1
|
Amin MA, Zehravi M, Sweilam SH, Shatu MM, Durgawale TP, Qureshi MS, Durgapal S, Haque MA, Vodeti R, Panigrahy UP, Ahmad I, Khan SL, Emran TB. Neuroprotective potential of epigallocatechin gallate in Neurodegenerative Diseases: Insights into molecular mechanisms and clinical Relevance. Brain Res 2025; 1860:149693. [PMID: 40350140 DOI: 10.1016/j.brainres.2025.149693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis pose significant challenges due to their complex pathophysiology and lack of effective treatments. Green tea, rich in the epigallocatechin gallate (EGCG) polyphenolic component, has demonstrated potential as a neuroprotective agent with numerous medicinal applications. EGCG effectively reduces tau and Aβ aggregation in ND models, promotes autophagy, and targets key signaling pathways like Nrf2-ARE, NF-κB, and MAPK. This review explores the molecular processes that underlie EGCG's neuroprotective properties, including its ability to regulate mitochondrial dysfunction, oxidative stress, neuroinflammation, and protein misfolding. Clinical research indicates that EGCG may enhance cognitive and motor abilities, potentially inhibiting disease progression despite absorption and dose optimization limitations. The substance has been proven to slow the amyloidogenic process, prevent protein aggregation, decrease amyloid cytotoxicity, inhibit fibrillogenesis, and restructure fibrils for synergistic therapeutic effects. The review highlights the potential of EGCG as a natural, multi-targeted strategy for NDs but emphasizes the need for further clinical trials to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra 415539, India
| | - Mohammad Shamim Qureshi
- Department of Pharmacognosy & Phytochemistry, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad 500001, India
| | - Sumit Durgapal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun 248007, Uttarakhand, India
| | | | | | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| |
Collapse
|
2
|
Cheng W, Zeng W, Guo J, Dai J, Zhou F, Li F, Fang X. Radiomics analysis of substantia nigra on multi-echo susceptibility map-weighted imaging for differentiating Parkinson's disease from atypical parkinsonian syndromes. Acta Radiol 2025; 66:494-504. [PMID: 39992089 DOI: 10.1177/02841851251315707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
BackgroundWhile the "swallow tail" sign observed in the substantia nigra (SN) on susceptibility map-weighted imaging (SMWI) serves as an effective marker for differentiating patients with Parkinson's disease (PD) from healthy individuals, its visual assessment proves inadequate in differentiating PD from atypical Parkinson syndromes (APS).PurposeTo employ radiomic features extracted from multi-echo SMWI of the SN to distinguish between PD and APS.Material and MethodsSMWI data were acquired from 63 PD patients, 38 APS patients, and 89 healthy controls. The participants were randomly assigned to either training or test groups in a 7:3 proportion. Utilizing the PyRadiomics software, a set of radiomic features were extracted from SN for analysis. Features underwent standardization via the maximum-minimum method, with 166 statistically significant features identified through independent t-tests. To minimize the risk of overfitting, the least absolute shrinkage and selection operator (LASSO) algorithm was implemented to identify and select the five most significant features from the radiomic dataset. Five distinct machine-learning classifiers were developed to distinguish between PD, APS, and healthy controls. The SHapley Additive Explanations was employed to gain insights into and visualize the relative importance of each feature within these models.ResultsMorphological, first-order, texture, and wavelet transform features of the SN emerged as the most crucial determinants. The light gradient-boosting machine model demonstrated superior performance in distinguishing between PD, APS, and healthy controls.ConclusionRadiomic features of the SN derived from SMWI show promise in differentiating PD from APS, potentially enhancing diagnostic accuracy in clinical settings.
Collapse
Affiliation(s)
- Weiling Cheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
- Clinical Research Center for Medical Imaging, Nanchang, PR China
| | - Wei Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
- Clinical Research Center for Medical Imaging, Nanchang, PR China
| | - Jiali Guo
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Jiankun Dai
- MRI Research, GE Healthcare, Beijing, PR China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
- Clinical Research Center for Medical Imaging, Nanchang, PR China
| | - Fangjun Li
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Xin Fang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| |
Collapse
|
3
|
Bhagaloo KA, Yu L, West EA, Chandler DJ, Shcherbik N. Alterations in iron levels in the locus coeruleus of a transgenic Alzheimer's disease rat model. Neurosci Lett 2025; 850:138151. [PMID: 39922529 DOI: 10.1016/j.neulet.2025.138151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Iron is essential for brain function, acting as a cofactor for enzymes involved in neurotransmitter synthesis and metabolism. However, dysregulated iron homeostasis is increasingly linked to neurodegenerative diseases, including Alzheimer's disease (AD). The locus coeruleus (LC), a norepinephrine-producing brainstem nucleus, is among the earliest regions affected in AD, yet its iron dynamics remain poorly understood. This study presents the first comprehensive analysis of iron content in the LC by combining a transgenic AD rat model, precise anatomical isolation, and Inductively Coupled Plasma Mass Spectrometry for high-sensitivity metal quantification. This approach enabled the profiling of iron and zinc concentrations in the LC, uncovering novel insights into iron dysregulation in AD. We observed a significant genotype-specific increase in LC iron levels in TgF344-AD rats compared to wild-type controls. Notably, our findings reveal distinct iron alterations in TgF344-AD rats, suggesting a previously unrecognized role for iron homeostasis in LC dysfunction. These results provide new perspectives on iron dysregulation in AD pathology and its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Lei Yu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, United States
| | - Elizabeth A West
- Department of Cell Biology and Neuroscience, Rowan-Virtua SOM, Stratford, NJ, 08084, United States
| | - Daniel J Chandler
- Department of Cell Biology and Neuroscience, Rowan-Virtua SOM, Stratford, NJ, 08084, United States
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan-Virtua SOM, Stratford, NJ, 08084, United States; Department of Molecular Biology, Rowan-Virtua SOM, Stratford, NJ, 08084, United States.
| |
Collapse
|
4
|
Streit WJ, Phan L, Bechmann I. Ferroptosis and pathogenesis of neuritic plaques in Alzheimer disease. Pharmacol Rev 2025; 77:100005. [PMID: 39952690 DOI: 10.1124/pharmrev.123.000823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/25/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
Neuritic plaques are pathognomonic and terminal lesions of Alzheimer disease (AD). They embody AD pathogenesis because they harbor in one space critical pathologic features of the disease: amyloid deposits, neurofibrillary degeneration, neuroinflammation, and iron accumulation. Neuritic plaques are thought to arise from the conversion of diffuse extracellular deposits of amyloid-β protein (Aβ), and it is believed that during conversion, amyloid toxicity creates the dystrophic neurites of neuritic plaques, as well as neurofibrillary tangles However, recent evidence from human postmortem studies suggests a much different mechanism of neuritic plaque formation, where the first step in their creation is neuronal degeneration driven by iron overload and ferroptosis. Similarly, neurofibrillary tangles represent the corpses of iron-laden neurons that develop independently of Aβ deposits. In this review, we will focus on the role of free redox-active iron in the development of typical AD pathology, as determined largely by evidence obtained in the human temporal lobe during early, preclinical stages of AD. The findings have allowed the construction of a scheme of AD pathogenesis where brain iron is center stage and is involved in every step of the sequence of events that produce characteristic AD pathology. We will discuss how the study of preclinical AD has produced a fresh and revised assessment of AD pathogenesis that may be important for reconsidering current therapeutic efforts and guiding future ones. SIGNIFICANCE STATEMENT: This review offers a novel perspective on Alzheimer disease pathogenesis where elevated brain iron plays a central role and is involved throughout the development of lesions. Herein, we review arguments against the amyloid cascade theory and explain how recent findings in humans during early preclinical disease support iron-mediated cell death and endogenous iron containment mechanisms as critical components of neuritic plaque formation and ensuing dementia.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida.
| | - Leah Phan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Mayr E, Rotter J, Kuhrt H, Winter K, Stassart RM, Streit WJ, Bechmann I. Detection of molecular markers of ferroptosis in human Alzheimer's disease brains. J Alzheimers Dis 2024; 102:1133-1154. [PMID: 39529255 DOI: 10.1177/13872877241296563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND We have previously shown that droplet degeneration (DD) signifies the beginning of neuritic plaque formation during Alzheimer's disease (AD) pathogenesis. As microglia associated with neuritic plaques exhibited strong ferritin expression and Perl's iron staining showed iron in microglia, droplet spheres and neuritic plaque cores, we hypothesized that DD is a form of ferroptosis. OBJECTIVE Detection of molecular markers of ferroptosis in AD brains. METHODS Immunohistochemical detection of transferrin receptor (TfR) and ferritin as ferroptosis markers in prefrontal cortex of AD brains, investigation of spatial correlation of these with histopathological hallmarks of AD, visualization of ferroptotic marker genes by in situ hybridization, comparison of expression of ferroptosis genes with snRNAseq analyses and comparison of TfR and ferritin expression in different neurofibrillary tangle (NFT) stages. RESULTS TfR was found on neurons that appeared to be degenerating and exhibited typical features of droplet degeneration. Co-localization with hyperphosphorylated tau (p-tau) was a rare event. TfR-positive neurons increased with higher NFT stages as did ferritin expression in microglia. mRNA of genes linked to ferroptosis was detected in pretangles and p-tau negative neurons, less in DD. snRNAseq analyses support a link between AD, ferroptosis and TfR as a ferroptosis marker. CONCLUSIONS Increased expression of TfR and ferritin in high NFT stages, demonstration of ferroptotic marker genes in Alzheimer's lesions, as well as snRNAseq analyses strengthen our hypothesis that DD represents ferroptosis. Because of the morphological similarity between TfR-positive structures and DD, TfR might be an early ferroptosis marker expressed transiently during AD pathogenesis.
Collapse
Affiliation(s)
- Emily Mayr
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Jonas Rotter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Heidrun Kuhrt
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Ruth Martha Stassart
- Paul Flechsig Institute of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| |
Collapse
|
6
|
Katrib C, Hladky H, Timmerman K, Durieux N, Dutheil N, Bezard E, Devos D, Laloux C, Betrouni N. Magnetic resonance imaging characterization of an α-synuclein model of Parkinson's disease. Eur J Neurosci 2024; 60:7038-7057. [PMID: 39551614 DOI: 10.1111/ejn.16610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by three histological hallmarks: dopaminergic neuronal degeneration, α-synuclein accumulation and iron deposition. Over the last years, neuroimaging, particularly magnetic resonance imaging (MRI) has provided invaluable insights into the mechanisms underlying the disease. However, no imaging method has yet been able to translate α-synuclein protein accumulation and spreading. Amongst the animal models mimicking the disease, the α-synuclein rat, generated through the injection of human α-synuclein, has been characterized in terms of behavioural and histological aspects but not thoroughly explored in MRI. The aim of this study is, therefore, to identify the radiological signature from several MRI sequences, while controlling for histological and behavioural characteristics. Rats were assessed for motor and cognitive functions over a 4-month period. During this time, three MRI sessions, including both morphological and functional sequences, were conducted. Histological studies evaluated the three main hallmarks of PD. The progressive dopaminergic neurodegeneration and the spread of human α-synuclein corresponded to the level of sensorimotor, attentional and learning deficits observed in this PD model. MRI analyses showed progressive structural abnormalities in the midbrain, diencephalon and several cortical structures, as well as a pattern of hyperconnectivity in the basal ganglia and cortical networks. The regions affected in imaging demonstrated the highest load of human α-synuclein. This model's structural and functional MRI changes could serve as indirect indicators of α-synuclein accumulation and its association with impaired non-motor functions.
Collapse
Affiliation(s)
- Chirine Katrib
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Hector Hladky
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Kelly Timmerman
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Nicolas Durieux
- US41-UAR2014 PLBS, Lille In vivo imaging and functional exploration platform, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nathalie Dutheil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Charlotte Laloux
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
- US41-UAR2014 PLBS, Lille In vivo imaging and functional exploration platform, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nacim Betrouni
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| |
Collapse
|
7
|
Gromova OA, Torshin II, Chuchalin AG. [Ferritin as a biomarker of aging: geroprotective peptides of standardized human placental hydrolysate. A review]. TERAPEVT ARKH 2024; 96:826-835. [PMID: 39404729 DOI: 10.26442/00403660.2024.08.202811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 10/25/2024]
Abstract
Ferritin, an iron transport protein, is an acute phase protein of inflammation and oxidative stress (OS), a biomarker of cytolysis and ferroptosis. Inflammation, OS and iron overload are characteristic processes of the pathophysiology of aging. Human placental hydrolysates (HPHs) are promising hepatoprotective agents for anti-aging therapy. The goal of the team of authors was to systematize data on ferritin as a marker of aging and to identify peptides that counteract the aging pathophysiology, including through the regulation of iron and ferritin metabolism, in the HPH Laennec (manufactured by Japan Bioproducts). The results of basic and clinical studies confirm the above relationships and indicate that blood ferritin levels characterize the chronological and biological aging of the human body.
Collapse
Affiliation(s)
- O A Gromova
- Federal Research Center "Informatics and Control"
| | - I I Torshin
- Federal Research Center "Informatics and Control"
| | - A G Chuchalin
- Pirogov Russian National Research Medical University
| |
Collapse
|
8
|
Brooks J, Everett J, Hill E, Billimoria K, Morris CM, Sadler PJ, Telling N, Collingwood JF. Nanoscale synchrotron x-ray analysis of intranuclear iron in melanised neurons of Parkinson's substantia nigra. Commun Biol 2024; 7:1024. [PMID: 39164395 PMCID: PMC11335769 DOI: 10.1038/s42003-024-06636-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Neuromelanin-pigmented neurons of the substantia nigra are selectively lost during the progression of Parkinson's disease. These neurons accumulate iron in the disease state, and iron-mediated neuron damage is implicated in cell death. Animal models of Parkinson's have evidenced iron loading inside the nucleoli of nigral neurons, however the nature of intranuclear iron deposition in the melanised neurons of the human substantia nigra is not understood. Here, scanning transmission x-ray microscopy (STXM) is used to probe iron foci in relation to the surrounding ultrastructure in melanised neurons of human substantia nigra from a confirmed Parkinson's case. In addition to the expected neuromelanin-bound iron, iron deposits are also associated with the edge of the cell nucleolus. Speciation analysis confirms these deposits to be ferric (Fe3+) iron. The function of intranuclear iron in these cells remains unresolved, although both damaging and protective mechanisms are considered. This finding shows that STXM is a powerful label-free tool for the in situ, nanoscale chemical characterisation of both organic and inorganic intracellular components. Future applications are likely to shed new light on incompletely understood biochemical mechanisms, such as metal dysregulation and morphological changes to cell nucleoli, that are important in understanding the pathogenesis of Parkinson's.
Collapse
Affiliation(s)
- Jake Brooks
- School of Engineering, Library Road, University of Warwick, Coventry, CV4 7AL, UK.
| | - James Everett
- School of Engineering, Library Road, University of Warwick, Coventry, CV4 7AL, UK
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Thornburrow Drive, Keele University, Staffordshire, ST4 7QB, UK
| | - Emily Hill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Kharmen Billimoria
- School of Engineering, Library Road, University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Institute of Neuroscience, Newcastle University, Newcastle-upon-Tyne, NE4 5PL, UK
| | - Peter J Sadler
- Department of Chemistry, Library Road, University of Warwick, Coventry, CV4 7AL, UK
| | - Neil Telling
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Thornburrow Drive, Keele University, Staffordshire, ST4 7QB, UK
| | - Joanna F Collingwood
- School of Engineering, Library Road, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
9
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
10
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
11
|
Takahata S, Kato T, Yanagisawa D, Tsubaki H, Hafiz Abu Bakar Z, Mukaisho KI, Itoh Y, Tooyama I. Immunohistochemical Study of Human Mitochondrial Ferritin in the Substantia Nigra Following Subarachnoid Hemorrhage. Acta Histochem Cytochem 2024; 57:101-108. [PMID: 38988693 PMCID: PMC11231567 DOI: 10.1267/ahc.24-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 07/12/2024] Open
Abstract
Mitochondrial ferritin (FtMt) is a novel ferritin that sequesters iron and plays a protective role against oxidative stress. FtMt shares a high homology with H-ferritin but is expressed only in the brain, heart, and testis. In the midbrain, FtMt expression is observed in the substantia nigra. FtMt plays a neuroprotective role in the pathology of neurodegenerative diseases such as Parkinson's disease, where excessive iron induces oxidative stress, causing cell death. Herein, we investigated FtMt immunoreactivity in the brains of patients with subarachnoid hemorrhage (SAH). Double immunofluorescence labeling of tyrosine hydroxylase (TH) and FtMt showed high colocalization in the substantia nigra pars compacta (SNc) in control and SAH cases. However, in SAH cases, FtMt immunoreactivity was observed in some TH-negative neurons. Double immunofluorescence labeling of glial cell markers and FtMt showed no apparent colocalization. The number and ratio of FtMt-positive but TH-negative neurons significantly differed between the control and SAH groups. Prussian blue staining in SAH cases showed positive iron staining over a wide surface range and the substantia nigra. Thus, FtMt may be related to iron dynamics in the substantia nigra following subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Shogo Takahata
- Medical Innovation Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Tomoko Kato
- Medical Innovation Research Center, Shiga University of Medical Science, Shiga, Japan
- National Hospital Organization Tottori Medical Center, Tottori, Japan
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Haruka Tsubaki
- Medical Innovation Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Zulzikry Hafiz Abu Bakar
- Medical Innovation Research Center, Shiga University of Medical Science, Shiga, Japan
- Systems Biology Ireland, University College Dublin, Belfield, Ireland
| | - Ken-Ichi Mukaisho
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Shiga, Japan
| | - Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Shiga, Japan
- Central Research Laboratory, Shiga University of Medical Science, Shiga, Japan
| | - Ikuo Tooyama
- Medical Innovation Research Center, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
12
|
Hackett MJ. A commentary on studies of brain iron accumulation during ageing. J Biol Inorg Chem 2024; 29:385-394. [PMID: 38735007 PMCID: PMC11186910 DOI: 10.1007/s00775-024-02060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Brain iron content is widely reported to increase during "ageing", across multiple species from nematodes, rodents (mice and rats) and humans. Given the redox-active properties of iron, there has been a large research focus on iron-mediated oxidative stress as a contributor to tissue damage during natural ageing, and also as a risk factor for neurodegenerative disease. Surprisingly, however, the majority of published studies have not investigated brain iron homeostasis during the biological time period of senescence, and thus knowledge of how brain homeostasis changes during this critical stage of life largely remains unknown. This commentary examines the literature published on the topic of brain iron homeostasis during ageing, providing a critique on limitations of currently used experimental designs. The commentary also aims to highlight that although much research attention has been given to iron accumulation or iron overload as a pathological feature of ageing, there is evidence to support functional iron deficiency may exist, and this should not be overlooked in studies of ageing or neurodegenerative disease.
Collapse
Affiliation(s)
- Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
13
|
Suryana E, Rowlands BD, Bishop DP, Finkelstein DI, Double KL. Empirically derived formulae for calculation of age- and region-related levels of iron, copper and zinc in the adult C57BL/6 mouse brain. Neurobiol Aging 2024; 136:34-43. [PMID: 38301453 DOI: 10.1016/j.neurobiolaging.2024.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/05/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Metal dyshomeostasis is associated with neurodegenerative disorders, cancers and vascular disease. We report the effects of age (range: 3 to 18 months) on regional copper, iron and zinc levels in the brain of the C57BL/6 mouse, a widely used inbred strain with a permissive background allowing maximal expression of mutations in models that recapitulate these disorders. We present formulae that can be used to determine regional brain metal concentrations in the C57BL/6 mouse at any age in the range of three to eighteen months of life. Copper levels in the C57BL/6 mouse adult brain were highest in the striatum and cerebellum and increased with age, excepting the cortex and hippocampus. Regional iron levels increased linearly with age in all brain regions, while regional zinc concentrations became more homogeneous with age. Knockdown of the copper transporter Ctr1 reduced brain copper, but not iron or zinc, concentrations in a regionally-dependent manner. These findings demonstrate biometals in the brain change with age in a regionally-dependent manner. These data and associated formulae have implications for improving design and interpretation of a wide variety of studies in the C57BL/6 mouse.
Collapse
Affiliation(s)
- E Suryana
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - B D Rowlands
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - D P Bishop
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - D I Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - K L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
14
|
Zeng W, Cai J, Zhang L, Peng Q. Iron Deposition in Parkinson's Disease: A Mini-Review. Cell Mol Neurobiol 2024; 44:26. [PMID: 38393383 PMCID: PMC10891198 DOI: 10.1007/s10571-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results. In this review, we provide an overview of iron deposition in PD, from both basic research and clinical perspectives. PD patients exhibit abnormalities in various iron metabolism-related proteins, leading to disruptions in iron distribution, transport, storage, and circulation, ultimately resulting in iron deposition. Excess iron can induce oxidative stress and iron-related cell death, and exacerbate mitochondrial dysfunction, contributing to the progression of PD pathology. Magnetic resonance imaging studies have indicated that the characteristics of iron deposition in the brains of PD patients vary. Iron deposition correlates with the clinical symptoms of PD, and patients with different disease courses and clinical presentations display distinct patterns of iron deposition. These iron deposition patterns may contribute to PD diagnosis. Iron deposition is a promising target for PD treatment. However, further research is required to elucidate the underlying mechanisms and their impacts on PD.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan, China
| | - Jin Cai
- Department of Cardiology, The Second Hospital of Zhangzhou, Zhangzhou, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiwei Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Shukla D, Goel A, Mandal PK, Joon S, Punjabi K, Arora Y, Kumar R, Mehta VS, Singh P, Maroon JC, Bansal R, Sandal K, Roy RG, Samkaria A, Sharma S, Sandhilya S, Gaur S, Parvathi S, Joshi M. Glutathione Depletion and Concomitant Elevation of Susceptibility in Patients with Parkinson's Disease: State-of-the-Art MR Spectroscopy and Neuropsychological Study. ACS Chem Neurosci 2023; 14:4383-4394. [PMID: 38050970 PMCID: PMC10739611 DOI: 10.1021/acschemneuro.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Parkinson's disease (PD) is characterized by extrapyramidal motor disturbances and nonmotor cognitive impairments which impact activities of daily living. Although the etiology of PD is still obscure, autopsy reports suggest that oxidative stress (OS) is one of the important factors in the pathophysiology of PD. In the current study, we have investigated the impact of OS in PD by measuring the antioxidant glutathione (GSH) levels from the substantia nigra (SN), left hippocampus (LH) and neurotransmitter γ-amino butyric acid (GABA) levels from SN region. Concomitant quantitative susceptibility mapping (QSM) from SN and LH was also acquired from thirty-eight PD patients and 30 age-matched healthy controls (HC). Glutathione levels in the SN region decreased significantly and susceptibility increased significantly in PD compared to HC. Nonsignificant depletion of GABA was observed in the SN region. GSH levels in the LH region were depleted significantly, but LH susceptibility did not alter in the PD cohort compared to HC. Neuropsychological and physical assessment demonstrated significant impairment of cognitive functioning in PD patients compared to HC. GSH depletion was negatively correlated to motor function performance. Multivariate receiver operating characteristic (ROC) curve analysis on the combined effect of GSH, GABA, and susceptibility in the SN region yielded an improved diagnostic accuracy of 86.1% compared to individual diagnostic accuracy based on GSH (65.8%), GABA (57.5%), and susceptibility (69.6%). This is the first comprehensive report in PD demonstrating significant GSH depletion as well as concomitant iron enhancement in the SN region.
Collapse
Affiliation(s)
- Deepika Shukla
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Anshika Goel
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Pravat K. Mandal
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
- Florey
Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Department
of Neurosurgery, University of Pittsburgh
Medical School, Pittsburgh, Pennsylvania 15213, United States
| | - Shallu Joon
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Khushboo Punjabi
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Yashika Arora
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Rajnish Kumar
- Department
of Neurology, Paras Hospitals, Gurgaon, Haryana 122002, India
| | - Veer Singh Mehta
- Department
of Neurosurgery, Paras Hospitals, Gurgaon, Haryana 122002, India
| | - Padam Singh
- Department
of Biostatistics, Medanta Medicity, Gurgaon, Haryana 122001, India
| | - Joseph C. Maroon
- Department
of Neurosurgery, University of Pittsburgh
Medical School, Pittsburgh, Pennsylvania 15213, United States
| | - Rishu Bansal
- Department
of Neurology, Medanta Medicity, Gurgaon, Haryana 122001, India
| | - Kanika Sandal
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Rimil Guha Roy
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Avantika Samkaria
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Shallu Sharma
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Sandhya Sandhilya
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Shradha Gaur
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - S. Parvathi
- Department
of Biostatistics, Medanta Medicity, Gurgaon, Haryana 122001, India
| | - Mallika Joshi
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| |
Collapse
|
16
|
Yang X, Wang M, Liu W, Hou M, Zhao J, Huang X, Wang M, Zheng J, Wang X. Quantitative susceptibility mapping in rats with minimal hepatic encephalopathy: Does iron overload aggravate cognitive impairment by promoting neuroinflammation? Neuroimage 2023; 283:120418. [PMID: 37866757 DOI: 10.1016/j.neuroimage.2023.120418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/08/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND AND AIMS Minimal hepatic encephalopathy (MHE) is a mild form of hepatic encephalopathy that lacks observable signs and symptoms. Nevertheless, MHE can cause neurocognitive dysfunction, although the neurobiological mechanisms are not fully understood. Here, the effects of hippocampal iron deposition on cognitive function and its role in MHE were investigated. MATERIALS AND METHODS Eighteen rats were assigned to experimental and control groups. MHE was induced by thioacetamide. Spatial memory and exploratory behavior were assessed by the Morris water and elevated plus mazes. Hippocampal susceptibility was measured by quantitative susceptibility mapping, iron deposition in the hippocampus and liver by Prussian blue staining, and inflammatory cytokine and ferritin levels in the hippocampus were measured by ELISA. RESULTS MHE rats showed impaired spatial memory and exploratory behavior (P < 0.05 for all parameters). The bilateral hippocampal susceptibility values were significantly raised in MHE rats, together with evidence of neuroinflammation (increased pro-inflammatory and reduced anti-inflammatory cytokine levels (all P < 0.05). Further analysis indicated good correlations between hippocampal susceptibility values with latency time and inflammatory cytokine levels in MHE but not in control rats. CONCLUSION MHE induced by thioacetamide was associated with hippocampal iron deposition and inflammation, suggesting that iron overload may be an important driver of neuroinflammatory responses.
Collapse
Affiliation(s)
- Xuhong Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Minglei Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Wenxiao Liu
- Department of Radiology, the Fourth Medical Center, Chinese PLA General Hospital, Beijing 100037, China
| | - Mingli Hou
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jianguo Zhao
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xueying Huang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Minxing Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Jiarui Zheng
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaodong Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
17
|
Fu D, Liang X, Jiang Y, Liu J, Lin X, Yang Q, Chen X, Huang P, Wang W, Wu W. Iron blocks autophagic flux and induces autophagosomes accumulation in microglia. Food Chem Toxicol 2023; 181:114054. [PMID: 37777083 DOI: 10.1016/j.fct.2023.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Iron is an essential dietary micronutrient for maintaining physiological homeostasis. However, disruption of cerebral iron regulation with the accumulation of iron in different brain structures appears to have a role in the pathogenesis of various neurodegenerative disorders. Studies have reported that autophagy induction could potentially mitigate progression in neurodegenerative diseases with iron deposition, but the relationship between autophagy and iron remains poorly understood. Meanwhile, abnormal autophagy in microglia is closely related to the occurrence of neurodegenerative diseases. Therefore, the effect of iron on microglia autophagy needs to be elaborated. In the present study, we found that iron induces autophagosome accumulation but inhibits its initiation in an Akt-mTOR pathway independent manner. Meanwhile, it caused autophagy flux defects and dysfunction of lysosomes. We also found that iron overload reduced the expression of Rab7, which is an essential protein for the fusion of autophagosomes and lysosomes. These results suggest that iron induces the accumulation of autophagosome in microglia and disrupts the autophagic flux in late stage of autophagy. Therefore, our work provides new insights into the molecular mechanisms of iron neurotoxicity.
Collapse
Affiliation(s)
- Deqiang Fu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xingyue Liang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China; School of Advance Manufacture, Fuzhou University, Jinjiang, 362251, China
| | - Yuxuan Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Jieping Liu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Xiaosi Lin
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Quan Yang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Xue Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Ping Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Wei Wang
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Wenlin Wu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China; School of Advance Manufacture, Fuzhou University, Jinjiang, 362251, China.
| |
Collapse
|
18
|
Doroszkiewicz J, Farhan JA, Mroczko J, Winkel I, Perkowski M, Mroczko B. Common and Trace Metals in Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2023; 24:15721. [PMID: 37958705 PMCID: PMC10649239 DOI: 10.3390/ijms242115721] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Trace elements and metals play critical roles in the normal functioning of the central nervous system (CNS), and their dysregulation has been implicated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In a healthy CNS, zinc, copper, iron, and manganese play vital roles as enzyme cofactors, supporting neurotransmission, cellular metabolism, and antioxidant defense. Imbalances in these trace elements can lead to oxidative stress, protein aggregation, and mitochondrial dysfunction, thereby contributing to neurodegeneration. In AD, copper and zinc imbalances are associated with amyloid-beta and tau pathology, impacting cognitive function. PD involves the disruption of iron and manganese levels, leading to oxidative damage and neuronal loss. Toxic metals, like lead and cadmium, impair synaptic transmission and exacerbate neuroinflammation, impacting CNS health. The role of aluminum in AD neurofibrillary tangle formation has also been noted. Understanding the roles of these elements in CNS health and disease might offer potential therapeutic targets for neurodegenerative disorders. The Codex Alimentarius standards concerning the mentioned metals in foods may be one of the key legal contributions to safeguarding public health. Further research is needed to fully comprehend these complex mechanisms and develop effective interventions.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jakub Ali Farhan
- Department of Public International Law and European Law, Faculty of Law, University of Bialystok, 15-089 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Maciej Perkowski
- Department of Public International Law and European Law, Faculty of Law, University of Bialystok, 15-089 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
19
|
Wang P, Chen Q, Tang Z, Wang L, Gong B, Li M, Li S, Yang M. Uncovering ferroptosis in Parkinson's disease via bioinformatics and machine learning, and reversed deducing potential therapeutic natural products. Front Genet 2023; 14:1231707. [PMID: 37485340 PMCID: PMC10358855 DOI: 10.3389/fgene.2023.1231707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Objective: Ferroptosis, a novel form of cell death, is closely associated with excessive iron accumulated within the substantia nigra in Parkinson's disease (PD). Despite extensive research, the underlying molecular mechanisms driving ferroptosis in PD remain elusive. Here, we employed a bioinformatics and machine learning approach to predict the genes associated with ferroptosis in PD and investigate the interactions between natural products and their active ingredients with these genes. Methods: We comprehensively analyzed differentially expressed genes (DEGs) for ferroptosis associated with PD (PDFerDEGs) by pairing 3 datasets (GSE7621, GSE20146, and GSE202665) from the NCBI GEO database and the FerrDb V2 database. A machine learning approach was then used to screen PDFerDEGs for signature genes. We mined the interacted natural product components based on screened signature genes. Finally, we mapped a network combined with ingredients and signature genes, then carried out molecular docking validation of core ingredients and targets to uncover potential therapeutic targets and ingredients for PD. Results: We identified 109 PDFerDEGs that were significantly enriched in biological processes and KEGG pathways associated with ferroptosis (including iron ion homeostasis, iron ion transport and ferroptosis, etc.). We obtained 29 overlapping genes and identified 6 hub genes (TLR4, IL6, ADIPOQ, PTGS2, ATG7, and FADS2) by screening with two machine learning algorithms. Based on this, we screened 263 natural product components and subsequently mapped the "Overlapping Genes-Ingredients" network. According to the network, top 5 core active ingredients (quercetin, 17-beta-estradiol, glycerin, trans-resveratrol, and tocopherol) were molecularly docked to hub genes to reveal their potential role in the treatment of ferroptosis in PD. Conclusion: Our findings suggested that PDFerDEGs are associated with ferroptosis and play a role in the progression of PD. Taken together, core ingredients (quercetin, 17-beta-estradiol, glycerin, trans-resveratrol, and tocopherol) bind well to hub genes (TLR4, IL6, ADIPOQ, PTGS2, ATG7, and FADS2), highlighting novel biomarkers for PD.
Collapse
Affiliation(s)
- Peng Wang
- Postgraduate School, Medical School of Chinese PLA, Beijing, China
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Chen
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhuqian Tang
- School of Pharmacy, Key Laboratory for Modern Research of Traditional Chinese Medicine of Jiangsu, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu, China
| | - Liang Wang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bizhen Gong
- Postgraduate School, Medical School of Chinese PLA, Beijing, China
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Min Li
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shaodan Li
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Minghui Yang
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Riederer P, Nagatsu T, Youdim MBH, Wulf M, Dijkstra JM, Sian-Huelsmann J. Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson's disease. J Neural Transm (Vienna) 2023; 130:627-646. [PMID: 37062012 PMCID: PMC10121516 DOI: 10.1007/s00702-023-02630-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/17/2023]
Abstract
Since the description of some peculiar symptoms by James Parkinson in 1817, attempts have been made to define its cause or at least to enlighten the pathology of "Parkinson's disease (PD)." The vast majority of PD subtypes and most cases of sporadic PD share Lewy bodies (LBs) as a characteristic pathological hallmark. However, the processes underlying LBs generation and its causal triggers are still unknown. ɑ-Synuclein (ɑ-syn, encoded by the SNCA gene) is a major component of LBs, and SNCA missense mutations or duplications/triplications are causal for rare hereditary forms of PD. Thus, it is imperative to study ɑ-syn protein and its pathology, including oligomerization, fibril formation, aggregation, and spreading mechanisms. Furthermore, there are synergistic effects in the underlying pathogenic mechanisms of PD, and multiple factors-contributing with different ratios-appear to be causal pathological triggers and progression factors. For example, oxidative stress, reduced antioxidative capacity, mitochondrial dysfunction, and proteasomal disturbances have each been suggested to be causal for ɑ-syn fibril formation and aggregation and to contribute to neuroinflammation and neural cell death. Aging is also a major risk factor for PD. Iron, as well as neuromelanin (NM), show age-dependent increases, and iron is significantly increased in the Parkinsonian substantia nigra (SN). Iron-induced pathological mechanisms include changes of the molecular structure of ɑ-syn. However, more recent PD research demonstrates that (i) LBs are detected not only in dopaminergic neurons and glia but in various neurotransmitter systems, (ii) sympathetic nerve fibres degenerate first, and (iii) at least in "brain-first" cases dopaminergic deficiency is evident before pathology induced by iron and NM. These recent findings support that the ɑ-syn/LBs pathology as well as iron- and NM-induced pathology in "brain-first" cases are important facts of PD pathology and via their interaction potentiate the disease process in the SN. As such, multifactorial toxic processes posted on a personal genetic risk are assumed to be causal for the neurodegenerative processes underlying PD. Differences in ratios of multiple factors and their spatiotemporal development, and the fact that common triggers of PD are hard to identify, imply the existence of several phenotypical subtypes, which is supported by arguments from both the "bottom-up/dual-hit" and "brain-first" models. Therapeutic strategies are necessary to avoid single initiation triggers leading to PD.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000, Odense, Denmark.
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | | | - Max Wulf
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801, Bochum, Germany
| | | | | |
Collapse
|
21
|
Nagatsu T, Nakashima A, Watanabe H, Ito S, Wakamatsu K, Zucca FA, Zecca L, Youdim M, Wulf M, Riederer P, Dijkstra JM. The role of tyrosine hydroxylase as a key player in neuromelanin synthesis and the association of neuromelanin with Parkinson's disease. J Neural Transm (Vienna) 2023; 130:611-625. [PMID: 36939908 PMCID: PMC10121510 DOI: 10.1007/s00702-023-02617-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023]
Abstract
The dark pigment neuromelanin (NM) is abundant in cell bodies of dopamine (DA) neurons in the substantia nigra (SN) and norepinephrine (NE) neurons in the locus coeruleus (LC) in the human brain. During the progression of Parkinson's disease (PD), together with the degeneration of the respective catecholamine (CA) neurons, the NM levels in the SN and LC markedly decrease. However, questions remain among others on how NM is associated with PD and how it is synthesized. The biosynthesis pathway of NM in the human brain has been controversial because the presence of tyrosinase in CA neurons in the SN and LC has been elusive. We propose the following NM synthesis pathway in these CA neurons: (1) Tyrosine is converted by tyrosine hydroxylase (TH) to L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted by aromatic L-amino acid decarboxylase to DA, which in LC neurons is converted by dopamine β-hydroxylase to NE; (2) DA or NE is autoxidized to dopamine quinone (DAQ) or norepinephrine quinone (NEQ); and (3) DAQ or NEQ is converted to eumelanic NM (euNM) and pheomelanic NM (pheoNM) in the absence and presence of cysteine, respectively. This process involves proteins as cysteine source and iron. We also discuss whether the NM amounts per neuromelanin-positive (NM+) CA neuron are higher in PD brain, whether NM quantitatively correlates with neurodegeneration, and whether an active lifestyle may reduce NM formation.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan.
| | - Akira Nakashima
- Department of Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy
| | - Moussa Youdim
- Technion-Rappaport Family Faculty of Medicine, Haifa, Israel
- Department of Biology, Yonsey World Central University, Seoul, South Korea
| | - Maximilian Wulf
- Medical Proteome-Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- Medizinisches Proteom‑Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Peter Riederer
- Clinic and Polyclinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany
- Department and Research Unit of Psychiatry, Syddansk University, Odense, Denmark
| | | |
Collapse
|
22
|
Miyazaki I, Asanuma M. Multifunctional Metallothioneins as a Target for Neuroprotection in Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12040894. [PMID: 37107269 PMCID: PMC10135286 DOI: 10.3390/antiox12040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by motor symptoms based on a loss of nigrostriatal dopaminergic neurons and by non-motor symptoms which precede motor symptoms. Neurodegeneration accompanied by an accumulation of α-synuclein is thought to propagate from the enteric nervous system to the central nervous system. The pathogenesis in sporadic PD remains unknown. However, many reports indicate various etiological factors, such as oxidative stress, inflammation, α-synuclein toxicity and mitochondrial impairment, drive neurodegeneration. Exposure to heavy metals contributes to these etiopathogenesis and increases the risk of developing PD. Metallothioneins (MTs) are cysteine-rich metal-binding proteins; MTs chelate metals and inhibit metal-induced oxidative stress, inflammation and mitochondrial dysfunction. In addition, MTs possess antioxidative properties by scavenging free radicals and exert anti-inflammatory effects by suppression of microglial activation. Furthermore, MTs recently received attention as a potential target for attenuating metal-induced α-synuclein aggregation. In this article, we summarize MTs expression in the central and enteric nervous system, and review protective functions of MTs against etiopathogenesis in PD. We also discuss neuroprotective strategies for the prevention of central dopaminergic and enteric neurodegeneration by targeting MTs. This review highlights multifunctional MTs as a target for the development of disease-modifying drugs for PD.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
23
|
Wang EW, Brown GL, Lewis MM, Jellen LC, Pu C, Johnson ML, Chen H, Kong L, Du G, Huang X. Susceptibility Magnetic Resonance Imaging Correlates with Glial Density and Tau in the Substantia Nigra Pars Compacta. Mov Disord 2023; 38:464-473. [PMID: 36598274 PMCID: PMC10445152 DOI: 10.1002/mds.29311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Susceptibility magnetic resonance imaging (MRI) is sensitive to iron-related changes in the substantia nigra pars compacta (SNc), the key pathologic locus of parkinsonisms. It is unclear, however, if iron deposition in the SNc is associated with its neurodegeneration. OBJECTIVE The objective of this study was to test whether susceptibility MRI metrics in parkinsonisms are associated with SNc neuropathologic features of dopaminergic neuron loss, gliosis, and α-synuclein and tau burden. METHODS This retrospective study included 27 subjects with both in vivo MRI and postmortem data. Multigradient echo imaging was used to derive the apparent transverse relaxation rate (R2*) and quantitative susceptibility mapping (QSM) in the SNc. Archived midbrain slides that were stained with hematoxylin and eosin, anti-α-synuclein, and anti-tau were digitized to quantify neuromelanin-positive neuron density, glial density, and the percentages of area occupied by positive α-synuclein and tau staining. MRI-histology associations were examined using Pearson correlations and regression. RESULTS Twenty-four subjects had postmortem parkinsonism diagnoses (Lewy body disorder, progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration), two had only Alzheimer's neuropathology, and one exhibited only mild atrophy. Among all subjects, both R2* and QSM were associated with glial density (r ≥ 0.67; P < 0.001) and log-transformed tau burden (r ≥ 0.53; P ≤ 0.007). Multiple linear regression identified glial density and log-transformed tau as determinants for both MRI metrics (R2 ≥ 0.580; P < 0.0001). Neither MRI metric was associated with neuron density or α-synuclein burden. CONCLUSIONS R2* and QSM are associated with both glial density and tau burden, key neuropathologic features in the parkinsonism SNc. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ernest W. Wang
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Gregory L. Brown
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Mechelle M. Lewis
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Leslie C. Jellen
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Cunfeng Pu
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Melinda L. Johnson
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Hairong Chen
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Lan Kong
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Guangwei Du
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Xuemei Huang
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Departments of Neurosurgery and Radiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
24
|
Krainc T, Monje MHG, Kinsinger M, Bustos BI, Lubbe SJ. Melanin and Neuromelanin: Linking Skin Pigmentation and Parkinson's Disease. Mov Disord 2023; 38:185-195. [PMID: 36350228 DOI: 10.1002/mds.29260] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta (SNpc) are the most vulnerable neurons in Parkinson's disease (PD). Recent work suggests that the accumulation of oxidized dopamine and neuromelanin mediate the convergence of mitochondrial and lysosomal dysfunction in patient-derived neurons. In addition, the expression of human tyrosinase in mouse SNpc led to the formation of neuromelanin resulting in the degeneration of nigral dopaminergic neurons, further highlighting the importance of neuromelanin in PD. The potential role of neuromelanin in PD pathogenesis has been supported by epidemiological observations, whereby individuals with lighter pigmentation or cutaneous malignant melanoma exhibit higher incidence of PD. Because neuromelanin and melanin share many functional characteristics and overlapping biosynthetic pathways, it has been postulated that genes involved in skin pigmentation and melanin formation may play a role in the susceptibility of vulnerable midbrain dopaminergic neurons to neurodegeneration. Here, we highlight potential mechanisms that may explain the link between skin pigmentation and PD, focusing on the role of skin pigmentation genes in the pathogenesis of PD. We also discuss the importance of genetic ancestry in assessing the contribution of pigmentation-related genes to risk of PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Talia Krainc
- Department of Anthropology, Princeton University, Princeton, New Jersey, USA.,Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mariana H G Monje
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Morgan Kinsinger
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
25
|
He N, Chen Y, LeWitt PA, Yan F, Haacke EM. Application of Neuromelanin MR Imaging in Parkinson Disease. J Magn Reson Imaging 2023; 57:337-352. [PMID: 36017746 PMCID: PMC10086789 DOI: 10.1002/jmri.28414] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/20/2023] Open
Abstract
MRI has been used to develop biomarkers for movement disorders such as Parkinson disease (PD) and other neurodegenerative disorders with parkinsonism such as progressive supranuclear palsy and multiple system atrophy. One of these imaging biomarkers is neuromelanin (NM), whose integrity can be assessed from its contrast and volume. NM is found mainly in certain brain stem structures, namely, the substantia nigra pars compacta (SNpc), the ventral tegmental area, and the locus coeruleus. Another major biomarker is brain iron, which often increases in concert with NM degeneration. These biomarkers have the potential to improve diagnostic certainty in differentiating between PD and other neurodegenerative disorders similar to PD, as well as provide a better understanding of pathophysiology. Mapping NM in vivo has clinical importance for gauging the premotor phase of PD when there is a greater than 50% loss of dopaminergic SNpc melanized neurons. As a metal ion chelator, NM can absorb iron. When NM is released from neurons, it deposits iron into the intracellular tissues of the SNpc; the result is iron that can be imaged and measured using quantitative susceptibility mapping. An increase of iron also leads to the disappearance of the nigrosome-1 sign, another neuroimage biomarker for PD. Therefore, mapping NM and iron changes in the SNpc are a practical means for improving early diagnosis of PD and in monitoring disease progression. In this review, we discuss the functions and location of NM, how NM-MRI is performed, the automatic mapping of NM and iron content, how NM-related imaging biomarkers can be used to enhance PD diagnosis and differentiate it from other neurodegenerative disorders, and potential advances in NM imaging methods. With major advances currently evolving for rapid imaging and artificial intelligence, NM-related biomarkers are likely to have increasingly important roles for enhancing diagnostic capabilities in PD. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Peter A LeWitt
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Henry Ford Hospital, Parkinson's Disease and Movement Disorders Program, Detroit, Michigan, USA
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China.,Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA.,SpinTech, Inc, Bingham Farms, Michigan, USA
| |
Collapse
|
26
|
Chen Y, Gong T, Sun C, Yang A, Gao F, Chen T, Chen W, Wang G. Regional age-related changes of neuromelanin and iron in the substantia nigra based on neuromelanin accumulation and iron deposition. Eur Radiol 2023; 33:3704-3714. [PMID: 36680605 DOI: 10.1007/s00330-023-09411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To investigate age-related neuromelanin signal variation and iron content changes in the subregions of substantia nigra (SN) using magnetization transfer contrast neuromelanin-sensitive multi-echo fast field echo sequence in a normal population. METHODS In this prospective study, 115 healthy volunteers between 20 and 86 years of age were recruited and scanned using 3.0-T MRI. We manually delineated neuromelanin accumulation and iron deposition regions in neuromelanin image and quantitative susceptibility mapping, respectively. We calculated the overlap region using the two measurements mentioned above. Partial correlation analysis was used to evaluate the correlations between volume, contrast ratio (CR), susceptibility of three subregions of SN, and age. Curve estimation models were used to find the best regression model. RESULTS CR increased with age (r = 0.379, p < 0.001; r = 0.371, p < 0.001), while volume showed an age-related decline (r = -0.559, p < 0.001; r = -0.410, p < 0.001) in the neuromelanin accumulation and overlap regions. Cubic polynomial regression analysis found a small increase in neuromelanin accumulation volume with age until 34, followed by a significant decrease until the 80 s (R2 = 0.358, p < 0.001). No significant correlations were found between susceptibility and age in any subregion. No correlation was found between CR and susceptibility in the overlap region. CONCLUSIONS Our results indicated that CR increased with age, while volume showed an age-related decline in the overlap region. We further found that the neuromelanin accumulation region volume increased until the 30 s and decreased into the 80 s. This study may provide a reference for future neurodegenerative elucidations of substantia nigra. KEY POINTS • Our results define the regional changes in neuromelanin and iron in the substantia nigra with age in the normal population, especially in the overlap region. • The contrast ratio increased with age in the neuromelanin accumulation and overlap regions, and volume showed an age-related decline, while contrast ratio and volume do not affect each other indirectly. • The contrast ratio of hyperintense neuromelanin in the overlap region was unaffected by iron content.
Collapse
Affiliation(s)
- Yufan Chen
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tao Gong
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cong Sun
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tong Chen
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | | | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China. .,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
27
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
28
|
Sharma M, Sharma N, Khairnar A. Intranasal Rotenone Induces Alpha-Synuclein Accumulation, Neuroinflammation and Dopaminergic Neurodegeneration in Middle-Aged Mice. Neurochem Res 2022; 48:1543-1560. [PMID: 36571663 DOI: 10.1007/s11064-022-03847-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
Accumulation of alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson's disease (PD). Previous studies suggest that α-syn pathology may originate from the olfactory bulb (OB) or gut in response to an unknown pathogen and later progress to the different brain regions. Aging is viewed as the utmost threat to PD development. Therefore, studies depicting the role of age in α-syn accumulation and its progression in PD are important. In the present study, we gave intranasal rotenone microemulsion for 6 weeks in 12-month-old female BALB/c mice and found olfactory dysfunction after 4 and 6 weeks of rotenone administration. Interestingly, motor impairment was observed only after 6 weeks. The animals were sacrificed after 6 weeks to perform western blotting and immunohistochemical studies to detect α-syn pathology, neuroinflammation and neurodegeneration. We found α-syn accumulation in OB, striatum, substantia nigra (SN) and cortex. Importantly, we found significant glial cell activation and neurodegeneration in all the analysed regions which were absent in our previous published studies with 3 months old mice even after they were exposed to rotenone for 9 weeks indicating age is a crucial factor for α-syn induced neuroinflammation and neurodegeneration. We also observed increased iron accumulation in SN of rotenone-exposed aged mice. Moreover, inflammaging was observed in OB and striatum of 12-month-old BALB/c mice as compared to 3-month-old BALB/c mice. In conclusion, there is a difference in sensitivity between adult and aged mice in the development and progression of α-syn pathology and subsequent neurodegeneration, for which inflammaging might be the crucial probable mechanism.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Ahmedabad, Gandhinagar, 382355, Gujarat, India. .,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic, ICRC, FNUSA, Brno, Czech Republic.
| |
Collapse
|
29
|
Luo J, Collingwood JF. Effective R 2 relaxation rate, derived from dual-contrast fast-spin-echo MRI, enables detection of hemisphere differences in iron level and dopamine function in Parkinson's disease and healthy individuals. J Neurosci Methods 2022; 382:109708. [PMID: 36089168 DOI: 10.1016/j.jneumeth.2022.109708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Clinical estimates of brain iron concentration are achievable with quantitative transverse relaxation rate R2, via time-consuming multiple spin-echo (SE) sequences. The objective of this study was to investigate whether quantitative iron-sensitive information may be derived from 3.0 T dual-contrast fast-spin-echo (FSE) sequences (typically employed in anatomical non-quantitative evaluations), as a routinely-collected alternative to evaluate iron levels in healthy (HC) and Parkinson's disease (PD) brains. NEW METHOD MRI 3.0 T FSE data from the Parkinson's Progression Markers Initiative (PPMI) (12 PD, 12 age- and gender-matched HC subjects) were cross-sectionally and longitudinally evaluated. A new measure, 'effective R2', was calculated for bilateral subcortical grey matter (caudate nucleus, putamen, globus pallidus, red nucleus, substantia nigra). Linear regression analysis was performed to correlate 'effective R2' with models of age-dependent brain iron concentration and striatal dopamine transporter (DaT) receptor binding ratio. RESULTS Effective R2 was strongly correlated with estimated brain iron concentration. In PD, putaminal effective R2 difference was observed between the hemispheres contra-/ipsi-lateral to the predominantly symptomatic side at onset. This hemispheric difference was correlated with the putaminal DaT binding ratios in PD. COMPARISON WITH EXISTING METHOD(S) Effective R2, derived from rapid dual-contrast FSE sequences, showed viability as an alternative to R2 from SE sequences. Linear correlation of effective R2 with estimated iron concentration was comparable to documented iron-dependent R2. The effective R2 correlation coefficient was consistent with theoretical R2 iron-dependence at 3.0 T. CONCLUSIONS Effective R2 has clinical potential as a fast quantitative method, as an alternative to R2, to aid evaluation of brain iron levels and DaT function.
Collapse
Affiliation(s)
- Jierong Luo
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
30
|
Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson's disease and neurodegeneration with brain iron accumulation disorders. Neurobiol Dis 2022; 175:105920. [DOI: 10.1016/j.nbd.2022.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
|
31
|
Capucciati A, Monzani E, Sturini M, Nicolis S, Zucca FA, Bubacco L, Bortolus M, Zecca L, Casella L. Water‐Soluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for Neuromelanin of Human Brain
Locus Coeruleus. Angew Chem Int Ed Engl 2022; 61:e202204787. [DOI: 10.1002/anie.202204787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Andrea Capucciati
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Enrico Monzani
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Michela Sturini
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Stefania Nicolis
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Fabio A. Zucca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Bubacco
- Department of Biology University of Padova Via Ugo Bassi 58/B 35128 Padova Italy
| | - Marco Bortolus
- Department of Chemical Science University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Casella
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| |
Collapse
|
32
|
Lancione M, Donatelli G, Del Prete E, Campese N, Frosini D, Cencini M, Costagli M, Biagi L, Lucchi G, Tosetti M, Godani M, Arnaldi D, Terzaghi M, Provini F, Pacchetti C, Cortelli P, Bonanni E, Ceravolo R, Cosottini M. Evaluation of iron overload in nigrosome 1 via quantitative susceptibility mapping as a progression biomarker in prodromal stages of synucleinopathies. Neuroimage 2022; 260:119454. [PMID: 35810938 DOI: 10.1016/j.neuroimage.2022.119454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022] Open
Abstract
Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies, such as Parkinson's disease (PD), which are characterized by the loss of dopaminergic neurons in substantia nigra, associated with abnormal iron load. The assessment of presymptomatic biomarkers predicting the onset of neurodegenerative disorders is critical for monitoring early signs, screening patients for neuroprotective clinical trials and understanding the causal relationship between iron accumulation processes and disease development. Here, we used Quantitative Susceptibility Mapping (QSM) and 7T MRI to quantify iron deposition in Nigrosome 1 (N1) in early PD (ePD) patients, iRBD patients and healthy controls and investigated group differences and correlation with disease progression. We evaluated the radiological appearance of N1 and analyzed its iron content in 35 ePD, 30 iRBD patients and 14 healthy controls via T2*-weighted sequences and susceptibility (χ) maps. N1 regions of interest (ROIs) were manually drawn on control subjects and warped onto a study-specific template to obtain probabilistic N1 ROIs. For each subject the N1 with the highest mean χ was considered for statistical analysis. The appearance of N1 was rated pathological in 45% of iRBD patients. ePD patients showed increased N1 χ compared to iRBD patients and HC but no correlation with disease duration, indicating that iron load remains stable during the early stages of disease progression. Although no difference was reported in iron content between iRBD and HC, N1 χ in the iRBD group increases as the disease evolves. QSM can reveal temporal changes in N1 iron content and its quantification may represent a valuable presymptomatic biomarker to assess neurodegeneration in the prodromal stages of PD.
Collapse
Affiliation(s)
- Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Graziella Donatelli
- Imago7 Research Foundation, Pisa, Italy; Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
| | - Eleonora Del Prete
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicole Campese
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Cencini
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Mauro Costagli
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Giacomo Lucchi
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | | | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Terzaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Provini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica Rete Metropolitana, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica Rete Metropolitana, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Enrica Bonanni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mirco Cosottini
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Wang M, Wang H, Wang J, Lu S, Li C, Zhong X, Wang N, Ge R, Zheng Q, Chen J, Wang H. Modified Iron Deposition in Nigrosomes by Pharmacotherapy for the Management of Parkinson’s Disease. Front Mol Biosci 2022; 9:908298. [PMID: 35874610 PMCID: PMC9301007 DOI: 10.3389/fmolb.2022.908298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Increased iron deposition in nigrosome as assessed by susceptibility-weighted imaging (SWI) is involved in the pathogenesis of Parkinson’s disease (PD). This study investigated the effects of antiparkinson drugs on iron deposition in the nigrosome of PD patients. Methods: Based on the retrospective analysis of clinical data, alterations in iron deposition in the substantia nigra were investigated in 51 PD patients across different types of therapies and in nine Parkinson-plus syndrome patients. The Movement Disorder Society revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Part Ⅲ/Ⅳ (UPDRS Ⅲ/Ⅳ) was utilized to evaluate motor function and complications. SWI (slice = 0.6 mm) was used to detect iron deposition in the nigrosome and substantia nigra. Nigrosome loss was scored on a 1-point nigrosome visibility scale. Visual assessment of dorsolateral nigral hyperintensity (DNH) was separately performed for each side of the nigrosome with SWI. Results: Increased UPDRS Ⅲ scores were correlated with low nigrosome scores based on correlation analysis at a disease duration of 6–12 months (r = −0.8420). The loss of the nigrosome on SWI was clearly inhibited in PD patients with a 3–5-year duration of administration of antiparkinson medications compared with no treatment. Decreased UPDRS Ⅲ scores and increased nigrosome scores were observed in the regular treatment of PD patients with a 6–7-year disease duration. For patients with Parkinson-plus syndromes, such as multiple system atrophy, iron accumulation was apparent in the corpus striatum and substantia nigra compared with that for patients with progressive supranuclear palsy. Conclusions: Early and regular treatment with antiparkinson drugs not only alleviates the chance of PD disability but also prevents the loss of DNH, namely, iron accumulation in the nigrosome.
Collapse
Affiliation(s)
- Mengdi Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Hongxia Wang
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Jing Wang, ; Qi Zheng, ; Jinbo Chen, ; Hongcai Wang,
| | - Shujun Lu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Xiaofei Zhong
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Nan Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Ruli Ge
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Qi Zheng
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Jing Wang, ; Qi Zheng, ; Jinbo Chen, ; Hongcai Wang,
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Jing Wang, ; Qi Zheng, ; Jinbo Chen, ; Hongcai Wang,
| | - Hongcai Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Jing Wang, ; Qi Zheng, ; Jinbo Chen, ; Hongcai Wang,
| |
Collapse
|
34
|
Fujiwara Y, Ishida S, Matta Y, Kanamoto M, Kimura H. Atlas-based relaxometry and subsegment analysis of the substantia nigra pars compacta using quantitative MRI: a healthy volunteer study. Br J Radiol 2022; 95:20210572. [PMID: 35357890 PMCID: PMC10996308 DOI: 10.1259/bjr.20210572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Parkinson's disease is a neurodegenerative disorder caused by neuronal cell loss in the substantia nigra pars compacta (SNpc). We aimed to perform atlas-based relaxometry using an anatomical SNpc atlas and obtain baseline values of SNpc regions in healthy volunteers. METHODS Neuromelanin (NM)-sensitive imaging of the midbrain and whole-brain 3D T1 weighted images of 27 healthy volunteers (20 males; aged 36.3 ± 11.5 years) were obtained. An anatomical SNpc atlas was created using NM-sensitive images in standard space, and divided into medial (MG), dorsal (DG), and ventrolateral (VG) groups. Proton density (PD), T1, and T2 values in these regions were obtained using quantitative MRI. The relationships between PD, T1, and T2 values in each SNpc region and age were evaluated. RESULTS The VG PD value was significantly higher than the MG and DG values. MG, DG, and VG T1 values were significantly different, whereas the T2 value of the MG was significantly lower than the DG and VG values. Moreover, a significant negative correlation between PD and T1 values of the MG and age was observed. CONCLUSION The PD, T1, and T2 values of the SNpc regions measured in standard space using an anatomical atlas can be used as baseline values. PD and T1 values of the SNpc regions may be associated with NM concentrations. ADVANCES IN KNOWLEDGE An anatomical SNpc atlas was created using NM-sensitive MRI and can be used for the quantitative evaluation of subsegments of the SNpc in standard space.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Department of Medical Image Sciences, Faculty of Life Sciences,
Kumamoto University, Kumamoto,
Japan
| | - Shota Ishida
- Radiological Center, University of Fukui
Hospital, Fukui,
Japan
| | - Yuki Matta
- Radiological Center, University of Fukui
Hospital, Fukui,
Japan
| | | | | |
Collapse
|
35
|
Capucciati A, Monzani E, Sturini M, Nicolis S, Zucca FA, Bubacco L, Bortolus M, Zecca L, Casella L. Water‐Soluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for Neuromelanin of Human Brain
Locus Coeruleus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea Capucciati
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Enrico Monzani
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Michela Sturini
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Stefania Nicolis
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Fabio A. Zucca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Bubacco
- Department of Biology University of Padova Via Ugo Bassi 58/B 35128 Padova Italy
| | - Marco Bortolus
- Department of Chemical Science University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Casella
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| |
Collapse
|
36
|
Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. J Neural Transm (Vienna) 2022; 129:505-520. [PMID: 35534717 PMCID: PMC9188502 DOI: 10.1007/s00702-022-02505-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022]
Abstract
Iron has a long and storied history in Parkinson disease and related disorders. This essential micronutrient is critical for normal brain function, but abnormal brain iron accumulation has been associated with extrapyramidal disease for a century. Precisely why, how, and when iron is implicated in neuronal death remains the subject of investigation. In this article, we review the history of iron in movement disorders, from the first observations in the early twentieth century to recent efforts that view extrapyramidal iron as a novel therapeutic target and diagnostic indicator.
Collapse
Affiliation(s)
| | - Dominic J. Hare
- Atomic Medicine Initiative, University of Technology, Sydney, Australia
| | - Kay L. Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. J Neural Transm (Vienna) 2022; 129:505-520. [PMID: 35534717 DOI: 10.1007/s00702-022-025055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/22/2022] [Indexed: 05/26/2023]
Abstract
Iron has a long and storied history in Parkinson disease and related disorders. This essential micronutrient is critical for normal brain function, but abnormal brain iron accumulation has been associated with extrapyramidal disease for a century. Precisely why, how, and when iron is implicated in neuronal death remains the subject of investigation. In this article, we review the history of iron in movement disorders, from the first observations in the early twentieth century to recent efforts that view extrapyramidal iron as a novel therapeutic target and diagnostic indicator.
Collapse
Affiliation(s)
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology, Sydney, Australia
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
38
|
Liu T, Bowen RL, Wilson AC, Atwood CS. Estropause, Sex Hormones and Metal Homeostasis in the Mouse Brain. Front Neurol 2022; 13:841822. [PMID: 35645980 PMCID: PMC9130555 DOI: 10.3389/fneur.2022.841822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Alterations in brain metal ion homeostasis have been reported with aging and are implicated in the pathogenesis of neurodegenerative diseases. To assess whether age-related changes in hypothalamic-pituitary-gonadal (HPG) hormones might be involved in modulating brain metal ion homeostasis, we treated 7.5-month intact, sham-ovariecomized and ovariectomized C57B6SJL mice with vehicle or leuprolide acetate (for 9-months) to differentiate between whether sex steroids or gonadotropins might modulate brain metal ion concentrations. Unlike other aging mammals, there was no increase in plasma luteinizing hormone (LH) and follicle-stimulating hormone (FSH) concentrations following estropause in mice, suggesting there was sufficient residual production by the follicle depleted ovary, of sex steroids like estrogens and protein hormones like the inhibins, in order to suppress pituitary LH/FSH production. Castration on the other hand induced significant increases in circulating LH and FSH. Modulation of plasma sex steroid and gonadotropin levels did not significantly alter the concentrations of brain metals tested (Fe, Zn, Cu, Mn, Co, Ni, Al, Li), although there was a tendency for a decrease in all brain metals following ovariectomy (low estrogens and progesterone, high gonadotropins), a response that was reversed with leuprolide acetate treatment (low sex steroids, low gonadotropins). Brain Cu concentration was the only metal correlated with plasma LH (−0.37, n = 30, p < 0.05) and FSH (−0.42, n = 29, p < 0.01). This study demonstrates that sex hormones do not markedly alter brain metal ion homeostasis, unlike previously reported studies of circulating metal ion homeostasis. The role of gonadotropins in regulating metal ion homeostasis does however warrant further study.
Collapse
Affiliation(s)
- Tianbing Liu
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, United States
| | | | - Andrea C. Wilson
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, United States
| | - Craig S. Atwood
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, United States
- Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI, United States
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- *Correspondence: Craig S. Atwood
| |
Collapse
|
39
|
Tian Y, Tian Y, Yuan Z, Zeng Y, Wang S, Fan X, Yang D, Yang M. Iron Metabolism in Aging and Age-Related Diseases. Int J Mol Sci 2022; 23:3612. [PMID: 35408967 PMCID: PMC8998315 DOI: 10.3390/ijms23073612] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Iron is a trace metal element necessary to maintain life and is also involved in a variety of biological processes. Aging refers to the natural life process in which the physiological functions of the various systems, organs, and tissues decline, affected by genetic and environmental factors. Therefore, it is imperative to investigate the relationship between iron metabolism and aging-related diseases, including neurodegenerative diseases. During aging, the accumulation of nonheme iron destroys the stability of the intracellular environment. The destruction of iron homeostasis can induce cell damage by producing hydroxyl free radicals, leading to mitochondrial dysfunction, brain aging, and even organismal aging. In this review, we have briefly summarized the role of the metabolic process of iron in the body, then discussed recent developments of iron metabolism in aging and age-related neurodegenerative diseases, and finally, explored some iron chelators as treatment strategies for those disorders. Understanding the roles of iron metabolism in aging and neurodegenerative diseases will fill the knowledge gap in the field. This review could provide new insights into the research on iron metabolism and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yao Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yuanliangzi Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Zhixiao Yuan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yutian Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
40
|
Juan SMA, Daglas M, Adlard P. Tau pathology, metal dyshomeostasis and repetitive mild traumatic brain injury: an unexplored link paving the way for neurodegeneration. J Neurotrauma 2022; 39:902-922. [PMID: 35293225 DOI: 10.1089/neu.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in ageing and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the link between TBI, CTE, ageing and neurodegeneration with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted towards slowing progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, 56369, 30 Royal Parade, Parkville, Melbourne, Victoria, Australia, 3052;
| | - Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| | - Paul Adlard
- Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| |
Collapse
|
41
|
Sato T, Shapiro JS, Chang HC, Miller RA, Ardehali H. Aging is associated with increased brain iron through cortex-derived hepcidin expression. eLife 2022; 11:e73456. [PMID: 35014607 PMCID: PMC8752087 DOI: 10.7554/elife.73456] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/08/2021] [Indexed: 01/24/2023] Open
Abstract
Iron is an essential molecule for biological processes, but its accumulation can lead to oxidative stress and cellular death. Due to its oxidative effects, iron accumulation is implicated in the process of aging and neurodegenerative diseases. However, the mechanism for this increase in iron with aging, and whether this increase is localized to specific cellular compartment(s), are not known. Here, we measured the levels of iron in different tissues of aged mice, and demonstrated that while cytosolic non-heme iron is increased in the liver and muscle tissue, only the aged brain cortex exhibits an increase in both the cytosolic and mitochondrial non-heme iron. This increase in brain iron is associated with elevated levels of local hepcidin mRNA and protein in the brain. We also demonstrate that the increase in hepcidin is associated with increased ubiquitination and reduced levels of the only iron exporter, ferroportin-1 (FPN1). Overall, our studies provide a potential mechanism for iron accumulation in the brain through increased local expression of hepcidin, and subsequent iron accumulation due to decreased iron export. Additionally, our data support that aging is associated with mitochondrial and cytosolic iron accumulation only in the brain and not in other tissues.
Collapse
Affiliation(s)
- Tatsuya Sato
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Jason Solomon Shapiro
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Richard A Miller
- Department of Pathology, University of Michigan School of MedicineAnn ArborUnited States
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| |
Collapse
|
42
|
Mukherjee S, Panda D. Contrasting Effects of Ferric and Ferrous Ions on Oligomerization and Droplet Formation of Tau: Implications in Tauopathies and Neurodegeneration. ACS Chem Neurosci 2021; 12:4393-4405. [PMID: 34783530 DOI: 10.1021/acschemneuro.1c00377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dysregulation of metal homeostasis is reported to enhance the aggregation of tau, a key neuronal microtubule-associated protein. Herein, we found that ferric (Fe3+) ions enhanced tau aggregation. Fe3+ and Al3+ induced tau aggregation while several trivalent metal ions such as Cr3+, La3+, and V3+ had no discernable effect on tau aggregation. Fe3+ reduced the critical concentration of tau required for the liquid-liquid phase separation (LLPS); however, Cr3+, La3+, and V3+ did not affect tau droplet formation. Dynamic light scattering, atomic force microscopic, and transmission electron microscopic analysis suggested that Fe3+ significantly increased the formation of tau oligomers and fibrils. In contrast, Fe2+ neither enhanced tau droplet formation nor increased the heparin-induced aggregation of tau. Using a tryptophan mutant (Y310W-tau) of tau, Fe3+ was found to bind to tau with four times higher affinity than Fe2+. Acrylamide quenching of the tryptophan fluorescence of Y310W-tau, 1-anilino-8-naphthalene sulfonate (ANS) fluorescence experiment, and far-UV circular dichroism analysis indicated that Fe3+ decreased the solvent exposure of the tryptophan residue, perturbed the hydrophobic surface arrangement, and disrupted the secondary structure of tau, respectively. The increase in the β-sheet content and a subsequent decrease in the disordered content of tau due to the binding of Fe3+ may favor tau aggregation. Fe3+ may enhance and stabilize the non-covalent interactions between disordered domains of tau molecules leading to tau aggregation. The data highlighted the relationship between the dysregulation of ferric ions and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sandipan Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
43
|
Peng Y, Chang X, Lang M. Iron Homeostasis Disorder and Alzheimer's Disease. Int J Mol Sci 2021; 22:12442. [PMID: 34830326 PMCID: PMC8622469 DOI: 10.3390/ijms222212442] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation mechanism for iron homeostasis in the human body and brain, it is usually inevitably disturbed by genetic and environmental factors, or disordered with aging, which leads to iron metabolism diseases, including many neurodegenerative diseases such as Alzheimer's disease (AD). AD is one of the most common degenerative diseases of the central nervous system (CNS) threatening human health. However, the precise pathogenesis of AD is still unclear, which seriously restricts the design of interventions and treatment drugs based on the pathogenesis of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, resulting in cognitive, memory, motor and other nerve damages. Understanding the metabolic balance mechanism of iron in the brain is crucial for the treatment of AD, which would provide new cures for the disease. This paper reviews the recent progress in the relationship between iron and AD from the aspects of iron absorption in intestinal cells, storage and regulation of iron in cells and organs, especially for the regulation of iron homeostasis in the human brain and prospects the future directions for AD treatments.
Collapse
Affiliation(s)
- Yu Peng
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Xuejiao Chang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
44
|
Raab P, Ropele S, Bültmann E, Salcher R, Lanfermann H, Wattjes MP. Analysis of deep grey nuclei susceptibility in early childhood: a quantitative susceptibility mapping and R2* study at 3 Tesla. Neuroradiology 2021; 64:1021-1031. [PMID: 34787698 PMCID: PMC9005446 DOI: 10.1007/s00234-021-02846-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/24/2021] [Indexed: 11/18/2022]
Abstract
Purpose Aging is the most significant determinant for brain iron accumulation in the deep grey matter. Data on brain iron evolution during brain maturation in early childhood are limited. The purpose of this study was to investigate age-related iron deposition in the deep grey matter in children using quantitative susceptibility (QSM) and R2* mapping. Methods We evaluated brain MRI scans of 74 children (age 6–154 months, mean 40 months). A multi-echo gradient-echo sequence obtained at 3 Tesla was used for the QSM and R2* calculation. Susceptibility of the pallidum, head of caudate nucleus, and putamen was correlated with age and compared between sexes. Results Susceptibility changes in all three nuclei correlated with age (correlation coefficients for QSM/R2*: globus pallidus 0.955/0.882, caudate nucleus 0.76/0.65, and putamen 0.643/0.611). During the first 2 years, the R2* values increased more rapidly than the QSM values, indicating a combined effect of iron deposition and myelination, followed by a likely dominating effect of iron deposition. There was no significant gender difference. Conclusion QSM and R2* can monitor myelin maturation processes and iron accumulation in the deep grey nuclei of the brain in early life and may be a promising tool for the detection of deviations of this normal process. Susceptibility in the deep nuclei is almost similar early after birth and increases more quickly in the pallidum. The combined use of QSM and R2* analysis is beneficial.
Collapse
Affiliation(s)
- Peter Raab
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Stefan Ropele
- Clinical Department of Neurology, Medical University of Graz, Graz, Austria
| | - Eva Bültmann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Rolf Salcher
- Clinic for Laryngology, Rhinology and Otology, Hannover Medical School, Hannover, Germany
| | - Heinrich Lanfermann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
45
|
Halcrow PW, Lynch ML, Geiger JD, Ohm JE. Role of endolysosome function in iron metabolism and brain carcinogenesis. Semin Cancer Biol 2021; 76:74-85. [PMID: 34139350 PMCID: PMC8627927 DOI: 10.1016/j.semcancer.2021.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Iron, the most abundant metal in human brain, is an essential microelement that regulates numerous cellular mechanisms. Some key physiological roles of iron include oxidative phosphorylation and ATP production, embryonic neuronal development, formation of iron-sulfur clusters, and the regulation of enzymes involved in DNA synthesis and repair. Because of its physiological and pathological importance, iron homeostasis must be tightly regulated by balancing its uptake, transport, and storage. Endosomes and lysosomes (endolysosomes) are acidic organelles known to contain readily releasable stores of various cations including iron and other metals. Increased levels of ferrous (Fe2+) iron can generate reactive oxygen species (ROS) via Fenton chemistry reactions and these increases can damage mitochondria and genomic DNA as well as promote carcinogenesis. Accumulation of iron in the brain has been linked with aging, diet, disease, and cerebral hemorrhage. Further, deregulation of brain iron metabolism has been implicated in carcinogenesis and may be a contributing factor to the increased incidence of brain tumors around the world. Here, we provide insight into mechanisms by which iron accumulation in endolysosomes is altered by pH and lysosome membrane permeabilization. Such events generate excess ROS resulting in mitochondrial DNA damage, fission, and dysfunction, as well as DNA oxidative damage in the nucleus; all of which promote carcinogenesis. A better understanding of the roles that endolysosome iron plays in carcinogenesis may help better inform the development of strategic therapeutic options for cancer treatment and prevention.
Collapse
Affiliation(s)
- Peter W Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Miranda L Lynch
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, United States
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
46
|
Riederer P, Monoranu C, Strobel S, Iordache T, Sian-Hülsmann J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna) 2021; 128:1577-1598. [PMID: 34636961 PMCID: PMC8507512 DOI: 10.1007/s00702-021-02414-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson's disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discoveries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export mechanisms across the blood-brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, "iron" is a major player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic armamentarium of anti-Parkinson medications.
Collapse
Affiliation(s)
- P Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany. .,Department of Psychiatry, University of Southern Denmark, Odense, Denmark.
| | - C Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - S Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - T Iordache
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, Romania
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| |
Collapse
|
47
|
Pirooznia SK, Rosenthal LS, Dawson VL, Dawson TM. Parkinson Disease: Translating Insights from Molecular Mechanisms to Neuroprotection. Pharmacol Rev 2021; 73:33-97. [PMID: 34663684 DOI: 10.1124/pharmrev.120.000189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson disease (PD) used to be considered a nongenetic condition. However, the identification of several autosomal dominant and recessive mutations linked to monogenic PD has changed this view. Clinically manifest PD is then thought to occur through a complex interplay between genetic mutations, many of which have incomplete penetrance, and environmental factors, both neuroprotective and increasing susceptibility, which variably interact to reach a threshold over which PD becomes clinically manifested. Functional studies of PD gene products have identified many cellular and molecular pathways, providing crucial insights into the nature and causes of PD. PD originates from multiple causes and a range of pathogenic processes at play, ultimately culminating in nigral dopaminergic loss and motor dysfunction. An in-depth understanding of these complex and possibly convergent pathways will pave the way for therapeutic approaches to alleviate the disease symptoms and neuroprotective strategies to prevent disease manifestations. This review is aimed at providing a comprehensive understanding of advances made in PD research based on leveraging genetic insights into the pathogenesis of PD. It further discusses novel perspectives to facilitate identification of critical molecular pathways that are central to neurodegeneration that hold the potential to develop neuroprotective and/or neurorestorative therapeutic strategies for PD. SIGNIFICANCE STATEMENT: A comprehensive review of PD pathophysiology is provided on the complex interplay of genetic and environmental factors and biologic processes that contribute to PD pathogenesis. This knowledge identifies new targets that could be leveraged into disease-modifying therapies to prevent or slow neurodegeneration in PD.
Collapse
Affiliation(s)
- Sheila K Pirooznia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Liana S Rosenthal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| |
Collapse
|
48
|
Jakaria M, Belaidi AA, Bush AI, Ayton S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem 2021; 159:804-825. [PMID: 34553778 DOI: 10.1111/jnc.15519] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, with complex pathophysiology that is not fully understood. While β-amyloid plaque and neurofibrillary tangles define the pathology of the disease, the mechanism of neurodegeneration is uncertain. Ferroptosis is an iron-mediated programmed cell death mechanism characterised by phospholipid peroxidation that has been observed in clinical AD samples. This review will outline the growing molecular and clinical evidence implicating ferroptosis in the pathogenesis of AD, with implications for disease-modifying therapies.
Collapse
Affiliation(s)
- Md Jakaria
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
49
|
Korzhevskii DE, Kirik OV, Guselnikova VV, Tsyba DL, Fedorova EA, Grigorev IP. Changes in cytoplasmic and extracellular neuromelanin in human substantia nigra with normal aging. Eur J Histochem 2021; 65. [PMID: 34468106 PMCID: PMC8419629 DOI: 10.4081/ejh.2021.3283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 01/26/2023] Open
Abstract
Neuromelanin (NM) is a dark polymer pigment produced in certain populations of catecholaminergic neurons in the brain. It is present in various areas of the human brain, most often in the substantia nigra (SN) pars compacta and the locus coeruleus, the main centers of dopaminergic and noradrenergic innervation, respectively. Interest in NM has revived in recent years due to the alleged link between NM and the particular vulnerability of NM-containing neurons to neurodegeneration. The aim of this work was to study the structural, cytochemical, and localization features of cytoplasmic and extracellular NM (eNM) in the human SN pars compacta during normal aging. Sections of human SN from young/middle-aged adults (25 to 51 years old, n=7) and older adults (60 to 78 years old, n=5), all of which had no neurological disorders, were stained histochemically for metals (Perls’ reaction, Mayer's hematoxylin) and immunohistochemically for tyrosine hydroxylase (TH), Iba- 1, and CD68. It was shown that dopaminergic neurons in SN pars compacta differ in the amount of NM and the intensity of TH-immunoreactivity. The number of NM-containing neurons with decreased TH-immunoreactivity positively correlates with age. eNM is present in SN pars compacta in both young/middle-aged and older adults. The number of eNM accumulations increases with aging. Cytoplasmic and eNM are predominantly not stained using histochemical methods for detecting metals in people of all ages. We did not detect the appearance of amoeboid microglia in human SN pars compacta with aging, but we found an age-related increase in microglial phagocytic activity. The absence of pronounced microgliosis, as well as a pronounced loss of NM-containing neurons, indicate the absence of neuroinflammation in human SN pars compacta during normal aging.
Collapse
Affiliation(s)
- Dmitrii E Korzhevskii
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Olga V Kirik
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Valeriia V Guselnikova
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Darya L Tsyba
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Elena A Fedorova
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Igor P Grigorev
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| |
Collapse
|
50
|
Toxic Feedback Loop Involving Iron, Reactive Oxygen Species, α-Synuclein and Neuromelanin in Parkinson's Disease and Intervention with Turmeric. Mol Neurobiol 2021; 58:5920-5936. [PMID: 34426907 DOI: 10.1007/s12035-021-02516-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a movement disorder associated with severe loss of mainly dopaminergic neurons in the substantia nigra. Pathological hallmarks include Lewy bodies, and loss of neuromelanin, due to degeneration of neuromelanin-containing dopaminergic neurons. Despite being described over 200 years ago, the etiology of PD remains unknown. Here, we highlight the roles of reactive oxygen species (ROS), iron, alpha synuclein (α-syn) and neuromelanin in a toxic feedback loop culminating in neuronal death and spread of the disease. Dopaminergic neurons are particularly vulnerable due to decreased antioxidant concentration with aging, constant exposure to ROS and presence of neurotoxic compounds (e.g. ortho-quinones). ROS and iron increase each other's levels, creating a state of oxidative stress. α-Syn aggregation is influenced by ROS and iron but also increases ROS and iron via its induced mitochondrial dysfunction and ferric-reductase activity. Neuromelanin's binding affinity is affected by increased ROS and iron. Furthermore, during neuronal death, neuromelanin is degraded in the extracellular space, releasing its bound toxins. This cycle of events continues to neighboring neurons in the form of a toxic loop, causing PD pathology. The increase in ROS and iron may be an important target for therapies to disrupt this toxic loop, and therefore diets rich in certain 'nutraceuticals' may be beneficial. Turmeric is an attractive candidate, as it is known to have anti-oxidant and iron chelating properties. More studies are needed to test this theory and if validated, this would be a step towards development of lifestyle-based therapeutic modalities to complement existing PD treatments.
Collapse
|