1
|
Li X, Ge Q, Yu C, Zhao W, Wu C, Liu Z, Meng X, Xiao C. Assessment of the causal relationship between inflammatory bowel diseases and chronic kidney diseases: A two-sample bidirectional mendelian randomization study among European population. Nephrology (Carlton) 2024; 29:738-747. [PMID: 39168961 DOI: 10.1111/nep.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Kidney function can be impaired in patients with inflammatory bowel diseases (IBD), including Crohn's diseases (CD) and ulcerative colitis (UC). However, the causal relationship between IBD and chronic kidney diseases (CKD) remains unclear. METHODS We determined the causal association between IBD and CKD by performing two-sample bidirectional mendelian randomization (MR) analyses. Independent genetic variants were selected as instrumental variables (IVs) of the exposure from open-access genome-wide association studies (GWAS) among European ancestry. IVs-outcome estimates were extracted from three separate GWAS for IBD and two for CKD, respectively. Inverse-variance-weighted model was used as the primary MR method. The pleiotropic effect and heterogeneity were evaluated. For either direction, analyses were performed per outcome database and were subsequently meta-analysed. RESULTS Genetically predicted IBD was associated with higher risk of CKD (OR: 1.045, 95% CI: 1.016-1.073, P = 0.002) by including 42 344 IBD cases and 229 164 controls. Further analyses showed genetic liability to CD increased the risk of CKD (OR: 1.057, 95% CI: 1.027-1.087, p < 0.001) whereas UC did not (OR: 0.999, 95% CI:0.969-1.031, p = 0.970). In contrast, genetically predicted CKD was not associated with IBD (OR: 1.010, 95% CI: 0.965-1.056, p = 0.676), UC (OR: 1.011, 95% CI: 0.948-1.078, p = 0.746) and CD (OR: 1.024; 95% CI: 0.963-1.089, p = 0.447). CONCLUSIONS We concluded that CD, but not UC, can increase the risk of CKD causally. CD, but not UC, can increase the risk of chronic kidney disease causally. These findings enhance our understanding of the differential impact of IBD subtypes on CKD. It may be necessary to monitor kidney function regularly in patients with CD.
Collapse
Affiliation(s)
- Xingxing Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiaoyue Ge
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenting Zhao
- West China Hospital, Sichuan University, Chengdu, China
| | - Chenxin Wu
- West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmi Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiandong Meng
- West China Hospital, Sichuan University, Chengdu, China
| | - Chenghan Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Hynes MC, Watling CZ, Dunneram Y, Key TJ, Perez-Cornago A. Associations of body composition measures with circulating insulin-like growth factor-I, testosterone, and sex hormone-binding globulin concentrations in 16,000 men. Int J Obes (Lond) 2024:10.1038/s41366-024-01633-0. [PMID: 39433891 DOI: 10.1038/s41366-024-01633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Adiposity is positively associated with risk of some cancer sites and other health conditions in men; however, it is unclear if endogenous hormones play a role in these associations. We examined how body composition, measured from magnetic resonance imaging (MRI) and common measures of adiposity (e.g., body mass index (BMI)), are related to hormone concentrations in men from the UK Biobank study. METHODS Up to 16,237 men with available body composition data (including visceral, subcutaneous, and liver fat, muscle fat infiltration (MFI), lean tissue, and common adiposity measures) and serum hormone measurements (insulin-like growth factor-I (IGF-I), total testosterone, sex hormone-binding globulin (SHBG), and calculated free testosterone) were included. Multivariable-adjusted linear regression models were used to determine the geometric mean hormone and SHBG concentrations across categories of each exposure. RESULTS Common measurements of adiposity were highly correlated with MRI measures of central and total adiposity (r = 0.76-0.91), although correlations with ectopic fat (liver fat and MFI) were lower (r = 0.43-0.54). Most adiposity measurements showed an inverse U- or J-shaped association with circulating IGF-I and free testosterone; however, MFI was linearly inversely associated, and lean tissue volume was positively associated with both IGF-I and free testosterone concentrations. All body composition measures were inversely associated with total testosterone and SHBG concentrations (relative geometric mean difference between Q5 vs. Q1: 20-30%). CONCLUSION Our results show that common adiposity and most MRI measures of adiposity relate similarly to serum hormone concentrations; however, associations with ectopic fat (particularly MFI) and lean tissue were different.
Collapse
Affiliation(s)
- Matthew C Hynes
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Cody Z Watling
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yashvee Dunneram
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Tang W, Ma X. Application of large-scale and multicohort plasma proteomics data to discover novel causal proteins in gastric cancer. Discov Oncol 2024; 15:570. [PMID: 39422802 PMCID: PMC11489397 DOI: 10.1007/s12672-024-01460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSES Gastric cancer (GC) is one of the most common malignant tumors threatening human beings and has a poor prognosis. Therefore, exploring unveiled biomarkers or therapeutic targets for the diagnosis and treatment of GC is crucial. METHODS A total of 5772 protein quantitative trait loci (pQTL) were aggregated from four latest large-scale proteomics cohorts. Two-sample Mendelian randomization (two-sample MR) was utilized to identify the causal effect of blood plasma proteins on GC. Heterogeneity, pleiotropy, and directionality analyses were employed to evaluate proteins identified via two-sample MR. The robustness of results was further validated via colocalization. The drug targets of proteins were evaluated to reveal the compounds that can interfere with these proteins. RESULTS Ten proteins with potential causations in relation to GC were identified: LY6D, SLURP1, MLN, PSCA, THSD1, CFTR, PPM1B, KDM3A, TSC1, and HCG22. Among these proteins, LY6D, SLURP1, and THSD1 were considered as the most reliable biomarkers of GC due to their significant H4 posterior probabilities in colocalization analysis and absence of pleiotropy. Compound 35, nitrosamide, and 0175029-0000 were potential drugs or small molecules targeting LY6D, SLURP1, and THSD1, respectively. CONCLUSION This study identified several plasma proteins as potential biomarkers of GC and provided data support and new insights into the early diagnosis, intervention, and therapeutic targets of GC.
Collapse
Affiliation(s)
- Weihao Tang
- College of Liberal Arts and Sciences, University of Florida, Gainesville, USA
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
4
|
Huang YX, Wu JH, Zhao YQ, Sui WN, Tian T, Han WX, Ni J. An atlas on risk factors for gastrointestinal cancers: A systematic review of Mendelian randomization studies. Prev Med 2024; 189:108147. [PMID: 39368643 DOI: 10.1016/j.ypmed.2024.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE Gastrointestinal cancers are one of the most frequent cancer types and seriously threaten human life and health. Recent studies attribute the occurrence of gastrointestinal cancers to both genetic and environmental factors, yet the intrinsic etiology remains unclear. Mendelian randomization is a powerful well-established statistical method that is based on genome-wide association study (GWAS) to evaluate the causal relationship between exposures and outcomes. In the present study, we aimed to conduct a systematic review of Mendelian randomization studies investigating any causal risk factors for gastrointestinal cancers. METHODS We systematically searched Mendelian randomization studies that addressed the associations of genetically predicted exposures with five main gastrointestinal cancers from September 2014 to March 2024, as well as testing the research quality and validity. RESULTS Our findings suggested robust and consistent causal effects of body mass index (BMI), basal metabolic rate, fatty acids, total cholesterol, total bilirubin, insulin like growth factor-1, eosinophil counts, interleukin 2, alcohol consumption, coffee consumption, apolipoprotein B on colorectal cancer risks, BMI, waist circumference, low-density lipoprotein (LDL), total testosterone, smoking on gastric cancer risks, BMI, fasting insulin, LDL, waist circumference, visceral adipose tissue (VAT), immune cells, type 2 diabetes mellitus (T2DM) on pancreatic cancer risks, waist circumference, smoking, T2DM on esophageal adenocarcinoma risks, and VAT, ferritin, transferrin, alcohol consumption, hepatitis B virus infection, rheumatoid arthritis on liver cancer risks, respectively. CONCLUSION Larger, well-designed Mendelian randomization studies are practical in determining the causal status of risk factors for diseases.
Collapse
Affiliation(s)
- Yi-Xuan Huang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jun-Hua Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu-Qiang Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Wan-Nian Sui
- Department of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tian Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Wen-Xiu Han
- Department of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Wu Y, Yu W, Gu Y, Xia J, Sun G. Height and cancer risk in East Asians: Evidence from a prospective cohort study and Mendelian randomization analyses. Cancer Epidemiol 2024; 92:102647. [PMID: 39142240 DOI: 10.1016/j.canep.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Height is associated with increased cancer risk, but most studies focus on Western populations. We aimed to evaluate this relationship in East Asians. METHOD Observational analyses were performed utilizing data from China Kadoorie Biobank (CKB) prospective cohort. Adjusted hazard ratios (HRs) and corresponding 95 % confidence intervals (CIs) were estimated using Cox proportional hazards models. Two-sample Mendelian randomization (MR) analyses explored causal effects between height and cancer using data from Korean Genome and Epidemiology Study (KoGES), Biobank Japan (BBJ), and CKB. RESULTS Over a median 10.1-years follow-up, 22,731 incident cancers occurred. In observational analyses, after Bonferroni correction, each 10 cm increase in height was significantly associated with higher risk of overall cancer (HR 1.16, 95 % CI 1.14-1.19, P < 0.001), lung cancer (1.18, 95 % CI 1.12-1.24, P < 0.001), esophageal cancer (1.21, 95 % CI 1.12-1.30, P < 0.001), breast cancer (1.41, 95 % CI 1.31-1.53, P < 0.001), and cervix uteri cancer (1.29, 95 % CI 1.15-1.45, P < 0.001). Each 10 cm increase in height was suggestively associated with increased risk for lymphoma (1.18, 95 % CI 1.04-1.34, P = 0.010), colorectal cancer (1.09, 95 % CI 1.02-1.16, P = 0.010), and stomach cancer (1.07, 95 % CI 1.00-1.14, P = 0.044). In MR analyses, genetically predicted height (per 1 standard deviation increase, 8.07 cm) was suggestively associated with higher risk of lung cancer (odds ratio [OR] 1.17, 95 % confidence interval [CI] 1.02-1.35, P = 0.0244) and gastric cancer (OR 1.14, 95 % CI 1.02-1.29, P = 0.0233). CONCLUSIONS Taller height was significantly related to a higher risk for overall cancer, lung cancer, esophageal cancer, breast cancer, and cervix uteri cancer. Our findings suggest that height may be a potential causal risk factor for lung and gastric cancers among East Asians.
Collapse
Affiliation(s)
- Yougen Wu
- National Institute of Clinical Research, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Weimin Yu
- Department of Pharmacy, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yuting Gu
- National Institute of Clinical Research, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ju Xia
- National Institute of Clinical Research, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Guangchun Sun
- National Institute of Clinical Research, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Department of Pharmacy, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Waldmann M, Bohner M, Baghnavi A, Riedel B, Seidenstuecker M. Release kinetics of growth factors loaded into β-TCP ceramics in an in vitro model. Front Bioeng Biotechnol 2024; 12:1441547. [PMID: 39398641 PMCID: PMC11466813 DOI: 10.3389/fbioe.2024.1441547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction β-TCP ceramics are bone replacement materials that have recently been tested as a drug delivery system that can potentially be applied to endogenous substances like growth factors found in blood platelets to facilitate positive attributes. Methods In this work, we used flow chamber loading to load β-TCP dowels with blood suspensions of platelet-rich plasma (PRP), platelet-poor plasma (PPP), or buffy coat (BC) character. PRP and BC platelet counts were adjusted to the same level by dilution. Concentrations of TGF-β1, PDGF-AB, and IGF-1 from dowel-surrounding culture medium were subsequently determined using ELISA over 5 days. The influence of alginate was additionally tested to modify the release. Results Concentrations of TGF-β1 and PDGF-AB increased and conclusively showed a release from platelets in PRP and BC compared to PPP. The alginate coating reduced the PDGF-AB release but did not reduce TGF-β1 and instead even increased TGF-β1 in the BC samples. IGF-1 concentrations were highest in PPP, suggesting circulating levels rather than platelet release as the driving factor. Alginate samples tended to have lower IGF-1 concentrations, but the difference was not shown to be significant. Discussion The release of growth factors from different blood suspensions was successfully demonstrated for β-TCP as a drug delivery system with release patterns that correspond to PRP activation after Ca2+-triggered activation. The release pattern was partially modified by alginate coating.
Collapse
Affiliation(s)
- Marco Waldmann
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Anna Baghnavi
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Bianca Riedel
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
7
|
Wang X, Cao L, Liu S, Zhou Y, Zhou J, Zhao W, Gao S, Liu R, Shi Y, Shao C, Fang J. The critical roles of IGFs in immune modulation and inflammation. Cytokine 2024; 183:156750. [PMID: 39243567 DOI: 10.1016/j.cyto.2024.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Insulin-like growth factors (IGFs) are crucial for embryonic and postnatal growth and development, influencing cell survival, metabolism, myogenesis, and cancer progression. Many studies have demonstrated that IGFs also play prominent roles in the modulation of both innate and adaptive immune systems during inflammation. Strikingly, IGFs dictate the phenotype and functional properties of macrophages and T cells. Furthermore, the interplay between IGFs and inflammatory cytokines may generate tissue-protective properties during inflammation. Herein, we review the recent advances on the dialogue between immune cells and IGFs, especially zooming in on the significance of immunomodulatory properties in inflammatory conditions, cancer and autoimmune diseases. The investigation of IGFs may have broad clinical implications.
Collapse
Affiliation(s)
- Xin Wang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lijuan Cao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiarui Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenxuan Zhao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengqi Gao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changshun Shao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jiankai Fang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Nair JM, Bandesh K, Giri AK, Prasad G, Rajashekhar D, Jha P, Basu A, Tandon N, Bharadwaj D. Uncovering novel regulatory variants in carbohydrate metabolism: a comprehensive multi-omics study of glycemic traits in the Indian population. Mol Genet Genomics 2024; 299:85. [PMID: 39230791 DOI: 10.1007/s00438-024-02176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Clinical biomarkers such as fasting glucose, HbA1c, and fasting insulin, which gauge glycemic status in the body, are highly influenced by diet. Indians are genetically predisposed to type 2 diabetes and their carbohydrate-centric diet further elevates the disease risk. Despite the combined influence of genetic and environmental risk factors, Indians have been inadequately explored in the studies of glycemic traits. Addressing this gap, we investigate the genetic architecture of glycemic traits at genome-wide level in 4927 Indians (without diabetes). Our analysis revealed numerous variants of sub-genome-wide significance, and their credibility was thoroughly assessed by integrating data from various levels. This identified key effector genes, ZNF470, DPP6, GXYLT2, PITPNM3, BEND7, and LORICRIN-PGLYRP3. While these genes were weakly linked with carbohydrate intake or glycemia earlier in other populations, our findings demonstrated a much stronger association in the Indian population. Associated genetic variants within these genes served as expression quantitative trait loci (eQTLs) in various gut tissues essential for digestion. Additionally, majority of these gut eQTLs functioned as methylation quantitative trait loci (meth-QTLs) observed in peripheral blood samples from 223 Indians, elucidating the underlying mechanism of their regulation of target gene expression. Specific co-localized eQTLs-meth-QTLs altered the binding affinity of transcription factors targeting crucial genes involved in glucose metabolism. Our study identifies previously unreported genetic variants that strongly influence the diet-glycemia relationship. These findings set the stage for future research into personalized lifestyle interventions integrating genetic insights with tailored dietary strategies to mitigate disease risk based on individual genetic profiles.
Collapse
Affiliation(s)
- Janaki M Nair
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushdeep Bandesh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Anil K Giri
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gauri Prasad
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Donaka Rajashekhar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Punam Jha
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Yan ZW, Liu YN, Xu Q, Yuan Y. Current trends and hotspots of depressive disorders with colorectal cancer: A bibliometric and visual study. World J Gastrointest Oncol 2024; 16:3687-3704. [PMID: 39171183 PMCID: PMC11334043 DOI: 10.4251/wjgo.v16.i8.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Depression is strongly associated with colorectal cancer (CRC). Few bibliometric analyses have systematically summarized the research focus and recent progress in this field. AIM To determine the research status and hotspots by bibliometric analysis of relevant publications on the relationship between CRC and depression. METHODS Articles on depression in CRC patients were collected from the Web of Science Core Collection. CiteSpace and VOSviewer software were used to visualize bibliometric networks. RESULTS From 2001 to 2022, Supportive Care in Cancer, the United States, Tilburg University, and Mols were the most productive and influential journal, country, institution, and author name. Co-occurrence cluster analysis of keywords placed quality of life, anxiety, and psychological stress in the center of the visual network diagram. Further clustering was performed for the clusters with studies of the relevant mechanism of action, which showed that: (1) Cytokines have a role essential for the occurrence and development of depressive disorders in CRC; (2) MicroRNAs have a role essential for the development of depressive disorders in CRC; (3) Some anticancer drugs have pro-depressant activity; and (4) Selective serotonin reuptake inhibitors have both antitumor and antidepressant activity. CONCLUSION Life quality and psychological nursing of the cancer population were key topics. The roles of cytokines and microRNAs, the pro-depression activity of anticancer drugs and their antitumor properties deserve in-depth study.
Collapse
Affiliation(s)
- Zi-Wei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ying-Nan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
10
|
Kühn T, Kalotai N, Amini AM, Haardt J, Lehmann A, Schmidt A, Buyken AE, Egert S, Ellinger S, Kroke A, Lorkowski S, Louis S, Schulze MB, Schwingshackl L, Siener R, Stangl GI, Watzl B, Zittermann A, Nimptsch K. Protein intake and cancer: an umbrella review of systematic reviews for the evidence-based guideline of the German Nutrition Society. Eur J Nutr 2024; 63:1471-1486. [PMID: 38643440 PMCID: PMC11329548 DOI: 10.1007/s00394-024-03380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE It has been proposed that a higher habitual protein intake may increase cancer risk, possibly via upregulated insulin-like growth factor signalling. Since a systematic evaluation of human studies on protein intake and cancer risk based on a standardised assessment of systematic reviews (SRs) is lacking, we carried out an umbrella review of SRs on protein intake in relation to risks of different types of cancer. METHODS Following a pre-specified protocol (PROSPERO: CRD42018082395), we retrieved SRs on protein intake and cancer risk published before January 22th 2024, and assessed the methodological quality and outcome-specific certainty of the evidence using a modified version of AMSTAR 2 and NutriGrade, respectively. The overall certainty of evidence was rated according to predefined criteria. RESULTS Ten SRs were identified, of which eight included meta-analyses. Higher total protein intake was not associated with risks of breast, prostate, colorectal, ovarian, or pancreatic cancer incidence. The methodological quality of the included SRs ranged from critically low (kidney cancer), low (pancreatic, ovarian and prostate cancer) and moderate (breast and prostate cancer) to high (colorectal cancer). The outcome-specific certainty of the evidence underlying the reported findings on protein intake and cancer risk ranged from very low (pancreatic, ovarian and prostate cancer) to low (colorectal, ovarian, prostate, and breast cancer). Animal and plant protein intakes were not associated with cancer risks either at a low (breast and prostate cancer) or very low (pancreatic and prostate cancer) outcome-specific certainty of the evidence. Overall, the evidence for the lack of an association between protein intake and (i) colorectal cancer risk and (ii) breast cancer risk was rated as possible. By contrast, the evidence underlying the other reported results was rated as insufficient. CONCLUSION The present findings suggest that higher total protein intake may not be associated with the risk of colorectal and breast cancer, while conclusions on protein intake in relation to risks of other types of cancer are restricted due to insufficient evidence.
Collapse
Affiliation(s)
- Tilman Kühn
- The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK.
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany.
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
- Center for Public Health, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | - Anette E Buyken
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Sarah Egert
- Institute of Nutritional and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Sabine Ellinger
- Institute of Nutritional and Food Science, Human Nutrition, University of Bonn, Bonn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
11
|
Boysen ML, Troelsen FS, Sørensen HT, Erichsen R. Type 2 diabetes mellitus and post-colonoscopy colorectal cancer: clinical and molecular characteristics and survival. Cancer Causes Control 2024; 35:1043-1052. [PMID: 38483686 PMCID: PMC11217032 DOI: 10.1007/s10552-024-01861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/05/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE Studies suggest that patients with type two diabetes mellitus (T2D) may be at increased risk of post-colonoscopy colorectal cancer (PCCRC). We investigated clinical and molecular characteristics and survival of T2D patients with PCCRC to elucidate how T2D-related PCCRC may arise. METHODS We identified T2D patients with colorectal cancer (CRC) from 1995 to 2015 and computed prevalence ratios (PRs) comparing clinical and molecular characteristics of CRC in T2D patients with PCCRC vs. in T2D patients with colonoscopy-detected CRC (dCRC). We also followed T2D patients from the diagnosis of PCCRC/dCRC until death, emigration, or study end and compared mortality using Cox-proportional hazards regression models adjusted for sex, age, year of CRC diagnosis, and CRC stage. RESULTS Compared with dCRC, PCCRC was associated with a higher prevalence of proximal CRCs (54% vs. 40%; PR: 1.43, 95% confidence interval [CI] 1.27-1.62) in T2D patients. We found no difference between PCCRC vs. dCRC for CRC stage, histology, and mismatch repair status. The proportion of CRCs that could be categorized as PCCRC decreased over time. Within one year after CRC, 63% of PCCRC vs. 78% of dCRC patients were alive (hazard ratio [HR] 1.85 [95% CI 1.47-2.31]). Within five years after CRC, 44% of PCCRC vs. 54% of dCRC patients were still alive (HR 1.44 [95% CI 1.11-1.87]). CONCLUSION The increased prevalence of proximally located PCCRCs and the poorer survival may suggest overlooked colorectal lesions as a predominant explanation for T2D-related PCCRC, although altered tumor progression cannot be ruled out.
Collapse
Affiliation(s)
- Mette L Boysen
- Department of Surgery, Gødstrup Regional Hospital, 7400, Herning, Denmark
- Department of Clinical Epidemiology, Aarhus University Hospital, Olof Palmes Allé 43-45, 8200, Aarhus N, Denmark
| | - Frederikke S Troelsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Olof Palmes Allé 43-45, 8200, Aarhus N, Denmark.
- Department of Surgery, Randers Regional Hospital, 8930, Randers, Denmark.
| | - Henrik T Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Olof Palmes Allé 43-45, 8200, Aarhus N, Denmark
| | - Rune Erichsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Olof Palmes Allé 43-45, 8200, Aarhus N, Denmark
- Department of Surgery, Randers Regional Hospital, 8930, Randers, Denmark
| |
Collapse
|
12
|
Song J, Fan L, Shi D, Lai X, Wang H, Liu W, Yu L, Liang R, Zhang Y, Wan S, Yang Y, Wang B. Sleep and liver function biomarkers in relation to risk of incident liver cancer: a nationwide prospective cohort study. BMC Med 2024; 22:261. [PMID: 38915009 PMCID: PMC11197319 DOI: 10.1186/s12916-024-03440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND To assess the largely undetermined separate and joint effects of sleep and liver function biomarkers on liver cancer. METHODS Data of 356,894 participants without cancer at baseline in the UK Biobank were analyzed. Sleep score was evaluated using five sleep traits (sleep duration, chronotype, insomnia, snoring, and excessive daytime sleepiness) and dichotomized into healthy or unhealthy sleep. Circulating liver function biomarkers were measured. Cox proportional hazard model was performed to investigate the independent and joint associations of sleep and liver function biomarkers with liver cancer incidence. RESULTS After a median follow-up time of 13.1 years, 394 cases of incident liver cancer were documented. The multivariable-adjusted hazard ratio (HR) for liver cancer was 1.46 (95% confidence interval: 1.15-1.85) associated with unhealthy sleep (vs. healthy sleep), and was 1.17 (1.15-1.20), 1.20 (1.18-1.22), 1.69 (1.47-1.93), 1.06 (1.06-1.07), 1.08 (1.07-1.09), 1.81 (1.37-2.39), or 0.29 (0.18-0.46) associated with each 10-unit increase in alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), total protein (TP), or albumin (ALB), respectively. Individuals with unhealthy sleep and high (≥ median) ALT, AST, TBIL, GGT, ALP, or TP or low (< median) ALB level had the highest HR of 3.65 (2.43-5.48), 4.03 (2.69-6.03), 1.97 (1.40-2.77), 4.69 (2.98-7.37), 2.51 (1.75-3.59), 2.09 (1.51-2.89), or 2.22 (1.55-3.17) for liver cancer, respectively. Significant additive interaction of unhealthy sleep with high TP level on liver cancer was observed with relative excess risk due to an interaction of 0.80 (0.19-1.41). CONCLUSIONS Unhealthy sleep was associated with an increased risk of liver cancer, especially in participants with lower ALB levels or higher levels of ALT, AST, TBIL, GGT, ALP, or particularly TP.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, T6G 2P5, AB, Canada
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hao Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yongfang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shuhui Wan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yueru Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
13
|
Smith-Byrne K, Hedman Å, Dimitriou M, Desai T, Sokolov AV, Schioth HB, Koprulu M, Pietzner M, Langenberg C, Atkins J, Penha RC, McKay J, Brennan P, Zhou S, Richards BJ, Yarmolinsky J, Martin RM, Borlido J, Mu XJ, Butterworth A, Shen X, Wilson J, Assimes TL, Hung RJ, Amos C, Purdue M, Rothman N, Chanock S, Travis RC, Johansson M, Mälarstig A. Identifying therapeutic targets for cancer among 2074 circulating proteins and risk of nine cancers. Nat Commun 2024; 15:3621. [PMID: 38684708 PMCID: PMC11059161 DOI: 10.1038/s41467-024-46834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.
Collapse
Affiliation(s)
- Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK.
| | - Åsa Hedman
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Marios Dimitriou
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Trishna Desai
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Alexandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schioth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare Institute, Queen Mary University of London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare Institute, Queen Mary University of London, London, UK
| | - Joshua Atkins
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Ricardo Cortez Penha
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Brent J Richards
- Departments of Medicine (Endocrinology), Human Genetics, Epidemiology and Biostatistics, McGill University, Montréal, QC, Canada
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Joana Borlido
- Cancer Immunology Discovery, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, San Diego, USA
| | - Xinmeng J Mu
- Oncology Research Unit, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, San Diego, USA
| | - Adam Butterworth
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xia Shen
- Usher Institute, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Jim Wilson
- Usher Institute, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine and the Cardiovascular Institute, School of Medicine, Stanford University, Stanford, USA
| | - Rayjean J Hung
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - Christopher Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, USA
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Anders Mälarstig
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
14
|
Bouras E, Gill D, Zuber V, Murphy N, Dimou N, Aleksandrova K, Lewis SJ, Martin RM, Yarmolinsky J, Albanes D, Brenner H, Castellví-Bel S, Chan AT, Cheng I, Gruber S, Van Guelpen B, Li CI, Le Marchand L, Newcomb PA, Ogino S, Pellatt A, Schmit SL, Wolk A, Wu AH, Peters U, Gunter MJ, Tsilidis KK. Identification of potential mediators of the relationship between body mass index and colorectal cancer: a Mendelian randomization analysis. Int J Epidemiol 2024; 53:dyae067. [PMID: 38725300 PMCID: PMC11082423 DOI: 10.1093/ije/dyae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third-most-common cancer worldwide and its rates are increasing. Elevated body mass index (BMI) is an established risk factor for CRC, although the molecular mechanisms behind this association remain unclear. Using the Mendelian randomization (MR) framework, we aimed to investigate the mediating effects of putative biomarkers and other CRC risk factors in the association between BMI and CRC. METHODS We selected as mediators biomarkers of established cancer-related mechanisms and other CRC risk factors for which a plausible association with obesity exists, such as inflammatory biomarkers, glucose homeostasis traits, lipids, adipokines, insulin-like growth factor 1 (IGF1), sex hormones, 25-hydroxy-vitamin D, smoking, physical activity (PA) and alcohol consumption. We used inverse-variance weighted MR in the main univariable analyses and performed sensitivity analyses (weighted-median, MR-Egger, Contamination Mixture). We used multivariable MR for the mediation analyses. RESULTS Genetically predicted BMI was positively associated with CRC risk [odds ratio per SD (5 kg/m2) = 1.17, 95% CI: 1.08-1.24, P-value = 1.4 × 10-5] and robustly associated with nearly all potential mediators. Genetically predicted IGF1, fasting insulin, low-density lipoprotein cholesterol, smoking, PA and alcohol were associated with CRC risk. Evidence for attenuation was found for IGF1 [explained 7% (95% CI: 2-13%) of the association], smoking (31%, 4-57%) and PA (7%, 2-11%). There was little evidence for pleiotropy, although smoking was bidirectionally associated with BMI and instruments were weak for PA. CONCLUSIONS The effect of BMI on CRC risk is possibly partly mediated through plasma IGF1, whereas the attenuation of the BMI-CRC association by smoking and PA may reflect confounding and shared underlying mechanisms rather than mediation.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Dipender Gill
- Chief Scientific Advisor Office, Research and Early Development, Novo Nordisk, Copenhagen, Denmark
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Krasimira Aleksandrova
- Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
- Department Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology, Bremen, Germany
| | - Sarah J Lewis
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard M Martin
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol
| | - James Yarmolinsky
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sergi Castellví-Bel
- Department of Gastroenterology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, CA, USA
| | - Stephen Gruber
- Department of Medical Oncology & Therapeutics Research and Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew Pellatt
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, CA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| |
Collapse
|
15
|
Sun J, Luo J, Jiang F, Zhao J, Zhou S, Wang L, Zhang D, Ding Y, Li X. Exploring the cross-cancer effect of circulating proteins and discovering potential intervention targets for 13 site-specific cancers. J Natl Cancer Inst 2024; 116:565-573. [PMID: 38039160 DOI: 10.1093/jnci/djad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The proteome is an important reservoir of potential therapeutic targets for cancer. This study aimed to examine the causal associations between plasma proteins and cancer risk and to identify proteins with cross-cancer effects. METHODS Genetic instruments for 3991 plasma proteins were extracted from a large-scale proteomic study. Summary-level data of 13 site-specific cancers were derived from publicly available datasets. Proteome-wide Mendelian randomization and colocalization analyses were used to investigate the causal effect of circulating proteins on cancers. Protein-protein interactions and druggability assessment were conducted to prioritize potential therapeutic targets. Finally, systematical Mendelian randomization analysis between healthy lifestyle factors and cancer-related proteins was conducted to identify which proteins could act as interventional targets by lifestyle changes. RESULTS Genetically determined circulating levels of 58 proteins were statistically significantly associated with 7 site-specific cancers. A total of 39 proteins were prioritized by colocalization, of them, 11 proteins (ADPGK, CD86, CLSTN3, CSF2RA, CXCL10, GZMM, IL6R, NCR3, SIGLEC5, SIGLEC14, and TAPBP) were observed to have cross-cancer effects. Notably, 5 of these identified proteins (CD86, CSF2RA, CXCL10, IL6R, and TAPBP) have been targeted for drug development in cancer therapy; 8 proteins (ADPGK, CD86, CXCL10, GZMM, IL6R, SIGLEC5, SIGLEC14, TAPBP) could be modulated by healthy lifestyles. CONCLUSION Our study identified 39 circulating protein biomarkers with convincing causal evidence for 7 site-specific cancers, with 11 proteins demonstrating cross-cancer effects, and prioritized the proteins as potential intervention targets by either drugs or lifestyle changes, which provided new insights into the etiology, prevention, and treatment of cancers.
Collapse
Affiliation(s)
- Jing Sun
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia Luo
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Fangyuan Jiang
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyun Zhou
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Han S, Yao J, Yamazaki H, Streicher SA, Rao J, Nianogo RA, Zhang Z, Huang BZ. Genetically Determined Circulating Lactase/Phlorizin Hydrolase Concentrations and Risk of Colorectal Cancer: A Two-Sample Mendelian Randomization Study. Nutrients 2024; 16:808. [PMID: 38542719 PMCID: PMC10975724 DOI: 10.3390/nu16060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024] Open
Abstract
Previous research has found that milk is associated with a decreased risk of colorectal cancer (CRC). However, it is unclear whether the milk digestion by the enzyme lactase-phlorizin hydrolase (LPH) plays a role in CRC susceptibility. Our study aims to investigate the direct causal relationship of CRC risk with LPH levels by applying a two-sample Mendelian Randomization (MR) strategy. Genetic instruments for LPH were derived from the Fenland Study, and CRC-associated summary statistics for these instruments were extracted from the FinnGen Study, PLCO Atlas Project, and Pan-UK Biobank. Primary MR analyses focused on a cis-variant (rs4988235) for LPH levels, with results integrated via meta-analysis. MR analyses using all variants were also undertaken. This analytical approach was further extended to assess CRC subtypes (colon and rectal). Meta-analysis across the three datasets illustrated an inverse association between genetically predicted LPH levels and CRC risk (OR: 0.92 [95% CI, 0.89-0.95]). Subtype analyses revealed associations of elevated LPH levels with reduced risks for both colon (OR: 0.92 [95% CI, 0.89-0.96]) and rectal cancer (OR: 0.92 [95% CI, 0.87, 0.98]). Consistency was observed across varied analytical methods and datasets. Further exploration is warranted to unveil the underlying mechanisms and validate LPH's potential role in CRC prevention.
Collapse
Affiliation(s)
- Sihao Han
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA; (J.Y.); (J.R.); (R.A.N.); (Z.Z.)
| | - Jiemin Yao
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA; (J.Y.); (J.R.); (R.A.N.); (Z.Z.)
| | - Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan;
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima 960-1295, Japan
| | - Samantha A. Streicher
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Jianyu Rao
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA; (J.Y.); (J.R.); (R.A.N.); (Z.Z.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roch A. Nianogo
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA; (J.Y.); (J.R.); (R.A.N.); (Z.Z.)
| | - Zuofeng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA; (J.Y.); (J.R.); (R.A.N.); (Z.Z.)
| | - Brian Z. Huang
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
17
|
Watts EL, Moore SC, Gunter MJ, Chatterjee N. Adiposity and cancer: meta-analysis, mechanisms, and future perspectives. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302944. [PMID: 38405761 PMCID: PMC10889047 DOI: 10.1101/2024.02.16.24302944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Obesity is a recognised risk factor for many cancers and with rising global prevalence, has become a leading cause of cancer. Here we summarise the current evidence from both population-based epidemiologic investigations and experimental studies on the role of obesity in cancer development. This review presents a new meta-analysis using data from 40 million individuals and reports positive associations with 19 cancer types. Utilising major new data from East Asia, the meta-analysis also shows that the strength of obesity and cancer associations varies regionally, with stronger relative risks for several cancers in East Asia. This review also presents current evidence on the mechanisms linking obesity and cancer and identifies promising future research directions. These include the use of new imaging data to circumvent the methodological issues involved with body mass index and the use of omics technologies to resolve biologic mechanisms with greater precision and clarity.
Collapse
Affiliation(s)
- Eleanor L Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Shady Grove, MD, USA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Shady Grove, MD, USA
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
18
|
Teng YJ, Yang YX, Yang JJ, Lu QY, Shi JY, Xu JH, Bao J, Wang QH. Association between triglyceride-glucose index and colorectal polyps: A retrospective cross-sectional study. World J Gastrointest Endosc 2024; 16:55-63. [PMID: 38464818 PMCID: PMC10921154 DOI: 10.4253/wjge.v16.i2.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Colorectal polyps (CPs) are frequently occurring abnormal growths in the colorectum, and are a primary precursor of colorectal cancer (CRC). The triglyceride-glucose (TyG) index is a novel marker that assesses metabolic health and insulin resistance, and has been linked to gastrointestinal cancers. AIM To investigate the potential association between the TyG index and CPs, as the relation between them has not been documented. METHODS A total of 2537 persons undergoing a routine health physical examination and colonoscopy at The First People's Hospital of Kunshan, Jiangsu Province, China, between January 2020 and December 2022 were included in this retrospective cross-sectional study. After excluding individuals who did not meet the eligibility criteria, descriptive statistics were used to compare characteristics between patients with and without CPs. Logistic regression analyses were conducted to determine the associations between the TyG index and the prevalence of CPs. The TyG index was calculated using the following formula: Ln [triglyceride (mg/dL) × glucose (mg/dL)/2]. The presence and types of CPs was determined based on data from colonoscopy reports and pathology reports. RESULTS A nonlinear relation between the TyG index and the prevalence of CPs was identified, and exhibited a curvilinear pattern with a cut-off point of 2.31. A significant association was observed before the turning point, with an odds ratio (95% confidence interval) of 1.70 (1.40, 2.06), P < 0.0001. However, the association between the TyG index and CPs was not significant after the cut-off point, with an odds ratio (95% confidence interval) of 0.57 (0.27, 1.23), P = 0.1521. CONCLUSION Our study revealed a curvilinear association between the TyG index and CPs in Chinese individuals, suggesting its potential utility in developing colonoscopy screening strategies for preventing CRC.
Collapse
Affiliation(s)
- Ya-Jie Teng
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Ying-Xue Yang
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Jing-Jing Yang
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Qiu-Yan Lu
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Jia-Yi Shi
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Jian-Hao Xu
- Department of Pathology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Jie Bao
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Qing-Hua Wang
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| |
Collapse
|
19
|
Wu R, Zhang J, Zou G, Li S, Wang J, Li X, Xu J. Diabetes Mellitus and Thyroid Cancers: Risky Correlation, Underlying Mechanisms and Clinical Prevention. Diabetes Metab Syndr Obes 2024; 17:809-823. [PMID: 38380275 PMCID: PMC10878320 DOI: 10.2147/dmso.s450321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
The incidences of thyroid cancer and diabetes are rapidly increasing worldwide. The relationship between thyroid cancer and diabetes is a popular topic in medicine. Increasing evidence has shown that diabetes increases the risk of thyroid cancer to a certain extent. This mechanism may be related to genetic factors, abnormal thyroid-stimulating hormone secretion, oxidative stress injury, hyperinsulinemia, elevated insulin-like growth factor-1 levels, abnormal secretion of adipocytokines, and increased secretion of inflammatory factors and chemokines. This article reviews the latest research progress on the relationship between thyroid cancer and diabetes, including the association between diabetes and the risk of developing thyroid cancer, its underlying mechanisms, and potential anti-thyroid cancer effects of hypoglycemic drugs. It providing novel strategies for the prevention, treatment, and improving the prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Rongqian Wu
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Junping Zhang
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Guilin Zou
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Shanshan Li
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Jinying Wang
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Xiaoxinlei Li
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| |
Collapse
|
20
|
Nimptsch K, Aydin EE, Chavarria RFR, Janke J, Poy MN, Oxvig C, Steinbrecher A, Pischon T. Pregnancy associated plasma protein-A2 (PAPP-A2) and stanniocalcin-2 (STC2) but not PAPP-A are associated with circulating total IGF-1 in a human adult population. Sci Rep 2024; 14:1770. [PMID: 38245583 PMCID: PMC10799854 DOI: 10.1038/s41598-024-52074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The pappalysins pregnancy associated plasma protein-A (PAPP-A) and -A2 (PAPP-A2) act as proteinases of insulin-like growth factor-1 (IGF-1) binding proteins, while stanniocalcin-2 (STC2) was identified as a pappalysin inhibitor. While there is some evidence from studies in children and adolescents, it is unclear whether these molecules are related to concentrations of IGF-1 and its binding proteins in adults. We investigated cross-sectionally the association of circulating PAPP-A, PAPP-A2 and STC2 with IGF-1 and its binding proteins (IGFBPs) in 394 adult pretest participants (20-69 years) of the German National Cohort Berlin North study center. Plasma PAPP-A, PAPP-A2, total and free IGF-1, IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-5 and STC2 were measured by ELISAs. The associations of PAPP-A, PAPP-A2 and STC2 with IGF-1 or IGFBPs were investigated using multivariable linear regression analyses adjusting for age, sex, body mass index and pretest phase. We observed significant inverse associations of PAPP-A2 (difference in concentrations per 0.5 ng/mL higher PAPP-A2 levels) with total IGF-1 (- 4.3 ng/mL; 95% CI - 7.0; - 1.6), the IGF-1:IGFBP-3 molar ratio (- 0.34%; 95%-CI - 0.59; - 0.09), but not free IGF-1 and a positive association with IGFBP-2 (11.9 ng/mL; 95% CI 5.0; 18.8). PAPP-A was not related to total or free IGF-1, but positively associated with IGFBP-5. STC2 was inversely related to total IGF-1, IGFBP-2 and IGFBP-3 and positively to IGFBP-1. This first investigation of these associations in a general adult population supports the hypothesis that PAPP-A2 as well as STC2 play a role for IGF-1 and its binding proteins, especially for total IGF-1. The role of PAPP-A2 and STC2 for health and disease in adults warrants further investigation.
Collapse
Affiliation(s)
- Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| | - Elif Ece Aydin
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rafael Francisco Rios Chavarria
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Jürgen Janke
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthew N Poy
- John Hopkins University, All Children's Hospital, St. Petersburg, FL, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Astrid Steinbrecher
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
21
|
Alrashid MH, Al-Serri AE, Hussain RF, Al-Bustan SA, Al-Barrak J. Association Study of IGF-1 rs35767 and rs6214 Gene Polymorphisms with Cancer Susceptibility and Circulating Levels of IGF-1, IGFBP-2, and IGFBP-3 in Colorectal Cancer Patients. Biomedicines 2023; 11:3166. [PMID: 38137390 PMCID: PMC10740888 DOI: 10.3390/biomedicines11123166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Early detection of colorectal cancer (CRC) increases the 5-year survival rate by 90%; therefore, non-invasive biomarkers such as measurable circulating proteins for early detection and prognosis are crucial. Insulin-like growth factor-1 (IGF-1) is involved in the regulation of cell proliferation and apoptosis. IGF binding proteins (IGFBPs) bind and inhibit the activity of IGF-1. It was inconsistently reported that high IGF-1 and IGFBP-2 and low IGFBP-3 circulating levels are associated with high cancer risk, poor prognosis, and tumor metastasis in several cancers. A total of 175 patients with CRC and 429 controls were enrolled in this study. We genotyped for IGF-1 rs35767 and rs6214 gene polymorphisms and assessed their association with circulating levels of IGF-1 and/or the risk for CRC. We also determined plasma levels of IGF-1, IGFBP-2, and IGFBP-3. Neither rs35767 nor rs2614 were associated with cancer risk or IGF-1 levels in our study cohort. IGF-1 and IGFBP-3 levels were higher in controls than in patients, whereas IGFBP-2 was higher in patients than in controls. Only IGFBP-2 was associated with increased tumor grade but not stage. Therefore, IGF-1, IGFBP-2, and IGFBP-3 may be useful as early detection and prognostic biomarkers in CRC.
Collapse
Affiliation(s)
- Maryam H. Alrashid
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait City 13060, Kuwait; (R.F.H.); (S.A.A.-B.)
| | - Ahmad E. Al-Serri
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Safat, Kuwait City 13060, Kuwait;
| | - Rubina F. Hussain
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait City 13060, Kuwait; (R.F.H.); (S.A.A.-B.)
| | - Suzanne A. Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait City 13060, Kuwait; (R.F.H.); (S.A.A.-B.)
| | | |
Collapse
|
22
|
Holmannova D, Borsky P, Parova H, Stverakova T, Vosmik M, Hruska L, Fiala Z, Borska L. Non-Genomic Hallmarks of Aging-The Review. Int J Mol Sci 2023; 24:15468. [PMID: 37895144 PMCID: PMC10607657 DOI: 10.3390/ijms242015468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is a natural, gradual, and inevitable process associated with a series of changes at the molecular, cellular, and tissue levels that can lead to an increased risk of many diseases, including cancer. The most significant changes at the genomic level (DNA damage, telomere shortening, epigenetic changes) and non-genomic changes are referred to as hallmarks of aging. The hallmarks of aging and cancer are intertwined. Many studies have focused on genomic hallmarks, but non-genomic hallmarks are also important and may additionally cause genomic damage and increase the expression of genomic hallmarks. Understanding the non-genomic hallmarks of aging and cancer, and how they are intertwined, may lead to the development of approaches that could influence these hallmarks and thus function not only to slow aging but also to prevent cancer. In this review, we focus on non-genomic changes. We discuss cell senescence, disruption of proteostasis, deregualation of nutrient sensing, dysregulation of immune system function, intercellular communication, mitochondrial dysfunction, stem cell exhaustion and dysbiosis.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Tereza Stverakova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Milan Vosmik
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Libor Hruska
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| |
Collapse
|
23
|
Sun J, Zhao J, Jiang F, Wang L, Xiao Q, Han F, Chen J, Yuan S, Wei J, Larsson SC, Zhang H, Dunlop MG, Farrington SM, Ding K, Theodoratou E, Li X. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome. Genome Med 2023; 15:75. [PMID: 37726845 PMCID: PMC10508028 DOI: 10.1186/s13073-023-01229-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The proteome is a major source of therapeutic targets. We conducted a proteome-wide Mendelian randomization (MR) study to identify candidate protein markers and therapeutic targets for colorectal cancer (CRC). METHODS Protein quantitative trait loci (pQTLs) were derived from seven published genome-wide association studies (GWASs) on plasma proteome, and summary-level data were extracted for 4853 circulating protein markers. Genetic associations with CRC were obtained from a large-scale GWAS meta-analysis (16,871 cases and 26,328 controls), the FinnGen cohort (4957 cases and 304,197 controls), and the UK Biobank (9276 cases and 477,069 controls). Colocalization and summary-data-based MR (SMR) analyses were performed sequentially to verify the causal role of candidate proteins. Single cell-type expression analysis, protein-protein interaction (PPI), and druggability evaluation were further conducted to detect the specific cell type with enrichment expression and prioritize potential therapeutic targets. RESULTS Collectively, genetically predicted levels of 13 proteins were associated with CRC risk. Elevated levels of two proteins (GREM1, CHRDL2) and decreased levels of 11 proteins were associated with an increased risk of CRC, among which four (GREM1, CLSTN3, CSF2RA, CD86) were prioritized with the most convincing evidence. These protein-coding genes are mainly expressed in tissue stem cells, epithelial cells, and monocytes in colon tumor tissue. Two interactive pairs of proteins (GREM1 and CHRDL2; MMP2 and TIMP2) were identified to be involved in osteoclast differentiation and tumorigenesis pathways; four proteins (POLR2F, CSF2RA, CD86, MMP2) have been targeted for drug development on autoimmune diseases and other cancers, with the potentials of being repurposed as therapeutic targets for CRC. CONCLUSIONS This study identified several protein biomarkers to be associated with CRC risk and provided new insights into the etiology and promising targets for the development of screening biomarkers and therapeutic drugs for CRC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangyuan Jiang
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Qian Xiao
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengyan Han
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jingsun Wei
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susan M Farrington
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
24
|
Mukama T, Srour B, Johnson T, Katzke V, Kaaks R. IGF-1 and Risk of Morbidity and Mortality From Cancer, Cardiovascular Diseases, and All Causes in EPIC-Heidelberg. J Clin Endocrinol Metab 2023; 108:e1092-e1105. [PMID: 37066827 PMCID: PMC10505533 DOI: 10.1210/clinem/dgad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023]
Abstract
CONTEXT The functional status of organs, such as the liver, involved in IGF-1 signaling pathways influences circulating levels of IGF-1 and hence its relationship to risk of chronic disease and mortality, yet this has received limited attention. OBJECTIVE To examine the relationship between IGF-1 and risk of morbidity and mortality from cancer, cardiovascular diseases (CVD), and all causes, accounting for liver function. METHODS This study was a case-cohort design nested within EPIC-Heidelberg. IGF-1 was measured in 7461 stored serum samples collected from 1994 to 1998. Median follow-up for incident mortality events was 17.5 years. The case-cohort included a subcohort of 1810 men and 1890 women, in addition to 1668 incident cases of cancer (623 breast, 577 prostate, 202 lung, and 268 colorectal), and 1428 cases of CVD (707 myocardial infarctions and 723 strokes) and 2441 cases of death. RESULTS Higher IGF-1 levels showed direct associations with risks of breast (1.25; 95% CI [1.06-1.47]) and prostate (1.31; [1.09-1.57]) cancers. Restricted cubic splines plots and models including IGF-1 as quintiles revealed a U-shaped relationship between the biomarker and mortality. Participants with the lowest and the highest levels of IGF-1 experienced higher hazards of mortality from cancer, CVD, and all causes. The U-shaped form of the relationship persisted but was attenuated in analyses including only participants without any indications of liver dysfunction. CONCLUSION This large population-based prospective study showed that both individuals with lowest and highest levels of circulating IGF-1 were at increased risk of deaths from cancer, CVD, and all causes. For individuals with low IGF-1, the excess risks of death were more pronounced among individuals with liver cancer and cirrhosis but were also present among individuals without elevated liver enzymes.
Collapse
Affiliation(s)
- Trasias Mukama
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Bernard Srour
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Epidemiology and Statistics Research Center–University of Paris-Cité (CRESS), 93017 Bobigny, France
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Macis D, Briata IM, D’Ecclesiis O, Johansson H, Aristarco V, Buttiron Webber T, Oppezzi M, Gandini S, Bonanni B, DeCensi A. Inflammatory and Metabolic Biomarker Assessment in a Randomized Presurgical Trial of Curcumin and Anthocyanin Supplements in Patients with Colorectal Adenomas. Nutrients 2023; 15:3894. [PMID: 37764678 PMCID: PMC10537228 DOI: 10.3390/nu15183894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer prevention is crucial for public health, given its high mortality rates, particularly in young adults. The early detection and treatment of precancerous lesions is key to preventing carcinogenesis progression. Natural compounds like curcumin and anthocyanins show promise in impeding adenomatous polyp progression in preclinical models. We conducted a randomized, double-blind, placebo-controlled, phase II presurgical trial in 35 patients with adenomatous polyps to explore the biological effects of curcumin and anthocyanins on circulating biomarkers of inflammation and metabolism. No significant difference in biomarker changes by treatment arm was observed. However, the network analysis before treatment revealed inverse correlations between adiponectin and BMI and glycemia, as well as direct links between inflammatory biomarkers and leptin and BMI. In addition, a considerable inverse relationship between adiponectin and grade of dysplasia was detected after treatment (corr = -0.45). Finally, a significant increase in IL-6 at the end of treatment in subjects with high-grade dysplasia was also observed (p = 0.02). The combined treatment of anthocyanins and curcumin did not result in the direct modulation of circulating biomarkers of inflammation and metabolism, but revealed a complex modulation of inflammatory and metabolic biomarkers of colon carcinogenesis.
Collapse
Affiliation(s)
- Debora Macis
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Irene Maria Briata
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (T.B.W.)
| | - Oriana D’Ecclesiis
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (O.D.); (S.G.)
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Tania Buttiron Webber
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (T.B.W.)
| | - Massimo Oppezzi
- Division of Gastroenterology, E.O. Galliera Hospital, 16128 Genoa, Italy;
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (O.D.); (S.G.)
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Andrea DeCensi
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (T.B.W.)
| |
Collapse
|
26
|
Watling CZ, Kelly RK, Dunneram Y, Knuppel A, Piernas C, Schmidt JA, Travis RC, Key TJ, Perez-Cornago A. Associations of intakes of total protein, protein from dairy sources, and dietary calcium with risks of colorectal, breast, and prostate cancer: a prospective analysis in UK Biobank. Br J Cancer 2023; 129:636-647. [PMID: 37407836 PMCID: PMC10421858 DOI: 10.1038/s41416-023-02339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Evidence concerning intakes of protein or sources of dairy protein and risks of colorectal, breast, and prostate cancers is inconclusive. METHODS Using a subsample of UK Biobank participants who completed ≥2 (maximum of 5) 24-h dietary assessments, we estimated intakes of total protein, protein from total dairy products, milk, and cheese, and dietary calcium in 114,217 participants. Hazard ratios (HRs) and 95% confidence intervals (CI) were estimated using multivariable-adjusted Cox regression. RESULTS After a median of 9.4 years of follow-up, 1193 colorectal, 2024 female breast, and 2422 prostate cancer cases were identified. There were inverse associations of total dairy protein, protein from milk, and dietary calcium intakes with colorectal cancer incidence (HRQ4 vs Q1:0.80, 95% CI: 0.67-0.94; 0.79, 0.67-0.94; 0.71, 0.58-0.86, respectively). We also observed positive associations of milk protein and dietary calcium with prostate cancer risk (HRQ4 vs Q1:1.12, 1.00-1.26 and 1.16, 1.01-1.33, respectively). No significant associations were observed between intake of dairy protein and breast cancer risk. When insulin-like growth factor-I concentrations measured at recruitment were added to the multivariable-adjusted models, associations remained largely unchanged. Analyses were also similar when looking at total grams of dairy products, milk, and cheese. CONCLUSION Further research is needed to understand the mechanisms underlying the relationships of dairy products with cancer risk and the potential roles of dietary protein and calcium.
Collapse
Affiliation(s)
- Cody Z Watling
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
| | - Rebecca K Kelly
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Yashvee Dunneram
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Anika Knuppel
- MRC Unit of Lifelong Health and Ageing, University College London, London, United Kingdom
| | - Carmen Piernas
- Nuffield Department of Primary Care, University of Oxford, Oxford, United Kingdom
| | - Julie A Schmidt
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Wu J, Xia C, Liu C, Zhang Q, Xia C. The role of gut microbiota and drug interactions in the development of colorectal cancer. Front Pharmacol 2023; 14:1265136. [PMID: 37680706 PMCID: PMC10481531 DOI: 10.3389/fphar.2023.1265136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The human gut microbiota is a complex ecosystem regulating the host's environmental interaction. The same functional food or drug may have varying bioavailability and distinct effects on different individuals. Drugs such as antibiotics can alter the intestinal flora, thus affecting health. However, the relationship between intestinal flora and non-antibiotic drugs is bidirectional: it is not only affected by drugs; nevertheless, it can alter the drug structure through enzymes and change the bioavailability, biological activity, or toxicity of drugs to improve their efficacy and safety. This review summarizes the roles and mechanisms of antibiotics, antihypertensive drugs, nonsteroidal anti-inflammatory drugs, lipid-lowering drugs, hypoglycemic drugs, virus-associated therapies, metabolites, and dietary in modulating the colorectal cancer gut microbiota. It provides a reference for future antitumor therapy targeting intestinal microorganisms.
Collapse
Affiliation(s)
- Jinna Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Pharmacy, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
van Schaik J, van Roessel IMAA, Bos ID, Claashen-van der Grinten HL, Clement SC, van Iersel L, Bakker B, Meijer L, Kremer L, Schouten-van Meeteren AYN, van Santen HM. Elevated IGF-1 concentrations in children with low grade glioma: A descriptive analysis in a retrospective national cohort. J Neuroendocrinol 2023; 35:e13317. [PMID: 37439273 DOI: 10.1111/jne.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 07/14/2023]
Abstract
Children with low grade glioma (LGG) may present with, or develop, elevated concentrations of insulin-like growth factor 1 (IGF-1). The prevalence, pathophysiology, or its possible clinical effects are poorly understood. Our aim was to evaluate the prevalence of such elevated IGF-1 concentrations and to describe its association with linear growth, body mass index (BMI), pituitary outcome, and tumor behavior in a large retrospective national cohort. From a nationwide retrospective cohort of pediatric brain tumor survivors diagnosed between 2002 and 2012, tumor, treatment, endocrine, and auxological data of children with LGG were collected (n = 358). Prevalence and risk factors for elevated IGF-1 concentrations, as well as the association between having elevated IGF-1 concentrations and receiving tumor treatment, were explored. IGF-1 concentrations had only been measured in 45.5% of cases (n = 163/358). In 18.4% of 163 children with available IGF-1 measurements, IGF-1 concentrations were found elevated. No association was described between having an elevated IGF-1 concentration and tumor behavior or height SDS at last moment of follow-up. Multivariate logistic regression identified posterior pituitary disorder (OR 6.14 95% CI: 2.21-17.09) and BMI SDS at follow-up (OR 1.56 95% CI: 1.09-2.20) to be significantly associated with elevated IGF-1 concentrations. In this retrospective cohort of children with LGG, IGF-1 was found elevated in 18.4% of children with available IGF-1 measurements. Elevated IGF-1 seems to be related to hypothalamic dysfunction worsening over time. Larger prospective cohort studies are needed.
Collapse
Affiliation(s)
- Jiska van Schaik
- Division of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ichelle M A A van Roessel
- Division of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Iris D Bos
- Division of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sarah C Clement
- Division of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Laura van Iersel
- Division of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Boudewijn Bakker
- Division of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisethe Meijer
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Leontien Kremer
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hanneke M van Santen
- Division of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
29
|
Strzelczyk J, Wójcik-Giertuga M, Strzelczyk JK, Seńkowska AP, Biernacki K, Kos-Kudła B. Selected Parameters of Bone Turnover in Neuroendocrine Tumors-A Potential Clinical Use? J Clin Med 2023; 12:4608. [PMID: 37510722 PMCID: PMC10380215 DOI: 10.3390/jcm12144608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Currently, there are no effective markers to diagnose and monitor patients with neuroendocrine tumors (NETs). The aim of this study was to assess bone metabolism based on selected markers of bone turnover: OST, OPG, and IGFBP-3, in both the group of patients with NETs and the control group. Associations with selected sociodemographic, biochemical, and clinicopathological characteristics were examined. We also evaluated any potential associations between these markers and selected biochemical markers of NETs commonly used in clinical practice. METHODS The study group included 60 patients with GEP-NETs and BP-NETs, while the control group comprised 62 healthy individuals. The serum concentrations of OST, OPG and IGFBP-3 were assessed using ELISA. RESULTS OST and OPG levels were significantly higher in the study group compared to the control group. In the study group, we observed a significant correlation between OPG and the clinical stage and chromogranin A. Additionally, an association was found between OPG and histological grade, Ki-67, and metastasis in GEP-NET cases. CONCLUSIONS Markers of bone turnover cannot be used in the routine diagnostics of neuroendocrine tumors. Nonetheless, these markers may help evaluate the skeletal system in patients with NETs. Further research is needed to determine the utility of osteocalcin (OST) and osteoprotegerin (OPG) as potential biomarkers for neuroendocrine tumors.
Collapse
Affiliation(s)
- Janusz Strzelczyk
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-514 Katowice, Poland
| | - Monika Wójcik-Giertuga
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-514 Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana St., 41-808 Zabrze, Poland
| | - Alicja Prawdzic Seńkowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana St., 41-808 Zabrze, Poland
| | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana St., 41-808 Zabrze, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-514 Katowice, Poland
| |
Collapse
|
30
|
Caruso A, Gelsomino L, Panza S, Accattatis FM, Naimo GD, Barone I, Giordano C, Catalano S, Andò S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules 2023; 13:1084. [PMID: 37509120 PMCID: PMC10377641 DOI: 10.3390/biom13071084] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity, defined as the abnormal or excessive expansion of white adipose tissue, has reached pandemic proportions and is recognized as an important health concern since it is a common root for several comorbidities, including malignancies. Indeed, the current knowledge of the white adipose tissue, which shifts its role from an energy storage tissue to an important endocrine and metabolic organ, has opened up new avenues for the discovery of obesity's effects on tumor biology. In this review, we will report the epidemiological studies concerning the strong impact of obesity in several types of cancer and describe the mechanisms underlying the heterotypic signals between cancer cell lines and adipocytes, with particular emphasis on inflammation, the insulin/IGF-1 axis, and adipokines. Among the adipokines, we will further describe the in vitro, in vivo, and clinical data concerning the role of leptin, recognized as one of the most important mediators of obesity-associated cancers. In fact, leptin physiologically regulates energy metabolism, appetite, and reproduction, and several studies have also described the role of leptin in affecting cancer development and progression. Finally, we will summarize the newest pharmacological strategies aimed at mitigating the protumorigenic effects of leptin, underlining their mechanisms of action.
Collapse
Affiliation(s)
- Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
31
|
Yang G, Schooling CM. Genetically mimicked effects of ASGR1 inhibitors on all-cause mortality and health outcomes: a drug-target Mendelian randomization study and a phenome-wide association study. BMC Med 2023; 21:235. [PMID: 37400795 DOI: 10.1186/s12916-023-02903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Asialoglycoprotein receptor 1 (ASGR1) is emerging as a potential drug target to reduce low-density lipoprotein (LDL)-cholesterol and coronary artery disease (CAD) risk. Here, we investigated genetically mimicked ASGR1 inhibitors on all-cause mortality and any possible adverse effects. METHODS We conducted a drug-target Mendelian randomization study to assess genetically mimicked effects of ASGR1 inhibitors on all-cause mortality and 25 a priori outcomes relevant to lipid traits, CAD, and possible adverse effects, i.e. liver function, cholelithiasis, adiposity and type 2 diabetes. We also performed a phenome-wide association study of 1951 health-related phenotypes to identify any novel effects. Associations found were compared with those for currently used lipid modifiers, assessed using colocalization, and replicated where possible. RESULTS Genetically mimicked ASGR1 inhibitors were associated with a longer lifespan (3.31 years per standard deviation reduction in LDL-cholesterol, 95% confidence interval 1.01 to 5.62). Genetically mimicked ASGR1 inhibitors were inversely associated with apolipoprotein B (apoB), triglycerides (TG) and CAD risk. Genetically mimicked ASGR1 inhibitors were positively associated with alkaline phosphatase, gamma glutamyltransferase, erythrocyte traits, insulin-like growth factor 1 (IGF-1) and C-reactive protein (CRP), but were inversely associated with albumin and calcium. Genetically mimicked ASGR1 inhibitors were not associated with cholelithiasis, adiposity or type 2 diabetes. Associations with apoB and TG were stronger for ASGR1 inhibitors compared with currently used lipid modifiers, and most non-lipid effects were specific to ASGR1 inhibitors. The probabilities for colocalization were > 0.80 for most of these associations, but were 0.42 for lifespan and 0.30 for CAD. These associations were replicated using alternative genetic instruments and other publicly available genetic summary statistics. CONCLUSIONS Genetically mimicked ASGR1 inhibitors reduced all-cause mortality. Beyond lipid-lowering, genetically mimicked ASGR1 inhibitors increased liver enzymes, erythrocyte traits, IGF-1 and CRP, but decreased albumin and calcium.
Collapse
Affiliation(s)
- Guoyi Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Graduate School of Public Health and Health Policy, City University of New York, New York, USA
| |
Collapse
|
32
|
Cheraghpour M, Askari M, Tierling S, Shojaee S, Sadeghi A, Ketabi Moghadam P, Khazdouz M, Asadzadeh Aghdaei H, Piroozkhah M, Nazemalhosseini-Mojarad E, Fatemi N. A systematic review and meta-analysis for the association of the insulin-like growth factor1 pathway genetic polymorphisms with colorectal cancer susceptibility. Front Oncol 2023; 13:1168942. [PMID: 37284192 PMCID: PMC10240407 DOI: 10.3389/fonc.2023.1168942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Background The receptors, ligands, and associated proteins of the insulin-like growth factor (IGF) family are involved in cancer development. The IGF1 receptor and its accompanying signaling cascade are a crucial growth-regulatory mechanism that plays an important role in colorectal cancer (CRC) proliferation and differentiation. IRS1 (Insulin receptor substrate-1), a major substrate for the IGF1R, is involved in cell growth and promotes tumorigenesis. There are shreds of evidence from prior research suggesting that IGF system polymorphisms may influence susceptibility to CRC. However, the findings in this area were contradictory. Accordingly, we carried out a systematic literature search to identify all case-control, cross-sectional, and cohort studies on the association between various polymorphisms across four IGF1 pathway genes (IGF1, IGF1R, IRS1, and IRS2) and the risk of CRC. Methods We performed a comprehensive search strategy in PubMed, Scopus, and Web of Science databases for articles available until Aug 30, 2022. A total of 26 eligible studies with IGF1/IGF1R, IRS1 and IRS2 polymorphisms; met the inclusion criteria. All case-control studies for IGF1 rs6214C>T, IRS1 rs1801278G>A, and IRS2 rs1805097G>A comprising 22,084 cases and 29,212 controls were included in the current meta-analysis. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate relationships between the polymorphisms and CRC susceptibility. All statistical analyses were performed using STATA software version 14.0. Results The meta-analysis of available data for rs6214C>T, rs1801278G>A, and rs1805097G>A showed a significant association between these polymorphisms and an increased CRC risk in some of the comparisons studied (rs6214C>T, pooled OR for CC = 0.43, 95% CI 0.21- 0.87, P = 0.019; rs1801278G>A, OR for GA = 0.74, 95% CI 0.58-0.94, P = 0.016; rs1805097G>A, OR for GA = 0.83, 95% CI 0.71-0.96, P = 0.013). Nevertheless, the meta-analysis did not include other genetic variations in IGF1, IGF1R, IRS1, and IRS2 due to heterogeneity and limited sample size. Conclusions This systematic review and meta-analysis provide evidence that genetic variants in IGF1 rs6214C>T, IRS1 rs1801278G>A, and IRS2 rs1805097G>A are associated with an increased risk of CRC. These findings may contribute to a better understanding of the complex genetic mechanisms involved in CRC development and could inform future research on prevention and treatment strategies for this disease.
Collapse
Affiliation(s)
- Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masomeh Askari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, Saarbrücken, Germany
| | - Sajad Shojaee
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pardis Ketabi Moghadam
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khazdouz
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Hanyuda A, Goto A, Katagiri R, Koyanagi YN, Nakatochi M, Sutoh Y, Nakano S, Oze I, Ito H, Yamaji T, Sawada N, Iwagami M, Kadota A, Koyama T, Katsuura-Kamano S, Ikezaki H, Tanaka K, Takezaki T, Imoto I, Suzuki M, Momozawa Y, Takeuchi K, Narita A, Hozawa A, Kinoshita K, Shimizu A, Tanno K, Matsuo K, Tsugane S, Wakai K, Sasaki M, Yamamoto M, Iwasaki M. Investigating the association between glycaemic traits and colorectal cancer in the Japanese population using Mendelian randomisation. Sci Rep 2023; 13:7052. [PMID: 37120602 PMCID: PMC10148817 DOI: 10.1038/s41598-023-33966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
Observational studies suggest that abnormal glucose metabolism and insulin resistance contribute to colorectal cancer; however, the causal association remains unknown, particularly in Asian populations. A two-sample Mendelian randomisation analysis was performed to determine the causal association between genetic variants associated with elevated fasting glucose, haemoglobin A1c (HbA1c), and fasting C-peptide and colorectal cancer risk. In the single nucleotide polymorphism (SNP)-exposure analysis, we meta-analysed study-level genome-wide associations of fasting glucose (~ 17,289 individuals), HbA1c (~ 52,802 individuals), and fasting C-peptide (1,666 individuals) levels from the Japanese Consortium of Genetic Epidemiology studies. The odds ratios of colorectal cancer were 1.01 (95% confidence interval [CI], 0.99-1.04, P = 0.34) for fasting glucose (per 1 mg/dL increment), 1.02 (95% CI, 0.60-1.73, P = 0.95) for HbA1c (per 1% increment), and 1.47 (95% CI, 0.97-2.24, P = 0.06) for fasting C-peptide (per 1 log increment). Sensitivity analyses, including Mendelian randomisation-Egger and weighted-median approaches, revealed no significant association between glycaemic characteristics and colorectal cancer (P > 0.20). In this study, genetically predicted glycaemic characteristics were not significantly related to colorectal cancer risk. The potential association between insulin resistance and colorectal cancer should be validated in further studies.
Collapse
Grants
- 28-A-19 and 31-A-18 National Cancer Center Research and Development Fund
- 28-A-19 and 31-A-18 National Cancer Center Research and Development Fund
- 28-A-19 and 31-A-18 National Cancer Center Research and Development Fund
- 28-A-19 and 31-A-18 National Cancer Center Research and Development Fund
- 28-A-19 and 31-A-18 National Cancer Center Research and Development Fund
- 28-A-19 and 31-A-18 National Cancer Center Research and Development Fund
- No. 16H06277[CoBia] Japan Society for the Promotion of Science (JSPS) KAKENHI Grant
- No. 16H06277[CoBia] Japan Society for the Promotion of Science (JSPS) KAKENHI Grant
- No. 16H06277[CoBia] Japan Society for the Promotion of Science (JSPS) KAKENHI Grant
- JP20km0105001, JP20km0105002, JP20km0105003, JP20km0105004 Japan Agency for Medical Research and Development
- JP20km0105001, JP20km0105002, JP20km0105003, JP20km0105004 Japan Agency for Medical Research and Development
- JP20km0105001, JP20km0105002, JP20km0105003, JP20km0105004 Japan Agency for Medical Research and Development
- JP20km0105001, JP20km0105002, JP20km0105003, JP20km0105004 Japan Agency for Medical Research and Development
- JP20km0105001, JP20km0105002, JP20km0105003, JP20km0105004 Japan Agency for Medical Research and Development
- JP20km0105001, JP20km0105002, JP20km0105003, JP20km0105004 Japan Agency for Medical Research and Development
- JP20km0105001, JP20km0105002, JP20km0105003, JP20km0105004 Japan Agency for Medical Research and Development
- JP20km0105001, JP20km0105002, JP20km0105003, JP20km0105004 Japan Agency for Medical Research and Development
- 15ck0106095h0002, 16ck0106095h0003, and 17ck0106266h001 Japan Agency for Medical Research and Development
- a Grant-in-Aid for Cancer Research Ministry of Health, Labour and Welfare
Collapse
Affiliation(s)
- Akiko Hanyuda
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Goto
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
- Department of Health Data Science, Graduate School of Data Science, Yokohama City University, 22-2 Seto, Kanazawa-Ku, Yokohama, 236-0027, Japan.
| | - Ryoko Katagiri
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yuriko N Koyanagi
- Division of Cancer Information and Control, Aichi Cancer Center, Nagoya, Aichi, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank, Morioka, Iwate, Japan
| | - Shiori Nakano
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center, Nagoya, Aichi, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center, Nagoya, Aichi, Japan
- Division of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Masao Iwagami
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Health Services Research, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Aya Kadota
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroaki Ikezaki
- Department of Comprehensive General Internal Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Midori Suzuki
- Core Facilities, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akira Narita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank, Morioka, Iwate, Japan
| | - Kozo Tanno
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Morioka, Iwate, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center, Nagoya, Aichi, Japan
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Morioka, Iwate, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| |
Collapse
|
34
|
Wang X, Li J, Zhang W, Wang F, Wu Y, Guo Y, Wang D, Yu X, Li A, Li F, Xie Y. IGFBP-3 promotes cachexia-associated lipid loss by suppressing insulin-like growth factor/insulin signaling. Chin Med J (Engl) 2023; 136:974-985. [PMID: 37014770 PMCID: PMC10278738 DOI: 10.1097/cm9.0000000000002628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Progressive lipid loss of adipose tissue is a major feature of cancer-associated cachexia. In addition to systemic immune/inflammatory effects in response to tumor progression, tumor-secreted cachectic ligands also play essential roles in tumor-induced lipid loss. However, the mechanisms of tumor-adipose tissue interaction in lipid homeostasis are not fully understood. METHODS The yki -gut tumors were induced in fruit flies. Lipid metabolic assays were performed to investigate the lipolysis level of different types of insulin-like growth factor binding protein-3 (IGFBP-3) treated cells. Immunoblotting was used to display phenotypes of tumor cells and adipocytes. Quantitative polymerase chain reaction (qPCR) analysis was carried out to examine the gene expression levels such as Acc1 , Acly , and Fasn et al . RESULTS In this study, it was revealed that tumor-derived IGFBP-3 was an important ligand directly causing lipid loss in matured adipocytes. IGFBP-3, which is highly expressed in cachectic tumor cells, antagonized insulin/IGF-like signaling (IIS) and impaired the balance between lipolysis and lipogenesis in 3T3-L1 adipocytes. Conditioned medium from cachectic tumor cells, such as Capan-1 and C26 cells, contained excessive IGFBP-3 that potently induced lipolysis in adipocytes. Notably, neutralization of IGFBP-3 by neutralizing antibody in the conditioned medium of cachectic tumor cells significantly alleviated the lipolytic effect and restored lipid storage in adipocytes. Furthermore, cachectic tumor cells were resistant to IGFBP-3 inhibition of IIS, ensuring their escape from IGFBP-3-associated growth suppression. Finally, cachectic tumor-derived ImpL2, the IGFBP-3 homolog, also impaired lipid homeostasis of host cells in an established cancer-cachexia model in Drosophila . Most importantly, IGFBP-3 was highly expressed in cancer tissues in pancreatic and colorectal cancer patients, especially higher in the sera of cachectic cancer patients than non-cachexia cancer patients. CONCLUSION Our study demonstrates that tumor-derived IGFBP-3 plays a critical role in cachexia-associated lipid loss and could be a biomarker for diagnosis of cachexia in cancer patients.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunzi Wu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yulin Guo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Dong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinfeng Yu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ang Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yibin Xie
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
35
|
Juriaans AF, Trueba-Timmermans DJ, Kerkhof GF, Grootjen LN, Walet S, Sas TCJ, Rotteveel J, Zwaveling-Soonawala N, Verrijn Stuart AA, Hokken-Koelega ACS. The Effects of 5 Years of Growth Hormone Treatment on Growth and Body Composition in Patients with Temple Syndrome. Horm Res Paediatr 2023; 96:483-494. [PMID: 36977395 DOI: 10.1159/000530420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
INTRODUCTION Temple syndrome (TS14) is a rare imprinting disorder caused by maternal uniparental disomy of chromosome 14, paternal deletion of 14q32.2, or an isolated methylation defect. Most patients with TS14 develop precocious puberty. Some patients with TS14 are treated with growth hormone (GH). However, evidence for the effectiveness of GH treatment in patients with TS14 is limited. METHODS This study describes the effect of GH treatment in 13 children and provides a subgroup analysis of 5 prepubertal children with TS14. We studied height, weight, body composition by dual-energy X-ray absorptiometry, resting energy expenditure (REE), and laboratory parameters during 5 years of GH treatment. RESULTS In the entire group, mean (95% CI) height SDS increased significantly during 5 years of GH treatment from -1.78 (-2.52; -1.04) to 0.11 (-0.66; 0.87). Fat mass percentage SDS decreased significantly during the first year of GH, and lean body mass (LBM) SDS and LBM index increased significantly during 5 years of treatment. IGF-1 and IGF-BP3 levels rose rapidly during GH treatment, and the IGF-1/IGF-BP3 molar ratio remained relatively low. Thyroid hormone levels, fasting serum glucose, and insulin levels remained normal. In the prepubertal group, median (interquartile range [IQR]) height SDS, LBM SDS, and LBM index also increased. REE was normal at start and did not change during 1 year of treatment. Five patients reached adult height and their median (IQR) height SDS was 0.67 (-1.83; -0.01). CONCLUSION GH treatment in patients with TS14 normalizes height SDS and improves body composition. There were no adverse effects or safety concerns during GH treatment.
Collapse
Affiliation(s)
- Alicia F Juriaans
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| | - Demi J Trueba-Timmermans
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| | - Gerthe F Kerkhof
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Lionne N Grootjen
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| | - Sylvia Walet
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Theo C J Sas
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
- Diabeter, Center for Pediatric and Adult Diabetes Care and Research, Rotterdam, The Netherlands
| | - Joost Rotteveel
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Nitash Zwaveling-Soonawala
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie A Verrijn Stuart
- Department of Pediatrics, Subdivision of Endocrinology, Wilhelmina Children's Hospital, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Anita C S Hokken-Koelega
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Weidle UH, Nopora A. Up-regulated Circular RNAs in Colorectal Cancer: New Entities for Therapy and Tools for Identification of Therapeutic Targets. Cancer Genomics Proteomics 2023; 20:132-153. [PMID: 36870691 PMCID: PMC9989668 DOI: 10.21873/cgp.20369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 03/06/2023] Open
Abstract
Patients with disseminated colorectal cancer have a dismal prognosis with a 5-year survival rate of only 13%. In order to identify new treatment modalities and new targets, we searched the literature for up-regulated circular RNAs in colorectal cancer which induce tumor growth in corresponding preclinical in vivo models. We identified nine circular RNAs that mediate resistance against chemotherapeutic agents, seven that up-regulate transmembrane receptors, five that induce secreted factors, nine that activate signaling components, five which up-regulate enzymes, six which activate actin-related proteins, six which induce transcription factors and two which up-regulate the MUSASHI family of RNA binding proteins. All of the circular RNAs discussed in this paper induce the corresponding targets by sponging microRNAs (miRs) and can be inhibited by RNAi or shRNA in vitro and in xenograft models. We have focused on circular RNAs with demonstrated activity in preclinical in vivo models because the latter is an important milestone in drug development. All circular RNAs with in vitro activity only data are not referenced in this review. The translational impact of inhibition of these circular RNAs and of the identified targets for treatment of colorectal cancer (CRC) are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
37
|
D'Antonio L, Fieni C, Ciummo SL, Vespa S, Lotti L, Sorrentino C, Di Carlo E. Inactivation of interleukin-30 in colon cancer stem cells via CRISPR/Cas9 genome editing inhibits their oncogenicity and improves host survival. J Immunother Cancer 2023; 11:jitc-2022-006056. [PMID: 36927528 PMCID: PMC10030651 DOI: 10.1136/jitc-2022-006056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Progression of colorectal cancer (CRC), a leading cause of cancer-related death worldwide, is driven by colorectal cancer stem cells (CR-CSCs), which are regulated by endogenous and microenvironmental signals. Interleukin (IL)-30 has proven to be crucial for CSC viability and tumor progression. Whether it is involved in CRC tumorigenesis and impacts clinical behavior is unknown. METHODS IL30 production and functions, in stem and non-stem CRC cells, were determined by western blot, immunoelectron microscopy, flow cytometry, cell viability and sphere formation assays. CRISPR/Cas9-mediated deletion of the IL30 gene, RNA-Seq and implantation of IL30 gene transfected or deleted CR-CSCs in NSG mice allowed to investigate IL30's role in CRC oncogenesis. Bioinformatics and immunopathology of CRC samples highlighted the clinical implications. RESULTS We demonstrated that both CR-CSCs and CRC cells express membrane-anchored IL30 that regulates their self-renewal, via WNT5A and RAB33A, and/or proliferation and migration, primarily by upregulating CXCR4 via STAT3, which are suppressed by IL30 gene deletion, along with WNT and RAS pathways. Deletion of IL30 gene downregulates the expression of proteases, such as MMP2 and MMP13, chemokine receptors, mostly CCR7, CCR3 and CXCR4, and growth and inflammatory mediators, including ANGPT2, CXCL10, EPO, IGF1 and EGF. These factors contribute to IL30-driven CR-CSC and CRC cell expansion, which is abrogated by their selective blockade. IL30 gene deleted CR-CSCs displayed reduced tumorigenicity and gave rise to slow-growing and low metastatic tumors in 80% of mice, which survived much longer than controls. Bioinformatics and CIBERSORTx of the 'Colorectal Adenocarcinoma TCGA Nature 2012' collection, and morphometric assessment of IL30 expression in clinical CRC samples revealed that the lack of IL30 in CRC and infiltrating leucocytes correlates with prolonged overall survival. CONCLUSIONS IL30 is a new CRC driver, since its inactivation, which disables oncogenic pathways and multiple autocrine loops, inhibits CR-CSC tumorigenicity and metastatic ability. The development of CRISPR/Cas9-mediated targeting of IL30 could improve the current therapeutic landscape of CRC.
Collapse
Affiliation(s)
- Luigi D'Antonio
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Simone Vespa
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Lavinia Lotti
- Department of Experimental Medicine, University of Rome La Sapienza, Rome, Italy
| | - Carlo Sorrentino
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
38
|
Watling CZ, Kelly RK, Tong TYN, Piernas C, Watts EL, Tin Tin S, Knuppel A, Schmidt JA, Travis RC, Key TJ, Perez-Cornago A. Associations between food group intakes and circulating insulin-like growth factor-I in the UK Biobank: a cross-sectional analysis. Eur J Nutr 2023; 62:115-124. [PMID: 35906357 PMCID: PMC9899744 DOI: 10.1007/s00394-022-02954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Circulating insulin-like growth factor-I (IGF-I) concentrations have been positively associated with risk of several common cancers and inversely associated with risk of bone fractures. Intakes of some foods have been associated with increased circulating IGF-I concentrations; however, evidence remains inconclusive. Our aim was to assess cross-sectional associations of food group intakes with circulating IGF-I concentrations in the UK Biobank. METHODS At recruitment, the UK Biobank participants reported their intake of commonly consumed foods. From these questions, intakes of total vegetables, fresh fruit, red meat, processed meat, poultry, oily fish, non-oily fish, and cheese were estimated. Serum IGF-I concentrations were measured in blood samples collected at recruitment. After exclusions, a total of 438,453 participants were included in this study. Multivariable linear regression was used to assess the associations of food group intakes with circulating IGF-I concentrations. RESULTS Compared to never consumers, participants who reported consuming oily fish or non-oily fish ≥ 2 times/week had 1.25 nmol/L (95% confidence interval:1.19-1.31) and 1.16 nmol/L (1.08-1.24) higher IGF-I concentrations, respectively. Participants who reported consuming poultry ≥ 2 times/week had 0.87 nmol/L (0.80-0.94) higher IGF-I concentrations than those who reported never consuming poultry. There were no strong associations between other food groups and IGF-I concentrations. CONCLUSIONS We found positive associations between oily and non-oily fish intake and circulating IGF-I concentrations. A weaker positive association of IGF-I with poultry intake was also observed. Further research is needed to understand the mechanisms which might explain these associations.
Collapse
Affiliation(s)
- Cody Z Watling
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK.
| | - Rebecca K Kelly
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Carmen Piernas
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- Department of Biochemistry and Molecular Biology II, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Eleanor L Watts
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Sandar Tin Tin
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Anika Knuppel
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, London, UK
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| |
Collapse
|
39
|
IGFBP3 Enhances Treatment Outcome and Predicts Favorable Prognosis in ABC-DLBCL. JOURNAL OF ONCOLOGY 2023; 2023:1388041. [PMID: 36660244 PMCID: PMC9845052 DOI: 10.1155/2023/1388041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
Chemoresistance is a key obstacle in the clinical treatment and management of activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL), which leads to the poor prognosis of patients. Exploring novel biomarkers to early warn drug resistance and ameliorate the patients' outcome in ABC-DLBCL is urgent and crucial. Previously, we found that insulin-like growth factor-binding protein 3 (IGFBP3) was remarkably associated with immunochemotherapy treatment response through microarray screening. Based on a retrospective cohort (n = 160) and a GEO cohort (n = 292), here we determined the positive expression rate of IGFBP3 and analyzed the role of IGFBP3 in treatment response and prognostics in ABC-DLBCL. The results demonstrated that the complete response (CR) rate of R-CHOP treatment was higher in ABC-DLBCL with IGFBP3 positive expression than those with IGFBP3 negative expression (42.0% vs 26.4%), and IGFBP3 positive expression in ABC-DLBCL was significantly correlated with enhanced therapeutic response (P = 0.037). High level of IGFBP3 was negatively correlated with tumorigenesis and development and predicted favorable survival time in ABC-DLBCL. In conclusion, IGFBP3 may be utilized as a promising biomarker for prognosis evaluation and a potential therapy target in ABC-DLBCL patients.
Collapse
|
40
|
Loh NY, Wang W, Noordam R, Christodoulides C. Obesity, Fat Distribution and Risk of Cancer in Women and Men: A Mendelian Randomisation Study. Nutrients 2022; 14:5259. [PMID: 36558416 PMCID: PMC9784937 DOI: 10.3390/nu14245259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and upper-body fat distribution are independent, cardiometabolic risk factors but whether they also display comparable associations with cancer risk is unknown. We investigated the causal relationships between body mass index (BMI) and BMI-adjusted waist-to-hip ratio (WHRadjBMI) and cancer risk and searched for potential drivers linking these traits to carcinogenesis using two-sample and multivariable Mendelian randomisation. In women, genetically instrumented higher BMI was associated with lower breast (OR = 0.87, 95% CI 0.81-0.93) and higher endometrial (OR = 1.75, 95% CI 1.55-1.96) cancer risk whilst WHRadjBMI was associated with higher colon cancer risk (OR = 1.22, 95% CI 1.07-1.42). In men, elevated BMI was associated with lower prostate cancer risk (OR = 0.91, 95% CI 0.85-0.98). Mechanistically, testosterone and insulin mediated 21% and 35%, respectively of the total, genetically determined association of BMI with endometrial cancer risk whilst HDL cholesterol and IGF-1 mediated 40% and 22%, respectively of the association between BMI and breast cancer risk. In men, testosterone mediated 21% of the association between BMI and prostate cancer risk. Colon cancer aside, the total amount of body fat might be more important than its location in modulating cancer susceptibility due to differential effects of obesity and fat distribution on adiposity-associated cancer drivers.
Collapse
Affiliation(s)
- Nellie Y. Loh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Wenyi Wang
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford OX3 7LE, UK
| |
Collapse
|
41
|
Luo Y, Hong CQ, Huang BL, Ding TY, Chu LY, Zhang B, Qu QQ, Li XH, Liu CT, Peng YH, Guo HP, Xu YW. Serum insulin-like growth factor binding protein-3 as a potential biomarker for diagnosis and prognosis of oesophageal squamous cell carcinoma. Ann Med 2022; 54:2153-2166. [PMID: 35930383 PMCID: PMC9359171 DOI: 10.1080/07853890.2022.2104921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Insulin-like growth factor binding protein-3 (IGFBP3) has been reported to be related to the risk of some cancers. Here we focussed on serum IGFBP3 as a possible biomarker of diagnosis and prognosis for oesophageal squamous carcinoma (ESCC). METHODS Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum IGFBP3 level in the training cohort including 136 ESCC patients and 119 normal controls and the validation cohort with 55 ESCC patients and 42 normal controls. The receiver operating characteristics curve (ROC) was used to assess the diagnosis value. Cox proportional hazards model was applied to select factors for survival nomogram construction. RESULTS Serum IGFBP3 levels were significantly lower in early-stage ESCC or ESCC patients than those in normal controls (p < .05). The specificity and sensitivity of serum IGFBP3 for the diagnosis of ESCC were 95.80% and 50.00%, respectively, with the area under the ROC curve (AUC) of 0.788 in the training cohort. Similar results were observed in the validation cohort (88.10%, 38.18%, and 0.710). Importantly, serum IGFBP3 could also differentiate early-stage ESCC from controls (95.80%, 52.54%, 0.777 and 88.10%, 36.36%, 0.695 in training and validation cohorts, respectively). Furthermore, Cox multivariate analysis revealed that serum IGFBP3 was an independent prognostic risk factor (HR = 2.599, p = .002). Lower serum IGFBP3 level was correlated with reduced overall survival (p < .05). Nomogram based on serum IGFBP3, TNM stage, and tumour size improved the prognostic prediction of ESCC with a concordance index of 0.715. CONCLUSION We demonstrated that serum IGFBP3 was a potential biomarker of diagnosis and prognosis for ESCC. Meanwhile, the nomogram might help predict the prognosis of ESCC. Key MessageSerum IGFBP3 showed early diagnostic value in oesophageal squamous cell carcinoma with independent cohort validation. Moreover, serum IGFBP3 was identified as an independent prognostic risk factor, which was used to construct a nomogram with improved prognosis ability in oesophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Yun Luo
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Chao-Qun Hong
- Department of Oncological Laboratory Research, the Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Bin-Liang Huang
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Tian-Yan Ding
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Ling-Yu Chu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Biao Zhang
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Qi-Qi Qu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Xin-Hao Li
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Can-Tong Liu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Hai-Peng Guo
- Department of Head and Neck Surgery, the Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| |
Collapse
|
42
|
Larsson SC, Spyrou N, Mantzoros CS. Body fatness associations with cancer: evidence from recent epidemiological studies and future directions. Metabolism 2022; 137:155326. [PMID: 36191637 DOI: 10.1016/j.metabol.2022.155326] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022]
Abstract
This narrative review highlights current evidence linking greater body fatness to risk of various cancers, with focus on evidence from recent large cohort studies and pooled analyses of cohort studies as well as Mendelian randomization studies (which utilized genetic variants associated with body mass index to debrief the causal effect of higher body fatness on cancer risk). This review also provides insights into the biological mechanisms underpinning the associations. Data from both observational and Mendelian randomization studies support the associations of higher body mass index with increased risk of many cancers with the strongest evidence for digestive system cancers, including esophageal, stomach, colorectal, liver, gallbladder, and pancreatic cancer, as well as kidney, endometrial, and ovarian (weak association) cancer. Evidence from observational studies suggests that greater body fatness has contrasting effects on breast cancer risk depending on menopausal status and on prostate cancer risk depending on disease stage. Experimental and Mendelian randomization studies indicate that adiponectin, insulin, and sex hormone pathways play an important role in mediating the link between body fatness and cancer risk. The possible role of specific factors and pathways, such as other adipocytokines and hormones and the gut microbiome in mediating the associations between greater body fatness and cancer risk is yet uncertain and needs investigation in future studies. With rising prevalence of overweight and obesity worldwide, the proportion of cancer caused by excess body fatness is expected to increase. There is thus an urgent need to identify efficient ways at the individual and societal level to improve diet and physical activity patterns to reduce the burden of obesity and accompanying comorbidities, including cancer.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Nikolaos Spyrou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Bao QR, Crimì F, Valotto G, Chiminazzo V, Bergamo F, Prete AA, Galuppo S, El Khouzai B, Quaia E, Pucciarelli S, Urso EDL. Obesity may not be related to pathologic response in locally advanced rectal cancer following neoadjuvant chemoradiotherapy. Front Oncol 2022; 12:994444. [PMID: 36249024 PMCID: PMC9556820 DOI: 10.3389/fonc.2022.994444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The aim of this study is to evaluate the correlation between body mass index (BMI) and body fat composition (measured with radiological fat parameters (RFP)) and pathological response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer patients. The secondary aim of the study was to assess the role of BMI and RFP on major surgical complications, overall survival (OS), and disease-free survival (DFS). Methods All patients who underwent surgical resection following nCRT between 2005 and 2017 for mid-low rectal cancer were retrospectively collected. Visceral fat area (VFA), superficial fat area (SFA), visceral/superficial fat area ratio (V/S), perinephric fat thickness (PNF), and waist circumference (WC) were estimated by baseline CT scan. Predictors of pathologic response and postoperative complications were investigated using logistic regression analysis. The correlations between BMI and radiologic fat parameters and survival were investigated using the Kaplan-Meier method and log-rank test. Results Out of 144 patients included, a complete (TRG1) and major (TRG1+2) pathologic response was reported in 32 (22%) and 60 (45.5%) cases, respectively. A statistically significant correlation between BMI and all the RFP was found. At a median follow-up of 60 (35-103) months, no differences in terms of OS and DFS were found considering BMI and radiologic fat parameters. At univariable analysis, neither BMI nor radiologic fat parameters were predictors of complete or major pathologic response; nevertheless, VFA, V/S>1, and BMI were predictors of postoperative major complications. Conclusions We found no associations between BMI and body fat composition and pathological response to nCRT, although VFA, V/S, and BMI were predictors of major complications. BMI and RFP are not related to worse long-term OS and DFS.
Collapse
Affiliation(s)
- Quoc Riccardo Bao
- General Surgery 3, Department of Surgical- Oncological and Gastroenterological Sciences DiSCOG, University of Padova, Padova, Italy,*Correspondence: Quoc Riccardo Bao,
| | - Filippo Crimì
- Institute of Radiology - Department of Medicine, University of Padova, Padova, Italy
| | - Giovanni Valotto
- General Surgery 3, Department of Surgical- Oncological and Gastroenterological Sciences DiSCOG, University of Padova, Padova, Italy
| | - Valentina Chiminazzo
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Francesca Bergamo
- Unit of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | | | - Sara Galuppo
- Radiotherapy Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Badr El Khouzai
- Radiotherapy Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Emilio Quaia
- Institute of Radiology - Department of Medicine, University of Padova, Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgical- Oncological and Gastroenterological Sciences DiSCOG, University of Padova, Padova, Italy
| | - Emanuele Damiano Luca Urso
- General Surgery 3, Department of Surgical- Oncological and Gastroenterological Sciences DiSCOG, University of Padova, Padova, Italy
| |
Collapse
|
44
|
Wu H, Feng J, Wu J, Zhong W, Zouxu X, Huang W, Huang X, Yi J, Wang X. Prognostic value of comprehensive typing based on m6A and gene cluster in TNBC. J Cancer Res Clin Oncol 2022. [PMID: 36109402 DOI: 10.1007/s00432-022-04345-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/03/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is resistant to targeted therapy with HER2 monoclonal antibodies and endocrine therapy, because it lacks the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC is a subtype of breast cancer with the worst prognosis and the highest mortality rate compared to other subtypes. N6-methyladenosine (m6A) modification is significant in cancer and metastasis, because it can alter gene expression and function at numerous levels, such as RNA splicing, stability, translocation, and translation. There are limited investigations into the connection between TNBC and m6A. MATERIALS AND METHODS Breast cancer-related data were retrieved from the Cancer Genome Atlas (TCGA) database, and 116 triple-negative breast cancer cases were identified from the data. The GSE31519 data set, which included 68 cases of TNBC, was obtained from the Gene Expression Omnibus (GEO) database. Survival analysis was used to determine the prognosis of distinct m6A types based on their m6A group, gene group, and m6A score. To investigate the potential mechanism, GO and KEGG analyses were performed on the differentially expressed genes. RESULTS The expression of m6A-related genes and their impact on prognosis in TNBC patients were studied. According to the findings, m6A was crucial in determining the prognosis of TNBC patients, and the major m6A-linked genes in this process were YTHDF2, RBM15B, IGFBP3, and WTAP. YTHDF2, RBM15B and IGFBP3 are associated with poor prognosis, while WTAP is associated with good prognosis. By cluster analysis, the gene cluster and the m6A cluster were beneficial in predicting the prognosis of TNBC patients. The m6A score based on m6A and gene clusters was more effective in predicting the prognosis of TNBC patients. Furthermore, the tumor microenvironment may play an important role in the process of m6A, influencing TNBC prognosis. CONCLUSIONS N6-adenylic acid methylation (m6A) was important in altering the prognosis of TNBC patients, and the key m6A-associated genes in this process were YTHDF2, RBM15B, IGFBP3, and WTAP. Furthermore, the comprehensive typing based on m6A and gene clusters was useful in predicting TNBC patients' prognosis, showing potential as valuable evaluating tools for TNBC.
Collapse
Affiliation(s)
- Haoming Wu
- The Breast Center, Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Breast Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jikun Feng
- Department of Breast Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jundong Wu
- The Breast Center, Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wenjing Zhong
- Department of Breast Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiazi Zouxu
- Department of Breast Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weiling Huang
- Department of Breast Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xinjian Huang
- Department of Breast Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jiarong Yi
- Department of Breast Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xi Wang
- Department of Breast Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Park S, Lee S, Kim Y, Lee Y, Kang MW, Kim K, Kim YC, Han SS, Lee H, Lee JP, Joo KW, Lim CS, Kim YS, Kim DK. Serum bilirubin and kidney function: a Mendelian randomization study. Clin Kidney J 2022; 15:1755-1762. [PMID: 36003670 PMCID: PMC9394720 DOI: 10.1093/ckj/sfac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Background Further investigation is needed to determine the causal effects of serum bilirubin on the risk of chronic kidney disease (CKD). Methods This study is a Mendelian randomization (MR) analysis. Among the well-known single-nucleotide polymorphisms (SNPs) related to serum bilirubin levels, rs4149056 in the SLCO1B1 gene was selected as the genetic instrument for single-variant MR analysis, as it was found to be less related to possible confounders than other SNPs. The association between genetic predisposition for bilirubin levels and estimated glomerular filtration rate (eGFR) or CKD was assessed in 337 129 individuals of white British ancestry from the UK Biobank cohort. Two-sample MR based on summary-level data was also performed. SNPs related to total or direct bilirubin levels were collected from a previous genome-wide association study and confounder-associated SNPs were discarded. The independent CKDGen meta-analysis data for CKD were employed as the outcome summary statistics. Results The alleles of rs4149056 associated with higher bilirubin levels were associated with better kidney function in the UK Biobank data. In the summary-level MR, both of the genetically predicted total bilirubin {per 5 µmol/L increase; odds ratio [OR] 0.931 [95% confidence interval (CI) 0.871-0.995]} and direct bilirubin [per 1 µmol/L increase; OR 0.910 (95% CI 0.834-0.993)] levels were significantly associated with a lower risk of CKD, supported by the causal estimates from various MR sensitivity analyses. Conclusion Genetic predisposition for higher serum bilirubin levels is associated with better kidney function. This result suggests that higher serum bilirubin levels may have causal protective effects against kidney function impairment.
Collapse
Affiliation(s)
- Sehoon Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Soojin Lee
- Department of Internal Medicine, Uijeongbu Eulji University Medical Center, Seoul, Korea
| | - Yaerim Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Yeonhee Lee
- Department of Internal Medicine, Uijeongbu Eulji University Medical Center, Seoul, Korea
| | - Min Woo Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Deng Y, Wang L, Huang J, Ding H, Wong MCS. Associations between potential causal factors and colorectal cancer risk: A systematic review and meta-analysis of Mendelian randomization studies. J Dig Dis 2022; 23:435-445. [PMID: 36169182 DOI: 10.1111/1751-2980.13130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/07/2022] [Accepted: 09/25/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To summarize the associations between potential causal factors and colorectal cancer (CRC) risk based on existing Mendelian randomization studies. METHODS This systematic review and meta-analysis involved a literature search in Embase and Medline. All published articles using Mendelian randomization to explore potential causal factors of CRC were included. Studies that reported Mendelian randomization estimates of standard deviation changes in exposures were included in the meta-analysis. Subgroup analyses based on sex and anatomical sites were performed. RESULTS One hundred and ninety studies presented in 51 articles were included in systematic review, and 114 studies conducted in 32 articles were included in the meta-analysis. Adult body mass index, waist circumference, waist hip ratio, body height, body fat percentage, arm fat ratio, childhood obesity, lifetime cigarette consumption, short sleep, coffee consumption, and blood levels of vitamin B12 , arachidonic acid, stearic acid, and insulin-like growth factor binding protein 3 were positively associated with CRC risk. Conversely, acceleration-vector-magnitude physical activity, milk consumption, and blood levels of adiponectin, linoleic acid, α-linolenic acid, oleic acid, palmitoleic acid, interleukin-6 receptor subunit-α, and tumor necrosis factor were inversely associated with CRC risk. CONCLUSIONS Most obesity-related anthropometric characteristics, several unhealthy lifestyles, and blood levels of some micronutrients, fatty acids, and diabetes-related biomarkers were positively associated with CRC risk. In contrast, some lifestyles and blood levels of some fatty acids and inflammatory biomarkers were inversely associated with CRC risk. Future studies with more valid genetic variants are needed for factors with discrepancies between Mendelian randomization and epidemiological studies.
Collapse
Affiliation(s)
- Yunyang Deng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lyu Wang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junjie Huang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hanyue Ding
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Chi Sang Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China.,School of Public Health, the Chinese Academy of Medical Sciences and the Peking Union Medical College, Beijing, China.,School of Public Health, Peking University, Beijing, China
| |
Collapse
|
47
|
Sun X, Shu XO, Lan Q, Laszkowska M, Cai Q, Rothman N, Wen W, Zheng W, Shu X. Prospective Proteomic Study Identifies Potential Circulating Protein Biomarkers for Colorectal Cancer Risk. Cancers (Basel) 2022; 14:3261. [PMID: 35805033 PMCID: PMC9265260 DOI: 10.3390/cancers14133261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Proteomics-based technologies are emerging tools used for cancer biomarker discovery. Limited prospective studies have been conducted to evaluate the role of circulating proteins in colorectal cancer (CRC) development. METHODS A two-stage case-control proteomics study nested in the Shanghai Women's Health Study was conducted. A total of 1104 circulating proteins were measured in the discovery phase, consisting of 100 incident CRC cases and 100 individually matched controls. An additional 60 case-control pairs were selected for validation. Protein profiling at both stages was completed using the Olink platforms. Conditional logistic regression was used to evaluate the associations between circulating proteins and CRC risk. The elastic net method was employed to develop a protein score for CRC risk. RESULTS In the discovery set, 27 proteins showed a nominally significant association with CRC risk, among which 22 were positively and 5 were inversely associated. Six of the 27 protein markers were significantly associated with CRC risk in the validation set. In the analysis of pooled discovery and validation sets, odds ratios (ORs) per standard deviation (SD) increase in levels of these proteins were 1.54 (95% confidence interval (CI): 1.15-2.06) for CD79B; 1.71 (95% CI: 1.24-2.34) for DDR1; 2.04 (95% CI: 1.39-3.01) for EFNA4; 1.54 (95% CI: 1.16-2.02) for FLRT2; 2.09 (95% CI: 1.47-2.98) for LTA4H and 1.88 (95% CI: 1.35-2.62) for NCR1. Sensitivity analyses showed consistent associations for all proteins with the exclusion of cases diagnosed within the first two years after the cohort enrollment, except for CD79B. Furthermore, a five-protein score was developed based on the six proteins identified and showed significant associations with CRC risk in both discovery and validation sets (Discovery: OR1-SD = 2.46, 95% CI: 1.53-3.95; validation: OR1-SD = 4.16, 95% CI: 1.92-8.99). CONCLUSIONS A panel of five protein markers was identified as potential biomarkers for CRC risk. Our findings provide novel insights into the etiology of CRC and may facilitate the risk assessment of the malignancy.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA; (X.S.); (M.L.)
- Department of Epidemiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD 20850, USA; (Q.L.); (N.R.)
| | - Monika Laszkowska
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA; (X.S.); (M.L.)
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD 20850, USA; (Q.L.); (N.R.)
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Xiang Shu
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA; (X.S.); (M.L.)
| |
Collapse
|
48
|
Kakkoura MG, Du H, Guo Y, Yu C, Yang L, Pei P, Chen Y, Sansome S, Chan WC, Yang X, Fan L, Lv J, Chen J, Li L, Key TJ, Chen Z. Dairy consumption and risks of total and site-specific cancers in Chinese adults: an 11-year prospective study of 0.5 million people. BMC Med 2022; 20:134. [PMID: 35513801 PMCID: PMC9074208 DOI: 10.1186/s12916-022-02330-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies of primarily Western populations have reported contrasting associations of dairy consumption with certain cancers, including a positive association with prostate cancer and inverse associations with colorectal and premenopausal breast cancers. However, there are limited data from China where cancer rates and levels of dairy consumption differ importantly from those in Western populations. METHODS The prospective China Kadoorie Biobank study recruited ~0.5 million adults from ten diverse (five urban, five rural) areas across China during 2004-2008. Consumption frequency of major food groups, including dairy products, was collected at baseline and subsequent resurveys, using a validated interviewer-administered laptop-based food frequency questionnaire. To quantify the linear association of dairy intake and cancer risk and to account for regression dilution bias, the mean usual consumption amount for each baseline group was estimated via combining the consumption level at both baseline and the second resurvey. During a mean follow-up of 10.8 (SD 2.0) years, 29,277 incident cancer cases were recorded among the 510,146 participants who were free of cancer at baseline. Cox regression analyses for incident cancers associated with usual dairy intake were stratified by age-at-risk, sex and region and adjusted for cancer family history, education, income, alcohol intake, smoking, physical activity, soy and fresh fruit intake, and body mass index. RESULTS Overall, 20.4% of participants reported consuming dairy products (mainly milk) regularly (i.e. ≥1 day/week), with the estimated mean consumption of 80.8 g/day among regular consumers and of 37.9 g/day among all participants. There were significant positive associations of dairy consumption with risks of total and certain site-specific cancers, with adjusted HRs per 50 g/day usual consumption being 1.07 (95% CI 1.04-1.10), 1.12 (1.02-1.22), 1.19 (1.01-1.41) and 1.17 (1.07-1.29) for total cancer, liver cancer (n = 3191), female breast cancer (n = 2582) and lymphoma (n=915), respectively. However, the association with lymphoma was not statistically significant after correcting for multiple testing. No significant associations were observed for colorectal cancer (n = 3350, 1.08 [1.00-1.17]) or other site-specific cancers. CONCLUSION Among Chinese adults who had relatively lower dairy consumption than Western populations, higher dairy intake was associated with higher risks of liver cancer, female breast cancer and, possibly, lymphoma.
Collapse
Affiliation(s)
- Maria G Kakkoura
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Huaidong Du
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Yu Guo
- Fuwai Hospital Chinese Academy of Medical Sciences, National Center for Cardiovascular Diseases, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ling Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pei Pei
- Chinese Academy of Medical Sciences, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sam Sansome
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Wing Ching Chan
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiaoming Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lei Fan
- NCDs Prevention and Control Department, Henan CDC, Zhengzhou, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Timothy J Key
- Cancer Epidemiology Unit (CEU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Lepr + mesenchymal cells sense diet to modulate intestinal stem/progenitor cells via Leptin-Igf1 axis. Cell Res 2022; 32:670-686. [PMID: 35296796 DOI: 10.1038/s41422-022-00643-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Diet can impact on gut health and disease by modulating intestinal stem cells (ISCs). However, it is largely unknown if and how the ISC niche responds to diet and influences ISC function. Here, we demonstrate that Lepr+ mesenchymal cells (MCs) surrounding intestinal crypts sense diet change and provide a novel niche signal to maintain ISC and progenitor cell proliferation. The abundance of these MCs increases upon administration of a high-fat diet (HFD) but dramatically decreases upon fasting. Depletion of Lepr+ MCs resulted in fewer intestinal stem/progenitor cells, compromised the architecture of crypt-villus axis and impaired intestinal regeneration. Furthermore, we showed that IGF1 secreted by Lepr+ MCs is an important effector that promotes proliferation of ISCs and progenitor cells in the intestinal crypt. We conclude that Lepr+ MCs sense diet alterations and, in turn, modulate intestinal stem/progenitor cell function via a stromal IGF1-epithelial IGF1R axis. These findings reveal that Lepr+ MCs are important mediators linking systemic diet changes to local ISC function and might serve as a novel therapeutic target for gut diseases.
Collapse
|
50
|
Tsai CW, Chang WS, Xu Y, Huang M, Tamboli P, Wood CG, Bau DT, Gu J. Prognostic significance of circulating insulin growth-like factor 1 and insulin growth-like factor binding protein 3 in renal cell carcinoma patients. Am J Cancer Res 2022; 12:852-860. [PMID: 35261807 PMCID: PMC8899987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023] Open
Abstract
Insulin growth-like factor-1 (IGF-1) and its main binding protein insulin growth-like factor binding protein 3 (IGFBP-3) play important roles in cancer development and progression. We hypothesize that circulating IGF-1 and IGFBP-3 may have significant prognostic values in renal cell carcinoma (RCC) patients. We used 1,010 histologically confirmed RCC patients in this case series study to test this hypothesis. We constructed a weighted genetic risk score (GRS) using a large panel of genome-wide association study (GWAS)-identified single nucleotide polymorphisms (SNPs) to predict circulating IGF-1 and IGFBP-3 level, respectively. We analyzed the associations of the GRS with the prognosis of RCC patients using multivariate Cox proportional hazards model. We found significant associations between genetically predicted circulating IGF-1 level, but not IGFBP-3, and RCC prognosis. RCC patients with better prognosis had significantly higher baseline circulating IGF-1 level than those with worse prognosis. Dichotomized at the median value of GRS, patients with high IGF-1 exhibited significantly lower risks of recurrence (HR=0.81, 95% CI, 0.65-0.99, P=0.045) and death (HR=0.74, 95% CI, 0.60-0.91, P=0.004). If patients were dichotomized at the 75% value of GRS, those with the highest quarter of GRS had 27% lower risk of recurrence (OR=0.73, 95% CI, 0.55-0.96, P=0.025) and 34% lower risk of death (OR=0.66, 95% CI, 0.50-0.87, P=0.003) than the other three quarters of patients. High IGF-1/IGFBP-3 ratio was also associated with reduced risks of recurrence and survival. In conclusion, high circulating IGF-1 level and IGF-1/IGFBP-3 ratio at diagnosis is associated with better prognosis in RCC patients.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Pheroze Tamboli
- Department of Pathology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Christopher G Wood
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia UniversityTaichung 413305, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| |
Collapse
|