1
|
Guo Q, Li Z, Jia S, Tong F, Ma L. Mechanism of Human Tubal Ectopic Pregnancy Caused by Cigarette Smoking. Reprod Sci 2023; 30:1074-1081. [PMID: 35962304 DOI: 10.1007/s43032-022-00947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 04/14/2022] [Indexed: 10/15/2022]
Abstract
In the past few decades, the smoking rate of women of childbearing age has increased. Epidemiological data has repeatedly shown that smoking women have an increased risk of various reproductive diseases, including ectopic pregnancy (EP), decreased fertility, adverse pregnancy outcomes, and failure of assisted reproduction. The oviduct was the target of cigarette smoke in many in vivo and in vitro studies. The fallopian tube is a well-designed organ. Its function is to collect and transport the ova to the fertilized site and provide a suitable environment for fertilization and early embryonic development. Lastly, the fallopian tube transports the pre-implantation embryo to the uterus. Various biological processes can be studied in the fallopian tubes, making it an excellent model for toxicology. This paper reviews the roles of the fallopian tube in gametes and embryo transportation, and the possible mechanism tobacco smoke contributes to tubal EP. A possible signal pathway might be a model to develop intervention of EP for pregnant women exposed to smoking.
Collapse
Affiliation(s)
- Quan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Heping District Shenyang, 36 Sanhao Street, 110004, Shenyang, China.
| | - Zaiyi Li
- Reproductive Medicine Center, Seventh Affiliated Hospital, Sun Yat-Sen University, 628 Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, Guangdong, 510000, China
| | - Steve Jia
- RD Center, Pacificbio Inc. Irvine, Irvine, CA, 92602, USA
| | - Fangze Tong
- Murray Edwards College, University of Cambridge, Cambridge, CB3 0DF, UK
| | - Lin Ma
- Reproductive Medicine Center, Seventh Affiliated Hospital, Sun Yat-Sen University, 628 Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, Guangdong, 510000, China.
| |
Collapse
|
2
|
Tulen CBM, Opperhuizen A, van Schooten FJ, Remels AHV. Disruption of the Molecular Regulation of Mitochondrial Metabolism in Airway and Lung Epithelial Cells by Cigarette Smoke: Are Aldehydes the Culprit? Cells 2023; 12:cells12020299. [PMID: 36672235 PMCID: PMC9857032 DOI: 10.3390/cells12020299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease for which cigarette smoking is the main risk factor. Acetaldehyde, acrolein, and formaldehyde are short-chain aldehydes known to be formed during pyrolysis and combustion of tobacco and have been linked to respiratory toxicity. Mitochondrial dysfunction is suggested to be mechanistically and causally involved in the pathogenesis of smoking-associated lung diseases such as COPD. Cigarette smoke (CS) has been shown to impair the molecular regulation of mitochondrial metabolism and content in epithelial cells of the airways and lungs. Although it is unknown which specific chemicals present in CS are responsible for this, it has been suggested that aldehydes may be involved. Therefore, it has been proposed by the World Health Organization to regulate aldehydes in commercially-available cigarettes. In this review, we comprehensively describe and discuss the impact of acetaldehyde, acrolein, and formaldehyde on mitochondrial function and content and the molecular pathways controlling this (biogenesis versus mitophagy) in epithelial cells of the airways and lungs. In addition, potential therapeutic applications targeting (aldehyde-induced) mitochondrial dysfunction, as well as regulatory implications, and the necessary required future studies to provide scientific support for this regulation, have been covered in this review.
Collapse
Affiliation(s)
- Christy B. M. Tulen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Alexander H. V. Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
3
|
Ochoa CA, Nissen CG, Mosley DD, Bauer CD, Jordan DL, Bailey KL, Wyatt TA. Aldehyde Trapping by ADX-102 Is Protective against Cigarette Smoke and Alcohol Mediated Lung Cell Injury. Biomolecules 2022; 12:393. [PMID: 35327585 PMCID: PMC8946168 DOI: 10.3390/biom12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Most individuals diagnosed with alcohol use disorders smoke cigarettes. Large concentrations of malondialdehyde and acetaldehyde are found in lungs co-exposed to cigarette smoke and alcohol. Aldehydes directly injure lungs and form aldehyde protein adducts, impacting epithelial functions. Recently, 2-(3-Amino-6-chloroquinolin-2-yl)propan-2-ol (ADX-102) was developed as an aldehyde-trapping drug. We hypothesized that aldehyde-trapping compounds are protective against lung injury derived from cigarette smoke and alcohol co-exposure. To test this hypothesis, we pretreated mouse ciliated tracheal epithelial cells with 0-100 µM of ADX-102 followed by co-exposure to 5% cigarette smoke extract and 50 mM of ethanol. Pretreatment with ADX-102 dose-dependently protected against smoke and alcohol induced cilia-slowing, decreases in bronchial epithelial cell wound repair, decreases in epithelial monolayer resistance, and the formation of MAA adducts. ADX-102 concentrations up to 100 µM showed no cellular toxicity. As protein kinase C (PKC) activation is a known mechanism for slowing cilia and wound repair, we examined the effects of ADX-102 on smoke and alcohol induced PKC epsilon activity. ADX-102 prevented early (3 h) activation and late (24 h) autodownregulation of PKC epsilon in response to smoke and alcohol. These data suggest that reactive aldehydes generated from cigarette smoke and alcohol metabolism may be potential targets for therapeutic intervention to reduce lung injury.
Collapse
Affiliation(s)
- Carmen A. Ochoa
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Claire G. Nissen
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA;
| | - Deanna D. Mosley
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Christopher D. Bauer
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Destiny L. Jordan
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Kristina L. Bailey
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Todd A. Wyatt
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA;
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
4
|
Ghosh B, Reyes-Caballero H, Akgün-Ölmez SG, Nishida K, Chandrala L, Smirnova L, Biswal S, Sidhaye VK. Effect of sub-chronic exposure to cigarette smoke, electronic cigarette and waterpipe on human lung epithelial barrier function. BMC Pulm Med 2020; 20:216. [PMID: 32787821 PMCID: PMC7425557 DOI: 10.1186/s12890-020-01255-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Taking into consideration a recent surge of a lung injury condition associated with electronic cigarette use, we devised an in vitro model of sub-chronic exposure of human bronchial epithelial cells (HBECs) in air-liquid interface, to determine deterioration of epithelial cell barrier from sub-chronic exposure to cigarette smoke (CS), e-cigarette aerosol (EC), and tobacco waterpipe exposures (TW). METHODS Products analyzed include commercially available e-liquid, with 0% or 1.2% concentration of nicotine, tobacco blend (shisha), and reference-grade cigarette (3R4F). In one set of experiments, HBECs were exposed to EC (0 and 1.2%), CS or control air for 10 days using 1 cigarette/day. In the second set of experiments, exposure of pseudostratified primary epithelial tissue to TW or control air exposure was performed 1-h/day, every other day, until 3 exposures were performed. After 16-18 h of last exposure, we investigated barrier function/structural integrity of the epithelial monolayer with fluorescein isothiocyanate-dextran flux assay (FITC-Dextran), measurements of trans-electrical epithelial resistance (TEER), assessment of the percentage of moving cilia, cilia beat frequency (CBF), cell motion, and quantification of E-cadherin gene expression by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS When compared to air control, CS increased fluorescence (FITC-Dextran assay) by 5.6 times, whereby CS and EC (1.2%) reduced TEER to 49 and 60% respectively. CS and EC (1.2%) exposure reduced CBF to 62 and 59%, and cilia moving to 47 and 52%, respectively, when compared to control air. CS and EC (1.2%) increased cell velocity compared to air control by 2.5 and 2.6 times, respectively. The expression of E-cadherin reduced to 39% of control air levels by CS exposure shows an insight into a plausible molecular mechanism. Altogether, EC (0%) and TW exposures resulted in more moderate decreases in epithelial integrity, while EC (1.2%) substantially decreased airway epithelial barrier function comparable with CS exposure. CONCLUSIONS The results support a toxic effect of sub-chronic exposure to EC (1.2%) as evident by disruption of the bronchial epithelial cell barrier integrity, whereas further research is needed to address the molecular mechanism of this observation as well as TW and EC (0%) toxicity in chronic exposures.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hermes Reyes-Caballero
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Sevcan Gül Akgün-Ölmez
- Department of Environmental Health and Engineering, Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Present Address: Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Kristine Nishida
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lakshmana Chandrala
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Lena Smirnova
- Department of Environmental Health and Engineering, Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Venkataramana K Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Bailey KL, Kharbanda KK, Katafiasz DM, Sisson JH, Wyatt TA. Oxidative stress associated with aging activates protein kinase Cε, leading to cilia slowing. Am J Physiol Lung Cell Mol Physiol 2018; 315:L882-L890. [PMID: 30211654 PMCID: PMC6295504 DOI: 10.1152/ajplung.00033.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022] Open
Abstract
Older people are four times more likely to develop pneumonia than younger people. As we age, many components of pulmonary innate immunity are impaired, including slowing of mucociliary clearance. Ciliary beat frequency (CBF) is a major determinant of mucociliary clearance, and it slows as we age. We hypothesized that CBF is slowed in aging because of increased oxidative stress, which activates PKCε signaling. We pharmacologically inhibited PKCε in ex vivo mouse models of aging. We measured a slowing of CBF with aging that was reversed with inhibition using the novel PKC inhibitor, Ro-31-8220, as well as the PKCε inhibitor, PKCe141. Inhibition of PKCε using siRNA in mouse trachea also returned CBF to normal. In addition, antioxidants decrease PKCε activity and speed cilia. We also aged wild-type and PKCε KO mice and measured CBF. The PKCε KO mice were spared from the CBF slowing of aging. Using human airway epithelial cells from younger and older donors at air-liquid interface (ALI), we inhibited PKCε with siRNA. We measured a slowing of CBF with aging that was reversed with siRNA inhibition of PKCε. In addition, we measured bead clearance speeds in human ALI, which demonstrated a decrease in bead velocity with aging and a return to baseline after inhibition of PKCε. In summary, in human and mouse models, aging is associated with increased oxidant stress, which activates PKCε and slows CBF.
Collapse
Affiliation(s)
- Kristina L Bailey
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Kusum K Kharbanda
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Departments of Internal Medicine and Biochemistry and Molecular Biology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Dawn M Katafiasz
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Joseph H Sisson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Todd A Wyatt
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center , Omaha, Nebraska
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
6
|
Antoniak DT, Duryee MJ, Mikuls TR, Thiele GM, Anderson DR. Aldehyde-modified proteins as mediators of early inflammation in atherosclerotic disease. Free Radic Biol Med 2015; 89:409-18. [PMID: 26432980 DOI: 10.1016/j.freeradbiomed.2015.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022]
Abstract
Inflammation is widely accepted to play a major role in atherosclerosis and other cardiovascular diseases. However, the exact mechanism(s) by which inflammation exerts its pathogenic effect remains poorly understood. A number of oxidatively modified proteins have been associated with cardiovascular disease. Recently, attention has been given to the oxidative compound of malondialdehyde and acetaldehyde, two reactive aldehydes known to covalently bind and adduct macromolecules. These products have been shown to form stable malondialdehyde-acetaldehyde (MAA) adducts that are reactive and induce immune responses. These adducts have been found in inflamed and diseased cardiovascular tissue of patients. Antibodies to these adducted proteins are measurable in the serum of diseased patients. The isotypes involved in the immune response to MAA (i.e., IgM, IgG, and IgA) are predictive of atherosclerotic disease progression and cardiovascular events such as an acute myocardial infarction or coronary artery bypass grafting. Therefore, it is the purpose of this article to review the past and current knowledge of aldehyde-modified proteins and their role in cardiovascular disease.
Collapse
Affiliation(s)
- Derrick T Antoniak
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael J Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ted R Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Geoffrey M Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel R Anderson
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Ghosh A, Boucher RC, Tarran R. Airway hydration and COPD. Cell Mol Life Sci 2015; 72:3637-52. [PMID: 26068443 PMCID: PMC4567929 DOI: 10.1007/s00018-015-1946-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung's mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (1) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na(+) channel (ENaC) to maintain airway hydration; (2) ciliary beating; and (3) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure.
Collapse
Affiliation(s)
- Arunava Ghosh
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - R C Boucher
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA.
| |
Collapse
|
8
|
Romberger DJ, Heires AJ, Nordgren TM, Souder CP, West W, Liu XD, Poole JA, Toews ML, Wyatt TA. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L388-99. [PMID: 26092994 DOI: 10.1152/ajplung.00025.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/09/2015] [Indexed: 01/31/2023] Open
Abstract
Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease.
Collapse
Affiliation(s)
- Debra J Romberger
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska; Veterans Affairs Nebraska-Western Iowa Healthcare System, Omaha, Nebraska;
| | - Art J Heires
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tara M Nordgren
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chelsea P Souder
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - William West
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Xiang-de Liu
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jill A Poole
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Myron L Toews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Todd A Wyatt
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska; Veterans Affairs Nebraska-Western Iowa Healthcare System, Omaha, Nebraska; Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska; and
| |
Collapse
|
9
|
Schneberger D, Gordon JR, DeVasure JM, Boten JA, Heires AJ, Romberger DJ, Wyatt TA. CXCR1/CXCR2 antagonist CXCL8(3-74)K11R/G31P blocks lung inflammation in swine barn dust-instilled mice. Pulm Pharmacol Ther 2015; 31:55-62. [PMID: 25681618 PMCID: PMC4396599 DOI: 10.1016/j.pupt.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/15/2015] [Accepted: 02/03/2015] [Indexed: 11/28/2022]
Abstract
Inhalation of agricultural occupational dusts from swine confinement facilities can result in lung inflammation. The innate immune response to organic barn dusts results in production of a number of pro-inflammatory factors in the lungs of barn workers such as cytokines, chemokines, and an influx of neutrophils. Many of these inflammatory factors are influenced by the chemokine CXCL8/IL-8 (KC or MIP-2 in mice). Previously, we have demonstrated that an endotoxin-independent component of swine barn dust extract (SBE) elevates lung chemokines in a protein kinase C (PKC)-dependent manner resulting in the significant formation of lung inflammatory cell infiltrates in a mouse model of SBE injury. In this study we test the ability of a CXCR1/CXCR2 antagonist, CXCL8(3-74)K11R/G31P (G31P) to block many of the features of lung-inflammation in response to challenge with SBE in an established mouse exposure system. Injection of G31P concurrent with SBE nasal instillation over a course of 3 weeks significantly reduced neutrophil accumulation in the lungs of barn dust exposed animals compared to those given SBE alone. There was a similar reduction in pro-inflammatory cytokines and chemokines IL-6, KC, and MIP-2 in SBE plus G31P-treated mice. In addition to excreted products, the receptors ICAM-1, CXCR1, and CXCR2, which all were elevated with SBE exposure, were also decreased with G31P treatment. SBE activation of PKCα and PKCε was reduced as well with G31P treatment. Thus, G31P was found to be highly effective at reducing several features of lung inflammation in mice exposed to barn dust extracts.
Collapse
Affiliation(s)
- D Schneberger
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - J R Gordon
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N5B4, Canada.
| | - J M DeVasure
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - J A Boten
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - A J Heires
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - D J Romberger
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; VA Nebraska-Western Iowa Healthcare System, Research Service and the University of Nebraska Medical Center Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, Omaha, NE 68198, USA.
| | - T A Wyatt
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; VA Nebraska-Western Iowa Healthcare System, Research Service and the University of Nebraska Medical Center Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, Omaha, NE 68198, USA; Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
10
|
Staab EB, Weigel J, Xiao F, Madayiputhiya N, Wyatt TA, Wells SM. Asymmetric dimethyl-arginine metabolism in a murine model of cigarette smoke-mediated lung inflammation. J Immunotoxicol 2014; 12:273-82. [PMID: 25913572 DOI: 10.3109/1547691x.2014.961619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There is increasing evidence that the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethyl-arginine (ADMA) is involved in the pathogenesis of chronic lung diseases. One important regulator of this molecule is the ADMA-metabolizing enzyme dimethyl-arginine dimethyl-aminohydrolase (DDAH). The objective of this study was to determine whether perturbation of the ADMA-DDAH pathway contributes to lung inflammation following exposure to cigarette smoke (CS). For these studies, wild-type and DDAH transgenic mice were sham or CS-exposed. Serum ADMA levels were determined by mass spectrometry. ADMA content and DDAH expression were also visualized in mouse lung tissue by immunohistochemistry. DDAH expression was determined by real-time quantitative PCR (qPCR). Inflammation was assessed by H&E staining and analyses of total cell counts and fluid tumor necrosis factor (TNF)-α levels (using ELISA) in lung lavage fluid. NF-κB binding activity in mouse lung epithelial (LA-4) cells was assessed by a transcription factor-binding assay. The results indicated that the concentration of serum ADMA was increased following exposure to CS, and this corresponded with increased ADMA content in bronchial epithelial cells in lung tissue. Total lung DDAH expression was significantly decreased in lung tissue and cultured LA-4 cells following CS exposure. Addition of exogenous ADMA increased CSE-mediated NF-κB binding activity and TNFα production in LA-4 cells more than 2-fold compared to that in CSE-exposed controls. CS-mediated lung inflammation was significantly attenuated in DDAH transgenic mice compared to in wild-type controls. These findings demonstrated that lung ADMA metabolism was altered in mice following CS exposure and suggested that ADMA played a role in CS-mediated inflammation through increasing the presence of inflammatory mediators in lung epithelial cells.
Collapse
Affiliation(s)
- Elizabeth B Staab
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center , Omaha, NE , USA
| | | | | | | | | | | |
Collapse
|
11
|
Wyatt TA, Poole JA, Nordgren TM, DeVasure JM, Heires AJ, Bailey KL, Romberger DJ. cAMP-dependent protein kinase activation decreases cytokine release in bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2014; 307:L643-51. [PMID: 25150062 DOI: 10.1152/ajplung.00373.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung injury caused by inhalation of dust from swine-concentrated animal-feeding operations (CAFO) involves the release of inflammatory cytokine interleukin 8 (IL-8), which is mediated by protein kinase C-ε (PKC-ε) in airway epithelial cells. Once activated by CAFO dust, PKC-ε is responsible for slowing cilia beating and reducing cell migration for wound repair. Conversely, the cAMP-dependent protein kinase (PKA) stimulates contrasting effects, such as increased cilia beating and an acceleration of cell migration for wound repair. We hypothesized that a bidirectional mechanism involving PKA and PKC regulates epithelial airway inflammatory responses. To test this hypothesis, primary human bronchial epithelial cells and BEAS-2B cells were treated with hog dust extract (HDE) in the presence or absence of cAMP. PKC-ε activity was significantly reduced in cells that were pretreated for 1 h with 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) before exposure to HDE (P < 0.05). HDE-induced IL-6, and IL-8 release was significantly lower in cells that were pretreated with 8-Br-cAMP (P < 0.05). To exclude exchange protein activated by cAMP (EPAC) involvement, cells were pretreated with either 8-Br-cAMP or 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2Me-cAMP) (EPAC agonist). 8-CPT-2Me-cAMP did not activate PKA and did not reduce HDE-stimulated IL-6 release. In contrast, 8-Br-cAMP decreased HDE-stimulated tumor necrosis factor (TNF)-α-converting enzyme (TACE; ADAM-17) activity and subsequent TNF-α release (P < 0.001). 8-Br-cAMP also blocked HDE-stimulated IL-6 and keratinocyte-derived chemokine release in precision-cut mouse lung slices (P < 0.05). These data show bidirectional regulation of PKC-ε via a PKA-mediated inhibition of TACE activity resulting in reduced PKC-ε-mediated release of IL-6 and IL-8.
Collapse
Affiliation(s)
- Todd A Wyatt
- VA Nebraska-Western Iowa Health Care System Research Service, Department of Veterans Affairs Medical Center, Omaha, Nebraska; Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska; Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Jill A Poole
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Tara M Nordgren
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Jane M DeVasure
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Art J Heires
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Kristina L Bailey
- VA Nebraska-Western Iowa Health Care System Research Service, Department of Veterans Affairs Medical Center, Omaha, Nebraska; Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Debra J Romberger
- VA Nebraska-Western Iowa Health Care System Research Service, Department of Veterans Affairs Medical Center, Omaha, Nebraska; Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
12
|
Shao R, Li X, Feng Y, Lin JF, Billig H. Direct effects of metformin in the endometrium: a hypothetical mechanism for the treatment of women with PCOS and endometrial carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:41. [PMID: 24887156 PMCID: PMC4036091 DOI: 10.1186/1756-9966-33-41] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/05/2014] [Indexed: 01/03/2023]
Abstract
Although a number of in vitro studies have demonstrated the antiproliferative, anti-invasive, and antimetastatic effects of metformin in multiple cancer cell types, its cellular and molecular mechanisms of anti-cancer action in the endometrium of women with polycystic ovary syndrome (PCOS) have not yet been fully elucidated. Organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) are known to be involved in metformin uptake and excretion in cells. In this article, we discuss the novel therapeutic possibilities for early-stage endometrial carcinoma (EC) in women with PCOS focusing on metformin, which might have a direct effect in the endometrium through the OCTs and MATEs. We then review the molecular mechanism(s) of the action of metformin in the endometrium and highlight possible mechanistic insights into the inhibition of cell proliferation and tumor growth and, ultimately, the reversal of early-stage EC into normal endometria in women with PCOS.
Collapse
Affiliation(s)
- Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden.
| | | | | | | | | |
Collapse
|
13
|
Chen LM, Nergard JC, Ni L, Rosser CJ, Chai KX. Long-term exposure to cigarette smoke extract induces hypomethylation at the RUNX3 and IGF2-H19 loci in immortalized human urothelial cells. PLoS One 2013; 8:e65513. [PMID: 23724145 PMCID: PMC3665628 DOI: 10.1371/journal.pone.0065513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Cigarette smoking is the single most important epidemiological risk factor for bladder cancer but it is not known whether exposure of urothelial cells to the systemic soluble contents of cigarette smoke is directly causative to bladder cancer and the associated epigenetic changes such as tumor suppressor gene hypermethylation. We undertook this study to investigate if long-term treatment of human urothelial cells with cigarette smoke extract (CSE) results in tumor suppressor gene hypermethylation, a phenotype that was previously associated with long-term constant CSE treatment of airway epithelial cells. We chronically treated an immortalized human urothelial cell line UROtsa with CSE using a cyclic daily regimen but the cells were cultured in CSE-free medium between daily treatments. Bisulfite sequencing and real-time PCR array-based methylation profiling were employed to evaluate methylation changes at tumor suppressor gene loci in the chronically CSE-treated cells versus the passage-matched untreated control cells. The RUNX3 tumor suppressor gene promoter was hypomethylated with a significant increase in proportion of the completely unmethylated haplotype after the long-term CSE treatment; whereas RUNX3 promoter hypermethylation was previously reported for bladder cancers of smokers. Hypomethylation induced by the long-term CSE treatment was also observed for the IGF2-H19 locus. The methylation status at the PRSS8/prostasin and 16 additional loci however, was unaffected by the chronic CSE treatment. Transient CSE treatment over 1 daily regimen resulted in transcriptional down-regulation of RUNX3 and H19, but only the H19 transcription was down-regulated in the chronically CSE-treated urothelial cells. Transcription of a key enzyme in one-carbon metabolism, dihydrofolate reductase (DHFR) was greatly reduced by the long-term CSE treatment, potentially serving as a mechanism for the hypomethylation phenotype via a reduced supply of methyl donor. In conclusion, chronic cyclic CSE treatment of urothelial cells induced hypomethylation rather than hypermethylation at specific loci.
Collapse
Affiliation(s)
- Li-Mei Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | | | | | | | | |
Collapse
|
14
|
Milara J, Armengot M, Bañuls P, Tenor H, Beume R, Artigues E, Cortijo J. Roflumilast N-oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro. Br J Pharmacol 2012; 166:2243-62. [PMID: 22385203 DOI: 10.1111/j.1476-5381.2012.01929.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Mucociliary malfunction occurs in chronic obstructive pulmonary disease (COPD) and compromised functions of ciliated bronchial epithelial cells may contribute to this. Cigarette smoke, a major risk factor for COPD, impairs ciliary beat frequency (CBF). cAMP augments CBF. This in vitro study addressed, in differentiated, primary human bronchial epithelial cells, whether roflumilast N-oxide, a PDE4 inhibitor, (i) augments CBF; (ii) prevents the reduction in CBF induced by cigarette smoke extract (CSE); and (iii) protects against the loss of the ciliated phenotype following long-term CSE exposure. EXPERIMENTAL APPROACH Air-liquid interface cultured human bronchial epithelial cells were incubated with roflumilast N-oxide and exposed to CSE. CBF was assessed by digital high speed video microscopy (DHSV). Ciliated cells were characterized by β-tubulin IV staining and analyses of Foxj1 and Dnai2 mRNA and protein (real-time quantitative PCR, Western blotting). KEY RESULTS Roflumilast N-oxide concentration-dependently triggered a rapid and persistent increase in CBF and reversed the decrease in CBF following CSE. Long-term incubation of bronchial epithelial cells with CSE resulted in a loss in ciliated cells associated with reduced expression of the ciliated cell markers Foxj1 and Dnai2. The PDE4 inhibitor prevented this loss in the ciliated cell phenotype and the compromised Foxj1 and Dnai2 expression. The enhanced release of IL-13 following CSE, a cytokine that diminishes the proportion of ciliated cells and in parallel, reduces Foxj1 and Dnai2, was reversed by roflumilast N-oxide. CONCLUSION AND IMPLICATIONS Roflumilast N-oxide protected differentiated human bronchial epithelial cells from reduced CBF and loss of ciliated cells following CSE.
Collapse
Affiliation(s)
- J Milara
- Research Unit, University General Hospital Consortium, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
In SM, Kim HJ, Park RW, Kim W, Gimm YM, Park I, Hong S, Hong JJ, Oh JH, Kahng H, Park EY. The effects of a 1.8 GHz continuous electromagnetic fields on mucociliary transport of human nasal mucosa. Laryngoscope 2012; 123:315-20. [PMID: 23060235 DOI: 10.1002/lary.23620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS The aim of this study was to investigate the effects of a 1.8 GHz continuous electromagnetic fields (EMF) on human nasal mucociliary transport, and to determine the pathophysiology of ciliary beat frequency (CBF) during an EMF-induced change. METHODS Human nasal mucosa cells were exposed to a 1.8 GHz EMF (SAR=1.0 W/kg), and CBF was analyzed using an optical flow technique with the peak detection method. RESULTS The 1.8 GHz-exposed group showed a decreased CBF when compared to the control group. In the cytotoxicity assay, difference in survival rates was not found between the two groups. In the EMF-exposed group, protein kinase C (PKC) activity was increased during a PKC activity assay. The broad PKC inhibitor, Calphostin C abolished the EMF-induced decrease of CBF. The EMF-induced decrease of CBF was abolished by GF 109203X, a novel PKC (nPKC) isoform inhibitor, whereas the decrease was not attenuated by Gö-6976, a specific inhibitor of conventional PKC (cPKC) isoform. CONCLUSIONS EMF may inhibit CBF via an nPKC-dependent mechanism. Therefore, we have confirmed that EMF could decrease CBF by increasing PKC activity.
Collapse
Affiliation(s)
- Seung Min In
- Department of Otolaryngology, School of Medicine, Konyang University, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alcohol exposure alters mouse lung inflammation in response to inhaled dust. Nutrients 2012; 4:695-710. [PMID: 22852058 PMCID: PMC3407989 DOI: 10.3390/nu4070695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 01/12/2023] Open
Abstract
Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs) are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE) collected from a CAFO results in the activation of protein kinase C (PKC), elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6), and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF), tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon) activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability of the lung to activate PKCε-dependent inflammatory pathways to environmental dust exposure. These data also define alcohol as an important co-exposure agent to consider in the study of inhalation injury responses.
Collapse
|
17
|
Co-exposure to cigarette smoke and alcohol decreases airway epithelial cell cilia beating in a protein kinase Cε-dependent manner. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:431-40. [PMID: 22677421 DOI: 10.1016/j.ajpath.2012.04.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/12/2012] [Accepted: 04/24/2012] [Indexed: 11/22/2022]
Abstract
Alcohol use disorders are associated with increased lung infections and exacerbations of chronic lung diseases. Whereas the effects of cigarette smoke are well recognized, the interplay of smoke and alcohol in modulating lung diseases is not clear. Because innate lung defense is mechanically maintained by airway cilia action and protein kinase C (PKC)-activating agents slow ciliary beat frequency (CBF), we hypothesized that the combination of smoke and alcohol would decrease CBF in a PKC-dependent manner. Primary ciliated bronchial epithelial cells were exposed to 5% cigarette smoke extract plus100 mmol/L ethanol for up to 24 hours and assayed for CBF and PKCε. Smoke and alcohol co-exposure activated PKCε by 1 hour and decreased both CBF and total number of beating cilia by 6 hours. A specific activator of PKCε, DCP-LA, slowed CBF after maximal PKCε activation. Interestingly, activation of PKCε by smoke and alcohol was only observed in ciliated cells, not basal bronchial epithelium. In precision-cut mouse lung slices treated with smoke and alcohol, PKCε activation preceded CBF slowing. Correspondingly, increased PKCε activity and cilia slowing were only observed in mice co-exposed to smoke and alcohol, regardless of the sequence of the combination exposure. No decreases in CBF were observed in PKCε knockout mice co-exposed to smoke and alcohol. These data identify PKCε as a key regulator of cilia slowing in response to combined smoke and alcohol-induced lung injury.
Collapse
|
18
|
Navarrette CR, Sisson JH, Nance E, Allen-Gipson D, Hanes J, Wyatt TA. Particulate matter in cigarette smoke increases ciliary axoneme beating through mechanical stimulation. J Aerosol Med Pulm Drug Deliv 2012; 25:159-68. [PMID: 22280523 PMCID: PMC3377952 DOI: 10.1089/jamp.2011.0890] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/20/2011] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The lung's ability to trap and clear foreign particles via the mucociliary elevator is an important mechanism for protecting the lung against respirable irritants and microorganisms. Although cigarette smoke (CS) exposure and particulate inhalation are known to alter mucociliary clearance, little is known about how CS and nanoparticles (NPs) modify cilia beating at the cytoskeletal infrastructure, or axonemal, level. METHODS We used a cell-free model to introduce cigarette smoke extract (CSE) and NPs with variant size and surface chemistry to isolated axonemes and measured changes in ciliary motility. We hypothesized that CSE would alter cilia beating and that alterations in ciliary beat frequency (CBF) due to particulate matter would be size- and surface chemistry-dependent. Demembranated axonemes were isolated from ciliated bovine tracheas and exposed to adenosine triphosphate (ATP) to initiate motility. CBF was measured in response to 5% CSE, CSE filtrate, and carboxyl-modified (COOH), sulphate (SO(4))-modified (sulfonated), or PEG-coated polystyrene (PS) latex NPs ranging in size from 40 nm to 500 nm. RESULTS CSE concentrations as low as 5% resulted in rapid, significant stimulation of CBF (p<0.05 vs. baseline control). Filtering CSE through a 0.2-μm filter attenuated this effect. Introduction of sulphate-modified PS beads ~300 nm in diameter resulted in a similar increase in CBF above baseline ATP levels. Uncharged, PEG-coated beads had no effect on CBF regardless of size. Similarly, COOH-coated particles less than 200 nm in diameter did not alter ciliary motility. However, COOH-coated PS particles larger than 300 nm increased CBF significantly and increased the number of motile points. CONCLUSIONS These data show that NPs, including those found in CSE, mechanically stimulate axonemes in a size- and surface chemistry-dependent manner. Alterations in ciliary motility due to physicochemical properties of NPs may be important for inhalational lung injury and efficient drug delivery of respirable particles.
Collapse
Affiliation(s)
- Chelsea R. Navarrette
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, Nebraska
| | - Joseph H. Sisson
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, Nebraska
| | - Elizabeth Nance
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University School of Engineering, Baltimore, Mayland
| | - Diane Allen-Gipson
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, Nebraska
| | - Justin Hanes
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University School of Engineering, Baltimore, Mayland
- Center for Nanomedicine and Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd A. Wyatt
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, Nebraska
- VA Research Service, Department of Veterans Affairs Medical Center, Omaha, Nebraska
- Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
19
|
Wyatt TA, Kharbanda KK, McCaskill ML, Tuma DJ, Yanov D, DeVasure J, Sisson JH. Malondialdehyde-acetaldehyde-adducted protein inhalation causes lung injury. Alcohol 2012; 46:51-9. [PMID: 21958604 DOI: 10.1016/j.alcohol.2011.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 09/02/2011] [Accepted: 09/06/2011] [Indexed: 01/13/2023]
Abstract
In addition to cigarette smoking, alcohol exposure is also associated with increased lung infections and decreased mucociliary clearance. However, little research has been conducted on the combination effects of alcohol and cigarette smoke on lungs. Previously, we have demonstrated in a mouse model that the combination of cigarette smoke and alcohol exposure results in the formation of a very stable hybrid malondialdehyde-acetaldehyde (MAA)-adducted protein in the lung. In in vitro studies, MAA-adducted protein stimulates bronchial epithelial cell interleukin-8 (IL-8) via the activation of protein kinase C epsilon (PKCɛ). We hypothesized that direct MAA-adducted protein exposure in the lungs would mimic such a combination of smoke and alcohol exposure leading to airway inflammation. To test this hypothesis, C57BL/6J female mice were intranasally instilled with either saline, 30μL of 50μg/mL bovine serum albumin (BSA)-MAA, or unadducted BSA for up to 3 weeks. Likewise, human lung surfactant proteins A and D (SPA and SPD) were purified from human pulmonary proteinosis lung lavage fluid and successfully MAA-adducted in vitro. Similar to BSA-MAA, SPD-MAA was instilled into mouse lungs. Lungs were necropsied and assayed for histopathology, PKCɛ activation, and lung lavage chemokines. In control mice instilled with saline, normal lungs had few inflammatory cells. No significant effects were observed in unadducted BSA- or SPD-instilled mice. However, when mice were instilled with BSA-MAA or SPD-MAA for 3 weeks, a significant peribronchiolar localization of inflammatory cells was observed. Both BSA-MAA and SPD-MAA stimulated increased lung lavage neutrophils and caused a significant elevation in the chemokine, keratinocyte chemokine, which is a functional homologue to human IL-8. Likewise, MAA-adducted protein stimulated the activation of airway and lung slice PKCɛ. These data support that the MAA-adducted protein induces a proinflammatory response in the lungs and that the lung surfactant protein is a biologically relevant target for malondialdehyde and acetaldehyde adduction. These data further implicate MAA-adduct formation as a potential mechanism for smoke- and alcohol-induced lung injury.
Collapse
Affiliation(s)
- Todd A Wyatt
- Research Service, Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
[Effects of cigarette smoking on female reproduction: from oocyte to embryo (Part I)]. ACTA ACUST UNITED AC 2011; 39:559-66. [PMID: 21930413 DOI: 10.1016/j.gyobfe.2011.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/30/2010] [Indexed: 11/20/2022]
Abstract
Cigarette smoking is associated with lower fecundity rate, adverse reproductive outcomes and higher risk of IVF failure. Over the last decades, prevalence of smoking among women of reproductive age has increased. The aim of this work was to focus on the knowledge of the effects of cigarette smoking on all reproductive stages, from oocyte to embryo. For each reproductive functions human clinical and experimental studies were analysed in order to find hypothesis and explanations for effects observed. All reproductive functions are targets of smoke compounds and cigarette smoking impairs ovarian reserve, sexual steroids synthesis, Fallopian tubes functions and embryo development, leading to reduced fecundity. Some of smoke compounds were identified in ovarian tissue, in uterine fluid and in the embryo, suggesting direct toxicity.
Collapse
|
21
|
Milara J, Navarro A, Almudéver P, Lluch J, Morcillo EJ, Cortijo J. Oxidative stress-induced glucocorticoid resistance is prevented by dual PDE3/PDE4 inhibition in human alveolar macrophages. Clin Exp Allergy 2011; 41:535-46. [PMID: 21395877 DOI: 10.1111/j.1365-2222.2011.03715.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Oxidative stress is present in airway diseases such as severe asthma or Chronic Obstructive Pulmonary Disease and contributes to the low response to glucocorticoids through the down-regulation of histone deacetylase (HDAC) activity. OBJECTIVE To study the effects of the phosphodiesterase (PDE)-3 and 4 inhibitors and their combination vs. glucocorticoids in a model of lipopolysaccharide (LPS)-induced cytokine release in alveolar macrophages under oxidative stress conditions. METHODS Differentiated U937 or human alveolar macrophages were stimulated with H(2) O(2) (10-1000 μM) or cigarette smoke extract (CSE, 0-15%) for 4 h before LPS (0.5 μg/mL, 24 h) addition. In other experiments, cells were pre-treated with dexamethasone or budesonide (10(-9) -10(-6) M), with the PDE4 inhibitor rolipram (10(-9) -10(-5) M), PDE3 inhibitor motapizone (10 μM), 3',5'-cyclic monophosphate enhancer PGE(2) (10 nM), or with the combination of rolipram (10(-6) M)+PGE(2) (10 nM)+motapizone (10 μM) 15 min before oxidants. IL-8 and TNF-α were measured by ELISA and HDAC activity by a colorimetric assay. RESULTS Budesonide and dexamethasone produced a concentration-dependent inhibition of the LPS-induced IL-8 and TNF-α secretion with an E(max) about 90% of inhibition, which was reduced by approximately 30% in the presence of H(2)O(2) or CSE. Pre-treatment with rolipram, motapizone or PGE2 only reached about 20% of inhibition but was not affected by oxidative stress. In contrast, PDE4/PDE3 combination in presence of PGE2 effectively inhibited the LPS-induced cytokine secretion by about 90% and was not affected by oxidative stress. Combined PDE4 and PDE3 inhibition reversed glucocorticoid resistance under oxidative stress conditions. HDAC activity was reduced in the presence of oxidative stress, and in contrast to glucocorticoids, pre-treatment with PDE4/PDE3 combination was able to prevent HDAC inactivity. CONCLUSIONS & CLINICAL RELEVANCE This study shows that the combination of the PDE3/PDE4 inhibitors prevents alveolar macrophage activation in those situations of glucocorticoid resistance, which may be of potential interest to develop new effective anti-inflammatory drugs in airway diseases.
Collapse
Affiliation(s)
- J Milara
- Research Unit, University General Hospital Consortium, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
McCaskill ML, Kharbanda KK, Tuma DJ, Reynolds JD, DeVasure JM, Sisson JH, Wyatt TA. Hybrid malondialdehyde and acetaldehyde protein adducts form in the lungs of mice exposed to alcohol and cigarette smoke. Alcohol Clin Exp Res 2011; 35:1106-13. [PMID: 21428986 DOI: 10.1111/j.1530-0277.2011.01443.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Most alcohol abusers smoke cigarettes and approximately half of all cigarette smokers consume alcohol. However, no animal models of cigarette and alcohol co-exposure exist to examine reactive aldehydes in the lungs. Cigarette smoking results in elevated lung acetaldehyde (AA) and malondialdehyde (MDA) levels. Likewise, alcohol metabolism produces AA via the action of alcohol dehydrogenase and MDA via lipid peroxidation. A high concentration of AA and MDA form stable hybrid protein adducts known as malondialdehyde-acetaldehyde (MAA) adducts. We hypothesized that chronic cigarette smoke and alcohol exposure in an in vivo mouse model would result in the in vivo formation of MAA adducts. METHODS We fed C57BL/6 mice ad libitum ethanol (20%) in drinking water and exposed them to whole-body cigarette smoke 2 h/d, 5 d/wk for 6 weeks. Bronchoalveolar lavage fluid and lung homogenates were assayed for AA, MDA, and MAA adduct concentrations. MAA-adducted proteins were identified by Western blot and ELISA. RESULTS Smoke and alcohol exposure alone elevated both AA and MDA, but only the combination of smoke+alcohol generated protein-adducting concentrations of AA and MDA. MAA-adducted protein (~500 ng/ml) was significantly elevated in the smoke+alcohol-exposed mice. Of the 5 MAA-adducted proteins identified by Western blot, 1 protein band immunoprecipitated with antibodies to surfactant protein D. Similar to in vitro PKC stimulation by purified MAA-adducted protein, protein kinase C (PKC) epsilon was activated only in tracheal epithelial extracts from smoke- and alcohol-exposed mice. CONCLUSIONS These data demonstrate that only the combination of cigarette smoke exposure and alcohol feeding in mice results in the generation of significant AA and MDA concentrations, the formation of MAA-adducted protein, and the activation of airway epithelial PKC epsilon in the lung.
Collapse
Affiliation(s)
- Michael L McCaskill
- VA Research Service, Department of Veterans Affairs Medical Center, 985300 Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Dechanet C, Anahory T, Mathieu Daude JC, Quantin X, Reyftmann L, Hamamah S, Hedon B, Dechaud H. Effects of cigarette smoking on reproduction. Hum Reprod Update 2010; 17:76-95. [PMID: 20685716 DOI: 10.1093/humupd/dmq033] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cigarette smoking is associated with lower fecundity rates, adverse reproductive outcomes and a higher risk of IVF failures. Over the last few decades, prevalence of smoking among women of reproductive age has increased. This review focuses on current knowledge of the potential effects of smoke toxicants on all reproductive stages and the consequences of smoke exposure on reproductive functions. METHODS We conducted a systematic review of the scientific literature on the impact of cigarette smoking and smoke constituents on the different stages of reproductive function, including epidemiological, clinical and experimental studies. We attempted to create hypotheses and find explanations for the deleterious effects of cigarette smoke observed in experimental studies. RESULTS Cigarette smoke contains several thousand components (e.g. nicotine, polycyclic aromatic hydrocarbons and cadmium) with diverse effects. Each stage of reproductive function, folliculogenesis, steroidogenesis, embryo transport, endometrial receptivity, endometrial angiogenesis, uterine blood flow and uterine myometrium is a target for cigarette smoke components. The effects of cigarette smoke are dose-dependent and are influenced by the presence of other toxic substances and hormonal status. Individual sensitivity, dose, time and type of exposure also play a role in the impact of smoke constituents on human fertility. CONCLUSIONS All stages of reproductive functions are targets of cigarette smoke toxicants. Further studies are necessary to better understand the deleterious effects of cigarette smoke compounds on the reproductive system in order to improve health care, help to reduce cigarette smoking and provide a better knowledge of the molecular mechanisms involved in reproductive toxicology.
Collapse
Affiliation(s)
- C Dechanet
- Department of Medicine and Biology of Reproduction, Hôpital Arnaud de Villeneuve, Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Arvisais E, Hou X, Wyatt TA, Shirasuna K, Bollwein H, Miyamoto A, Hansen TR, Rueda BR, Davis JS. Prostaglandin F2alpha represses IGF-I-stimulated IRS1/phosphatidylinositol-3-kinase/AKT signaling in the corpus luteum: role of ERK and P70 ribosomal S6 kinase. Mol Endocrinol 2010; 24:632-43. [PMID: 20160123 DOI: 10.1210/me.2009-0312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Little is known about the early intracellular events that contribute to corpus luteum regression. Experiments were designed to determine the effects of prostaglandin F2alpha (PGF2alpha) on phosphatidylinositol-3-kinase (PI3K)/Akt signaling in the corpus luteum in vivo and in vitro. Treatment of midluteal-phase cows with a luteolytic dose of PGF2alpha resulted in a rapid increase in ERK and mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6K1) signaling and a rapid suppression of Akt phosphorylation in luteal tissue. In vitro treatment of primary cultures of luteal cells with PGF2alpha also resulted in an increase in ERK and mTOR/p70S6K1 signaling and a diminished capacity of IGF-I to stimulate PI3K, Akt, and protein kinase C zeta activation. Accounting for the reductions in PI3K and Akt activation observed in response to PGF2alpha treatment, we found that PGF2alpha promoted the phosphorylation of serine residues (307, 612, 636) in the insulin receptor substrate 1 (IRS1) peptide sequence in vivo and in vitro. Serine phosphorylation of IRS1 was associated with reduced formation of IGF-I-stimulated IRS1/PI3Kp85 complexes. Furthermore, treatment with inhibitors of the MAPK kinase 1/ERK or mTOR/p70S6K1 signaling pathways prevented PGF2alpha-induced serine phosphorylation of IRS1 and abrogated the inhibitory actions of PGF2alpha on Akt activation. Taken together, these experiments provide compelling evidence that PGF2alpha treatment stimulates IRS1 serine phosphorylation, which may contribute to a diminished capacity to respond to IGF-I. It seems likely that the rapid changes in phosphorylation events are among the early events that mediate PGF2alpha-induced corpus luteum regression.
Collapse
Affiliation(s)
- Edward Arvisais
- Omaha Veterans Affairs Medical Center, Omaha, Nebraska 68105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Simet SM, Sisson JH, Pavlik JA, Devasure JM, Boyer C, Liu X, Kawasaki S, Sharp JG, Rennard SI, Wyatt TA. Long-term cigarette smoke exposure in a mouse model of ciliated epithelial cell function. Am J Respir Cell Mol Biol 2009; 43:635-40. [PMID: 20042711 DOI: 10.1165/rcmb.2009-0297oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exposure to cigarette smoke is associated with airway epithelial mucus cell hyperplasia and a decrease in cilia and ciliated cells. Few models have addressed the long-term effects of chronic cigarette smoke exposure on ciliated epithelial cells. Our previous in vitro studies showed that cigarette smoke decreases ciliary beat frequency (CBF) via the activation of protein kinase C (PKC). We hypothesized that chronic cigarette smoke exposure in an in vivo model would decrease airway epithelial cell ciliary beating in a PKC-dependent manner. We exposed C57BL/6 mice to whole-body cigarette smoke 2 hours/day, 5 days/week for up to 1 year. Tracheal epithelial cell CBF and the number of motile cells were measured after necropsy in cut tracheal rings, using high-speed digital video microscopy. Tracheal epithelial PKC was assayed according to direct kinase activity. At 6 weeks and 3 months of smoke exposure, the baseline CBF was slightly elevated (~1 Hz) versus control mice, with no change in β-agonist-stimulated CBF between control mice and cigarette smoke-exposed mice. By 6 months of smoke exposure, the baseline CBF was significantly decreased (2-3 Hz) versus control mice, and a β-agonist failed to stimulate increased CBF. The loss of β-agonist-increased CBF continued at 9 months and 12 months of smoke exposure, and the baseline CBF was significantly decreased to less than one third of the control rate. In addition to CBF, ciliated cell numbers significantly decreased in response to smoke over time, with a significant loss of tracheal ciliated cells occurring between 6 and 12 months. In parallel with the slowing of CBF, significant PKC activation from cytosol to the membrane of tracheal epithelial cells was detected in mice exposed to smoke for 6-12 months.
Collapse
Affiliation(s)
- Samantha M Simet
- Pulmonary, Critical Care, Sleep, and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198-5910, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wyatt TA, Slager RE, Heires AJ, Devasure JM, Vonessen SG, Poole JA, Romberger DJ. Sequential activation of protein kinase C isoforms by organic dust is mediated by tumor necrosis factor. Am J Respir Cell Mol Biol 2009; 42:706-15. [PMID: 19635931 DOI: 10.1165/rcmb.2009-0065oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dust samples collected from Nebraska swine confinement facilities (hog dust extract [HDE]) are known to elicit proinflammatory cytokine release from human bronchial epithelial (HBE) cells in vitro. This response involves the activation of two protein kinase C (PKC) isoforms: PKCalpha and PKCepsilon. Experiments were designed to investigate the relationship between the two isoenzymes and the degree to which each is responsible for cytokine release in HBE. Experiments also examined the contribution of TNF-alpha to IL-6 and IL-8 release. PKCalpha and PKCepsilon activities were inhibited using isoform-specific pharmacologic inhibitors and genetically modified dominant-negative (DN) expressing cell lines. Release of the proinflammatory cytokines IL-6, IL-8, and TNF-alpha was measured and PKC isoform activities assessed. We found that HDE stimulates PKCalpha activity by 1 hour, and within 6 hours the activity returns to baseline. PKCalpha-specific inhibitor or PKCalphaDN cells abolish this HDE-mediated effect. Both IL-6 and IL-8 release are likewise diminished under these conditions compared with normal HBE, and treatment with TNF-alpha-neutralizing antibody does not further inhibit cytokine release. In contrast, PKCepsilon activity was enhanced by 6 hours after HDE treatment. TNF-alpha blockade abrogated this effect. HDE-stimulated IL-6, but not IL-8 release in PKCepsilonDN cells. The concentration of TNF-alpha released by HDE-stimulated HBE is sufficient to have a potent cytokine-eliciting effect. A time course of TNF-alpha release suggests that TNF-alpha is produced after PKCalpha activation, but before PKCepsilon. These results suggest a temporal ordering of events responsible for the release of cytokines, which initiate and exacerbate inflammatory events in the airways of people exposed to agricultural dust.
Collapse
Affiliation(s)
- Todd A Wyatt
- Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Section, University of Nebraska Medical Center, 985300 Nebraska Medical Center, Omaha, NE 68198-5300, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Carter CA, Hamm JT. Multiplexed quantitative high content screening reveals that cigarette smoke condensate induces changes in cell structure and function through alterations in cell signaling pathways in human bronchial cells. Toxicology 2009; 261:89-102. [PMID: 19394402 DOI: 10.1016/j.tox.2009.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/06/2009] [Accepted: 04/15/2009] [Indexed: 12/27/2022]
Abstract
Human bronchial cells are one of the first cell types exposed to environmental toxins. Toxins often activate nuclear factor-kappaB (NF-kappaB) and protein kinase C (PKC). We evaluated the hypothesis that cigarette smoke condensate (CSC), the particulate fraction of cigarette smoke, activates PKC-alpha and NF-kappaB, and concomitantly disrupts the F-actin cytoskeleton, induces apoptosis and alters cell function in BEAS-2B human bronchial epithelial cells. Compared to controls, exposure of BEAS-2B cells to doses of 30mug/ml CSC significantly activated PKC-alpha, while CSC doses above 20mug/ml CSC significantly activated NF-kappaB. As NF-kappaB was activated, cell number decreased. CSC treatment of BEAS-2B cells induced a decrease in cell size and an increase in cell surface extensions including filopodia and lamellipodia. CSC treatment of BEAS-2B cells induced F-actin rearrangement such that stress fibers were no longer prominent at the cell periphery and throughout the cells, but relocalized to perinuclear regions. Concurrently, CSC induced an increase in the focal adhesion protein vinculin at the cell periphery. CSC doses above 30mug/ml induced a significant increase in apoptosis in BEAS-2B cells evidenced by an increase in activated caspase 3, an increase in mitochondrial mass and a decrease in mitochondrial membrane potential. As caspase 3 increased, cell number decreased. CSC doses above 30mug/ml also induced significant concurrent changes in cell function including decreased cell spreading and motility. CSC initiates a signaling cascade in human bronchial epithelial cells involving PKC-alpha, NF-kappaB and caspase 3, and consequently decreases cell spreading and motility. These CSC-induced alterations in cell structure likely prevent cells from performing their normal function thereby contributing to smoke-induced diseases.
Collapse
Affiliation(s)
- Charleata A Carter
- A.W. Spears Research Center, 420 N. English Street, Lorillard Tobacco Company, Greensboro, NC 27405, USA.
| | | |
Collapse
|
28
|
Muttray A, Gosepath J, Brieger J, Faldum A, Pribisz A, Mayer-Popken O, Jung D, Rossbach B, Mann W, Letzel S. No acute effects of an exposure to 50 ppm acetaldehyde on the upper airways. Int Arch Occup Environ Health 2008; 82:481-8. [PMID: 18716790 DOI: 10.1007/s00420-008-0354-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 08/04/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVE German MAK value of acetaldehyde has been fixed at 50 ppm to prevent from irritating effects. The threshold value is mainly based on animal experiments. The aim of this study was to evaluate acute effects of an exposure to 50 ppm acetaldehyde on the upper airways of human subjects. METHODS Twenty subjects were exposed to 50 ppm acetaldehyde and to air in an exposure chamber for 4 h according to a crossover design. Subjective symptoms were assessed by questionnaire. Olfactory threshold for n-butanol and mucociliary transport time were measured before and after exposure. Concentrations of interleukin 1beta and interleukin 8 were determined in nasal secretions taken after exposure. mRNA levels of interleukins 1beta, 6 and 8, tumour necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, monocyte chemotactic protein 1, and cyclooxygenases 1 and 2 were measured in nasal epithelial cells, gained after exposure. Possible effects were investigated by semiparametric and parametric crossover analyses. RESULTS Exposure to acetaldehyde did not cause any subjective irritating symptoms. Olfactory threshold did not change. Mucociliary transport time increased insignificantly after exposure to acetaldehyde. Neither concentrations of interleukins in nasal secretions nor mRNA levels of inflammatory factors were higher after exposure to acetaldehyde. CONCLUSION An acute exposure to 50 ppm acetaldehyde did not cause any adverse effects in test subjects.
Collapse
Affiliation(s)
- A Muttray
- Institute of Occupational, Social and Environmental Medicine, University of Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
In vitro culturing of porcine tracheal mucosa as an ideal model for investigating the influence of drugs on human respiratory mucosa. Eur Arch Otorhinolaryngol 2008; 265:1075-81. [PMID: 18458926 PMCID: PMC2491430 DOI: 10.1007/s00405-008-0661-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/25/2008] [Indexed: 11/14/2022]
Abstract
It has been previously shown that fresh mucosa from different mammals could serve as raw material for in vitro culturing with the differentiation of cilia, which are the most important morphological structures for the function of the mucociliary system. Increasing legal restrictions on the removal of human tissue and changing surgical techniques have led to a lack of fresh human mucosa for culturing. Most of the animals that have been used as donors up to now are genetically not very close to human beings and must all be sacrificed for such studies. We, therefore, established a modified system of culturing mucosa cells from the trachea of pigs, which is available as a regular by-product after slaughtering. With respect to the possibility of developing “beating” cilia, it could be shown that the speed of cell proliferation until adhesion to the coated culture dishes, the formation of conjunctions of cell clusters and the proliferation of cilia were comparable for porcine and human mucosa. Moreover, it could be demonstrated that the porcine cilia beat frequency of 7.57 ± 1.39 Hz was comparable to the human mucosa cells beat frequency of 7.3 ± 1.4 Hz and that this beat frequency was absolutely constant over the investigation time of 360 min. In order to prove whether the reaction to different drugs is comparable between the porcine and human cilia, we initially tested benzalkonium chloride, which is known to be toxic for human cells, followed by naphazoline, which we found in previous studies on human mucosa to be non-toxic. The results clearly showed that the functional and morphological reactions of the porcine ciliated cells to these substances were similar to the reaction we found in the in vitro cultured human mucosa.
Collapse
|
30
|
Wyatt TA, Sisson JH, Von Essen SG, Poole JA, Romberger DJ. Exposure to hog barn dust alters airway epithelial ciliary beating. Eur Respir J 2008; 31:1249-55. [PMID: 18216064 DOI: 10.1183/09031936.00015007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Swine confinement workers are at increased risk of airway diseases, including mucus membrane irritation syndrome, chronic rhinosinusitis and chronic bronchitis. Dust extracts from swine confinement facilities stimulate the production of pro-inflammatory cytokines in bronchial epithelial cells, including interleukin (IL)-8. As IL-8 is capable of blocking beta-agonist-stimulated increases in cilia beating, which impacts on mucociliary clearance, it was hypothesised that hog barn-dust exposure might alter cilia responses to stimulation. To test this hypothesis, ciliated bovine bronchial epithelial cell cultures were exposed to hog barn-dust extract (HDE) and ciliary beat frequency (CBF) was assayed. An elevation in baseline CBF was observed. This effect appeared to be independent of endotoxin but dependent upon nitric oxide. HDE also stimulated nitric oxide production in bronchial epithelial cells; however, stimulation of cilia beating by a beta-agonist did not occur in cells pre-exposed to HDE. These data demonstrate that hog barn dust can alter normal stimulation of cilia, suggesting a mechanism for the abrogation of stimulated increases in mucociliary clearance in response to inhaled dust exposure.
Collapse
Affiliation(s)
- T A Wyatt
- Dept of Internal Medicine, Pulmonary, Critical Care, Sleep and Allergy Section, University of Nebraska Medical Center, Omaha, NE 68198-5300, USA.
| | | | | | | | | |
Collapse
|
31
|
Kim YH, Kim YJ, Lee SE, Kim YH, Lim SH, Lee JH, Lee KM, Cheong SH, Choi YK, Shin CM. Effect of smoking on bronchial mucus transport velocity under total intravenous anesthesia. Korean J Anesthesiol 2008. [DOI: 10.4097/kjae.2008.55.1.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yong Han Kim
- Department of Anesthesiology and Pain Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Korea
| | - Young Jae Kim
- Department of Anesthesiology and Pain Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Korea
| | - Sang Eun Lee
- Department of Anesthesiology and Pain Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Korea
| | - Young Hwan Kim
- Department of Anesthesiology and Pain Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Korea
| | - Se Hun Lim
- Department of Anesthesiology and Pain Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Korea
| | - Jeong Han Lee
- Department of Anesthesiology and Pain Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Korea
| | - Kun Moo Lee
- Department of Anesthesiology and Pain Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Korea
| | - Soon Ho Cheong
- Department of Anesthesiology and Pain Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Korea
| | - Young Kyun Choi
- Department of Anesthesiology and Pain Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Korea
| | - Chee Mahn Shin
- Department of Anesthesiology and Pain Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Korea
| |
Collapse
|
32
|
Slager RE, Allen-Gipson DS, Sammut A, Heires A, DeVasure J, Von Essen S, Romberger DJ, Wyatt TA. Hog barn dust slows airway epithelial cell migration in vitro through a PKCalpha-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1469-74. [PMID: 17934063 DOI: 10.1152/ajplung.00274.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Agricultural work and other occupational exposures are responsible for approximately 15% of chronic obstructive pulmonary disease (COPD). COPD involves airway remodeling in response to chronic lung inflammatory events and altered airway repair mechanisms. However, the effect of agricultural dust exposure on signaling pathways that regulate airway injury and repair has not been well characterized. A key step in this process is migration of airway cells to restore epithelial integrity. We have previously shown that agents that activate the critical regulatory enzyme protein kinase C (PKC) slow cell migration during wound repair. Based on this observation and direct kinase measurements that demonstrate that dust extract from hog confinement barns (HDE) specifically activates the PKC isoforms PKCalpha and PKCepsilon, we hypothesized that HDE would slow wound closure time in airway epithelial cells. We utilized the human bronchial epithelial cell line BEAS-2B and transfected BEAS-2B cell lines that express dominant negative (DN) forms of PKC isoforms to demonstrate that HDE slows wound closure in BEAS-2B and PKCepsilon DN cell lines. However, in PKCalpha DN cells, wound closure following HDE treatment is not significantly different than media-treated cells. These results suggest that the PKCalpha isoform is an important regulator of cell migration in response to agricultural dust exposure.
Collapse
Affiliation(s)
- Rebecca E Slager
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Section, University of Nebraska Medical Center, Omaha, NE 68198-5300, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wyatt TA, Slager RE, Devasure J, Auvermann BW, Mulhern ML, Von Essen S, Mathisen T, Floreani AA, Romberger DJ. Feedlot dust stimulation of interleukin-6 and -8 requires protein kinase Cepsilon in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1163-70. [PMID: 17720876 DOI: 10.1152/ajplung.00103.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Individuals exposed to dusts from concentrated animal feeding operations report increased numbers of respiratory tract symptoms, and bronchoalveolar lavage samples from such individuals demonstrate elevated lung inflammatory mediators, including interleukin (IL)-8 and IL-6. We previously found that exposure of bronchial epithelial cells to hog barn dusts resulted in a protein kinase C (PKC)-dependent increase in IL-6 and IL-8 release. We hypothesized that cattle feedlot dusts would also generate bronchial epithelial interleukin release in vitro. To test this, we used interleukin ELISAs and direct PKC isoform assays. We found that a dust extract from cattle feedlots [feedlot dust extract (FLDE)] augments PKC activity of human bronchial epithelial cells in vitro. A 5-10% dilution of FLDE stimulated a significant release of IL-6 and IL-8 at 6-24 h in a PKC-dependent manner vs. control medium-treated cells. An increase in PKCalpha activity was observed with 1 h of FLDE treatment, and PKCepsilon activity was elevated at 6 h of FLDE exposure. The PKCalpha inhibitor, Gö-6976, did not inhibit FLDE-stimulated IL-8 and IL-6 release. However, the PKCepsilon inhibitor, Ro 31-8220, effectively inhibited FLDE-stimulated IL-8 and IL-6 release. Inhibition of FLDE-stimulated IL-6 and IL-8 was confirmed in a dominant-negative PKCepsilon-expressing BEAS-2B cell line but not observed in a PKCalpha dominant negative BEAS-2B cell line. These data support the hypothesis that FLDE exposure stimulates bronchial epithelial IL-8 and IL-6 release via a PKCepsilon-dependent pathway.
Collapse
Affiliation(s)
- Todd A Wyatt
- Pulmonary and Critical Care Medicine Section, Department of Internal Medicine, Omaha, NE, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Recent advances in our understanding of the structure-function relationship of motile cilia with the 9 + 2 microtubular arrangement have helped explain some of the mechanisms of ciliary beat regulation by intracellular second messengers. These second messengers include cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) as well as calcium and pH. cAMP activates protein kinase A (PKA), which is localized to the axoneme. The cAMP-dependent phosphorylation of PKA's main target, originally described as p29 in Paramecium, seems to increase ciliary beat frequency (CBF) directly. The mechanism by which cGMP increases CBF is less well defined but involves protein kinase G and possibly PKA. Protein kinase C inhibits ciliary beating. The regulation mechanisms of CBF by calcium remain somewhat controversial, favoring an immediate, direct action of calcium on ciliary beating and a second cyclic nucleotide-dependent phase. Finally, intracellular pH likely affects CBF through direct influences on dynein arms.
Collapse
Affiliation(s)
- Matthias Salathe
- Division of Pulmonary and Critical Care Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA.
| |
Collapse
|
35
|
Elliott MK, Sisson JH, Wyatt TA. Effects of cigarette smoke and alcohol on ciliated tracheal epithelium and inflammatory cell recruitment. Am J Respir Cell Mol Biol 2007; 36:452-9. [PMID: 17079783 PMCID: PMC2215768 DOI: 10.1165/rcmb.2005-0440oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ciliated epithelium represents the first line of host defense against lung infection. Most alcoholics smoke and are at high risk for developing lung infections. We reported that cigarette smoke activates protein kinase C (PKC) and alcohol desensitizes ciliary beat frequency (CBF) to beta-agonists in bovine bronchial epithelial cells in vitro. The combined effect of smoke and alcohol exposure on mouse ciliated tracheal epithelium has not been studied in vivo. We hypothesized that previously observed in vitro effects of smoke and alcohol exposure could be replicated in vivo. Female C57BL/6 mice were exposed to whole body cigarette smoke only, 20% alcohol ad libitum in drinking water only, or the combination of cigarette smoke plus alcohol for 6 wk. Bronchoalveolar lavage (BAL) cell populations, CBF, and airway kinase activity were assessed. Total BAL cells were decreased in animals exposed to alcohol alone and increased in animals exposed to smoke alone. Mice receiving smoke and alcohol had cell levels similar to smoke alone. Baseline CBF was not affected in any group; however, isoproterenol stimulation of CBF was blunted by alcohol exposure and actually slowed below baseline in the smoke plus alcohol group. Isoproterenol-induced PKA activity was inhibited in mice receiving alcohol independent of smoke exposure. Smoke activated PKC independent of alcohol. The isoproterenol-induced slowing below baseline of CBF after combined smoke and alcohol exposure demonstrates a novel ciliary impairment likely related to the combination of alcohol-mediated PKA desensitization and smoke-stimulated PKC activation, possibly through acetaldehyde present in the vapor phase of cigarette smoke.
Collapse
Affiliation(s)
- Margaret K Elliott
- University of Nebraska Medical Center, 985300 Nebraska Medical Center, Omaha, NE 68198-5300, USA
| | | | | |
Collapse
|
36
|
Gelbman BD, Heguy A, O'Connor TP, Zabner J, Crystal RG. Upregulation of pirin expression by chronic cigarette smoking is associated with bronchial epithelial cell apoptosis. Respir Res 2007; 8:10. [PMID: 17288615 PMCID: PMC1805431 DOI: 10.1186/1465-9921-8-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 02/08/2007] [Indexed: 11/19/2022] Open
Abstract
Background Cigarette smoke disrupts the protective barrier established by the airway epithelium through direct damage to the epithelial cells, leading to cell death. Since the morphology of the airway epithelium of smokers does not typically demonstrate necrosis, the most likely mechanism for epithelial cell death in response to cigarette smoke is apoptosis. We hypothesized that cigarette smoke directly up-regulates expression of apoptotic genes, which could play a role in airway epithelial apoptosis. Methods Microarray analysis of airway epithelium obtained by bronchoscopy on matched cohorts of 13 phenotypically normal smokers and 9 non-smokers was used to identify specific genes modulated by smoking that were associated with apoptosis. Among the up-regulated apoptotic genes was pirin (3.1-fold, p < 0.002), an iron-binding nuclear protein and transcription cofactor. In vitro studies using human bronchial cells exposed to cigarette smoke extract (CSE) and an adenovirus vector encoding the pirin cDNA (AdPirin) were performed to test the direct effect of cigarette smoke on pirin expression and the effect of pirin expression on apoptosis. Results Quantitative TaqMan RT-PCR confirmed a 2-fold increase in pirin expression in the airway epithelium of smokers compared to non-smokers (p < 0.02). CSE applied to primary human bronchial epithelial cell cultures demonstrated that pirin mRNA levels increase in a time-and concentration-dependent manner (p < 0.03, all conditions compared to controls). Overexpression of pirin, using the vector AdPirin, in human bronchial epithelial cells was associated with an increase in the number of apoptotic cells assessed by both TUNEL assay (5-fold, p < 0.01) and ELISA for cytoplasmic nucleosomes (19.3-fold, p < 0.01) compared to control adenovirus vector. Conclusion These observations suggest that up-regulation of pirin may represent one mechanism by which cigarette smoke induces apoptosis in the airway epithelium, an observation that has implications for the pathogenesis of cigarette smoke-induced diseases.
Collapse
Affiliation(s)
- Brian D Gelbman
- Division of Pulmonary and Critical Care Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Adriana Heguy
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Timothy P O'Connor
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Joseph Zabner
- Pulmonary, Critical Care and Occupational Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Ronald G Crystal
- Division of Pulmonary and Critical Care Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
37
|
Li Q, Ren J. Chronic alcohol consumption alters mammalian target of rapamycin (mTOR), reduces ribosomal p70s6 kinase and p4E-BP1 levels in mouse cerebral cortex. Exp Neurol 2007; 204:840-4. [PMID: 17291499 PMCID: PMC1895598 DOI: 10.1016/j.expneurol.2007.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/20/2006] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Reduced insulin sensitivity following chronic alcohol consumption may contribute to alcohol-induced brain damage although the underlying mechanism(s) has not been elucidated. This study was designed to examine the effect of chronic alcohol intake on insulin signaling in mouse cerebral cortex. FVB mice were fed with a 4% alcohol diet for 16 weeks. Insulin receptor substrates (IRS-1, IRS-2) and post-receptor signaling molecules Akt, mammalian target of rapamycin (mTOR), ribosomal p70s6 kinase (p70s6k) and the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) as well as the apoptotic marker caspase-3 were evaluated using Western blot analysis. Chronic alcohol intake significantly dampened whole body glucose tolerance, enhanced expression of caspase-3 and mTOR, reduced p70s6k and 4E-BP1 with little effect on Akt signaling in alcohol-consuming mice. These data suggest that chronic alcohol intake may contribute to cerebral cortex dysfunction through mechanisms related, at least in part, to dampened post insulin receptor signaling at the levels of mTOR, p70s6k and 4E-BP1.
Collapse
Affiliation(s)
- Qun Li
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine and Graduate Neuroscience Program, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
38
|
Slager RE, Sisson JH, Pavlik JA, Johnson JK, Nicolarsen JR, Jerrells TR, Wyatt TA. Inhibition of protein kinase C epsilon causes ciliated bovine bronchial cell detachment. Exp Lung Res 2006; 32:349-62. [PMID: 17090476 PMCID: PMC2100410 DOI: 10.1080/01902140600959630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study defines the in vitro phenomenon of ciliated bovine bronchial epithelial cell (BBEC) detachment from the basal epithelium and regulation of cilia motility mediated through protein kinase C epsilon (PKCepsilon). The authors determined the time course of activation and downregulation of PKCepsilon by the known PKC activator phorbol 12-myristate 13-acetate (PMA) and demonstrate that chemical inhibition of PKC by calphostin C or the novel PKC isoform inhibitor Ro 31-8220 induced striking detachment of ciliated BBECs from the basal cell monolayer within 1 hour, independent of apoptosis or necrotic cell death. The results of this study support a possible novel PKCepsilon-mediated signaling pathway through which ciliated cell attachment is maintained.
Collapse
Affiliation(s)
- Rebecca E Slager
- Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5300, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Li Q, Ren J. CARDIAC OVEREXPRESSION OF METALLOTHIONEIN RESCUES CHRONIC ALCOHOL INTAKE-INDUCED CARDIOMYOCYTE DYSFUNCTION: ROLE OF AKT, MAMMALIAN TARGET OF RAPAMYCIN AND RIBOSOMAL P70S6 KINASE. Alcohol Alcohol 2006; 41:585-92. [PMID: 17020909 DOI: 10.1093/alcalc/agl080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS Reduced insulin sensitivity following alcohol intake plays a role in alcohol-induced organ damage although its precise mechanism is undefined. This study was designed to examine the effect of cardiac overexpression of the antioxidant metallothionein on alcohol-induced cardiac contractile dysfunction and post-receptor insulin signaling. METHODS FVB and metallothionein mice were fed a 4% alcohol diet for 16 weeks. Cardiomyocyte contractile function was evaluated including peak shortening (PS), time-to-PS (TPS), and time-to-relengthening (TR(90)). Post-insulin receptor signaling molecules Akt, mammalian target of rapamycin (mTOR), and ribosomal p70s6 kinase (p70s6k) were evaluated using western blot analysis. Akt1 kinase activity was assayed with a phosphotransferase kit. RESULTS Alcohol intake dampened whole body glucose tolerance, depressed PS, shortened TPS, and prolonged TR(90), which were abrogated by metallothionein with the exception of glucose intolerance. Our results revealed reduced expression of total Akt, phosphorylated mTOR, and phosphorylated p70s6k-to-p70s6k ratio as well as Akt1 kinase activity in alcohol consuming FVB mice. Phosphorylated Akt, total mTOR, and phosphorylated p70s6k were unaffected by alcohol. Metallothionein ablated reduced Akt protein and kinase activity without affecting any other proteins or their phosphorylation. CONCLUSION In summary, our data suggest that chronic alcohol intake interrupted cardiac contractile function and Akt/mTOR/p70s6k signaling. Akt but unlikely mTOR and p70s6k may contribute to metallothionein-elicited cardiac protective response.
Collapse
Affiliation(s)
- Qun Li
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
40
|
Fang CX, Yang X, Sreejayan N, Ren J. Acetaldehyde promotes rapamycin-dependent activation of p70(S6K) and glucose uptake despite inhibition of Akt and mTOR in dopaminergic SH-SY5Y human neuroblastoma cells. Exp Neurol 2006; 203:196-204. [PMID: 16962100 DOI: 10.1016/j.expneurol.2006.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 07/27/2006] [Accepted: 08/01/2006] [Indexed: 01/26/2023]
Abstract
Alcohol intake is one of the important lifestyle factors for the risk of insulin resistance and type 2 diabetes. Acetaldehyde, the major ethanol metabolite which is far more reactive than ethanol, has been postulated to participate in alcohol-induced tissue injury although its direct impact on insulin signaling is unclear. This study was designed to examine the effect of acetaldehyde on glucose uptake and insulin signaling in human dopaminergic SH-SY5Y cells. Akt, mammalian target of rapamycin (mTOR), ribosomal-S6 kinase (p70(S6K)), the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and insulin receptor substrate (IRS)-2 were evaluated by Western blot analysis. Glucose uptake and apoptosis were measured using [(3)H]-2-deoxyglucose uptake and caspase-3 assay, respectively. Short-term exposure (12 h) of acetaldehyde (150 muM) facilitated glucose uptake in a rapamycin-dependent manner without affecting apoptosis, IRS-2 expression and insulin-stimulated glucose uptake in SH-SY5Y cells. Acetaldehyde suppressed basal and insulin-stimulated Akt phosphorylation without affecting total Akt expression. Acetaldehyde inhibited mTOR phosphorylation without affecting total mTOR and insulin-elicited response on mTOR phosphorylation. Rapamycin, which inhibits mTOR leading to inactivation of p70(S6K), did not affect acetaldehyde-induced inhibition on phosphorylation of Akt and mTOR. Interestingly, acetaldehyde enhanced p70(S6K) activation and depressed 4E-BP1 phosphorylation, the effect of which was blunted and exaggerated, respectively, by rapamycin. Collectively, these data suggested that acetaldehyde did not adversely affect glucose uptake despite inhibition of insulin signaling cascade at the levels of Akt and mTOR, possibly due to presence of certain mechanism(s) responsible for enhanced p70(S6K) phosphorylation.
Collapse
MESH Headings
- Acetaldehyde/adverse effects
- Adaptor Proteins, Signal Transducing/drug effects
- Adaptor Proteins, Signal Transducing/metabolism
- Alcohol-Induced Disorders, Nervous System/complications
- Alcohol-Induced Disorders, Nervous System/metabolism
- Alcohol-Induced Disorders, Nervous System/physiopathology
- Apoptosis/drug effects
- Apoptosis/physiology
- Cell Cycle Proteins
- Cell Line, Tumor
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Dopamine/metabolism
- Glucose/metabolism
- Humans
- Insulin/metabolism
- Insulin Receptor Substrate Proteins
- Insulin Resistance/physiology
- Intracellular Signaling Peptides and Proteins/drug effects
- Intracellular Signaling Peptides and Proteins/metabolism
- Metabolic Syndrome/chemically induced
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Phosphoproteins/drug effects
- Phosphoproteins/metabolism
- Phosphorylation/drug effects
- Protein Kinases/drug effects
- Protein Kinases/metabolism
- Proto-Oncogene Proteins c-akt/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/drug effects
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
Collapse
Affiliation(s)
- Cindy X Fang
- Division of Pharmaceutical Sciences and Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | |
Collapse
|
41
|
Elliott MK, Sisson JH, West WW, Wyatt TA. Differential in vivo effects of whole cigarette smoke exposure versus cigarette smoke extract on mouse ciliated tracheal epithelium. Exp Lung Res 2006; 32:99-118. [PMID: 16754475 PMCID: PMC2092449 DOI: 10.1080/01902140600710546] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study the authors compared the affect of vapor phase cigarette smoke (CS) versus cigarette smoke extract (CSE) on the lungs and upper airway of C57BL/6 mice. The authors found that CSE treatment significantly increased neutrophil influx (P < .001), baseline ciliary beat frequency (CBF) (P < .05), and protein kinase C activity compared to CS and controls. Isoproterenol increased CBF with CS exposure, but decreased CBF with CSE (P < .01). Isoproterenol increased protein kinase A (PKA) activity in all groups except CSE. CSE exposure induced inflammatory cell bronchiolitis. These data indicate that CSE exposure has differential effects on the lungs and tracheal epithelium compared to CS exposure.
Collapse
Affiliation(s)
- Margaret K Elliott
- Pulmonary, Critical Care and Sleep Medicine Section, University of Nebraska Medical Center, Omaha, Nebraska 68198-5300, USA
| | | | | | | |
Collapse
|
42
|
Zhang WZ, Venardos K, Chin-Dusting J, Kaye DM. Adverse effects of cigarette smoke on NO bioavailability: role of arginine metabolism and oxidative stress. Hypertension 2006; 48:278-85. [PMID: 16801489 DOI: 10.1161/01.hyp.0000231509.27406.42] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial dysfunction is a hallmark of cardiovascular disease, and the l-arginine:NO pathway plays a critical role in determining endothelial function. Recent studies suggest that smoking, a well-recognized risk factor for vascular disease, may interfere with l-arginine and NO metabolism; however, this remains poorly characterized. Accordingly, we performed a series of complementary in vivo and in vitro studies to elucidate the mechanism by which cigarette smoke adversely affects endothelial function. In current smokers, plasma levels of asymmetrical dimethyl-arginine (ADMA) were 80% higher (P = 0.01) than nonsmokers, whereas citrulline (17%; P < 0.05) and N-hydroxy-l-arginine (34%; P < 0.05) were significantly lower. Exposure to 10% cigarette smoke extract (CSE) significantly affected endothelial arginine metabolism with reductions in the intracellular content of citrulline (81%), N-hydroxy-l-arginine (57%), and arginine (23%), while increasing ADMA (129%). CSE significantly inhibited (38%) arginine uptake in conjunction with a 34% reduction in expression of the arginine transporter, CAT1. In conjunction with these studies, CSE significantly reduced the activity of eNOS and NO production by endothelial cells, while stimulating the production of reactive oxygen species. In conclusion, cigarette smoke adversely affects the endothelial l-arginine NO synthase pathway, resulting in reducing NO production and elevated oxidative stress. In conjunction, exposure to cigarette smoke increases ADMA concentration, the latter being a risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Wei-Zheng Zhang
- Wynn Department of Metabolic Cardiology, Baker Heart Research Institute, PO Box 6492, St Kilda Rd Central, Melbourne, Victoria 8008, Australia
| | | | | | | |
Collapse
|
43
|
Spurzem JR, Veys T, Devasure J, Sisson JH, Wyatt TA. Ethanol treatment reduces bovine bronchial epithelial cell migration. Alcohol Clin Exp Res 2005; 29:485-92. [PMID: 15834212 DOI: 10.1097/01.alc.0000158830.21657.bb] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic ethanol abuse is associated with significant lung disease. Excessive alcohol intake increases risk for a variety of respiratory tract diseases, including pneumonia and bronchitis. Damage to airway epithelium is critical to the pathogenesis of airway disorders such as chronic bronchitis and chronic obstructive pulmonary disease. The ability of the airway epithelium to repair itself is an important step in the resolution of airway inflammation and disease. Ethanol exposure is known to modulate signaling systems in bronchial epithelial cells. We hypothesize that chronic ethanol exposure down-regulates the adenosine 3':5'-cyclic monophosphate signaling cascade in airway epithelial cells, resulting in decreased epithelial cell migration and repair. METHODS We evaluated the effect of ethanol on primary cultures of bovine bronchial epithelial cells in in vitro models of cell migration, wound repair, cell attachment, and cell spreading. RESULTS Ethanol causes a concentration-dependent effect on closure of mechanical wounds in cell monolayers. Pretreatment of cells with 100 mm ethanol for 24 hr further slows wound closure. Ethanol pretreatment also reduced the protein kinase A response to wounding and made the cells unresponsive to stimuli of protein kinase A that accelerate wound closure. The effects of ethanol on cell migration in wound closure were confirmed in another assay of migration, the Boyden chamber cell migration assay. Prolonged treatment with ethanol also reduced other cell functions, such as spreading and attachment, which are necessary for epithelial repair. CONCLUSIONS Ethanol modulates signaling systems that are relevant to airway injury and repair, suggesting that chronic, heavy ethanol ingestion has a detrimental impact on airway repair. Impaired response to inflammation and injury may contribute to chronic airway disease.
Collapse
Affiliation(s)
- John R Spurzem
- Department of Internal Medicine, Omaha Veterans Affairs Medical Center, Omaha, Nebraska 68198-5300, USA.
| | | | | | | | | |
Collapse
|
44
|
Fields WR, Leonard RM, Odom PS, Nordskog BK, Ogden MW, Doolittle DJ. Gene expression in normal human bronchial epithelial (NHBE) cells following in vitro exposure to cigarette smoke condensate. Toxicol Sci 2005; 86:84-91. [PMID: 15858226 DOI: 10.1093/toxsci/kfi179] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cigarettes that burn tobacco produce a complex mixture of chemicals, including mutagens and carcinogens. Cigarettes that primarily heat tobacco produce smoke with marked reductions in the amount of mutagens and carcinogens and demonstrate reduced mutagenicity and carcinogenicity in a battery of toxicological assays. Chemically induced oxidative stress, DNA damage, and inflammation may alter cell cycle regulation and are important biological events in the carcinogenic process. The objective of this study was to characterize and compare the effects of smoke condensates from cigarettes that burn tobacco and those that primarily heat tobacco on gene expression in NHBE cells. For this comparison, we used quantitative RT/PCR and further evaluated the effects on cell cycling using flow cytometry. Cigarette smoke condensates (CSCs) were prepared from Kentucky 1R4F cigarettes (a tobacco-burning product designed to represent the average full-flavor, low "tar" cigarette in the US market) and Eclipse (a cigarette that primarily heats tobacco) using FTC machine smoking conditions. The CSC from 1R4F cigarettes induced statistically significant increases in the mRNA levels of genes responsive to DNA damage (GADD45) and involved in cell cycle regulation (p21;WAF1/CIP1), compared to the CSC from Eclipse cigarettes. In addition, genes coding for cyclooxygenase-2 (COX-2) and interleukin 8 (IL-8), which are associated with oxidative stress and inflammation, respectively, were increased statistically significantly more by CSC from 1R4F than by that from Eclipse. Furthermore, a dose-dependent increase in IL-8 protein secretion into cell culture media was stimulated by 1R4F exposure, whereas minimal IL-8 protein was secreted after Eclipse treatment. The biological relevance of the differential effect on gene expression was reflected in differential cell cycle regulation, as cells exposed to 1R4F CSC exhibited more significant S phase and G2 phase accumulation than cells exposed to Eclipse CSC. These data indicate that the simplified smoke chemistry of the tobacco-heating Eclipse cigarette yields statistically significant reductions in the expression of key genes involved in DNA damage, oxidative stress, inflammatory response, and cell cycle regulation in normal human bronchial epithelial cells compared to a representative tobacco-burning cigarette.
Collapse
Affiliation(s)
- Wanda R Fields
- Research and Development Department, R. J. Reynolds Tobacco Co., Winston-Salem, NC 27102, USA.
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Wyatt TA, Kharbanda KK, Tuma DJ, Sisson JH, Spurzem JR. Malondialdehyde-acetaldehyde adducts decrease bronchial epithelial wound repair. Alcohol 2005; 36:31-40. [PMID: 16257351 DOI: 10.1016/j.alcohol.2005.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2004] [Revised: 03/08/2005] [Accepted: 05/31/2005] [Indexed: 11/20/2022]
Abstract
Most people who abuse alcohol are cigarette smokers. Previously, we have shown that malondialdehyde, an inflammation product of lipid peroxidation, and acetaldehyde, a component of both ethanol metabolism and cigarette smoke, form protein adducts that stimulate protein kinase C (PKC) activation in bronchial epithelial cells. We have also shown that PKC can regulate bronchial epithelial cell wound repair. We hypothesize that bovine serum albumin adducted with malondialdehyde and acetaldehyde (BSA-MAA) decreases bronchial epithelial cell wound repair via binding to scavenger receptors on bronchial epithelial cells. To test this, confluent monolayers of bovine bronchial epithelial cells were grown in serum-free media prior to wounding the cells. Bronchial epithelial cell wound closure was inhibited in a dose-dependent manner (up to 60%) in the presence of BSA-MAA than in media treated cells (Laboratory of Human Carcinogenesis [LHC]-9-Roswell Park Memorial Institute [RPMI]). The specific scavenger receptor ligand, fucoidan, also stimulated PKC activation and decreased wound repair. Pretreatment with fucoidan blocked malondialdehyde-acetaldehyde binding to bronchial epithelial cells. When bronchial epithelial cells were preincubated with a PKC alpha inhibitor, Gö 6976, the inhibition of wound closure by fucoidan and BSA-MAA was blocked. Western blot demonstrated the presence of several scavenger receptors on bronchial epithelial cell membranes, including SRA, SRBI, SRBII, and CD36. Scavenger receptor-mediated activation of PKC alpha may function to reduce wound healing under conditions of alcohol and cigarette smoke exposure where malondialdehyde-acetaldehyde adducts may be present.
Collapse
Affiliation(s)
- Todd A Wyatt
- Research Service, Department of Veterans Affairs Medical Center, 4101 Woolworth Avenue, Omaha, NE 68105, USA.
| | | | | | | | | |
Collapse
|
47
|
Vander Top EA, Wyatt TA, Gentry-Nielsen MJ. Smoke exposure exacerbates an ethanol-induced defect in mucociliary clearance of Streptococcus pneumoniae. Alcohol Clin Exp Res 2005; 29:882-7. [PMID: 15897734 PMCID: PMC1224709 DOI: 10.1097/01.alc.0000164364.35682.86] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alcoholics and smokers are particularly susceptible to pulmonary infections caused by Streptococcus pneumoniae, the pneumococcus. Infection begins when pneumococci colonizing the nasopharynx are aspirated into the lower respiratory tract. The major host defense against this movement is the mucociliary clearance apparatus. Both cigarette smoke and ethanol (EtOH) exposure alter ciliary beating and protein kinase activity in the respiratory mucosa in vitro, but their effects on bacterial clearance in the intact animal have not been determined. METHODS Male Sprague Dawley rats were exposed twice daily for 12 weeks to either the smoke generated from 30 cigarettes (smoke-exposed) or room air (sham-exposed). For the last five weeks of smoke exposure, the rats were fed Lieber-DeCarli liquid diets containing 0%, 16%, 26%, or 36% EtOH calories. The rats then were infected intranasally with S. pneumoniae, and movement of the organisms into the lower respiratory tract was quantified by plate counts of the tracheas and lungs 4 hr later. Ciliary beat frequency (CBF) analysis was performed on tracheal ring explants from each animal before and after stimulation with the beta-agonist isoproterenol, and tracheal epithelial cell protein kinase C (PKC) activity was measured. RESULTS Ingestion of any of the EtOH-containing diets resulted in a dose-dependent increase in movement of S. pneumoniae into the rats' lungs. This EtOH-induced defect was augmented further by concurrent smoke exposure, although smoke exposure alone had little effect on S. pneumoniae movement. Smoke, but not EtOH exposure, activated tracheal epithelial cell PKC. Increased movement of organisms into lungs correlated with a decrease in CBF and loss of the ciliary response to isoproterenol. CONCLUSION EtOH ingestion in our model facilitated movement of S. pneumoniae into rats' lungs, a phenomenon exacerbated by concurrent smoke exposure. Furthermore, the organism's movement into the lungs correlated with a blunting of the rats' ciliary response to an established stimulus. Defects in mucociliary clearance thus may be one cause of the increased risk of pneumococcal infections in people who abuse alcohol, particularly if they also smoke.
Collapse
|
48
|
Wyatt TA, Gentry-Nielsen MJ, Pavlik JA, Sisson JH. Desensitization of PKA-stimulated ciliary beat frequency in an ethanol-fed rat model of cigarette smoke exposure. Alcohol Clin Exp Res 2005; 28:998-1004. [PMID: 15252285 PMCID: PMC2128041 DOI: 10.1097/01.alc.0000130805.75641.f4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Our previous studies have shown that the ciliary beat frequency (CBF) of cultured ciliated airway epithelial cells exposed to chronic ethanol fails to increase in response to beta-agonist stimulation. This loss of the ciliary "flight response" correlates with an ethanol-mediated desensitization of adenosine 3':5'-cyclic monophosphate-dependent protein kinase (PKA), a known regulatory component of CBF stimulation. We hypothesized that a similar ethanol-mediated desensitization of CBF would occur in vivo. METHODS Sprague Dawley rats were fed a liquid diet containing various concentrations of ethanol for 1 or 5 weeks. Half were exposed to cigarette smoke for 12 weeks and half were sham exposed. Animals were killed and tracheal epithelial cells analyzed for CBF and PKA activity. RESULTS Baseline CBF (approximately 6 Hz) was unchanged in tracheal epithelial cells of rats consuming diets containing 0-36% ethanol for 5 weeks. Isoproterenol stimulated CBF to 12 to 13 Hz in the tracheal epithelial cells of control rats not administered ethanol. However, isoproterenol stimulation of CBF was blunted to 7.5 Hz in rats eating a 26% ethanol diet, and there was no stimulation of CBF in rats fed a diet containing 36% ethanol. Similarly, isoproterenol stimulated a 2- to 3-fold increase in PKA activity in control rats, but this PKA response to isoproterenol was blunted in rats fed increasing concentrations of ethanol. No isoproterenol-stimulated PKA response was observed in rats fed 36% ethanol. No ethanol-induced changes in cyclic guanosine monophosphate-dependent protein kinase or protein kinase C were observed in the rats' tracheal epithelial cells. Cigarette smoke exposure slightly elevated baseline CBF and lowered the ethanol consumption level for isoproterenol-desensitization of CBF and PKA activation to 16%. No isoproterenol desensitization was observed after 1 week of alcohol feeding. Furthermore, 36% ethanol-feeding for 1 week stimulated rat tracheal CBF and PKA. CONCLUSION These data demonstrate that in vivo administration of ethanol to rats results in decreased ciliary beating and the desensitization of PKA. This suggests a mechanism for mucociliary clearance dysfunction in alcoholics.
Collapse
Affiliation(s)
- Todd A Wyatt
- Department of Internal Medicine, Pulmonary, Critical Care, & Sleep Medicine Section, University of Nebraska Medical Center, Omaha, Nebraska 68198-5300, USA.
| | | | | | | |
Collapse
|
49
|
Allen-Gipson DS, Romberger DJ, Forget MA, May KL, Sisson JH, Wyatt TA. IL-8 inhibits isoproterenol-stimulated ciliary beat frequency in bovine bronchial epithelial cells. ACTA ACUST UNITED AC 2004; 17:107-15. [PMID: 15294060 DOI: 10.1089/0894268041457138] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mucociliary clearance is a critical host defense that protects the lung. The mechanisms by which mucociliary function is altered by inflammation are poorly defined. Chronic exposure to cigarette smoke decreases ciliary beating and interferes with proper airway clearance. Bronchoalveolar lavage (BAL) fluid from smokers and ex-smokers has increased amounts of IL-8, which has played a critical role in airway inflammation. We hypothesized that IL-8 might interfere with stimulated ciliary beating in airway epithelium. To test this hypothesis, we stimulated bovine ciliated bronchial epithelial cells (BBECs) with a known activator of ciliary beat frequency (CBF), isoproterenol (ISO; 100 microM), in the presence or absence of IL-8 (100 pg/mL). We measured CBF digitally using the Sisson-Ammons Video Analysis (SAVA) system. CBF increased in untreated cells exposed to ISO (approximately 3 Hz) over baseline. In contrast, cells pre-incubated with IL-8 failed to respond to ISO. Pretreatment with IL-8 also blocked ISO-stimulated cAMP-dependent kinase (PKA) activation, which is known to control ISO-stimulated CBF. In addition, IL-8 pretreated cells revealed a marked decrease in PKA activity when cells were stimulated with forskolin (FSK; 10 microM). Cells were assayed specifically for cAMP-phosphodiesterase (PDE) activity. ISO-stimulated cells demonstrated an increase in PDE activity as compared to control. Pretreatment with IL-8 had no effect on ISO-stimulated PDE activity. Collectively, these data suggest that IL-8 appears to mediate its effect at the level of adenylyl cyclase. It is also possible that IL-8 may not only act as a chemotactic agent, but also as a potential autocrine/paracrine inhibitor of PKA-mediated stimulation of ciliary motility. In conclusion, IL-8 inhibits beta-agonist dependent ciliostimulation and such inhibition of stimulated ciliary activity may contribute to the impaired mucociliary clearance seen in airway diseases. Furthermore, since IL-8 levels are increased in the airway of cigarette smokers, it is likely they may be more resistant to the cilio and muco-ciliostimulating effects of beta-agonists.
Collapse
Affiliation(s)
- D S Allen-Gipson
- Pulmonary, Critical Care, and Sleep Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, and Research Service, Department of Veterans Affairs Medical Center, Omaha, 68198, USA
| | | | | | | | | | | |
Collapse
|
50
|
Kawano T, Matsuse H, Kondo Y, Machida I, Saeki S, Tomari S, Mitsuta K, Obase Y, Fukushima C, Shimoda T, Kohno S. Acetaldehyde induces histamine release from human airway mast cells to cause bronchoconstriction. Int Arch Allergy Immunol 2004; 134:233-9. [PMID: 15178893 DOI: 10.1159/000078771] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Accepted: 04/05/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Approximately half of the Japanese asthmatics experience exacerbation of asthma after alcohol consumption. We previously reported that this phenomenon is probably caused by histamine release from mast cells by acetaldehyde stimulation. However, no reports have described the effects of acetaldehyde on human airway mast cells. The purpose of the present study was to demonstrate acetaldehyde-induced histamine release from human airway mast cells with subsequent airway smooth muscle contraction and to investigate the ensuing mechanisms. METHODS Human tissue samples were prepared from the lungs resected from patients with lung cancer. The effect of acetaldehyde on airway muscle tone and the concentration of chemical mediators released in the organ bath were measured before and after acetaldehyde stimulation. Mast cells were prepared from lung parenchyma by the immunomagnetic method and then stimulated with acetaldehyde to determine the chemical mediators released. RESULTS Acetaldehyde (>3 x 10(-4) M) increased airway muscle tone, which was associated with a significant increase in the release of histamine, but not thromboxane B2 or cysteinyl-leukotrienes. A histamine (H1 receptor) antagonist completely inhibited acetaldehyde-induced bronchial smooth muscle contraction. Acetaldehyde also induced a significant histamine release from human lung mast cells and degranulation of mast cells. CONCLUSIONS The present results strongly suggest that acetaldehyde stimulates human airway mast cells to release histamine, which may be involved in bronchial smooth muscle contraction following alcohol consumption.
Collapse
Affiliation(s)
- Tetsuya Kawano
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|