1
|
Ismail OM, El-Omar OM, Said UN. Exploring the Role of Urocortin in Osteoporosis. Cureus 2023; 15:e38978. [PMID: 37313093 PMCID: PMC10259878 DOI: 10.7759/cureus.38978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 06/15/2023] Open
Abstract
Osteoporosis is a debilitating disease that affects over 200 million people worldwide. Overactive osteoclast activity leads to micro-architectural defects and low bone mass. This culminates in fragility fractures, such as femoral neck fractures. Treatments currently available either are not completely effective or have considerable side effects; thus, there is a need for more effective treatments. The urocortin (Ucn) family, composed of urocortin 1 (Ucn1), urocortin 2 (Ucn2), urocortin 3 (Ucn3), corticotropin-releasing factor (CRF) and corticotropin-releasing factor-binding protein (CRF-BP), exerts a wide range of effects throughout the body. Ucn1 has been shown to inhibit murine osteoclast activity. This review article will aim to bridge the gap between existing knowledge of Ucn and whether it can affect human osteoclasts.
Collapse
Affiliation(s)
- Omar M Ismail
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| | - Omar M El-Omar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| | - Umar N Said
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| |
Collapse
|
2
|
Bu G, Fan J, Yang M, Lv C, Lin Y, Li J, Meng F, Du X, Zeng X, Zhang J, Li J, Wang Y. Identification of a Novel Functional Corticotropin-Releasing Hormone (CRH2) in Chickens and Its Roles in Stimulating Pituitary TSHβ Expression and ACTH Secretion. Front Endocrinol (Lausanne) 2019; 10:595. [PMID: 31555213 PMCID: PMC6727040 DOI: 10.3389/fendo.2019.00595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/13/2019] [Indexed: 11/13/2022] Open
Abstract
Corticotropin-releasing hormone (CRH), together with its structurally and functionally related neuropeptides, constitute the CRH family and play critical roles in multiple physiological processes. Recently, a novel member of this family, namely CRH2, was identified in vertebrates, however, its functionality and physiological roles remain an open question. In this study, using chicken (c-) as the animal model, we characterized the expression and functionality of CRH2 and investigated its roles in anterior pituitary. Our results showed that (1) cCRH2 cDNA is predicted to encode a 40-aa mature peptide, which shares a higher amino acid sequence identity to cCRH (63%) than to other CRH family peptides (23-38%); (2) Using pGL3-CRE-luciferase reporter system, we demonstrated that cCRH2 is ~15 fold more potent in activating cCRH receptor 2 (CRHR2) than cCRHR1 when expressed in CHO cells, indicating that cCRH2 is bioactive and its action is mainly mediated by CRHR2; (3) Quantitative real-time PCR revealed that cCRH2 is widely expressed in chicken tissues including the hypothalamus and anterior pituitary, and its transcription is likely controlled by promoters near exon 1, which display strong promoter activity in cultured DF-1 and HEK293 cells; (4) In cultured chick pituitary cells, cCRH2 potently stimulates TSHβ expression and shows a lower potency in inducing ACTH secretion, indicating that pituitary/hypothalamic CRH2 can regulate pituitary functions. Collectively, our data provides the first piece of evidence to suggest that CRH2 play roles similar, but non-identical, to those of CRH, such as its differential actions on pituitary, and this helps to elucidate the roles of CRH2 in vertebrates.
Collapse
Affiliation(s)
- Guixian Bu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Fan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Ming Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Can Lv
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Lin
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Jinxuan Li
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Ya'an, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, China
- Xianyin Zeng
| | - Jiannan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Yajun Wang
| |
Collapse
|
3
|
Hosono K, Yamashita J, Kikuchi Y, Hiraki-Kajiyama T, Okubo K. Three urocortins in medaka: identification and spatial expression in the central nervous system. J Neuroendocrinol 2017; 29. [PMID: 28370873 DOI: 10.1111/jne.12472] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/10/2017] [Accepted: 03/25/2017] [Indexed: 12/19/2022]
Abstract
The urocortin (UCN) group of neuropeptides includes urocortin 1/sauvagine/urotensin 1 (UTS1), urocortin 2 (UCN2) and urocortin 3 (UCN3). In recent years, evidence has accumulated showing that UCNs play pivotal roles in mediating stress response and anxiety in mammals. Evidence has also emerged regarding the evolutionary conservation of UCNs in vertebrates, but very little information is available about UCNs in non-mammalian vertebrates. Indeed, at present, there are no reports of the empirical identification of ucn2 in non-mammalian vertebrates or of the distribution of ucn2 and ucn3 expression in the adult central nervous system (CNS) of these animals. To gain insight into the evolutionary nature of UCNs in vertebrates, we cloned uts1, ucn2 and ucn3 in a teleost fish, medaka and examined the spatial expression of these genes in the adult brain and spinal cord. Although all known UCN2 genes except those in rodents have been reported to likely lack the necessary structural features to produce a functional pre-pro-protein, all three UCN genes in medaka, including ucn2, displayed all of these features, suggesting their functionality. The three UCN genes exhibited distinct spatial expression patterns in the medaka brain: uts1 was primarily expressed in broad regions of the dorsal telencephalon, ucn2 was expressed in restricted regions of the thalamus and brainstem and ucn3 was expressed in discrete nuclei throughout many regions of the brain. We also found that these genes were all expressed throughout the medaka spinal cord, each with a distinct spatial pattern. Given that many of these regions have been implicated in stress responses and anxiety, the three UCNs may serve distinct physiological roles in the medaka CNS, including those involved in stress and anxiety, as shown in the mammalian CNS.
Collapse
Affiliation(s)
- K Hosono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - J Yamashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Y Kikuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - T Hiraki-Kajiyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - K Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
4
|
van der Doelen RHA, Robroch B, Arnoldussen IA, Schulpen M, Homberg JR, Kozicz T. Serotonin and urocortin 1 in the dorsal raphe and Edinger-Westphal nuclei after early life stress in serotonin transporter knockout rats. Neuroscience 2016; 340:345-358. [PMID: 27826101 DOI: 10.1016/j.neuroscience.2016.10.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 02/04/2023]
Abstract
The interaction of early life stress (ELS) and the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) has been associated with increased risk to develop depression in later life. We have used the maternal separation paradigm as a model for ELS exposure in homozygous and heterozygous 5-HTT knockout rats and measured urocortin 1 (Ucn1) mRNA and/or protein levels, Ucn1 DNA methylation, as well as 5-HT innervation in the centrally projecting Edinger-Westphal (EWcp) and dorsal raphe (DR) nuclei, both implicated in the regulation of stress response. We found that ELS and 5-HTT genotype increased the number of 5-HT neurons in specific DR subdivisions, and that 5-HTT knockout rats showed decreased 5-HT innervation of EWcp-Ucn1 neurons. Furthermore, ELS was associated with increased DNA methylation of the promoter region of the Ucn1 gene and increased expression of 5-HT receptor 1A in the EWcp. In contrast, 5-HTT deficiency was associated with site-specific alterations in DNA methylation of the Ucn1 promoter, and heterozygous 5-HTT knockout rats showed decreased expression of CRF receptor 1 in the EWcp. Together, our findings extend the existing literature on the relationship between EWcp-Ucn1 and DR-5-HT neurons. These observations will further our understanding on their potential contribution to mediate affect as a function of ELS interacting with 5-HTTLPR.
Collapse
Affiliation(s)
- Rick H A van der Doelen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Berit Robroch
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse A Arnoldussen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maya Schulpen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamás Kozicz
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatrics, Hayward Genetics Center, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
5
|
Tsai WC, Hueng DY, Lin CK. Nuclear overexpression of urocortin discriminates primary brain tumors from reactive gliosis. APMIS 2015; 123:465-72. [PMID: 25904177 DOI: 10.1111/apm.12374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/13/2015] [Indexed: 11/26/2022]
Abstract
The role of urocortin (UCN) is still ambiguous in human cancers. We tested the hypothesis that using UCN expression discriminates reactive gliosis from primary brain tumors (PBTs). Immunohistochemical analysis of UCN was performed in six reactive gliosis and 99 PBTs. The immunostain scores of UCN were calculated as the degree of intensity multiplied by the percentage of expressed tumor cells. Nuclear staining of UCN revealed weak intensity and small portion of positively stained cells in reactive gliosis. However, comparing with non-neoplastic tissues, higher immunostain scores of UCN were identified in each WHO grade of astrocytomas and meningiomas. Finally, neither WHO grade nor overall survival rate did not significantly correlate with UCN expression in astrocytomas and meningiomas. Our findings demonstrate for the first time that the application of UCN might be a novel biomarker for not only discriminating reactive gliosis from PBTs, but also deciding where the clear surgical margin was.
Collapse
Affiliation(s)
- Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Kung Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
de Andrade JS, Viana MB, Abrão RO, Bittencourt JC, Céspedes IC. CRF family peptides are differently altered by acute restraint stress and chronic unpredictable stress. Behav Brain Res 2014; 271:302-8. [PMID: 24933190 DOI: 10.1016/j.bbr.2014.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
Abstract
Corticotropin-releasing factor (CRF) acts to promote stress-like physiological and behavioral responses and is mainly expressed in the paraventricular hypothalamic nucleus (PVN). Urocortin 1 (Ucn1) is also a ligand to CRF type 1 and 2 receptors that has been associated with the stress response. Ucn1 neurons are primarily found in the Edinger-Westphal (EW) nucleus. It has been previously proposed that CRF and Ucn1 differently modulate stress responses to distinct types of stressors. The present study used male Wistar rats to compare the effects of acute restraint stress and unpredictable chronic stress (UCS) through Fos-immunoreactivity (Fos-ir) on CRF-containing neurons of PVN and Ucn1-containing EW centrally projecting neurons. Results showed that PVN neurons responded to both acute restraint and UCS. Also for the PVN, unspecific variables, dependent on the time animals remained in the laboratory, do not seem to alter Fos-ir, since no significant differences between acute and chronic control groups were found. On the other hand, EW neurons were only activated in response to acute restraint stress. Also, for this nucleus a significant difference was found between acute and chronic control groups, suggesting that unspecific variables, dependent on the time animals remain in the laboratory, interfere with the nucleus activation. These results suggest that CRF/Ucn1 neuronal circuits encompass two interconnected systems, which are coordinated to respond to acute stressors, but are differentially activated during chronic unpredictable stress.
Collapse
Affiliation(s)
- José S de Andrade
- Department of Biosciences, Federal University of São Paulo, Av. Ana Costa 95, UNIFESP, 11060-001 Santos, SP, Brazil
| | - Milena B Viana
- Department of Biosciences, Federal University of São Paulo, Av. Ana Costa 95, UNIFESP, 11060-001 Santos, SP, Brazil
| | - Renata O Abrão
- Department of Biosciences, Federal University of São Paulo, Av. Ana Costa 95, UNIFESP, 11060-001 Santos, SP, Brazil
| | - Jackson C Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, USP, 05508-000 São Paulo, SP, Brazil; Center of Neuroscience and Behavior, Institute of Psychology, University of São Paulo, Av. Prof. Mello Moraes, 1721, Bloco C, 05508-030, São Paulo, SP, Brazil
| | - Isabel C Céspedes
- Department of Biosciences, Federal University of São Paulo, Av. Ana Costa 95, UNIFESP, 11060-001 Santos, SP, Brazil.
| |
Collapse
|
7
|
Immunohistochemical demonstration of urocortin 1 in Edinger–Westphal nucleus of the human neonate: Colocalization with tyrosine hydroxylase under acute perinatal hypoxia. Neurosci Lett 2013; 554:47-52. [DOI: 10.1016/j.neulet.2013.08.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/12/2013] [Accepted: 08/25/2013] [Indexed: 11/23/2022]
|
8
|
Purser MJ, Dalvi PS, Wang ZC, Belsham DD. The cytokine ciliary neurotrophic factor (CNTF) activates hypothalamic urocortin-expressing neurons both in vitro and in vivo. PLoS One 2013; 8:e61616. [PMID: 23626705 PMCID: PMC3633986 DOI: 10.1371/journal.pone.0061616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) induces neurogenesis, reduces feeding, and induces weight loss. However, the central mechanisms by which CNTF acts are vague. We employed the mHypoE-20/2 line that endogenously expresses the CNTF receptor to examine the direct effects of CNTF on mRNA levels of urocortin-1, urocortin-2, agouti-related peptide, brain-derived neurotrophic factor, and neurotensin. We found that treatment of 10 ng/ml CNTF significantly increased only urocortin-1 mRNA by 1.84-fold at 48 h. We then performed intracerebroventricular injections of 0.5 mg/mL CNTF into mice, and examined its effects on urocortin-1 neurons post-exposure. Through double-label immunohistochemistry using specific antibodies against c-Fos and urocortin-1, we showed that central CNTF administration significantly activated urocortin-1 neurons in specific areas of the hypothalamus. Taken together, our studies point to a potential role for CNTF in regulating hypothalamic urocortin-1-expressing neurons to mediate its recognized effects on energy homeostasis, neuronal proliferaton/survival, and/or neurogenesis.
Collapse
Affiliation(s)
- Matthew J. Purser
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Prasad S. Dalvi
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zi C. Wang
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Denise D. Belsham
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Departments of Obstetrics, Gynaecology and Medicine, University of Toronto and Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Janssen D, Kozicz T. Is it really a matter of simple dualism? Corticotropin-releasing factor receptors in body and mental health. Front Endocrinol (Lausanne) 2013; 4:28. [PMID: 23487366 PMCID: PMC3594922 DOI: 10.3389/fendo.2013.00028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/22/2013] [Indexed: 11/13/2022] Open
Abstract
Physiological responses to stress coordinated by the hypothalamo-pituitary-adrenal axis are concerned with maintaining homeostasis in the presence of real or perceived challenges. Regulators of this axis are corticotrophin releasing factor (CRF) and CRF related neuropeptides, including urocortins 1, 2, and 3. They mediate their actions by binding to CRF receptors (CRFR) 1 and 2, which are located in several stress-related brain regions. The prevailing theory has been that the initiation of and the recovery from an elicited stress response is coordinated by two elements, viz. the (mainly) opposing, but well balanced actions of CRFR1 and CRFR2. Such a dualistic view suggests that CRF/CRFR1 controls the initiation of, and urocortins/CRFR2 mediate the recovery from stress to maintain body and mental health. Consequently, failed adaptation to stress can lead to neuropathology, including anxiety and depression. Recent literature, however, challenges such dualistic and complementary actions of CRFR1 and CRFR2, and suggests that stress recruits CRF system components in a brain area and neuron specific manner to promote adaptation as conditions dictate.
Collapse
Affiliation(s)
- Donny Janssen
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and BehaviorNijmegen, Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and BehaviorNijmegen, Netherlands
- Department of Anatomy, Donders Institute for Brain, Cognition and BehaviorNijmegen, Netherlands
- Human Genetics Center, Tulane UniversityNew Orleans, LA, USA
| |
Collapse
|
10
|
Xu L, Scheenen WJJM, Roubos EW, Kozicz T. Peptidergic Edinger-Westphal neurons and the energy-dependent stress response. Gen Comp Endocrinol 2012; 177:296-304. [PMID: 22166814 DOI: 10.1016/j.ygcen.2011.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022]
Abstract
The continuously changing environment demands for adequate stress responses to maintain the internal dynamic equilibrium of body and mind. A successful stress response requires energy, in an amount matching the severity of the stressor and the type of response ('fight, flight or freeze'). The stress response is generated by the central nervous system, which needs to be informed about both the threatening stressor and the availability of energy. In this review, evidence is considered for a role of the midbrain Edinger-Westphal centrally projecting neuron population (EWcp; synonym: non-preganglionic Edinger-Westphal nucleus) in the energy-dependent stress adaptation response. It deals with studies on the neurochemical organization of the EWcp with particular reference to the neuropeptides urocortin-1 and cocaine- and amphetamine-regulated transcript peptide, on the EWcp responses to different types of stressor (e.g., acute and chronic) and a changed energy state (e.g., fasting and leptin change), and on the sex-specificity of these responses. Finally, a model is presented for the way the EWcp might contribute to the coordination of the energy-dependent stress adaptation response.
Collapse
Affiliation(s)
- Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
11
|
Takahashi K. Distribution of urocortins and corticotropin-releasing factor receptors in the cardiovascular system. Int J Endocrinol 2012; 2012:395284. [PMID: 22675352 PMCID: PMC3362921 DOI: 10.1155/2012/395284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 03/10/2012] [Accepted: 03/15/2012] [Indexed: 12/27/2022] Open
Abstract
Urocortins are human homologues of urotensin I, a fish corticotropin-releasing-factor- (CRF-) like peptide secreted from the urophysis. There are three urocortins: urocortin 1, urocortin 2, and urocortin 3 in mammals. We have shown that urocortin 1 and urocortin 3 are endogenously synthesized in the myocardial cells of human heart and may act on CRF type 2 receptor (CRFR2) expressed in the heart. Expression levels of urocortin 1 in the heart and plasma urocortin 1 levels are elevated in patients with heart failure. Recent studies have shown that urocortins have various biological actions in the cardiovascular system, such as a vasodilator action, a positive inotropic action, a cardioprotective action against ischemia/reperfusion injury, and suppressive actions against the renin angiotensin system and the sympathetic nervous system. Urocortins and CRFR2 may therefore be a potential therapeutic target for cardiovascular diseases, such as congestive heart failure, hypertension, and myocardial infarction.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Departments of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
12
|
Kozicz T, Sterrenburg L, Xu L. Does midbrain urocortin 1 matter? A 15-year journey from stress (mal)adaptation to energy metabolism. Stress 2011; 14:376-83. [PMID: 21438786 DOI: 10.3109/10253890.2011.563806] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This review summarizes some of the milestones of the research on the biological functions(s) of midbrain urocortin 1 (Ucn1) since its discovery 15 years ago. Detailed characterization of Ucn1 in the midbrain revealed its overall significance in food intake and regulation of homeostatic equilibrium and mood under stress. In addition, we have recently found a conspicuous alteration in midbrain Ucn1 levels in brains of depressed suicide victims. Furthermore, from the results from the genetically modified animals, a picture is emerging where corticotrophin-releasing factor promotes the initial reactions to stress, whereas Ucn1 seems to be crucial for management of the later adaptive phase. In the case of imbalance in action of these principle stress mediators, vulnerability to stress-related brain diseases is enhanced.
Collapse
Affiliation(s)
- Tamás Kozicz
- Cellular Animal Physiology, Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
13
|
Okere B, Xu L, Roubos EW, Sonetti D, Kozicz T. Restraint stress alters the secretory activity of neurons co-expressing urocortin-1, cocaine- and amphetamine-regulated transcript peptide and nesfatin-1 in the mouse Edinger-Westphal nucleus. Brain Res 2010; 1317:92-9. [PMID: 20043894 DOI: 10.1016/j.brainres.2009.12.053] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/01/2009] [Accepted: 12/16/2009] [Indexed: 01/01/2023]
Abstract
Central stress regulatory pathways utilize various neuropeptides, such as urocortin-1 (Ucn1) and cocaine- and amphetamine-regulated transcript peptide (CART). Ucn1 is most abundantly expressed in the non-preganglionic Edinger-Westphal nucleus (npEW). In addition to Ucn1, CART and nesfatin-1 are highly expressed in neurons of the npEW, but the way these three neuropeptides act together in response to acute stress is not known. We hypothesized that Ucn1, CART and nesfatin-1 are colocalized in npEW neurons and that these neurons are recruited by acute stress. Using quantitative immunocytochemistry and the reverse transcriptase polymerase chain reaction (RT-PCR), we support this hypothesis, by showing in B6C3F1/Crl mice that Ucn1, CART and nesfatin-1 occur in the same neurons of the npEW nucleus. More specifically, Ucn1 and CART revealed a complete colocalization in the same perikarya, while 90% of these neurons are also nesfatin-1-immunoreactive. Furthermore, acute (restraint) stress stimulates the general secretory activity of these npEW neurons (increased presence of Fos) and the production of Ucn1, CART and nesfatin-1: Ucn1, CART and nesfatin-1(NUCB2) mRNAs have been increased compared to controls by x1.8, x2.0 and x2.6, respectively (p<0.01). We conclude that Ucn1, CART and nesfatin-1/NUCB2 are specifically involved in the response of npEW neurons to acute stress in the mouse.
Collapse
Affiliation(s)
- Bernard Okere
- Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi, 213/D, 41100 Modena, Italy
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Nakamura T, Kawabe K, Sapru HN. Cardiovascular responses to microinjections of urocortin 3 into the nucleus tractus solitarius of the rat. Am J Physiol Heart Circ Physiol 2008; 296:H325-32. [PMID: 19060121 DOI: 10.1152/ajpheart.01044.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Urocortin 3 (Ucn3) is a new member of the corticotropin-releasing factor (CRF) peptide family and is considered to be a specific and endogenous ligand for CRF type 2 receptors (CRF2Rs). The presence of CRF(2)Rs has been reported in the nucleus tractus solitarius (NTS) of the rat. It was hypothesized that the activation of CRF2Rs in the medial NTS (mNTS) may play a role in cardiovascular regulation. This hypothesis was tested in urethane-anesthetized, artificially ventilated, adult male Wistar rats. Microinjections (100 nl) of Ucn3 (0.03, 0.06, 0.12, and 0.25 mM) into the mNTS of anesthetized rats elicited decreases in mean arterial pressure (MAP: 5.0 +/- 1.0, 21.6 +/- 2.6, 20.0 +/- 2.8, and 12.7 +/- 3.4 mmHg, respectively) and heart rate (HR: 7.8 +/- 2.6, 46.2 +/- 9.3, 34.5 +/- 8.4, and 16.6 +/- 4.9 beats/min, respectively). Microinjections of artificial cerebrospinal fluid (100 nl) into the mNTS did not elicit cardiovascular responses. Maximum decreases in MAP and HR were elicited by 0.06 mM concentration of Ucn3. Cardiovascular responses to Ucn3 were similar in unanesthetized midcollicular decerebrate rats. A bilateral vagotomy completely abolished Ucn3-induced bradycardia. The decreases in MAP and HR elicited by Ucn3 (0.06 mM) were completely blocked by astressin (1 mM; nonselective CRFR antagonist) and K41498 (5 mM; selective CRF2R antagonist). Microinjections of Ucn3 (0.06 mM) into the mNTS decreased the efferent greater splanchnic nerve activity. After the blockade of CRF2Rs in the mNTS, a Ucn3-induced decrease in the efferent sympathetic nerve discharge was abolished. These results indicate that Ucn3 microinjections into the mNTS exerted excitatory effects on the mNTS neurons via CRF2Rs, leading to depressor and bradycardic responses.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Department of Neurological Surgery, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| | | | | |
Collapse
|
16
|
Abstract
OBJECTIVES/HYPOTHESIS Clinical and basic studies have correlated tinnitus with stress. Although the etiology of tinnitus is unknown, the cochlear nucleus (CN) appears to play a role. To better understand the potential impact of stress on tinnitus and modulation of the central auditory system in general, the goal of the current study was to examine the presence and distribution of axon terminals containing urocortin in the CN of the mouse. STUDY DESIGN Prospective description of histological findings. METHODS Three different forms of urocortin were labeled in brainstem sections collected from 10 wild-type mice by immunohistochemistry. Immunoreactive terminal fibers in the CN were digitally photographed, as well as reconstructed in the CN under a drawing tube attached to a light microscope. RESULTS Specific staining was found in en passant type fibers scattered throughout the CN but situated mostly within the granule cell domains. Clusters of labeled fibers were observed in the nerve root. Labeled axons were observed in the three tracts known to carry olivocochlear fibers to the CN, as well as in the olivocochlear bundle itself. As the axons within the olivocochlear bundle departed the brainstem in the vestibular nerve, numerous labeled en passant fibers were observed among somata of the vestibular ganglion (Scarpa's). Centrally, labeled axons were followed from the CN to the lateral superior olive, an established source of urocortin-positive efferents to the cochlea. These findings indicate that lateral olivocochlear efferents innervate the CN and Scarpa's ganglion, and also that urocortin is likely a neuromodulator in particular CN circuits. CONCLUSIONS The current study supports innervation of specific regions of the mouse CN and Scarpa's ganglion by neurons expressing urocortin. The innervation may be one substrate by which stress modulates particular CN processes. Further studies are necessary to establish the role of urocortin in CN models of tinnitus.
Collapse
|
17
|
Urocortins in heart failure and ischemic heart disease. Int J Cardiol 2008; 127:307-12. [DOI: 10.1016/j.ijcard.2007.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 11/17/2007] [Indexed: 11/18/2022]
|
18
|
Kozicz T, Bordewin LAP, Czéh B, Fuchs E, Roubos EW. Chronic psychosocial stress affects corticotropin-releasing factor in the paraventricular nucleus and central extended amygdala as well as urocortin 1 in the non-preganglionic Edinger-Westphal nucleus of the tree shrew. Psychoneuroendocrinology 2008; 33:741-54. [PMID: 18394812 DOI: 10.1016/j.psyneuen.2008.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 11/19/2022]
Abstract
Stressful stimuli evoke neuronal and neuroendocrine responses helping an organism to adapt to changed environmental conditions. Chronic stressors may induce maladaptive responses leading to psychiatric diseases, such as anxiety and major depression. A suitable animal model to unravel mechanisms involved in the control of adaptation to chronic stress is the psychological subordination stress in the male tree shrew. Subordinate male tree shrews exhibit chronic hypothalamo-pituitary-adrenal (HPA) activation as reflected in continuously elevated cortisol secretion, and structural changes in the hippocampal formation. Corticotropin-releasing factor (CRF) is the major peptide released upon activation of the HPA axis in response to stress. Recent evidence suggests that besides CRF, urocortin 1 (Ucn1) also plays a role in stress adaptation. We have tested the significance of CRF and Ucn1 in adaptation to chronic psychosocial stress in male tree shrews exposed for 35 days to daily psychosocial conflict, by performing semi-quantitative immunocytochemistry for CRF in the parvocellular hypothalamic paraventricular nucleus (pPVN), extended amygdala, viz. central extended amygdala (CeA) and dorsolateral nucleus of the bed nucleus of the stria terminalis (BNSTdl) as well as that for Ucn1 in the non-preganglionic Edinger-Westphal nucleus (npEW). Compared to unstressed animals, psychosocial stress resulted in an immediate and sustained activation of the HPA axis and sympathetic tone as well as reduced testosterone concentration and decreased body and testis weights vs. non-stressed tree shrews. In the pPVN, the number of CRF-immunoreactive neurons and the specific signal density of CRF-immunoreactive fiber terminals in the CeA were strongly reduced (-300 and -40%, respectively; P<0.05), whereas no significant difference in CRF fiber density was found in BNSTdl. The npEW revealed 4 times less Ucn1-immunoreactive neurons (P<0.05). These clear effects on both Ucn1- and CRF-neuropeptide contents may reflect a crucial mechanism enabling the animal to adapt successfully to the stressors, and point to the significance of the pPVN, CeA and npEW in stress-induced brain diseases.
Collapse
Affiliation(s)
- T Kozicz
- Department of Cellular Animal Physiology, Faculty of Science, IWWR, EURON European Graduate School of Neuroscience, Radboud University Nijmegen, 6525 ED Nijmegen, Toernooiveld 1, The Netherlands.
| | | | | | | | | |
Collapse
|
19
|
Gender-related urocortin 1 and brain-derived neurotrophic factor expression in the adult human midbrain of suicide victims with major depression. Neuroscience 2008; 152:1015-23. [DOI: 10.1016/j.neuroscience.2007.12.050] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 12/20/2022]
|
20
|
Tian JB, King JS, Bishop GA. Stimulation of the inferior olivary complex alters the distribution of the type 1 corticotropin releasing factor receptor in the adult rat cerebellar cortex. Neuroscience 2008; 153:308-17. [PMID: 18358620 DOI: 10.1016/j.neuroscience.2008.01.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 12/03/2007] [Accepted: 01/24/2008] [Indexed: 11/15/2022]
Abstract
In a previous study, it was shown that populations of climbing fibers, derived from the inferior olivary complex (IOC) contain the peptide corticotropin releasing factor (CRF) and that the expression of this peptide in climbing fibers could be modulated by the level of activity in olivary afferents. The intent of this study was to determine if there was comparable plasticity in the distribution of the type 1 CRF receptor (CRF-R1) in the cerebellum of the rat. Our results indicate that CRF-R1 was localized primarily to Purkinje cell somata and their primary dendrites and granule cells. In addition, scattered immunolabeling was present over the somata of Golgi cells, basket cells and stellate cells, as well as Bergmann glial cells and their processes. IOC stimulation for 30 min at 1 Hz increased CRF-R1 expression in molecular layer interneurons and processes of Bergmann glial cells. Little to no effect on CRF receptor distribution was observed in Purkinje cells, granule cells, or Golgi cells. IOC stimulation at 5 Hz however, increased CRF-R1 expression in the processes of Bergmann glial cells while decreasing its expression in basket, stellate and, to some extent, in Purkinje cells. The present results suggest that there is activity-dependent plasticity in CRF-R1 expression that must be considered in defining the mechanism by which the CRF family of peptides modulates activity in cerebellar circuits. The present results also suggest that the primary targets of CRF released from climbing fibers are Bergmann glial cells and interneurons in the molecular layer. Further, interneurons responded with a decrease in receptor expression following more intense levels of stimulation suggesting the possibility of internalization of the receptor. In contrast, Bergmann glial cells showed an increased expression in receptor expression. These data suggest that CRF released from climbing fibers may modulate the physiological properties of basket and stellate cells as well as having a heretofore unidentified and potentially unique effect on Bergmann glia.
Collapse
Affiliation(s)
- J-B Tian
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
21
|
Kimura T, Amano T, Uehara H, Ariga H, Ishida T, Torii A, Tajiri H, Matsueda K, Yamato S. Urocortin I is present in the enteric nervous system and exerts an excitatory effect via cholinergic and serotonergic pathways in the rat colon. Am J Physiol Gastrointest Liver Physiol 2007; 293:G903-10. [PMID: 17717045 DOI: 10.1152/ajpgi.00066.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Corticotropin-releasing factor (CRF) and urocortin I (UcnI) have been shown to accelerate colonic transit after central nervous system (CNS) or peripheral administration, but the mechanism of their peripheral effect on colonic motor function has not been fully investigated. Furthermore, the localization of UcnI in the enteric nervous system (ENS) of the colon is unknown. We investigated the effect of CRF and UcnI on colonic motor function and examined the localization of CRF, UcnI, CRF receptors, choline acetyltransferase (ChAT), and 5-HT. Isometric tension of rat colonic muscle strips was measured. The effect of CRF, UcnI on phasic contractions, and electrical field stimulation (EFS)-induced off-contractions were examined. The effects of UcnI on both types of contraction were also studied in the presence of antalarmin, astressin2-B, tetrodotoxin (TTX), atropine, and 5-HT antagonists. The localizations of CRF, UcnI, CRF receptors, ChAT, and 5-HT in the colon were investigated by immunohistochemistry. CRF and UcnI increased both contractions dose dependently. UcnI exerted a more potent effect than CRF. Antalarmin, TTX, atropine, and 5-HT antagonists abolished the contractile effects of UcnI. CRF and UcnI were observed in the neuronal cells of the myenteric plexus. UcnI and ChAT, as well as UcnI and 5-HT, were colocalized in some of the neuronal cells of the myenteric plexus. This study demonstrated that CRF and UcnI act on the ENS and increase colonic contractility by enhancing cholinergic and serotonergic neurotransmission. These peptides are present in myenteric neurons. CRF and, perhaps, to a greater extent, UcnI appear to act as neuromodulators in the ENS of the rat colon.
Collapse
Affiliation(s)
- Takazumi Kimura
- Division of Gastroenterology, National Center of Neurology and Psychiatry, Kohnodai Hospital, Chiba 272-8516, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kozicz T. On the role of urocortin 1 in the non-preganglionic Edinger-Westphal nucleus in stress adaptation. Gen Comp Endocrinol 2007; 153:235-40. [PMID: 17517410 DOI: 10.1016/j.ygcen.2007.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 03/21/2007] [Accepted: 04/01/2007] [Indexed: 12/13/2022]
Abstract
The discovery of novel members of the CRF neuropeptide family, urocortin 1 (Ucn1), urocortin 2 and 3 has provided important insights into stress adaptation pathways, and predicted that stress adaptation involves more systems than the HPA-axis alone. This mini-review aims to summarize our recent data and research by others indicating that an important role is played by Ucn1 in the non-preganglionic Edinger-Westphal nucleus (npEW). These results point to an intriguing possibility that CRF/Ucn1 neuronal circuits comprise two separate, but functionally interrelated entities, which are coordinately regulated by acute stressors, but are inversely coupled during chronic stress. Such collaboration between the two systems would implicate a very important role of Ucn1 in adaptation to stress, and, as a consequence, in stress-related disorders like anxiety, major depression and use of drugs of abuse.
Collapse
Affiliation(s)
- Tamás Kozicz
- Department of Cellular Animal Physiology, Faculty of Science, Integrative Physiology, EURON European Graduate School of Neuroscience, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Cserepes B, Jancsó G, Gasz B, Rácz B, Ferenc A, Benkó L, Borsiczky B, Kürthy M, Ferencz S, Lantos J, Gál J, Arató E, Miseta A, Wéber G, Róth E. Cardioprotective action of urocortin in early pre- and postconditioning. Ann N Y Acad Sci 2007; 1095:228-39. [PMID: 17404036 DOI: 10.1196/annals.1397.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pre- and postconditioning are powerful endogenous adaptive phenomenon of the organism whereby different stimuli enhance the tolerance against various types of stress. Urocortin (Ucn), member of the corticotropin-releasing factor (CRF) family has potent effects on the cardiovascular system. The aim of this article was to investigate the action of Ucn on cultured cardiomyocytes in the process of pre- and postconditioning. Isolated neonatal rat ventricular myocytes were preconditioned with adenosine, simulated ischemia, and Ucn (10-min treatment followed by 10-min reperfusion/recovery). For detecting the effect of alternative types of preconditioning, necrosis enzyme (lactate dehydrogenase [LDH]) release, vital staining (trypan blue), and ratio of apoptosis/necrosis were examined after cardiac cells were exposed to 3-h sustained ischemia and 2-h reperfusion. Same parameters were measured in the postconditioned groups (30- or 60-min ischemia followed by postconditioning with 10-min ischemic stimulus or Ucn and 2-h reperfusion). Cells exposed to 3-h ischemia followed by 2-h reperfusion were shown as control. Our results show that LDH release a number of trypan blue-stained dead cells and the ratio of apoptotized and necrotized cells was decreased in all preconditioned groups compared with control group. In postconditioned groups LDH content of culture medium, trypan blue-positive cardiomyocytes, and the rate of apoptotic/necrotic cells was reduced contrasted with non-postconditioned group. We can conclude that preconditioning with Ucn induced such a powerful cell protective effect as adenosine and ischemia. Furthermore, postconditioning with Ucn after 60-min ischemia was more cardioprotective than ischemic postconditioning.
Collapse
Affiliation(s)
- Barbara Cserepes
- Department of Surgical Research and Techniques, University of Pécs, Medical Faculty, Kodaly Zoltan St. 20, Pécs, H-7624 Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fekete ÉM, Zorrilla EP. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol 2007; 28:1-27. [PMID: 17083971 PMCID: PMC2730896 DOI: 10.1016/j.yfrne.2006.09.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 12/13/2022]
Abstract
Urocortins, three paralogs of the stress-related peptide corticotropin-releasing factor (CRF) found in bony fish, amphibians, birds, and mammals, have unique phylogenies, pharmacologies, and tissue distributions. As a result and despite a structural family resemblance, the natural functions of urocortins and CRF in mammalian homeostatic responses differ substantially. Endogenous urocortins are neither simply counterpoints nor mimics of endogenous CRF action. In their own right, urocortins may be clinically relevant molecules in the pathogenesis or management of many conditions, including congestive heart failure, hypertension, gastrointestinal and inflammatory disorders (irritable bowel syndrome, active gastritis, gastroparesis, and rheumatoid arthritis), atopic/allergic disorders (dermatitis, urticaria, and asthma), pregnancy and parturition (preeclampsia, spontaneous abortion, onset, and maintenance of effective labor), major depression and obesity. Safety trials for intravenous urocortin treatment have already begun for the treatment of congestive heart failure. Further understanding the unique functions of urocortin 1, urocortin 2, and urocortin 3 action may uncover other therapeutic opportunities.
Collapse
Affiliation(s)
- Éva M. Fekete
- Molecular and Integrative Neurosciences Department, The Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Pécs University Medical School, 7602 Pécs,
Hungary
| | - Eric P. Zorrilla
- Molecular and Integrative Neurosciences Department, The Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Harold L. Dorris Neurological Research Institute, The Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
25
|
Boorse GC, Denver RJ. Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides. Gen Comp Endocrinol 2006; 146:9-18. [PMID: 16413023 DOI: 10.1016/j.ygcen.2005.11.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/18/2005] [Accepted: 11/26/2005] [Indexed: 12/01/2022]
Abstract
Peptides of the corticotropin-releasing factor (CRF) family are expressed throughout the central nervous system (CNS) and in peripheral tissues where they play diverse roles in physiology, behavior, and development. Current data supports the existence of four paralogous genes in vertebrates that encode CRF, urocortin/urotensin 1, urocortin 2 or urocortin 3. Corticotropin-releasing factor is the major hypophysiotropin for adrenocorticotropin, and also functions as a thyrotropin-releasing factor in non-mammalian species. In the CNS, CRF peptides function as neurotransmitters/neuromodulators. Recent work shows that CRF peptides are also expressed at diverse sites outside of the CNS in mammals, and we found widespread expression of CRF and urocortins, CRF receptors and CRF binding protein (CRF-BP) genes in the frog Xenopus laevis. The functions of CRF peptides expressed in the periphery in non-mammalian species are largely unexplored. We recently found that CRF acts as a cytoprotective agent in the X. laevis tadpole tail, and that the CRF-BP can block CRF action and hasten tail muscle cell death. The expression of the CRF-BP is strongly upregulated in the tadpole tail at metamorphic climax where it may neutralize CRF bioactivity, thus promoting tail resorption. Corticotropin-releasing factor and urocortins are also known to be cytoprotective in mammalian cells. Thus, CRF peptides may play diverse roles in physiology and development, and these functions likely arose early in vertebrate evolution.
Collapse
Affiliation(s)
- Graham C Boorse
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
26
|
Gaszner B, Korosi A, Palkovits M, Roubos EW, Kozicz T. Neuropeptide Y activates urocortin 1 neurons in the nonpreganglionic Edinger-Westphal nucleus. J Comp Neurol 2006; 500:708-19. [PMID: 17154253 DOI: 10.1002/cne.21177] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Central regulatory pathways promoting stress adaptation utilize various neurotransmitters/neuropeptides, such as urocortin 1 (Ucn1) and neuropeptide Y (NPY). Ucn1 is abundantly expressed in the nonpreganglionic Edinger-Westphal nucleus (npEW), where it is codistributed with NPY-immunoreactive (ir) terminals. A special role for both neuropeptides has been postulated in stress adaptation. Using double-labeling immunohistochemistry, we observed close appositions between NPY-ir terminals and neurons immunoreactive for Ucn1 in the rat, as well as in the human npEW. Therefore, we hypothesized that NPY might control the activity of Ucn1-positive neurons in the npEW. To test this hypothesis, NPY was injected into the lateral cerebral ventricle of rats, resulting in a strong activation of npEW Ucn1 neurons as revealed by Fos immunohistochemistry. Ucn1 mRNA was also upregulated in the npEW 2 hours after the injection of NPY. In a search for the type of NPY receptor that mediates this NPY-induced recruitment of npEW-Ucn1 cells, we found that the great majority of Ucn1 cells exhibited NPY Y5 receptor immunoreactivity, and only a few of the Ucn1 cells coexpressed the Y1 receptor. We concluded that NPY, via NPY Y5 and to a lesser extent via the Y1 receptors, exerts a stimulatory action on Ucn1 cells in the npEW. Further studies are currently in progress to elucidate the significance of this NPY-Ucn1 interaction in the npEW.
Collapse
Affiliation(s)
- Balázs Gaszner
- Department of Anatomy, Medical Faculty, Pécs University and Neurohumoral Regulations Research Group of Hungarian Academy of Sciences, H-7643 Pécs, Szigeti út 12, Hungary
| | | | | | | | | |
Collapse
|
27
|
Orozco-Cabal L, Pollandt S, Liu J, Shinnick-Gallagher P, Gallagher JP. Regulation of Synaptic Transmission by CRF Receptors. Rev Neurosci 2006; 17:279-307. [PMID: 16878401 DOI: 10.1515/revneuro.2006.17.3.279] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Corticotropin-releasing factor (CRF or CRH) and its family of related peptides have long been recognized as hypothalamic-pituitary-adrenal (HPA) axis peptides that function to regulate the release of other hormones, e.g., ACTH. In addition, CRF acts outside the HPA axis not as a hormone, but as a regulator of synaptic transmission, pre- and post-synaptically, within specific CNS neuronal circuits. Synaptic transmission within the nervous system is today understood to be a more complex process compared to the concepts associated with the term 'synapse' introduced by Sherrington in 1897. Based on more than a century of progress with modern cellular and molecular experimental techniques, prior definitions and functions of synaptic molecules and their receptors need to be reconsidered (see Glossary and Fig. 1), especially in light of the important roles for CRF, its family of peptides and other potential endogenous regulators of neurotransmission, e.g., vasopressin, NPY, etc. (see Glossary). In addition, the property of 'constitutive activity' which is associated with G-protein coupled receptors (GPCRs) provides a persistent tonic mechanism to fine-tune synaptic transmission during both acute and chronic information transfer. We have applied the term 'regulator', adapted from the hormone literature, to CRF, as an example of a specific endogenous substance that functions to facilitate or depress the actions of neuromodulators on fast and slow synaptic responses. As such, synaptic neuroregulators provide a basic substrate to prime or initiate silently plastic processes underlying neurotransmitter-mediated information transfer at CNS synapses. Here we review the role of CRF to regulate CNS synaptic transmission and also suggest how under a variety of allostatic changes, e.g., associated with normal plasticity, or adaptations resulting from mental disorders, the synaptic regulatory role for CRF may be 'switched' in its polarity and/or magnitude in order to provide a coping mechanism to deal with daily and life-long stressors. Thus, a prominent role we assign to non-HPA axis CRF, its family of peptides, and their receptors, is to maintain both acute and chronic synaptic stability.
Collapse
Affiliation(s)
- Luis Orozco-Cabal
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555-1031, USA
| | | | | | | | | |
Collapse
|
28
|
Telegdy G, Tiricz H, Adamik A. Involvement of neurotransmitters in urocortin-induced passive avoidance learning in mice. Brain Res Bull 2005; 67:242-7. [PMID: 16144661 DOI: 10.1016/j.brainresbull.2005.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/11/2005] [Accepted: 07/12/2005] [Indexed: 11/19/2022]
Abstract
The action of urocortin on one-way passive avoidance learning was tested in mice. Urocortin was administered into the lateral brain ventricle and the latency of the passive avoidance response was measured 24 h later. For study of the roles of various neurotransmitters in mediating the action of urocortin on the consolidation of memory, the animals were pretreated with different receptor antagonists. Urocortin facilitated the acquisition, consolidation and also retrieval of the passive avoidance response. The following receptor antagonists blocked the action of urocortin on consolidation: haloperidol, atropine, phenoxybenzamine, bicuculline, the CRF antagonist CRF9-41 and methysergide. Propranolol attenuated, but did not fully block the action of urocortin, while naloxone and nitro-L-arginine were ineffective. The results obtained demonstrate that urocortin is able to improve learning and memory and also retrieval processes in a passive avoidance learning in mice. D2, muscarinic cholinergic, alfa-adrenergic, CRF, serotonergic (5HT 1-2), GABA B receptors are involved in the consolidation of the passive avoidance response.
Collapse
Affiliation(s)
- G Telegdy
- Institute of Pathophysiology, Neurohumoral Research Group of the Hungarian Academy of Sciences, University of Szeged, H-6701 Szeged, Hungary.
| | | | | |
Collapse
|
29
|
Tao J, Li S. Effects of urocortin via ion mechanisms or CRF receptors? Biochem Biophys Res Commun 2005; 336:731-6. [PMID: 16061206 DOI: 10.1016/j.bbrc.2005.07.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 07/11/2005] [Indexed: 12/18/2022]
Abstract
Urocortin (UCN), a newly isolated peptide related to hypothalamic corticotrophin releasing factor (CRF) family, had been reported to play biologically diverse roles in several systems such as cardiovascular, reproductive, appetite, stress, and inflammatory responses, etc. It was thought previously to be an endogenous agonist, producing the several actions previously attributed to CRF. But, recently, it was shown to directly reduce L-type calcium currents of acute isolated cardiac myocytes and T-type calcium currents in mouse spermatogenic cells via inhibiting calcium channel instead of binding first to its CRF-R2 receptors. UCN could also reduce the intracellular calcium in vascular smooth muscle cells via inhibiting calcium channel directly. Furthermore, UCN could increase the gene expression of ATP-sensitive potassium channels (K(ATP)) and activate sarcolemmal ATP-sensitive potassium current during normal or hypoxia, which could be inhibited by glibenclamide, a specific K(ATP) blocker. This review will highlight the current novel findings on the ionic mechanisms by which UCN may exert its several actions.
Collapse
Affiliation(s)
- Jin Tao
- Key Laboratory of Reproductive Medicine, Center of Human Functional Genomics, Nanjing 210029, PR China
| | | |
Collapse
|
30
|
Tao J, Chen J, Wu Y, Li S. Urocortin reduces the viability of adult rat vascular smooth muscle cells via inhibiting L-type calcium channels. Peptides 2005; 26:2239-45. [PMID: 15970357 DOI: 10.1016/j.peptides.2005.03.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Revised: 03/16/2005] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Abstract
The newly isolated peptide, urocortin (UCN), is a member of the corticotropin-releasing factor (CRF)-related peptides that has been found to have potent cardiovascular protective effects. In order to investigate the effect of UCN on the viability of adult rat vascular smooth muscle cells (VSMC) and the relevant mechanisms, we exposed the VSMC to UCN to observe the change in cell viability using MTT assay and intracellular calcium concentration using confocal laser scanning microscope methods. Our results showed that UCN (10(-7)M) inhibited the viability of VSMC by about 26% (P<0.05, compared to control). The effect was concentration-dependent, but it was not dependent on the affecting time. Glybenclamide (Gly, 10(-5)M), the ATP-sensitive potassium channel (K(ATP) channel) blocker, and astressin (10(-6)M), a competitive antagonist of CRF receptors, had no influence on this inhibition. Bay K8644 (10(-6)M), a special L-type calcium channel activator, increased the viability of VSMC. Pre-treatment of the cells with UCN diminished the effect of Bay K8644 (n=6, P<0.05). UCN was also observed to reduce the intracellular Ca2+ increase induced by KCl and Bay K8644. There was no significant difference in nitrite accumulation between UCN groups and the control. In conclusion, UCN reduced the viability of VSMC through L-type calcium channels. These interesting results might suggest that UCN may be a new vasoactive agent involved in hindering vascular remodeling in combination with previous reports about UCN's hypotensive effects.
Collapse
Affiliation(s)
- Jin Tao
- Department of Pharmacology, Nanjing Medical University, Hanzhong Road 140, Nanjing 210029, PR China
| | | | | | | |
Collapse
|
31
|
Davis ME, Pemberton CJ, Yandle TG, Lainchbury JG, Rademaker MT, Nicholls MG, Frampton CM, Richards AM. Effect of urocortin 1 infusion in humans with stable congestive cardiac failure. Clin Sci (Lond) 2005; 109:381-8. [PMID: 15882144 DOI: 10.1042/cs20050079] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In sheep with HF (heart failure), Ucn1 (urocortin 1) decreases total peripheral resistance and left atrial pressure, and increases cardiac output in association with attenuation of vasopressor hormone systems and enhancement of renal function. In a previous study, we demonstrated in the first human studies that infusion of Ucn1 elevates corticotropin (‘ACTH’), cortisol and ANP (atrial natriuretic peptide), and suppresses the hunger-inducing hormone ghrelin in normal subjects. In the present study, we examined the effects of Ucn1 on pituitary, adrenal and cardiovascular systems in the first Ucn1 infusion study in human HF. In human HF, it is proposed that Ucn1 would augment corticotropin and cortisol release, suppress ghrelin and reproduce the cardiorenal effects seen in animals with HF. On day 3 of a controlled metabolic diet, we studied eight male volunteers with stable HF (ejection fraction <40%; New York Heart Association Class II–III) on two occasions, 2 weeks apart, receiving 50 μg of Ucn1 or placebo intravenously over 1 h in a randomized time-matched cross-over design. Neurohormones, haemodynamics and urine indices were recorded. Ucn1 infusion increased plasma Ucn1, corticotropin (baseline, 5.9±0.9 pmol/l; and peak, 7.2±1.0 pmol/l) and cortisol (baseline, 285±42 pmol/l; and peak, 310±41 pmol/l) compared with controls (P<0.001, 0.008 and 0.047 respectively). The plasma Ucn1 half-life was 54±3 min. ANP and ghrelin were unchanged, and no haemodynamic or renal effects were seen. In conclusion, a brief intravenous infusion of 50 μg of Ucn1 stimulates corticotropin and cortisol in male volunteers with stable HF.
Collapse
Affiliation(s)
- Mark E Davis
- Christchurch Cardioendocrine Research Group, Christchurch School of Medicine and Health Sciences, Christchurch 8001, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fukuda T, Takahashi K, Suzuki T, Saruta M, Watanabe M, Nakata T, Sasano H. Urocortin 1, urocortin 3/stresscopin, and corticotropin-releasing factor receptors in human adrenal and its disorders. J Clin Endocrinol Metab 2005; 90:4671-8. [PMID: 15914529 DOI: 10.1210/jc.2005-0090] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Urocortin 1 (Ucn1) and urocortin 3 (Ucn3)/stresscopin are new members of the corticotropin-releasing factor (CRF) neuropeptide family. Ucn1 binds to both CRF type 1 (CRF1) and type 2 receptors (CRF2), whereas Ucn3 is a specific agonist for CRF2. Recently, direct involvement of the locally synthesized CRF family in adrenocortical function has been proposed. OBJECTIVE, DESIGN, AND SETTING We examined in situ expression of Ucn and CRF receptors in nonpathological human adrenal gland and its disorders using immunohistochemistry and mRNA in situ hybridization. RESULTS Ucn immunoreactivity was localized in the cortex and medulla of nonpathological adrenal glands. Ucn1 immunoreactivity was marked in the medulla, whereas Ucn3 was immunostained mostly in the cortex. Both CRF type 1 and CRF2 were expressed in the cortex, particularly in the zonae fasciculata and reticularis but very weakly or undetectably in the medulla. Immunohistochemistry in serial tissue sections with mirror images revealed that both Ucn3 and CRF2 were colocalized in more than 85% of the adrenocortical cells. mRNA in situ hybridization confirmed these findings above. In fetal adrenals, Ucn and CRF receptors were expressed in both fetal and definitive zones of the cortex. Ucn and CRF receptors were all expressed in the tumor cells of pheochromocytomas, adrenocortical adenomas, and carcinomas, but its positivity was less than that in nonpathological adrenal glands, suggesting that Ucn1, Ucn3, and CRF receptors were down-regulated in these adrenal neoplasms. CONCLUSIONS Ucn1, Ucn3, and CRF receptors are all expressed in human adrenal cortex and medulla and may play important roles in physiological adrenal functions.
Collapse
Affiliation(s)
- Tsuyoshi Fukuda
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Tao J, Wu Y, Chen J, Zhu H, Li S. Effects of urocortin on T-type calcium currents in mouse spermatogenic cells. Biochem Biophys Res Commun 2005; 329:743-8. [PMID: 15737649 DOI: 10.1016/j.bbrc.2005.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Indexed: 11/25/2022]
Abstract
Urocortin (UCN), a newly isolated peptide, has been found to play an important role mainly in female reproductive system. In order to investigate the effect of UCN on T-type calcium currents (I(Ca,T)), exploring the mechanisms of UCN's role in male reproductive system, especially in acrosome reaction, we directly measured the I(Ca,T) in mouse spermatogenic cells exposed to UCN using standard whole-cell patch-clamp recording technique. Our results showed that UCN reversibly inhibited the T-type Ca(2+) currents in the cells in a concentration-dependent manner. The current density was inhibited by about 19% after exposure of the cells to UCN (0.1 microM) for 5 min, from the control value of 6.75+/-1.17 to 5.26+/-0.82pA/pF. UCN up-shifted the current-voltage (I-V) curve. Frequency-dependence of UCN's effects on I(Ca,T) was also observed. Moreover, UCN at 0.1 microM did not markedly affect the activation of I(Ca,T) but shifted the inactivation curve of I(Ca,T) to the left. The inhibitory effect of UCN on the T-type Ca(2+) current was not affected by Astressin, the CRF receptor blocker. Since T-type calcium channels are a key component in acrosome reaction, our data suggest that UCN might be a significant factor in male reproductive action and a potential contraceptive agent.
Collapse
Affiliation(s)
- Jin Tao
- Laboratory of Reproductive Medicine, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, PR China
| | | | | | | | | |
Collapse
|
34
|
Gysling K, Forray MI, Haeger P, Daza C, Rojas R. Corticotropin-releasing hormone and urocortin: redundant or distinctive functions? ACTA ACUST UNITED AC 2005; 47:116-25. [PMID: 15572167 DOI: 10.1016/j.brainresrev.2004.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 11/17/2022]
Abstract
Neuropeptides play important roles in synaptic transmission. Among them, the peptides of the corticotropin-releasing hormone (CRH) family present interesting features. The two main mammalian peptides of this family, CRH and urocortin (UCN), signal through the same receptors, CRH-R1 and CRH-R2. The question arises as to whether these peptides have redundant or distinctive functions. The fact that CRH and UCN have high affinity for both receptors has hampered the possibility to define the functional contribution of each peptide. Recent studies conducted on mice deficient in CRH, CRH-R1, CRH-R2 and CRH-R1/CRH-R2, as well as in two different UCN-deficient mice, have added relevant information towards the understanding of the role of this peptide family in the CNS. Our new anatomical evidence of UCN expression in the septum will be discussed in this context.
Collapse
Affiliation(s)
- Katia Gysling
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, P.O. Box 193, Correo 22 Santiago, Chile.
| | | | | | | | | |
Collapse
|
35
|
Gaszner B, Csernus V, Kozicz T. Urocortinergic neurons respond in a differentiated manner to various acute stressors in the Edinger-Westphal nucleus in the rat. J Comp Neurol 2005; 480:170-9. [PMID: 15514930 DOI: 10.1002/cne.20343] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Corticotropin-releasing factor (CRF) was implicated as being a major contributor to the neurochemically mediated central regulation of stress response; however, an increasing body of evidence suggests that, besides CRF, other members of this neuropeptide family, such as urocortin (Ucn), may also play a role in modifying the efferent components of immune, endocrine, and behavioral responses to stress. Ucn's distribution in the rat brain has been demonstrated, with the most abundant Ucn-immunoreactive perikarya present in the Edinger-Westphal nucleus (E-WN). Acute pain and immobilization stresses recruit E-WN neurons, however, the activation pattern of E-WN Ucn neurons in response to various acute systemic and neurogenic challenges has not been compared in a single study. We therefore combined quantitative Fos imaging as a marker for neuronal activation with urocortin immunohistochemistry to visualize neurons induced by intravenous lipopolysaccharide (LPS; 100 microg/kg), ether inhalation, restraint, hyperosmotic (1.5 M NaCl i.p.), and hypotensive hemorrhage challenges. Neurons in the E-WN responded with the strongest Fos induction to LPS, but ether and restraint stress also resulted in massive Fos immunoreactivity 2 hours after stress. Unexpectedly, hyperosmotic and hypotensive hemorrhage stresses did not induce urocortinergic perikarya in this brain area 2 hours poststress. This challenge-specific recruitment of E-WN neurons was independent of stress-induced adrenal response. The biological significance and the stress-specific activation of E-WN urocortinergic neurons will be discussed.
Collapse
Affiliation(s)
- Balázs Gaszner
- Department of Anatomy, Medical Faculty, Pécs University and Neurohumoral Regulations Research Group of the Hungarian Academy of Sciences, H-7643 Pécs, Szigeti út 12, Hungary
| | | | | |
Collapse
|
36
|
Ryabinin AE, Tsivkovskaia NO, Ryabinin SA. Urocortin 1-containing neurons in the human Edinger-Westphal nucleus. Neuroscience 2005; 134:1317-23. [PMID: 16039794 DOI: 10.1016/j.neuroscience.2005.05.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/16/2005] [Accepted: 05/19/2005] [Indexed: 11/17/2022]
Abstract
The topographical location of neurons containing urocortin 1, a peptide related to corticotropin-releasing factor was investigated in human postmortem brain by immunohistochemistry, and compared with the location of neurons containing choline acetyltransferase, a marker for cholinergic cells. A three-dimensional computer reconstruction of the urocortin 1 and choline acetyltransferase-positive population of neurons within the oculomotor area was made. It was shown that the urocortin 1-positive neurons are located within the area identified as the Edinger-Westphal nucleus according to the human brain stem atlas, and that the neurons identified as Edinger-Westphal nucleus in the atlas are not choline acetyltransferase-positive. This finding agrees with recent animal studies showing that urocortin 1-positive neurons are not identical with the parasympathetic cholinergic neurons projecting to the ciliary ganglion. They indicate that the neurons identified as Edinger-Westphal nucleus in the human brain stem atlas belong to the non-preganglionic Edinger-Westphal nucleus, whereas the location of preganglionic Edinger-Westphal nucleus remains unidentified.
Collapse
Affiliation(s)
- A E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, 97239, USA.
| | | | | |
Collapse
|
37
|
Keck ME, Müller MB. Mutagenesis and knockout models: hypothalamic-pituitary-adrenocortical system. Handb Exp Pharmacol 2005:113-41. [PMID: 16594256 DOI: 10.1007/3-540-28082-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Hyperactivity of central neuropeptidergic circuits such as the corticotropin-releasing hormone (CRH) and vasopressin (AVP) neuronal systems is thought to play a causal role in the etiology and symptomatology of anxiety disorders. Indeed, there is increasing evidence from basic science that chronic stress-induced perturbation of CRH and AVP neurocircuitries may contribute to abnormal neuronal communication in conditions of pathological anxiety. Anxiety disorders aggregate in families, and accumulating evidence supports the notion that the major source of familial risk is genetic. In this context, refined molecular technologies and the creation of genetically engineered mice have allowed us to specifically target individual genes involved in the regulation of the elements of the CRH (e.g., CRH peptides, CRH-related peptides, their receptors, binding protein). During the past few years, studies performed in such mice have complemented and extended our knowledge. The cumulative evidence makes a strong case implicating dysfunction of CRH-related systems in the pathogenesis of anxiety disorders and depression and leads us beyond the monoaminergic synapse in search of eagerly anticipated strategies to discover and develop better therapies.
Collapse
Affiliation(s)
- M E Keck
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| | | |
Collapse
|
38
|
Keck ME, Ohl F, Holsboer F, Müller MB. Listening to mutant mice: a spotlight on the role of CRF/CRF receptor systems in affective disorders. Neurosci Biobehav Rev 2005; 29:867-89. [PMID: 15899517 DOI: 10.1016/j.neubiorev.2005.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically engineered mice were originally generated to delineate the role of a specific gene product in behavioral or neuroendocrine phenotypes, rather than to produce classic animal models of depression. To learn more about the neurobiological mechanisms underlying a clinical condition such as depression, it has proven worthwhile to investigate changes in behaviors characteristic of depressed humans, such as anxiety, regardless of whether or not these alterations may also occur in other disorders besides depression. The majority of patients with mood and anxiety disorders have measurable shifts in their stress hormone regulation as reflected by elevated secretion of central and peripheral stress hormones or by altered hormonal responses to neuroendocrine challenge tests. In recent years, these alterations have been increasingly translated into testable hypotheses addressing the pathogenesis of illness. Refined molecular technologies and the creation of genetically engineered mice have allowed to specifically target individual genes involved in regulation of corticotropin releasing factor (CRF) system elements (e.g. CRF and CRF-related peptides, their receptors, binding protein). Studies performed in such mice have complemented and extended our knowledge. The cumulative evidence makes a strong case implicating dysfunction of these systems in the pathogenesis of depression and leads us beyond the monoaminergic synapse in search of eagerly anticipated strategies to discover and develop better therapies for depression.
Collapse
Affiliation(s)
- Martin E Keck
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| | | | | | | |
Collapse
|
39
|
Tao J, Xu H, Yang C, Liu CN, Li S. Effect of urocortin on L-type calcium currents in adult rat ventricular myocytes. Pharmacol Res 2004; 50:471-6. [PMID: 15458766 DOI: 10.1016/j.phrs.2004.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2004] [Indexed: 01/17/2023]
Abstract
The newly isolated peptide, urocortin (UCN) has been found to have potent cardioprotective effects. In order to investigate the effect of UCN on L-type calcium currents (I(Ca,L)), exploring the mechanisms of UCN's cardioprotective effects, we directly measured the I(Ca,L) in the adult rat cardiac myocytes exposed to UCN using standard whole-cell patch-clamp recording technique. Our results showed that UCN exerted decreasing effects on the I(Ca,L) of the single adult rat cardiac myocytes. The current density was inhibited by about 35% after exposure of the cells to UCN (0.1 micromol L(-1)) for 10 min, from the control value of 7.19 +/- 1.44 pA/pF to 4.74 +/- 0.75 pA/pF (n = 5, P < 0.05). This I(Ca,L)-inhibiting action of UCN was concentration dependent. Moreover, no frequency dependence of UCN effects on I(Ca,L) was observed. In combination with previous reports, our results suggest that there might be a close relationship between the cardioprotective effects of UCN and L-type calcium channels.
Collapse
Affiliation(s)
- Jin Tao
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
40
|
Abstract
Urocortin, a 40 amino acid peptide, is a corticotropin-releasing factor (CRF) related peptide, and can bind to all three types of CRF receptors (CRF type 1, type 2a and type 2b receptors) with higher affinities for these receptors than CRF. Immunoreactivity of urocortin is widely distributed in central nervous, digestive, cardiovascular, reproductive, immune and endocrine systems. Urocortin plays important roles in appetite-suppression, immunomodulation, steroidogenesis in the ovary, maintenance of the placental function, labor, and cardioprotection via CRF receptors. Although urocortin has potent adrenocorticotropin (ACTH) releasing activity in vitro, endogenous urocortin does not act on pituitary ACTH secretion in vivo.
Collapse
Affiliation(s)
- Yutaka Oki
- Department of Medicine, Second Division, School of Medicine, Hamamatsu University, 1-20-1 Handayama, Hamamatsu 431-3192, Japan.
| | | |
Collapse
|
41
|
Martinez V, Wang L, Million M, Rivier J, Taché Y. Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides 2004; 25:1733-44. [PMID: 15476940 DOI: 10.1016/j.peptides.2004.05.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Accepted: 05/08/2004] [Indexed: 12/13/2022]
Abstract
Urocortin (Ucn) 1, 2 and 3 are corticotropin-releasing factor (CRF)-related peptides recently characterized in mammals. Urocortin 1 binds with high affinity to CRF type 1 (CRF1) and type 2 (CRF2) receptors while Ucn 2 and Ucn 3 are selective CRF2 ligands. They also have a distinct pattern of distribution, both in the brain and the gastrointestinal tract, compatible with a role mediating, with CRF, the response to stress. In rats and mice, Ucn 1 injected centrally or peripherally inhibited gastric emptying and stimulated colonic propulsive motor function, mimicking the effects of stress or exogenous CRF. Centrally administered Ucn 2 inhibited gastric emptying with similar potency as CRF, while Ucn 1 and Ucn 3 were less potent. However, after peripheral administration, Ucn 1 and Ucn 2 were more potent than CRF. In mice, centrally administered Ucn 1 and 2 stimulated colonic motility with lower potency than CRF, and Ucn 3 was inactive. Studies with selective CRF1 and CRF2 antagonists demonstrated that the gastric-inhibitory and colonic-stimulatory effects of exogenously administered Ucns are mediated through CRF2 and CRF1 receptors, respectively. In addition, Ucn 2 showed visceral anti-nociceptive activity associated with the selective activation of CRF2 receptors. These observations suggest that, acting centrally and peripherally, Ucns might play a significant role in the modulation of gastrointestinal motor and pain responses during stress and stress-related pathophysiological conditions.
Collapse
Affiliation(s)
- Vicente Martinez
- Department of Medicine, CURE/Digestive Diseases Research Center, Center for Neurovisceral Sciences and Women's Health, University of California, Los Angeles, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
42
|
Takahashi K, Totsune K, Murakami O, Shibahara S. Urocortins as cardiovascular peptides. Peptides 2004; 25:1723-31. [PMID: 15476939 DOI: 10.1016/j.peptides.2004.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 04/14/2004] [Indexed: 11/21/2022]
Abstract
Urocortins (Ucn) 1, 2 and 3, human homologues of fish urotensin I, form the corticotropin-releasing factor (CRF) family, together with CRF, urotensin I and sauvagine. Ucn 3 is a novel member of this family and is a specific ligand for CRF type 2 receptor. CRF type 2 receptor is thought to mediate the stress-coping responses, such as anxiolysis, anorexia, vasodilatation, a positive inotropic action on myocardium and dearousal. Endogenous ligands for the CRF type 2 receptor expressed in the cardiovascular tissues, such as the myocardium, have long been unknown. We have shown expression of Ucn 3 as well as Ucn 1 in the human heart. Ucn 3 is also expressed in the kidney, particularly distal tubules. Studies in various rat tissues showed that high concentrations of immunoreactive Ucn 3 were found in the pituitary gland, adrenal gland, gastrointestinal tract, ovary and spleen in addition to the brain, heart and kidney. These observations suggest that Ucn 3 is expressed in various tissues including heart and kidney, and may regulate the circulation in certain aspects of stress and diseases, such as inflammation. Ucn 1 and 3 appear to have important pathophysiological roles in some cardiovascular diseases.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | | | | | | |
Collapse
|
43
|
Keck ME, Holsboer F, Müller MB. Mouse mutants for the study of corticotropin-releasing hormone receptor function: development of novel treatment strategies for mood disorders. Ann N Y Acad Sci 2004; 1018:445-57. [PMID: 15240401 DOI: 10.1196/annals.1296.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In today's psychiatry there is a great deal of interest in the development of compounds with a novel mechanism of action that diverge from the classical catecholaminergic neurotransmitter system targets. Within the last few years, it has become increasingly evident that the neuroendocrine and behavioral phenotypes of mood and anxiety disorders are at least in part mediated by modulation of corticotropin-releasing hormone (CRH) neurocircuitries and that normalization of an altered neurotransmission after treatment may lead to restoration of disease-related changes. Although this concept was originally derived from peripheral hypothalamic-pituitary-adrenocortical (HPA) assessments in depressed patients, central CRH neuropeptidergic circuits other than those driving the peripherally accessible HPA system may be overactive and could be therapeutic targets of antagonist actions. Genetically engineered mice provide a novel and useful tool to study the endogenous mechanisms underlying aberrant behavior and CRH neurocircuitry regulation. The results obtained from conventional and conditional mutant mice indicate that CRH type 1 receptors may be the primary target to which to direct selective nonpeptide compounds. Moreover, beyond the encouraging preclinical studies, the first clinical open trial supports the notion that CRH type 1 receptors can be safely and effectively antagonized.
Collapse
Affiliation(s)
- Martin E Keck
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| | | | | |
Collapse
|
44
|
Takahashi K. Translational medicine in fish-derived peptides: from fish endocrinology to human physiology and diseases. Endocr J 2004; 51:1-17. [PMID: 15004403 DOI: 10.1507/endocrj.51.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent studies have revealed the importance of fish-derived peptide hormones to human endocrinology. These peptides include melanin-concentrating hormone (MCH), urocortins (human urotensin-I), and urotensin-II. MCH, a hypothalamic peptide, is a potent stimulator on appetite. Urocortins, e.g. urocortin 1 and urocortin 3 (stresscopin), are endogenous ligands for the corticotropin-releasing factor (CRF) receptors, particularly CRF type 2 receptor, that mediates a vasodilator action, a positive inotropic action and a central appetite-inhibiting action. These actions mediated by CRF type 2 receptor may ameliorate the stress response. Human urotensin-II is a potent vasoconstrictor peptide, while it acts as a vasodilator on some arteries. Human urotensin-II is expressed in various types of cells and tissues, including cardiovascular tissues, as well as many types of tumor cells. Thus, these fish-derived peptides appear to play important roles in human physiology, such as appetite regulation, stress response and cardiovascular regulation, and also in diseases, for example, obesity, cardiovascular diseases and tumors. Development of antagonists/agonists against the receptors for these peptides may open new strategies for the treatment of various diseases, including obesity-related diseases, hypertension, heart failure and malignant tumors.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
45
|
Vasconcelos LAP, Donaldson C, Sita LV, Casatti CA, Lotfi CFP, Wang L, Cadinouche MZA, Frigo L, Elias CF, Lovejoy DA, Bittencourt JC. Urocortin in the central nervous system of a primate (Cebus apella): sequencing, immunohistochemical, and hybridization histochemical characterization. J Comp Neurol 2003; 463:157-75. [PMID: 12815753 DOI: 10.1002/cne.10742] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The urocortin (UCN)-like immunoreactivity and UCN mRNA distribution in various regions of the nonprimate mammalian brain have been reported. However, the Edinger-Westphal nucleus (EW) appears to be the only brain site where UCN expression is conserved across species. Although UCN peptides are present throughout vertebrate phylogeny, the functional roles of both UCN and EW remain poorly understood. Therefore, a study focused on UCN system organization in the primate brain is warranted. By using immunohistochemistry (single and double labeling) and in situ hybridization, we have characterized the organization of UCN-expressing cells and fibers in the central nervous system and pituitary of the capuchin monkey (Cebus apella). In addition, the sequence of the prepro-UCN was determined to establish the level of structural conservation relative to the human sequence. To understand the relationship of acetylcholine cells in the EW, a colocalization study comparing choline acetyltransferase (ChAT) and UCN was also performed. The cloned monkey prepro-UCN is 95% identical to the human preprohormone across the matched sequences. By using an antiserum raised against rat UCN and a probe generated from human cDNA, we found that the EW is the dominant site for UCN expression, although UCN mRNA is also expressed in spinal cord lamina IX. Labeled axons and terminals were distributed diffusely throughout many brain regions and along the length of the spinal cord. Of particular interest were UCN-immunoreactive inputs to the medial preoptic area, the paraventricular nucleus of the hypothalamus, the oral part of the spinal trigeminal nucleus, the flocculus of the cerebellum, and the spinal cord laminae VII and X. We found no UCN hybridization signal in the pituitary. In addition, we observed no colocalization between ChAT and UCN in EW neurons. Our results support the hypothesis that the UCN system might participate in the control of autonomic, endocrine, and sensorimotor functions in primates.
Collapse
Affiliation(s)
- Luciana A P Vasconcelos
- Pontifical Catholic University of Minas Gerais-Campus of Poços de Caldas, Minas Gerais 37701-355, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mori T, Murakami Y, Nishiki M, Koshimura K, Sasano H, Kato Y. Expression of hypothalamic corticotropin-releasing hormone-like immunoreactivity in isolated ACTH deficiency: a report of an autopsied case. J Endocrinol Invest 2003; 26:556-9. [PMID: 12952371 DOI: 10.1007/bf03345220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A 77-yr-old man died of metastising adenocarcinoma of the lung. He had been treated with hydrocortisone for isolated ACTH deficiency for 9 yr. At autopsy, the pituitary and the adrenal glands were atrophic. Lymphocyte infiltration was not observed in the pituitary, the adrenal and the thyroid glands. Immunohistochemistry revealed selective loss of ACTH-like immunoreactivity in the pituitary gland whereas CRH-immunoreactive cells were found in the paraventricular nucleus of the hypothalamus. This is the first report demonstrating immunohistochemical examinations of the pituitary and the hypothalamus in isolated ACTH deficiency.
Collapse
Affiliation(s)
- T Mori
- First Division, Department of Medicine, Shimane Medical University, Izumo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Kozicz T, Arimura A, Maderdrut JL, Lázár G. Distribution of urocortin-like immunoreactivity in the central nervous system of the frog Rana esculenta. J Comp Neurol 2002; 453:185-98. [PMID: 12373783 DOI: 10.1002/cne.10403] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Corticotropin-releasing factor (CRF), sauvagine, and urotensin I are all members of the so-called CRF neuropeptide family. Urocortin (Ucn), a 40-amino-acid neuropeptide recently isolated from the rat brain, is the newest member of this family. Until now, the distribution of Ucn in the central nervous system (CNS) has been studied only in placental mammals. We used a polyclonal antiserum against rat Ucn to determine the distribution of Ucn-like immunoreactivity in the CNS of the green frog, Rana esculenta. The great majority of Ucn-immunoreactive perikarya was seen in the anterior preoptic area, ventromedial thalamic nucleus, posterior tuberculum, nucleus of the medial longitudinal fasciculus, and Edinger-Westphal nucleus. Urocortin-immunoreactive nerve cells were also observed in the motor nuclei of the trigeminal and facial nerves and in the hypoglossal nucleus. Immunoreactive fibers were found in the medial and lateral septal nuclei, bed nucleus of the stria terminalis, many of the thalamic and hypothalamic nuclei, mesencephalic tectum, tegmental nuclei, torus semicircularis, and dorsal horn and central field of the spinal cord. Only scattered Ucn-immunoreactive axon terminals were observed in the external zone of the medial eminence. The densest accumulations of Ucn-immunoreactive nerve terminals were seen in the granular layer of the cerebellum and cochlear nuclei. Our results suggest that an ortholog of mammalian Ucn occurs in the CNS of the green frog. The distribution of Ucn-like immunoreactivity in Rana esculenta showed many similarities to the distribution in placental mammals. The distribution of Ucn-like immunoreactivity in the anuran CNS was different from that of CRF and sauvagine, so our results suggest that at least three different lineages of the CRF neuropeptide family occur in the anuran CNS.
Collapse
Affiliation(s)
- Tamás Kozicz
- Department of Human Anatomy, University of Pécs Medical Faculty, Pécs, H-7624 Hungary.
| | | | | | | |
Collapse
|
48
|
Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol 2002; 283:H1481-8. [PMID: 12234800 DOI: 10.1152/ajpheart.01089.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reperfusion of ischemic myocardium is essential for tissue salvage but paradoxically contributes to cell death. We hypothesized that activation of potential survival pathways such as p42/p44 MAPK may prevent lethal reperfusion injury. Urocortin is a peptide factor that affects the p42/p44 MAPK signaling pathway. Both isolated and in vivo rat heart models were used to examine the potential for urocortin to prevent reperfusion injury. Isolated rat hearts underwent 35-min regional ischemia and 2-h reperfusion, with urocortin perfused for 20 min from the onset of reperfusion. In the in vivo study, urocortin was administered as an intravenous bolus 3 min before reperfusion with a protocol of 25-min regional ischemia and 2-h reperfusion. Blockade of the p42/p44 MAPK pathway with the inhibitor PD-98059 was used in both models. Urocortin attenuated lethal reperfusion-induced injury both in vitro and in vivo via a p42/p44 MAPK-dependent mechanism. Furthermore, Western blot analysis demonstrated the ability of urocortin to directly upregulate this signaling pathway. In conclusion, we believe that the p42/p44 MAPK-dependent signaling pathway represents an important survival mechanism against reperfusion injury.
Collapse
Affiliation(s)
- Daniel Schulman
- The Hatter Institute for Cardiovascular Studies, University College London Hospital and Medical School, United Kingdom
| | | | | |
Collapse
|
49
|
Arcuri F, Cintorino M, Florio P, Floccari F, Pergola L, Romagnoli R, Petraglia F, Tosi P, Teresa Del Vecchio M. Expression of urocortin mRNA and peptide in the human prostate and in prostatic adenocarcinoma. Prostate 2002; 52:167-72. [PMID: 12111693 DOI: 10.1002/pros.10094] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Urocortin (UCN) is a recently described neuropeptide member of the CRF family, responsible for the secretion of the proopiomelanocortin-derived peptides from the pituitary gland. Although previous results have demonstrated the synthesis of several neuroendocrine factors in the prostate, no studies have been carried out on the expression of UCN in the human gland. METHODS UCN expression was evaluated in benign prostatic hyperplasia and prostatic tumor tissues by RT-PCR and immunohistochemistry. RESULTS UCN mRNA and peptide were demonstrated in all specimens tested. In nonneoplastic tissues, UCN was localized in the secretory luminal epithelial and basal layer cells, in the smooth muscle component of the stroma, and in lymphoid infiltrates. An intense immunostaining was evident in prostate adenocarcinoma cells. CONCLUSIONS The results of the present study demonstrate for the first time UCN expression in the human prostate and in prostate cancer, and suggest a potential involvement of UCN in prostate physiopathology.
Collapse
Affiliation(s)
- Felice Arcuri
- Institute of Pathological Anatomy and Histology, University of Siena, Siena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Holloway AC, Howe DC, Chan G, Clifton VL, Smith R, Challis JRG. Urocortin: a mechanism for the sustained activation of the HPA axis in the late-gestation ovine fetus? Am J Physiol Endocrinol Metab 2002; 283:E165-71. [PMID: 12067857 DOI: 10.1152/ajpendo.00497.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that urocortin might be produced in the pituitary of the late-gestation ovine fetus in a manner that could contribute to the regulation of ACTH output. We used in situ hybridization and immunohistochemistry to identify urocortin mRNA and protein in late-gestation fetal pituitary tissue. Levels of urocortin mRNA rose during late gestation and were associated temporally with rising concentrations of pituitary proopiomelanocortin (POMC) mRNA. Urocortin was localized both to cells expressing ACTH and to non-ACTH cells by use of dual immunofluorescence histochemistry. Transfection of pituitary cultures with urocortin antisense probe reduced ACTH output, whereas added urocortin stimulated ACTH output from cultured pituitary cells. Cortisol infusion for 96 h in chronically catheterized late-gestation fetal sheep significantly stimulated levels of pituitary urocortin mRNA. We conclude that urocortin is expressed in the ovine fetal pituitary and localizes with, and can stimulate output of, ACTH. Regulation of urocortin by cortisol suggests a mechanism to override negative feedback and sustain feedforward of fetal hypothalamic-pituitary-adrenal function, leading to birth.
Collapse
Affiliation(s)
- Alison C Holloway
- Department of Physiology, Canadian Institute for Health Research Groups in Fetal and Neonatal Health and Development, University of Toronto, Toronto, Ontario M55 1A8, Canada.
| | | | | | | | | | | |
Collapse
|