1
|
Fey RM, Billo A, Clister T, Doan KL, Berry EG, Tibbitts DC, Kulkarni RP. Personalization of Cancer Treatment: Exploring the Role of Chronotherapy in Immune Checkpoint Inhibitor Efficacy. Cancers (Basel) 2025; 17:732. [PMID: 40075580 PMCID: PMC11899640 DOI: 10.3390/cancers17050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/01/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
In the era of precision medicine, mounting evidence suggests that the time of therapy administration, or chronotherapy, has a great impact on treatment outcomes. Chronotherapy involves planning treatment timing by considering circadian rhythms, which are 24 h oscillations in behavior and physiology driven by synchronized molecular clocks throughout the body. The value of chronotherapy in cancer treatment is currently under investigation, notably in the effects of treatment timing on efficacy and side effects. Immune checkpoint inhibitor (ICI) therapy is a promising cancer treatment. However, many patients still experience disease progression or need to stop the therapy early due to side effects. There is accumulating evidence that the time of day at which ICI therapy is administered can have a substantial effect on ICI efficacy. Thus, it is important to investigate the intersections of circadian rhythms, chronotherapy, and ICI efficacy. In this review, we provide a brief overview of circadian rhythms in the context of immunity and cancer. Additionally, we outline current applications of chronotherapy for cancer treatment. We synthesize the 29 studies conducted to date that examine the impact of time-of-day administration on the efficacy of ICI therapy, its associated side effects, and sex differences in both efficacy and side effects. We also discuss potential mechanisms underlying these observed results. Finally, we highlight the challenges in this area and future directions for research, including the potential for a chronotherapeutic personalized medicine approach that tailors the time of ICI administration to individual patients' circadian rhythms.
Collapse
Affiliation(s)
- Rosalyn M. Fey
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Avery Billo
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Terri Clister
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Khanh L. Doan
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Elizabeth G. Berry
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Deanne C. Tibbitts
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
2
|
Fey RM, Nichols RA, Tran TT, Vandenbark AA, Kulkarni RP. MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy. Cancers (Basel) 2024; 16:1773. [PMID: 38730725 PMCID: PMC11082995 DOI: 10.3390/cancers16091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapy is used to treat a wide range of cancers; however, some patients are at risk of developing treatment resistance and/or immune-related adverse events (irAEs). Thus, there is a great need for the identification of reliable predictive biomarkers for response and toxicity. The cytokine MIF (macrophage migration inhibitory factor) and its cognate receptor CD74 are intimately connected with cancer progression and have previously been proposed as prognostic biomarkers for patient outcome in various cancers, including solid tumors such as malignant melanoma. Here, we assess their potential as predictive biomarkers for response to ICB therapy and irAE development. We provide a brief overview of their function and roles in the context of cancer and autoimmune disease. We also review the evidence showing that MIF and CD74 may be of use as predictive biomarkers of patient response to ICB therapy and irAE development. We also highlight that careful consideration is required when assessing the potential of serum MIF levels as a biomarker due to its reported circadian expression in human plasma. Finally, we suggest future directions for the establishment of MIF and CD74 as predictive biomarkers for ICB therapy and irAE development to guide further research in this field.
Collapse
Affiliation(s)
- Rosalyn M. Fey
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Rebecca A. Nichols
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Thuy T. Tran
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arthur A. Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
3
|
Zhang H, Zhang X, Li H, Wang B, Chen P, Meng J. The roles of macrophage migration inhibitory factor in retinal diseases. Neural Regen Res 2024; 19:309-315. [PMID: 37488883 PMCID: PMC10503606 DOI: 10.4103/1673-5374.379020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 04/28/2023] [Indexed: 07/26/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF), a multifunctional cytokine, is secreted by various cells and participates in inflammatory reactions, including innate and adaptive immunity. There are some evidences that MIF is involved in many vitreoretinal diseases. For example, MIF can exacerbate many types of uveitis; measurements of MIF levels can be used to monitor the effectiveness of uveitis treatment. MIF also alleviates trauma-induced and glaucoma-induced optic nerve damage. Furthermore, MIF is critical for retinal/choroidal neovascularization, especially complex neovascularization. MIF exacerbates retinal degeneration; thus, anti-MIF therapy may help to mitigate retinal degeneration. MIF protects uveal melanoma from attacks by natural killer cells. The mechanism underlying the effects of MIF in these diseases has been demonstrated: it binds to cluster of differentiation 74, inhibits the c-Jun N-terminal kinase pathway, and triggers mitogen-activated protein kinases, extracellular signal-regulated kinase-1/2, and the phosphoinositide-3-kinase/Akt pathway. MIF also upregulates Toll-like receptor 4 and activates the nuclear factor kappa-B signaling pathway. This review focuses on the structure and function of MIF and its receptors, including the effects of MIF on uveal inflammation, retinal degeneration, optic neuropathy, retinal/choroidal neovascularization, and uveal melanoma.
Collapse
Affiliation(s)
- Hongbing Zhang
- Shaanxi Institute of Ophthalmology, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Xianjiao Zhang
- Department of Pathology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Hongsong Li
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Bing Wang
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Pei Chen
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Jiamin Meng
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| |
Collapse
|
4
|
Wei Y, Zheng X, Huang T, Zhong Y, Sun S, Wei X, Liu Q, Wang T, Zhao Z. Human embryonic stem cells secrete macrophage migration inhibitory factor: A novel finding. PLoS One 2023; 18:e0288281. [PMID: 37616250 PMCID: PMC10449177 DOI: 10.1371/journal.pone.0288281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/23/2023] [Indexed: 08/26/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is expressed in a variety of cells and participates in important biological mechanisms. However, few studies have reported whether MIF is expressed in human Embryonic stem cells (ESCs) and its effect on human ESCs. Two human ESCs cell lines, H1 and H9 were used. The expression of MIF and its receptors CD74, CD44, CXCR2, CXCR4 and CXCR7 were detected by an immunofluorescence assay, RT-qPCR and western blotting, respectively. The autocrine level of MIF was measured via enzyme-linked immunosorbent assay. The interaction between MIF and its main receptor was investigated by co-immunoprecipitation and confocal immunofluorescence microscopy. Finally, the effect of MIF on the proliferation and survival of human ESCs was preliminarily explored by incubating cells with exogenous MIF, MIF competitive ligand CXCL12 and MIF classic inhibitor ISO-1. We reported that MIF was highly expressed in H1 and H9 human ESCs. MIF was positively expressed in the cytoplasm, cell membrane and culture medium. Several surprising results emerge. The autosecreted concentration of MIF was 22 ng/mL, which was significantly higher than 2 ng/mL-6 ng/mL in normal human serum, and this was independent of cell culture time and cell number. Human ESCs mainly expressed the MIF receptors CXCR2 and CXCR7 rather than the classical receptor CD74. The protein receptor that interacts with MIF on human embryonic stem cells is CXCR7, and no evidence of interaction with CXCR2 was found. We found no evidence that MIF supports the proliferation and survival of human embryonic stem cells. In conclusion, we first found that MIF was highly expressed in human ESCs and at the same time highly expressed in associated receptors, suggesting that MIF mainly acts in an autocrine form in human ESCs.
Collapse
Affiliation(s)
- Yanzhao Wei
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Department of Human Functioning, Department of Health Services, Logistics University of Chinese People’s Armed Police Force, Tianjin, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Xiaohan Zheng
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Ting Huang
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Yuanji Zhong
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Shengtong Sun
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Xufang Wei
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Qibing Liu
- Department of Pharmacy, Hainan Medical University, Hainan, China
| | - Tan Wang
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Zhenqiang Zhao
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| |
Collapse
|
5
|
Ghareghani M, Zibara K, Rivest S. Melatonin and vitamin D, two sides of the same coin, better to land on its edge to improve multiple sclerosis. Proc Natl Acad Sci U S A 2023; 120:e2219334120. [PMID: 36972442 PMCID: PMC10083587 DOI: 10.1073/pnas.2219334120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Previous studies revealed a latitudinal gradient of multiple sclerosis (MS) prevalence, increasing by moving from the equator to the poles. The duration and quality of an individual's exposure to sunlight vary with latitude. Skin exposure to sunlight activates vitamin D synthesis, while light absence, as perceived by the eyes, activates melatonin synthesis in the pineal gland. Vitamin D or melatonin deficiency/insufficiency or overdose can occur at any latitude due to specific lifestyles and diets. Moving away from the equator, especially beyond 37°, decreases vitamin D while raising melatonin. Furthermore, melatonin synthesis increases in cold habitats like northern countries. Since melatonin's beneficial role was shown in MS, it is expected that northern countries whose individuals have higher endogenous melatonin should show a lower MS prevalence; however, these are ranked with the highest scores. In addition, countries like the United States and Canada have uncontrolled over-the-counter usage. In high latitudes, vitamin D deficiency and a higher MS prevalence persist even though vitamin D is typically compensated for by supplementation and not sunlight. Recently, we found that prolonged darkness increased MS melatonin levels, mimicking the long-term increase in northern countries. This caused a reduction in cortisol and increased infiltration, inflammation, and demyelination, which were all rescued by constant light therapy. In this review, we explain melatonin and vitamin D's possible roles in MS prevalence. The possible causes in northern countries are then discussed. Finally, we suggest strategies to treat MS by manipulating vitamin D and melatonin, preferably with sunlight or darkness, not supplements.
Collapse
Affiliation(s)
- Majid Ghareghani
- Neuroscience Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QCG1V 4G2, Canada
| | - Kazem Zibara
- Platform for Research and Analysis in Environmental Science (PRASE) and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut1003, Lebanon
| | - Serge Rivest
- Neuroscience Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QCG1V 4G2, Canada
| |
Collapse
|
6
|
Alrabadi LS, Dutton A, Rabiee A, Roberts SJ, Deng Y, Cusack L, Silveira MG, Ciarleglio M, Bucala R, Sinha R, Boyer JL, Assis DN. Mindfulness-Based Stress Reduction May Improve Stress, Disease Activity and Inflammatory Cytokine Levels in Autoimmune Hepatitis Patients. JHEP Rep 2022; 4:100450. [PMID: 35434588 PMCID: PMC9011026 DOI: 10.1016/j.jhepr.2022.100450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background & Aims Psychological and life stressors may impact autoimmune hepatitis (AIH) disease activity and increase relapse risk. Mindfulness-based stress reduction (MBSR) is a validated course that reduces stress reactivity, and improves stress and emotion regulation. This single-arm exploratory pilot study of adult patients with AIH aimed to define the impact of an 8-week MBSR program on quality of life, disease activity, and cytokine mediators. Methods The perceived stress survey-10 (PSS) and the brief self-control scale (BSCS) measured subjective distress and self-control. Serum alanine aminotransferase (ALT) and cytokine levels were measured, and immunosuppressant doses recorded. Results Seventeen patients completed the MBSR program. Post-MBSR, 71% (n = 12) showed PSS score improvement at 8 weeks vs. baseline (median 15 vs. 21, p = 0.02). At 12 months, PSS improvement persisted vs. baseline (median 15 vs. 21, p = 0.02). Post-MBSR, 71% (n = 12) showed BSCS score improvement at 8 weeks vs. baseline (median 4.1 vs. 3.8, p = 0.03). At 12 months, the median BSCS score remained significant (3.9 vs. 3.8, p = 0.03). After the 8-week MBSR, the 35% of patients with ALT >34 U/L had a median ALT reduction (44.5 vs. 71.5 U/L, p = 0.06), whereas the 71% of patients on prednisone had significant dose reductions (5.75 vs. 10 mg, p = 0.02) which persisted at 12 months vs. baseline (3.75 vs. 10 mg, p = 0.02) without a compensatory increase in steroid-sparing dosing. Significant improvement was noted in peripheral blood cytokine levels (IL-6, IL-8, IL-10, IL-17, IL-23, and sCD74/MIF ratio) from baseline to 8 weeks. Conclusions MBSR significantly improved perceived stress and self-control scores while decreasing ALT levels, steroid requirements, and inflammatory cytokine levels in this pilot study in adult AIH. Stress modification may impact quality of life and disease activity, and should be further evaluated as an intervention in AIH. Clinical Trials registration This study is registered at ClinicalTrials.gov (NCT02950077). Lay summary Autoimmune hepatitis can reduce quality of life and mental health, while stress may impact autoimmune hepatitis itself. We piloted mindfulness-based stress reduction as a strategy to reduce stress in adult patients with autoimmune hepatitis and found that the intervention reduced perceived stress and may have also impacted the disease by improving inflammation and medication needs. Stress reduction should be further studied to improve quality of life and possibly to impact disease activity in autoimmune hepatitis. Autoimmune hepatitis (AIH) reduces quality of life and mental health; psychological stress may also impact AIH activity. Mindfulness-based stress reduction (MBSR) is a strategy to reduce stress and improve quality of life. A pilot study of MBSR in adult patients with AIH evaluated its effect on stress, disease activity, and cytokines. MBSR reduced perceived stress, which persisted after the study; ALT, medication doses, and cytokines also improved. Stress reduction should be further studied in AIH to improve quality of life and possibly to impact disease activity.
Collapse
|
7
|
Bloom J, Uzamere T, Hurd Y, Manini AF. Macrophage Migration Inhibitory Factor as a Potential Biomarker in Acetaminophen Overdose: A Pilot Study. TOXICOLOGY COMMUNICATIONS 2022; 6:1-5. [PMID: 35310880 PMCID: PMC8932641 DOI: 10.1080/24734306.2021.2015551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Introduction Acetaminophen overdose is a leading cause of liver failure in the United States. Macrophage migration inhibitory factor (MIF) is a cytokine that is released early and promotes acetaminophen toxicity in preclinical models. This cytokine could prove a useful biomarker in emergency department (ED) patients immediately following an acute acetaminophen overdose. Methods We selected a convenience sample of thirteen patients from a prospective consecutive cohort of ED patients with suspected acute overdose. Research associates collected waste specimens for MIF analysis that remained after use for clinical care. Our team compared patients with confirmed acetaminophen overdose (n=9) to patients without acetaminophen exposure or liver injury (n=3) and a patient with liver injury in the absence of detectable acetaminophen (n=1). Results In our acetaminophen group, all nine patients had measurable acetaminophen concentrations. Median MIF serum concentrations were 16.08 ng/mL (IQR 2.06, 91.40) in the overdose group compared with the control group serum concentrations of 0.19 ng/mL (IQR 0.05, 0.32) (p = 0.0091). Conclusion In this pilot study, MIF was feasible to measure in specimens from an ED drug overdose cohort, and was significantly elevated in the acetaminophen group compared to non-acetaminophen controls without liver injury.
Collapse
Affiliation(s)
- Joshua Bloom
- Department of Emergency Medicine, Mount Sinai West, New York, NY.,Corresponding author:
| | - Teddy Uzamere
- Department of Psychiatry and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yasmin Hurd
- Department of Psychiatry and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alex F. Manini
- Division of Medical Toxicology, Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, NY
| |
Collapse
|
8
|
Expression of macrophage migration inhibitory factor and its receptor CD74 in systemic sclerosis. Cent Eur J Immunol 2021; 46:375-383. [PMID: 34764810 PMCID: PMC8574103 DOI: 10.5114/ceji.2021.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/10/2021] [Indexed: 11/24/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been associated with the
pathogenesis of several rheumatic diseases. In systemic sclerosis (SSc) it has
been shown that MIF expression is dysregulated in serum and skin. However, the
MIF receptor, CD74, has been poorly investigated and its potential role in the
pathogenesis of SSc remains unknown. This study aimed to analyze mRNA, tissue,
and serum expression of MIF and CD74 in patients with limited (lcSSc) and
diffuse (dcSSc) systemic sclerosis. A case-control study in 20 SSc patients and
20 control subjects (CS) from southern México was conducted. MIF and CD74
mRNA expression levels were quantified by real-time PCR, MIF serum levels were
measured by an ELISA kit, and MIF and its receptor CD74 were evaluated by
immunohistochemistry of skin biopsies. MIF mRNA expression was significantly
higher in CS than in SSc patients (p = 0.02), while CD74 showed no differences
between patients and CS. MIF serum levels were similar between SSc patients and
CS: dcSSc = 3.82 ng/ml, lcSSc = 3.57 ng/ml, and CS = 3.28 ng/ml. In skin
biopsies of SSc, MIF and CD74 were enhanced in keratinocytes, while they showed
decreased expression in endothelial cells. On the other hand, the staining of
CD74 was high in fibroblasts of dcSSc patients. Our findings show MIF and CD74
deregulation at the transcriptional and translational levels in SSc, which might
be associated with the proinflammatory process leading to tissue remodeling and
excessive fibrosis in SSc.
Collapse
|
9
|
Harjacek M. Immunopathophysiology of Juvenile Spondyloarthritis (jSpA): The "Out of the Box" View on Epigenetics, Neuroendocrine Pathways and Role of the Macrophage Migration Inhibitory Factor (MIF). Front Med (Lausanne) 2021; 8:700982. [PMID: 34692718 PMCID: PMC8526544 DOI: 10.3389/fmed.2021.700982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Juvenile spondyloarthritis (jSpA) is a an umbrella term for heterogeneous group of related seronegative inflammatory disorders sharing common symptoms. Although it mainly affects children and adolescents, it often remains active during adulthood. Genetic and environmental factors are involved in its occurrence, although the exact underlying immunopathophysiology remains incompletely elucidated. Accumulated evidence suggests that, in affected patients, subclinical gut inflammation caused by intestinal dysbiosis, is pivotal to the future development of synovial-entheseal complex inflammation. While the predominant role of IL17/23 axis, TNF-α, and IL-7 in the pathophysiology of SpA, including jSpA, is firmly established, the role of the cytokine macrophage migration inhibitory factor (MIF) is generally overlooked. The purpose of this review is to discuss and emphasize the role of epigenetics, neuroendocrine pathways and the hypothalamic-pituitary (HPA) axis, and to propose a novel hypothesis of the role of decreased NLRP3 gene expression and possibly MIF in the early phases of jSpA development. The decreased NLRP3 gene expression in the latter, due to hypomethylation of promotor site, is (one of) the cause for inflammasome malfunction leading to gut dysbiosis observed in patients with early jSpA. In addition, we highlight the role of MIF in the complex innate, adaptive cellular and main effector cytokine network, Finally, since treatment of advanced bone pathology in SpA remains an unmet clinical need, I suggest possible new drug targets with the aim to ultimately improve treatment efficacy and long-term outcome of jSpA patients.
Collapse
Affiliation(s)
- Miroslav Harjacek
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Beam CA, Beli E, Wasserfall CH, Woerner SE, Legge MT, Evans-Molina C, McGrail KM, Silk R, Grant MB, Atkinson MA, DiMeglio LA. Peripheral immune circadian variation, synchronisation and possible dysrhythmia in established type 1 diabetes. Diabetologia 2021; 64:1822-1833. [PMID: 34003304 PMCID: PMC8245361 DOI: 10.1007/s00125-021-05468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS The circadian clock influences both diabetes and immunity. Our goal in this study was to characterise more thoroughly the circadian patterns of immune cell populations and cytokines that are particularly relevant to the immune pathology of type 1 diabetes and thus fill in a current gap in our understanding of this disease. METHODS Ten individuals with established type 1 diabetes (mean disease duration 11 years, age 18-40 years, six female) participated in a circadian sampling protocol, each providing six blood samples over a 24 h period. RESULTS Daily ranges of population frequencies were sometimes large and possibly clinically significant. Several immune populations, such as dendritic cells, CD4 and CD8 T cells and their effector memory subpopulations, CD4 regulatory T cells, B cells and cytokine IL-6, exhibited statistically significant circadian rhythmicity. In a comparison with historical healthy control individuals, but using shipped samples, we observed that participants with type 1 diabetes had statistically significant phase shifts occurring in the time of peak occurrence of B cells (+4.8 h), CD4 and CD8 T cells (~ +5 h) and their naive and effector memory subsets (~ +3.3 to +4.5 h), and regulatory T cells (+4.1 h). An independent streptozotocin murine experiment confirmed the phase shifting of CD8 T cells and suggests that circadian dysrhythmia in type 1 diabetes might be an effect and not a cause of the disease. CONCLUSIONS/INTERPRETATION Future efforts investigating this newly described aspect of type 1 diabetes in human participants are warranted. Peripheral immune populations should be measured near the same time of day in order to reduce circadian-related variation.
Collapse
Affiliation(s)
- Craig A Beam
- Department of Biomedical Sciences, Homer Stryker MD School of Medicine, Western Michigan University, Kalamazoo, MI, USA.
| | - Eleni Beli
- Wellcome Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, NI, UK.
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Stephanie E Woerner
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Megan T Legge
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Kieran M McGrail
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Ryan Silk
- Wellcome Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, NI, UK
| | - Maria B Grant
- Department of Ophthalmology, University of Alabama, Birmingham, AL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Linda A DiMeglio
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
11
|
Yao J, Leng L, Fu W, Li J, Bronner C, Bucala R. ICBP90 Regulates MIF Expression, Glucocorticoid Sensitivity, and Apoptosis at the MIF Immune Susceptibility Locus. Arthritis Rheumatol 2021; 73:1931-1942. [PMID: 33844457 DOI: 10.1002/art.41753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) is an inflammatory and neurorendocrine mediator that counterregulates glucocorticoid immunosuppression. MIF polymorphisms, which comprise a variant promoter microsatellite (-794 CATT5-8 ), are linked genetically to autoimmune disease severity and to glucocorticoid resistance. While invasive stimuli increase MIF expression, MIF also is up-regulated by glucocorticoids, which serve as a physiologic regulator of inflammatory responses. This study was undertaken to define interactions between the MIF promoter, the glucocorticoid receptor (GR), and the transcription factor inverted CCAAT box binding protein 90 kd (ICBP90) (also referred to as UHRF1), which binds to the promoter in a -794 CATT5-8 length-dependent manner, to regulate MIF transcription. METHODS Interactions of ICBP90, GR, and activator protein 1 (AP-1) with MIF -794 CATT5-8 promoter constructs were assessed by coimmunoprecipitation, Western blotting, and genetic knockdown. Nuclear colocalization studies were performed using anti-transcription factor antibodies and confocal microscopy of glucocorticoid-treated cells. MIF transcription was studied in CEM-C7 T cells, and the impact of the MIF -794 CATT5-8 microsatellite variation confirmed in peripheral blood T cells and in rheumatoid synovial fibroblasts of defined MIF genotype. Functional interactions were quantified by apoptosis and apoptotic signaling in high- and low-genotypic MIF-expressing human cells. RESULTS We defined functional interactions between the transcription factors ICBP90, the GR, and AP-1 that up-regulated MIF transcription in a -794 CATT5-8 length-dependent manner. Experimental reduction of ICBP90, GR, or AP-1 decreased MIF expression and increased glucocorticoid sensitivity, leading to enhanced apoptosis in T lymphocytes and in rheumatoid synovial fibroblasts. CONCLUSION These findings suggest a mechanism for genetic variation of glucocorticoid-regulated MIF transcription, with implications for autoimmune disease severity and glucocorticoid responsiveness.
Collapse
Affiliation(s)
- Jie Yao
- Shunde Hospital, Southern Medical University, Foshan, China
| | - Lin Leng
- Yale University School of Medicine, New Haven, Connecticut
| | - Weiling Fu
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jia Li
- Yale University School of Medicine, New Haven, Connecticut
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Ligue Nationale Contre le Cancer Equipe Labellisée Illkirch, Alsace, France
| | - Richard Bucala
- Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Wen Y, Cai W, Yang J, Fu X, Putha L, Xia Q, Windsor JA, Phillips AR, Tyndall JDA, Du D, Liu T, Huang W. Targeting Macrophage Migration Inhibitory Factor in Acute Pancreatitis and Pancreatic Cancer. Front Pharmacol 2021; 12:638950. [PMID: 33776775 PMCID: PMC7992011 DOI: 10.3389/fphar.2021.638950] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine implicated in the pathogenesis of inflammation and cancer. It is produced by various cells and circulating MIF has been identified as a biomarker for a range of diseases. Extracellular MIF mainly binds to the cluster of differentiation 74 (CD74)/CD44 to activate downstream signaling pathways. These in turn activate immune responses, enhance inflammation and can promote cancer cell proliferation and invasion. Extracellular MIF also binds to the C-X-C chemokine receptors cooperating with or without CD74 to activate chemokine response. Intracellular MIF is involved in Toll-like receptor and inflammasome-mediated inflammatory response. Pharmacological inhibition of MIF has been shown to hold great promise in treating inflammatory diseases and cancer, including small molecule MIF inhibitors targeting the tautomerase active site of MIF and antibodies that neutralize MIF. In the current review, we discuss the role of MIF signaling pathways in inflammation and cancer and summarize the recent advances of the role of MIF in experimental and clinical exocrine pancreatic diseases. We expect to provide insights into clinical translation of MIF antagonism as a strategy for treating acute pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Yongjian Wen
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Wenhao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jingyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lohitha Putha
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony R Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Dan Du
- West China-Washington Mitochondria and Metabolism Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
13
|
Todros T, Paulesu L, Cardaropoli S, Rolfo A, Masturzo B, Ermini L, Romagnoli R, Ietta F. Role of the Macrophage Migration Inhibitory Factor in the Pathophysiology of Pre-Eclampsia. Int J Mol Sci 2021; 22:1823. [PMID: 33673075 PMCID: PMC7917653 DOI: 10.3390/ijms22041823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Proinflammatory cytokines are produced in pregnancy in response to the invading pathogens and/or nonmicrobial causes such as damage-associated molecules and embryonic semi-allogenic antigens. While inflammation is essential for a successful pregnancy, an excessive inflammatory response is implicated in several pathologies including pre-eclampsia (PE). This review focuses on the proinflammatory cytokine macrophage migration inhibitory factor (MIF), a critical regulator of the innate immune response and a major player of processes allowing normal placental development. PE is a severe pregnancy-related syndrome characterized by exaggerated inflammatory response and generalized endothelial damage. In some cases, usually of early onset, it originates from a maldevelopment of the placenta, and is associated with intrauterine growth restriction (IUGR) (placental PE). In other cases, usually of late onset, pre-pregnancy maternal diseases represent risk factors for the development of the disease (maternal PE). Available data suggest that low MIF production in early pregnancy could contribute to the abnormal placentation. The resulting placental hypoxia in later pregnancy could produce high release of MIF in maternal serum typical of placental PE. More studies are needed to understand the role of MIF, if any, in maternal PE.
Collapse
Affiliation(s)
- Tullia Todros
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (T.T.); (A.R.)
| | - Luana Paulesu
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy;
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (T.T.); (A.R.)
| | | | - Leonardo Ermini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| | - Roberta Romagnoli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| |
Collapse
|
14
|
Lin Y, Tsai M, Hsieh I, Wen M, Wang C. Deficiency of circadian gene cryptochromes in bone marrow‐derived cells protects against atherosclerosis in
LDLR
−/−
mice. FASEB J 2021; 35:e21309. [DOI: 10.1096/fj.202001818rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yu‐Sheng Lin
- Healthcare Center Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Ming‐Lung Tsai
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - I‐Chang Hsieh
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Ming‐Shien Wen
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Chao‐Yung Wang
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
- Institute of Cellular and System Medicine National Health Research Institutes Zhunan Taiwan
- Department of Medical Science National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
15
|
The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc Natl Acad Sci U S A 2020; 117:27578-27586. [PMID: 33067391 DOI: 10.1073/pnas.2016864117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis between Euprymna scolopes and Vibrio fischeri As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population of V. fischeri cells resides. Nocturnal migration of these macrophage-like cells, together with identification of an E. scolopes MIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.
Collapse
|
16
|
Garcia-Orozco A, Martinez-Magaña IA, Riera-Leal A, Muñoz-Valle JF, Martinez-Guzman MA, Quiñones-Venegas R, Sánchez-Zuno GA, Fafutis-Morris M. Macrophage inhibitory factor (MIF) gene polymorphisms are associated with disease susceptibility and with circulating MIF levels in active non-segmental vitiligo in patients from western Mexico. Mol Genet Genomic Med 2020; 8:e1416. [PMID: 32705792 PMCID: PMC7549602 DOI: 10.1002/mgg3.1416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background The macrophage migration inhibiting factor (MIF) is a protein that promotes the activation of immune cells and the production of other proinflammatory cytokines such as TNF‐α, IL‐1β, and IFN‐γ, which have proposed to play an essential role in the pathogenesis of vitiligo. The study aimed to assess the association between MIF polymorphisms (−794 CATT5‐8 and −173 G>C), MIF in situ expression, and MIF serum concentrations with susceptibility and disease activity in patients with non‐segmental vitiligo (NSV) from western Mexico. Methods The study included 111 patients with NSV and 201 control subjects. Genotyping was performed by conventional PCR (−794 CATT5‐8) and PCR‐RFLP (−173 G>C) methods. MIF mRNA expression was quantified by real‐time PCR and MIF serum concentrations were determined by ELISA kit. Histopathological samples were analyzed by automated immunohistochemistry. Results The MIF polymorphisms were associated with NSV susceptibility. Serum concentrations of MIF were higher in patients with active NSV and correlated negatively with the years of evolution. The depigmented skin from patients with active vitiligo showed a high expression of MIF. Conclusion MIF polymorphisms increase the risk of NSV in the western Mexican population. The serum concentrations of MIF and in situ expression are associated with active NSV.
Collapse
Affiliation(s)
- Alejandra Garcia-Orozco
- Centro de Investigación en Inmunología y Dermatología/Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Zapopan, Mexico.,Doctorado en Ciencias Biomédicas con Orientación en Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Annie Riera-Leal
- Doctorado en Ciencias Biomédicas con Orientación en Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Marco Alonso Martinez-Guzman
- Centro de Investigación en Inmunología y Dermatología/Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Zapopan, Mexico
| | - Ricardo Quiñones-Venegas
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Secretaría de Salud Jalisco, Zapopan, Mexico
| | - Gabriela Athziri Sánchez-Zuno
- Doctorado en Ciencias Biomédicas con Orientación en Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico.,Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mary Fafutis-Morris
- Centro de Investigación en Inmunología y Dermatología/Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Zapopan, Mexico
| |
Collapse
|
17
|
Al-Waeli H, Nicolau B, Stone L, Abu Nada L, Gao Q, Abdallah MN, Abdulkader E, Suzuki M, Mansour A, Al Subaie A, Tamimi F. Chronotherapy of Non-Steroidal Anti-Inflammatory Drugs May Enhance Postoperative Recovery. Sci Rep 2020; 10:468. [PMID: 31949183 PMCID: PMC6965200 DOI: 10.1038/s41598-019-57215-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Postoperative pain relief is crucial for full recovery. With the ongoing opioid epidemic and the insufficient effect of acetaminophen on severe pain; non-steroidal anti-inflammatory drugs (NSAIDs) are heavily used to alleviate this pain. However, NSAIDs are known to inhibit postoperative healing of connective tissues by inhibiting prostaglandin signaling. Pain intensity, inflammatory mediators associated with wound healing and the pharmacological action of NSAIDs vary throughout the day due to the circadian rhythm regulated by the clock genes. According to this rhythm, most of wound healing mediators and connective tissue formation occurs during the resting phase, while pain, inflammation and tissue resorption occur during the active period of the day. Here we show, in a murine tibia fracture surgical model, that NSAIDs are most effective in managing postoperative pain, healing and recovery when drug administration is limited to the active phase of the circadian rhythm. Limiting NSAID treatment to the active phase of the circadian rhythm resulted in overexpression of circadian clock genes, such as Period 2 (Per2) at the healing callus, and increased serum levels of anti-inflammatory cytokines interleukin-13 (IL-13), interleukin-4 (IL-4) and vascular endothelial growth factor. By contrast, NSAID administration during the resting phase resulted in severe bone healing impairment.
Collapse
Affiliation(s)
- H Al-Waeli
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - B Nicolau
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - L Stone
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - L Abu Nada
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - Q Gao
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - M N Abdallah
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G, Canada
| | - E Abdulkader
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - M Suzuki
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Mansour
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Al Subaie
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - F Tamimi
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
18
|
Santoscoy-Ascencio G, Baños-Hernández CJ, Navarro-Zarza JE, Hernández-Bello J, Bucala R, López-Quintero A, Valdés-Alvarado E, Parra-Rojas I, Illades-Aguiar B, Muñoz-Valle JF. Macrophage migration inhibitory factor promoter polymorphisms are associated with disease activity in rheumatoid arthritis patients from Southern Mexico. Mol Genet Genomic Med 2019; 8:e1037. [PMID: 31701681 PMCID: PMC6978234 DOI: 10.1002/mgg3.1037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a cytokine capable of stimulating inflammatory cytokine and matrix metalloproteinase production from macrophages and synovial fibroblasts, which leads to persistent inflammation and bone degradation, two of the major pathological processes in rheumatoid arthritis (RA). The aim of this study was to evaluate the association of MIF promoter polymorphisms (−794CATT5‐8rs5844572 and −173G > C, rs755622), circulating MIF levels, and mRNA expression with RA susceptibility and disease activity. Methods A case–control study was conducted in 200 RA patients and 200 control subjects (CS) from Southern Mexico. Genotyping was performed by conventional PCR and PCR‐RFLP methods. MIF mRNA expression was quantified by real‐time PCR and MIF serum levels were determined by an ELISA kit. Results The 7,7 (−794CATT5‐8) and −173CC (−173G > C) genotypes were associated with higher disease activity in RA patients. MIF serum levels were increased, and MIF mRNA expression was reduced in RA patients as compared to CS. In addition, RA patients with moderate disease activity had higher MIF levels than those with low disease activity. The −794CATT5‐8 and −173G > C MIF polymorphisms were not associated with RA susceptibility. Conclusion These results suggest an important role of MIF polymorphisms and MIF serum levels with disease activity in RA.
Collapse
Affiliation(s)
- Guillermo Santoscoy-Ascencio
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Departamento de Biología Molecular, Unidad de Patología Clínica, Guadalajara, Jalisco, Mexico
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - José Eduardo Navarro-Zarza
- Departamento de Medicina Interna-Reumatología, Hospital General de Chilpancingo Dr. Raymundo Abarca Alarcón, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, Universidad de Guadalajara, Zapopan, Mexico
| | - Richard Bucala
- Department of Medicine/Section of Rheumatology, Yale University School of Medicine, New Haven, CT, USA
| | - Andres López-Quintero
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, Universidad de Guadalajara, Zapopan, Mexico
| | - Emmanuel Valdés-Alvarado
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Berenice Illades-Aguiar
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, Universidad de Guadalajara, Zapopan, Mexico
| |
Collapse
|
19
|
Bilsborrow JB, Doherty E, Tilstam PV, Bucala R. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin Ther Targets 2019; 23:733-744. [PMID: 31414920 DOI: 10.1080/14728222.2019.1656718] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction. Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine with upstream regulatory roles in innate and adaptive immunity and is implicated in the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Several classes of MIF inhibitors such as small molecule inhibitors and peptide inhibitors are in clinical development. Areas covered. The role of MIF in the pathogenesis of RA and SLE is examined; the authors review the structure, physiology and signaling characteristics of MIF and the related cytokine D-DT/MIF-2. The preclinical and clinical trial data for MIF inhibitors are also reviewed; information was retrieved from PubMed and ClinicalTrials.gov using the keywords MIF, D-DT/MIF-2, CD74, CD44, CXCR2, CXCR4, Jab-1, rheumatoid arthritis, systemic lupus erythematosus, MIF inhibitor, small molecule, anti-MIF, anti-CD74, and peptide inhibitor. Expert opinion. Studies in mice and in humans demonstrate the therapeutic potential of MIF inhibition for RA and SLE. MIF- directed approaches could be particularly efficacious in patients with high expression MIF genetic polymorphisms. In patients with RA and SLE and high expression MIF alleles, targeted MIF inhibition could be a precision medicine approach to treatment. Anti-MIF pharmacotherapies could also be steroid-sparing in patients with chronic glucocorticoid dependence or refractory autoimmune disease.
Collapse
Affiliation(s)
- Joshua B Bilsborrow
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Edward Doherty
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Pathricia V Tilstam
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
20
|
Stošić-Grujičić S, Saksida T, Miljković Đ, Stojanović I. MIF and insulin: Lifetime companions from common genesis to common pathogenesis. Cytokine 2019; 125:154792. [PMID: 31400637 DOI: 10.1016/j.cyto.2019.154792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/01/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
Pro-inflammatory nature of macrophage migration inhibitory factor (MIF) has been generally related to the propagation of inflammatory and autoimmune diseases. But this molecule possesses many other peculiar functions, unrelated to the immune system, among which is its supportive role in the post-translational modifications of insulin. In this way MIF enables proper insulin conformation within the pancreatic beta cell and its full activity. The inherent or acquired changes in MIF expression might therefore lead to different insulin processing and initiation of autoimmunity. The relation between MIF and insulin does not stop at this point; these two molecules continue to interact during pathological states characterized by inflammation and insulin resistance. In this context, MIF indirectly and negatively influences insulin action by boosting inflammatory environment and disabling target cells to respond to insulin. On the other side, insulin might interfere with MIF action as well, acting as an anti-inflammatory mediator. Therefore, the proper interaction between MIF and insulin is crucial for maintaining homeostasis, while anti-inflammatory therapies based on the systemic MIF blockage may disturb this balance. This review covers MIF-insulin relationship in the physiological and pathological conditions and discusses the approaches for MIF inhibition and their net effect specifically considering possible impact on insulin misfolding and the possible misinterpretation of previous results due to the discovery of MIF functional homolog D-dopachrome tautomerase.
Collapse
Affiliation(s)
- Stanislava Stošić-Grujičić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
21
|
Kang I, Bucala R. The immunobiology of MIF: function, genetics and prospects for precision medicine. Nat Rev Rheumatol 2019; 15:427-437. [DOI: 10.1038/s41584-019-0238-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
|
22
|
Harris J, VanPatten S, Deen NS, Al-Abed Y, Morand EF. Rediscovering MIF: New Tricks for an Old Cytokine. Trends Immunol 2019; 40:447-462. [DOI: 10.1016/j.it.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
|
23
|
Lebedev NV, Klimov AE, Cherepanova ON, Barkhudarov AA. [Inflammatory markers in diagnosis and prognosis of abdominal sepsis]. Khirurgiia (Mosk) 2018:92-98. [PMID: 30531745 DOI: 10.17116/hirurgia201810192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For today, it is necessary to recognize, that treatment of patients with abdominal sepsis remains the basic problem in urgent surgery due to the invariably high mortality. Early diagnostics and targeted therapy are the key points for improving of sepsis outcome. At present, researchers around the world have proposed a large number of biological markers for diagnosing sepsis and predicting mortality. Ideally, doctors can use biomarkers for risk stratification, diagnosing, monitoring of treatment effectiveness and outcome prediction. The biomarker is a laboratory parameter that can be objectively measured and characterized as an indicator of normal and pathological biological processes. The article presents the modern concept of the sepsis pathogenesis for understanding the role of various biomarkers and inflammatory indicators in its development. We have analyzed literature data and summarized information on the possible use of biological markers and their combinations in the early detection of sepsis, for monitoring sepsis and predicting its outcome.
Collapse
Affiliation(s)
- N V Lebedev
- Chair of Faculty-Based Surgery, Peoples' Friendship University of Russia, Moscow, Russia
| | - A E Klimov
- Chair of Faculty-Based Surgery, Peoples' Friendship University of Russia, Moscow, Russia
| | - O N Cherepanova
- Chair of Faculty-Based Surgery, Peoples' Friendship University of Russia, Moscow, Russia
| | - A A Barkhudarov
- Chair of Faculty-Based Surgery, Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
24
|
Ning J, Xu L, Shen CQ, Zhang YY, Zhao Q. Increased serum levels of macrophage migration inhibitory factor in autism spectrum disorders. Neurotoxicology 2018; 71:1-5. [PMID: 30503813 DOI: 10.1016/j.neuro.2018.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) has been suggested as a pivotal regulator of innate immunity and inflammatory. The aim of this study was to measure serum circulating levels of MIF in relation to the degree of the severity of autism spectrum disorders (ASD). METHODS One hundred and two Chinese children with ASD and same their age-sex matched typical development children were included. Concentrations of MIF were tested by Quantikine Human MIF Immunoassay. Serum levels of homocysteine (HCY), C-reactive protein (CRP) and serum Interleukin 6 (IL-6) were also tested. The influence of serum levels of MIF on ASD risk and ASD severity were performed by binary logistic regression analysis. RESULTS The serum levels of MIF in the children with ASD (24.7 ± 08.9 ng/ml) were significantly higher than those of control subjects (18.3 ± 5.5 ng/ml) (t = 6.134, P < 0.001). Levels of MIF increased with increasing severity of ASD as defined by the CARS score (P < 0.001). In multivariate model, MIF was associated with an increased risk of ASD (OR 1.11, 95% CI: 1.05-1.17; P < 0.001). MIF improved the combined model (HCY/CRP/IL-6) to predict ASD (P < 0.001). At admission, 68 children (66.7%) had a severe autism. In these children, the mean serum level of MIF was higher than in those children with mild to moderate autism (28.1 ± 8.5 ng/ml VS. 17.9 ± 4.7 ng/ml; t = 6.482, P < 0.001). In multivariate model, MIF was still associated with an increased risk of severe ASD (OR: 1.15, 95% CI: 1.04-1.19; P < 0.001). MIF improved the combined model (HCY/CRP/IL-6) to predict severe ASD (P < 0.001). CONCLUSIONS These results identify high serum MIF levels are associated with severity of ASD. Further study is warranted on the precise involvement of MIF in ASD, and the mechanism by which MIF contributes to ASD pathogenesis.
Collapse
Affiliation(s)
- Jun Ning
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Li Xu
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chang-Qing Shen
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yu-Yan Zhang
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing Zhao
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
25
|
Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res 2018; 65:e12525. [PMID: 30242884 DOI: 10.1111/jpi.12525] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is an immune modulator that displays both pro- and anti-inflammatory properties. Proinflammatory actions, which are well documented by many studies in isolated cells or leukocyte-derived cell lines, can be assumed to enhance the resistance against pathogens. However, they can be detrimental in autoimmune diseases. Anti-inflammatory actions are of particular medicinal interest, because they are observed in high-grade inflammation such as sepsis, ischemia/reperfusion, and brain injury, and also in low-grade inflammation during aging and in neurodegenerative diseases. The mechanisms contributing to anti-inflammatory effects are manifold and comprise various pathways of secondary signaling. These include numerous antioxidant effects, downregulation of inducible and inhibition of neuronal NO synthases, downregulation of cyclooxygenase-2, inhibition of high-mobility group box-1 signaling and toll-like receptor-4 activation, prevention of inflammasome NLRP3 activation, inhibition of NF-κB activation and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). These effects are also reflected by downregulation of proinflammatory and upregulation of anti-inflammatory cytokines. Proinflammatory actions of amyloid-β peptides are reduced by enhancing α-secretase and inhibition of β- and γ-secretases. A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin-1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin (mTOR) and Notch, and reduces the expression of the proinflammatory lncRNA-CCL2. The conclusion on a partial mediation by SIRT1 is supported by repeatedly observed inhibitions of melatonin effects by sirtuin inhibitors or knockdown.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Lipschutz R, Bick J, Nguyen V, Lee M, Leng L, Grigorenko E, Bucala R, Mayes LC, Crowley MJ. Macrophage migration inhibitory factor (MIF) gene is associated with adolescents' cortisol reactivity and anxiety. Psychoneuroendocrinology 2018; 95:170-178. [PMID: 29870971 DOI: 10.1016/j.psyneuen.2018.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
Emerging evidence points to interactions between inflammatory markers and stress reactivity in predicting mental health risk, but underlying mechanisms are not well understood. Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine involved in inflammatory signaling and Hypothalamus Pituitary Adrenal (HPA) axis stress-response, and has recently been identified as a candidate biomarker for depression and anxiety risk. We examined polymorphic variations of the MIF gene in association with baseline MIF levels, HPA axis reactivity, and self-reported anxiety responses to a social stressor in 74 adolescents, ages 10-14 years. Genotyping was performed for two polymorphisms, the -794 CATT5-8 tetranucleotide repeat and the -173*G/C single nucleotide polymorphism (SNP). Youth carrying the MIF-173*C and CATT7 alleles displayed attenuated cortisol reactivity when compared with non-carriers. Children with the CATT7-173*C haplotype displayed lower cortisol reactivity to the stressor compared to those without this haplotype. Additionally, the CATT5-173*C and CATT6-173*C haplotypes were associated with lower self-reported anxiety ratings across the stressor. Results extend prior work pointing to the influence of MIF signaling on neuroendocrine response to stress and suggest a potential pathophysiological pathway underlying risk for stress-related physical and mental health disorders. To our knowledge, these are the first data showing associations between the MIF gene, HPA axis reactivity, and anxiety symptoms during adolescence.
Collapse
Affiliation(s)
- Rebecca Lipschutz
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Johanna Bick
- Department of Psychology, University of Houston, Houston, TX, United States.
| | - Victoria Nguyen
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Maria Lee
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Lin Leng
- Department of Internal Medicine, Rheumatology, Yale School of Medicine, New Haven, CT, United States
| | - Elena Grigorenko
- Department of Psychology, University of Houston, Houston, TX, United States; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Richard Bucala
- Department of Internal Medicine, Rheumatology, Yale School of Medicine, New Haven, CT, United States
| | - Linda C Mayes
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Michael J Crowley
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
27
|
Shen D, Lang Y, Chu F, Wu X, Wang Y, Zheng X, Zhang HL, Zhu J, Liu K. Roles of macrophage migration inhibitory factor in Guillain-Barré syndrome and experimental autoimmune neuritis: beneficial or harmful? Expert Opin Ther Targets 2018; 22:567-577. [PMID: 29856236 DOI: 10.1080/14728222.2018.1484109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) plays an important role in the pathogenesis of Guillain-Barré syndrome (GBS) and its animal model experimental autoimmune neuritis (EAN), which may offer an opportunity for the development of the novel therapeutic strategies for GBS. Areas covered: 'macrophage migration inhibitory factor' and 'Guillain-Barré syndrome' were used as keywords to search for related publications on Pub-Med, National Center for Biotechnology Information (NCBI), USA. MIF is involved in the etiology of various inflammatory and autoimmune disorders. However, the roles of MIF in GBS and EAN have not been summarized in the publications we identified. Therefore, in this review, we described and analyzed the major roles of MIF in GBS/EAN. Primarily, this molecule aggravates the inflammatory responses in this disorder. However, multiple studies indicated a protective role of MIF in GBS. The potential of MIF as a therapeutic target in GBS has been recently demonstrated in experimental and clinical studies, although clinical trials have been unavailable to date. Expert opinion: MIF plays a critical role in the initiation and progression of GBS and EAN, and it may represent a potential therapeutic target for GBS.
Collapse
Affiliation(s)
- Donghui Shen
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Yue Lang
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Fengna Chu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Xiujuan Wu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Ying Wang
- b Department of Neurobiology, Care Sciences and Society , Division of Neurodegeneration, Karolinska Institute, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Xiangyu Zheng
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Hong-Liang Zhang
- c Department of Life Sciences , the National Natural Science Foundation of China , Beijing , China
| | - Jie Zhu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China.,b Department of Neurobiology, Care Sciences and Society , Division of Neurodegeneration, Karolinska Institute, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Kangding Liu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| |
Collapse
|
28
|
Reece SE, Prior KF, Mideo N. The Life and Times of Parasites: Rhythms in Strategies for Within-host Survival and Between-host Transmission. J Biol Rhythms 2017; 32:516-533. [PMID: 28845736 PMCID: PMC5734377 DOI: 10.1177/0748730417718904] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biological rhythms are thought to have evolved to enable organisms to organize their activities according to the earth's predictable cycles, but quantifying the fitness advantages of rhythms is challenging and data revealing their costs and benefits are scarce. More difficult still is explaining why parasites that live exclusively within the bodies of other organisms have biological rhythms. Rhythms exist in the development and traits of parasites, in host immune responses, and in disease susceptibility. This raises the possibility that timing matters for how hosts and parasites interact and, consequently, for the severity and transmission of diseases. Here, we take an evolutionary ecological perspective to examine why parasites exhibit biological rhythms and how their rhythms are regulated. Specifically, we examine the adaptive significance (evolutionary costs and benefits) of rhythms for parasites and explore to what extent interactions between hosts and parasites can drive rhythms in infections. That parasites with altered rhythms can evade the effects of control interventions underscores the urgent need to understand how and why parasites exhibit biological rhythms. Thus, we contend that examining the roles of biological rhythms in disease offers innovative approaches to improve health and opens up a new arena for studying host-parasite (and host-parasite-vector) coevolution.
Collapse
Affiliation(s)
- Sarah E. Reece
- Institutes of Evolution, Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Kimberley F. Prior
- Institutes of Evolution, Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Hirschfeld J, Howait M, Movila A, Parčina M, Bekeredjian-Ding I, Deschner J, Jepsen S, Kawai T. Assessment of the involvement of the macrophage migration inhibitory factor-glucocorticoid regulatory dyad in the expression of matrix metalloproteinase-2 during periodontitis. Eur J Oral Sci 2017; 125:345-354. [PMID: 28776753 DOI: 10.1111/eos.12363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine and counter-regulator of endogenous glucocorticoids (GCs). It is implicated in acute and chronic inflammatory diseases. This study investigated the role of the MIF-GC regulatory dyad in the expression and release of matrix metalloproteinase-2 (MMP-2) during periodontitis, in vivo and in vitro. In a Mif-knockout (KO) mouse model of ligature-induced periodontitis, gingival tissues and blood were collected and analysed for levels of interleukin-6 (IL-6), MIF, MMP-2, and corticosterone. In addition, human gingival fibroblasts (HGFs) were tested for production of IL-6 and MMP-2 after stimulation with hydrocortisone (HC), MIF, tumour necrosis factor-alpha (TNF-α), or Fusobacterium nucleatum, a pathogen known to elicit immune responses during periodontitis. Wild-type (WT) mice showed a local and systemic increase of MIF levels during inflammation, which was confirmed by increased local IL-6 concentrations. Systemic GC levels were reduced in WT and Mif-KO mice during inflammation, with overall lower concentrations in Mif-KO mice. In vivo and in vitro, MMP-2 production was not dependent on MIF or inflammatory stimuli, but was inhibited by HC. Therefore, MIF does not appear to stimulate expression of MMP-2 in the gingival tissues, whereas GC upregulates MIF and downregulates MMP-2. Our findings further suggest that MIF may regulate systemic GC levels.
Collapse
Affiliation(s)
- Josefine Hirschfeld
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany.,Periodontal Research Group, Birmingham Dental School and Hospital, Birmingham, UK
| | - Mohammed Howait
- Faculty of Dentistry, Department of Endodontics, King AbdulAziz University, Jeddah, Saudi Arabia.,Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Alexandru Movila
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Harvard University School of Dental Medicine, Boston, MA, USA.,Academy of Sciences of Moldova, Institute of Zoology, Chisinau, Moldova
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Isabelle Bekeredjian-Ding
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.,Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - James Deschner
- Section Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
| | - Toshihisa Kawai
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
30
|
Onat A, Ademoğlu E, Can G, Çoban N, Kaya A, Yüksel H. Lower circulating migration inhibitory factor protein is associated with metabolic syndrome and diabetes. Biomark Med 2017; 11:557-568. [DOI: 10.2217/bmm-2016-0359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The controversial relationship between macrophage migration inhibitory factor (MIF) and the likelihood of cardiometabolic diseases was investigated. Results/methodology: Assayed MIF protein from 1225 adults was cross-sectionally analyzed. MIF was independently inversely associated with age, total testosterone and positively with high-density lipoprotein-cholesterol. In men MIF correlation with age, testosterone and waist circumference converted from inverse in the upper to positive in the bottom MIF third. Both metabolic syndrome and diabetes were significantly associated, in combined gender, with the intermediate (vs the highest) MIF tertile at an odds ratio 1.6. Coronary heart disease was not significantly related with MIF in either gender. Discussion/conclusion: Findings are consistent with oxidative damage to MIF protein and its involvement in autoimmune activation, likely more extensive in women.
Collapse
Affiliation(s)
- Altan Onat
- Department of Cardiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Evin Ademoğlu
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Günay Can
- Department of Public Health, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Neslihan Çoban
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ayşem Kaya
- Department of Biochemistry Section, Institute of Cardiology, Istanbul University, Istanbul, Turkey
| | - Hüsniye Yüksel
- Department of Cardiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
31
|
Tilstam PV, Qi D, Leng L, Young L, Bucala R. MIF family cytokines in cardiovascular diseases and prospects for precision-based therapeutics. Expert Opin Ther Targets 2017; 21:671-683. [PMID: 28562118 DOI: 10.1080/14728222.2017.1336227] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with chemokine-like functions that increasingly is being studied in different aspects of cardiovascular disease. MIF was first identified as a proinflammatory and pro-survival mediator within the immune system, and a second structurally related MIF family member, D-dopachrome tautomerase (a.k.a. MIF-2), was reported recently. Both MIF family members are released by myocardium and modulate the manifestations of cardiovascular disease, specifically in myocardial ischemia. Areas covered: A scientific overview is provided for the involvement of MIF family cytokines in the inflammatory pathogenesis of atherosclerosis, myocardial infarction, and ischemia-reperfusion injury. We summarize findings of experimental, human genetic and clinical studies, and suggest therapeutic opportunities for modulating the activity of MIF family proteins that potentially may be applied in a MIF allele specific manner. Expert opinion: Knowledge of MIF, MIF-2 and their receptor pathways are under active investigation in different types of cardiovascular diseases, and novel therapeutic opportunities are being identified. Clinical translation may be accelerated by accruing experience with MIF-directed therapies currently in human testing in cancer and autoimmunity.
Collapse
Affiliation(s)
- Pathricia V Tilstam
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Dake Qi
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA.,b Department of Biomedical Sciences , Memorial University of Newfoundland , St. John's , Canada
| | - Lin Leng
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Lawrence Young
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Richard Bucala
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
32
|
Bloom J, Metz C, Nalawade S, Casabar J, Cheng KF, He M, Sherry B, Coleman T, Forsthuber T, Al-Abed Y. Identification of Iguratimod as an Inhibitor of Macrophage Migration Inhibitory Factor (MIF) with Steroid-sparing Potential. J Biol Chem 2016; 291:26502-26514. [PMID: 27793992 DOI: 10.1074/jbc.m116.743328] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in a broad range of inflammatory and oncologic diseases. MIF is unique among cytokines in terms of its release profile and inflammatory role, notably as an endogenous counter-regulator of the anti-inflammatory effects of glucocorticoids. In addition, it exhibits a catalytic tautomerase activity amenable to the design of high affinity small molecule inhibitors. Although several classes of these compounds have been identified, biologic characterization of these molecules remains a topic of active investigation. In this study, we used in vitro LPS-driven assays to characterize representative molecules from several classes of MIF inhibitors. We determined that MIF inhibitors exhibit distinct profiles of anti-inflammatory activity, especially with regard to TNFα. We further investigated a molecule with relatively low anti-inflammatory activity, compound T-614 (also known as the anti-rheumatic drug iguratimod), and found that, in addition to exhibiting selective MIF inhibition in vitro and in vivo, iguratimod also has additive effects with glucocorticoids. Furthermore, we found that iguratimod synergizes with glucocorticoids in attenuating experimental autoimmune encephalitis, a model of multiple sclerosis. Our work identifies iguratimod as a valuable new candidate for drug repurposing to MIF-relevant diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Joshua Bloom
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549, .,the Centers for Molecular Innovation
| | - Christine Metz
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549.,Biomedical Sciences, and
| | - Saisha Nalawade
- the Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Julian Casabar
- the Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | | | | | - Barbara Sherry
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549.,Immunology and Inflammation, and
| | - Thomas Coleman
- the Office of Technology Transfer, The Feinstein Institute for Medical Research, Manhasset, New York 11030, and
| | - Thomas Forsthuber
- the Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Yousef Al-Abed
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549, .,the Centers for Molecular Innovation
| |
Collapse
|
33
|
High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates. Proc Natl Acad Sci U S A 2016; 113:E997-1005. [PMID: 26858459 DOI: 10.1073/pnas.1514018113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.
Collapse
|
34
|
Koizumi M, Nahar A, Yamabe R, Kadokawa H. Positive correlations of age and parity with plasma concentration of macrophage migration inhibitory factor in Japanese black cows. J Reprod Dev 2016; 62:257-63. [PMID: 26853787 PMCID: PMC4919289 DOI: 10.1262/jrd.2015-144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plasma Macrophage migration inhibitory factor (MIF) concentration correlates positively with age, and
negatively with self-rated health in women, and optimal MIF concentration may promote proper reproductive
function. This study was conducted to evaluate the hypotheses that plasma MIF concentration changes with
parturition or postpartum first ovulation, and that age in months and parity correlate with plasma MIF
concentration in Japanese black cows. Western blotting utilizing an anti-MIF mouse monoclonal antibody of
various tissues and plasma from females indicated that MIF expression was stronger in the anterior pituitary
than in other tissues. We developed a competitive EIA utilizing the same anti-MIF mouse monoclonal antibody
with sufficient sensitivity and reliable performance for measuring bovine plasma samples. We then measured MIF
concentrations in bovine plasma collected from 4 weeks before parturition to 4 weeks after postpartum first
ovulation. There was no significant difference in plasma MIF concentration pre- and post-parturition, or
before and after the postpartum first ovulation. Plasma MIF concentrations were positively correlated (P <
0.01) with parity (r = 0.703), age in months on the day of parturition (r = 0.647), and age in months on the
day of the postpartum first ovulation (r = 0.553) when we used almost all data, except for that from a
third-parity cow with an abnormally high plasma MIF concentration. We therefore concluded that plasma MIF
concentrations may increase with age in months and parity, but do not change either before and after
parturition or before and after postpartum first ovulation in Japanese black cows.
Collapse
Affiliation(s)
- Motoya Koizumi
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | |
Collapse
|
35
|
Yao J, Leng L, Sauler M, Fu W, Zheng J, Zhang Y, Du X, Yu X, Lee P, Bucala R. Transcription factor ICBP90 regulates the MIF promoter and immune susceptibility locus. J Clin Invest 2016; 126:732-44. [PMID: 26752645 DOI: 10.1172/jci81937] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/18/2015] [Indexed: 02/02/2023] Open
Abstract
The immunoregulatory cytokine macrophage migration inhibitory factor (MIF) is encoded in a functionally polymorphic locus that is linked to the susceptibility of autoimmune and infectious diseases. The MIF promoter contains a 4-nucleotide microsatellite polymorphism (-794 CATT) that repeats 5 to 8 times in the locus, with greater numbers of repeats associated with higher mRNA levels. Because there is no information about the transcriptional regulation of these common alleles, we used oligonucleotide affinity chromatography and liquid chromatography-mass spectrometry to identify nuclear proteins that interact with the -794 CATT5-8 site. An analysis of monocyte nuclear lysates revealed that the transcription factor ICBP90 (also known as UHRF1) is the major protein interacting with the MIF microsatellite. We found that ICBP90 is essential for MIF transcription from monocytes/macrophages, B and T lymphocytes, and synovial fibroblasts, and TLR-induced MIF transcription is regulated in an ICBP90- and -794 CATT5-8 length-dependent manner. Whole-genome transcription analysis of ICBP90 shRNA-treated rheumatoid synoviocytes uncovered a subset of proinflammatory and immune response genes that overlapped with those regulated by MIF shRNA. In addition, the expression levels of ICBP90 and MIF were correlated in joint synovia from patients with rheumatoid arthritis. These findings identify ICBP90 as a key regulator of MIF transcription and provide functional insight into the regulation of the polymorphic MIF locus.
Collapse
|
36
|
Deftu AF, Fiorenzani P, Ceccarelli I, Pinassi J, Gambaretto M, Ristoiu V, Paulesu LR, Aloisi AM. Macrophage migration inhibitory factor modulates formalin induced behaviors in rats. ANIM BIOL 2016. [DOI: 10.1163/15707563-00002502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokine proteins are involved in different signaling pathways throughout the central nervous system. To study the efficacy of an inflammatory cytokine, the macrophage migration inhibitory factor (MIF), which acts via several receptor molecules including the receptor CXCR2, male rats’ behaviors were determined after intracerebroventricular (ICV) administration of MIF. There were three treatments: One group received only the cytokine, a second group received MIF and an CXCR2 antagonist (SB265610), and a third, control group received only the carrier medium saline. All rats were subjected to a subcutaneous injection of formalin in the hind paw after the ICV administration. Pain behaviors induced after formalin injection showed increased values in the MIF group of licking in the first phase and increased values of flexing, licking and paw-jerk in the second phase. On the contrary, spontaneous behaviors induced by formalin injection changed alternatively between the two groups compared with saline. These results suggest a possible effect of cytokine MIF on central nervous processes implicated in pain modulation mediated by the receptor CXCR2.
Collapse
Affiliation(s)
- Alexandru F. Deftu
- 1Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 050095, Romania
| | - Paolo Fiorenzani
- 2Department of Medical, Surgical and Neural Science, University of Siena, Italy
| | - Ilaria Ceccarelli
- 2Department of Medical, Surgical and Neural Science, University of Siena, Italy
| | - Jessica Pinassi
- 2Department of Medical, Surgical and Neural Science, University of Siena, Italy
| | - Martina Gambaretto
- 2Department of Medical, Surgical and Neural Science, University of Siena, Italy
| | - Violeta Ristoiu
- 1Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 050095, Romania
| | | | - Anna-Maria Aloisi
- 2Department of Medical, Surgical and Neural Science, University of Siena, Italy
| |
Collapse
|
37
|
A genetic study of steroid-resistant nephrotic syndrome: relationship between polymorphism -173 G to C in the MIF gene and serum level MIF in children. J Dev Orig Health Dis 2015; 7:102-7. [PMID: 26541175 DOI: 10.1017/s2040174415007850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is no satisfactory explanation as to why some nephrotic syndrome (NS) patients respond to glucocorticoids and others do not. The aim of this study was to investigate an association between single nucleotide polymorphism of the MIF gene -rs755622 and serum MIF concentrations in NS patients. During a period between November 2011 and September 2012, 120 consecutive children divided into three groups [healthy children, steroid-resistant nephrotic syndrome (SRNS) and steroid-sensitive nephrotic syndrome (SSNS)] were examined. Children were defined as healthy when they had a normal estimated glomerular filtration rate and spot urinary albumin creatinine ratio <150 μg/mg creatinine. SRNS was diagnosed in children who did not respond to the usual doses of steroids within 4 weeks of initiating treatment. SSNS patients were defined as those who had remission after usual doses of steroids. The genotype of -173 G to C polymorphism of the MIF gene was determined using polymerase chain reaction restriction fragment length polymorphism methods. Serum MIF concentration was measured using sandwich enzyme-linked immunosorbent assay. The allele frequency of the C allele was higher in SRNS compared with that of SSNS patients (P=0.025). There was a trend toward an association between genotypes and serum MIF disturbances. In conclusion, this study noted elevated circulating serum MIF levels and higher frequency of the C allele of the MIF gene in SRNS patients. The presence of the C allele implies an increased risk for steroid resistance.
Collapse
|
38
|
Filtration of Macrophage Migration Inhibitory Factor (MIF) in Patients with End Stage Renal Disease Undergoing Hemodialysis. PLoS One 2015; 10:e0140215. [PMID: 26485680 PMCID: PMC4617461 DOI: 10.1371/journal.pone.0140215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/23/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND End stage renal disease (ESRD) patients are characterized by increased morbidity and mortality due to highest prevalence of cardiovascular disease. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that controls cellular signaling in human physiology, pathophysiology, and diseases. Increased MIF plasma levels promote vascular inflammation and development of atherosclerosis. We have shown that MIF is associated with vascular dysfunction in ESRD patients. Whether hemodialysis (HD) affects circulating MIF plasma levels is unknown. We here aimed to investigate whether HD influences the circulating MIF pool in ESRD patients. METHODS AND RESULTS An observational single-center study was conducted. MIF plasma levels in ESRD patients were assessed before, during, and after a HD session (n = 29). Healthy age-matched volunteers served as controls to compare correlations of MIF plasma levels with inflammatory plasma components (n = 20). MIF removed from the circulating blood pool could be detected in the dialysate and allowed for calculation of totally removed MIF (MIF content in dialysate 219±4 μg/HD-session). MIF plasma levels were markedly decreased 2 hour after initiation of HD (MIF plasma level pre-HD 84.8±6 ng/ml to intra-HD 61.2±5 ng/ml p<0.001) and were replenished already 20 min after termination of HD to basal levels (intra-HD 61.2±5 ng/ml to post-HD 79.8±5 ng/ml, p<0.001). CONCLUSION MIF is a dialyzable plasma component that is effectively filtrated during HD from the patient blood pool in large amounts. After removal of remarkable amounts of MIF during a single HD session, MIF plasma pool is early reconstituted after termination of HD from unknown sources.
Collapse
|
39
|
Sauler M, Bucala R, Lee PJ. Role of macrophage migration inhibitory factor in age-related lung disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1-10. [PMID: 25957294 DOI: 10.1152/ajplung.00339.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/05/2015] [Indexed: 12/25/2022] Open
Abstract
The prevalence of many common respiratory disorders, including pneumonia, chronic obstructive lung disease, pulmonary fibrosis, and lung cancer, increases with age. Little is known of the host factors that may predispose individuals to such diseases. Macrophage migration inhibitory factor (MIF) is a potent upstream regulator of the immune system. MIF is encoded by variant alleles that occur commonly in the population. In addition to its role as a proinflammatory cytokine, a growing body of literature demonstrates that MIF influences diverse molecular processes important for the maintenance of cellular homeostasis and may influence the incidence or clinical manifestations of a variety of chronic lung diseases. This review highlights the biological properties of MIF and its implication in age-related lung disease.
Collapse
Affiliation(s)
- Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Richard Bucala
- Section of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Patty J Lee
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
40
|
Macrophage migration inhibitory factor promoter polymorphisms (-794 CATT 5-8 and -173 G>C): relationship with mRNA expression and soluble MIF levels in young obese subjects. DISEASE MARKERS 2015; 2015:461208. [PMID: 25972622 PMCID: PMC4417998 DOI: 10.1155/2015/461208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 11/18/2022]
Abstract
We analyzed the relationship of −794 CATT5–8 and −173 G>C MIF polymorphisms with mRNA and soluble MIF in young obese subjects. A total of 250 young subjects, 150 normal-weight and 100 obese subjects, were recruited in the study. Genotyping of −794 CATT5–8 and −173 G>C MIF polymorphisms was performed by PCR and PCR-RFLP, respectively. MIF mRNA expression was determined by real-time PCR and serum MIF levels were measured using an ELISA kit. For both MIF promoter polymorphisms, no significant differences in the genotype and allele frequencies between groups were observed. MIF mRNA expression was slightly higher in obese subjects than in normal-weight subjects (1.38-fold), while soluble MIF levels did not show differences between groups. In addition, we found an increase in MIF mRNA expression in carriers of the 6,6 and C/C genotypes and the 6G haplotype of the −794 CATT5–8 and −173 G>C MIF polymorphisms, although it was not significant. In conclusion, this study found no relationship between obesity and MIF gene promoter polymorphisms with MIF mRNA expression in young obese subjects.
Collapse
|
41
|
Elevated Circulating Levels of the Pro-Inflammatory Cytokine Macrophage Migration Inhibitory Factor in Individuals With Acute Spinal Cord Injury. Arch Phys Med Rehabil 2015; 96:633-44. [DOI: 10.1016/j.apmr.2014.10.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/02/2014] [Accepted: 10/30/2014] [Indexed: 01/06/2023]
|
42
|
Bick J, Nguyen V, Leng L, Piecychna M, Crowley MJ, Bucala R, Mayes LC, Grigorenko EL. Preliminary associations between childhood neglect, MIF, and cortisol: potential pathways to long-term disease risk. Dev Psychobiol 2015; 57:131-9. [PMID: 25380347 PMCID: PMC4337818 DOI: 10.1002/dev.21265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 10/04/2014] [Indexed: 11/06/2022]
Abstract
The study examined Hypothalamus-Pituitary-Adrenal (HPA) axis and inflammatory signaling in 206 youth with histories of prenatal drug exposure and self-reported histories of maltreatment. Youth with histories of severe neglect showed elevated levels of cortisol, the end product of the HPA axis, in comparison to youth with lower or minimal levels of neglect. Histories of severe neglect also were associated with increased levels of Macrophage Migration Inhibitory Factor (MIF), a cytokine known to be intricately involved in HPA axis regulation. Salivary MIF levels also were positively associated with youth age and prenatal drug exposure. These MIF and cortisol alterations may signal pathophysiological disruptions in the neuro-endocrine and immune systems, which may lead to trajectories of increased disease risk among vulnerable youth. Our findings also provide preliminary support for the validity and reliability of a noninvasive salivary assessment of MIF.
Collapse
Affiliation(s)
- Johanna Bick
- Child Study Center, Yale School of Medicine, New Haven, CT
| | - Victoria Nguyen
- Child Study Center, Yale School of Medicine, New Haven, CT
- Yale College, New Haven, CT
| | - Lin Leng
- Department of Internal Medicine, Rheumatology, Yale School of Medicine, New Haven, CT
| | - Marta Piecychna
- Department of Internal Medicine, Rheumatology, Yale School of Medicine, New Haven, CT
| | | | - Richard Bucala
- Department of Internal Medicine, Rheumatology, Yale School of Medicine, New Haven, CT
| | - Linda C. Mayes
- Child Study Center, Yale School of Medicine, New Haven, CT
| | - Elena L. Grigorenko
- Child Study Center, Yale School of Medicine, New Haven, CT
- Moscow State University for Psychology, and Education, Moscow, Russia
| |
Collapse
|
43
|
Percy AJ, Simon R, Chambers AG, Borchers CH. Enhanced sensitivity and multiplexing with 2D LC/MRM-MS and labeled standards for deeper and more comprehensive protein quantitation. J Proteomics 2014; 106:113-24. [PMID: 24769237 DOI: 10.1016/j.jprot.2014.04.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Mass spectrometry (MS)-based protein quantitation is increasingly being employed to verify candidate protein biomarkers. Multiple or selected reaction monitoring-mass spectrometry (MRM-MS or SRM-MS) with isotopically labeled internal standards has proven to be a successful approach in that regard, but has yet to reach its full potential in terms of multiplexing and sensitivity. Here, we report the development of a new MRM method for the quantitation of 253 disease-associated proteins (represented by 625 interference-free peptides) in 13 LC fractions. This 2D RPLC/MRM-MS approach extends the depth and breadth of the assay by 2 orders of magnitude over pre-fractionation-free assays, with 31 proteins below 10 ng/mL and 41 proteins above 10 ng/mL now quantifiable. Standard flow rates are used in both chromatographic dimensions, and up-front depletion or antibody-based enrichment is not required. The LC separations utilize high and low pH conditions, with the former employing an ammonium hydroxide-based eluent, instead of the conventional ammonium formate, resulting in improved LC column lifetime and performance. The high sensitivity (determined concentration range: 15 mg/mL to 452 pg/mL) and robustness afforded by this method makes the full MRM panel, or subsets thereof, useful for the verification of disease-associated plasma protein biomarkers in patient samples. BIOLOGICAL SIGNIFICANCE The described research extends the breadth and depth of protein quantitation in undepleted and non-enriched human plasma by employing standard-flow 2D RPLC/MRM-MS in conjunction with a complex mixture of isotopically labeled peptide standards. The proteins quantified are mainly putative biomarkers of non-communicable (i.e., non-infectious) disease (e.g., cardiovascular or cancer), which require pre-clinical verification and validation before clinical implementation. Based on the enhanced sensitivity and multiplexing, this quantitative plasma proteomic method should prove useful in future candidate biomarker verification studies.
Collapse
Affiliation(s)
- Andrew J Percy
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Romain Simon
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Andrew G Chambers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada; Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
44
|
Abstract
Sepsis remains a leading cause of death in critically ill patients, despite efforts to improve patient outcome. Thus far, no magic drugs exist for severe sepsis and septic shock. Instead, early diagnosis and prompt initial management such as early goal-directed therapy are key to improve sepsis outcome. For early detection of sepsis, biological markers (biomarkers) can help clinicians to distinguish infection from host response to inflammation. Ideally, biomarkers can be used for risk stratification, diagnosis, monitoring of treatment responses, and outcome prediction. More than 170 biomarkers have been identified as useful for evaluating sepsis, including C-reactive protein, procalcitonin, various cytokines, and cell surface markers. Recently, studies have reported on the usefulness of biomarker-guided antibiotic stewardships. However, the other side of these numerous biomarkers is that no novel single laboratory marker can diagnose, predict, and track the treatment of sepsis. The purpose of this review is to summarize several key biomarkers from recent sepsis studies.
Collapse
Affiliation(s)
- Sung-Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea. ; Vaccine Bio Research Institute, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jung-Hyun Choi
- Division of Infectious Diseases, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea. ; Vaccine Bio Research Institute, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Rammos C, Hendgen-Cotta UB, Sobierajski J, Adamczyk S, Hetzel GR, Kleophas W, Dellanna F, Kelm M, Rassaf T. Macrophage migration inhibitory factor is associated with vascular dysfunction in patients with end-stage renal disease. Int J Cardiol 2013; 168:5249-56. [PMID: 23978362 DOI: 10.1016/j.ijcard.2013.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/21/2013] [Accepted: 08/03/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND Patients with end-stage renal disease (ESRD) show a high prevalence of cardiovascular disease with arterial stiffness, atherosclerosis and endothelial dysfunction, leading to increased morbidity and mortality. The cytokine macrophage migration inhibitory factor (MIF) exhibits proinflammatory and proatherogenic functions and has recently emerged as a major regulator of atherogenesis. Studies examining the relationship between circulating MIF levels and vascular dysfunction in this high-risk population do not exist. METHODS In patients with ESRD (n = 39) and healthy controls (n = 16) we assessed endothelial function by flow-mediated dilation of the brachial artery and arterial stiffness (augmentation pressure, augmentation index and pulse pressure) using applanation tonometry. High-sensitive Troponin and subendocardial viability ratio were determined to assess myocardial injury. RESULTS Patients with ESRD had impaired endothelial function and higher plasma MIF levels. MIF levels negatively correlated with endothelial function (r = -0.345, P = 0.031) and positively with arterial stiffness indices in patients with ESRD (pulse pressure r = -0.374, P = 0.019 and augmentation pressure r = -0.423, P = 0.025). In multivariate regression models besides age, gender, weight, and heart rate, MIF was an independent predictor for arterial stiffness. Impact on myocardial end-organ damage was reflected by correlation with high-sensitive Troponin I (r = 0.43, P = 0.009). CONCLUSION Our findings show that high MIF plasma levels are associated with diminished endothelial function and arterial stiffness and are correlated with myocardial injury. Further studies are necessary to investigate whether modulation of MIF might have an impact on atherosclerotic disease in this high-risk population.
Collapse
Affiliation(s)
- Christos Rammos
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Al-Sha'er MA, VanPatten S, Al-Abed Y, Taha MO. Elaborate ligand-based modeling reveal new migration inhibitory factor inhibitors. J Mol Graph Model 2013; 42:104-14. [PMID: 23603608 DOI: 10.1016/j.jmgm.2013.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 11/19/2022]
Abstract
Recent research suggested the involvement of migration inhibitor factor (MIF) in cancer and inflammatory diseases, which prompted several attempts to develop new MIF inhibitors. Accordingly, we investigated the pharmacophoric space of 79 MIF inhibitors using seven diverse subsets of inhibitors to identify plausible binding hypotheses (pharmacophores). Subsequently, we implemented genetic algorithm and multiple linear regression analysis to select optimal combination of pharmacophores and physicochemical descriptors capable of explaining bioactivity variation within the training compounds (QSAR model, r63=0.62, F=42.8, rLOO(2)=0.721,rPRESS(2) against 16 external test inhibitors=0.58). Two orthogonal pharmacophores appeared in the optimal QSAR model suggestive of at least two binding modes available to ligands inside MIF binding pocket. Subsequent validation using receiver operating characteristic (ROC) curves analysis established the validity of these two pharmacophores. We employed these pharmacophoric models and associated QSAR equation to screen the National Cancer Institute (NCI) list of compounds. Eight compounds gave >50% inhibition at 100μM. Two molecules illustrated >75% inhibition at 10μM.
Collapse
|
47
|
Abstract
Wang and colleagues have investigated a mechanistic basis for resistance to steroid therapy in systemic lupus erythematosus patients. Their examination reveals significant differences in macrophage migration inhibitory factor (MIF)-dependent expression of IκB, which is a critical cellular regulator of the broadly proinflammatory transcription factor NF-κB. Their studies also suggest that MIF may be a clinically useful biomarker in systemic lupus erythematosus and support the therapeutic targeting of MIF as a means to reduce clinical steroid resistance.
Collapse
|
48
|
Alexander JK, Cox GM, Tian JB, Zha AM, Wei P, Kigerl KA, Reddy MK, Dagia NM, Sielecki T, Zhu MX, Satoskar AR, McTigue DM, Whitacre CC, Popovich PG. Macrophage migration inhibitory factor (MIF) is essential for inflammatory and neuropathic pain and enhances pain in response to stress. Exp Neurol 2012; 236:351-62. [PMID: 22575600 DOI: 10.1016/j.expneurol.2012.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 01/27/2023]
Abstract
Stress and glucocorticoids exacerbate pain via undefined mechanisms. Macrophage migration inhibitory factor (MIF) is a constitutively expressed protein that is secreted to maintain immune function when glucocorticoids are elevated by trauma or stress. Here we show that MIF is essential for the development of neuropathic and inflammatory pain, and for stress-induced enhancement of neuropathic pain. Mif null mutant mice fail to develop pain-like behaviors in response to inflammatory stimuli or nerve injury. Pharmacological inhibition of MIF attenuates pain-like behaviors caused by nerve injury and prevents sensitization of these behaviors by stress. Conversely, injection of recombinant MIF into naïve mice produces dose-dependent mechanical sensitivity that is exacerbated by stress. MIF elicits pro-inflammatory signaling in microglia and activates sensory neurons, mechanisms that underlie pain. These data implicate MIF as a key regulator of pain and provide a mechanism whereby stressors exacerbate pain. MIF inhibitors warrant clinical investigation for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jessica K Alexander
- Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yilmaz Ö, Küçük M, Kebapçilar L, Altindag T, Yüksel A, Yuvanç HO, Dal T, Savran Y. Macrophage migration-inhibitory factor is elevated in pregnant women with gestational diabetes mellitus. Gynecol Endocrinol 2012; 28:76-9. [PMID: 21848392 DOI: 10.3109/09513590.2011.588757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE In reports, abnormal macrophage migration-inhibitory factor (MIF) production has been associated with several diseases. Furthermore, despite scarce data, increasing evidence suggest that MIF plays a central role in glucose homeostasis and in the development of type 1 and type 2 diabetes. However, serum MIF levels in gestational diabetes mellitus (GDM) have not yet been investigated. To address this question, we performed a prospective study between a group of pregnant women with GDM and healthy pregnant controls. MATERIALS AND METHODS GDM group consisted of 43 pregnant women, whereas the control group consisted of 40 healthy pregnant women. In the morning after an overnight fast, venous blood was sampled for the measurement of serum concentrations of insulin and MIF. Serum was separated by centrifugation and immediately stored at -80°C until the assay. RESULTS There was no significant difference between the groups for maternal characteristics. Women with GDM had significantly higher levels of serum insulin (14.37 ± 9.92 µU/ml vs. 8.78 ± 4.35 µU/ml; p = 0.001) and serum MIF concentrations (11.31 ± 4.92 ng/ml vs. 5.31 ± 4.07 ng/ml; p < 0.001) when compared with healthy pregnant control group. CONCLUSION Our data demonstrated that serum levels of MIF are significantly elevated in patients with GDM. Our findings indicate that MIF might have a role in GDM; however, there is a need for further investigation.
Collapse
Affiliation(s)
- Özgür Yilmaz
- Department of Obstetrics and Gynecology, Akhisar State Hospital, Akhisar, Manisa, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
de Dios Rosado J, Rodriguez-Sosa M. Macrophage migration inhibitory factor (MIF): a key player in protozoan infections. Int J Biol Sci 2011; 7:1239-56. [PMID: 22110378 PMCID: PMC3221362 DOI: 10.7150/ijbs.7.1239] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/27/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine produced by the pituitary gland and multiple cell types, including macrophages (Mø), dendritic cells (DC) and T-cells. Upon releases MIF modulates the expression of several inflammatory molecules, such as TNF-α, nitric oxide and cyclooxygenase 2 (COX-2). These important MIF characteristics have prompted investigators to study its role in parasite infections. Several reports have demonstrated that MIF plays either a protective or deleterious role in the immune response to different pathogens. Here, we review the role of MIF in the host defense response to some important protozoan infections.
Collapse
Affiliation(s)
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, Estado de México, México
| |
Collapse
|