1
|
Takahashi K, Mukai K, Takahashi Y, Ebisuda Y, Hatta H, Kitaoka Y. Metabolomic responses to high-intensity interval exercise in equine skeletal muscle: effects of rest interval duration. J Exp Biol 2024; 227:jeb246896. [PMID: 38235553 PMCID: PMC10911116 DOI: 10.1242/jeb.246896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/15/2024] [Indexed: 01/19/2024]
Abstract
High-intensity interval training has attracted considerable attention as a time-efficient strategy for inducing physiological adaptations, but the underlying mechanisms have yet to be elucidated. By using metabolomics techniques, we investigated changes in the metabolic network responses in Thoroughbred horses to high-intensity interval exercise performed with two distinct (15 min or 2 min) rest intervals. The peak plasma lactate level was higher during high-intensity exercise with a 2 min rest duration than that with a 15 min rest duration (24.5±6.8 versus 13.3±2.7 mmol l-1). The arterial oxygen saturation was lower at the end of all exercise sessions with a 2 min rest duration than that with a 15 min rest duration. Metabolomic analysis of skeletal muscle revealed marked changes in metabolite concentrations in the first and third bouts of the 15 min rest interval conditions. In contrast, there were no metabolite concentrations or pathways that significantly changed during the third bout of exercise performed with a 2 min rest interval. Our findings suggest that the activity of each energy production system is not necessarily reflected by apparent changes in metabolite concentrations, potentially due in part to a better match between metabolite flux into and out of the pathway and cycle, as well as between metabolite production and disposal. This study provides evidence that changes in metabolite concentrations vary greatly depending on the number of repetitions and the length of rest periods between exercises, even if the exercises themselves are identical.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Kazutaka Mukai
- Sports Science Division, Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Yuji Takahashi
- Sports Science Division, Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Yusaku Ebisuda
- Sports Science Division, Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, Kanagawa 221-8686, Japan
| |
Collapse
|
2
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Passantino S, Chiellino S, Girolami F, Zampieri M, Calabri GB, Spaziani G, Bennati E, Porcedda G, Procopio E, Olivotto I, Favilli S. Cardiac Involvement in Classical Organic Acidurias: Clinical Profile and Outcome in a Pediatric Cohort. Diagnostics (Basel) 2023; 13:3674. [PMID: 38132258 PMCID: PMC10742676 DOI: 10.3390/diagnostics13243674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiac involvement is reported in a significant proportion of patients with classical organic acidurias (OAs), contributing to disability and premature death. Different cardiac phenotypes have been described, among which dilated cardiomyopathy (DCM) is predominant. Despite recent progress in diagnosis and treatment, the natural history of patients with OAs remains unresolved, specifically with regard to the impact of cardiac complications. We therefore performed a retrospective study to address this issue at our Referral Center for Pediatric Inherited Errors of Metabolism. METHODS Sixty patients with OAs (propionic (PA), methylmalonic (MMA) and isovaleric acidemias and maple syrup urine disease) diagnosed from 2000 to 2022 were systematically assessed at baseline and at follow-up. RESULTS Cardiac anomalies were found in 23/60 OA patients, all with PA or MMA, represented by DCM (17/23 patients) and/or acquired long QT syndrome (3/23 patients). The presence of DCM was associated with the worst prognosis. The rate of occurrence of major adverse cardiac events (MACEs) at 5 years was 55% in PA with cardiomyopathy; 35% in MMA with cardiomyopathy; and 23% in MMA without cardiomyopathy. Liver transplantation was performed in seven patients (12%), all with PA or MMA, due to worsening cardiac impairment, and led to the stabilization of metabolic status and cardiac function. CONCLUSIONS Cardiac involvement was documented in about one third of children diagnosed with classical OAs, confined to PA and MMA, and was often associated with poor outcome in over 50%. Etiological diagnosis of OAs is essential in guiding management and risk stratification.
Collapse
Affiliation(s)
- Silvia Passantino
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Serena Chiellino
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Francesca Girolami
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Mattia Zampieri
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Giovanni Battista Calabri
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Gaia Spaziani
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Elena Bennati
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Giulio Porcedda
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Elena Procopio
- Inborn Metabolic and Muscular Disorders Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Iacopo Olivotto
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Silvia Favilli
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| |
Collapse
|
4
|
Elowe CR, Babbitt C, Gerson AR. White-throated sparrow ( Zonotrichia albicollis) liver and pectoralis flight muscle transcriptomic changes in preparation for migration. Physiol Genomics 2023; 55:544-556. [PMID: 37694280 DOI: 10.1152/physiolgenomics.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
Migratory songbirds undertake challenging journeys to reach their breeding grounds each spring. They accomplish these nonstop flapping feats of endurance through a suite of physiological changes, including the development of substantial fat stores and flight muscle hypertrophy and an increased capacity for fat catabolism. In addition, migratory birds may show large reductions in organ masses during flight, including the flight muscle and liver, which they must rapidly rebuild during their migratory stopover before replenishing their fat stores. However, the molecular basis of this capacity for rapid tissue remodeling and energetic output has not been thoroughly investigated. We performed RNA-sequencing analysis of the liver and pectoralis flight muscle of captive white-throated sparrows in experimentally photostimulated migratory and nonmigratory condition to explore the mechanisms of seasonal change to metabolism and tissue mass regulation that may facilitate these migratory journeys. Based on transcriptional changes, we propose that tissue-specific adjustments in preparation for migration may alleviate the damaging effects of long-duration activity, including a potential increase to the inflammatory response in the muscle. Furthermore, we hypothesize that seasonal hypertrophy balances satellite cell recruitment and apoptosis, while little evidence appeared in the transcriptome to support myostatin-, insulin-like growth factor 1-, and mammalian target of rapamycin-mediated pathways for muscle growth. These findings can encourage more targeted molecular studies on the unique integration of pathways that we find in the development of the migratory endurance phenotype in songbirds.NEW & NOTEWORTHY Migratory songbirds undergo significant physiological changes to accomplish their impressive migratory journeys. However, we have a limited understanding of the regulatory mechanisms underlying these changes. Here, we explore the transcriptomic changes to the flight muscle and liver of white-throated sparrows as they develop the migratory condition. We use these patterns to develop hypotheses about metabolic flexibility and tissue restructuring in preparation for migration.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| | - Courtney Babbitt
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
5
|
Fathy WA, AbdElgawad H, Hashem AH, Essawy E, Tawfik E, Al-Askar AA, Abdelhameed MS, Hammouda O, Elsayed KNM. Exploring Exogenous Indole-3-acetic Acid's Effect on the Growth and Biochemical Profiles of Synechocystis sp. PAK13 and Chlorella variabilis. Molecules 2023; 28:5501. [PMID: 37513371 PMCID: PMC10385099 DOI: 10.3390/molecules28145501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Microalgae have garnered scientific interest for their potential to produce bioactive compounds. However, the large-scale industrial utilization of microalgae faces challenges related to production costs and achieving optimal growth conditions. Thus, this study aimed to investigate the potential role of exogenous indole-3-acetic acid (IAA) application in improving the growth and production of bioactive metabolites in microalgae. To this end, the study employed different concentrations of exogenously administered IAA ranging from 0.36 µM to 5.69 µM to assess its influence on the growth and biochemical composition of Synechocystis and Chlorella. IAA exposure significantly increased IAA levels in both strains. Consequentially, improved biomass accumulation in parallel with increased total pigment content by approximately eleven-fold in both strains was observed. Furthermore, the application of IAA stimulated the accumulation of primary metabolites. Sugar levels were augmented, providing a carbon source that facilitated amino acid and fatty acid biosynthesis. As a result, amino acid levels were enhanced as well, leading to a 1.55-fold increase in total amino acid content in Synechocystis and a 1.42-fold increase in Chlorella. Total fatty acids content increased by 1.92-fold in Synechocystis and by 2.16-fold in Chlorella. Overall, the study demonstrated the effectiveness of exogenously adding IAA as a strategy for enhancing the accumulation of microalgae biomass and biomolecules. These findings contribute to the advancement of microalgae-based technologies, opening new avenues to produce economically important compounds derived from microalgae.
Collapse
Affiliation(s)
- Wael A Fathy
- Botany and Microbiology Department, Faculty of Science, Beni Suef University, Beni Suef 62511, Egypt
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni Suef University, Beni Suef 62511, Egypt
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, BE-2020 Antwerp, Belgium
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Ehab Essawy
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Eman Tawfik
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Beni Suef University, Beni Suef 62511, Egypt
| | - Ola Hammouda
- Botany and Microbiology Department, Faculty of Science, Beni Suef University, Beni Suef 62511, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni Suef University, Beni Suef 62511, Egypt
| |
Collapse
|
6
|
Sanchez-Gimenez R, Peiró ÓM, Bonet G, Carrasquer A, Fragkiadakis GA, Bulló M, Papandreou C, Bardaji A. TCA cycle metabolites associated with adverse outcomes after acute coronary syndrome: mediating effect of renal function. Front Cardiovasc Med 2023; 10:1157325. [PMID: 37441709 PMCID: PMC10333508 DOI: 10.3389/fcvm.2023.1157325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Aims To examine relationships of tricarboxylic acid (TCA) cycle metabolites with risk of cardiovascular events and mortality after acute coronary syndrome (ACS), and evaluate the mediating role of renal function in these associations. Methods This is a prospective study performed among 309 ACS patients who were followed for a mean of 6.7 years. During this period 131 patients developed major adverse cardiovascular events (MACE), defined as the composite of myocardial infarction, hospitalization for heart failure, and all-cause mortality, and 90 deaths were recorded. Plasma concentrations of citrate, aconitate, isocitrate, succinate, malate, fumarate, α-ketoglutarate and d/l-2-hydroxyglutarate were quantified using LC-tandem MS. Multivariable Cox regression models were used to estimate hazard ratios, and a counterfactual-based mediation analysis was performed to test the mediating role of estimated glomerular filtration rate (eGFR). Results After adjustment for traditional cardiovascular risk factors and medications, positive associations were found between isocitrate and MACE (HR per 1 SD, 1.25; 95% CI: 1.03, 1.50), and between aconitate, isocitrate, d/l-2-hydroxyglutarate and all-cause mortality (HR per 1 SD, 1.41; 95% CI: 1.07, 1.84; 1.58; 95% CI: 1.23, 2.02; 1.38; 95% CI: 1.14, 1.68). However, these associations were no longer significant after additional adjustment for eGFR. Mediation analyses demonstrated that eGFR is a strong mediator of these associations. Conclusion These findings underscore the importance of TCA metabolites and renal function as conjunctive targets in the prevention of ACS complications.
Collapse
Affiliation(s)
- Raul Sanchez-Gimenez
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - Óscar M. Peiró
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - Gil Bonet
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - Anna Carrasquer
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - George A. Fragkiadakis
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University, Siteia, Greece
| | - Mònica Bulló
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira I Virgili University, Reus, Spain
- Center of Environmental, Food and Toxicological Technology – TecnATox, Rovira i Virgili University, Reus, Spain
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Christopher Papandreou
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University, Siteia, Greece
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira I Virgili University, Reus, Spain
- Center of Environmental, Food and Toxicological Technology – TecnATox, Rovira i Virgili University, Reus, Spain
| | - Alfredo Bardaji
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| |
Collapse
|
7
|
Missawi O, Venditti M, Cappello T, Zitouni N, Marco GDE, Boughattas I, Bousserrhine N, Belbekhouche S, Minucci S, Maisano M, Banni M. Autophagic event and metabolomic disorders unveil cellular toxicity of environmental microplastics on marine polychaete Hediste diversicolor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119106. [PMID: 35248622 DOI: 10.1016/j.envpol.2022.119106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Although the hazards of microplastics (MPs) have been quite well explored, the aberrant metabolism and the involvement of the autophagy pathway as an adverse response to environmental MPs in benthic organisms are still unclear. The present work aims to assess the impact of different environmental MPs collected from the south coast of the Mediterranean Sea, composed by polyethylene (PE), polyethylene vinyl acetate (PEVA), low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and polyamide (PA) on the metabolome and proteome of the marine polychaete Hediste diversicolor. As a result, all the microplastic types were detected with Raman microspectroscopy in polychaetes tissues, causing cytoskeleton damage and induced autophagy pathway manifested by immunohistochemical labeling of specific targeted proteins, through Tubulin (Tub), Microtubule-associated protein light chain 3 (LC3), and p62 (also named Sequestosome 1). Metabolomics was conducted to further investigate the metabolic alterations induced by the environmental MPs-mixture in polychaetes. A total of 28 metabolites were differentially expressed between control and MPs-treated polychaetes, which showed elevated levels of amino acids, glucose, ATP/ADP, osmolytes, glutathione, choline and phosphocholine, and reduced concentration of aspartate. These novel findings extend our understanding given the toxicity of environmental microplastics and unravel their underlying mechanisms.
Collapse
Affiliation(s)
- Omayma Missawi
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia.
| | - Massimo Venditti
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Tiziana Cappello
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Nesrine Zitouni
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia
| | - Giuseppe DE Marco
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Iteb Boughattas
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia; Regional Field Crops Research Center of Beja, Tunisia
| | - Noureddine Bousserrhine
- University Paris-Est Creteil, Laboratory of Water, Environment and Urban Systems, Faculty of Science and Technology, Creteil Cedex, France
| | - Sabrina Belbekhouche
- CNRS, University of Paris-Est Creteil, Institute of Chemistry and Materials Paris-Est ICMPE, UMR7182, 94320 Thiais, France
| | - Sergio Minucci
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maisano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Mohamed Banni
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia; Higher Institute of Biotechnology Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
8
|
Kashihara T, Mukai R, Oka SI, Zhai P, Nakada Y, Yang Z, Mizushima W, Nakahara T, Warren JS, Abdellatif M, Sadoshima J. YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload. J Clin Invest 2022; 132:150595. [PMID: 35133975 PMCID: PMC8920343 DOI: 10.1172/jci150595] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
The heart utilizes multiple adaptive mechanisms to maintain pump function. Compensatory cardiac hypertrophy reduces wall stress and oxygen consumption, thereby protecting the heart against acute blood pressure elevation. The nuclear effector of the Hippo pathway, Yes-associated protein 1 (YAP), is activated and mediates compensatory cardiac hypertrophy in response to acute pressure overload (PO). In this study, YAP promoted glycolysis by upregulating glucose transporter 1 (GLUT1), which in turn caused accumulation of intermediates and metabolites of the glycolytic, auxiliary, and anaplerotic pathways during acute PO. Cardiac hypertrophy was inhibited and heart failure was exacerbated in mice with YAP haploinsufficiency in the presence of acute PO. However, normalization of GLUT1 rescued the detrimental phenotype. PO induced the accumulation of glycolytic metabolites, including l-serine, l-aspartate, and malate, in a YAP-dependent manner, thereby promoting cardiac hypertrophy. YAP upregulated the GLUT1 gene through interaction with TEA domain family member 1 (TEAD1) and HIF-1α in cardiomyocytes. Thus, YAP induces compensatory cardiac hypertrophy through activation of the Warburg effect.
Collapse
Affiliation(s)
- Toshihide Kashihara
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Shin-Ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Yasuki Nakada
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Zhi Yang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wataru Mizushima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Junco S Warren
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Maha Abdellatif
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
9
|
Iso T, Kurabayashi M. Cardiac Metabolism and Contractile Function in Mice with Reduced Trans-Endothelial Fatty Acid Transport. Metabolites 2021; 11:metabo11120889. [PMID: 34940647 PMCID: PMC8706312 DOI: 10.3390/metabo11120889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023] Open
Abstract
The heart is a metabolic omnivore that combusts a considerable amount of energy substrates, mainly long-chain fatty acids (FAs) and others such as glucose, lactate, ketone bodies, and amino acids. There is emerging evidence that muscle-type continuous capillaries comprise the rate-limiting barrier that regulates FA uptake into cardiomyocytes. The transport of FAs across the capillary endothelium is composed of three major steps-the lipolysis of triglyceride on the luminal side of the endothelium, FA uptake by the plasma membrane, and intracellular FA transport by cytosolic proteins. In the heart, impaired trans-endothelial FA (TEFA) transport causes reduced FA uptake, with a compensatory increase in glucose use. In most cases, mice with reduced FA uptake exhibit preserved cardiac function under unstressed conditions. When the workload is increased, however, the total energy supply relative to its demand (estimated with pool size in the tricarboxylic acid (TCA) cycle) is significantly diminished, resulting in contractile dysfunction. The supplementation of alternative fuels, such as medium-chain FAs and ketone bodies, at least partially restores contractile dysfunction, indicating that energy insufficiency due to reduced FA supply is the predominant cause of cardiac dysfunction. Based on recent in vivo findings, this review provides the following information related to TEFA transport: (1) the mechanisms of FA uptake by the heart, including TEFA transport; (2) the molecular mechanisms underlying the induction of genes associated with TEFA transport; (3) in vivo cardiac metabolism and contractile function in mice with reduced TEFA transport under unstressed conditions; and (4) in vivo contractile dysfunction in mice with reduced TEFA transport under diseased conditions, including an increased afterload and streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Tatsuya Iso
- Department of Medical Technology and Clinical Engineering, Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, 191-1 Kawamagari-Machi, Maebashi 371-0823, Gunma, Japan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
- Correspondence:
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
10
|
Bulló M, Papandreou C, García-Gavilán J, Ruiz-Canela M, Li J, Guasch-Ferré M, Toledo E, Clish C, Corella D, Estruch R, Ros E, Fitó M, Lee CH, Pierce K, Razquin C, Arós F, Serra-Majem L, Liang L, Martínez-González MA, Hu FB, Salas-Salvadó J. Tricarboxylic acid cycle related-metabolites and risk of atrial fibrillation and heart failure. Metabolism 2021; 125:154915. [PMID: 34678258 PMCID: PMC9206868 DOI: 10.1016/j.metabol.2021.154915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Tricarboxylic acid (TCA) cycle deregulation may predispose to cardiovascular diseases, but the role of TCA cycle-related metabolites in the development of atrial fibrillation (AF) and heart failure (HF) remains unexplored. This study sought to investigate the association of TCA cycle-related metabolites with risk of AF and HF. METHODS We used two nested case-control studies within the PREDIMED study. During a mean follow-up for about 10 years, 512 AF and 334 HF incident cases matched by age (±5 years), sex and recruitment center to 616 controls and 433 controls, respectively, were included in this study. Baseline plasma levels of citrate, aconitate, isocitrate, succinate, malate and d/l-2-hydroxyglutarate were measured with liquid chromatography-tandem mass spectrometry. Multivariable conditional logistic regression models were fitted to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for metabolites and the risk of AF or HF. Potential confounders included smoking, family history of premature coronary heart disease, physical activity, alcohol intake, body mass index, intervention groups, dyslipidemia, hypertension, type 2 diabetes and medication use. RESULTS Comparing extreme quartiles of metabolites, elevated levels of succinate, malate, citrate and d/l-2-hydroxyglutarate were associated with a higher risk of AF [ORQ4 vs. Q1 (95% CI): 1.80 (1.21-2.67), 2.13 (1.45-3.13), 1.87 (1.25-2.81) and 1.95 (1.31-2.90), respectively]. One SD increase in aconitate was directly associated with AF risk [OR (95% CI): 1.16 (1.01-1.34)]. The corresponding ORs (95% CI) for HF comparing extreme quartiles of malate, aconitate, isocitrate and d/l-2-hydroxyglutarate were 2.15 (1.29-3.56), 2.16 (1.25-3.72), 2.63 (1.56-4.44) and 1.82 (1.10-3.04), respectively. These associations were confirmed in an internal validation, except for aconitate and AF. CONCLUSION These findings underscore the potential role of the TCA cycle in the pathogenesis of cardiac outcomes.
Collapse
Affiliation(s)
- Mònica Bulló
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University Hospital of Sant Joan de Reus, Nutrition Unit, Reus, Spain
| | - Christopher Papandreou
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University Hospital of Sant Joan de Reus, Nutrition Unit, Reus, Spain
| | - Jesus García-Gavilán
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University Hospital of Sant Joan de Reus, Nutrition Unit, Reus, Spain
| | - Miguel Ruiz-Canela
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, MA, USA
| | - Estefanía Toledo
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain
| | - Clary Clish
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Internal Medicine, Department of Endocrinology and Nutrition Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Lipid Clinic, Department of Endocrinology and Nutrition Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular and Nutrition Research Group, Institut de Recerca Hospital del Mar, Barcelona, Spain
| | - Chih-Hao Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Molecular Metabolism (C.-H.L.), Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kerry Pierce
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Cristina Razquin
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain
| | - Fernando Arós
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Cardiology, University Hospital of Alava, Vitoria, Spain
| | - Lluís Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Institute of Health Sciences IUNICS, University of Balearic Islands and Hospital Son Espases, Palma de Mallorca, Spain
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Statistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Miguel A Martínez-González
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Statistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University Hospital of Sant Joan de Reus, Nutrition Unit, Reus, Spain.
| |
Collapse
|
11
|
Olsson M, Hellman U, Wixner J, Anan I. Metabolomics analysis for diagnosis and biomarker discovery of transthyretin amyloidosis. Amyloid 2021; 28:234-242. [PMID: 34319177 DOI: 10.1080/13506129.2021.1958775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Untargeted metabolomics is a well-established technique and a powerful tool to find potential plasma biomarkers for early diagnosing hereditary transthyretin amyloidosis. Hereditary transthyretin amyloidosis (ATTRv) is a disabling and fatal disease with different clinical features such as polyneuropathy, cardiomyopathy, different gastrointestinal symptoms and renal failure. Plasma specimens collected from 27 patients with ATTRv (ATTRV30M), 26 asymptomatic TTRV30M carriers and 26 control individuals were subjected to gas chromatography (GC)- and liquid chromatography (LC)-mass spectrometry (MS)-based metabolomics analysis. Partial least squares discriminant and univariate analysis was used to analyse the data. The models constructed by Partial least squares-discriminant analysis (PLS-DA) could clearly discriminate ATTRV30M patients from controls and asymptomatic TTRV30M carriers. In total, 24 plasma metabolites (VIP > 1.0 and p < .05) were significantly altered in ATTRV30M patient group (6 increased and 18 decreased). Eleven of these distinguished the ATTRV30M group from both controls and TTRV30M carriers. Plasma metabolomics analysis revealed marked changes in several pathways in patients with ATTRV30M amyloidosis. Statistical analysis identified a panel of biomarkers that could effectively separate controls/TTRV30M carriers from ATTRV30M patients. These biomarkers can potentially be used to diagnose patients at an early stage of the disease.
Collapse
Affiliation(s)
- Malin Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Urban Hellman
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jonas Wixner
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Intissar Anan
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Sex differences in metabolic pathways are regulated by Pfkfb3 and Pdk4 expression in rodent muscle. Commun Biol 2021; 4:1264. [PMID: 34737380 PMCID: PMC8569015 DOI: 10.1038/s42003-021-02790-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscles display sexually dimorphic features. Biochemically, glycolysis and fatty acid β-oxidation occur preferentially in the muscles of males and females, respectively. However, the mechanisms of the selective utilization of these fuels remains elusive. Here, we obtain transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes. Analyses of the transcriptomes unveil two genes, Pfkfb3 (phosphofructokinase-2) and Pdk4 (pyruvate dehydrogenase kinase 4), that may function as switches between the two sexually dimorphic metabolic pathways. Interestingly, Pfkfb3 and Pdk4 show male-enriched and estradiol-enhanced expression, respectively. Moreover, the contribution of these genes to sexually dimorphic metabolism is demonstrated by knockdown studies with cultured type IIB muscle fibers. Considering that skeletal muscles as a whole are the largest energy-consuming organs, our results provide insights into energy metabolism in the two sexes, during the estrus cycle in women, and under pathological conditions involving skeletal muscles. Baba et al. analyzed the transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes and identified Pfkfb3 and Pdk4 as differentially regulated genes between males and diestrus females. The authors found that Pfkfb3 and Pdk4 may act as metabolic switches, showed male-enriched and estradiol-enhanced expression, respectively and contributed to sexually dimorphic metabolism.
Collapse
|
13
|
Defo MA, Mercier L, Beauvais C, Brua RB, Tétreault G, Fontaine A, Couture P, Verreault J, Houde M. Time-dependent biological responses of juvenile yellow perch (Perca flavescens) exposed in situ to a major urban effluent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112483. [PMID: 34237640 DOI: 10.1016/j.ecoenv.2021.112483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Municipal wastewater treatment plant (WWTP) effluents are significant sources of organic and inorganic pollutants to aquatic ecosystems. Several studies have shown that the health of aquatic organisms can be adversely impacted following exposure to these complex chemical mixtures. The objective of this study was to examine the effects of in situ exposure in the St. Lawrence River (QC, Canada) of juvenile yellow perch (Perca flavescens) to a major WWTP effluent. Perch were caged at a reference site in the St. Lawrence River and downstream of a WWTP effluent-influenced site for one, three, and six weeks. Fish kept in controlled laboratory setting were also examined at the beginning of the experiment to evaluate the potential effect of caging on fish. Liver metabolites and gill oxidative stress biomarkers as well as body condition of perch were investigated at four time points (zero, one, three, and six weeks). Nitrogen (δ15N) and carbon (δ13C) stable isotopes as well as tissue concentrations of halogenated flame retardants and trace metals were also analyzed. Results indicated that body condition of perch caged in the effluent increased after three and six weeks of exposure compared to that of reference fish. Perch caged at the WWTP effluent-influenced site also had higher muscle δ13C and slightly depleted muscle δ15N after three and six weeks of exposure, suggesting differences in sewage-derived nutrient assimilation between sites. Concentrations of Σ34 polybrominated diphenyl ether (PBDE) were 2-fold greater in perch exposed downstream of the WWTP compared to those caged at the reference site. Metal concentrations in kidney of perch after three weeks of exposure were significantly lower at the effluent-influenced site. Kidney concentrations of Cd, Cu, Se, As, Zn and Fe were, however, higher after six weeks of exposure, supporting that metal accumulation is time- and element-specific. The metabolomes of perch from the effluent-influenced and reference sites were similar, but were distinct from the laboratory control fish, suggesting a caging effect on fish. Seven liver metabolites (glucose, malate, fumarate, glutamate, creatinine, histamine, and oxypurinol) were significantly more abundant in perch from cages than in the laboratory control perch. The combination of metabolomics and physiological variables provides a powerful tool to improve our understanding of the mechanisms of action of complex environmental pollutant mixtures in wild fish.
Collapse
Affiliation(s)
- Michel A Defo
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada.
| | - Laurie Mercier
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada
| | - Conrad Beauvais
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada
| | - Robert B Brua
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Innovation Blvd, Saskatoon, SK S7N 3H5, Canada
| | - Gerald Tétreault
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
| | - Anthony Fontaine
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - Patrice Couture
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada
| |
Collapse
|
14
|
Huang W, Wang X, Chen D, Xu EG, Luo X, Zeng J, Huan T, Li L, Wang Y. Toxicity mechanisms of polystyrene microplastics in marine mussels revealed by high-coverage quantitative metabolomics using chemical isotope labeling liquid chromatography mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126003. [PMID: 33992921 DOI: 10.1016/j.jhazmat.2021.126003] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 05/06/2023]
Abstract
Marine microplastic has become an important environmental issue of global concern due to its wide distribution and harmful impacts. However, there is still insufficient information on the toxicity mechanism of microplastics to marine organisms. In this study, we developed and applied a high-coverage quantitative metabolomics technique to investigate the toxicity mechanisms of the polystyrene microspheres (micro-PS) on marine mussels (Mytilus coruscus). A total of 3599 metabolites were quantified, including 163 positively identified metabolites, 318 high-confident putatively identified metabolites, and 2602 mass-matched metabolites from the hemolymph of mussels. Metabolomics analysis indicated that micro-PS disrupted the amino acid metabolism, particularly phenylalanine metabolism, which may lead to oxidative stress and neurotoxicity. Micro-PS at environmentally relevant concentrations induced oxidative stress and immunotoxicity in mussels. After 7 days of recovery, along with the significant clearance of micro-PS by mussels, both metabolite levels and biochemical indicators generally returned to the same level as the control group. Overall, the results showed that microplastics at environmentally-relevant concentrations can cause toxic effects on mussels but these influences are reversible. We envisage the usages of high-coverage metabolomics for investigating the toxicity of various types of microplastics under many different conditions, including those relevant to the marine environment.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xinghuo Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Deying Chen
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Xian Luo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Youji Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
15
|
Gough LA, Sparks SA, McNaughton LR, Higgins MF, Newbury JW, Trexler E, Faghy MA, Bridge CA. A critical review of citrulline malate supplementation and exercise performance. Eur J Appl Physiol 2021; 121:3283-3295. [PMID: 34417881 PMCID: PMC8571142 DOI: 10.1007/s00421-021-04774-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
As a nitric oxide (NO) enhancer, citrulline malate (CM) has recently been touted as a potential ergogenic aid to both resistance and high-intensity exercise performance, as well as the recovery of muscular performance. The mechanism has been associated with enhanced blood flow to active musculature, however, it might be more far-reaching as either ammonia homeostasis could be improved, or ATP production could be increased via greater availability of malate. Moreover, CM might improve muscle recovery via increased nutrient delivery and/or removal of waste products. To date, a single acute 8 g dose of CM on either resistance exercise performance or cycling has been the most common approach, which has produced equivocal results. This makes the effectiveness of CM to improve exercise performance difficult to determine. Reasons for the disparity in conclusions seem to be due to methodological discrepancies such as the testing protocols and the associated test–retest reliability, dosing strategy (i.e., amount and timing), and the recent discovery of quality control issues with some manufacturers stated (i.e., citrulline:malate ratios). Further exploration of the optimal dose is therefore required including quantification of the bioavailability of NO, citrulline, and malate following ingestion of a range of CM doses. Similarly, further well-controlled studies using highly repeatable exercise protocols with a large aerobic component are required to assess the mechanisms associated with this supplement appropriately. Until such studies are completed, the efficacy of CM supplementation to improve exercise performance remains ambiguous.
Collapse
Affiliation(s)
- Lewis A Gough
- Research Centre for Life and Sport Science (CLaSS), Human Performance and Health Research Group, Birmingham City University, Birmingham, UK.
| | - S Andy Sparks
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | - Lars R McNaughton
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | | | - Josh W Newbury
- Research Centre for Life and Sport Science (CLaSS), Human Performance and Health Research Group, Birmingham City University, Birmingham, UK
| | | | - Mark A Faghy
- Human Sciences Research Centre, University of Derby, Derby, UK
| | - Craig A Bridge
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| |
Collapse
|
16
|
Abstract
The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Melissa Inigo
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Stanisław Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
17
|
Arredondo Eve A, Tunc E, Liu YJ, Agrawal S, Erbak Yilmaz H, Emren SV, Akyıldız Akçay F, Mainzer L, Žurauskienė J, Madak Erdogan Z. Identification of Circulating Diagnostic Biomarkers for Coronary Microvascular Disease in Postmenopausal Women Using Machine-Learning Techniques. Metabolites 2021; 11:metabo11060339. [PMID: 34070374 PMCID: PMC8230313 DOI: 10.3390/metabo11060339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/13/2023] Open
Abstract
Coronary microvascular disease (CMD) is a common form of heart disease in postmenopausal women. It is not due to plaque formation but dysfunction of microvessels that feed the heart muscle. The majority of the patients do not receive a proper diagnosis, are discharged prematurely and must go back to the hospital with persistent symptoms. Because of the lack of diagnostic biomarkers, in the current study, we focused on identifying novel circulating biomarkers of CMV (cytomegalovirus) that could potentially be used for developing a diagnostic test. We hypothesized that plasma metabolite composition is different for postmenopausal women with no heart disease, CAD (coronary artery disease), or CMD. A total of 70 postmenopausal women, 26 healthy individuals, 23 individuals with CMD and 21 individuals with CAD were recruited. Their full health screening and tests were completed. Basic cardiac examination, including detailed clinical history, additional disease and prescribed drugs, were noted. Electrocardiograph, transthoracic echocardiography and laboratory analysis were also obtained. Additionally, we performed full metabolite profiling of plasma samples from these individuals using gas chromatography-mass spectrometry (GC–MS) analysis, identified and classified circulating biomarkers using machine learning approaches. Stearic acid and ornithine levels were significantly higher in postmenopausal women with CMD. In contrast, valine levels were higher for women with CAD. Our research identified potential circulating plasma biomarkers of this debilitating heart disease in postmenopausal women, which will have a clinical impact on diagnostic test design in the future.
Collapse
Affiliation(s)
- Alicia Arredondo Eve
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.A.E.); (E.T.); (Y.-J.L.)
| | - Elif Tunc
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.A.E.); (E.T.); (Y.-J.L.)
- Research and Training Hospital, Katip Celebi University, Izmir 35620, Turkey; (H.E.Y.); (S.V.E.); (F.A.A.)
| | - Yu-Jeh Liu
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.A.E.); (E.T.); (Y.-J.L.)
| | - Saumya Agrawal
- Department of Computer Science, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
| | - Huriye Erbak Yilmaz
- Research and Training Hospital, Katip Celebi University, Izmir 35620, Turkey; (H.E.Y.); (S.V.E.); (F.A.A.)
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
| | - Sadık Volkan Emren
- Research and Training Hospital, Katip Celebi University, Izmir 35620, Turkey; (H.E.Y.); (S.V.E.); (F.A.A.)
| | - Filiz Akyıldız Akçay
- Research and Training Hospital, Katip Celebi University, Izmir 35620, Turkey; (H.E.Y.); (S.V.E.); (F.A.A.)
| | - Luidmila Mainzer
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (L.M.); (J.Ž.)
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Justina Žurauskienė
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (L.M.); (J.Ž.)
- Centre for Computational Biology, University of Birmingham, Birmingham B15 2T, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.A.E.); (E.T.); (Y.-J.L.)
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (L.M.); (J.Ž.)
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
18
|
Abstract
Metabolism consists of a series of reactions that occur within cells of living organisms to sustain life. The process of metabolism involves many interconnected cellular pathways to ultimately provide cells with the energy required to carry out their function. The importance and the evolutionary advantage of these pathways can be seen as many remain unchanged by animals, plants, fungi, and bacteria. In eukaryotes, the metabolic pathways occur within the cytosol and mitochondria of cells with the utilisation of glucose or fatty acids providing the majority of cellular energy in animals. Metabolism is organised into distinct metabolic pathways to either maximise the capture of energy or minimise its use. Metabolism can be split into a series of chemical reactions that comprise both the synthesis and degradation of complex macromolecules known as anabolism or catabolism, respectively. The basic principles of energy consumption and production are discussed, alongside the biochemical pathways that make up fundamental metabolic processes for life.
Collapse
|
19
|
Umbarawan Y, Kawakami R, Syamsunarno MRAA, Koitabashi N, Obinata H, Yamaguchi A, Hanaoka H, Hishiki T, Hayakawa N, Sunaga H, Matsui H, Kurabayashi M, Iso T. Reduced fatty acid uptake aggravates cardiac contractile dysfunction in streptozotocin-induced diabetic cardiomyopathy. Sci Rep 2020; 10:20809. [PMID: 33257783 PMCID: PMC7705707 DOI: 10.1038/s41598-020-77895-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is an independent risk factor for the development of heart failure. Increased fatty acid (FA) uptake and deranged utilization leads to reduced cardiac efficiency and accumulation of cardiotoxic lipids, which is suggested to facilitate diabetic cardiomyopathy. We studied whether reduced FA uptake in the heart is protective against streptozotocin (STZ)-induced diabetic cardiomyopathy by using mice doubly deficient in fatty acid binding protein 4 (FABP4) and FABP5 (DKO mice). Cardiac contractile dysfunction was aggravated 8 weeks after STZ treatment in DKO mice. Although compensatory glucose uptake was not reduced in DKO-STZ hearts, total energy supply, estimated by the pool size in the TCA cycle, was significantly reduced. Tracer analysis with 13C6-glucose revealed that accelerated glycolysis in DKO hearts was strongly suppressed by STZ treatment. Levels of ceramides, cardiotoxic lipids, were similarly elevated by STZ treatment. These findings suggest that a reduction in total energy supply by reduced FA uptake and suppressed glycolysis could account for exacerbated contractile dysfunction in DKO-STZ hearts. Thus, enhanced FA uptake in diabetic hearts seems to be a compensatory response to reduced energy supply from glucose, and therefore, limited FA use could be detrimental to cardiac contractile dysfunction due to energy insufficiency.
Collapse
Affiliation(s)
- Yogi Umbarawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Internal Medicine, Faculty of Medicine Universitas Indonesia, Jl. Salemba Raya no. 6, Jakarta, 10430, Indonesia
| | - Ryo Kawakami
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Mas Rizky A A Syamsunarno
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Biochemistry and Molecular Biology, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, West Java, 45363, Indonesia
| | - Norimichi Koitabashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Aiko Yamaguchi
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hirofumi Hanaoka
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noriyo Hayakawa
- Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Center for Liberal Arts and Sciences, Ashikaga University, 268-1 Omae-machi, Ashikaga, Tochigi, 326-8558, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Iso
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
20
|
Myocardial Substrate Oxidation and Tricarboxylic Acid Cycle Intermediates During Hypothermic Machine Perfusion. J Surg Res 2020; 259:242-252. [PMID: 33250204 DOI: 10.1016/j.jss.2020.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The optimal substrate for hypothermic machine perfusion preservation of donor hearts is unknown. Fatty acids, acetate, and ketones are preferred substrates of the heart during normothermic perfusion, but cannot replete the tricarboxylic acid (TCA) cycle directly. Propionate, an anaplerotic substrate, can replenish TCA cycle intermediates and may affect cardiac metabolism. The purpose of this study was to determine myocardial substrate preferences during hypothermic machine perfusion and to assess if an anaplerotic substrate was required to maintain the TCA cycle intermediate pool in perfused hearts. METHODS Groups of rat hearts were perfused with carbon-13 (13C)-labeled substrates (acetate, β-hydroxybutyrate, octanoate, with and without propionate) at low and high concentrations. TCA cycle intermediate concentrations, substrate selection, and TCA cycle flux were determined by gas chromatography/mass spectroscopy and 13C magnetic resonance spectroscopy. RESULTS Acetate and octanoate were preferentially oxidized, whereas β-hydroxybutyrate was a minor substrate. TCA cycle intermediate concentrations except fumarate were higher in substrate-containing perfusion groups compared with either the no-substrate perfusion group or the no-ischemia control group. CONCLUSIONS The presence of an exogenous, oxidizable substrate is required to support metabolism in the cold perfused heart. An anaplerotic substrate is not essential to maintain the TCA cycle intermediate pool and support oxidative metabolism under these conditions.
Collapse
|
21
|
Zhang Y, Taufalele PV, Cochran JD, Robillard-Frayne I, Marx JM, Soto J, Rauckhorst AJ, Tayyari F, Pewa AD, Gray LR, Teesch LM, Puchalska P, Funari TR, McGlauflin R, Zimmerman K, Kutschke WJ, Cassier T, Hitchcock S, Lin K, Kato KM, Stueve JL, Haff L, Weiss RM, Cox JE, Rutter J, Taylor EB, Crawford PA, Lewandowski ED, Des Rosiers C, Abel ED. Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nat Metab 2020; 2:1248-1264. [PMID: 33106689 PMCID: PMC8015649 DOI: 10.1038/s42255-020-00288-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
In addition to fatty acids, glucose and lactate are important myocardial substrates under physiologic and stress conditions. They are metabolized to pyruvate, which enters mitochondria via the mitochondrial pyruvate carrier (MPC) for citric acid cycle metabolism. In the present study, we show that MPC-mediated mitochondrial pyruvate utilization is essential for the partitioning of glucose-derived cytosolic metabolic intermediates, which modulate myocardial stress adaptation. Mice with cardiomyocyte-restricted deletion of subunit 1 of MPC (cMPC1-/-) developed age-dependent pathologic cardiac hypertrophy, transitioning to a dilated cardiomyopathy and premature death. Hypertrophied hearts accumulated lactate, pyruvate and glycogen, and displayed increased protein O-linked N-acetylglucosamine, which was prevented by increasing availability of non-glucose substrates in vivo by a ketogenic diet (KD) or a high-fat diet, which reversed the structural, metabolic and functional remodelling of non-stressed cMPC1-/- hearts. Although concurrent short-term KDs did not rescue cMPC1-/- hearts from rapid decompensation and early mortality after pressure overload, 3 weeks of a KD before transverse aortic constriction was sufficient to rescue this phenotype. Together, our results highlight the centrality of pyruvate metabolism to myocardial metabolism and function.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Animals
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Cardiomegaly/diagnostic imaging
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Constriction, Pathologic
- Cytosol/metabolism
- Diet, High-Fat
- Diet, Ketogenic
- Echocardiography
- In Vitro Techniques
- Mice
- Mice, Knockout
- Mitochondria, Heart/metabolism
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Pyruvic Acid/metabolism
- Stress, Physiological/genetics
- Stress, Physiological/physiology
Collapse
Affiliation(s)
- Yuan Zhang
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul V Taufalele
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jesse D Cochran
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Jonas Maximilian Marx
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Friedrich-Schiller University of Jena, Jena, Germany
| | - Jamie Soto
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Mouse Metabolic Phenotyping Core, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam J Rauckhorst
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Fariba Tayyari
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Alvin D Pewa
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lawrence R Gray
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lynn M Teesch
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Patrycja Puchalska
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Trevor R Funari
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rose McGlauflin
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kathy Zimmerman
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William J Kutschke
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas Cassier
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shannon Hitchcock
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin Lin
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin M Kato
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jennifer L Stueve
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lauren Haff
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert M Weiss
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - James E Cox
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Eric B Taylor
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peter A Crawford
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - E Douglas Lewandowski
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montreal, Canada
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
22
|
Zhang R, Engel AL, Wang Y, Li B, Shen W, Gillies MC, Chao JR, Du J. Inhibition of Mitochondrial Respiration Impairs Nutrient Consumption and Metabolite Transport in Human Retinal Pigment Epithelium. J Proteome Res 2020; 20:909-922. [PMID: 32975122 DOI: 10.1021/acs.jproteome.0c00690] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitochondrial respiration in mammalian cells not only generates ATP to meet their own energy needs but also couples with biosynthetic pathways to produce metabolites that can be exported to support neighboring cells. However, how defects in mitochondrial respiration influence these biosynthetic and exporting pathways remains poorly understood. Mitochondrial dysfunction in retinal pigment epithelium (RPE) cells is an emerging contributor to the death of their neighboring photoreceptors in degenerative retinal diseases including age-related macular degeneration. In this study, we used targeted-metabolomics and 13C tracing to investigate how inhibition of mitochondrial respiration influences the intracellular and extracellular metabolome. We found inhibition of mitochondrial respiration strikingly influenced both the intracellular and extracellular metabolome in primary RPE cells. Intriguingly, the extracellular metabolic changes sensitively reflected the intracellular changes. These changes included substantially enhanced glucose consumption and lactate production; reduced release of pyruvate, citrate, and ketone bodies; and massive accumulation of multiple amino acids and nucleosides. In conclusion, these findings reveal a metabolic signature of nutrient consumption and release in mitochondrial dysfunction in RPE cells. Testing medium metabolites provides a sensitive and noninvasive method to assess mitochondrial function in nutrient utilization and transport.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States.,Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, United States
| | - Yekai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Bo Li
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Weiyong Shen
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, United States
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
23
|
Campanella B, Lomonaco T, Benedetti E, Onor M, Nieri R, Bramanti E. Validation and Application of a Derivatization-Free RP-HPLC-DAD Method for the Determination of Low Molecular Weight Salivary Metabolites. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6158. [PMID: 32854235 PMCID: PMC7503734 DOI: 10.3390/ijerph17176158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Saliva is an interesting, non-conventional, valuable diagnostic fluid. It can be collected using standardized sampling device; thus, its sampling is easy and non-invasive, it contains a variety of organic metabolites that reflect blood composition. The aim of this study was to validate a user-friendly method for the simultaneous determination of low molecular weight metabolites in saliva. We have optimized and validated a high throughput, direct, low-cost reversed phase liquid chromatographic method with diode array detection method without any pre- or post-column derivatization. We indexed salivary biomolecules in 35 whole non-stimulated saliva samples collected in 8 individuals in different days, including organic acids and amino acids and other carbonyl compounds. Among these, 16 whole saliva samples were collected by a single individual over three weeks before, during and after treatment with antibiotic in order to investigate the dynamics of metabolites. The concentrations of the metabolites were compared with the literature data. The multianalyte method here proposed requires a minimal sample handling and it is cost-effectiveness as it makes possible to analyze a high number of samples with basic instrumentation. The identification and quantitation of salivary metabolites may allow the definition of potential biomarkers for non-invasive "personal monitoring" during drug treatments, work out, or life habits over time.
Collapse
Affiliation(s)
- Beatrice Campanella
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds-ICCOM, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy;
| | - Edoardo Benedetti
- Hematology Unit, Department of Oncology, University of Pisa, 56100 Pisa, Italy;
| | - Massimo Onor
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds-ICCOM, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Riccardo Nieri
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds-ICCOM, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Emilia Bramanti
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds-ICCOM, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| |
Collapse
|
24
|
Mreisat A, Kanaani H, Saada A, Horowitz M. Heat acclimation mediated cardioprotection is controlled by mitochondrial metabolic remodeling involving HIF-1α. J Therm Biol 2020; 93:102691. [PMID: 33077115 DOI: 10.1016/j.jtherbio.2020.102691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 01/27/2023]
Abstract
Heat acclimation (HA) induces metabolic plasticity to resist the effects of environmental heat with cross-tolerance to novel stressors such as oxygen supply perturbations, exercise, and alike. Our previous results indicated that hypoxia inducible transcription factor (HIF-1α) contributes to this adaptive process. In the present study, we link functional studies in isolated cardiomyocytes, with molecular and biochemical studies of cardiac mitochondria and demonstrate that HA remodels mitochondrial metabolism and performance. We observed the significant role that HIF-1α plays in the HA heart, as HA reduces oxidative stress during ischemia by shifting mitochondrial substrate preference towards pyruvate, with elevated level and activity of mitochondrial LDH (LDHb), acting a pivotal role. Increased antioxidative capacity to encounter hazards is implicated. These results deepen our understanding of heat acclimation-mediated cross tolerance (HACT), in which adaptive bioenergetic-mechanisms counteract the hazards of oxidative stress.
Collapse
Affiliation(s)
- A Mreisat
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Israel
| | - H Kanaani
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Israel
| | - A Saada
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| | - M Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
25
|
Glatz JFC, Nabben M, Young ME, Schulze PC, Taegtmeyer H, Luiken JJFP. Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165579. [PMID: 31678200 PMCID: PMC7586321 DOI: 10.1016/j.bbadis.2019.165579] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Fatty acids and glucose are the main substrates for myocardial energy provision. Under physiologic conditions, there is a distinct and finely tuned balance between the utilization of these substrates. Using the non-ischemic heart as an example, we discuss that upon stress this substrate balance is upset resulting in an over-reliance on either fatty acids or glucose, and that chronic fuel shifts towards a single type of substrate appear to be linked with cardiac dysfunction. These observations suggest that interventions aimed at re-balancing a tilted substrate preference towards an appropriate mix of substrates may result in restoration of cardiac contractile performance. Examples of manipulating cellular substrate uptake as a means to re-balance fuel supply, being associated with mended cardiac function underscore this concept. We also address the molecular mechanisms underlying the apparent need for a fatty acid-glucose fuel balance. We propose that re-balancing cellular fuel supply, in particular with respect to fatty acids and glucose, may be an effective strategy to treat the failing heart.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands.
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
26
|
Karimi M, Petkova V, Asara JM, Griffin MJ, Sellke FW, Bishop AR, Alexandrov BS, Usheva A. Metabolomics and the pig model reveal aberrant cardiac energy metabolism in metabolic syndrome. Sci Rep 2020; 10:3483. [PMID: 32103083 PMCID: PMC7044421 DOI: 10.1038/s41598-020-60387-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Although metabolic syndrome (MS) is a significant risk of cardiovascular disease (CVD), the cardiac response (MR) to MS remains unclear due to traditional MS models' narrow scope around a limited number of cell-cycle regulation biomarkers and drawbacks of limited human tissue samples. To date, we developed the most comprehensive platform studying MR to MS in a pig model tightly related to human MS criteria. By incorporating comparative metabolomic, transcriptomic, functional analyses, and unsupervised machine learning (UML), we can discover unknown metabolic pathways connections and links on numerous biomarkers across the MS-associated issues in the heart. For the first time, we show severely diminished availability of glycolytic and citric acid cycle (CAC) pathways metabolites, altered expression, GlcNAcylation, and activity of involved enzymes. A notable exception, however, is the excessive succinate accumulation despite reduced succinate dehydrogenase complex iron-sulfur subunit b (SDHB) expression and decreased content of precursor metabolites. Finally, the expression of metabolites and enzymes from the GABA-glutamate, GABA-putrescine, and the glyoxylate pathways significantly increase, suggesting an alternative cardiac means to replenish succinate and malate in MS. Our platform discovers potential therapeutic targets for MS-associated CVD within pathways that were previously unknown to corelate with the disease.
Collapse
Affiliation(s)
- Maryam Karimi
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, United States
| | - Victoria Petkova
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, United States
| | - John M Asara
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, United States
| | - Michael J Griffin
- Sam Houston State University, College of Osteopathic Medicine, Huntsville, TX, 77320, United States
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, United States
| | - Alan R Bishop
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
| | | | - Anny Usheva
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, United States.
| |
Collapse
|
27
|
Cardiac ketone body metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165739. [PMID: 32084511 DOI: 10.1016/j.bbadis.2020.165739] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022]
Abstract
The ketone bodies, d-β-hydroxybutyrate and acetoacetate, are soluble 4-carbon compounds derived principally from fatty acids, that can be metabolised by many oxidative tissues, including heart, in carbohydrate-depleted conditions as glucose-sparing energy substrates. They also have important signalling functions, acting through G-protein coupled receptors and histone deacetylases to regulate metabolism and gene expression including that associated with anti-oxidant activity. Their concentration, and hence availability, increases in diabetes mellitus and heart failure. Whilst known to be substrates for ATP production, especially in starvation, their role(s) in the heart, and in heart disease, is uncertain. Recent evidence, reviewed here, indicates that increased ketone body metabolism is a feature of heart failure, and is accompanied by other changes in substrate selection. Whether the change in myocardial ketone body metabolism is adaptive or maladaptive is unknown, but it offers the possibility of using exogenous ketones to treat the failing heart.
Collapse
|
28
|
Fatica EM, DeLeonibus GA, House A, Kodger JV, Pearce RW, Shah RR, Levi L, Sandlers Y. Barth Syndrome: Exploring Cardiac Metabolism with Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Metabolites 2019; 9:E306. [PMID: 31861102 PMCID: PMC6950123 DOI: 10.3390/metabo9120306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Barth syndrome (BTHS) is an X-linked recessive multisystem disorder caused by mutations in the TAZ gene (TAZ, G 4.5, OMIM 300394) that encodes for the acyltransferase tafazzin. This protein is highly expressed in the heart and plays a significant role in cardiolipin biosynthesis. Heart disease is the major clinical manifestation of BTHS with a high incidence in early life. Although the genetic basis of BTHS and tetralinoleoyl cardiolipin deficiency in BTHS-affected individuals are well-established, downstream metabolic changes in cardiac metabolism are still uncovered. Our study aimed to characterize TAZ-induced metabolic perturbations in the heart. Control (PGP1-TAZWT) and TAZ mutant (PGP1-TAZ517delG) iPS-CM were incubated with 13C6-glucose and 13C5-glutamine and incorporation of 13C into downstream Krebs cycle intermediates was traced. Our data reveal that TAZ517delG induces accumulation of cellular long chain acylcarnitines and overexpression of fatty acid binding protein (FABP4). We also demonstrate that TAZ517delG induces metabolic alterations in pathways related to energy production as reflected by high glucose uptake, an increase in glycolytic lactate production and a decrease in palmitate uptake. Moreover, despite mitochondrial dysfunction, in the absence of glucose and fatty acids, TAZ517delG-iPS-CM can use glutamine as a carbon source to replenish the Krebs cycle.
Collapse
Affiliation(s)
- Erica M. Fatica
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Gina A. DeLeonibus
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Alisha House
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Jillian V. Kodger
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Ryan W. Pearce
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Rohan R. Shah
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Liraz Levi
- Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Yana Sandlers
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| |
Collapse
|
29
|
Marquez J, Flores J, Kim AH, Nyamaa B, Nguyen ATT, Park N, Han J. Rescue of TCA Cycle Dysfunction for Cancer Therapy. J Clin Med 2019; 8:jcm8122161. [PMID: 31817761 PMCID: PMC6947145 DOI: 10.3390/jcm8122161] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrion, a maternally hereditary, subcellular organelle, is the site of the tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and oxidative phosphorylation (OXPHOS)—the basic processes of ATP production. Mitochondrial function plays a pivotal role in the development and pathology of different cancers. Disruption in its activity, like mutations in its TCA cycle enzymes, leads to physiological imbalances and metabolic shifts of the cell, which contributes to the progression of cancer. In this review, we explored the different significant mutations in the mitochondrial enzymes participating in the TCA cycle and the diseases, especially cancer types, that these malfunctions are closely associated with. In addition, this paper also discussed the different therapeutic approaches which are currently being developed to address these diseases caused by mitochondrial enzyme malfunction.
Collapse
Affiliation(s)
- Jubert Marquez
- Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, Korea; (J.M.); (A.H.K.)
| | - Jessa Flores
- Department of Physiology, College of Medicine, Inje University, Busan 47392, Korea; (J.F.); (B.N.); (A.T.T.N.)
| | - Amy Hyein Kim
- Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, Korea; (J.M.); (A.H.K.)
| | - Bayalagmaa Nyamaa
- Department of Physiology, College of Medicine, Inje University, Busan 47392, Korea; (J.F.); (B.N.); (A.T.T.N.)
- Department of Hematology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Anh Thi Tuyet Nguyen
- Department of Physiology, College of Medicine, Inje University, Busan 47392, Korea; (J.F.); (B.N.); (A.T.T.N.)
| | - Nammi Park
- Cardiovascular and Metabolic Disease Center, Paik Hospital, Inje University, Busan 47392, Korea;
| | - Jin Han
- Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, Korea; (J.M.); (A.H.K.)
- Department of Physiology, College of Medicine, Inje University, Busan 47392, Korea; (J.F.); (B.N.); (A.T.T.N.)
- Cardiovascular and Metabolic Disease Center, Paik Hospital, Inje University, Busan 47392, Korea;
- Correspondence: ; Tel.: +8251-890-8748
| |
Collapse
|
30
|
Arildsen L, Andersen JV, Waagepetersen HS, Nissen JBD, Sheykhzade M. Hypermetabolism and impaired endothelium-dependent vasodilation in mesenteric arteries of type 2 diabetes mellitus db/db mice. Diab Vasc Dis Res 2019; 16:539-548. [PMID: 31364402 DOI: 10.1177/1479164119865885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Besides being a metabolic disease, diabetes is considered a vascular disease as many of the complications relate to vascular pathologies. The aim of this study was to investigate how vascular tone and reactivity and vascular cell metabolism were affected in type 2 diabetes mellitus and whether β-hydroxybutyrate could have a positive effect as alternative energy substrate. Isolated mesenteric arteries of db/db and control mice were incubated in media containing [U-13C]glucose or [U-13C]β-hydroxybutyrate, and tissue extracts were analysed by mass spectrometry. Functional characterization was performed by wire myography to assess vasodilation and vasocontraction. Hypermetabolism of glucose and β-hydroxybutyrate was observed for mesenteric arteries of db/db mice; however, hypermetabolism was significant only with β-hydroxybutyrate as energy substrate. The functional characterization showed impaired endothelial-dependent vasodilation in mesenteric arteries of the db/db mice, whereas the contractility was unaffected. This study provides evidence that the endothelial cells are impaired, whereas the vascular smooth muscle cells are more robust and seemed less affected in the db/db mouse. Furthermore, the results indicate that hypermetabolism of energy substrates may be due to adaptive changes in the mesenteric arteries.
Collapse
Affiliation(s)
- Lene Arildsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Helle Soenderby Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jakob Borre Dahl Nissen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
31
|
Hibler E, Huang L, Andrade J, Spring B. Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation. Clin Epigenetics 2019; 11:133. [PMID: 31506096 PMCID: PMC6737702 DOI: 10.1186/s13148-019-0707-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Studies demonstrate the impact of diet and physical activity on epigenetic biomarkers, specifically DNA methylation. However, no intervention studies have examined the combined impact of dietary and activity changes on the blood epigenome. The objective of this study was to examine the impact of the Make Better Choices 2 (MBC2) healthy diet and activity intervention on patterns of epigenome-wide DNA methylation. The MBC2 study was a 9-month randomized controlled trial among adults aged 18-65 with non-optimal levels of health behaviors. The study compared three 12-week interventions to (1) simultaneously increase exercise and fruit/vegetable intake, while decreasing sedentary leisure screen time; (2) sequentially increase fruit/vegetable intake and decrease leisure screen time first, then increase exercise; (3) increase sleep and decrease stress (control). We collected blood samples at baseline, 3 and 9 months, and measured DNA methylation using the Illumina EPIC (850 k) BeadChip. We examined region-based differential methylation patterns using linear regression models with the false discovery rate of 0.05. We also conducted pathway analysis using gene ontology (GO), KEGG, and IPA canonical pathway databases. RESULTS We found no differences between the MBC2 population (n = 340) and the subsample with DNA methylation measured (n = 68) on baseline characteristics or the impact of the intervention on behavior change. We identified no differentially methylated regions at baseline between the control versus intervention groups. At 3 versus 9 months, we identified 154 and 298 differentially methylated regions, respectively, between controls compared to pooled samples from sequential and simultaneous groups. In the GO database, we identified two gene ontology terms related to hemophilic cell adhesion and cell-cell adhesion. In IPA analysis, we found pathways related to carcinogenesis including PI3K/AKT, Wnt/β-catenin, sonic hedgehog, and p53 signaling. We observed an overlap between 3 and 9 months, including the GDP-L-fucose biosynthesis I, methylmalonyl metabolism, and estrogen-mediated cell cycle regulation pathways. CONCLUSIONS The results demonstrate that the MBC2 diet and physical activity intervention impacts patterns of DNA methylation in gene regions related to cell cycle regulation and carcinogenesis. Future studies will examine DNA methylation as a biomarker to identify populations that may particularly benefit from incorporating health behavior change into plans for precision prevention.
Collapse
Affiliation(s)
- Elizabeth Hibler
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lakeshore Drive, Chicago, IL, 60611, USA.
| | - Lei Huang
- Center for Research Informatics, Biological Sciences Division, University of Chicago, 900 E. 57th. Street, Chicago, IL, 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, Biological Sciences Division, University of Chicago, 900 E. 57th. Street, Chicago, IL, 60637, USA
- Department of Pediatrics, The University of Chicago, 900 E. 57th. Street, Chicago, IL, 60637, USA
| | - Bonnie Spring
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lakeshore Drive, Chicago, IL, 60611, USA
| |
Collapse
|
32
|
Pettersen IKN, Tusubira D, Ashrafi H, Dyrstad SE, Hansen L, Liu XZ, Nilsson LIH, Løvsletten NG, Berge K, Wergedahl H, Bjørndal B, Fluge Ø, Bruland O, Rustan AC, Halberg N, Røsland GV, Berge RK, Tronstad KJ. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion 2019; 49:97-110. [PMID: 31351920 DOI: 10.1016/j.mito.2019.07.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
Fatty acid oxidation is a central fueling pathway for mitochondrial ATP production. Regulation occurs through multiple nutrient- and energy-sensitive molecular mechanisms. We explored if upregulated mRNA expression of the mitochondrial enzyme pyruvate dehydrogenase kinase 4 (PDK4) may be used as a surrogate marker of increased mitochondrial fatty acid oxidation, by indicating an overall shift from glucose to fatty acids as the preferred oxidation fuel. The association between fatty acid oxidation and PDK4 expression was studied in different contexts of metabolic adaption. In rats treated with the modified fatty acid tetradecylthioacetic acid (TTA), Pdk4 was upregulated simultaneously with fatty acid oxidation genes in liver and heart, whereas muscle and white adipose tissue remained unaffected. In MDA-MB-231 cells, fatty acid oxidation increased nearly three-fold upon peroxisome proliferator-activated receptor α (PPARα, PPARA) overexpression, and four-fold upon TTA-treatment. PDK4 expression was highly increased under these conditions. Further, overexpression of PDK4 caused increased fatty acid oxidation in these cells. Pharmacological activators of PPARα and AMPK had minor effects, while the mTOR inhibitor rapamycin potentiated the effect of TTA. There were minor changes in mitochondrial respiration, glycolytic function, and mitochondrial biogenesis under conditions of increased fatty acid oxidation. TTA was found to act as a mild uncoupler, which is likely to contribute to the metabolic effects. Repeated experiments with HeLa cells supported these findings. In summary, PDK4 upregulation implies an overarching metabolic shift towards increased utilization of fatty acids as energy fuel, and thus constitutes a sensitive marker of enhanced fatty acid oxidation.
Collapse
Affiliation(s)
| | | | - Hanan Ashrafi
- Department of Biomedicine, University of Bergen, Norway
| | | | - Lena Hansen
- Department of Biomedicine, University of Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | - Hege Wergedahl
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Ove Bruland
- Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Nils Halberg
- Department of Biomedicine, University of Bergen, Norway
| | - Gro Vatne Røsland
- Department of Biomedicine, University of Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
33
|
Current Status and Future Prospects of Clinically Exploiting Cancer-specific Metabolism-Why Is Tumor Metabolism Not More Extensively Translated into Clinical Targets and Biomarkers? Int J Mol Sci 2019; 20:ijms20061385. [PMID: 30893889 PMCID: PMC6471292 DOI: 10.3390/ijms20061385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor cells exhibit a specialized metabolism supporting their superior ability for rapid proliferation, migration, and apoptotic evasion. It is reasonable to assume that the specific metabolic needs of the tumor cells can offer an array of therapeutic windows as pharmacological disturbance may derail the biochemical mechanisms necessary for maintaining the tumor characteristics, while being less important for normally proliferating cells. In addition, the specialized metabolism may leave a unique metabolic signature which could be used clinically for diagnostic or prognostic purposes. Quantitative global metabolic profiling (metabolomics) has evolved over the last two decades. However, despite the technology’s present ability to measure 1000s of endogenous metabolites in various clinical or biological specimens, there are essentially no examples of metabolomics investigations being translated into actual utility in the cancer clinic. This review investigates the current efforts of using metabolomics as a tool for translation of tumor metabolism into the clinic and further seeks to outline paths for increasing the momentum of using tumor metabolism as a biomarker and drug target opportunity.
Collapse
|
34
|
Deng Y, Zhang Y, Qiao R, Bonilla MM, Yang X, Ren H, Lemos B. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus). JOURNAL OF HAZARDOUS MATERIALS 2018; 357:348-354. [PMID: 29908513 DOI: 10.1016/j.jhazmat.2018.06.017] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 05/24/2023]
Abstract
This study was performed to reveal the health risks of co-exposure to organophosphorus flame retardants (OPFRs) and microplastics (MPs). We exposed mice to polyethylene (PE) and polystyrene (PS) MPs and OPFRs [tris (2-chloroethy) phosphate (TCEP) and tris (1,3-dichloro-2-propyl) phosphate (TDCPP)] for 90 days. Biochemical markers and metabolomics were used to determine whether MPs could enhance the toxicity of OPFRs. Superoxide dismutase (SOD) and catalase (CAT) increased (p < 0.05) by 21% and 26% respectively in 10 μg/L TDCPP + PE group compared to TDCPP group. Lactate dehydrogenase (LDH) in TDCPP + MPs groups were higher (18%-30%) than that in TDCPP groups (p < 0.05). Acetylcholinesterase (AChE) in TCEP + PE groups were lower (10%-19%) than those in TCEP groups (p < 0.05). These results suggested that OPFR co-exposure with MPs induced more toxicity than OPFR exposure alone. Finally, in comparison to controls we observed that 29, 41, 41, 26, 40 and 37 metabolites changed significantly (p < 0.05; fold-change > 1.2) in TCEP, TCEP + PS, TCEP + PE, TDCPP, TDCPP + PS and TDCPP + PE groups, respectively. Most of these metabolites are related to pathways of amino acid and energy metabolism. Our results indicate that MPs aggravate the toxicity of OPFRs and highlight the health risks of MP co-exposure with other pollutants.
Collapse
Affiliation(s)
- Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Ruxia Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Melvin M Bonilla
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xiaoliang Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
35
|
Chou J, Liu R, Yu J, Liu X, Zhao X, Li Y, Liu L, Sun C. Fasting serum α‑hydroxybutyrate and pyroglutamic acid as important metabolites for detecting isolated post-challenge diabetes based on organic acid profiles. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:6-16. [PMID: 30267980 DOI: 10.1016/j.jchromb.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/20/2018] [Accepted: 09/02/2018] [Indexed: 01/01/2023]
Abstract
The aim of this study was to develop a method to detect serum organic acid profiles in patients with isolated post-challenge diabetes (IPD) and to compare the metabolites between IPD patients, type 2 diabetes mellitus (T2DM) and healthy controls. We developed a gas chromatography-mass spectrometry method to detect serum organic acids and validated it using serum from 40 patients with IPD, 47 with newly diagnosed T2DM, and 48 healthy controls. We then analyzed the organic acid profiles by multivariate analysis to identify potential metabolites. This method allowed the fast and accurate measurement of 27 organic acids in serum. Serum organic acid profiles differed significantly among IPD patients, T2DM patients, and healthy controls. IPD samples had significantly higher concentrations of α‑hydroxybutyrate and β‑hydroxybutyrate (P < 0.05) and lower pyroglutamic acid concentration (P < 0.05) compared with the healthy controls, and the area under the curve for the combination of α‑hydroxybutyrate and pyroglutamic acid was 0.863 for the IPD group. These results provide useful information regarding the changes in organic acid metabolism associated with IPD. Measurement of these metabolites in fasting serum from IPD patients may provide useful diagnostic and/or prognostic biomarkers, as well as helpful markers for the therapeutic monitoring of IPD patients.
Collapse
Affiliation(s)
- Jing Chou
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Jiaying Yu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Xiaowei Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Xinshu Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| |
Collapse
|
36
|
Myocardial fatty acid uptake through CD36 is indispensable for sufficient bioenergetic metabolism to prevent progression of pressure overload-induced heart failure. Sci Rep 2018; 8:12035. [PMID: 30104639 PMCID: PMC6089997 DOI: 10.1038/s41598-018-30616-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/02/2018] [Indexed: 01/05/2023] Open
Abstract
The energy metabolism of the failing heart is characterized by reduced fatty acid (FA) oxidation and an increase in glucose utilization. However, little is known about how energy metabolism-function relationship is relevant to pathophysiology of heart failure. Recent study showed that the genetic deletion of CD36 (CD36KO), which causes reduction in FA use with an increased reliance on glucose, accelerates the progression from compensated hypertrophy to heart failure. Here, we show the mechanisms by which CD36 deletion accelerates heart failure in response to pressure overload. CD36KO mice exhibited contractile dysfunction and death from heart failure with enhanced cardiac hypertrophy and interstitial fibrosis when they were subjected to transverse aortic constriction (TAC). The pool size in the TCA cycle and levels of high-energy phosphate were significantly reduced in CD36KO-TAC hearts despite an increase in glycolytic flux. De novo synthesis of non-essential amino acids was facilitated in CD36KO-TAC hearts, which could cause a further decline of the pool size. The ingestion of a diet enriched in medium-chain FA improved cardiac dysfunction in CD36KO-TAC hearts. These findings suggest that myocardial FA uptake through CD36 is indispensable for sufficient ATP production and for preventing an increased glycolytic flux-mediated structural remodeling during pressure overload-induced hypertrophy.
Collapse
|
37
|
Dyar KA, Hubert MJ, Mir AA, Ciciliot S, Lutter D, Greulich F, Quagliarini F, Kleinert M, Fischer K, Eichmann TO, Wright LE, Peña Paz MI, Casarin A, Pertegato V, Romanello V, Albiero M, Mazzucco S, Rizzuto R, Salviati L, Biolo G, Blaauw B, Schiaffino S, Uhlenhaut NH. Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biol 2018; 16:e2005886. [PMID: 30096135 PMCID: PMC6105032 DOI: 10.1371/journal.pbio.2005886] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/22/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.
Collapse
Affiliation(s)
- Kenneth Allen Dyar
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Michaël Jean Hubert
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Ashfaq Ali Mir
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | | | - Dominik Lutter
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Franziska Greulich
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Fabiana Quagliarini
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Maximilian Kleinert
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | - Katrin Fischer
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
| | | | | | | | - Alberto Casarin
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Vanessa Pertegato
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | | | - Mattia Albiero
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sara Mazzucco
- Clinica Medica, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Gianni Biolo
- Clinica Medica, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - N. Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for Diabetes and Obesity (IDO), Munich, Germany
- Gene Center, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany
| |
Collapse
|
38
|
Timm KN, Miller JJ, Henry JA, Tyler DJ. Cardiac applications of hyperpolarised magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:66-87. [PMID: 31047602 DOI: 10.1016/j.pnmrs.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease is the leading cause of death world-wide. It is increasingly recognised that cardiac pathologies show, or may even be caused by, changes in metabolism, leading to impaired cardiac energetics. The heart turns over 15 times its own weight in ATP every day and thus relies heavily on the availability of substrates and on efficient oxidation to generate this ATP. A number of old and emerging drugs that target different aspects of metabolism are showing promising results with regard to improved cardiac outcomes in patients. A non-invasive imaging technique that could assess the role of different aspects of metabolism in heart disease, as well as measure changes in cardiac energetics due to treatment, would be valuable in the routine clinical care of cardiac patients. Hyperpolarised magnetic resonance spectroscopy and imaging have revolutionised metabolic imaging, allowing real-time metabolic flux assessment in vivo for the first time. In this review we summarise metabolism in the healthy and diseased heart, give an introduction to the hyperpolarisation technique, 'dynamic nuclear polarisation' (DNP), and review the preclinical studies that have thus far explored healthy cardiac metabolism and different models of human heart disease. We furthermore show what advances have been made to translate this technique into the clinic, what technical challenges still remain and what unmet clinical needs and unexplored metabolic substrates still need to be assessed by researchers in this exciting and fast-moving field.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, UK.
| | - John A Henry
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
39
|
Wongkittichote P, Ah Mew N, Chapman KA. Propionyl-CoA carboxylase - A review. Mol Genet Metab 2017; 122:145-152. [PMID: 29033250 PMCID: PMC5725275 DOI: 10.1016/j.ymgme.2017.10.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022]
Abstract
Propionyl-CoA carboxylase (PCC) is the enzyme which catalyzes the carboxylation of propionyl-CoA to methylmalonyl-CoA and is encoded by the genes PCCA and PCCB to form a hetero-dodecamer. Dysfunction of PCC leads to the inherited metabolic disorder propionic acidemia, which can result in an affected individual presenting with metabolic acidosis, hyperammonemia, lethargy, vomiting and sometimes coma and death if not treated. Individuals with propionic acidemia also have a number of long term complications resulting from the dysfunction of the PCC enzyme. Here we present an overview of the current knowledge about the structure and function of PCC. We review an updated list of human variants which are published and provide an overview of the disease.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Children's National Health System, Division of Genetics and Metabolism, United States
| | - Nicholas Ah Mew
- Children's National Health System, Division of Genetics and Metabolism, United States; Rare Diseases Institute, Division of Genetics and Metabolism, United States
| | - Kimberly A Chapman
- Children's National Health System, Division of Genetics and Metabolism, United States; Rare Diseases Institute, Division of Genetics and Metabolism, United States.
| |
Collapse
|
40
|
A New Derivatization Reagent for HPLC-MS Analysis of Biological Organic Acids. Chromatographia 2017; 80:1723-1732. [PMID: 29213145 PMCID: PMC5698372 DOI: 10.1007/s10337-017-3421-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/22/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023]
Abstract
Small molecules containing carboxylic acid functional groups are ubiquitous throughout biology, playing vital roles in biological chemistry ranging from energy metabolism to cellular signaling. This paper describes a new derivatization reagent, 4-bromo-N-methylbenzylamine, which was selected for its potential to derivatize mono-, di- and tri-carboxylic acids, such as the intermediates of the tricarboxylic acid (TCA) cycle. This derivatization procedure facilitated the use of positive electrospray ionization (ESI) tandem mass spectrometry (MS/MS) detection of derivatized species allowing for clear identification thanks to the easily recognizable isotope pattern of the incorporated bromine. A liquid chromatography (LC)-MS/MS method was developed which provided limits of detection between 0.2 and 44 μg L−1 in under 6 min, depending on the analyte and total analysis time. This method was successfully applied in both in vitro and in vivo models.
Collapse
|
41
|
Ragavan M, Kirpich A, Fu X, Burgess SC, McIntyre LM, Merritt ME. A comprehensive analysis of myocardial substrate preference emphasizes the need for a synchronized fluxomic/metabolomic research design. Am J Physiol Heart Circ Physiol 2017; 312:H1215-H1223. [PMID: 28411229 DOI: 10.1152/ajpheart.00016.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022]
Abstract
The heart oxidizes fatty acids, carbohydrates, and ketone bodies inside the tricarboxylic acid (TCA) cycle to generate the reducing equivalents needed for ATP production. Competition between these substrates makes it difficult to estimate the extent of pyruvate oxidation. Previously, hyperpolarized pyruvate detected propionate-mediated activation of carbohydrate oxidation, even in the presence of acetate. In this report, the optimal concentration of propionate for the activation of glucose oxidation was measured in mouse hearts perfused in Langendorff mode. This study was performed with a more physiologically relevant perfusate than the previous work. Increasing concentrations of propionate did not cause adverse effects on myocardial metabolism, as evidenced by unchanged O2 consumption, TCA cycle flux, and developed pressures. Propionate at 1 mM was sufficient to achieve significant increases in pyruvate dehydrogenase flux (3×), and anaplerosis (6×), as measured by isotopomer analysis. These results further demonstrate the potential of propionate as an aid for the correct estimation of total carbohydrate oxidative capacity in the heart. However, liquid chromotography/mass spectroscopy-based metabolomics detected large changes (~30-fold) in malate and fumarate pool sizes. This observation leads to a key observation regarding mass balance in the TCA cycle; flux through a portion of the cycle can be drastically elevated without changing the O2 consumption.
Collapse
Affiliation(s)
- Mukundan Ragavan
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Alexander Kirpich
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida.,University of Florida Informatics Insititute, Gainesville, Florida; and
| | - Xiaorong Fu
- AIRC Division of Metabolic Mechanisms of Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shawn C Burgess
- AIRC Division of Metabolic Mechanisms of Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pharmocology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida.,University of Florida Informatics Insititute, Gainesville, Florida; and.,University of Florida Genetics Insititute, Gainesville, Florida
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida;
| |
Collapse
|
42
|
Hong S, Zhou W, Fang B, Lu W, Loro E, Damle M, Ding G, Jager J, Zhang S, Zhang Y, Feng D, Chu Q, Dill BD, Molina H, Khurana TS, Rabinowitz JD, Lazar MA, Sun Z. Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion. Nat Med 2017; 23:223-234. [PMID: 27991918 PMCID: PMC5540654 DOI: 10.1038/nm.4245] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes and insulin resistance are associated with reduced glucose utilization in the muscle and poor exercise performance. Here we find that depletion of the epigenome modifier histone deacetylase 3 (HDAC3) specifically in skeletal muscle causes severe systemic insulin resistance in mice but markedly enhances endurance and resistance to muscle fatigue, despite reducing muscle force. This seemingly paradoxical phenotype is due to lower glucose utilization and greater lipid oxidation in HDAC3-depleted muscles, a fuel switch caused by the activation of anaplerotic reactions driven by AMP deaminase 3 (Ampd3) and catabolism of branched-chain amino acids. These findings highlight the pivotal role of amino acid catabolism in muscle fatigue and type 2 diabetes pathogenesis. Further, as genome occupancy of HDAC3 in skeletal muscle is controlled by the circadian clock, these results delineate an epigenomic regulatory mechanism through which the circadian clock governs skeletal muscle bioenergetics. These findings suggest that physical exercise at certain times of the day or pharmacological targeting of HDAC3 could potentially be harnessed to alter systemic fuel metabolism and exercise performance.
Collapse
Affiliation(s)
- Sungguan Hong
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Wenjun Zhou
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Bin Fang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine; the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics; Princeton University, Princeton, NJ 08544
| | - Emanuele Loro
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Manashree Damle
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine; the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Guolian Ding
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jennifer Jager
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine; the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sisi Zhang
- Lewis-Sigler Institute for Integrative Genomics; Princeton University, Princeton, NJ 08544
| | - Yuxiang Zhang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine; the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Dan Feng
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine; the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Qingwei Chu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine; the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Brian D Dill
- Proteomics Resource Center, Rockefeller University, New York, NY
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller University, New York, NY
| | - Tejvir S Khurana
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics; Princeton University, Princeton, NJ 08544
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine; the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Zheng Sun
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
43
|
Parry TL, Willis MS. Cardiac ubiquitin ligases: Their role in cardiac metabolism, autophagy, cardioprotection and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2259-2269. [PMID: 27421947 PMCID: PMC5159290 DOI: 10.1016/j.bbadis.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Both the ubiquitin-proteasome system (UPS) and the lysosomal autophagy system have emerged as complementary key players responsible for the turnover of cellular proteins. The regulation of protein turnover is critical to cardiomyocytes as post-mitotic cells with very limited regenerative capacity. In this focused review, we describe the emerging interface between the UPS and autophagy, with E3's regulating autophagy at two critical points through multiple mechanisms. Moreover, we discuss recent insights in how both the UPS and autophagy can alter metabolism at various levels, to present new ways to think about therapeutically regulating autophagy in a focused manner to optimize disease-specific cardioprotection, without harming the overall homeostasis of protein quality control. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Ilaiwy A, Quintana MT, Bain JR, Muehlbauer MJ, Brown DI, Stansfield WE, Willis MS. Cessation of biomechanical stretch model of C2C12 cells models myocyte atrophy and anaplerotic changes in metabolism using non-targeted metabolomics analysis. Int J Biochem Cell Biol 2016; 79:80-92. [PMID: 27515590 DOI: 10.1016/j.biocel.2016.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/20/2016] [Accepted: 08/07/2016] [Indexed: 12/18/2022]
Abstract
Studies of skeletal muscle disuse, either in patients on bed rest or experimentally in animals (immobilization), have demonstrated that decreased protein synthesis is common, with transient parallel increases in protein degradation. Muscle disuse atrophy involves a process of transition from slow to fast myosin fiber types. A shift toward glycolysis, decreased capacity for fat oxidation, and substrate accumulation in atrophied muscles have been reported, as has accommodation of the liver with an increased gluconeogenic capacity. Recent studies have modeled skeletal muscle disuse by using cyclic stretch of differentiated myotubes (C2C12), which mimics the loading pattern of mature skeletal muscle, followed by cessation of stretch. We utilized this model to determine the metabolic changes using non-targeted metabolomics analysis of the media. We identified increases in amino acids resulting from muscle atrophy-induced protein degradation (largely sarcomere) that occurs with muscle atrophy that are involved in feeding the Kreb's cycle through anaplerosis. Specifically, we identified increased alanine/proline metabolism (significantly elevated proline, alanine, glutamine, and asparagine) and increased α-ketoglutaric acid, the proposed Kreb's cycle intermediate being fed by the alanine/proline metabolic anaplerotic mechanism. Additionally, several unique pathways not clearly delineated in previous studies of muscle unloading were seen, including: (1) elevated keto-acids derived from branched chain amino acids (i.e. 2-ketoleucine and 2-keovaline), which feed into a metabolic pathway supplying acetyl-CoA and 2-hydroxybutyrate (also significantly increased); and (2) elevated guanine, an intermediate of purine metabolism, was seen at 12h unloading. Given the interest in targeting different aspects of the ubiquitin proteasome system to inhibit protein degradation, this C2C12 system may allow the identification of direct and indirect alterations in metabolism due to anaplerosis or through other yet to be identified mechanisms using a non-targeted metabolomics approach.
Collapse
Affiliation(s)
- Amro Ilaiwy
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Megan T Quintana
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - David I Brown
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | | | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Gene expression signatures of human cell and tissue longevity. NPJ Aging Mech Dis 2016; 2:16014. [PMID: 28721269 PMCID: PMC5514998 DOI: 10.1038/npjamd.2016.14] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/08/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
Different cell types within the body exhibit substantial variation in the average time they live, ranging from days to the lifetime of the organism. The underlying mechanisms governing the diverse lifespan of different cell types are not well understood. To examine gene expression strategies that support the lifespan of different cell types within the human body, we obtained publicly available RNA-seq data sets and interrogated transcriptomes of 21 somatic cell types and tissues with reported cellular turnover, a bona fide estimate of lifespan, ranging from 2 days (monocytes) to a lifetime (neurons). Exceptionally long-lived neurons presented a gene expression profile of reduced protein metabolism, consistent with neuronal survival and similar to expression patterns induced by longevity interventions such as dietary restriction. Across different cell lineages, we identified a gene expression signature of human cell and tissue turnover. In particular, turnover showed a negative correlation with the energetically costly cell cycle and factors supporting genome stability, concomitant risk factors for aging-associated pathologies. In addition, the expression of p53 was negatively correlated with cellular turnover, suggesting that low p53 activity supports the longevity of post-mitotic cells with inherently low risk of developing cancer. Our results demonstrate the utility of comparative approaches in unveiling gene expression differences among cell lineages with diverse cell turnover within the same organism, providing insights into mechanisms that could regulate cell longevity.
Collapse
|
46
|
He L, Hamm JA, Reddy A, Sams D, Peliciari-Garcia RA, McGinnis GR, Bailey SM, Chow CW, Rowe GC, Chatham JC, Young ME. Biotinylation: a novel posttranslational modification linking cell autonomous circadian clocks with metabolism. Am J Physiol Heart Circ Physiol 2016; 310:H1520-32. [PMID: 27084392 PMCID: PMC4935513 DOI: 10.1152/ajpheart.00959.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/08/2016] [Indexed: 01/07/2023]
Abstract
Circadian clocks are critical modulators of metabolism. However, mechanistic links between cell autonomous clocks and metabolic processes remain largely unknown. Here, we report that expression of the biotin transporter slc5a6 gene is decreased in hearts of two distinct genetic mouse models of cardiomyocyte-specific circadian clock disruption [i.e., cardiomyocyte-specific CLOCK mutant (CCM) and cardiomyocyte-specific BMAL1 knockout (CBK) mice]. Biotinylation is an obligate posttranslational modification for five mammalian carboxylases: acetyl-CoA carboxylase α (ACCα), ACCβ, pyruvate carboxylase (PC), methylcrotonyl-CoA carboxylase (MCC), and propionyl-CoA carboxylase (PCC). We therefore hypothesized that the cardiomyocyte circadian clock impacts metabolism through biotinylation. Consistent with decreased slc5a6 expression, biotinylation of all carboxylases is significantly decreased (10-46%) in CCM and CBK hearts. In association with decreased biotinylated ACC, oleate oxidation rates are increased in both CCM and CBK hearts. Consistent with decreased biotinylated MCC, leucine oxidation rates are significantly decreased in both CCM and CBK hearts, whereas rates of protein synthesis are increased. Importantly, feeding CBK mice with a biotin-enriched diet for 6 wk normalized myocardial 1) ACC biotinylation and oleate oxidation rates; 2) PCC/MCC biotinylation (and partially restored leucine oxidation rates); and 3) net protein synthesis rates. Furthermore, data suggest that the RRAGD/mTOR/4E-BP1 signaling axis is chronically activated in CBK and CCM hearts. Finally we report that the hepatocyte circadian clock also regulates both slc5a6 expression and protein biotinylation in the liver. Collectively, these findings suggest that biotinylation is a novel mechanism by which cell autonomous circadian clocks influence metabolic pathways.
Collapse
Affiliation(s)
- Lan He
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - J Austin Hamm
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alex Reddy
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David Sams
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Chi-Wing Chow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Glenn C Rowe
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
47
|
Abstract
The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions.
Collapse
Affiliation(s)
- Dan Shao
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
48
|
Ochoa-Ruiz E, Díaz-Ruiz R, Hernández-Vázquez ADJ, Ibarra-González I, Ortiz-Plata A, Rembao D, Ortega-Cuéllar D, Viollet B, Uribe-Carvajal S, Corella JA, Velázquez-Arellano A. Biotin deprivation impairs mitochondrial structure and function and has implications for inherited metabolic disorders. Mol Genet Metab 2015; 116:204-14. [PMID: 26343941 DOI: 10.1016/j.ymgme.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/05/2023]
Abstract
Certain inborn errors of metabolism result from deficiencies in biotin containing enzymes. These disorders are mimicked by dietary absence or insufficiency of biotin, ATP deficit being a major effect,whose responsible mechanisms have not been thoroughly studied. Here we show that in rats and cultured cells it is the result of reduced TCA cycle flow, partly due to deficient anaplerotic biotin-dependent pyruvate carboxylase. This is accompanied by diminished flow through the electron transport chain, augmented by deficient cytochrome c oxidase (complex IV) activity with decreased cytochromes and reduced oxidative phosphorylation. There was also severe mitochondrial damage accompanied by decrease of mitochondria, associated with toxic levels of propionyl CoA as shown by carnitine supplementation studies, which explains the apparently paradoxical mitochondrial diminution in the face of the energy sensor AMPK activation, known to induce mitochondria biogenesis. This idea was supported by experiments on AMPK knockout mouse embryonic fibroblasts (MEFs). The multifactorial ATP deficit also provides a plausible basis for the cardiomyopathy in patients with propionic acidemia, and other diseases.Additionally, systemic inflammation concomitant to the toxic state might explain our findings of enhanced IL-6, STAT3 and HIF-1α, associated with an increase of mitophagic BNIP3 and PINK proteins, which may further increase mitophagy. Together our results imply core mechanisms of energy deficit in several inherited metabolic disorders.
Collapse
Affiliation(s)
- Estefanía Ochoa-Ruiz
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México y del Instituto Nacional de Pediatría, México D.F., México
| | - Rodrigo Díaz-Ruiz
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México y del Instituto Nacional de Pediatría, México D.F., México
| | - Alaín de J Hernández-Vázquez
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México y del Instituto Nacional de Pediatría, México D.F., México
| | - Isabel Ibarra-González
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México y del Instituto Nacional de Pediatría, México D.F., México
| | - Alma Ortiz-Plata
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F., México
| | - Daniel Rembao
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F., México
| | - Daniel Ortega-Cuéllar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México D.F., México
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR, 8104 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Salvador Uribe-Carvajal
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - José Ahmed Corella
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México y del Instituto Nacional de Pediatría, México D.F., México
| | - Antonio Velázquez-Arellano
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México y del Instituto Nacional de Pediatría, México D.F., México.
| |
Collapse
|
49
|
Qiang F. Effect of Malate-oligosaccharide Solution on Antioxidant Capacity of Endurance Athletes. Open Biomed Eng J 2015; 9:326-9. [PMID: 26998183 PMCID: PMC4787273 DOI: 10.2174/1874120701509010326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/14/2015] [Accepted: 08/10/2015] [Indexed: 11/23/2022] Open
Abstract
L-malate is an important intermediate on the process of metabolism; it plays an important role in generating mitochondria ATP both under aerobic and hypoxic condition. It is easy to be absorbed and come into mitochondrion through cell membrane and promote to produce energy in mitochondrion. The purpose of this investigation is to probe into the different influence malate ingestion on blood lactate and glucose kinetics during aerobic exercise athletes; at the same time, rats were used to study the effect of malate and oligosaccharide solution on the metabolism in muscle and liver. The supplement of malate-oligosaccharide solution may improve the level of antioxidants in vivo after exercise, and subsequently increase the total antioxidant capacity and decrease the level of lipid peroxidation. At the appropriate time sports drinks can add varying degrees of motion to extend time to fatigue enhance athletic ability, speed up the recovery process after exercise, reduce fatigue.
Collapse
Affiliation(s)
- Fu Qiang
- Northwest A & F University, China
| |
Collapse
|
50
|
Shibayama J, Yuzyuk TN, Cox J, Makaju A, Miller M, Lichter J, Li H, Leavy JD, Franklin S, Zaitsev AV. Metabolic remodeling in moderate synchronous versus dyssynchronous pacing-induced heart failure: integrated metabolomics and proteomics study. PLoS One 2015; 10:e0118974. [PMID: 25790351 PMCID: PMC4366225 DOI: 10.1371/journal.pone.0118974] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) is accompanied by complex alterations in myocardial energy metabolism. Up to 40% of HF patients have dyssynchronous ventricular contraction, which is an independent indicator of mortality. We hypothesized that electromechanical dyssynchrony significantly affects metabolic remodeling in the course of HF. We used a canine model of tachypacing-induced HF. Animals were paced at 200 bpm for 6 weeks either in the right atrium (synchronous HF, SHF) or in the right ventricle (dyssynchronous HF, DHF). We collected biopsies from left ventricular apex and performed comprehensive metabolic pathway analysis using multi-platform metabolomics (GC/MS; MS/MS; HPLC) and LC-MS/MS label-free proteomics. We found important differences in metabolic remodeling between SHF and DHF. As compared to Control, ATP, phosphocreatine (PCr), creatine, and PCr/ATP (prognostic indicator of mortality in HF patients) were all significantly reduced in DHF, but not SHF. In addition, the myocardial levels of carnitine (mitochondrial fatty acid carrier) and fatty acids (12:0, 14:0) were significantly reduced in DHF, but not SHF. Carnitine parmitoyltransferase I, a key regulatory enzyme of fatty acid ß-oxidation, was significantly upregulated in SHF but was not different in DHF, as compared to Control. Both SHF and DHF exhibited a reduction, but to a different degree, in creatine and the intermediates of glycolysis and the TCA cycle. In contrast to this, the enzymes of creatine kinase shuttle were upregulated, and the enzymes of glycolysis and the TCA cycle were predominantly upregulated or unchanged in both SHF and DHF. These data suggest a systemic mismatch between substrate supply and demand in pacing-induced HF. The energy deficit observed in DHF, but not in SHF, may be associated with a critical decrease in fatty acid delivery to the ß-oxidation pipeline, primarily due to a reduction in myocardial carnitine content.
Collapse
Affiliation(s)
- Junko Shibayama
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Tatiana N. Yuzyuk
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- ARUP Laboratories, Salt Lake City, Utah, United States of America
| | - James Cox
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Aman Makaju
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Mickey Miller
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Justin Lichter
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Hui Li
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Jane D. Leavy
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Alexey V. Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|