating the functional capacity of these E2-recognizing T cells and many of these interactions validated in a functional assay. Conversely, cellular responses to E6 and E7 were limited in quantity and cytotoxic capacity, and tumor E6 and E7 expression persisted. CONCLUSIONS These data highlight antigenicity beyond HPV16 E6 and E7 and nominate candidates for antigen-directed therapies.
Collapse
Affiliation(s)
| | - Shilpa Bhatia
- Repertoire Immune Medicines, Cambridge, Massachusetts, USA
| | | | - Qiaomu Tian
- Repertoire Immune Medicines, Cambridge, Massachusetts, USA
| | - Yanbo Sun
- Repertoire Immune Medicines, Cambridge, Massachusetts, USA
| | | | - Charles T Quinn
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ravi Uppaluri
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ann Marie Egloff
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | - Glenn J Hanna
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Himawan A, Vora LK, Permana AD, Sudir S, Nurdin AR, Nislawati R, Hasyim R, Scott CJ, Donnelly RF. Where Microneedle Meets Biomarkers: Futuristic Application for Diagnosing and Monitoring Localized External Organ Diseases. Adv Healthc Mater 2023; 12:e2202066. [PMID: 36414019 PMCID: PMC11468661 DOI: 10.1002/adhm.202202066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Indexed: 11/24/2022]
Abstract
Extracellular tissue fluids are interesting biomatrices that have recently attracted scientists' interest. Many significant biomarkers for localized external organ diseases have been isolated from this biofluid. In the diagnostic and disease monitoring context, measuring biochemical entities from the fluids surrounding the diseased tissues may give more important clinical value than measuring them at a systemic level. Despite all these facts, pushing tissue fluid-based diagnosis and monitoring forward to clinical settings faces one major problem: its accessibility. Most extracellular tissue fluid, such as interstitial fluid (ISF), is abundant but hard to collect, and the currently available technologies are invasive and expensive. This is where novel microneedle technology can help tackle this significant obstacle. The ability of microneedle technology to minimally invasively access tissue fluid-containing biomarkers will enable ISF and other tissue fluid utilization in the clinical diagnosis and monitoring of localized diseases. This review attempts to present the current pursuit of the application of microneedle systems as a diagnostic and monitoring platform, along with the recent progress of biomarker detection in diagnosing and monitoring localized external organ diseases. Then, the potential use of various microneedles in future clinical diagnostics and monitoring of localized diseases is discussed by presenting the currently studied cases.
Collapse
Affiliation(s)
- Achmad Himawan
- School of PharmacyQueen's University BelfastBelfastBT97BLUK
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | | | - Andi Dian Permana
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | - Sumarheni Sudir
- Department of PharmacyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | - Airin R. Nurdin
- Department of Dermatology and VenereologyFaculty of MedicineHasanuddin UniversityMakassar90245Indonesia
- Hasanuddin University HospitalHasanuddin UniversityMakassar90245Indonesia
| | - Ririn Nislawati
- Hasanuddin University HospitalHasanuddin UniversityMakassar90245Indonesia
- Department of OphthalmologyFaculty of MedicineHasanuddin UniversityMakassar90245Indonesia
| | - Rafikah Hasyim
- Department of Oral BiologyFaculty of DentistryHasanuddin UniversityMakassar90245Indonesia
| | - Christopher J. Scott
- Patrick G Johnson Centre for Cancer ResearchQueen's University BelfastBelfastBT97BLUK
| | | |
Collapse
|
37
|
Przybylski M, Pruski D, Millert-Kalińska S, Krzyżaniak M, de Mezer M, Frydrychowicz M, Jach R, Żurawski J. Expression of E4 Protein and HPV Major Capsid Protein (L1) as A Novel Combination in Squamous Intraepithelial Lesions. Biomedicines 2023; 11:biomedicines11010225. [PMID: 36672733 PMCID: PMC9855969 DOI: 10.3390/biomedicines11010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
We aim to describe the relationship between the immunohistochemical expression patterns of HPV E4 markers and the presence of HPV major capsid protein (L1) in cervical tissues obtained by biopsy of patients with abnormal liquid-based cytology (LBC) results, HR HPV infections, or clinically suspicious cervix. A novel HPV-encoded marker, SILgrade-E4 (XR-E4-1), and an HPV (clone K1H8) antibody were used to demonstrate the expression in terminally differentiated epithelial cells with a productive HPV infection in the material. A semiquantitative analysis was performed based on light microscope images. The level of E4 protein decreased with the disease severity. Patients with LSIL-CIN 1 and HSIL-CIN 2 diagnoses had significantly lower levels of HPV major capsid protein (L1) than those without confirmed cervical lesions. Our analysis confirms a higher incidence of L1 in patients with molecularly diagnosed HPV infections and excluded lesions of LSIL-CIN 1 and HSIL-CIN 2. Further studies on the novel biomarkers might help assess the chances of the remission of lesions such as LSIL-CIN 1 and HSIL-CIN 2. Higher levels of E4 protein and L1 may confirm a greater probability of the remission of lesions and incidental infections. In the cytological verification or HPV-dependent screening model, testing for E4 protein and L1 expression may indicate a group with a lower risk of progression of histopathologically diagnosed lesions.
Collapse
Affiliation(s)
- Marcin Przybylski
- Gynecology Specialised Practise, 60-682 Poznań, Poland
- Department of Obstetrics and Gynecology, District Public Hospital in Poznan, 60-479 Poznań, Poland
| | - Dominik Pruski
- Department of Obstetrics and Gynecology, District Public Hospital in Poznan, 60-479 Poznań, Poland
- Gynecology Specialised Practise, 60-408 Poznań, Poland
- Correspondence:
| | - Sonja Millert-Kalińska
- Department of Obstetrics and Gynecology, District Public Hospital in Poznan, 60-479 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Monika Krzyżaniak
- Department of Pathology, Hospital of Lord’s Transfiguration, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | - Mateusz de Mezer
- Department of Immunobiology, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | | | - Robert Jach
- Department of Gynecological Endocrinology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Jakub Żurawski
- Department of Immunobiology, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
38
|
Khadela A, Shah Y, Mistry P, Bodiwala K, CB A. Immunomodulatory Therapy in Head and Neck Squamous Cell Carcinoma: Recent Advances and Clinical Prospects. Technol Cancer Res Treat 2023; 22:15330338221150559. [PMID: 36683526 PMCID: PMC9893386 DOI: 10.1177/15330338221150559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The immune system plays a significant role in the development, invasion, progression, and metastasis of head and neck cancer. Over the last decade, the emergence of immunotherapy has irreversibly altered the paradigm of cancer treatment. The current treatment modalities for head and neck squamous cell carcinoma (HNSCC) include surgery, radiotherapy, and adjuvant or neoadjuvant chemotherapy which has failed to provide satisfactory clinical outcomes. To encounter this, there is a need for a novel or targeted therapy such as immunological targets along with conventional treatment strategy for optimal therapeutic outcomes. The immune system can contribute to promoting metastasis, angiogenesis, and growth by exploiting the tumor's influence on the microenvironment. Immunological targets have been found effective in recent clinical studies and have shown promising results. This review outlines the important immunological targets and the medications acting on them that have already been explored, are currently under clinical trials and are further being targeted.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Priya Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kunjan Bodiwala
- Department of Pharmaceutical chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Avinash CB
- Medical Oncologist, ClearMedi Radiant Hospital, Mysore, India
| |
Collapse
|
39
|
Zhu B, Tao Z, Edupuganti L, Serrano MG, Buck GA. Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health. Microbiol Mol Biol Rev 2022; 86:e0018121. [PMID: 36222685 PMCID: PMC9769908 DOI: 10.1128/mmbr.00181-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microbiome of the female reproductive tract defies the convention that high biodiversity is a hallmark of an optimal ecosystem. Although not universally true, a homogeneous vaginal microbiome composed of species of Lactobacillus is generally associated with health, whereas vaginal microbiomes consisting of other taxa are generally associated with dysbiosis and a higher risk of disease. The past decade has seen a rapid advancement in our understanding of these unique biosystems. Of particular interest, substantial effort has been devoted to deciphering how members of the microbiome of the female reproductive tract impact pregnancy, with a focus on adverse outcomes, including but not limited to preterm birth. Herein, we review recent research efforts that are revealing the mechanisms by which these microorganisms of the female reproductive tract influence gynecologic and reproductive health of the female reproductive tract.
Collapse
Affiliation(s)
- Bin Zhu
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhi Tao
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Laahirie Edupuganti
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Myrna G. Serrano
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gregory A. Buck
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
40
|
High APOBEC3B mRNA Expression Is Associated with Human Papillomavirus Type 18 Infection in Cervical Cancer. Viruses 2022; 14:v14122653. [PMID: 36560657 PMCID: PMC9784603 DOI: 10.3390/v14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The APOBEC3 (A3) proteins are cytidine deaminases that exhibit the ability to insert mutations in DNA and/or RNA sequences. APOBEC3B (A3B) has been evidenced as a DNA mutagen with consistent high expression in several cancer types. Data concerning the A3B influence on HPV infection and cervical cancer are limited and controversial. We investigated the role of A3B expression levels in cervical cancer in affected women positive for infection by different HPV types. Tumor biopsies from cancerous uterine cervix were collected from 216 women registered at Hospital do Câncer II of Instituto Nacional de Câncer, and infecting HPV was typed. A3B expression levels were quantified from RNA samples extracted from cervical biopsies using real-time quantitative PCR. Median A3B expression levels were higher among HPV18+ samples when compared to HPV16+ counterparts and were also increased compared to samples positive for other HPV types. In squamous cell carcinoma, HPV18+ samples also showed increased median A3B expression when compared to HPV Alpha-9 species or only to HPV16+ samples. Our findings suggest that A3B expression is differentially upregulated in cervical cancer samples infected with HPV18. A3B could be potentially used as a biomarker for HPV infection and as a prognostic tool for clinical outcomes in the context of cervical cancer.
Collapse
|
41
|
High-Risk Human Papillomavirus Infection in Lung Cancer: Mechanisms and Perspectives. BIOLOGY 2022; 11:biology11121691. [PMID: 36552201 PMCID: PMC9775033 DOI: 10.3390/biology11121691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Lung cancer is a very prevalent and heterogeneous group of malignancies, and most of them are etiologically associated with tobacco smoking. However, viral infections have been detected in lung carcinomas, with high-risk human papillomaviruses (HR-HPVs) being among them. The role of HR-HPVs in lung cancer has been considered to be controversial. This issue is due to the highly variable presence of this virus in lung carcinomas worldwide, and the low viral load frequently that is detected. In this review, we address the epidemiological and mechanistic findings regarding the role of HR-HPVs in lung cancer. Some mechanisms of HR-HPV-mediated lung carcinogenesis have been proposed, including (i) HPV works as an independent carcinogen in non-smoker subjects; (ii) HPV cooperates with carcinogenic compounds present in tobacco smoke; (iii) HPV promotes initial alterations being after cleared by the immune system through a "hit and run" mechanism. Additional research is warranted to clarify the role of HPV in lung cancer.
Collapse
|
42
|
Kyrgiou M, Moscicki AB. Vaginal microbiome and cervical cancer. Semin Cancer Biol 2022; 86:189-198. [PMID: 35276341 DOI: 10.1016/j.semcancer.2022.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/12/2022] [Accepted: 03/05/2022] [Indexed: 02/08/2023]
Abstract
The female reproductive tract, similar to other mucosal sites, harbors a specific microbiome commonly dominated by Lactobacillus species (spp.), which has an essential role in maintaining health and homeostasis. Increasing evidence shows that genital tract dysbiosis and/or specific bacteria and cytokines might have an active role in the development and/or progression of HPV infection and cervical intra-epithelial neoplasia (CIN) and as a result cervical cancer. Cross-sectional and longitudinal studies reported that Lactobacillus spp. depletion increases with severity of CIN and that this may negatively affect disease regression rates. It is plausible that Lactobacillus deplete microbiome composition may lead to a pro-inflammatory environment that can increase malignant cell proliferation and HPV E6 and E7 oncogene expression. Future longitudinal cohorts and mechanistic experiments on HPV transfected cells models will further permit exploration of the impact of Lactobacillus spp. on HPV infection.
Collapse
Affiliation(s)
- Maria Kyrgiou
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction - Surgery and Cancer, Imperial College London, W12 0NN, UK; West London Gynaecological Cancer Centre, Imperial College Healthcare NHS Trust, London W12 0HS, UK.
| | | |
Collapse
|
43
|
González-Moles MÁ, Keim-del Pino C, Ramos-García P. Hallmarks of Cancer Expression in Oral Lichen Planus: A Scoping Review of Systematic Reviews and Meta-Analyses. Int J Mol Sci 2022; 23:13099. [PMID: 36361889 PMCID: PMC9658487 DOI: 10.3390/ijms232113099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/05/2023] Open
Abstract
Oral lichen planus (OLP) is a common chronic inflammatory disease of unknown etiology and likely autoimmune nature that is currently considered an oral potentially malignant disorder, implying that patients suffering from this process are at risk of developing oral cancer in their lifetime. The molecular alterations that develop in OLP and that make the affected oral epithelium predisposed to malignancy are unknown, although, as in other autoimmune diseases (ulcerative colitis, primary biliary cirrhosis, etc.), they may be linked to oncogenesis-promoting effects mediated by the inflammatory infiltrate. So far there is no in-depth knowledge on how these hallmarks of cancer are established in the cells of the oral epithelium affected by OLP. In this scoping review of systematic reviews and meta-analyses the state of evidence based knowledge in this field is presented, to point out gaps of evidence and to indicate future lines of research. MEDLINE, Embase, Cochrane Library and Dare were searched for secondary-level studies published before October 2022. The results identified 20 systematic reviews and meta-analyses critically appraising the hallmarks tumor-promoting inflammation (n = 17, 85%), sustaining proliferative signaling (n = 2, 10%), and evading growth suppressors (n = 1, 5%). No evidence was found for the other hallmarks of cancer in OLP. In conclusion, OLP malignization hypothetically derives from the aggressions of the inflammatory infiltrate and a particular type of epithelial response based on increased epithelial proliferation, evasion of growth-suppressive signals and lack of apoptosis. Future evidence-based research is required to support this hypothesis.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Carmen Keim-del Pino
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
44
|
High Prevalence of HPV 51 in an Unvaccinated Population and Implications for HPV Vaccines. Vaccines (Basel) 2022; 10:vaccines10101754. [PMID: 36298619 PMCID: PMC9611345 DOI: 10.3390/vaccines10101754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Human papillomavirus (HPV) is detected in 99.7% of cervical cancers. Current vaccines target types 16 and 18. Prior to vaccination implementation, a prospective cohort study was conducted to determine baseline HPV prevalence in unvaccinated women in Wales; after HPV16 and HPV18, HPV 51 was found to be most prevalent. This study aimed to re-assess the unexpected high prevalence of HPV 51 and consider its potential for type-replacement. Two hundred HPV 51 positive samples underwent re-analysis by repeating the original methodology using HPV 51 GP5+/6+ PCR-enzyme immunoassay, and additionally a novel assay of HPV 51 E7 PCR. Data were correlated with age, social deprivation and cytology. Direct repeat of HPV 51 PCR-EIA identified 146/195 (75.0%) samples as HPV 51 positive; E7 PCR identified 166/195 (85.1%) samples as HPV 51 positive. HPV 51 prevalence increased with cytological grade. The prevalence of HPV 51 in the pre-vaccinated population was truly high. E7 DNA assays may offer increased specificity for HPV genotyping. Cross-protection of current vaccines against less-prevalent HPV types warrants further study. This study highlights the need for longitudinal investigation into the prevalence of non-vaccine HPV types, especially those phylogenetically different to vaccine types for potential type-replacement. Ongoing surveillance will inform future vaccines.
Collapse
|
45
|
Vahedian Sadeghi R, Parsania M, Sadeghizadeh M, Haghighat S. Investigation of Curcumin-Loaded OA400 Nanoparticle's Effect on the Expression of E6 and E7 Human Papilloma-Virus Oncogenes and P53 and Rb Factors in HeLa Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e130762. [PMID: 36710992 PMCID: PMC9872547 DOI: 10.5812/ijpr-130762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
Background Curcumin, a compound derived from the root of the Curcuma longa, has been confirmed as an anticancer, chemoprotective, and gene/protein regulatory agent. Nanoformulation of curcumin has been developed to increase its targeting efficiency, solubility, controlled release, and physical and chemical stability. Objectives This study investigated the effect of new nano-type curcumin, oleic acid-derived dendrosome (OA400 nanoparticles), on the expression of E6 and E7 human papillomavirus oncogenes and P53 and Rb factors in the HeLa cell line. After preparing nano-curcumin by mixing OA400 nano-carrier and curcumin, its effect was considered on the human cervical cancer cell line (HeLa cell line RRID: CVCL_003) and normal fibroblast cells. Methods MTT assay and flow cytometry were used to evaluate cell viability and apoptosis. Furthermore, real-time RT-PCR and western blot analyses assessed RNA and protein expression of E6, E7, P53, and Rb. Statistical analyses were performed by GraphPad Prism 7 software. Results The nanoformulation of curcumin could reduce the expression of E6 and E7 oncogenes and increase P53 and Rb tumor suppressors in HeLa cancerous cells at 15 μM concentration; however, it had no significant effect on the viability of normal fibroblast cells. On the other hand, curcumin altered the expression of these genes at a 50-μM concentration. Gene and protein expression analysis indicated the up-regulation of P53 and Rb factors and the down-regulation of E6 and E7 under the influence of nano-curcumin treatment more than curcumin. Conclusions These data indicate the potential of curcumin-loaded OA400 nanoparticles to be considered as a treatment option in cervical cancer investigations.
Collapse
Affiliation(s)
- Rezvaneh Vahedian Sadeghi
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoud Parsania
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Corresponding Author: Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
46
|
Modeling HPV-Associated Disease and Cancer Using the Cottontail Rabbit Papillomavirus. Viruses 2022; 14:v14091964. [PMID: 36146770 PMCID: PMC9503101 DOI: 10.3390/v14091964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023] Open
Abstract
Approximately 5% of all human cancers are attributable to human papillomavirus (HPV) infections. HPV-associated diseases and cancers remain a substantial public health and economic burden worldwide despite the availability of prophylactic HPV vaccines. Current diagnosis and treatments for HPV-associated diseases and cancers are predominantly based on cell/tissue morphological examination and/or testing for the presence of high-risk HPV types. There is a lack of robust targets/markers to improve the accuracy of diagnosis and treatments. Several naturally occurring animal papillomavirus models have been established as surrogates to study HPV pathogenesis. Among them, the Cottontail rabbit papillomavirus (CRPV) model has become known as the gold standard. This model has played a pivotal role in the successful development of vaccines now available to prevent HPV infections. Over the past eighty years, the CRPV model has been widely applied to study HPV carcinogenesis. Taking advantage of a large panel of functional mutant CRPV genomes with distinct, reproducible, and predictable phenotypes, we have gained a deeper understanding of viral–host interaction during tumor progression. In recent years, the application of genome-wide RNA-seq analysis to the CRPV model has allowed us to learn and validate changes that parallel those reported in HPV-associated cancers. In addition, we have established a selection of gene-modified rabbit lines to facilitate mechanistic studies and the development of novel therapeutic strategies. In the current review, we summarize some significant findings that have advanced our understanding of HPV pathogenesis and highlight the implication of the development of novel gene-modified rabbits to future mechanistic studies.
Collapse
|
47
|
Balaji D, Kalarani IB, Mohammed V, Veerabathiran R. Potential role of human papillomavirus proteins associated with the development of cancer. Virusdisease 2022; 33:322-333. [PMID: 36277412 PMCID: PMC9481806 DOI: 10.1007/s13337-022-00786-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
Papillomaviruses are viruses with double-stranded DNA that are epitheliotropic and non-enveloped that infects cutaneous epithelial and mucosal cells in a species-specific way in several higher vertebrate species and cause cellular growth."There are around 100 different human papillomaviruses (HPVs)", as "more than 150 HPV types have been isolated and fully sequenced". We classify the probability of cancer development following viral infection with each HPV genotype into two types: "low-risk" and "high-risk." As a result, HPV diagnosis is a critical component of HPV genotype identification and characterization. Based on its activities, we may classify the HPV genome into three regions: the long control region (LCR) or the non-coding upstream regulatory region (URR), the late (L) region, and the early (E) region. Functional proteins are mostly static things that are not inflexible; they have undergone both local and global movements at various times and time ranges. The structural differences between HPV16 and 18 discovered by molecular modeling of the E6 oncoprotein were associated with their carcinogenic characteristics. Similarly, the E6 protein has two sets of C-X-X-C motifs that play significant roles in transformation, transcriptional activation, interactions, and immortalization with other proteins of cells in the host environment. Here, we review the literature regarding the protein mechanisms associated with HPV and how they cause cancer. Unless otherwise noted, it described all protein activities in terms of HPV proteins. The term "papillomaviruses" refers to groups of papillomavirus proteins that have a characteristic in common. HPV proteins can study the genetic influences on pathogenicity and the therapeutic applications of genomics. The future study provides a potential advancement in HPV infections and malignant illnesses to improve preventive and treatment strategies. Patients have been able to conquer this condition using a range of therapies and vaccines that were projected to be effective and robust enough to put an end to the ailment completely. In cancer prevention strategies, HPV vaccination is one of the most effective. It is safe, efficient, and long-lasting.
Collapse
Affiliation(s)
- Dhanvee Balaji
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| |
Collapse
|
48
|
Condic M, Thiesler T, Staerk C, Klümper N, Ellinger J, Egger EK, Kübler K, Kristiansen G, Mustea A, Ralser DJ. N6-methyladenosine RNA modification (m6A) is of prognostic value in HPV-dependent vulvar squamous cell carcinoma. BMC Cancer 2022; 22:943. [PMID: 36050747 PMCID: PMC9434921 DOI: 10.1186/s12885-022-10010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Vulvar squamous cell carcinoma (VSCC) is an uncommon gynecologic malignancy but with an increasing incidence in recent years. Etiologically, VSCC is classified into two subtypes: HPV-dependent and HPV-independent. Localized VSCC is treated surgically and/or with radiation therapy, but for advanced, metastatic or recurrent disease, therapeutic options are still limited. N6-methyladenosine (m6A) is the most prevalent post-transcriptional messenger RNA (mRNA) modification and involved in many physiological processes. The group of m6A proteins can be further divided into: ‚writers’ (METTL3, METTL4, METTL14, WTAP, KIAA1429), ‚erasers’ (FTO, ALKBH5), and ‚readers’ (HNRNPA2B1, HNRNPC, YTHDC1, YTHDF1-3). Dysregulated m6A modification is implicated in carcinogenesis, progression, metastatic spread, and drug resistance across various cancer entities. Up to date, however, only little is known regarding the role of m6A in VSCC. Methods Here, we comprehensively investigated protein expression levels of a diverse set of m6A writers, readers and erasers by applying immunohistochemical staining in 126 patients with primary VSCC. Results In the entire study cohort, dominated by HPV-independent tumors, m6A protein expression was not associated with clinical outcome. However, we identified enhanced protein expression levels of the ‚writers’ METTL3, METTL14 and the ‚reader’ YTHDC1 as poor prognostic markers in the 23 patients with HPV-dependent VSCC. Conclusion Our study suggests dysregulated m6A modification in HPV-associated VSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10010-x.
Collapse
Affiliation(s)
- Mateja Condic
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany
| | - Thore Thiesler
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Christian Staerk
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
| | - Eva K Egger
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany
| | - Kirsten Kübler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | | | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany
| | - Damian J Ralser
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
49
|
Abstract
High-risk human papillomaviruses (HPVs) are responsible for most human cervical cancers, and uncontrolled expression of the two key viral oncoproteins, E6 and E7, stimulates the induction of carcinogenesis. Previous studies have shown that both E6 and E7 are closely associated with different components of the ubiquitin proteasome pathway, including several ubiquitin ligases. Most often these are utilized to target cellular substrates for proteasome-mediated degradation, but in the case of E6, the E6AP ubiquitin ligase plays a critical role in controlling E6 stability. We now show that knockdown of E6AP in HPV-positive cervical cancer-derived cells causes a marked decrease in E7 protein levels. This is due to a decrease in the E7 half-life and occurs in a proteasome-dependent manner. In an attempt to define the underlying mechanism, we show that E7 can also associate with E6AP, albeit in a manner different from that of E6. In addition, we show that E6AP-dependent stabilization of E7 also leads to an increase in the degradation of E7's cellular target substrates. Interestingly, ectopic overexpression of E6 oncoprotein results in lower levels of E7 protein through sequestration of E6AP. We also show that increased E7 stability in the presence of E6AP increases the proliferation of the cervical cancer-derived cell lines. These results demonstrate a surprising interplay between E6 and E7, in a manner which is mediated by the E6AP ubiquitin ligase. IMPORTANCE This is the first demonstration that E6AP can directly help stabilize the HPV E7 oncoprotein, in a manner similar to that observed with HPV E6. This redefines how E6 and E7 can cooperate and potentially modulate each other's activity and further highlights the essential role played by E6AP in the viral life cycle and malignancy.
Collapse
|
50
|
González-Moles MÁ, Warnakulasuriya S, López-Ansio M, Ramos-García P. Hallmarks of Cancer Applied to Oral and Oropharyngeal Carcinogenesis: A Scoping Review of the Evidence Gaps Found in Published Systematic Reviews. Cancers (Basel) 2022; 14:cancers14153834. [PMID: 35954497 PMCID: PMC9367256 DOI: 10.3390/cancers14153834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This scoping review of systematic reviews aims to accurately assess the degree of existing scientific evidence on the cancer hallmarks proposed in 2011 by Hanahan and Weinberg, in the form of systematic reviews and meta-analyses, applied to oral potentially malignant disorders, oral cavity and oropharyngeal squamous cell carcinomas, in order to point out gaps in evidence and lines of research that should be implemented in the future to improve the malignant transformation prediction, diagnosis and/or prognosis of these diseases. Abstract In 2000 and 2011, Hanahan and Weinberg published two papers in which they defined the characteristics that cells must fulfil in order to be considered neoplastic cells in all types of tumours that affect humans, which the authors called “hallmarks of cancer”. These papers have represented a milestone in our understanding of the biology of many types of cancers and have made it possible to reach high levels of scientific evidence in relation to the prognostic impact that these hallmarks have on different tumour types. However, to date, there is no study that globally analyses evidence-based knowledge on the importance of these hallmarks in oral and oropharyngeal squamous cell carcinomas. For this reason, we set out to conduct this scoping review of systematic reviews with the aim of detecting evidence gaps in relation to the relevance of the cancer hallmarks proposed by Hanahan and Weinberg in oral and oropharyngeal cancer, and oral potentially malignant disorders, and to point out future lines of research in this field.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
- WHO Collaborating for Oral Cancer, King's College London, London SE1 9RT, UK
| | - María López-Ansio
- School of Dentistry, University of Granada, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|