1
|
Fu L, Zhao Z, Zhao S, Zhang M, Teng X, Wang L, Yang T. The involvement of aquaporin 5 in the inflammatory response of primary Sjogren's syndrome dry eye: potential therapeutic targets exploration. Front Med (Lausanne) 2024; 11:1439888. [PMID: 39376655 PMCID: PMC11456562 DOI: 10.3389/fmed.2024.1439888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Sjogren's syndrome (SS) is a chronic autoimmune disease. Mainly due to the infiltration of lymphoplasmic cells into the exocrine glands, especially the salivary glands and lacrimal glands, resulting in reduced tear and saliva secretion. Reduced tear flow can trigger Sjogren's syndrome dry eye (SSDE). Although the pathophysiology of SSDE xerosis remains incompletely understood, recent advances have identified aquaporin-5 (AQP5) as a critical factor in dysregulation of the exocrine gland and epithelium, influencing the clinical presentation of SSDE through modulation of inflammatory microenvironment and tear secretion processes. This review aims to explore AQP5 regulatory mechanisms in SSDE and analyze its potential as a therapeutic target, providing new directions for SSDE treatment.
Collapse
Affiliation(s)
- Lijuan Fu
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zihang Zhao
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Zhao
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiying Zhang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoming Teng
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liyuan Wang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tiansong Yang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Huang KT, Wagner LE, Takano T, Lin XX, Bagavant H, Deshmukh U, Yule DI. Dysregulated Ca 2+ signaling, fluid secretion, and mitochondrial function in a mouse model of early Sjögren's disease. eLife 2024; 13:RP97069. [PMID: 39259200 PMCID: PMC11390111 DOI: 10.7554/elife.97069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
The molecular mechanisms leading to saliva secretion are largely established, but factors that underlie secretory hypofunction, specifically related to the autoimmune disease Sjögren's syndrome (SS) are not fully understood. A major conundrum is the lack of association between the severity of salivary gland immune cell infiltration and glandular hypofunction. SS-like disease was induced by treatment with DMXAA, a small molecule agonist of murine STING. We have previously shown that the extent of salivary secretion is correlated with the magnitude of intracellular Ca2+ signals (Takano et al., 2021). Contrary to our expectations, despite a significant reduction in fluid secretion, neural stimulation resulted in enhanced Ca2+ signals with altered spatiotemporal characteristics in vivo. Muscarinic stimulation resulted in reduced activation of the Ca2+-activated Cl- channel, TMEM16a, although there were no changes in channel abundance or absolute sensitivity to Ca2+. Super-resolution microscopy revealed a disruption in the colocalization of Inositol 1,4,5-trisphosphate receptor Ca2+ release channels with TMEM16a, and channel activation was reduced when intracellular Ca2+ buffering was increased. These data indicate altered local peripheral coupling between the channels. Appropriate Ca2+ signaling is also pivotal for mitochondrial morphology and bioenergetics. Disrupted mitochondrial morphology and reduced oxygen consumption rate were observed in DMXAA-treated animals. In summary, early in SS disease, dysregulated Ca2+ signals lead to decreased fluid secretion and disrupted mitochondrial function contributing to salivary gland hypofunction.
Collapse
Affiliation(s)
- Kai-Ting Huang
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Larry E Wagner
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Xiao-Xuan Lin
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Harini Bagavant
- Arthritis and Clinical Immunology, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - Umesh Deshmukh
- Arthritis and Clinical Immunology, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - David I Yule
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| |
Collapse
|
3
|
Huang KT, Wagner LE, Takano T, Lin XX, Bagavant H, Deshmukh U, Yule DI. Dysregulated Ca 2+ signaling, fluid secretion, and mitochondrial function in a mouse model of early Sjögren's syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585719. [PMID: 38562738 PMCID: PMC10983907 DOI: 10.1101/2024.03.19.585719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Saliva is essential for oral health. The molecular mechanisms leading to physiological fluid secretion are largely established, but factors that underlie secretory hypofunction, specifically related to the autoimmune disease Sjögren's syndrome (SS) are not fully understood. A major conundrum is the lack of association between the severity of inflammatory immune cell infiltration within the salivary glands and glandular hypofunction. In this study, we investigated in a mouse model system, mechanisms of glandular hypofunction caused by the activation of the stimulator of interferon genes (STING) pathway. Glandular hypofunction and SS-like disease were induced by treatment with 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA), a small molecule agonist of murine STING. Contrary to our expectations, despite a significant reduction in fluid secretion in DMXAA-treated mice, in vivo imaging demonstrated that neural stimulation resulted in greatly enhanced spatially averaged cytosolic Ca2+ levels. Notably, however, the spatiotemporal characteristics of the Ca2+ signals were altered to signals that propagated throughout the entire cytoplasm as opposed to largely apically confined Ca2+ rises observed without treatment. Despite the augmented Ca2+ signals, muscarinic stimulation resulted in reduced activation of TMEM16a, although there were no changes in channel abundance or absolute sensitivity to Ca2+. However, super-resolution microscopy revealed a disruption in the intimate colocalization of Inositol 1,4,5-trisphosphate receptor Ca2+ release channels in relation to TMEM16a. TMEM16a channel activation was also reduced when intracellular Ca2+ buffering was increased. These data are consistent with altered local coupling between the channels contributing to the reduced activation of TMEM16a. Appropriate Ca2+ signaling is also pivotal for mitochondrial morphology and bioenergetics and secretion is an energetically expensive process. Disrupted mitochondrial morphology, a depolarized mitochondrial membrane potential, and reduced oxygen consumption rate were observed in DMXAA-treated animals compared to control animals. We report that early in SS disease, dysregulated Ca2+ signals lead to decreased fluid secretion and disrupted mitochondrial function contributing to salivary gland hypofunction and likely the progression of SS disease.
Collapse
Affiliation(s)
- Kai-Ting Huang
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Xiao-Xuan Lin
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Harini Bagavant
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104
| | - Umesh Deshmukh
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| |
Collapse
|
4
|
Pallagi P, Tóth E, Görög M, Venglovecz V, Madácsy T, Varga Á, Molnár T, Papp N, Szabó V, Kúthy-Sutus E, Molnár R, Ördög A, Borka K, Schnúr A, Kéri A, Kajner G, Csekő K, Ritter E, Csupor D, Helyes Z, Galbács G, Szentesi A, Czakó L, Rakonczay Z, Takács T, Maléth J, Hegyi P. Heavy metals in cigarette smoke strongly inhibit pancreatic ductal function and promote development of chronic pancreatitis. Clin Transl Med 2024; 14:e1733. [PMID: 38877637 PMCID: PMC11178517 DOI: 10.1002/ctm2.1733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND AIMS Smoking is recognised as an independent risk factor in the development of chronic pancreatitis (CP). Cystic fibrosis transmembrane conductance regulator (CFTR) function and ductal fluid and bicarbonate secretion are also known to be impaired in CP, so it is crucial to understand the relationships between smoking, pancreatic ductal function and the development of CP. METHODS We measured sweat chloride (Cl-) concentrations in patients with and without CP, both smokers and non-smokers, to assess CFTR activity. Serum heavy metal levels and tissue cadmium concentrations were determined by mass spectrometry in smoking and non-smoking patients. Guinea pigs were exposed to cigarette smoke, and cigarette smoke extract (CSE) was prepared to characterise its effects on pancreatic HCO3 - and fluid secretion and CFTR function. We administered cerulein to both the smoking and non-smoking groups of mice to induce pancreatitis. RESULTS Sweat samples from smokers, both with and without CP, exhibited elevated Cl- concentrations compared to those from non-smokers, indicating a decrease in CFTR activity due to smoking. Pancreatic tissues from smokers, regardless of CP status, displayed lower CFTR expression than those from non-smokers. Serum levels of cadmium and mercury, as well as pancreatic tissue cadmium, were increased in smokers. Smoking, CSE, cadmium, mercury and nicotine all hindered fluid and HCO3 - secretion and CFTR activity in pancreatic ductal cells. These effects were mediated by sustained increases in intracellular calcium ([Ca2+]i), depletion of intracellular ATP (ATPi) and mitochondrial membrane depolarisation. CONCLUSION Smoking impairs pancreatic ductal function and contributes to the development of CP. Heavy metals, notably cadmium, play a significant role in the harmful effects of smoking. KEY POINTS Smoking and cigarette smoke extract diminish pancreatic ductal fluid and HCO3 - secretion as well as the expression and function of CFTR Cd and Hg concentrations are significantly higher in the serum samples of smokers Cd accumulates in the pancreatic tissue of smokers.
Collapse
Affiliation(s)
- Petra Pallagi
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Emese Tóth
- Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Theoretical and Integrative Health Sciences, University of Debrecen, Szeged, Hungary
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
| | - Marietta Görög
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tamara Madácsy
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Árpád Varga
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Tünde Molnár
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Noémi Papp
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Szabó
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Enikő Kúthy-Sutus
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Réka Molnár
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Andrea Schnúr
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Albert Kéri
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Gyula Kajner
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory of Drug Research and Development (Pharmalab), Budapest, Hungary
| | - Emese Ritter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory of Drug Research and Development (Pharmalab), Budapest, Hungary
| | - Dezső Csupor
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory of Drug Research and Development (Pharmalab), Budapest, Hungary
- Eötvös Loránd Research Network Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - Gábor Galbács
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Andrea Szentesi
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - László Czakó
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- Center of Translational Medicine and Institute of Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Angyal D, Kleinfelder K, Ciciriello F, Groeneweg TA, De Marchi G, de Pretis N, Bernardoni L, Rodella L, Tomba F, De Angelis P, Surace C, Pintani E, Alghisi F, de Jonge HR, Melotti P, Sorio C, Lucidi V, Bijvelds MJC, Frulloni L. CFTR function is impaired in a subset of patients with pancreatitis carrying rare CFTR variants. Pancreatology 2024; 24:394-403. [PMID: 38493004 DOI: 10.1016/j.pan.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Many affected by pancreatitis harbor rare variants of the cystic fibrosis (CF) gene, CFTR, which encodes an epithelial chloride/bicarbonate channel. We investigated CFTR function and the effect of CFTR modulator drugs in pancreatitis patients carrying CFTR variants. METHODS Next-generation sequencing was performed to identify CFTR variants. Sweat tests and nasal potential difference (NPD) assays were performed to assess CFTR function in vivo. Intestinal current measurement (ICM) was performed on rectal biopsies. Patient-derived intestinal epithelial monolayers were used to evaluate chloride and bicarbonate transport and the effects of a CFTR modulator combination: elexacaftor, tezacaftor and ivacaftor (ETI). RESULTS Of 32 pancreatitis patients carrying CFTR variants, three had CF-causing mutations on both alleles and yielded CF-typical sweat test, NPD and ICM results. Fourteen subjects showed a more modest elevation in sweat chloride levels, including three that were provisionally diagnosed with CF. ICM indicated impaired CFTR function in nine out of 17 non-CF subjects tested. This group of nine included five carrying a wild type CFTR allele. In epithelial monolayers, a reduction in CFTR-dependent chloride transport was found in six out of 14 subjects tested, whereas bicarbonate secretion was reduced in only one individual. In epithelial monolayers of four of these six subjects, ETI improved CFTR function. CONCLUSIONS CFTR function is impaired in a subset of pancreatitis patients carrying CFTR variants. Mutations outside the CFTR locus may contribute to the anion transport defect. Bioassays on patient-derived intestinal tissue and organoids can be used to detect such defects and to assess the effect of CFTR modulators.
Collapse
Affiliation(s)
- Dora Angyal
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Karina Kleinfelder
- Department of Medicine, University of Verona, Division of General Pathology, Verona, Italy
| | - Fabiana Ciciriello
- Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Tessa A Groeneweg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Giulia De Marchi
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Nicolò de Pretis
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Laura Bernardoni
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Luca Rodella
- Endoscopy Surgery Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37126, Verona, Italy
| | - Francesco Tomba
- Endoscopy Surgery Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37126, Verona, Italy
| | - Paola De Angelis
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cecilia Surace
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Emily Pintani
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Federico Alghisi
- Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Claudio Sorio
- Department of Medicine, University of Verona, Division of General Pathology, Verona, Italy
| | - Vincenzina Lucidi
- Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands.
| | - Luca Frulloni
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
6
|
Kopach O, Pivneva T, Fedirko N, Voitenko N. Mitochondrial malfunction mediates impaired cholinergic Ca 2+ signalling and submandibular salivary gland dysfunction in diabetes. Neuropharmacology 2024; 243:109789. [PMID: 37972885 DOI: 10.1016/j.neuropharm.2023.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Xerostomia (dry-mouth syndrome) is a painful and debilitating condition that frequently occurs in individuals with diabetes and is associated with impaired saliva production and salivary gland hypofunction. Saliva fluid production relies on Ca2+-coupled secretion driven by neurotransmitter stimulation of submandibular acinar cells. Although impairments in intracellular Ca2+ signalling have been reported in various xerostomia models, the specific Ca2+-dependent mechanisms underlying saliva fluid hypofunction in diabetes remain unclear. In this study, we show that diabetic animals exhibit severe xerostomia, evident by reduced saliva flow rate, diminished total protein content, and decreased amylase activity in the saliva secreted by submandibular glands. These impairments remained resistant to exogenous cholinergic stimulation. In submandibular acinar cells, the intracellular Ca2+ signals evoked by cholinergic stimulation were reduced and delayed in diabetes, caused by malfunctioning mitochondria. Upon initiation of cholinergic-evoked Ca2+ signals, mitochondria accumulate higher Ca2+ and fail to redistribute Ca2+ influx and facilitate the store-operated Ca2+ entry effectively. Structural damage to mitochondria was evident in the acinar cells in diabetes. These findings provide insights into the potential targeting of malfunctioning mitochondria for the treatment of diabetic xerostomia as an alternative strategy to the existing pharmacotherapeutic approaches. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Olga Kopach
- Bogomoletz Institute of Physiology, Kyiv, Ukraine; Queen Square Institute of Neurology, University College London, London, UK.
| | - Tetyana Pivneva
- Bogomoletz Institute of Physiology, Kyiv, Ukraine; Kyiv Academic University, Kyiv, Ukraine
| | | | - Nana Voitenko
- Kyiv Academic University, Kyiv, Ukraine; Dobrobut Academy Medical School, Kyiv, Ukraine
| |
Collapse
|
7
|
Angyal D, Groeneweg TA, Leung A, Desain M, Dulla K, de Jonge HR, Bijvelds MJC. Pro-inflammatory cytokines stimulate CFTR-dependent anion secretion in pancreatic ductal epithelium. Cell Mol Biol Lett 2024; 29:18. [PMID: 38262945 PMCID: PMC10807165 DOI: 10.1186/s11658-024-00537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Loss of CFTR-dependent anion and fluid secretion in the ducts of the exocrine pancreas is thought to contribute to the development of pancreatitis, but little is known about the impact of inflammation on ductal CFTR function. Here we used adult stem cell-derived cell cultures (organoids) obtained from porcine pancreas to evaluate the effects of pro-inflammatory cytokines on CFTR function. METHODS Organoids were cultured from porcine pancreas and used to prepare ductal epithelial monolayers. Monolayers were characterized by immunocytochemistry. Epithelial bicarbonate and chloride secretion, and the effect of IL-1β, IL-6, IFN-γ, and TNF-α on CFTR function was assessed by electrophysiology. RESULTS Immunolocalization of ductal markers, including CFTR, keratin 7, and zonula occludens 1, demonstrated that organoid-derived cells formed a highly polarized epithelium. Stimulation by secretin or VIP triggered CFTR-dependent anion secretion across epithelial monolayers, whereas purinergic receptor stimulation by UTP, elicited CFTR-independent anion secretion. Most of the anion secretory response was attributable to bicarbonate transport. The combination of IL-1β, IL-6, IFN-γ, and TNF-α markedly enhanced CFTR expression and anion secretion across ductal epithelial monolayers, whereas these cytokines had little effect when tested separately. Although TNF-α triggered apoptotic signaling, epithelial barrier function was not significantly affected by cytokine exposure. CONCLUSIONS Pro-inflammatory cytokines enhance CFTR-dependent anion secretion across pancreatic ductal epithelium. We propose that up-regulation of CFTR in the early stages of the inflammatory response, may serve to promote the removal of pathogenic stimuli from the ductal tree, and limit tissue injury.
Collapse
Affiliation(s)
- Dora Angyal
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Tessa A Groeneweg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Anny Leung
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Max Desain
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Kalyan Dulla
- Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Strasse 173, 55216, Ingelheim Am Rhein, Germany
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
9
|
Purushothaman AK, Nelson EJR. Role of innate immunity and systemic inflammation in cystic fibrosis disease progression. Heliyon 2023; 9:e17553. [PMID: 37449112 PMCID: PMC10336457 DOI: 10.1016/j.heliyon.2023.e17553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Pathophysiological manifestations of cystic fibrosis (CF) result from a functional defect in the cystic fibrosis transmembrane conductance regulator (CFTR) paving way for mucus obstruction and pathogen colonization. The role of CFTR in modulating immune cell function and vascular integrity, irrespective of mucus thickening, in determining the host cell response to pathogens/allergens and causing systemic inflammation is least appreciated. Since CFTR plays a key role in the conductance of anions like Cl-, loss of CFTR function could affect various basic cellular processes, such as cellular homeostasis, lysosome acidification, and redox balance. CFTR aids in endotoxin tolerance by regulating Toll-like receptor-mediated signaling resulting in uncontrolled activation of innate immune cells. Although leukocytes of CF patients are hyperactivated, they exhibit compromised phagosome activity thus favouring the orchestration of sepsis from defective pathogen clearance. This review will emphasize the importance of innate immunity and systemic inflammatory response in the development of CF and other CFTR-associated pathologies.
Collapse
Affiliation(s)
- Anand Kumar Purushothaman
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Everette Jacob Remington Nelson
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
10
|
Varga Á, Madácsy T, Görög M, Kiss A, Susánszki P, Szabó V, Jójárt B, Dudás K, Farkas G, Szederkényi E, Lázár G, Farkas A, Ayaydin F, Pallagi P, Maléth J. Human pancreatic ductal organoids with controlled polarity provide a novel ex vivo tool to study epithelial cell physiology. Cell Mol Life Sci 2023; 80:192. [PMID: 37380797 DOI: 10.1007/s00018-023-04836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023]
Abstract
Epithelial ion and fluid secretion determine the physiological functions of a broad range of organs, such as the lung, liver, or pancreas. The molecular mechanism of pancreatic ion secretion is challenging to investigate due to the limited access to functional human ductal epithelia. Patient-derived organoids may overcome these limitations, however direct accessibility of the apical membrane is not solved. In addition, due to the vectorial transport of ions and fluid the intraluminal pressure in the organoids is elevated, which may hinder the study of physiological processes. To overcome these, we developed an advanced culturing method for human pancreatic organoids based on the removal of the extracellular matrix that induced an apical-to-basal polarity switch also leading to reversed localization of proteins with polarized expression. The cells in the apical-out organoids had a cuboidal shape, whereas their resting intracellular Ca2+ concentration was more consistent compared to the cells in the apical-in organoids. Using this advanced model, we demonstrated the expression and function of two novel ion channels, the Ca2+ activated Cl- channel Anoctamin 1 (ANO1) and the epithelial Na+ channel (ENaC), which were not considered in ductal cells yet. Finally, we showed that the available functional assays, such as forskolin-induced swelling, or intracellular Cl- measurement have improved dynamic range when performed with apical-out organoids. Taken together our data suggest that polarity-switched human pancreatic ductal organoids are suitable models to expand our toolset in basic and translational research.
Collapse
Affiliation(s)
- Árpád Varga
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Tamara Madácsy
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Marietta Görög
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
| | - Aletta Kiss
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
| | - Petra Susánszki
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Szabó
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Boldizsár Jójárt
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Krisztina Dudás
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Gyula Farkas
- Department of Surgery, University of Szeged, Szeged, Hungary
| | | | - György Lázár
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - Attila Farkas
- HCEMM-USZ Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | - Ferhan Ayaydin
- HCEMM-USZ Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Szeged, Hungary.
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary.
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.
| |
Collapse
|
11
|
Shan H, Liu W, Li Y, Pang K. The Autoimmune Rheumatic Disease Related Dry Eye and Its Association with Retinopathy. Biomolecules 2023; 13:724. [PMID: 37238594 PMCID: PMC10216215 DOI: 10.3390/biom13050724] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Dry eye disease is a chronic disease of the ocular surface characterized by abnormal tear film composition, tear film instability, and ocular surface inflammation, affecting 5% to 50% of the population worldwide. Autoimmune rheumatic diseases (ARDs) are systemic disorders with multi-organ involvement, including the eye, and play a significant role in dry eye. To date, most studies have focused on Sjögren's syndrome (one of the ARDs) since it manifests as two of the most common symptoms-dry eyes and a dry mouth-and attracts physicians to explore the relationship between dry eye and ARDs. Many patients complained of dry eye related symptoms before they were diagnosed with ARDs, and ocular surface malaise is a sensitive indicator of the severity of ARDs. In addition, ARD related dry eye is also associated with some retinal diseases directly or indirectly, which are described in this review. This review also summarizes the incidence, epidemiological characteristics, pathogenesis, and accompanying ocular lesions of ARD's related dry eye, emphasizing the potential role of dry eye in recognition and monitoring among ARDs patients.
Collapse
Affiliation(s)
| | | | | | - Kunpeng Pang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
12
|
Involvement of aquaporin 5 in Sjögren's syndrome. Autoimmun Rev 2023; 22:103268. [PMID: 36621535 DOI: 10.1016/j.autrev.2023.103268] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease with the pathological hallmark of lymphoplasmacytic infiltration of exocrine glands - more specifically salivary and lacrimal glands - resulting in a diminished production of tears and saliva (sicca syndrome). The pathophysiology underscoring the mechanisms of the sicca symptoms in SS has still yet to be unraveled but recent advances have identified a cardinal role of aquaporin-5 (AQP5) as a key player in saliva secretion as well as salivary gland epithelial cell dysregulation. AQP5 expression and localization are significantly altered in salivary glands from patients and mice models of the disease, shedding light on a putative mechanism accounting for diminished salivary flow. Furthermore, aberrant expression and localization of AQP5 protein partners, such as prolactin-inducible protein and ezrin, may account for altered AQP5 localization in salivary glands from patients suffering from SS and are considered as new players in SS development. This review provides an overview of the role of AQP5 in SS salivary gland epithelial cell dysregulation, focusing on its trafficking and protein-protein interactions.
Collapse
|
13
|
Wang H, Su X, Zhang QQ, Zhang YY, Chu ZY, Sun ZH, Zhang JL, Tang YF. Cystic Fibrosis Transmembrane Conductance Regulator Attenuates Oxidative Stress-Induced Injury in Diabetic Retinopathy Rats. Curr Eye Res 2023; 48:416-424. [PMID: 36476257 DOI: 10.1080/02713683.2022.2156548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the effects of cystic fibrosis transmembrane conductance regulator (CFTR) on oxidative stress-induced injury of diabetic retinopathy (DR) rats. METHODS DR rat model was constructed treated with Ad-CFTR. Hematoxylin and Eosin (HE) staining was applied for testing the thickness of each layer of retinal tissues. Enzyme-linked immunosorbent assay (ELISA) was used to determine levels of serum inflammatory cytokines and contents of oxidative stress related genes in rats. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining was used to detect retinal cell apoptosis, and western blotting to measure the expression of MAPK/NF-κB pathway-related proteins in retinal tissues. RESULTS Our experiment revealed the remarkable decrease of CFTR protein in retinal tissues of DR rats. DR rats had decreased body weight and increased blood glucose level, with decreased thickness of total retinal thickness (TRT), outer nuclear layer and outer plexiform layer (ONL + OPL), inner nuclear layer (INL), and inner plexiform layer (IPL). Besides, DR rats were apparently up-regulated in the expression of pro-inflammatory cytokines, with increased malondial dehyde (MDA), p-ERK1/2/ERK1/2 and p-JNK1/2/JNK1/2 expressions, decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in retinal tissues, as well as up-regulated p65 protein in nucleus and down-regulated p65 protein in cytoplasm. DR rats treated with Ad-CFTR were effectively improved regarding the above parameters except body weight and blood glucose. CONCLUSIONS CFTR can inhibit MAPK/NF-κB signaling pathway to ameliorate inflammatory response and oxidative stress-induced injury of DR rats, thereby reducing retinal cell apoptosis and playing a protective role in retina.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xian Su
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Qian-Qian Zhang
- Outpatient Department, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Ying-Ying Zhang
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhan-Ya Chu
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhao-Hui Sun
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Jin-Ling Zhang
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yu-Fen Tang
- Department of Outpatient Operating Room, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
14
|
Zhang T, Liu Q, Li Z, Tang S, An Q, Fan D, Xiang Y, Wu X, Jin Z, Ding J, Hu Y, Du Q, Xu J, Xie R. The role of ion channels in immune-related diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:129-140. [PMID: 36417963 DOI: 10.1016/j.pbiomolbio.2022.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Ion channel is an integral membrane protein that allows the permeation of charge ions across hydrophobic phospholipid membranes, including plasma membranes and organelle membranes (such as mitochondria, endoplasmic reticulum and vacuoles), which are widely distributed in various cells and tissues, such as cardiomyocytes, smooth muscle cells, and nerve cells. Ion channels establish membrane potential by regulating ion concentration and membrane potential. Membrane potential plays an important role in cells. Studies have shown that ion channels play a role in a number of immune-related diseases caused by functional defects in ion channels on immune or non-immune cells in major human organs, usually affecting specific organs or multiple organs. The present review discusses the relationship between ion channels and immune diseases in major organs of the human body.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhe Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
15
|
Upadhyay A, Cao UMN, Hariharan A, Almansoori A, Tran SD. Gene Therapeutic Delivery to the Salivary Glands. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:55-68. [PMID: 36826746 DOI: 10.1007/5584_2023_766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The salivary glands, exocrine glands in our body producing saliva, can be easily damaged by various factors. Radiation therapy and Sjogren's syndrome (a systemic autoimmune disease) are the two main causes of salivary gland damage, leading to a severe reduction in patients' quality of life. Gene transfer to the salivary glands has been considered a promising approach to treating the dysfunction. Gene therapy has long been applied to cure multiple diseases, including cancers, and hereditary and infectious diseases, which are proven to be safe and effective for the well-being of patients. The application of this treatment on salivary gland injuries has been studied for decades, yet its clinical progress is delayed. This chapter provides a coup d'oeil into gene transfer methods and various gene/vector types for salivary glands to help the new scientists and update established scientists on the progress that has been made during the past decades for the treatment of salivary gland disorders.
Collapse
Affiliation(s)
- Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Uyen M N Cao
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Akram Almansoori
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
16
|
Calamita G, Delporte C. Aquaporins in Glandular Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:225-249. [PMID: 36717498 DOI: 10.1007/978-981-19-7415-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
17
|
Ruscogenin Ameliorated Sjögren's Syndrome by Inhibiting NLRP3 Inflammasome Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6425121. [PMID: 35800007 PMCID: PMC9256408 DOI: 10.1155/2022/6425121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/04/2022] [Indexed: 12/22/2022]
Abstract
This article investigated the role and the specific mechanism of Ruscogenin in Sjögren's syndrome (SS). NOD/ShiLtJ mice were treated with Ruscogenin, and acinar cells isolated from submandibular glands were treated with TNF-α, Ruscogenin and transfected with NLRP3 overexpression plasmid. Salivary flow rate (SFR) was measured at weeks 11, 13, 15, 17, and 20. Histological analysis of the submandibular glands was conducted by hematoxylin-eosin staining assay. IL-6, IL-17, TNF-α, and IL-1β mRNA expression was detected through qRT-PCR. AQP 5, AQP 4, P2X7R, NLRP3, caspase 1, IL-1β, Bax, and Bcl-2 protein levels were tested by western blot. Cell apoptosis was assessed through acridine orange and propidium iodide (AO/PI) staining assay and flow cytometry assay. Ruscogenin ameliorated the SFR and submandibular gland inflammation of NOD/ShiLtJ mice. Ruscogenin promoted the preservation of acinar cells and suppressed inflammation-related factors (P2X7R, NLRP3, caspase 1, and IL-1β) in submandibular gland tissues of NOD/ShiLtJ mice. Ruscogenin inhibited acinar cell apoptosis in NOD/ShiLtJ mice and reversed TNF-α-induced apoptosis and inflammation of acinar cells. NLRP3 overexpression reversed the repressive effect of Ruscogenin on TNF-α-induced inflammation and apoptosis of acinar cells. Ruscogenin ameliorated SS by inhibiting NLRP3 inflammasome activation.
Collapse
|
18
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Phadke MY, Sellers ZM. Current clinical opinion on CFTR dysfunction and patient risk of pancreatitis: diagnostic and therapeutic considerations. Expert Rev Gastroenterol Hepatol 2022; 16:499-509. [PMID: 35623009 PMCID: PMC9256802 DOI: 10.1080/17474124.2022.2084072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride and bicarbonate secretion is integral to the pancreas' ability to produce the alkaline pancreatic juice required for proper activation of enzymes for digestion. Disruption in this process increases the risk for pancreatitis. AREAS COVERED Using original basic and clinical research, as well as clinical case reports and recent reviews indexed in PubMed, we discuss why patients with CFTR dysfunction are at risk for pancreatitis. We also discuss diagnostic modalities for assessing CFTR function, as well as new therapeutic advancements and the impact these are having on pancreatic function, pancreatitis in particular. EXPERT OPINION CFTR-related pancreatitis occurs in the presence of monallelic or biallelic mutations and/or from toxin-mediated channel disruption. Research-based CFTR diagnostics have been expanded, yet all current methods rely on measuring CFTR chloride transport in non-pancreatic cells/tissue. Newer CFTR-directed therapies ('CFTR modulators') are both improving pancreatitis (pancreatic-sufficient CF patients) and increasing the risk for pancreatitis (previously pancreatic-insufficient CF patients). Our experiences with these drugs are enlightening us on how CFTR modulation can affect pancreatitis risk across a wide spectrum of pancreatic disease, and represents an opportunity for therapeutic relief from pancreatitis in those without CF, but who suffer from CFTR-related pancreatitis.
Collapse
Affiliation(s)
- Madhura Y. Phadke
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Stanford University, 750 Welch Road, Suite 116, Palo Alto, CA
| | - Zachary M. Sellers
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Stanford University, 750 Welch Road, Suite 116, Palo Alto, CA
| |
Collapse
|
20
|
Parisi GF, Mòllica F, Giallongo A, Papale M, Manti S, Leonardi S. Cystic fibrosis transmembrane conductance regulator (CFTR): beyond cystic fibrosis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The cystic fibrosis transmembrane conductance regulator (CFTR) gene has been traditionally linked to cystic fibrosis (CF) inheritance in an autosomal recessive manner. Advances in molecular biology and genetics have expanded our understanding of the CFTR gene and its encoding products expressed in different tissues.
Aim
The study’s aim consists of reviewing the different pathological CF phenotypes using the existing literature. We know that alterations of the CFTR protein’s structure may result in different pathological phenotypes.
Methods
Open sources such as PubMed and Science Direct databases have been used for this review. We focused our selection on articles published within the last 15 years. Critical terms related to the CFTR protein have been used: “CFTR AND cancer,” “CFTR AND celiac disease,” “CFTR AND pancreatitis,” “children,” “adults,” “genotype,” “phenotype,” “correlation,” “mutation,” “CFTR,” “diseases,” “disorders,” and “no cystic fibrosis.”
Results
We analyzed 1,115 abstracts in total. Moreover, only 189 were suitable for the topic. We focused on the role of CFTR in cancer, gastrointestinal disorders, respiratory diseases, reproductive system, and systemic hypertension.
Conclusions
Mutations in CFTR gene are often associated with CF. In this review, we highlighted the broad spectrum of alterations reported for this gene, which may be involved in the pathogenesis of other diseases. The importance of these new insights in the role of CFTR relies on the possibility of considering this protein/gene as a novel therapeutic target for CF- and CFTR-related diseases.
Collapse
|
21
|
Mauduit O, Aure MH, Delcroix V, Basova L, Srivastava A, Umazume T, Mays JW, Bellusci S, Tucker AS, Hajihosseini MK, Hoffman MP, Makarenkova HP. A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Rep 2022; 39:110663. [PMID: 35417692 PMCID: PMC9113928 DOI: 10.1016/j.celrep.2022.110663] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/21/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor 10 (FGF10) is well established as a mesenchyme-derived growth factor and a critical regulator of fetal organ development in mice and humans. Using a single-cell RNA sequencing (RNA-seq) atlas of salivary gland (SG) and a tamoxifen inducible Fgf10CreERT2:R26-tdTomato mouse, we show that FGF10pos cells are exclusively mesenchymal until postnatal day 5 (P5) but, after P7, there is a switch in expression and only epithelial FGF10pos cells are observed after P15. Further RNA-seq analysis of sorted mesenchymal and epithelial FGF10pos cells shows that the epithelial FGF10pos population express the hallmarks of ancient ionocyte signature Forkhead box i1 and 2 (Foxi1, Foxi2), Achaete-scute homolog 3 (Ascl3), and the cystic fibrosis transmembrane conductance regulator (Cftr). We propose that epithelial FGF10pos cells are specialized SG ionocytes located in ducts and important for the ionic modification of saliva. In addition, they maintain FGF10-dependent gland homeostasis via communication with FGFR2bpos ductal and myoepithelial cells.
Collapse
Affiliation(s)
- Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Liana Basova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amrita Srivastava
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Takeshi Umazume
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacqueline W Mays
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saverio Bellusci
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London WC2R 2LS, UK
| | | | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Badr A, Eltobgy M, Krause K, Hamilton K, Estfanous S, Daily KP, Abu Khweek A, Hegazi A, Anne MNK, Carafice C, Robledo-Avila F, Saqr Y, Zhang X, Bonfield TL, Gavrilin MA, Partida-Sanchez S, Seveau S, Cormet-Boyaka E, Amer AO. CFTR Modulators Restore Acidification of Autophago-Lysosomes and Bacterial Clearance in Cystic Fibrosis Macrophages. Front Cell Infect Microbiol 2022; 12:819554. [PMID: 35252032 PMCID: PMC8890004 DOI: 10.3389/fcimb.2022.819554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) human and mouse macrophages are defective in their ability to clear bacteria such as Burkholderia cenocepacia. The autophagy process in CF (F508del) macrophages is halted, and the underlying mechanism remains unclear. Furthermore, the role of CFTR in maintaining the acidification of endosomal and lysosomal compartments in CF cells has been a subject of debate. Using 3D reconstruction of z-stack confocal images, we show that CFTR is recruited to LC3-labeled autophagosomes harboring B. cenocepacia. Using several complementary approaches, we report that CF macrophages display defective lysosomal acidification and degradative function for cargos destined to autophagosomes, whereas non-autophagosomal cargos are effectively degraded within acidic compartments. Notably, treatment of CF macrophages with CFTR modulators (tezacaftor/ivacaftor) improved the autophagy flux, lysosomal acidification and function, and bacterial clearance. In addition, CFTR modulators improved CFTR function as demonstrated by patch-clamp. In conclusion, CFTR regulates the acidification of a specific subset of lysosomes that specifically fuse with autophagosomes. Therefore, our study describes a new biological location and function for CFTR in autophago-lysosomes and clarifies the long-standing discrepancies in the field.
Collapse
Affiliation(s)
- Asmaa Badr
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Clinical Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Kylene P. Daily
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Arwa Abu Khweek
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Ahmad Hegazi
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Midhun N. K. Anne
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Youssra Saqr
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xiaoli Zhang
- Center for Biostatistics, Ohio State University, Columbus, OH, United States
| | - Tracey L. Bonfield
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mikhail A. Gavrilin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Columbus, OH, United States
| | | | - Stephanie Seveau
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
23
|
Pallagi P, Görög M, Papp N, Madácsy T, Varga Á, Crul T, Szabó V, Molnár M, Dudás K, Grassalkovich A, Szederkényi E, Lázár G, Venglovecz V, Hegyi P, Maléth J. Bile acid- and ethanol-mediated activation of Orai1 damages pancreatic ductal secretion in acute pancreatitis. J Physiol 2022; 600:1631-1650. [PMID: 35081662 DOI: 10.1113/jp282203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sustained intracellular Ca2+ overload in pancreatic acinar and ductal cells is a hallmark of biliary and alcohol-induced acute pancreatitis, which leads to impaired ductal ion and fluid secretion. Orai1 is a plasma membrane Ca2+ channel that mediates extracellular Ca2+ influx upon endoplasmic reticulum Ca2+ depletion. Our results showed that Orai1 is expressed on the luminal plasma membrane of the ductal cells and selective Orai1 inhibition impaired Stim1-dependent extracellular Ca2+ influx evoked by bile acids or ethanol combined with non-oxidative ethanol metabolites. The prevention of sustained extracellular Ca2+ influx protected ductal cell secretory functions in in vitro models and maintained exocrine pancreatic secretion in in vivo AP models. Orai1 inhibition prevents the bile acid-, and alcohol-induced damage of the pancreatic ductal secretion and holds the potential of improving the outcome of acute pancreatitis. ABSTRACT Regardless of its etiology, sustained intracellular Ca2+ overload is a well-known hallmark of acute pancreatitis (AP). Toxic Ca2+ elevation induces pancreatic ductal cell damage characterized by impaired ion- and fluid secretion -essential to wash out the protein-rich fluid secreted by acinar cells while maintaining the alkaline intra-ductal pH under physiological conditions- and mitochondrial dysfunction. While prevention of ductal cell injury decreases the severity of AP, no specific drug target has yet been identified in the ductal cells. Although Orai1 -a store operated Ca2+ influx channel- is known to contribute to sustained Ca2+ overload in acinar cells, details concerning its expression and function in ductal cells are currently lacking. In this study, we demonstrate that functionally active Orai1 channels reside dominantly in the apical plasma membrane of pancreatic ductal cells. Selective CM5480-mediated Orai1 inhibition impairs Stim1-dependent extracellular Ca2+ influx evoked by bile acids or ethanol combined with non-oxidative ethanol metabolites. Furthermore, prevention of sustained extracellular Ca2+ influx protects ductal cell secretory function in vitro and decrease pancreatic ductal cell death. Finally, Orai1-inhibition partially restores and maintains proper exocrine pancreatic secretion in in vivo AP models. In conclusion, our results indicate that Orai1 inhibition prevents AP-related ductal cell function impairment and holds the potential of improving disease outcome. Abstract figure legend This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Petra Pallagi
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Marietta Görög
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Noémi Papp
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Tamara Madácsy
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Árpád Varga
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Tim Crul
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Viktória Szabó
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Melinda Molnár
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Krisztina Dudás
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | | | | | - György Lázár
- Department of Surgery, University of Szeged, Szeged
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Department of Medicine, University of Szeged, Szeged, Hungary.,Hungary Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.,Institute for Translational Medicine and First Department Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - József Maléth
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
24
|
Zhang Q, Lv X, Wang Y, Wang B, He Y, Chen C, Shi G, Li Y. Expression of CFTR, a hallmark gene of ionocytes, is downregulated in salivary glands of Sjögren's syndrome patients. Arthritis Res Ther 2022; 24:263. [PMID: 36476557 PMCID: PMC9727938 DOI: 10.1186/s13075-022-02959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The autoimmune exocrinopathy, Sjögren's syndrome (SjS), is associated with secretory defects in salivary glands. The cystic fibrosis transmembrane conductance regulator (CFTR) of the chloride channel is a master regulator of fluid secretion, but its role in SjS has not been investigated. Our research found a link between CFTR and SjS at the genetic and protein levels, as well as through clinical data. METHODS We used single-cell RNA sequencing to identify the presence of CFTR in glandular epithelial cells of the human salivary gland (scRNA-seq) and confirmed the difference using immunofluorescence tests in labial glands and clinical data statistics from 44 non-SjS and 36 SjS patients. RESULTS The changes of CFTR expression in salivary glands of SjS patients was assessed at both mRNA and protein levels. According to the scRNA-seq analyses, CFTR was the hallmark gene of ionocytes. We firstly identified that SjS had a lower level of CFTR expression in the labial glands than non-SjS at mRNA level. Using immunofluorescence assays, we also found that CFTR expression was decreased in SjS patients compared to non-SjS. The results of the clinical statistics revealed that CFTR expression was adversely correlated with feelings of dry mouth, lymphocyte infiltration in the labial glands, and certain autoantibodies in serum (antinuclear antibody, anti-Ro/SSA, and anti-La/SSB antibodies). CONCLUSION Those findings above proved an obviously downregulated expression of CFTR in salivary glands of SjS patients and its clinical significance. Dysfunction in CFTR or ionocytes may contribute to SjS pathogenesis and represents a promising therapeutic target.
Collapse
Affiliation(s)
- Qi Zhang
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Xiuying Lv
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Ying Wang
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Bin Wang
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Yan He
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Chubing Chen
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Guixiu Shi
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| | - Yan Li
- grid.412625.6Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian China
| |
Collapse
|
25
|
Angyal D, Bijvelds MJC, Bruno MJ, Peppelenbosch MP, de Jonge HR. Bicarbonate Transport in Cystic Fibrosis and Pancreatitis. Cells 2021; 11:cells11010054. [PMID: 35011616 PMCID: PMC8750324 DOI: 10.3390/cells11010054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
CFTR, the cystic fibrosis (CF) gene-encoded epithelial anion channel, has a prominent role in driving chloride, bicarbonate and fluid secretion in the ductal cells of the exocrine pancreas. Whereas severe mutations in CFTR cause fibrosis of the pancreas in utero, CFTR mutants with residual function, or CFTR variants with a normal chloride but defective bicarbonate permeability (CFTRBD), are associated with an enhanced risk of pancreatitis. Recent studies indicate that CFTR function is not only compromised in genetic but also in selected patients with an acquired form of pancreatitis induced by alcohol, bile salts or smoking. In this review, we summarize recent insights into the mechanism and regulation of CFTR-mediated and modulated bicarbonate secretion in the pancreatic duct, including the role of the osmotic stress/chloride sensor WNK1 and the scaffolding protein IRBIT, and current knowledge about the role of CFTR in genetic and acquired forms of pancreatitis. Furthermore, we discuss the perspectives for CFTR modulator therapy in the treatment of exocrine pancreatic insufficiency and pancreatitis and introduce pancreatic organoids as a promising model system to study CFTR function in the human pancreas, its role in the pathology of pancreatitis and its sensitivity to CFTR modulators on a personalized basis.
Collapse
|
26
|
Fűr G, Bálint ER, Orján EM, Balla Z, Kormányos ES, Czira B, Szűcs A, Kovács DP, Pallagi P, Maléth J, Venglovecz V, Hegyi P, Kiss L, Rakonczay Z. Mislocalization of CFTR expression in acute pancreatitis and the beneficial effect of VX-661 + VX-770 treatment on disease severity. J Physiol 2021; 599:4955-4971. [PMID: 34587656 DOI: 10.1113/jp281765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) has an essential role in maintaining pancreatic ductal function. Impaired CFTR function can trigger acute pancreatitis (AP) and exacerbate disease severity. We aimed to investigate the localization and expression of CFTR during AP, and determined the effects of a CFTR corrector (VX-661) and potentiator (VX-770) on disease severity. AP was induced in FVB/n mice by 6-10 hourly intraperitoneal injections of 50 μg/kg cerulein. Some mice were pre-treated with five to six daily injections of 2 mg/kg VX-661 + VX-770. Control animals were administered physiological saline instead of cerulein and dimethyl sulfoxide instead of VX compounds. AP severity was determined by measuring laboratory and histological parameters; CFTR and CK19 expression was measured. Activity of ion transporters was followed by intracellular pH or fluid secretion measurement of isolated pancreatic intra-/interlobular ducts. Cerulein-induced AP severity was greatest between 12 and 24 h. CFTR mRNA expression was significantly increased 24 h after AP induction. Immunohistochemistry demonstrated disturbed staining morphology of CFTR and CK19 proteins in AP. Mislocalization of CFTR protein was observed from 6 h, while expression increased at 24 h compared to control. Ductal HCO3 - transport activity was significantly increased 6 h after AP induction. AP mice pre-treatment with VX-661 + VX-770 significantly reduced the extent of tissue damage by about 20-30%, but other parameters were unchanged. Interestingly, VX-661 + VX-770 in vitro administration significantly increased the fluid secretion of ducts derived from AP animals. This study described the course of the CFTR expression and mislocalization in cerulein-induced AP. Our results suggest that the beneficial effects of CFTR correctors and potentiators should be further investigated in AP. KEY POINTS: Cystic fibrosis transmembrane conductance regulator (CFTR) is an important ion channel in epithelial cells. Its malfunction has several serious consequences, like developing or aggravating acute pancreatitis (AP). Here, the localization and expression of CFTR during cerulein-induced AP in mice were investigated and the effects of CFTR corrector (VX-661) and a potentiator (VX-770) on disease severity were determined. CFTR mRNA expression was significantly increased and mislocalization of CFTR protein was observed in AP compared to the control group. Interestingly, pre-treatment of AP mice with VX-661 + VX-770 significantly reduced the extent of pancreatic tissue damage by 20-30%. In vitro administration of VX-661 + VX-770 significantly increased the fluid secretion of ducts derived from AP animals. Based on these results, the utilization of CFTR correctors and potentiators should be further investigated in AP.
Collapse
Affiliation(s)
- Gabriella Fűr
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Emese Réka Bálint
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Erik Márk Orján
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | | | - Beáta Czira
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Attila Szűcs
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | | | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine and First Department of Medicine, University of Pécs, Pécs, Hungary.,Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Lóránd Kiss
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
27
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
28
|
Liu X, Subedi KP, Zheng C, Ambudkar I. Mitochondria-targeted antioxidant protects against irradiation-induced salivary gland hypofunction. Sci Rep 2021; 11:7690. [PMID: 33833270 PMCID: PMC8032724 DOI: 10.1038/s41598-021-86927-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/10/2021] [Indexed: 12/02/2022] Open
Abstract
A severe consequence of radiation therapy in patients with head and neck cancer is persistent salivary gland hypofunction which causes xerostomia and oral infections. We previously showed that irradiation (IR) of salivary glands in mice triggers initial transient increases in mitochondrial reactive oxygen species (ROSmt), mitochondrial [Ca2+] ([Ca2+]mt), and activated caspase-3 in acinar cells. In contrast, loss of salivary secretion is persistent. Herein we assessed the role of ROSmt in radiation-induced irreversible loss of salivary gland function. We report that treatment of mice with the mitochondrial-targeted antioxidant, MitoTEMPO, resulted in almost complete protection of salivary gland secretion following either single (15 Gy) or fractionated (5 × 3 Gy) doses of irradiation. Salivary gland cells isolated from MitoTEMPO-treated, irradiated, mice displayed significant attenuation of the initial increases in ROSmt, ([Ca2+]mt, and activated caspase-3 as compared to cells from irradiated, but untreated, animals. Importantly, MitoTEMPO treatment prevented radiation-induced decrease in STIM1, consequently protecting store-operated Ca2+ entry which is critical for saliva secretion. Together, these findings identify the initial increase in ROSmt, that is induced by irradiation, as a critical driver of persistent salivary gland hypofunction. We suggest that the mitochondrially targeted antioxidant, MitoTEMPO, can be potentially important in preventing IR-induced salivary gland dysfunction.
Collapse
Affiliation(s)
- Xibao Liu
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Krishna P Subedi
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Changyu Zheng
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Indu Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, USA. .,NIH, Building 10, Room 1N-113, Bethesda, MD, 20892, USA.
| |
Collapse
|
29
|
Xiang H, Guo F, Tao X, Zhou Q, Xia S, Deng D, Li L, Shang D. Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation. Theranostics 2021; 11:4467-4482. [PMID: 33754072 PMCID: PMC7977474 DOI: 10.7150/thno.54245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have proven that the overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also duct cells, however, pancreatic duct contribution in acinar cells homeostasis is poorly known and the molecular mechanisms leading to acinar insult and acute pancreatitis (AP) are unclear. Our previous work also showed that S100A9 protein level was notably increased in AP rat pancreas through iTRAQ-based quantitative proteomic analysis. Therefore, we investigated the actions of injured duct cells on acinar cells and the S100A9-related effects and mechanisms underlying AP pathology in the present paper. Methods: In this study, we constructed S100A9 knockout (s100a9-/-) mice and an in vitro coculture system for pancreatic duct cells and acinar cells. Moreover, a variety of small molecular inhibitors of S100A9 were screened from ChemDiv through molecular docking and virtual screening methods. Results: We found that the upregulation of S100A9 induces cell injury and inflammatory response via NLRP3 activation by targeting VNN1-mediated ROS release; and loss of S100A9 decreases AP injury in vitro and in vivo. Moreover, molecular docking and mutant plasmid experiments proved that S100A9 has a direct interaction with VNN1 through the salt bridges formation of Lys57 and Glu92 residues in S100A9 protein. We further found that compounds C42H60N4O6 and C28H29F3N4O5S can significantly improve AP injury in vitro and in vivo through inhibiting S100A9-VNN1 interaction. Conclusions: Our study showed the important regulatory effect of S100A9 on pancreatic duct injury during AP and revealed that inhibition of the S100A9-VNN1 interaction may be a key therapeutic target for this disease.
Collapse
|
30
|
Lemos FO, Guerra MT, Leite MDF. Inositol 1,4,5 trisphosphate receptors in secretory epithelial cells of the gastrointestinal tract. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Abstract
PURPOSE OF REVIEW The pancreas is highly affected in cystic fibrosis, with complications occurring early in childhood. This review highlights recent research in exocrine pancreatic function in the era of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies and discusses how these are affecting pancreatitis and exocrine pancreatic insufficiency (EPI) in children. Additionally, new research into exocrine--endocrine interactions sheds light on how CFTR dysfunction in ductal cells may affect beta cells. RECENT FINDINGS Ivacaftor has disproved the hypothesis that EPI in children with cystic fibrosis is irreversible. Improvements in pancreatic function have increased pancreatitis episodes in some children and reduced them in others. Imaging advances are providing complementary methods for exocrine pancreatic function testing. New research into the interplay between the exocrine and endocrine components of the pancreas are elucidating the intertwined and complex relationship between the exocrine and endocrine pancreas. SUMMARY Pancreatic complications contribute to the morbidity and mortality of children with cystic fibrosis. Increasing use of highly effective CFTR modulators will not only abrogate these but will also advance our understanding of pancreatic pathophysiology in cystic fibrosis. New frontiers into pancreatic gene therapy and exocrine--endocrine research will help provide new therapeutic opportunities for pancreatitis, EPI, and diabetes in cystic fibrosis.
Collapse
Affiliation(s)
- Zachary M Sellers
- Pediatric Gastroenterology, Hepatology, and Nutrition, Stanford University, Stanford, California, USA
| |
Collapse
|
32
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
D’Agostino C, Elkashty OA, Chivasso C, Perret J, Tran SD, Delporte C. Insight into Salivary Gland Aquaporins. Cells 2020; 9:cells9061547. [PMID: 32630469 PMCID: PMC7349754 DOI: 10.3390/cells9061547] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The main role of salivary glands (SG) is the production and secretion of saliva, in which aquaporins (AQPs) play a key role by ensuring water flow. The AQPs are transmembrane channel proteins permeable to water to allow water transport across cell membranes according to osmotic gradient. This review gives an insight into SG AQPs. Indeed, it gives a summary of the expression and localization of AQPs in adult human, rat and mouse SG, as well as of their physiological role in SG function. Furthermore, the review provides a comprehensive view of the involvement of AQPs in pathological conditions affecting SG, including Sjögren's syndrome, diabetes, agedness, head and neck cancer radiotherapy and SG cancer. These conditions are characterized by salivary hypofunction resulting in xerostomia. A specific focus is given on current and future therapeutic strategies aiming at AQPs to treat xerostomia. A deeper understanding of the AQPs involvement in molecular mechanisms of saliva secretion and diseases offered new avenues for therapeutic approaches, including drugs, gene therapy and tissue engineering. As such, AQP5 represents a potential therapeutic target in different strategies for the treatment of xerostomia.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Osama A. Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
- Correspondence: ; Tel.: +32-2-5556210
| |
Collapse
|
34
|
Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca 2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020; 21:ijms21114005. [PMID: 32503336 PMCID: PMC7312053 DOI: 10.3390/ijms21114005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Intracellular Ca2+ signalling is a major signal transductional pathway in non-excitable cells, responsible for the regulation of a variety of physiological functions. In the secretory epithelial cells of the exocrine pancreas, such as acinar and ductal cells, intracellular Ca2+ elevation regulates digestive enzyme secretion in acini or fluid and ion secretion in ductal cells. Although Ca2+ is a uniquely versatile orchestrator of epithelial physiology, unregulated global elevation of the intracellular Ca2+ concentration is an early trigger for the development of acute pancreatitis (AP). Regardless of the aetiology, different forms of AP all exhibit sustained intracellular Ca2+ elevation as a common hallmark. The release of endoplasmic reticulum (ER) Ca2+ stores by toxins (such as bile acids or fatty acid ethyl esters (FAEEs)) or increased intrapancreatic pressure activates the influx of extracellular Ca2+ via the Orai1 Ca2+ channel, a process known as store-operated Ca2+ entry (SOCE). Intracellular Ca2+ overload can lead to premature activation of trypsinogen in pancreatic acinar cells and impaired fluid and HCO3- secretion in ductal cells. Increased and unbalanced reactive oxygen species (ROS) production caused by sustained Ca2+ elevation further contributes to cell dysfunction, leading to mitochondrial damage and cell death. Translational studies of AP identified several potential target molecules that can be modified to prevent intracellular Ca2+ overload. One of the most promising drugs, a selective inhibitor of the Orai1 channel that has been shown to inhibit extracellular Ca2+ influx and protect cells from injury, is currently being tested in clinical trials. In this review, we will summarise the recent advances in the field, with a special focus on the translational aspects of the basic findings.
Collapse
Affiliation(s)
- Petra Pallagi
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Tamara Madácsy
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Árpád Varga
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
- Correspondence: or ; Tel.: +36-(62)-342-877 or +36-70-41-66500
| |
Collapse
|
35
|
Ahuja M, Chung WY, Lin WY, McNally BA, Muallem S. Ca 2+ Signaling in Exocrine Cells. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035279. [PMID: 31636079 DOI: 10.1101/cshperspect.a035279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) and cyclic AMP (cAMP) signaling cross talk and synergize to stimulate the cardinal functions of exocrine cells, regulated exocytosis, and fluid and electrolyte secretion. This physiological process requires the organization of the two signaling pathways into complexes at defined cellular domains and close placement. Such domains are formed by membrane contact sites (MCS). This review discusses the basic properties of Ca2+ signaling in exocrine cells, the role of MCS in the organization of cell signaling and in cross talk and synergism between the Ca2+ and cAMP signaling pathways and, finally, the mechanism by which the Ca2+ and cAMP pathways synergize to stimulate epithelial fluid and electrolyte secretion.
Collapse
Affiliation(s)
- Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Woo Young Chung
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Wei-Yin Lin
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Beth A McNally
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| |
Collapse
|
36
|
Yang X, Zhao C, Mahdy SA, Xu P, Yu M, Wu J, Wang L, Jacob TJ, Zhu L, Peng S, Deng Z, Chen L, Wang L. A chloride channel in rat pancreatic acinar AR42J cells is sensitive to extracellular acidification and dependent on ROS. Biochem Biophys Res Commun 2020; 526:592-598. [PMID: 32247607 DOI: 10.1016/j.bbrc.2020.03.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
Extracellular acidification, playing a promoting role in the process of acute pancreatitis, has been reported to activate Cl- channels in several types of cells. However, whether extracellular acidification aggravates acute pancreatitis via activating Cl- channels remains unclear. Here, we investigated the effects of extracellular acidification on Cl- channels in rat pancreatic acinar AR42J cells using whole-cell patch-clamp recordings. We found that extracellular acidification induced a moderately outward-rectified Cl- current, with a selectivity sequence of I- > Br- ≥ Cl- > gluconate-, while intracellular acidification failed to induce the currents. The acid-sensitive currents were inhibited by Cl- channel blockers, 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate and 5-Nitro-2-(3-phenylpropylamino) benzoic acid. After ClC-3 was silenced by ClC-3 shRNA, the acid-sensitive Cl- currents were attenuated significantly, indicating that ClC-3 plays a vital role in the induction of acid-sensitive Cl- currents. Extracellular acid elevated the intracellular level of reactive oxygen species (ROS) significantly, prior to inducing Cl- currents. When ROS production was scavenged, the acid-sensitive Cl- currents were abolished. Whereas, the level of acid-induced ROS was unaffected with silence of ClC-3. Our findings above demonstrate that extracellular acidification induces a Cl- current in pancreatic acinar cells via promoting ROS generation, implying an underlying mechanism that extracellular acidification might aggravate acute pancreatitis through Cl- channels.
Collapse
Affiliation(s)
- Xiaoya Yang
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China; Department of Pathophysiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Chan Zhao
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Sana'a A Mahdy
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Peisheng Xu
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Meisheng Yu
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, 510600, China
| | - Liang Wang
- Division of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Tim J Jacob
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Shuang Peng
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, 518000, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, 510632, China.
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
37
|
Towards next generation therapies for cystic fibrosis: Folding, function and pharmacology of CFTR. J Cyst Fibros 2020; 19 Suppl 1:S25-S32. [PMID: 31902693 PMCID: PMC7052731 DOI: 10.1016/j.jcf.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
The treatment of cystic fibrosis (CF) has been transformed by orally-bioavailable small molecule modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), which restore function to CF mutants. However, CFTR modulators are not available to all people with CF and better modulators are required to prevent disease progression. Here, we review selectively recent advances in CFTR folding, function and pharmacology. We highlight ensemble and single-molecule studies of CFTR folding, which provide new insight into CFTR assembly, its perturbation by CF mutations and rescue by CFTR modulators. We discuss species-dependent differences in the action of the F508del-CFTR mutation on CFTR expression, stability and function, which might influence pharmacological studies of CFTR modulators in CF animal models. Finally, we illuminate the identification of combinations of two CFTR potentiators (termed co-potentiators), which restore therapeutically-relevant levels of CFTR activity to rare CF mutations. Thus, mechanistic studies of CFTR folding, function and pharmacology inform the development of highly effective CFTR modulators.
Collapse
|
38
|
Mouse pancreatic ductal organoid culture as a relevant model to study exocrine pancreatic ion secretion. J Transl Med 2020; 100:84-97. [PMID: 31409889 DOI: 10.1038/s41374-019-0300-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic exocrine secretory processes are challenging to investigate on primary epithelial cells. Pancreatic organoid cultures may help to overcome shortcomings of the current models, however the ion secretory processes in pancreatic organoids-and therefore their physiological relevance or their utility in disease modeling-are not known. To answer these questions, we provide side-by-side comparison of gene expression, morphology, and function of epithelial cells in primary isolated pancreatic ducts and organoids. We used mouse pancreatic ductal fragments for experiments or were grown in Matrigel to obtain organoid cultures. Using PCR analysis we showed that gene expression of ion channels and transporters remarkably overlap in primary ductal cells and organoids. Morphological analysis with scanning electron microscopy revealed that pancreatic organoids form polarized monolayers with brush border on the apical membrane. Whereas the expression and localization of key proteins involved in ductal secretion (cystic fibrosis transmembrane conductance regulator, Na+/H+ exchanger 1 and electrogenic Na+/HCO3- cotransporter 1) are equivalent to the primary ductal fragments. Measurements of intracellular pH and Cl- levels revealed no significant difference in the activities of the apical Cl-/HCO3- exchange, or in the basolateral Na+ dependent HCO3- uptake. In summary we found that ion transport activities in the mouse pancreatic organoids are remarkably similar to those observed in freshly isolated primary ductal fragments. These results suggest that organoids can be suitable and robust model to study pancreatic ductal epithelial ion transport in health and diseases and facilitate drug development for secretory pancreatic disorders like cystic fibrosis, or chronic pancreatitis.
Collapse
|
39
|
Akshintala VS, Kamal A, Faghih M, Cutting GR, Cebotaru L, West NE, Jennings MT, Dezube R, Whitcomb DC, Lechtzin N, Merlo CA, Singh VK. Cystic fibrosis transmembrane conductance regulator modulators reduce the risk of recurrent acute pancreatitis among adult patients with pancreas sufficient cystic fibrosis. Pancreatology 2019; 19:1023-1026. [PMID: 31611131 DOI: 10.1016/j.pan.2019.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Approximately 1 in 5 patients with pancreas sufficient cystic fibrosis (PS-CF) will develop acute pancreatitis (AP). It is not known whether ivacaftor alone or in combination with other CFTR (cystic transmembrane regulator) modulators (tezacaftor or lumacaftor) can reduce the risk of AP in patients with PS-CF and AP history. METHODS We retrospectively queried the CF registry at our institution for adult patients with PS-CF, a documented history of AP and initiation of CFTR modulators for pulmonary indications. Patient characteristics including demographics, CFTR genotype, pancreatitis risk factors, pancreatic exocrine function and other relevant laboratory, imaging parameters were obtained from the time of the sentinel AP episode through the follow-up period. RESULTS A total of 15 adult CF patients were identified with mean age of 44.1 years (SD ± 13.8). In the 24 months preceding CFTR modulator initiation, six of these patients had at least 1 episode of AP with median of 2 episodes [1.75, 2.5]. None of the patients had evidence of pancreatic calcifications or exocrine pancreas insufficiency at the time of CFTR modulator initiation. The mean duration of follow-up after CFTR modulator initiation was 36.7 months (SD ± 21.5). None of the patients who remained on CFTR modulators developed an episode of AP or required hospitalization for AP related abdominal pain during follow-up. CONCLUSIONS CFTR modulators, alone or in combination, substantially reduce the risk of recurrent AP over a mean follow-up period of 3 years in adult patients with PS-CF and a history of prior AP. These data suggest that any augmentation of CFTR function can reduce the risk of pancreatitis.
Collapse
Affiliation(s)
- Venkata S Akshintala
- Pancreatitis Center, Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ayesha Kamal
- Pancreatitis Center, Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mahya Faghih
- Pancreatitis Center, Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Garry R Cutting
- Adult Cystic Fibrosis Center, Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Liudmila Cebotaru
- Adult Cystic Fibrosis Center, Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Natalie E West
- Adult Cystic Fibrosis Center, Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mark T Jennings
- Adult Cystic Fibrosis Center, Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Rebecca Dezube
- Adult Cystic Fibrosis Center, Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - David C Whitcomb
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Noah Lechtzin
- Adult Cystic Fibrosis Center, Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Christian A Merlo
- Adult Cystic Fibrosis Center, Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Vikesh K Singh
- Pancreatitis Center, Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
40
|
Son A, Ahuja M, Schwartz DM, Varga A, Swaim W, Kang N, Maleth J, Shin DM, Muallem S. Ca 2+ Influx Channel Inhibitor SARAF Protects Mice From Acute Pancreatitis. Gastroenterology 2019; 157:1660-1672.e2. [PMID: 31493399 DOI: 10.1053/j.gastro.2019.08.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pancreatitis is characterized by increased influx of Ca2+ into acinar cells, by unknown mechanisms. Inhibitors of Ca2+ influx channels could be effective in treating acute pancreatitis, but these have deleterious side effects that can result in death. We investigated the expression patterns and functions of acinar cell Ca2+ channels and factors that regulate them during development of acute pancreatitis, along with changes in the channel inactivator store-operated calcium entry-associated regulatory factor (SARAF). We investigated whether SARAF is a target for treatment of acute pancreatitis and its status in human with pancreatitis. METHODS We generated mice that expressed SARAF tagged with hemagglutinin, using CRISPR/Cas9 gene editing, and isolated acinar cells. We also performed studies with Saraf-/- mice, Sarafzf/zf mice, mice without disruption of Saraf (control mice), and mice that overexpress fluorescently labeled SARAF in acinar cells. We analyzed interactions between stromal interaction molecule 1 (STIM1) and SARAF in HEK cells stimulated with carbachol using fluorescence resonance energy transfer microscopy and immunoprecipitation. Mice were given injections of caerulein or L-arginine to induce pancreatitis. Pancreatic tissues and blood samples were collected and levels of serum amylase, trypsin, tissue damage, inflammatory mediators, and inflammatory cells were measured. We performed quantitative polymerase chain reaction analyses of pancreatic tissues from 6 organ donors without pancreatic disease (controls) and 8 patients with alcohol-associated pancreatitis. RESULTS Pancreatic levels of Ca2+ influx channels or STIM1 did not differ significantly between acinar cells from mice with vs. without pancreatitis. By contrast, pancreatic levels of Saraf messenger RNA and SARAF protein initially markedly increased but then decreased during cell stimulation or injection of mice with caerulein, resulting in excessive Ca2+ influx. STIM1 interacted stably with SARAF following stimulation of HEK or mouse acinar cells with physiologic levels of carbachol, but only transiently following stimulation with pathologic levels of carbachol, leading to excessive Ca2+ influx. We observed reduced levels of SARAF messenger RNA in pancreatic tissues from patients with pancreatitis, compared with controls. SARAF knockout mice developed more severe pancreatitis than control mice after administration of caerulein or L-arginine, and pancreatic acinar cells from these mice had significant increases in Ca2+ influx. Conversely, overexpression of SARAF in acini reduced Ca2+ influx, eliminated inflammation, and reduced severity of acute pancreatitis. CONCLUSIONS In mice with pancreatitis, SARAF initially increases but is then degraded, resulting in excessive, pathological Ca2+ influx by acinar cells. SARAF knockout mice develop more severe pancreatitis than control mice, whereas mice that express SARAF from a transgene in acinar cells develop less-severe pancreatitis. SARAF therefore appears to prevent pancreatic damage during development of acute pancreatitis. Strategies to stabilize or restore SARAF to acinar cells might be developed for treatment of pancreatitis.
Collapse
Affiliation(s)
- Aran Son
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Daniella M Schwartz
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Arpad Varga
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, First Department of Medicine, University of Szeged, Szeged, Hungary
| | - William Swaim
- NIDCR imaging core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Namju Kang
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jozsef Maleth
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea.
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
41
|
Hyperglycemia and Salivary Gland Dysfunction in the Non-obese Diabetic Mouse: Caveats for Preclinical Studies in Sjögren's Syndrome. Sci Rep 2019; 9:17969. [PMID: 31784615 PMCID: PMC6884560 DOI: 10.1038/s41598-019-54410-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The Non-obese Diabetic (NOD) mouse model for type I diabetes also develops some features of Sjögren’s syndrome (SS). Since the source of the mice and the environment exert a strong influence on diabetes, this study investigated SS development in NOD mice obtained from two vendors. Female NOD mice from The Jackson Laboratory (JAX) and Taconic Biosciences were monitored for blood glucose and pilocarpine-induced salivation. The gut microbiome was analyzed by 16S rRNA sequencing of stool DNA. At euthanasia, serum cytokines and sialoadenitis severity were evaluated. The onset of diabetes was significantly accelerated in JAX mice compared to Taconic mice. Although the gut microbiome between the two groups was distinct, both groups developed sialoadenitis. There was no correlation between the severity of sialoadenitis and reduced saliva production. Instead, salivary gland dysfunction was associated with hyperglycemia and elevation of serum IL1β, IL16, and CXCL13. Our data suggest that inflammatory pathways linked with hyperglycemia are confounding factors for salivary gland dysfunction in female NOD mice, and might not be representative of the mechanisms operative in SS patients. Considering that NOD mice have been used to test numerous experimental therapies for SS, caution needs to be exerted before advancing these therapeutics for human trials.
Collapse
|
42
|
Autophagy delays progression of the two most frequent human monogenetic lethal diseases: cystic fibrosis and Wilson disease. Aging (Albany NY) 2019; 10:3657-3661. [PMID: 30568028 PMCID: PMC6326686 DOI: 10.18632/aging.101736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis (CF) and Wilson disease (WD) are two monogenetic, recessively inherited lethal pathologies that are caused by ionic disequilibria. CF results from loss-of-function mutations in CF transmembrane conductance regulator (CFTR), a channel that conducts chloride across epithelial cell membranes, while WD is due to a deficiency of ATPase copper transporting beta (ATP7B), a plasma membrane protein that pumps out copper from cells. Recent evidence suggests that both diseases are linked to perturbations in autophagy. CFTR deficiency causes an inhibition of autophagic flux, thus locking respiratory epithelial cells in a pro-inflammatory state and subverting the bactericidal function of macrophages. WD is linked to an increase in autophagy, which, however, is insufficient to mitigate the cytotoxicity of copper. Pharmacological induction of autophagy may delay disease progression, as indicated by preclinical evidence (for CF and WD) and results from clinical trials, in particular in CF patients with the most frequent CTRT mutation (CFTRdel506). Thus, CF and WD exemplify pathologies in which insufficient autophagy plays a major role in determining the chronology of disease progression, much like the pace of 'normal' aging that is dictated by disabled autophagy as well.
Collapse
|
43
|
Morthen MK, Tellefsen S, Richards SM, Lieberman SM, Rahimi Darabad R, Kam WR, Sullivan DA. Testosterone Influence on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome. Invest Ophthalmol Vis Sci 2019; 60:2181-2197. [PMID: 31108549 PMCID: PMC6528840 DOI: 10.1167/iovs.19-26815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Sjögren syndrome is an autoimmune disorder that occurs almost exclusively in women and is associated with extensive inflammation in lacrimal tissue, an immune-mediated destruction and/or dysfunction of glandular epithelial cells, and a significant decrease in aqueous tear secretion. We discovered that androgens suppress the inflammation in, and enhance the function of, lacrimal glands in female mouse models (e.g., MRL/MpJ-Tnfrsf6lpr [MRL/lpr]) of Sjögren syndrome. In contrast, others have reported that androgens induce an anomalous immunopathology in lacrimal glands of nonobese diabetic/LtJ (NOD) mice. We tested our hypothesis that these hormone actions reflect unique, strain- and tissue-specific effects, which involve significant changes in the expression of immune-related glandular genes. Methods Lacrimal glands were obtained from age-matched, adult, female MRL/lpr and NOD mice after treatment with vehicle or testosterone for up to 3 weeks. Tissues were processed for analysis of differentially expressed mRNAs using CodeLink Bioarrays and Affymetrix GeneChips. Data were analyzed with bioinformatics and statistical software. Results Testosterone significantly influenced the expression of numerous immune-related genes, ontologies, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in lacrimal glands of MRL/lpr and NOD mice. The nature of this hormone-induced immune response was dependent upon the autoimmune strain, and was not duplicated within lacrimal tissues of nonautoimmune BALB/c mice. The majority of immune-response genes regulated by testosterone were of the inflammatory type. Conclusions Our findings support our hypothesis and indicate a major role for the lacrimal gland microenvironment in mediating androgen effects on immune gene expression.
Collapse
Affiliation(s)
- Mathias Kaurstad Morthen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital/Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sara Tellefsen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital/Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stephen M Richards
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Genetics & Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Scott M Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Raheleh Rahimi Darabad
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Clinical Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Wendy R Kam
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - David A Sullivan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
44
|
Arsenijevic T, Perret J, Van Laethem JL, Delporte C. Aquaporins Involvement in Pancreas Physiology and in Pancreatic Diseases. Int J Mol Sci 2019; 20:E5052. [PMID: 31614661 PMCID: PMC6834120 DOI: 10.3390/ijms20205052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Aquaporins are a family of transmembrane proteins permeable to water. In mammals, they are subdivided into classical aquaporins that are permeable to water; aquaglyceroporins that are permeable to water, glycerol and urea; peroxiporins that facilitate the diffusion of H2O2 through cell membranes; and so called unorthodox aquaporins. Aquaporins ensure important physiological functions in both exocrine and endocrine pancreas. Indeed, they are involved in pancreatic fluid secretion and insulin secretion. Modification of aquaporin expression and/or subcellular localization may be involved in the pathogenesis of pancreatic insufficiencies, diabetes and pancreatic cancer. Aquaporins may represent useful drug targets for the treatment of pathophysiological conditions affecting pancreatic function, and/or diagnostic/predictive biomarker for pancreatic cancer. This review summarizes the current knowledge related to the involvement of aquaporins in the pancreas physiology and physiopathology.
Collapse
Affiliation(s)
- Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium.
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Erasme, Université Libre de Bruxelles, 808, Route de Lennik, 1070 Brussels, Belgium.
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium.
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Erasme, Université Libre de Bruxelles, 808, Route de Lennik, 1070 Brussels, Belgium.
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| |
Collapse
|
45
|
Megalaa R, Gopalareddy V, Champion E, Goralski JL. Time for a gut check: Pancreatic sufficiency resulting from CFTR modulator use. Pediatr Pulmonol 2019; 54:E16-E18. [PMID: 31066218 DOI: 10.1002/ppul.24353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 11/11/2022]
Abstract
Pancreatic exocrine insufficiency in cystic fibrosis is genetically determined and generally felt to be irreversible. However, recent studies in young children started on cystic fibrosis transmembrane conductance regulator (CFTR) modulators have suggested improvement of pancreatic functioning over time. Here, we present the case of a 10-year-old child with pancreatic exocrine insufficiency since birth who regained pancreatic functioning after 4 years on the CFTR corrector drug, ivacaftor.
Collapse
Affiliation(s)
- Rosemary Megalaa
- Division of Pediatric Pulmonology, Atrium Health, Levine Children's Hospital, Charlotte, NC
| | - Vani Gopalareddy
- Division of Pediatric Gastroenterology, Atrium Health, Levine Children's Hospital, Charlotte, NC
| | - Elizabeth Champion
- Division of Pediatric Pulmonology, Atrium Health, Levine Children's Hospital, Charlotte, NC
| | - Jennifer L Goralski
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
46
|
Chu CC, Zhao SZ. Pathophysiological Role and Drug Modulation of Calcium Transport in Ocular Surface Cells. Curr Med Chem 2019; 27:5078-5091. [PMID: 31237195 DOI: 10.2174/0929867326666190619114848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022]
Abstract
The ocular surface structure and extraocular accessory organs constitute the ocular surface system, which includes the cornea, conjunctiva, eyelids, lacrimal organs, and lacrimal passages. This system is composed of, and stabilized by, the corneal epithelium, conjunctival cells, conjunctival goblet cells, lacrimal acinar cells and Tenon's fibroblasts, all of which maintain the healthy eyeball surface system. Ocular surface diseases are commonly referred to corneal and conjunctival disease and external ocular disease, resulting from damage to the ocular surface structure. A growing body of evidence has indicated that abnormal activation of the KCa3.1 channel and Ca2+/ calmodulin-dependent kinase initiates ocular injury. Signaling pathways downstream of the irregular Ca2+ influx induce cell progression and migration, and impair tight junctions, epithelial transport and secretory function. In this overview, we summarize the current knowledge regarding ocular surface disease in terms of physical and pathological alteration of the ocular system. We dissect in-depth, the mechanisms underlying disease progression, and we describe the current calcium transport therapeutics and the obstacles that remain to be solved. Finally, we summarize how to integrate the research results into clinical practice in the future.
Collapse
Affiliation(s)
- Chen-Chen Chu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| | - Shao-Zhen Zhao
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| |
Collapse
|
47
|
Rosenfeld M, Cunningham S, Harris WT, Lapey A, Regelmann WE, Sawicki GS, Southern KW, Chilvers M, Higgins M, Tian S, Cooke J, Davies JC. An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2-5 years (KLIMB). J Cyst Fibros 2019; 18:838-843. [PMID: 31053538 DOI: 10.1016/j.jcf.2019.03.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND KIWI (NCT01705145) was a 24-week, single-arm, pharmacokinetics, safety, and efficacy study of ivacaftor in children aged 2 to 5 years with cystic fibrosis (CF) and a CFTR gating mutation. Here, we report the results of KLIMB (NCT01946412), an 84-week, open-label extension of KIWI. METHODS Children received age- and weight-based ivacaftor dosages for 84 weeks. The primary outcome was safety. Other outcomes included sweat chloride, growth parameters, and measures of pancreatic function. RESULTS All 33 children who completed KIWI enrolled in KLIMB; 28 completed 84 weeks of treatment. Most adverse events were consistent with those reported during KIWI. Ten (30%) children had transaminase elevations >3 × upper limit of normal (ULN), leading to 1 discontinuation in a child with alanine aminotransferase >8 × ULN. Improvements in sweat chloride, weight, and body mass index z scores and fecal elastase-1 observed during KIWI were maintained during KLIMB; there was no further improvement in these parameters. CONCLUSIONS Ivacaftor was generally well tolerated for up to 108 weeks in children aged 2 to 5 years with CF and a gating mutation, with safety consistent with the KIWI study. Improvements in sweat chloride and growth parameters during the initial 24 weeks of treatment were maintained for up to an additional 84 weeks of treatment. Prevalence of raised transaminases remained stable and did not increase with duration of exposure during the open-label extension.
Collapse
Affiliation(s)
- Margaret Rosenfeld
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA.
| | - Steve Cunningham
- University of Edinburgh Centre for Inflammation Research and NHS Lothian, Edinburgh, UK.
| | - William T Harris
- University of Alabama at Birmingham, 1720 2nd Avenue S, Birmingham, AL 35294, USA.
| | - Allen Lapey
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| | - Warren E Regelmann
- University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | - Gregory S Sawicki
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | - Mark Chilvers
- British Columbia Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3N1, Canada.
| | - Mark Higgins
- Vertex Pharmaceuticals (Europe) Limited, 2 Kingdom Street, London, W2 6BD, UK.
| | - Simon Tian
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA.
| | - Jon Cooke
- Formerly of Vertex Pharmaceuticals (Europe) Limited, 2 Kingdom Street, London W2 6BD, UK
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London & Royal Brompton Hospital, London SW3 6LR, UK.
| | | |
Collapse
|
48
|
Vivino FB, Bunya VY, Massaro-Giordano G, Johr CR, Giattino SL, Schorpion A, Shafer B, Peck A, Sivils K, Rasmussen A, Chiorini JA, He J, Ambrus JL. Sjogren's syndrome: An update on disease pathogenesis, clinical manifestations and treatment. Clin Immunol 2019; 203:81-121. [PMID: 31022578 DOI: 10.1016/j.clim.2019.04.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Frederick B Vivino
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Vatinee Y Bunya
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, 51 N. 39(th) Street, Philadelphia, PA 19104, USA.
| | - Giacomina Massaro-Giordano
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, 51 N. 39(th) Street, Philadelphia, PA 19104, USA.
| | - Chadwick R Johr
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Stephanie L Giattino
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Annemarie Schorpion
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Brian Shafer
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, 51 N. 39(th) Street, Philadelphia, PA 19104, USA.
| | - Ammon Peck
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, PO Box 100125, Gainesville, FL 32610, USA.
| | - Kathy Sivils
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, 825 NE 13th Street, OK 73104, USA.
| | - Astrid Rasmussen
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, 825 NE 13th Street, OK 73104, USA.
| | - John A Chiorini
- NIH, Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, Building 10, Room 1n113, 10 Center DR Msc 1190, Bethesda, MD 20892-1190, USA.
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Julian L Ambrus
- Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine, 100 High Street, Buffalo, NY 14203, USA.
| |
Collapse
|
49
|
Bose SJ, Bijvelds MJC, Wang Y, Liu J, Cai Z, Bot AGM, de Jonge HR, Sheppard DN. Differential thermostability and response to cystic fibrosis transmembrane conductance regulator potentiators of human and mouse F508del-CFTR. Am J Physiol Lung Cell Mol Physiol 2019; 317:L71-L86. [PMID: 30969810 PMCID: PMC6689747 DOI: 10.1152/ajplung.00034.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cross-species comparative studies have highlighted differences between human and mouse cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial Cl- channel defective in cystic fibrosis (CF). Here, we compare the impact of the most common CF mutation F508del on the function of human and mouse CFTR heterologously expressed in mammalian cells and their response to CFTR modulators using the iodide efflux and patch-clamp techniques. Once delivered to the plasma membrane, human F508del-CFTR exhibited a severe gating defect characterized by infrequent channel openings and was thermally unstable, deactivating within minutes at 37°C. By contrast, the F508del mutation was without effect on the gating pattern of mouse CFTR, and channel activity demonstrated thermostability at 37°C. Strikingly, at all concentrations tested, the clinically approved CFTR potentiator ivacaftor was without effect on the mouse F508del-CFTR Cl- channel. Moreover, eight CFTR potentiators, including ivacaftor, failed to generate CFTR-mediated iodide efflux from CHO cells expressing mouse F508del-CFTR. However, they all produced CFTR-mediated iodide efflux with human F508del-CFTR-expressing CHO cells, while fifteen CFTR correctors rescued the plasma membrane expression of both human and mouse F508del-CFTR. Interestingly, the CFTR potentiator genistein enhanced CFTR-mediated iodide efflux from CHO cells expressing either human or mouse F508del-CFTR, whereas it only potentiated human F508del-CFTR Cl- channels in cell-free membrane patches, suggesting that its action on mouse F508del-CFTR is indirect. Thus, the F508del mutation has distinct effects on human and mouse CFTR Cl- channels.
Collapse
Affiliation(s)
- Samuel J Bose
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Yiting Wang
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Jia Liu
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Zhiwei Cai
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Alice G M Bot
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center , Rotterdam , The Netherlands
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
50
|
Vachel L, Muallem S. CFTR is not a gluten lover either. EMBO J 2019; 38:embj.2018101200. [PMID: 30573671 DOI: 10.15252/embj.2018101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Laura Vachel
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|