1
|
Wang L, Li Y, Jiang P, Bai H, Wu C, Shuai Q, Yan Y. Enhanced mRNA delivery via incorporating hydrophobic amines into lipid nanoparticles. Colloids Surf B Biointerfaces 2025; 249:114528. [PMID: 39847891 DOI: 10.1016/j.colsurfb.2025.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Lipid nanoparticles (LNPs) have shown promising performance in mRNA delivery. Nevertheless, a thorough understanding of the relationship between mRNA delivery efficacy and the structure of LNPs remains imperative. In this study, we systematically investigated the effects of additional hydrophobic amines on the physicochemical properties of mRNA LNPs and their delivery efficacy. The results indicated that this influence depended on the chemical structure of the additional amines and the structure of the lipid carriers. The appropriate addition of the hydrophobic amine 2C8 to lipid carriers with structural 2C8 or 2C6 tails significantly increased their mRNA delivery efficiency. In contrast, the addition of hydrophobic amine C18 to LNPs resulted in a decrease in mRNA delivery efficiency, while the addition of hydrophobic amines 2C6 and C8, as well as alkanes C12' and C16', had relatively little effect on mRNA delivery. Further investigations demonstrated that the appropriate addition of 2C8 could reduce LNP size, moderate internal hydrophobicity and LNP stability, facilitate mRNA release, enhance cellular uptake, and improve intracellular transportation of LNPs, thereby achieving superior mRNA delivery efficiency. These findings highlight the important role of additional hydrophobic amines in mRNA delivery with LNPs and provide valuable insights for the advancement of mRNA delivery carriers.
Collapse
Affiliation(s)
- Longyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yichen Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Bai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Raharinirina NA, Gubela N, Börnigen D, Smith MR, Oh DY, Budt M, Mache C, Schillings C, Fuchs S, Dürrwald R, Wolff T, Hölzer M, Paraskevopoulou S, von Kleist M. SARS-CoV-2 evolution on a dynamic immune landscape. Nature 2025; 639:196-204. [PMID: 39880955 PMCID: PMC11882442 DOI: 10.1038/s41586-024-08477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
Since the onset of the pandemic, many SARS-CoV-2 variants have emerged, exhibiting substantial evolution in the virus' spike protein1, the main target of neutralizing antibodies2. A plausible hypothesis proposes that the virus evolves to evade antibody-mediated neutralization (vaccine- or infection-induced) to maximize its ability to infect an immunologically experienced population1,3. Because viral infection induces neutralizing antibodies, viral evolution may thus navigate on a dynamic immune landscape that is shaped by local infection history. Here we developed a comprehensive mechanistic model, incorporating deep mutational scanning data4,5, antibody pharmacokinetics and regional genomic surveillance data, to predict the variant-specific relative number of susceptible individuals over time. We show that this quantity precisely matched historical variant dynamics, predicted future variant dynamics and explained global differences in variant dynamics. Our work strongly suggests that the ongoing pandemic continues to shape variant-specific population immunity, which determines a variant's ability to transmit, thus defining variant fitness. The model can be applied to any region by utilizing local genomic surveillance data, allows contextualizing risk assessment of variants and provides information for vaccine design.
Collapse
Affiliation(s)
- N Alexia Raharinirina
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Nils Gubela
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany
- International Max-Planck Research School for Biology and Computation (IMPRS-BAC), Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Djin-Ye Oh
- Department 1, Robert Koch Institute, Berlin, Germany
| | - Matthias Budt
- Department 1, Robert Koch Institute, Berlin, Germany
| | | | - Claudia Schillings
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Stephan Fuchs
- Department MFI, Robert Koch Institute, Berlin, Germany
| | - Ralf Dürrwald
- Department 1, Robert Koch Institute, Berlin, Germany
| | | | - Martin Hölzer
- Department MFI, Robert Koch Institute, Berlin, Germany
| | | | - Max von Kleist
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany.
- Project Groups, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
3
|
Giombini E, Schiavoni I, Ambrosio L, Lo Presti A, Di Martino A, Fiore S, Leone P, Fortunato F, Prato R, Fedele G, Palamara AT, Stefanelli P. JN.1 variants circulating in Italy from October 2023 to April 2024: genetic diversity and immune recognition. BMC Infect Dis 2025; 25:291. [PMID: 40022017 PMCID: PMC11871800 DOI: 10.1186/s12879-025-10685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND The continuous emergence of SARS-CoV-2 variants and subvariants poses significant public health challenges. The latest designated subvariant JN.1, with all its descendants, shows more than 30 mutations in the spike gene. JN.1 has raised concerns due to its genomic diversity and its potential to enhance transmissibility and immune evasion. This study aims to analyse the molecular characteristics of JN.1-related lineages (JN.1*) identified in Italy from October 2023 to April 2024 and to evaluate the neutralization activity against JN.1 of a subsample of sera from individuals vaccinated with XBB.1.5 mRNA. METHODS The genomic diversity of the spike gene of 794 JN.1* strain was evaluated and phylogenetic analysis was conducted to compare the distance to XBB.1.5. Moreover, serum neutralization assays were performed on a subsample of 19 healthcare workers (HCWs) vaccinated with the monovalent XBB.1.5 mRNA booster to assess neutralizing capacity against JN.1. RESULTS Sequence analysis displayed high spike variability between JN.1* and phylogenetic investigation confirmed a substantial differentiation between JN.1* and XBB.1.5 spike regions with 29 shared mutations, of which 17 were located within the RBD region. Pre-booster neutralization activity against JN.1 was observed in 42% of HCWs sera, increasing significantly post-booster, with all HCWs showing neutralization capacity three months after vaccination. A significant correlation was found between anti-trimeric Spike IgG levels and neutralizing titers against JN.1. CONCLUSIONS The study highlights the variability of JN.1* in Italy. Results on a subsample of sera from HCWs vaccinated with XBB.1.5 mRNA booster vaccine suggested enhanced neutralization activity against JN.1.
Collapse
Affiliation(s)
- Emanuela Giombini
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Ilaria Schiavoni
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Luigina Ambrosio
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Angela Di Martino
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Stefano Fiore
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Pasqualina Leone
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Francesca Fortunato
- Department of Medical and Surgical Sciences, Hygiene Unit, Policlinico Foggia Hospital, University of Foggia, Foggia, Italy
| | - Rosa Prato
- Department of Medical and Surgical Sciences, Hygiene Unit, Policlinico Foggia Hospital, University of Foggia, Foggia, Italy
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
4
|
da Silva JG, Arruk VG, Veiga GRLD, Sousa LVDA, Alves BDCA, Fonseca FLA, van der Heijden Natário IM. Quantitative and qualitative analysis of seroconversion after one year of vaccination with inactivated SARS-CoV-2 vaccine (CoronaVac®) in healthcare workers: Cross-sectional analytical study. J Virol Methods 2025; 332:115067. [PMID: 39551445 DOI: 10.1016/j.jviromet.2024.115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
A descriptive study was carried out with health professionals in Sao Paulo city. Were included individuals vaccinated with 2 doses of the inactivated vaccine. Demographic, clinical and vaccination information was obtained from professionals with or without comorbidities. Two serological assays were used to identify the presence and quantity of anti-Spike IgG in serum samples. 433 healthy healthcare professionals were included and 58.9 % completed the 4 clinical stages of serological assessment. Among adults and elderly people, 25.2 % had chronic diseases (hypertension 50.5 %, diabetes 10 % and obesity 6.5 %). Most individuals have 95 % protection in the first 3 months after the second dose, and 67.68 % protection after 6 months. Total antibodies ranged from 3 to 10 on the reactivity index, and the anti-RBD IgG levels were high. CoronaVac has a 94 % seroconversion rate after 2 doses and can prevent serious cases and outbreaks of the disease, if used on a large scale.
Collapse
Affiliation(s)
| | - Viviana Galimberti Arruk
- Clinical Microbiology Laboratory, Department of Pathology - Centro Universitário FMABC, SP, Brazil; Clinical Analysis Laboratory of Centro Universitário FMABC, SP, Brazil
| | | | | | | | - Fernando Luiz Affonso Fonseca
- Clinical Analysis Laboratory of Centro Universitário FMABC, SP, Brazil; Department of Pharmaceutical Sciences - UNIFESP (Universidade Federal de São Paulo), Diadema, SP, Brazil
| | - Inneke Marie van der Heijden Natário
- Clinical Microbiology Laboratory, Department of Pathology - Centro Universitário FMABC, SP, Brazil; Clinical Analysis Laboratory of Centro Universitário FMABC, SP, Brazil.
| |
Collapse
|
5
|
Yin D, Zhong Y, Ling S, Lu S, Wang X, Jiang Z, Wang J, Dai Y, Tian X, Huang Q, Wang X, Chen J, Li Z, Li Y, Xu Z, Jiang H, Wu Y, Shi Y, Wang Q, Xu J, Hong W, Xue H, Yang H, Zhang Y, Da L, Han ZG, Tao SC, Dong R, Ying T, Hong J, Cai Y. Dendritic-cell-targeting virus-like particles as potent mRNA vaccine carriers. Nat Biomed Eng 2025; 9:185-200. [PMID: 38714892 DOI: 10.1038/s41551-024-01208-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/31/2024] [Indexed: 02/21/2025]
Abstract
Messenger RNA vaccines lack specificity for dendritic cells (DCs)-the most effective cells at antigen presentation. Here we report the design and performance of a DC-targeting virus-like particle pseudotyped with an engineered Sindbis-virus glycoprotein that recognizes a surface protein on DCs, and packaging mRNA encoding for the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or for the glycoproteins B and D of herpes simplex virus 1. Injection of the DC-targeting SARS-CoV-2 mRNA vaccine in the footpad of mice led to substantially higher and durable antigen-specific immunoglobulin-G titres and cellular immune responses than untargeted virus-like particles and lipid-nanoparticle formulations. The vaccines also protected the mice from infection with SARS-CoV-2 or with herpes simplex virus 1. Virus-like particles with preferential uptake by DCs may facilitate the development of potent prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Di Yin
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiye Zhong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sikai Ling
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- BDGENE Therapeutics, Shanghai, China
| | - Sicong Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Zhuofan Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Dai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Tian
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qijing Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingbo Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Junsong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziying Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hewei Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Wu
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Quanjun Wang
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Medical Countermeasures and Toxicology, Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Jianjiang Xu
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heng Xue
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lintai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruijiao Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Kim S, Ko HY, Oh J, Yoon D, Kim JH, Choe YJ, Shin JY. Risk of Kawasaki Disease/Multisystem Inflammatory Syndrome Following COVID-19 Vaccination in Korean Children: A Self-Controlled Case Series Study. J Korean Med Sci 2025; 40:e10. [PMID: 39834222 PMCID: PMC11745927 DOI: 10.3346/jkms.2025.40.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/22/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Rare cases of Kawasaki disease (KD) and multisystem inflammatory syndrome in children (MIS-C) have been reported following the coronavirus disease 2019 (COVID-19) vaccination; however, the association between COVID-19 vaccination and the risk of developing KD/MIS-C has not yet been established. METHODS We conducted a self-controlled case series analysis using a large-linked database that connects the COVID-19 immunization registry with nationwide claims data. We identified individuals aged < 18 years who received their initial COVID-19 vaccination and had a KD/MIS-C diagnosis with a prescription for intravenous immunoglobulin or corticosteroids between October 18, 2021, and April 15, 2023. The observation period was set as 240 days from the date of the COVID-19 vaccination. The risk window was 60 days after vaccination, with the remaining observation period serving as the control window. The incidence rate ratios (IRRs) and 95% confidence intervals (CIs) in the risk versus control windows were estimated using the conditional Poisson regression model. We further analyzed the vaccine doses and types for secondary analysis. We also performed subgroup analyses stratified by sex, age, comorbidities, and other conditions and sensitivity analyses by varying the length of the risk window and outcome definition. RESULTS Among 2,369,490 individuals who received the COVID-19 vaccination, 12 cases of KD/MIS-C were identified, which included five and seven patients in the risk and control windows, respectively. There was no increased risk of KD/MIS-C within the 60-day period of vaccination (IRR, 0.53; 95% CI, 0.17-1.60). Secondary subgroup and sensitivity analyses showed no significant increase in the risk of KD/MIS-C after COVID-19 vaccination, which is consistent with the results of the main analysis. CONCLUSION The results of this nationwide study suggest that the risk of developing KD/MIS-C did not increase after COVID-19 vaccination. However, owing to the lack of a sufficient number of cases, future studies utilizing multinational long-term follow-up databases should be conducted. Considering the increasing incidence of KD/MIS-C and the limited understanding of its precise biological mechanisms, additional research on KD/MIS-C is warranted.
Collapse
Affiliation(s)
- Suyeon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Hwa Yeon Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jeongin Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Dongwon Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Korea
| | - Ju Hwan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Korea
| | - Young June Choe
- Department of Pediatrics, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
7
|
Hwang S, Kang SW, Choi J, Park KA, Lim DH, Shin JY, Kang D, Cho J, Kim SJ. COVID-19 Vaccination and Ocular Adverse Events: A Self-Controlled Case Series Study From the Entire South Korean Population. Am J Ophthalmol 2025; 269:69-77. [PMID: 39179130 DOI: 10.1016/j.ajo.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE This study aimed to assess the risk of ocular adverse events, including retinal artery occlusion (RAO), retinal vein occlusion (RVO), noninfectious uveitis (NIU), noninfectious scleritis (NIS), optic neuritis (ON), ischemic optic neuropathy (ION), and ocular motor cranial nerve palsy (OMCNP), following Coronavirus Disease 2019 (COVID-19) vaccination. DESIGN Population-based self-controlled case series METHODS: This study utilized nationwide claims and vaccination data provided by the Korea National Health Insurance Service and Korea Disease Control and Prevention Agency. From the entire South Korean population of 52 million individuals, patients with incident RAO, RVO, anterior NIU, nonanterior NIU, NIS, ON, ION, or OMCNP between January 2021 and March 2022 were included. The postvaccination risk period was defined as up to 56 days after COVID-19 vaccination. The relative incidence rate ratios (IRRs) for RAO, RVO, anterior NIU, nonanterior NIU, NIS, ON, ION, and OMCNP during the risk periods were measured using conditional Poisson regression. RESULTS The study included 6,590, 70,120, 137,958, 17,921, 15,492, 2,039, 49,089, and 11,312 cases of incident RAO, RVO, anterior NIU, nonanterior NIU, NIS, ON, ION, and OMCNP, respectively. The IRRs (95% confidence interval) during the early risk period (0-28 days) were 0.95 (0.88-1.01), 0.96 (0.94-0.98), 0.93 (0.91-0.94), 0.93 (0.89-0.96), 0.96 (0.92-1.01), 1.04 (0.92-1.18), 0.98 (0.95-1.00), and 0.91 (0.86-0.96), respectively. In the late risk period (29-56 days), the IRRs were 0.96 (0.89-1.03), 0.93 (0.91-0.96), 0.96 (0.95-0.98), 1.00 (0.95-1.04), 0.96 (0.91-1.01), 1.00 (0.87-1.15), 1.01 (0.98-1.04), and 0.95 (0.90-1.01), respectively. CONCLUSION COVID-19 vaccination did not increase the risk of incident RAO, RVO, anterior NIU, nonanterior NIU, NIS, ON, ION, or OMCNP during the postvaccination period.
Collapse
Affiliation(s)
- Sungsoon Hwang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H., S.W.K., J.C., K.-A.P., D.H.L., S.J.K.), Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (S.H., D.H.L., J.-Y.S., D.K., J.C.), Seoul, Republic of Korea
| | - Se Woong Kang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H., S.W.K., J.C., K.-A.P., D.H.L., S.J.K.), Seoul, Republic of Korea.
| | - Jaehwan Choi
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H., S.W.K., J.C., K.-A.P., D.H.L., S.J.K.), Seoul, Republic of Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H., S.W.K., J.C., K.-A.P., D.H.L., S.J.K.), Seoul, Republic of Korea
| | - Dong Hui Lim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H., S.W.K., J.C., K.-A.P., D.H.L., S.J.K.), Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (S.H., D.H.L., J.-Y.S., D.K., J.C.), Seoul, Republic of Korea
| | - Ju-Young Shin
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (S.H., D.H.L., J.-Y.S., D.K., J.C.), Seoul, Republic of Korea; School of Pharmacy, Sungkyunkwan University (J.-Y.S.), Suwon, Gyeonggi-do, Republic of Korea
| | - Danbee Kang
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (S.H., D.H.L., J.-Y.S., D.K., J.C.), Seoul, Republic of Korea; Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (D.K., J.C.), Seoul, Republic of Korea
| | - Juhee Cho
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (S.H., D.H.L., J.-Y.S., D.K., J.C.), Seoul, Republic of Korea; Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (D.K., J.C.), Seoul, Republic of Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H., S.W.K., J.C., K.-A.P., D.H.L., S.J.K.), Seoul, Republic of Korea
| |
Collapse
|
8
|
Watts JR, Clinton JLS, Pollet J, Peng R, Tan J, Ling PD. Multi-Antigen Elephant Endotheliotropic Herpesvirus (EEHV) mRNA Vaccine Induces Humoral and Cell-Mediated Responses in Mice. Vaccines (Basel) 2024; 12:1429. [PMID: 39772089 PMCID: PMC11728668 DOI: 10.3390/vaccines12121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Elephant endotheliotropic herpesvirus (EEHV) causes lethal hemorrhagic disease (HD) in Asian and African elephants in human care and the wild. It is the leading cause of death for young Asian elephants in North American and European zoos despite sensitive diagnostic tests and improved treatments. Thus, there is a critical need to develop an effective vaccine to prevent severe illness and reduce mortality from EEHV-HD. We generated a multi-antigenic EEHV mRNA vaccine to address this need that encodes the EEHV1A-subtype glycoproteins gB, gH, gL, and gO. These conserved proteins are the entry machinery for several herpesviruses in the betaherpesvirus subfamily and elicit humoral and cellular immunity in naturally infected elephants. Methods: Outbred CD-1 mice were vaccinated with two doses of an mRNA vaccine comprising modified EEHV1A gB, gH, gL, and gO mRNAs encapsulated into lipid nanoparticles. Humoral and T-cell immunity was assessed three weeks after the first dose or three weeks after the booster dose using luciferase immunoprecipitation system assays and flow cytometry, respectively. Results: The CD-1 mice vaccinated once had detectable antibody titers against gB, gH, and gL that increased significantly three weeks after a booster dose. Activated CD4+ and CD8+ T cells secreting cytokines associated with a TH1 response were induced against all four glycoproteins. No adverse effects were observed following one or two doses of the vaccine. Conclusions: We found that gB, gH, gL, and gO as a multivalent vaccine stimulated robust humoral and cell-mediated immunity. This is a critical step for moving this candidate EEHV1A mRNA vaccine into clinical trials in Asian elephants.
Collapse
Affiliation(s)
- Jessica R. Watts
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.W.); (R.P.); (J.T.)
| | - Jennifer L. Spencer Clinton
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (J.L.S.C.); (J.P.)
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeroen Pollet
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (J.L.S.C.); (J.P.)
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.W.); (R.P.); (J.T.)
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.W.); (R.P.); (J.T.)
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.W.); (R.P.); (J.T.)
| |
Collapse
|
9
|
Jia Z, Wang K, Xie M, Wu J, Hu Y, Zhou Y, Yisimayi A, Fu W, Wang L, Liu P, Fan K, Chen R, Wang L, Li J, Wang Y, Ge X, Zhang Q, Wu J, Wang N, Wu W, Gao Y, Miao J, Jiang Y, Qin L, Zhu L, Huang W, Zhang Y, Zhang H, Li B, Gao Q, Xie XS, Wang Y, Cao Y, Wang Q, Wang X. A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2. Protein Cell 2024; 15:930-937. [PMID: 38801319 PMCID: PMC11637481 DOI: 10.1093/procel/pwae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Zijing Jia
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Minxiang Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yaling Hu
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Yunjiao Zhou
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Ayijiang Yisimayi
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
| | - Wangjun Fu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaiyue Fan
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruihong Chen
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guangzhou Laboratory, Guangzhou 510320, China
| | - Lin Wang
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Jing Li
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Yao Wang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
| | - Xiaoqin Ge
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianbo Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Nan Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yidan Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | - Lili Qin
- Acrobiosystems Inc., Beijing 102600, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Huan Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Baisheng Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Qiang Gao
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Xiaoliang Sunney Xie
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
- Changping Laboratory, Beijing 102206, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- Changping Laboratory, Beijing 102206, China
| | - Yunlong Cao
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
- Changping Laboratory, Beijing 102206, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guangzhou Laboratory, Guangzhou 510320, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
10
|
Okoye C, Zazzara MB, Ceolin C, Fedele G, Palmieri A, Abbatecola AM, Malara A, Trevisan C, Timmons S, Prato R, Fortunato F, Del Signore S, Bellelli G, Incalzi RA, Onder G, Coin A. Delirium Incidence and Predictors in SARS-CoV-2 Vaccinated Residents in Long-Term Care Facilities (LTCF): Insights from the GeroCovid Vax Study. J Am Med Dir Assoc 2024; 25:105251. [PMID: 39245233 DOI: 10.1016/j.jamda.2024.105251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE SARS-CoV-2 vaccination can bring an important benefit for older people in terms of reduction of mortality and hospitalization; however, reports of rare adverse effects like altered consciousness and delirium among this demographic have raised concerns. This study aimed to assess delirium incidence post-SARS-CoV-2 vaccination and its predictors in older residents across 60 Italian long-term care facilities (LTCFs). DESIGN This is a prospective cohort study considering data from GeroCovid Vax, a multicenter cohort study jointly performed by the Italian Society of Gerontology and Geriatrics (SIGG) (Florence, Italy) and the Italian National Institute of Health (Istituto Superiore di Sanità-ISS, Rome, Italy), and sponsored by the Italian Medicines Agency (Agenzia Italiana del Farmaco-AIFA). SETTING AND PARTICIPANTS GeroCovid Vax enrolled LTCFs residents aged ≥60 who received at least 1 anti-SARS-CoV-2 vaccine dose. METHODS Baseline data covered sociodemographic details, chronic diseases, medications, nutritional status, cognitive and functional assessments, mobility, and frailty. Delirium was assessed post-first, second, and booster vaccine doses using DSM-5 criteria. Data analysis involved descriptive statistics, multivariate logistic regression, and network analysis. RESULTS A total of 2521 participants (mean age 83.10 ± 9.21 years, 70.7% female) were analyzed. Delirium incidence post-first, second, and booster doses was 3.5%, 1.6%, and 1.5%, respectively. Age, preexisting cognitive disorders, and frailty were significant predictors of delirium, with odds ratios (ORs) of 1.70 (95% CI, 1.08-2.77), 2.05 (95% CI, 1.40-2.97), and 1.77 (95% CI, 1.25-2.52), respectively. Prior use of antipsychotics (OR, 1.75; 95% CI, 1.22-2.51) and antidepressants (OR, 1.77; 95% CI, 1.25-2.52) correlated significantly with delirium. Network analysis indicated a strong association between anorexia and delirium. CONCLUSION AND IMPLICATIONS Post-vaccination delirium is infrequent and decreases with subsequent doses. Timely assessments for frailty and cognitive impairment could aid in stratifying delirium risk among LTCF residents, facilitating enhanced prevention measures and close monitoring for delirium indicators.
Collapse
Affiliation(s)
- Chukwuma Okoye
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Maria Beatrice Zazzara
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Ceolin
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Department of Medicine (DIMED), Geriatrics Division, University of Padova, Padova, Italy.
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Annapina Palmieri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Caterina Trevisan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Suzanne Timmons
- Centre for Gerontology and Rehabilitation, School of Medicine, University College Cork, Cork, Ireland
| | - Rosa Prato
- Hygiene Unit, Policlinico Foggia Hospital, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesca Fortunato
- Hygiene Unit, Policlinico Foggia Hospital, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Giuseppe Bellelli
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Graziano Onder
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandra Coin
- Department of Medicine (DIMED), Geriatrics Division, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Guarello S, González N, Flores I, Aguirre P. A geometric approach to the impact of immigration of people infected with communicable diseases. Math Biosci 2024; 378:109320. [PMID: 39447636 DOI: 10.1016/j.mbs.2024.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
We construct a set of new epidemiological thresholds to address the general problem of spreading and containment of a transmissible disease with influx of infected individuals (i.e., when the classic R0 is no longer meaningful). We provide analytical properties of these indices and illustrate their usefulness in a compartmental model of COVID-19 with data taken from Chile showing a good predictive potential when contrasted with the recorded disease behavior. This geometric approach and the associated analytical and numerical results break new ground in that they allow us to quantify the severity of an immigration of infectious individuals into a community, and identification of the key parameters that are capable of changing or reversing the spread of an infectious disease in specific models.
Collapse
Affiliation(s)
- Sofía Guarello
- Departamento de Matemática, Universidad Técnica Federico Santa María, Avenida España 1680, Casilla 110-V, Valparaíso, Chile
| | - Nicolás González
- Departamento de Matemática, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, San Joaquín, Santiago, Chile
| | - Isabel Flores
- Departamento de Matemática, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, San Joaquín, Santiago, Chile
| | - Pablo Aguirre
- Departamento de Matemática, Universidad Técnica Federico Santa María, Avenida España 1680, Casilla 110-V, Valparaíso, Chile.
| |
Collapse
|
12
|
Hu Y, Wu Q, Chang F, Yang J, Zhang X, Wang Q, Chen J, Teng S, Liu Y, Zheng X, Wang Y, Lu R, Pan D, Liu Z, Liu F, Xie T, Wu C, Tang Y, Tang F, Qian J, Chen H, Liu W, Li YP, Qu X. Broad cross neutralizing antibodies against sarbecoviruses generated by SARS-CoV-2 infection and vaccination in humans. NPJ Vaccines 2024; 9:195. [PMID: 39438493 PMCID: PMC11496711 DOI: 10.1038/s41541-024-00997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
The outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 highlight the need for countermeasures to prevent future coronavirus pandemics. Given the unpredictable nature of spillover events, preparing antibodies with broad coronavirus-neutralizing activity is an ideal proactive strategy. Here, we investigated whether SARS-CoV-2 infection and vaccination could provide cross-neutralizing antibodies (nAbs) against zoonotic sarbecoviruses. We evaluated the cross-neutralizing profiles of plasma and monoclonal antibodies constructed from B cells from coronavirus disease 2019 (COVID-19) convalescents and vaccine recipients; against sarbecoviruses originating from bats, civets, and pangolins; and against SARS-CoV-1 and SARS-CoV-2. We found that the majority of individuals with natural infection and vaccination elicited broad nAb responses to most tested sarbecoviruses, particularly to clade 1b viruses, but exhibited very low cross-neutralization to SARS-CoV-1 in both natural infection and vaccination, and vaccination boosters significantly augmented the magnitude and breadth of nAbs to sarbecoviruses. Of the nAbs, several exhibited neutralization activity against multiple sarbecoviruses by targeting the spike receptor-binding domain (RBD) and competing with angiotensin-converting enzyme 2 (ACE2) binding. SCM12-61 demonstrated exceptional potency, with half-maximal inhibitory concentration (IC50) values of 0.001-0.091 μg/mL against tested sarbecoviruses; while VSM9-12 exhibited remarkable cross-neutralizing breadth against sarbecoviruses and SARS-CoV-2 Omicron subvariants, highlighting the potential of these two nAbs in combating sarbecoviruses and SARS-CoV-2 Omicron subvariants. Collectively, our findings suggest that vaccination with an ancestral SARS-CoV-2 vaccine, in combination with broad nAbs against sarbecoviruses, may provide a countermeasure for preventing further sarbecovirus outbreaks in humans.
Collapse
Affiliation(s)
- Yabin Hu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qian Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, Shaoyang, 422099, China
| | - Jun Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shishan Teng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - You Wang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Rui Lu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Dong Pan
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Zhanpeng Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Fen Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Tianyi Xie
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Chanfeng Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yinggen Tang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Fei Tang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Qian
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Wenpei Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
| |
Collapse
|
13
|
Canha I, Silva MJ, Silva MA, Sarmento Costa M, Saraiva RO, Ruge A, Machado MV, Félix CS, Morão B, Figueiredo PN, Mendes M, Leal C, Calinas F. COVID-19 Vaccination in Liver Cirrhosis: Safety and Immune and Clinical Responses. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2024; 31:325-337. [PMID: 39360169 PMCID: PMC11444661 DOI: 10.1159/000534740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/12/2023] [Indexed: 10/04/2024]
Abstract
Introduction Three years after the beginning of the SARS-CoV-2 pandemic, the safety and efficacy of COVID-19 vaccination in liver cirrhosis (LC) patients remain controversial. We aimed to study the safety, immunological, and clinical responses of LC patients to COVID-19 vaccination. Methods Prospective multicentric study in adults with LC eligible for COVID-19 vaccination, without prior known infection. Patients were followed up until the timing of a booster dose, SARS-CoV-2 infection, or death. Spike-protein immunoglobulin G antibody titers for SARS-CoV-2 at 2 weeks, 3 months, and 6 months postvaccination were assessed. Antibody titers <33.8 binding antibody units (BAU)/mL were considered seronegative and <200 BAU/mL suboptimal. Postvaccination infection and its severity were registered. Results We included 124 LC patients, 81% males, mean aged 61 ± 10 years, with a mean follow-up of 221 ± 26 days. Alcohol was the most common (61%) cause of cirrhosis, and 7% were under immunosuppressants for autoimmune hepatitis; 69% had portal hypertension, 42% had a previous decompensation, and 21% had a Child-Pugh-Turcotte score of B/C. The type of vaccine administrated was BNT162b2 (n = 59, 48%), ChAdOx1nCoV-19 (n = 45, 36%), mRNA-1273 (n = 14, 11%), and Ad26.COV2.S (n = 6, 5%). Eighteen percent of the patients reported adverse events after vaccination, none serious. Median [Q1; Q3] antibody titers were 1,185 [280; 2,080] BAU/mL at 2 weeks, 301 [72; 1,175] BAU/mL at 3 months, and 192 [49; 656] BAU/mL at 6 months. There were seronegative and suboptimal antibody responses in 8% and 23% of the patients at 2 weeks, 16% and 38% at 3 months, and 22% and 48% at 6 months. Older age and adenovirus vector vaccines were the only factors associated with seronegative and suboptimal responses at 2 weeks and 3 months (p < 0.05) in a multivariable logistic regression analysis. Eleven patients (9%) were infected with SARS-CoV-2 during follow-up (3.8-6.6 months postvaccination), all with mild disease. There were no differences regarding the type of vaccine, and 73% had antibody titers >200 BAU/mL at 3 months. Conclusion COVID-19 vaccines in patients with LC were safe, without serious adverse events. The humoral and clinical responses were similar to the reported for the general population. Humoral response was adversely impacted by older age and adenovirus vector vaccines and unrelated to the liver disease severity.
Collapse
Affiliation(s)
- Inês Canha
- Gastroenterology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Mário Jorge Silva
- Gastroenterology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Mara Sarmento Costa
- Gastroenterology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Rita Ornelas Saraiva
- Gastroenterology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - André Ruge
- Gastroenterology Department, Centro Hospitalar de Leiria, Leiria, Portugal
| | - Mariana Verdelho Machado
- Gastroenterology Department, Hospital de Vila Franca de Xira, Vila Franca de Xira, Portugal
- Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Sousa Félix
- Gastroenterology Department, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Bárbara Morão
- Gastroenterology Department, Hospital Beatriz Ângelo, Lisbon, Portugal
| | - Pedro Narra Figueiredo
- Gastroenterology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Universidade de Coimbra, Coimbra, Portugal
| | - Milena Mendes
- Gastroenterology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Carina Leal
- Gastroenterology Department, Centro Hospitalar de Leiria, Leiria, Portugal
| | - Filipe Calinas
- Gastroenterology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| |
Collapse
|
14
|
Dinç HÖ, Can G, Budak B, Daşdemir FO, Keskin E, Kirkoyun-Uysal H, Aydoğan O, Balkan II, Karaali R, Ergin S, Saltoğlu N, Kocazeybek B. Antibody responses post-booster COVID-19 vaccination: Insights from a single-center prospective cohort study. Diagn Microbiol Infect Dis 2024; 110:116425. [PMID: 39098282 DOI: 10.1016/j.diagmicrobio.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
The study aimed to evaluate the effect of booster dose COVID-19 vaccines on prevention and humoral immune response in individuals with different vaccination schemes during the period BA.4 and BA.5 omicron sub-variants were globally dominant. The study included 146 individuals who preferred different vaccination schemes for booster doses. Anti-spike/RBD-IgG and neutralizing antibody levels were measured 28 days after the booster dose vaccination upon their consent. There is no significant difference between median antibody titers detected according to different vaccination schemes. SARS-CoV-2 neutralizing antibody inhibition percentages were detected significantly higher in serum samples before and after the last booster dose in 2 BNT162b2+1 BNT162b2(99.42 %), 2 BNT162b2 + 2 BNT162b2(99.42 %), and 2 BNT162b2 + 3 BNT162b2(99.42 %) vaccination schemes (p = 0.004, p = 0.044, p = 0.002,respectively). The study indicated that a booster vaccination dose provides a high level of protection against severe COVID-19 and death. We think that the variant-specific pancoronavirus vaccines will be necessary to protect against breakthrough infections.
Collapse
Affiliation(s)
- Harika-Öykü Dinç
- Department of Medical Microbiology, Faculty of Medicine, Üsküdar University, Istanbul, 34768, Turkey
| | - Günay Can
- Department of Public Health, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Beyhan Budak
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Ferhat-Osman Daşdemir
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Elif Keskin
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Hayriye Kirkoyun-Uysal
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Okan Aydoğan
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Ilker-Inanç Balkan
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Rıdvan Karaali
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Sevgi Ergin
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Neşe Saltoğlu
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Bekir Kocazeybek
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey.
| |
Collapse
|
15
|
Jung W, Abdelnour A, Kaplonek P, Herrero R, Shih-Lu Lee J, Barbati DR, Chicz TM, Levine KS, Fantin RC, Loria V, Porras C, Lauffenburger DA, Gail MH, Aparicio A, Hildesheim A, Alter G, McNamara RP. SARS-CoV-2 infection prior to vaccination amplifies Fc-mediated humoral profiles in an age-dependent manner. Cell Rep 2024; 43:114684. [PMID: 39213155 DOI: 10.1016/j.celrep.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Immunity acquired by vaccination following infection, termed hybrid immunity, has been shown to confer enhanced protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by enhancing the breadth and potency of immune responses. Here, we assess Fc-mediated humoral profiles in hybrid immunity and their association with age and vaccine type. Participants are divided into three groups: infection only, vaccination only, and vaccination following infection (i.e., hybrid immunity). Using systems serology, we profile humoral immune responses against spikes and subdomains of SARS-CoV-2 variants. We find that hybrid immunity is characterized by superior Fc receptor binding and natural killer (NK) cell-, neutrophil-, and complement-activating antibodies, which is higher than what can be expected from the sum of the vaccination and infection. These differences between hybrid immunity and vaccine-induced immunity are more pronounced in aged adults, especially for immunoglobulin (Ig)G1, IgG2, and Fcγ receptor-binding antibodies. Our findings suggest that vaccination strategies that aim to mimic hybrid immunity should consider age as an important modifier.
Collapse
Affiliation(s)
- Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Paulina Kaplonek
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | | | - Domenic R Barbati
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Kate S Levine
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Romain Clement Fantin
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Viviana Loria
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mitchell H Gail
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Amada Aparicio
- Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Allan Hildesheim
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
16
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
17
|
Aliakbarinodehi N, Niederkofler S, Emilsson G, Parkkila P, Olsén E, Jing Y, Sjöberg M, Agnarsson B, Lindfors L, Höök F. Time-Resolved Inspection of Ionizable Lipid-Facilitated Lipid Nanoparticle Disintegration and Cargo Release at an Early Endosomal Membrane Mimic. ACS NANO 2024; 18:22989-23000. [PMID: 39133894 PMCID: PMC11363135 DOI: 10.1021/acsnano.4c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Advances in lipid nanoparticle (LNP) design have contributed notably to the emergence of the current clinically approved mRNA-based vaccines and are of high relevance for delivering mRNA to combat diseases where therapeutic alternatives are sparse. LNP-assisted mRNA delivery utilizes ionizable lipid-mediated cargo translocation across the endosomal membrane driven by the acidification of the endosomal environment. However, this process occurs at a low efficiency, a few percent at the best. Utilizing surface-sensitive fluorescence microscopy with a single LNP and mRNA resolution, we have investigated pH-controlled interactions between individual LNPs and a planar anionic supported lipid bilayer (SLB) formed on nanoporous silica, mimicking the electrostatic conditions of the early endosomal membrane. For LNPs with an average diameter of 140 nm, fusion with the anionic SLB preferentially occurred when the pH was reduced from 6.6 to 6.0. Furthermore, there was a delay in the onset of LNP fusion after the pH drop, and upon fusion, a significant fraction (>70%) of mRNA was released into the acidic solution representing the endosomal lumen, while a fraction of mRNA remained bound to the SLB even after reversing the pH to neutral cytosolic conditions. Finally, a comparison of the fusion efficiency of two LNP formulations with different surface concentrations of gel-forming lipids correlated with differences in the protein translation efficiency previously observed in human primary cell transfection studies. Together, these findings emphasize the relevance of biophysical investigations of ionizable lipid-containing LNP-assisted mRNA delivery mechanisms while potentially also offering means to optimize the design of LNPs with enhanced endosomal escape capabilities.
Collapse
Affiliation(s)
- Nima Aliakbarinodehi
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Simon Niederkofler
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Gustav Emilsson
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Petteri Parkkila
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Erik Olsén
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Yujia Jing
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Mattias Sjöberg
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Björn Agnarsson
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Lennart Lindfors
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Fredrik Höök
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| |
Collapse
|
18
|
Konuma T, Hamatani-Asakura M, Nagai E, Adachi E, Kato S, Isobe M, Monna-Oiwa M, Takahashi S, Yotsuyanagi H, Nannya Y. Cellular and humoral immunogenicity against SARS-CoV-2 vaccination or infection is associated with the memory phenotype of T- and B-lymphocytes in adult allogeneic hematopoietic cell transplant recipients. Int J Hematol 2024; 120:229-240. [PMID: 38842630 PMCID: PMC11284193 DOI: 10.1007/s12185-024-03802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
We conducted a cross-sectional study to evaluate cellular and humoral immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination or infection and examine how lymphocyte subpopulations in peripheral blood correlate with cellular and humoral immunogenicity in adult allogeneic hematopoietic cell transplantation (HCT) recipients. The median period from SARS-CoV-2 vaccination or infection to sample collection was 110.5 days (range, 6-345 days). The median SARS-CoV-2 spike-specific antibody level was 1761 binding antibody units (BAU)/ml (range, 0 to > 11,360 BAU/ml). Enzyme-linked immunosorbent spot (ELISpot) assay of T cells stimulated with SARS-CoV-2 spike antigens showed that interferon-gamma (IFN-γ)-, interleukin-2 (IL-2)-, and IFN-γ + IL-2-producing T cells were present in 68.9%, 62.0%, and 56.8% of patients, respectively. The antibody level was significantly correlated with frequency of IL-2-producing T cells (P = 0.001) and IFN-γ + IL-2-producing T cells (P = 0.006) but not IFN-γ-producing T cells (P = 0.970). Absolute counts of CD8+ and CD4+ central memory T cells were higher in both IL-2- and IFN-γ + IL-2-producing cellular responders compared with non-responders. These data suggest that cellular and humoral immunogenicity against SARS-CoV-2 vaccination or infection is associated with the memory phenotype of T cells and B cells in adult allogeneic HCT recipients.
Collapse
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan.
| | - Megumi Hamatani-Asakura
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Etsuko Nagai
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Maki Monna-Oiwa
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
19
|
Metzdorf K, Jacobsen H, Kim Y, Teixeira Alves LG, Kulkarni U, Brdovčak MC, Materljan J, Eschke K, Chaudhry MZ, Hoffmann M, Bertoglio F, Ruschig M, Hust M, Šustić M, Krmpotić A, Jonjić S, Widera M, Ciesek S, Pöhlmann S, Landthaler M, Čičin-Šain L. A single-dose MCMV-based vaccine elicits long-lasting immune protection in mice against distinct SARS-CoV-2 variants. Front Immunol 2024; 15:1383086. [PMID: 39119342 PMCID: PMC11306140 DOI: 10.3389/fimmu.2024.1383086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024] Open
Abstract
Current vaccines against COVID-19 elicit immune responses that are overall strong but wane rapidly. As a consequence, the necessary booster shots have contributed to vaccine fatigue. Hence, vaccines that would provide lasting protection against COVID-19 are needed, but are still unavailable. Cytomegaloviruses (CMVs) elicit lasting and uniquely strong immune responses. Used as vaccine vectors, they may be attractive tools that obviate the need for boosters. Therefore, we tested the murine CMV (MCMV) as a vaccine vector against COVID-19 in relevant preclinical models of immunization and challenge. We have previously developed a recombinant MCMV vaccine vector expressing the spike protein of the ancestral SARS-CoV-2 (MCMVS). In this study, we show that the MCMVS elicits a robust and lasting protection in young and aged mice. Notably, spike-specific humoral and cellular immunity was not only maintained but also even increased over a period of at least 6 months. During that time, antibody avidity continuously increased and expanded in breadth, resulting in neutralization of genetically distant variants, like Omicron BA.1. A single dose of MCMVS conferred rapid virus clearance upon challenge. Moreover, MCMVS vaccination controlled two variants of concern (VOCs), the Beta (B.1.135) and the Omicron (BA.1) variants. Thus, CMV vectors provide unique advantages over other vaccine technologies, eliciting broadly reactive and long-lasting immune responses against COVID-19.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Mice
- COVID-19 Vaccines/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Muromegalovirus/immunology
- Muromegalovirus/genetics
- Female
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Mice, Inbred BALB C
- Humans
- Genetic Vectors
- Immunity, Cellular
- Immunity, Humoral
- Disease Models, Animal
Collapse
Affiliation(s)
- Kristin Metzdorf
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | - Henning Jacobsen
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | - Yeonsu Kim
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | - Luiz Gustavo Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Upasana Kulkarni
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | | | - Jelena Materljan
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Kathrin Eschke
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Federico Bertoglio
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maximilian Ruschig
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marko Šustić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- German Centre for Infection Research (DZIF), External Partner Site Frankfurt, Frankfurt, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Baumgart SWL, McLachlan A, Kenny H, McKew G, Maddocks S, Chen SCA, Kok J. Deisolation in the Healthcare Setting Following Recent COVID-19 Infection. Viruses 2024; 16:1131. [PMID: 39066294 PMCID: PMC11281359 DOI: 10.3390/v16071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Deisolation of persons infected with SARS-CoV-2, the virus that causes COVID-19, presented a substantial challenge for healthcare workers and policy makers, particularly during the early phases of the pandemic. Data to guide deisolation of SARS-CoV-2-infected patients remain limited, and the risk of transmitting and acquiring infection has changed with the evolution of SARS-CoV-2 variants and population immunity from previous vaccination or infection, or both. AIMS This review examines the evidence to guide the deisolation of SARS-CoV-2-infected inpatients within the hospital setting when clinically improving and also of healthcare workers with COVID-19 prior to returning to work. METHODS A review was performed using relevant search terms in Medline, EMBASE, Google Scholar, and PubMed. RESULTS AND DISCUSSION The evidence is reviewed with regards to the nature of SARS-CoV-2 transmission, the role of testing to guide deisolation, and the impact of SARS-CoV-2-specific immunity. A paradigm and recommendations are proposed to guide deisolation for inpatients and return to work for healthcare workers.
Collapse
Affiliation(s)
- Samuel W. L. Baumgart
- Department of Infectious Diseases and Microbiology, Concord Hospital, Concord, NSW 2137, Australia
| | - Aidan McLachlan
- Department of Infectious Diseases and Microbiology, Concord Hospital, Concord, NSW 2137, Australia
| | - Hayden Kenny
- Department of Infectious Diseases and Microbiology, Concord Hospital, Concord, NSW 2137, Australia
| | - Genevieve McKew
- Department of Infectious Diseases and Microbiology, Concord Hospital, Concord, NSW 2137, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Susan Maddocks
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW 2145, Australia;
| | - Sharon C.-A. Chen
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology—Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology—Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
21
|
El Khalifi M, Britton T. SIRS epidemics with individual heterogeneity of immunity waning. J Theor Biol 2024; 587:111815. [PMID: 38614211 DOI: 10.1016/j.jtbi.2024.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
In the current paper we analyse an extended SIRS epidemic model in which immunity at the individual level wanes gradually at exponential rate, but where the waning rate may differ between individuals, for instance as an effect of differences in immune systems. The model also includes vaccination schemes aimed to reach and maintain herd immunity. We consider both the informed situation where the individual waning parameters are known, thus allowing selection of vaccinees being based on both time since last vaccination as well as on the individual waning rate, and the more likely uninformed situation where individual waning parameters are unobserved, thus only allowing vaccination schemes to depend on time since last vaccination. The optimal vaccination policies for both the informed and uniformed heterogeneous situation are derived and compared with the homogeneous waning model (meaning all individuals have the same immunity waning rate), as well as to the classic SIRS model where immunity at the individual level drops from complete immunity to complete susceptibility in one leap. It is shown that the classic SIRS model requires least vaccines, followed by the SIRS with homogeneous gradual waning, followed by the informed situation for the model with heterogeneous gradual waning. The situation requiring most vaccines for herd immunity is the most likely scenario, that immunity wanes gradually with unobserved individual heterogeneity. For parameter values chosen to mimic COVID-19 and assuming perfect initial immunity and cumulative immunity of 12 months, the classic homogeneous SIRS epidemic suggests that vaccinating individuals every 15 months is sufficient to reach and maintain herd immunity, whereas the uninformed case for exponential waning with rate heterogeneity corresponding to a coefficient of variation being 0.5, requires that individuals instead need to be vaccinated every 4.4 months.
Collapse
Affiliation(s)
- Mohamed El Khalifi
- Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 300 50, Morocco; Department of Mathematics, Stockholm University, Stockholm, 106 91, Sweden.
| | - Tom Britton
- Department of Mathematics, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
22
|
Mallory M, Munt JE, Narowski TM, Castillo I, Cuadra E, Pisanic N, Fields P, Powers JM, Dickson A, Harris R, Wargowsky R, Moran S, Allabban A, Raphel K, McCaffrey TA, Brien JD, Heaney CD, Lafleur JE, Baric RS, Premkumar L. COVID-19 point-of-care tests can identify low-antibody individuals: In-depth immunoanalysis of boosting benefits in a healthy cohort. SCIENCE ADVANCES 2024; 10:eadi1379. [PMID: 38865463 PMCID: PMC11168476 DOI: 10.1126/sciadv.adi1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
The recommended COVID-19 booster vaccine uptake is low. At-home lateral flow assay (LFA) antigen tests are widely accepted for detecting infection during the pandemic. Here, we present the feasibility and potential benefits of using LFA-based antibody tests as a means for individuals to detect inadequate immunity and make informed decisions about COVID-19 booster immunization. In a health care provider cohort, we investigated the changes in the breadth and depth of humoral and T cell immune responses following mRNA vaccination and boosting in LFA-positive and LFA-negative antibody groups. We show that negative LFA antibody tests closely reflect the lack of functional humoral immunity observed in a battery of sophisticated immune assays, while positive results do not necessarily reflect adequate immunity. After booster vaccination, both groups gain depth and breadth of systemic antibodies against evolving SARS-CoV-2 and related viruses. Our findings show that LFA-based antibody tests can alert individuals about inadequate immunity against COVID-19, thereby increasing booster shots and promoting herd immunity.
Collapse
Affiliation(s)
- Michael Mallory
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer E. Munt
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tara M. Narowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Izabella Castillo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Edwing Cuadra
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - John M. Powers
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandria Dickson
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO, USA
| | - Rohan Harris
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Seamus Moran
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Ahmed Allabban
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Kristin Raphel
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO, USA
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - John E. Lafleur
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Hattab D, Amer MFA, Al-Alami ZM, Bakhtiar A. SARS-CoV-2 journey: from alpha variant to omicron and its sub-variants. Infection 2024; 52:767-786. [PMID: 38554253 PMCID: PMC11143066 DOI: 10.1007/s15010-024-02223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
The COVID-19 pandemic has affected hundreds of millions of individuals and caused more than six million deaths. The prolonged pandemic duration and the continual inter-individual transmissibility have contributed to the emergence of a wide variety of SARS-CoV-2 variants. Genomic surveillance and phylogenetic studies have shown that substantial mutations in crucial supersites of spike glycoprotein modulate the binding affinity of the evolved SARS-COV-2 lineages to ACE2 receptors and modify the binding of spike protein with neutralizing antibodies. The immunological spike mutations have been associated with differential transmissibility, infectivity, and therapeutic efficacy of the vaccines and the immunological therapies among the new variants. This review highlights the diverse genetic mutations assimilated in various SARS-CoV-2 variants. The implications of the acquired mutations related to viral transmission, infectivity, and COVID-19 severity are discussed. This review also addresses the effectiveness of human neutralizing antibodies induced by SARS-CoV-2 infection or immunization and the therapeutic antibodies against the ascended variants.
Collapse
Affiliation(s)
- Dima Hattab
- School of Pharmacy, The University of Jordan, Queen Rania Street, Amman, Jordan
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Zina M Al-Alami
- Department of Basic Medical Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
24
|
Haq MA, Roy AK, Ahmed R, Kuddusi RU, Sinha M, Hossain MS, Vandenent M, Islam MZ, Zaman RU, Kibria MG, Razzaque A, Raqib R, Sarker P. Antibody longevity and waning following COVID-19 vaccination in a 1-year longitudinal cohort in Bangladesh. Sci Rep 2024; 14:11467. [PMID: 38769324 PMCID: PMC11106241 DOI: 10.1038/s41598-024-61922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
COVID-19 vaccines have been effective in preventing severe illness, hospitalization and death, however, the effectiveness diminishes with time. Here, we evaluated the longevity of antibodies generated by COIVD-19 vaccines and the risk of (re)infection in Bangladeshi population. Adults receiving two doses of AstraZeneca, Pfizer, Moderna or Sinopharm vaccines were enrolled at 2-4 weeks after second dosing and followed-up at 4-monthly interval for 1 year. Data on COVID-like symptoms, confirmed COVID-19 infection, co-morbidities, and receipt of booster dose were collected; blood was collected for measuring spike (S)- and nucleocapsid (N)-specific antibodies. S-specific antibody titers reduced by ~ 50% at 1st follow-up visit and continued to decline unless re-stimulated by booster vaccine dose or (re)infection. Individuals infected between follow-up visits showed significantly lower S-antibody titers at preceding visits compared to the uninfected individuals. Pre-enrolment infection between primary vaccination dosing exhibited 60% and 50% protection against reinfection at 5 and 9 months, respectively. mRNA vaccines provided highest odds of protection from (re)infection up to 5 months (Odds Ratio (OR) = 0.08), however, protection persisted for 9 months in AstraZeneca vaccine recipients (OR = 0.06). In conclusion, vaccine-mediated protection from (re)infection is partially linked to elevated levels of S-specific antibodies. AstraZeneca vaccine provided the longest protection.
Collapse
Affiliation(s)
- Md Ahsanul Haq
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Anjan Kumar Roy
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Razu Ahmed
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Rakib Ullah Kuddusi
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Monika Sinha
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Md Shamim Hossain
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | | | | | | | - Md Golam Kibria
- Sheikh Russel Gastroliver Institute and Hospital, Dhaka, 1212, Bangladesh
| | - Abdur Razzaque
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Protim Sarker
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh.
| |
Collapse
|
25
|
Tripodi D, Dominici R, Sacco D, Pozzobon C, Spiti S, Falbo R, Brambilla P, Mascagni P, Leoni V. Antibody Response against SARS-CoV-2 after mRNA Vaccine in a Cohort of Hospital Healthy Workers Followed for 17 Months. Vaccines (Basel) 2024; 12:506. [PMID: 38793757 PMCID: PMC11125999 DOI: 10.3390/vaccines12050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The assessment of antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of critical importance to verify the protective efficacy of available vaccines. Hospital healthcare workers play an essential role in the care and treatment of patients and were particularly at risk of contracting the SARS-CoV-2 infection during the pandemic. The vaccination protocol introduced in our hospital protected the workers and contributed to the containment of the infection' s spread and transmission, although a reduction in vaccine efficacy against symptomatic and breakthrough infections in vaccinated individuals was observed over time. Here, we present the results of a longitudinal and prospective analysis of the anti-SARS-CoV-2 antibodies at multiple time points over a 17-month period to determine how circulating antibody levels change over time following natural infection and vaccination for SARS-CoV-2 before (T0-T4) and after the spread of the omicron variant (T5-T6), analyzing the antibody response of 232 healthy workers at the Pio XI hospital in Desio. A General Estimating Equation model indicated a significant association of the antibody response with time intervals and hospital area, independent of age and sex. Specifically, a similar pattern of antibody response was observed between the surgery and administrative departments, and a different pattern with higher peaks of average antibody response was observed in the emergency and medical departments. Furthermore, using a logistic model, we found no differences in contracting SARS-CoV-2 after the third dose based on the hospital department. Finally, analysis of antibody distribution following the spread of the omicron variant, subdividing the cohort of positive individuals into centiles, highlighted a cut-off of 550 BAU/mL and showed that subjects with antibodies below this are more susceptible to infection than those with a concentration above the established cut-off value.
Collapse
Affiliation(s)
- Domenico Tripodi
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Dominici
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
| | - Davide Sacco
- Department of Brain and Behavioural Sciences, Università degli Studi di Pavia, 27100 Pavia, Italy;
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20100 Milan, Italy
| | - Claudia Pozzobon
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
| | - Simona Spiti
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
| | - Rosanna Falbo
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
| | - Paolo Brambilla
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paolo Mascagni
- Clinical Unit of Occupational Health, Desio Hospital, ASST Brianza, 20832 Desio, Italy
| | - Valerio Leoni
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
26
|
Korosec CS, Dick DW, Moyles IR, Watmough J. SARS-CoV-2 booster vaccine dose significantly extends humoral immune response half-life beyond the primary series. Sci Rep 2024; 14:8426. [PMID: 38637521 PMCID: PMC11026522 DOI: 10.1038/s41598-024-58811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
SARS-CoV-2 lipid nanoparticle mRNA vaccines continue to be administered as the predominant prophylactic measure to reduce COVID-19 disease pathogenesis. Quantifying the kinetics of the secondary immune response from subsequent doses beyond the primary series and understanding how dose-dependent immune waning kinetics vary as a function of age, sex, and various comorbidities remains an important question. We study anti-spike IgG waning kinetics in 152 individuals who received an mRNA-based primary series (first two doses) and a subset of 137 individuals who then received an mRNA-based booster dose. We find the booster dose elicits a 71-84% increase in the median Anti-S half life over that of the primary series. We find the Anti-S half life for both primary series and booster doses decreases with age. However, we stress that although chronological age continues to be a good proxy for vaccine-induced humoral waning, immunosenescence is likely not the mechanism, rather, more likely the mechanism is related to the presence of noncommunicable diseases, which also accumulate with age, that affect immune regulation. We are able to independently reproduce recent observations that those with pre-existing asthma exhibit a stronger primary series humoral response to vaccination than compared to those that do not, and further, we find this result is sustained for the booster dose. Finally, via a single-variate Kruskal-Wallis test we find no difference between male and female humoral decay kinetics, however, a multivariate approach utilizing Least Absolute Shrinkage and Selection Operator (LASSO) regression for feature selection reveals a statistically significant (p < 1 × 10 - 3 ), albeit small, bias in favour of longer-lasting humoral immunity amongst males.
Collapse
Affiliation(s)
- Chapin S Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - David W Dick
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - Iain R Moyles
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada
| | - James Watmough
- Department of Mathematics and Statistics, University of New Brunswick, 3 Bailey Dr, Fredericton, E3B 5A3, NB, Canada
| |
Collapse
|
27
|
Gaultier GN, McMillan B, Poloni C, Lo M, Cai B, Zheng JJ, Baer HM, Shulha HP, Simmons K, Márquez AC, Bartlett SR, Cook L, Levings MK, Steiner T, Sekirov I, Zlosnik JEA, Morshed M, Skowronski DM, Krajden M, Jassem AN, Sadarangani M. Adaptive immune responses to two-dose COVID-19 vaccine series in healthy Canadian adults ≥ 50 years: a prospective, observational cohort study. Sci Rep 2024; 14:8926. [PMID: 38637558 PMCID: PMC11026432 DOI: 10.1038/s41598-024-59535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
To evaluate immune responses to COVID-19 vaccines in adults aged 50 years and older, spike protein (S)-specific antibody concentration, avidity, and function (via angiotensin-converting enzyme 2 (ACE2) inhibition surrogate neutralization and antibody dependent cellular phagocytosis (ADCP)), as well as S-specific T cells were quantified via activation induced marker (AIM) assay in response to two-dose series. Eighty-four adults were vaccinated with either: mRNA/mRNA (mRNA-1273 and/or BNT162b2); ChAdOx1-S/mRNA; or ChAdOx1-S/ChAdOx1-S. Anti-S IgG concentrations, ADCP scores and ACE2 inhibiting antibody concentrations were highest at one-month post-second dose and declined by four-months post-second dose for all groups. mRNA/mRNA and ChAdOx1-S/mRNA schedules had significantly higher antibody responses than ChAdOx1-S/ChAdOx1-S. CD8+ T-cell responses one-month post-second dose were associated with increased ACE2 surrogate neutralization. Antibody avidity (total relative avidity index) did not change between one-month and four-months post-second dose and did not significantly differ between groups by four-months post-second dose. In determining COVID-19 correlates of protection, a measure that considers both antibody concentration and avidity should be considered.
Collapse
Affiliation(s)
- Gabrielle N Gaultier
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
| | - Brynn McMillan
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
| | - Chad Poloni
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mandy Lo
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jean J Zheng
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Hannah M Baer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hennady P Shulha
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Karen Simmons
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | | | - Sofia R Bartlett
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Laura Cook
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Megan K Levings
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Theodore Steiner
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Inna Sekirov
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Muhammad Morshed
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Agatha N Jassem
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
28
|
Wholey WY, Meyer AR, Yoda ST, Chackerian B, Zikherman J, Cheng W. Minimal Determinants for Lifelong Antiviral Antibody Responses in Mice from a Single Exposure to Virus-like Immunogens at Low Doses. Vaccines (Basel) 2024; 12:405. [PMID: 38675787 PMCID: PMC11054763 DOI: 10.3390/vaccines12040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The durability of an antibody (Ab) response is highly important for antiviral vaccines. However, due to the complex compositions of natural virions, the molecular determinants of Ab durability from viral infection or inactivated viral vaccines have been incompletely understood. Here we used a reductionist system of liposome-based virus-like structures to examine the durability of Abs from primary immune responses in mice. This system allowed us to independently vary fundamental viral attributes and to do so without additional adjuvants to model natural viruses. We show that a single injection of protein antigens (Ags) orderly displayed on a virion-sized liposome is sufficient to induce a long-lived neutralizing Ab (nAb) response. The introduction of internal nucleic acids dramatically modulates the magnitude of Ab responses without an alteration of the long-term kinetic trends. These Abs are characterized by very slow off-rates of ~0.0005 s-1, which emerged as early as day 5 after injection and these off-rates are comparable to that of affinity-matured monoclonal Abs. A single injection of these structures at doses as low as 100 ng led to lifelong nAb production in mice. Thus, a minimal virus-like immunogen can give rise to potent and long-lasting antiviral Abs in a primary response in mice without live infection. This has important implications for understanding both live viral infection and for optimizing vaccine design.
Collapse
Affiliation(s)
- Wei-Yun Wholey
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
| | - Alexander R. Meyer
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
| | - Sekou-Tidiane Yoda
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Wei Cheng
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Alzate-Ángel JC, Avilés-Vergara PA, Arango-Londoño D, Concha-Eastman A, Garcés-Hurtado A, López-Carvajal L, Minotta IL, Ortega-Lenis D, Quintero G, Reina-Bolaños S, Reina-Bolaños CA, Roa P, Sánchez-Orozco M, Tovar-Acero C, Arbeláez-Montoya MP. How has research on the effectiveness and safety of COVID-19 vaccination been evaluated: a scope review with emphasis on CoronaVac. Front Public Health 2024; 12:1321327. [PMID: 38660359 PMCID: PMC11040685 DOI: 10.3389/fpubh.2024.1321327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction The control of the COVID-19 epidemic has been focused on the development of vaccines against SARS-CoV-2. All developed vaccines have reported safety and efficacy results in preventing infection and its consequences, although the quality of evidence varies depending on the vaccine considered. Different methodological designs have been used for their evaluation, which can influence our understanding of the effects of these interventions. CoronaVac is an inactivated vaccine, and it has been assessed in various studies, including clinical trials and observational studies. Given these differences, our objective was to explore the published information to answer the question: how has the efficacy/effectiveness and safety of CoronaVac been evaluated in different studies? This is to identify potential gaps and challenges to be addressed in understanding its effect. Methods A scoping review was carried out following the methodology proposed by the Joanna Briggs Institute, which included studies carried out in humans as of 2020, corresponding to systematic reviews, clinical trials, analytical or descriptive observational studies, in which the effectiveness and/or safety of vaccines for COVID19 were evaluated or described. There were no age restrictions for the study participants. Results The efficacy/effectiveness and safety of this vaccine was assessed through 113 studies. Nineteen corresponded to experimental studies, 7 of Phase II, 5 of Phase IV, and 4 were clinical trials with random assignment. Although some clinical trials with random assignment have been carried out, these have limitations in terms of feasibility, follow-up times, and with this, the possibility of evaluating safety outcomes that occur with low frequencies. Not all studies have used homogeneous methods of analysis. Both the prevention of infection, and the prevention of outcomes such as hospitalization or death, have been valued through similar outcomes, but some through multivariate analysis of dependencies, and others through analysis that try to infer causally through different control methods of confounding. Conclusion Published information on the evaluation of the efficacy/effectiveness and safety of the CoronaVac is abundant. However, there are differences in terms of vaccine application schedules, population definition, outcomes evaluated, follow-up times, and safety assessment, as well as non-standardization in the reporting of results, which may hinder the generalizability of the findings. It is important to generate meetings and consensus strategies for the methods and reporting of this type of studies, which will allow to reduce the heterogeneity in their presentation and a better understanding of the effect of these vaccines.
Collapse
Affiliation(s)
| | - Paula A. Avilés-Vergara
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Colombia
| | - David Arango-Londoño
- Grupo de investigación EMAP - Estadística y Matemáticas Aplicadas, Pontificia Universidad Javeriana, Cali, Colombia
| | | | | | - Liliana López-Carvajal
- Grupo de Investigación Clínica - PECET (GIC-PECET), Universidad de Antioquia, Medellín, Colombia
| | - Ingrid L. Minotta
- Grupo de Investigación en Economía, Gestión y Salud, ECGESA. Pontificia Universidad Javeriana, Cali, Colombia
| | - Delia Ortega-Lenis
- Departamento de Salud pública y Epidemiología, Pontificia Universidad Javeriana, Cali, Colombia
| | | | | | - Carlos A. Reina-Bolaños
- Grupo de Epidemiología, Universidad de Antioquia, Medellín, Colombia
- Grupo de Investigación, Secretaría de Salud Distrital, Cali, Colombia
| | - Pablo Roa
- Grupo de Investigación, Secretaría de Salud Distrital, Cali, Colombia
| | | | - Catalina Tovar-Acero
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Colombia
| | - María P. Arbeláez-Montoya
- Grupo de Epidemiología, Universidad de Antioquia, Medellín, Colombia
- Grupo de Investigación Clínica - PECET (GIC-PECET), Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
30
|
Yang ZH, Song YL, Pei J, Li SZ, Liu RL, Xiong Y, Wu J, Liu YL, Fan HF, Wu JH, Wang ZJ, Guo J, Meng SL, Chen XQ, Lu J, Shen S. Measles Virus-Based Vaccine Expressing Membrane-Anchored Spike of SARS-CoV-2 Inducing Efficacious Systemic and Mucosal Humoral Immunity in Hamsters. Viruses 2024; 16:559. [PMID: 38675901 PMCID: PMC11054861 DOI: 10.3390/v16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
As SARS-CoV-2 continues to evolve and COVID-19 cases rapidly increase among children and adults, there is an urgent need for a safe and effective vaccine that can elicit systemic and mucosal humoral immunity to limit the emergence of new variants. Using the Chinese Hu191 measles virus (MeV-hu191) vaccine strain as a backbone, we developed MeV chimeras stably expressing the prefusion forms of either membrane-anchored, full-length spike (rMeV-preFS), or its soluble secreted spike trimers with the help of the SP-D trimerization tag (rMeV-S+SPD) of SARS-CoV-2 Omicron BA.2. The two vaccine candidates were administrated in golden Syrian hamsters through the intranasal or subcutaneous routes to determine the optimal immunization route for challenge. The intranasal delivery of rMeV-S+SPD induced a more robust mucosal IgA antibody response than the subcutaneous route. The mucosal IgA antibody induced by rMeV-preFS through the intranasal routine was slightly higher than the subcutaneous route, but there was no significant difference. The rMeV-preFS vaccine stimulated higher mucosal IgA than the rMeV-S+SPD vaccine through intranasal or subcutaneous administration. In hamsters, intranasal administration of the rMeV-preFS vaccine elicited high levels of NAbs, protecting against the SARS-CoV-2 Omicron BA.2 variant challenge by reducing virus loads and diminishing pathological changes in vaccinated animals. Encouragingly, sera collected from the rMeV-preFS group consistently showed robust and significantly high neutralizing titers against the latest variant XBB.1.16. These data suggest that rMeV-preFS is a highly promising COVID-19 candidate vaccine that has great potential to be developed into bivalent vaccines (MeV/SARS-CoV-2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jia Lu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, China; (Z.-H.Y.); (Y.-L.S.); (J.P.); (S.-Z.L.); (R.-L.L.); (Y.X.); (J.W.); (Y.-L.L.); (H.-F.F.); (J.-H.W.); (Z.-J.W.); (J.G.); (S.-L.M.); (X.-Q.C.)
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, China; (Z.-H.Y.); (Y.-L.S.); (J.P.); (S.-Z.L.); (R.-L.L.); (Y.X.); (J.W.); (Y.-L.L.); (H.-F.F.); (J.-H.W.); (Z.-J.W.); (J.G.); (S.-L.M.); (X.-Q.C.)
| |
Collapse
|
31
|
Senevirathne TH, Wekking D, Swain JWR, Solinas C, De Silva P. COVID-19: From emerging variants to vaccination. Cytokine Growth Factor Rev 2024; 76:127-141. [PMID: 38135574 DOI: 10.1016/j.cytogfr.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The vigorous spread of SARS-CoV-2 resulted in the rapid infection of millions of people worldwide and devastation of not only public healthcare, but also social, educational, and economic infrastructures. The evolution of SARS-CoV-2 over time is due to the mutations that occurred in the genome during each replication. These mutated forms of SARS-CoV-2, otherwise known as variants, were categorized as variants of interest (VOI) or variants of concern (VOC) based on the increased risk of transmissibility, disease severity, immune escape, decreased effectiveness of current social measures, and available vaccines and therapeutics. The swift development of COVID-19 vaccines has been a great success for biomedical research, and billions of vaccine doses, including boosters, have been administered worldwide. BNT162b2 vaccine (Pfizer-BioNTech), mRNA-1273 (Moderna), ChAdOx1 nCoV-19 (AstraZeneca), and Janssen (Johnson & Johnson) are the four major COVID-19 vaccines that received early regulatory authorization based on their efficacy. However, some SARS-CoV-2 variants resulted in higher resistance to available vaccines or treatments. It has been four years since the first reported infection of SARS-CoV-2, yet the Omicron variant and its subvariants are still infecting people worldwide. Despite this, COVID-19 vaccines are still expected to be effective at preventing severe disease, hospitalization, and death from COVID. In this review, we provide a comprehensive overview of the COVID-19 pandemic focused on evolution of VOC and vaccination strategies against them.
Collapse
Affiliation(s)
- Thilini H Senevirathne
- Faculty of Science, Katholieke Universiteit Leuven, Kasteelpark Arenberg, Leuven, Belgium
| | - Demi Wekking
- Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Cinzia Solinas
- Medical Oncology, AOU Cagliari, P.O. Duilio Casula, Monserrato (CA), Italy.
| | - Pushpamali De Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
32
|
García-Vega M, Wan H, Reséndiz-Sandoval M, Hinojosa-Trujillo D, Valenzuela O, Mata-Haro V, Dehesa-Canseco F, Solís-Hernández M, Marcotte H, Pan-Hammarström Q, Hernández J. Comparative single-cell transcriptomic profile of hybrid immunity induced by adenovirus vector-based COVID-19 vaccines. Genes Immun 2024; 25:158-167. [PMID: 38570727 DOI: 10.1038/s41435-024-00270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
In this study, antibody response and a single-cell RNA-seq analysis were conducted on peripheral blood mononuclear cells from five different groups: naïve subjects vaccinated with AZD1222 (AZ) or Ad5-nCoV (Cso), individuals previously infected and later vaccinated (hybrid) with AZD1222 (AZ-hb) or Ad5-nCoV (Cso-hb), and those who were infected and had recovered from COVID-19 (Inf). The results showed that AZ induced more robust neutralizing antibody responses than Cso. The single-cell RNA data revealed a high frequency of memory B cells in the Cso and Cso-hb. In contrast, AZ and AZ-hb groups exhibited the highest proportion of activated naïve B cells expressing CXCR4. Transcriptomic analysis of CD4+ and CD8+ T cells demonstrated a heterogeneous response following vaccination, hybrid immunity, or natural infection. However, a single dose of Ad5-nCoV was sufficient to strongly activate CD4+ T cells (naïve and memory) expressing ANX1 and FOS, similar to the hybrid response observed with AZ. An interesting finding was the robust activation of a subset of CD8+ T cells expressing GZMB, GZMH, and IFNG genes in the Cso-hb group. Our findings suggest that both vaccines effectively stimulated the cellular immune response; however, the Ad5-nCoV induced a more robust CD8+ T-cell response in previously infected individuals.
Collapse
Affiliation(s)
- Melissa García-Vega
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, 83304, Mexico
| | - Hui Wan
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, SE171 65, Sweden
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, 83304, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, 83304, Mexico
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, 83304, Mexico
| | - Freddy Dehesa-Canseco
- Comisión México-Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales (CPA), SENASICA, SADER, Ciudad de México, 05010, Mexico
| | - Mario Solís-Hernández
- Comisión México-Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales (CPA), SENASICA, SADER, Ciudad de México, 05010, Mexico
| | - Harold Marcotte
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, SE171 65, Sweden
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, SE171 65, Sweden.
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, 83304, Mexico.
| |
Collapse
|
33
|
Zhu C, Pang S, Liu J, Duan Q. Current Progress, Challenges and Prospects in the Development of COVID-19 Vaccines. Drugs 2024; 84:403-423. [PMID: 38652356 DOI: 10.1007/s40265-024-02013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 04/25/2024]
Abstract
The COVID-19 pandemic has resulted in over 772 million confirmed cases, including nearly 7 million deaths, according to the World Health Organization (WHO). Leveraging rapid development, accelerated vaccine approval processes, and large-scale production of various COVID-19 vaccines using different technical platforms, the WHO declared an end to the global health emergency of COVID-19 on May 5, 2023. Current COVID-19 vaccines encompass inactivated, live attenuated, viral vector, protein subunit, nucleic acid (DNA and RNA), and virus-like particle (VLP) vaccines. However, the efficacy of these vaccines is diminishing due to the constant mutation of SARS-CoV-2 and the heightened immune evasion abilities of emerging variants. This review examines the impact of the COVID-19 pandemic, the biological characteristics of the virus, and its diverse variants. Moreover, the review underscores the effectiveness, advantages, and disadvantages of authorized COVID-19 vaccines. Additionally, it analyzes the challenges, strategies, and future prospects of developing a safe, broad-spectrum vaccine that confers sufficient and sustainable immune protection against new variants of SARS-CoV-2. These discussions not only offer insight for the development of next-generation COVID-19 vaccines but also summarize experiences for combating future emerging viruses.
Collapse
Affiliation(s)
- Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Shengmei Pang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jiaqi Liu
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Qiangde Duan
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
34
|
Ceolin C, De Rui M, Simonato C, Vergadoro M, Cazzavillan S, Acunto V, Papa MV, Trapella GS, Zanforlini BM, Curreri C, Bertocco A, Devita M, Coin A, Sergi G. Sarcopenic patients "get even": The impact of COVID-19 vaccination on mortality. Exp Gerontol 2024; 187:112382. [PMID: 38369251 DOI: 10.1016/j.exger.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Coronavirus Disease-2019 (COVID-19), driven by the SARS-CoV-2 virus, has disproportionately affected the elderly, with comorbidities like sarcopenia worsening prognosis. Considering the significant impact of RNA vaccines on survival rates in this population, our objective is to investigate the impact of vaccination on the survival of hospitalized elderly patients with COVID-19, considering the presence or absence of sarcopenia. METHODS Prospective study conducted on 159 patients aged>65 years from September 2021 to March 2022. Data about clinical and body composition, and mortality at 12-months after discharge were recorded. Sarcopenia was diagnosed according to the 2019 European Consensus criteria. RESULTS At the twelfth month post-discharge, vaccinated sarcopenic individuals exhibited a mortality risk similar to vaccinated non-sarcopenic individuals, and lower than unvaccinated non-sarcopenic patients. Cox regression analysis, adjusted for age, gender, comorbidity, functional and vaccinal status, showed that the presence of sarcopenia did not significantly impact the risk of death within 12-months post-discharge. DISCUSSION Vaccination emerges as a protective measure for sarcopenic patients, countering the potential adverse effects of sarcopenia on COVID-19 outcomes, underscoring the importance of immunization in the frail elderly with a call for meticulous monitoring of its benefits. CONCLUSIONS Our study represents the first attempt to analyze the vaccine's effect on survival in sarcopenic hospitalized older adults with COVID-19. The administration of vaccination to sarcopenic patients proves pivotal, as its omission could lead to notably unfavorable outcomes within this specific population.
Collapse
Affiliation(s)
- Chiara Ceolin
- Department of Medicine (DIMED), Geriatrics Division, University of Padua, Italy.
| | - Marina De Rui
- Department of Medicine (DIMED), Geriatrics Division, University of Padua, Italy
| | - Cristina Simonato
- Department of Medicine (DIMED), Geriatrics Division, University of Padua, Italy
| | - Margherita Vergadoro
- Department of Medicine (DIMED), Department of Women's and Children's Health, University of Padua, Italy
| | - Sara Cazzavillan
- Department of Medicine (DIMED), Geriatrics Division, University of Padua, Italy
| | - Vittorio Acunto
- Department of Medicine (DIMED), Geriatrics Division, University of Padua, Italy
| | - Mario Virgilio Papa
- Department of Medicine (DIMED), Geriatrics Division, University of Padua, Italy
| | | | | | - Chiara Curreri
- Department of Medicine (DIMED), Geriatrics Division, University of Padua, Italy
| | - Anna Bertocco
- Department of Medicine (DIMED), Geriatrics Division, University of Padua, Italy
| | - Maria Devita
- Department of General Psychology (DPG), University of Padua, Italy
| | - Alessandra Coin
- Department of Medicine (DIMED), Geriatrics Division, University of Padua, Italy
| | - Giuseppe Sergi
- Department of Medicine (DIMED), Geriatrics Division, University of Padua, Italy
| |
Collapse
|
35
|
Liu Y, Li M, Cui T, Chen Z, Xu L, Li W, Peng Q, Li X, Zhao D, Valencia CA, Dong B, Wang Z, Chow HY, Li Y. A superior heterologous prime-boost vaccination strategy against COVID-19: A bivalent vaccine based on yeast-derived RBD proteins followed by a heterologous vaccine. J Med Virol 2024; 96:e29454. [PMID: 38445768 DOI: 10.1002/jmv.29454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Various vaccines have been challenged by SARS-CoV-2 variants. Here, we reported a yeast-derived recombinant bivalent vaccine (Bivalent wild-type [Wt]+De) based on the wt and Delta receptor-binding domain (RBD). Yeast derived RBD proteins based on the wt and Delta mutant were used as the prime vaccine. It was found that, in the presence of aluminium hydroxide (Alum) and unmethylated CpG-oligodeoxynucleotides (CpG) adjuvants, more cross-protective immunity against SARS-CoV-2 prototype and variants were elicited by bivalent vaccine than monovalent wtRBD or Delta RBD. Furthermore, a heterologous boosting strategy consisting of two doses of bivalent vaccines followed by one dose adenovirus vectored vaccine exhibited cross-neutralization capacity and specific T cell responses against Delta and Omicron (BA.1 and BA.4/5) variants in mice, superior to a homologous vaccination strategy. This study suggested that heterologous prime-boost vaccination with yeast-derived bivalent protein vaccine could be a potential approach to address the challenge of emerging variants.
Collapse
Affiliation(s)
- Yu Liu
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Tingting Cui
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhian Chen
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Liangting Xu
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Qinhua Peng
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Xingxing Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Danhua Zhao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - C Alexander Valencia
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Real & Best Biotech Co., Ltd, Chengdu, China
| | - Zhongfang Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Hoi Yee Chow
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
36
|
Metzdorf K, Jacobsen H, Kim Y, Teixeira Alves LG, Kulkarni U, Eschke K, Chaudhry MZ, Hoffmann M, Bertoglio F, Ruschig M, Hust M, Cokarić Brdovčak M, Materljan J, Šustić M, Krmpotić A, Jonjić S, Widera M, Ciesek S, Pöhlmann S, Landthaler M, Čičin-Šain L. A single-dose MCMV-based vaccine elicits long-lasting immune protection in mice against distinct SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.11.25.517953. [PMID: 36482969 PMCID: PMC9727759 DOI: 10.1101/2022.11.25.517953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Current vaccines against COVID-19 elicit immune responses that are overall strong but wane rapidly. As a consequence, the necessary booster shots have led to vaccine fatigue. Hence, vaccines that would provide lasting protection against COVID-19 are needed, but are still unavailable. Cytomegaloviruses (CMV) elicit lasting and uniquely strong immune responses. Used as vaccine vectors, they may be attractive tools that obviate the need for boosters. Therefore, we tested the murine CMV (MCMV) as a vaccine vector against COVID-19 in relevant preclinical models of immunization and challenge. We have previously developed a recombinant murine CMV (MCMV) vaccine vector expressing the spike protein of the ancestral SARS-CoV-2 (MCMVS). In this study, we show that the MCMVS elicits a robust and lasting protection in young and aged mice. Notably, S-specific humoral and cellular immunity was not only maintained but even increased over a period of at least 6 months. During that time, antibody avidity continuously increased and expanded in breadth, resulting in neutralization of genetically distant variants, like Omicron BA.1. A single dose of MCMVS conferred rapid virus clearance upon challenge. Moreover, MCMVS vaccination controlled two immune-evading variants of concern (VoCs), the Beta (B.1.135) and the Omicron (BA.1) variants. Thus, CMV vectors provide unique advantages over other vaccine technologies, eliciting broadly reactive and long-lasting immune responses against COVID-19.
Collapse
Affiliation(s)
- Kristin Metzdorf
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Henning Jacobsen
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yeonsu Kim
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luiz Gustavo Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Upasana Kulkarni
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kathrin Eschke
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Federico Bertoglio
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maximilian Ruschig
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Jelena Materljan
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Marko Šustić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- German Centre for Infection Research (DZIF), External partner site Frankfurt, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine (CiiM), a joint venture of HZI and MHH, Hannover, Germany
| |
Collapse
|
37
|
Fischer C, Willscher E, Paschold L, Gottschick C, Klee B, Diexer S, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Hoell JI, Gekle M, Addo MM, Schulze Zur Wiesch J, Mikolajczyk R, Binder M, Schultheiß C. SARS-CoV-2 vaccination may mitigate dysregulation of IL-1/IL-18 and gastrointestinal symptoms of the post-COVID-19 condition. NPJ Vaccines 2024; 9:23. [PMID: 38316833 PMCID: PMC10844289 DOI: 10.1038/s41541-024-00815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
The rapid development of safe and effective vaccines helped to prevent severe disease courses after SARS-CoV-2 infection and to mitigate the progression of the COVID-19 pandemic. While there is evidence that vaccination may reduce the risk of developing post-COVID-19 conditions (PCC), this effect may depend on the viral variant. Therapeutic effects of post-infection vaccination have been discussed but the data for individuals with PCC remains inconclusive. In addition, extremely rare side effects after SARS-CoV-2 vaccination may resemble the heterogeneous PCC phenotype. Here, we analyze the plasma levels of 25 cytokines and SARS-CoV-2 directed antibodies in 540 individuals with or without PCC relative to one or two mRNA-based COVID-19 vaccinations as well as in 20 uninfected individuals one month after their initial mRNA-based COVID-19 vaccination. While none of the SARS-CoV-2 naïve individuals reported any persisting sequelae or exhibited PCC-like dysregulation of plasma cytokines, we detected lower levels of IL-1β and IL-18 in patients with ongoing PCC who received one or two vaccinations at a median of six months after infection as compared to unvaccinated PCC patients. This reduction correlated with less frequent reporting of persisting gastrointestinal symptoms. These data suggest that post-infection vaccination in patients with PCC might be beneficial in a subgroup of individuals displaying gastrointestinal symptoms.
Collapse
Affiliation(s)
- Claudia Fischer
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Sophie Diexer
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jochen Dutzmann
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Thomas Frese
- Institute of General Practice and Family Medicine, Martin-Luther-University Halle-Wittenberg, Halle, (Saale), Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Jessica I Hoell
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Michael Gekle
- Julius Bernstein-Institute of Physiology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Marylyn M Addo
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
| | | | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland
| | - Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
38
|
Mishra G, Prajapat V, Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology 2024; 171:155-169. [PMID: 37712243 DOI: 10.1111/imm.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.
Collapse
Affiliation(s)
- Gayatree Mishra
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishal Prajapat
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Debasis Nayak
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
39
|
Zeinab D, Shahin N, Fateme M, Saeed BF. Economic evaluation of vaccination against COVID-19: A systematic review. Health Sci Rep 2024; 7:e1871. [PMID: 38332928 PMCID: PMC10850437 DOI: 10.1002/hsr2.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/13/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Background and Aims Coronavirus has burdened considerable expenditures on the different health systems. Vaccination programs, the critical solution against pandemic diseases, are known as safe and effective interventions to prevent and control epidemics. We aimed to perform a systematic review to provide economic evidence of the value of different types of vaccines available to combat the Covid-19 to all health policymakers worldwide. Methods Electronic searches conducted on Medline/PubMed, Cochrane Library, Web of Science, Scopus, Embase, and other economic evaluation databases. Related and published articles searched up to March 2022 by using keywords such as "Vaccination," "Covid-19," "Cost-benefit," "Cost-utility," "Cost-effectiveness," "Economic Assessment," and "Economic evaluation." Followed by choosing the most suitable articles according to inclusion and exclusion criteria, data captured and the results extracted. The quality assessment of the articles performed by the checklist of CHEERS 2022. Finally, 13 articles included in the review. Results All messenger RNA vaccines were dominant with approximately 70% coverage against no vaccination in the primary vaccination program except in one study that looked at booster effects. From a payer's perspective, a dollar invested in a vaccine would be less profitable than from a societal perspective. Therefore, primary mass vaccination can be considered a cost-effective intervention in primary vaccination to save more lives and produce more positive externalities. However, the cost-benefit ratio for all vaccines increases when statistical lifetime value and global economic and educational disadvantages are considered. Conclusion The COVID-19 primary vaccination programs in regional outbreaks, from a long-term perspective, will demonstrate substantial cost-effectiveness. It is suggested that due to the positive externalities of vaccination, primary mass vaccination, with the help of COVAX-19TM, could be considered a reliable way to combat viral epidemics compared to the loss of individual lives and economic and educational disturbances around the world.
Collapse
Affiliation(s)
- Dolatshahi Zeinab
- Department of Health Policy, School of Health Management and Information SciencesIran University of Medical SciencesTehranIran
| | - Nargesi Shahin
- Department of Health Management and Economics, Faculty of HealthIlam University of Medical SciencesIlamIran
| | - Mezginejad Fateme
- Department of Hematology, School of Allied Medicine, Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjanIran
| | - Bagheri Faradonbeh Saeed
- Department of Health Services Management, School of HealthAhvaz Jundishapur University of Medical ScienceAhvazIran
| |
Collapse
|
40
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
41
|
Zerey Albayrak M, Gül Yurtsever S, Peker BO, Müderris T, Kaya S. Evaluation of antibody and T Cell immunity response in different immunization groups of inactive and mRNA COVID-19 vaccines. Diagn Microbiol Infect Dis 2024; 108:116122. [PMID: 37963419 DOI: 10.1016/j.diagmicrobio.2023.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
This study aimed to evaluate the antibody and T cell responses of homologous and heterologous booster doses for SARS-CoV-2 vaccines. Our study was performed on those with two doses of mRNA vaccine BNT162b2 (2B, n:44), those with heterologous booster dose BNT162b2 vaccine after two doses of inactivated vaccine CoronaVac (2S+1B, n:44), those with homologous booster dose vaccine CoronaVac after two doses of vaccine CoronaVac (3S, n:44) SARS-CoV-2 IgG antibody levels were significantly higher in individuals who received heterologous boosters(p<0.001). IFN-Ɣ, IL-2 and IL-13 median values were detected higher in 2S+1B group than in 3S group, respectively (p=0.112, p=0.057, p=0.341). Although the antibody levels in 2S+1B group were similar (p=0.153) to the 2B group; IFN-Ɣ, IL-2 and IL-13 levels were higher (p<0.001). In conclusion, supplementing an improved strategy based on inactivated vaccines with an mRNA vaccine as a heterologous booster is likely to be more beneficial in the course of the pandemic.
Collapse
Affiliation(s)
- Merve Zerey Albayrak
- Republic of Turkey Ministry of Health, General Directorate of Public Health, Department of Microbiology Reference Laboratories and Biological Products, Ankara, Turkey.
| | - Süreyya Gül Yurtsever
- Izmir Katip Celebi University, Faculty of Medicine, Department of Microbiology, Izmir, Turkey
| | - Bilal Olcay Peker
- Atatürk Training and Research Hospital, Medical Microbiology Laboratory, Izmir, Turkey
| | - Tuba Müderris
- Izmir Katip Celebi University, Faculty of Medicine, Department of Microbiology, Izmir, Turkey
| | - Selçuk Kaya
- Izmir Katip Celebi University, Faculty of Medicine, Department of Microbiology, Izmir, Turkey
| |
Collapse
|
42
|
Walmsley S, Nabipoor M, Lovblom LE, Ravindran R, Colwill K, McGeer A, Dayam RM, Manase D, Gingras AC. Predictors of Breakthrough SARS-CoV-2 Infection after Vaccination. Vaccines (Basel) 2023; 12:36. [PMID: 38250849 PMCID: PMC10820583 DOI: 10.3390/vaccines12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
The initial two-dose vaccine series and subsequent booster vaccine doses have been effective in modulating SARS-CoV-2 disease severity and death but do not completely prevent infection. The correlates of infection despite vaccination continue to be under investigation. In this prospective decentralized study (n = 1286) comparing antibody responses in an older- (≥70 years) to a younger-aged cohort (aged 30-50 years), we explored the correlates of breakthrough infection in 983 eligible subjects. Participants self-reported data on initial vaccine series, subsequent booster doses and COVID-19 infections in an online portal and provided self-collected dried blood spots for antibody testing by ELISA. Multivariable survival analysis explored the correlates of breakthrough infection. An association between higher antibody levels and protection from breakthrough infection observed during the Delta and Omicron BA.1/2 waves of infection no longer existed during the Omicron BA.4/5 wave. The older-aged cohort was less likely to have a breakthrough infection at all time-points. Receipt of an original/Omicron vaccine and the presence of hybrid immunity were associated with protection of infection during the later Omicron BA.4/5 and XBB waves. We were unable to determine a threshold antibody to define protection from infection or to guide vaccine booster schedules.
Collapse
Affiliation(s)
- Sharon Walmsley
- Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, ON M5G1L7, Canada;
- Department of Medicine, University of Toronto, Toronto, ON M5S1A1, Canada
| | - Majid Nabipoor
- Biostatistics Department, University Health Network, Toronto, ON M5G1L7, Canada; (M.N.); (L.E.L.)
| | - Leif Erik Lovblom
- Biostatistics Department, University Health Network, Toronto, ON M5G1L7, Canada; (M.N.); (L.E.L.)
| | - Rizani Ravindran
- Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, ON M5G1L7, Canada;
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
| | - Alison McGeer
- Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada;
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
| | - Dorin Manase
- DATA Team, University Health Network, Toronto, ON M5G1L7, Canada;
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A1, Canada
| | | |
Collapse
|
43
|
Wu Y, Wu N, Jia X, Wu Y, Zhang X, Liu Y, Hou Y, Shen Y, Li E, Wang W, Wang Y, Chiu S. Long-term immune response to Omicron-specific mRNA vaccination in mice, hamsters, and nonhuman primates. MedComm (Beijing) 2023; 4:e460. [PMID: 38107058 PMCID: PMC10724501 DOI: 10.1002/mco2.460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron and its subvariants (such as BQ.1, XBB and the latest variants, including XBB.1.16, EG.5, and BA.2.86), as the dominant variants, currently account for almost all new infections in the world due to their high transmissibility and immune escape ability. Omicron-specific mRNA vaccines showed great potential to protect against Omicron infections. However, whether the vaccine could provide long-term protection is unknown. Toward this goal, we evaluated the immunogenicity of a preclinical Omicron (BA.1)-specific mRNA vaccine (SOmicron-6P) in different animal models. SOmicron-6P induced the highest levels of antibody titers at 1-2 weeks in different animals after the second dose. Even 9 months after the immunization, we observed modest neutralizing activity against Omicron subvariants in macaques. In addition, immunological memory cells can be rapidly reactivated upon stimulation. SOmicron-6P at concentrations higher than 10 μg effectively protected hamsters from BA.1 challenge 253 days after the first immunization, which could be attributed to the reactivation of immune systems. In addition, the toxicity tests conducted in rats revealed a highly favorable biosafety profile for SOmicron-6P, even at high dosages. Our data suggest that the Omicron-specific mRNA vaccine is highly effective and safe in animal models and provides long-term immunologic protection against SARS-CoV-2 Omicron infections.
Collapse
Affiliation(s)
- Yi Wu
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Namei Wu
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Xiaoying Jia
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanP. R. China
| | - Yan Wu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanP. R. China
| | - Xinghai Zhang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanP. R. China
| | - Yang Liu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanP. R. China
| | - Yuxia Hou
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | | | - Entao Li
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
- DepartmentKey Laboratory of Anhui Province for Emerging and Reemerging Infectious DiseasesHefeiAnhuiP. R. China
| | - Wei Wang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Yucai Wang
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
- RNAlfa BiotechHefeiAnhuiP. R. China
| | - Sandra Chiu
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
- DepartmentKey Laboratory of Anhui Province for Emerging and Reemerging Infectious DiseasesHefeiAnhuiP. R. China
- Core Unit of National Clinical Research Center for Laboratory MedicineHefeiAnhuiP. R. China
| |
Collapse
|
44
|
Islas-Vazquez L, Alvarado-Alvarado YC, Cruz-Aguilar M, Velazquez-Soto H, Villalobos-Gonzalez E, Ornelas-Hall G, Perez-Tapia SM, Jimenez-Martinez MC. Evaluation of the Abdala Vaccine: Antibody and Cellular Response to the RBD Domain of SARS-CoV-2. Vaccines (Basel) 2023; 11:1787. [PMID: 38140191 PMCID: PMC10748004 DOI: 10.3390/vaccines11121787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Abdala is a recently released RBD protein subunit vaccine against SARS-CoV-2. A few countries, including Mexico, have adopted Abdala as a booster dose in their COVID-19 vaccination schemes. Despite that, most of the Mexican population has received full-scheme vaccination with platforms other than Abdala; little is known regarding Abdala's immunological features, such as its antibody production and T- and B-cell-specific response induction. This work aimed to study antibody production and the adaptive cellular response in the Mexican population that received the Abdala vaccine as a booster. We recruited 25 volunteers and evaluated their RBD-specific antibody production, T- and B-cell-activating profiles, and cytokine production. Our results showed that the Abdala vaccine increases the concentration of RBD IgG-specific antibodies. Regarding the cellular response, after challenging peripheral blood cultures with RBD, the plasmablast (CD19+CD27+CD38High) and transitional B-cell (CD19+CD21+CD38High) percentages increased significantly, while T cells showed an increased activated phenotype (CD3+CD4+CD25+CD69+ and CD3+CD4+CD25+HLA-DR+). Also, IL-2 and IFN-γ increased significantly in the supernatant of the RBD-stimulated cells. Our results suggest that Abdala vaccination, used as a booster, evokes antibody production and the activation of previously generated memory against the SARS-CoV-2 RBD domain.
Collapse
Affiliation(s)
- Lorenzo Islas-Vazquez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Yan Carlos Alvarado-Alvarado
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Marisa Cruz-Aguilar
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Henry Velazquez-Soto
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Eduardo Villalobos-Gonzalez
- Unidad de Vigilancia Epidemiológica Hospitalaria, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
| | - Gloria Ornelas-Hall
- Unidad de Vigilancia Epidemiológica Hospitalaria, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
| | - Sonia Mayra Perez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico
| | - Maria C. Jimenez-Martinez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
45
|
Vergori A, Cozzi-Lepri A, Matusali G, Cicalini S, Bordoni V, Meschi S, Mazzotta V, Colavita F, Fusto M, Cimini E, Notari S, D’Aquila V, Lanini S, Lapa D, Gagliardini R, Mariotti D, Giannico G, Girardi E, Vaia F, Agrati C, Maggi F, Antinori A. Long Term Assessment of Anti-SARS-CoV-2 Immunogenicity after mRNA Vaccine in Persons Living with HIV. Vaccines (Basel) 2023; 11:1739. [PMID: 38140145 PMCID: PMC10747871 DOI: 10.3390/vaccines11121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Waning of neutralizing and cell-mediated immune response after the primary vaccine cycle (PVC) and the first booster dose (BD) is of concern, especially for PLWH with a CD4 count ≤200 cells/mm3. (2) Methods: Neutralizing antibodies (nAbs) titers by microneutralization assay against WD614G/Omicron BA.1 and IFNγ production by ELISA assay were measured in samples of PLWH at four time points [2 and 4 months post-PVC (T1 and T2), 2 weeks and 5 months after the BD (T3 and T4)]. Participants were stratified by CD4 count after PVC (LCD4, ≤200/mm3; ICD4, 201-500/mm3, and HCD4, >500/mm3). Mixed models were used to compare mean responses over T1-T4 across CD4 groups. (3) Results: 314 PLWH on ART (LCD4 = 56; ICD4 = 120; HCD4 = 138) were enrolled. At T2, levels of nAbs were significantly lower in LCD4 vs. ICD4/HCD4 (p = 0.04). The BD was crucial for increasing nAbs titers above 1:40 at T3 and up to T4 for WD614G. A positive T cell response after PVC was observed in all groups, regardless of CD4 (p = 0.31). (4) Conclusions: Waning of nAbs after PVC was more important in LCD4 group. The BD managed to re-establish higher levels of nAbs against WD614G, which were retained for 5 months, but for shorter time for Omicron BA.1. The T cellular response in the LCD4 group was lower than that seen in participants with higher CD4 count, but, importantly, it remained above detectable levels over the entire study period.
Collapse
Affiliation(s)
- Alessandra Vergori
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Alessandro Cozzi-Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute of Global Health, University College London, London NW3 2PF, UK
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Stefania Cicalini
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Veronica Bordoni
- Unit of Pathogen Specific Immunity, Department of Paediatric Haematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (V.B.); (C.A.)
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Valentina Mazzotta
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Marisa Fusto
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (E.C.); (S.N.)
| | - Stefania Notari
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (E.C.); (S.N.)
| | - Veronica D’Aquila
- Department of System Medicine, Faculty of Medicine, Tor Vergata University, 00133 Rome, Italy;
| | - Simone Lanini
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Roberta Gagliardini
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Davide Mariotti
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Giuseppina Giannico
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy;
| | - Francesco Vaia
- General Directorate of Prevention, Ministry of Health, 00144 Rome, Italy;
| | - Chiara Agrati
- Unit of Pathogen Specific Immunity, Department of Paediatric Haematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (V.B.); (C.A.)
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (E.C.); (S.N.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Andrea Antinori
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| |
Collapse
|
46
|
Liu J, Cao F, Luo C, Guo Y, Yan J. Stroke Following Coronavirus Disease 2019 Vaccination: Evidence Based on Different Designs of Real-World Studies. J Infect Dis 2023; 228:1336-1346. [PMID: 37536364 DOI: 10.1093/infdis/jiad306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND We aimed to evaluate whether coronavirus disease 2019 (COVID-19) vaccination was associated with stroke. METHODS We conducted a systematic meta-analysis of studies using cohort, self-controlled case series (SCCS), and case-crossover study (CCOS) designs to evaluate incidence risk ratios (IRRs) and 95% confidence intervals (CIs) of ischemic stroke (IS), hemorrhagic stroke (HS), and cerebral venous sinus thrombosis (CVST) following COVID-19 vaccination. Risks of stroke were pooled among subpopulations categorized by vaccine type, dose, age, and sex. Sensitivity analysis was performed by different defined risk periods. RESULTS Fourteen studies involving 79 918 904 individuals were included. Cohort studies showed decreased risks of IS (IRR, 0.82 [95% CI, .75-.90]) and HS (IRR, 0.75 [95% CI, .67-.85]) postvaccination, but not CVST (IRR, 1.18 [95% CI, .70-1.98]). SCCS identified increased risks 1-21 days postvaccination (IRRIS, 1.05 [95% CI, 1.00-1.10]; IRRHS, 1.16 [95% CI, 1.06-1.26]) or 1-28 days postvaccination (IRRIS, 1.04 [95% CI, 1.00-1.08]; IRRHS, 1.37 [95% CI, 1.15-1.64]), similar to CVST (IRR, 1.58 [95% CI, 1.08-2.32]). CCOS reported an increased risk of CVST after ChAdOx1 vaccination (IRR, 2.9 [95% CI, 1.1-7.2]). CONCLUSIONS Although different study designs yielded inconsistent findings, considering the relatively low background incidence of stroke and benefits of vaccination, even a potentially increased risk of stroke postvaccination should not justify vaccine hesitancy.
Collapse
Affiliation(s)
- Junyu Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fang Cao
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Chun Luo
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Yuxin Guo
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, XiangYa School of Public Health, Central South University, Changsha, China
| |
Collapse
|
47
|
Schommers P, Kim DS, Schlotz M, Kreer C, Eggeling R, Hake A, Stecher M, Park J, Radford CE, Dingens AS, Ercanoglu MS, Gruell H, Odidika S, Dahlhaus M, Gieselmann L, Ahmadov E, Lawong RY, Heger E, Knops E, Wyen C, Kümmerle T, Römer K, Scholten S, Wolf T, Stephan C, Suárez I, Raju N, Adhikari A, Esser S, Streeck H, Duerr R, Nanfack AJ, Zolla-Pazner S, Geldmacher C, Geisenberger O, Kroidl A, William W, Maganga L, Ntinginya NE, Georgiev IS, Vehreschild JJ, Hoelscher M, Fätkenheuer G, Lavinder JJ, Bloom JD, Seaman MS, Lehmann C, Pfeifer N, Georgiou G, Klein F. Dynamics and durability of HIV-1 neutralization are determined by viral replication. Nat Med 2023; 29:2763-2774. [PMID: 37957379 PMCID: PMC10667105 DOI: 10.1038/s41591-023-02582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1)-neutralizing antibodies (nAbs) that prevent infection are the main goal of HIV vaccine discovery. But as no nAb-eliciting vaccines are yet available, only data from HIV-1 neutralizers-persons with HIV-1 who naturally develop broad and potent nAbs-can inform about the dynamics and durability of nAb responses in humans, knowledge which is crucial for the design of future HIV-1 vaccine regimens. To address this, we assessed HIV-1-neutralizing immunoglobulin G (IgG) from 2,354 persons with HIV-1 on or off antiretroviral therapy (ART). Infection with non-clade B viruses, CD4+ T cell counts <200 µl-1, being off ART and a longer time off ART were independent predictors of a more potent and broad neutralization. In longitudinal analyses, we found nAb half-lives of 9.3 and 16.9 years in individuals with no- or low-level viremia, respectively, and 4.0 years in persons who newly initiated ART. Finally, in a potent HIV-1 neutralizer, we identified lower fractions of serum nAbs and of nAb-encoding memory B cells after ART initiation, suggesting that a decreasing neutralizing serum activity after antigen withdrawal is due to lower levels of nAbs. These results collectively show that HIV-1-neutralizing responses can persist for several years, even at low antigen levels, suggesting that an HIV-1 vaccine may elicit a durable nAb response.
Collapse
Affiliation(s)
- Philipp Schommers
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Dae Sung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Maike Schlotz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ralf Eggeling
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Anna Hake
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- Saarland Informatics Campus, Saarbrücken, Germany
| | - Melanie Stecher
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Meryem S Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stanley Odidika
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Marten Dahlhaus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Elvin Ahmadov
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rene Y Lawong
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Wyen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | | | - Katja Römer
- Gemeinschaftspraxis Gotenring, Cologne, Germany
| | | | - Timo Wolf
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Christoph Stephan
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Isabelle Suárez
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anurag Adhikari
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Stefan Esser
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hendrik Streeck
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Institute of Virology, Medical Faculty, University Bonn, Bonn, Germany
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York City, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York City, NY, USA
- Vaccine Center, NYU Grossman School of Medicine, New York City, NY, USA
| | - Aubin J Nanfack
- Medical Diagnostic Center, Yaoundé, Cameroon
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Microbiology, Icahn School of Medicine, New York City, NY, USA
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Otto Geisenberger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Wiston William
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | - Lucas Maganga
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | | | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jörg J Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
- Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Jason J Lavinder
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - George Georgiou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
48
|
Li H, Wang Y, Li X, Wang S, Feng X, Xiao X, Li Y. Antibody response to inactivated COVID-19 vaccine in patients with type 2 diabetes mellitus after the booster immunization. J Diabetes 2023; 15:931-943. [PMID: 37518861 PMCID: PMC10667667 DOI: 10.1111/1753-0407.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/10/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND The immunogenicity of booster inactivated COVID-19 vaccines in patients with type 2 diabetes mellitus (T2DM) has remained unclear. Our study aims to investigate the antibody response to inactivated COVID-19 vaccine following booster vaccination in patients with T2DM. METHODS A total of 201 patients with T2DM and 102 healthy controls (HCs) were enrolled. The levels of anti-SARS-CoV-2 total antibodies, anti-receptor-binding domain (RBD)-specific IgG, neutralizing antibody (NAb) toward SARS-CoV-2 wild type (WT), and NAb toward SARS-CoV-2 Omicron BA.4/5 subvariant were measured to evaluate the vaccine-induced immunological responses. RESULTS The titers of anti-RBD-specific IgG (p = 0.018) and inhibition rates of NAb toward WT (p = 0.007) were significantly decreased in patients with T2DM compared to HCs after booster vaccination for more than 6 months. Both HCs and patients with T2DM showed poor resistance against BA.4/5 due to the detected inhibition rates being lower than the positive threshold. The levels of anti-RBD-specific IgG were positively associated with the proportions of CD3+ CD4- CD8- T cells (p = 0.045), and patients with T2DM who had anti-RBD-specific IgG positivity showed higher proportions of CD3+ CD4- CD8- T cells compared to those negative (p = 0.005). CONCLUSIONS Patients with T2DM showed impaired antibody responses after booster vaccination for more than 6 months. Decreased anti-BA.4/5 responses give rise to the possibility of breakthrough infections for both patients with T2DM and HCs.
Collapse
Affiliation(s)
- Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yao Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Xiaomeng Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
- Department of Clinical LaboratoryPeking University People's HospitalBeijingChina
| | - Siyu Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Xinxin Feng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Xinhua Xiao
- Department of EndocrinologyPeking Union Medical College HospitalBeijingChina
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
49
|
Costard-Jäckle A, Schramm R, Fischer B, Rivinius R, Bruno R, Müller B, Zittermann A, Boeken U, Westenfeld R, Knabbe C, Gummert J. Third dose of the BNT162b2 vaccine in cardiothoracic transplant recipients: predictive factors for humoral response. Clin Res Cardiol 2023; 112:1506-1516. [PMID: 35994091 PMCID: PMC9395841 DOI: 10.1007/s00392-022-02075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND We report the results of a prospective study on the immunogenicity of a 3rd dose of BNT162b2 in thoracic organ recipients with no or minimal response following a two-dose BNT162b2 vaccination scheme. METHODS A total of 243 transplant recipients received a homologue 3rd dose. Anti-SARS-CoV2-immunoglobulins (IgGs) were monitored immediately before (T1), 4 weeks (T2) as well as 2 and 4 months after the 3rd dose. Neutralizing antibody capacity (NAC) was determined at T2. To reveal predictors for detectable humoral response, patients were divided into a positive response group (n = 129) based on the combined criteria of IgGs and NAC above the defined cut-offs at T2-and a group with negative response (n = 114), with both, IgGs and NAC beyond the cut-offs. RESULTS The 3rd dose induced a positive humoral response in 53% of patients at T2, 47% were still non-responsive. Sero-positivity was significantly stronger in patients who presented with weak, but detectable IgGs already prior to the booster (T1), when compared to those with no detectable response at T1. Multivariable analysis identified age > 55 years, a period since transplantation < 2 years, a reduced glomerular filtration rate, a triple immunosuppressive regimen, and the use of tacrolimus and of mycophenolate as independent risk factors for lack of humoral response. CONCLUSIONS Our data indicate that a lack of immunogenicity is linked to the type and extent of maintenance immunosuppression. The necessity of the cumulative immunosuppressive regimen might individually be questioned and possibly be reduced to enhance the chance of an immune response following an additional booster dose.
Collapse
Affiliation(s)
- Angelika Costard-Jäckle
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center Northrhine Westfalia, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Germany.
| | - René Schramm
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center Northrhine Westfalia, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Germany
| | - Bastian Fischer
- Institute for Transfusion- and Laboratory Medicine, Heart and Diabetes Center Northrhine Westfalia, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Germany
| | - Rasmus Rivinius
- Clinic for Cardiology, Angiology and Pneumology, University Clinic Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Raphael Bruno
- Clinic for Cardiac Surgery, University Clinic Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Benjamin Müller
- Institute for Transfusion- and Laboratory Medicine, Heart and Diabetes Center Northrhine Westfalia, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center Northrhine Westfalia, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Germany
| | - Udo Boeken
- Clinic for Cardiac Surgery, University Clinic Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Ralf Westenfeld
- Clinic for Cardiac Surgery, University Clinic Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Cornelius Knabbe
- Institute for Transfusion- and Laboratory Medicine, Heart and Diabetes Center Northrhine Westfalia, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Germany
| | - Jan Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center Northrhine Westfalia, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Germany
| |
Collapse
|
50
|
Matveev VA, Mihelic EZ, Benko E, Budylowski P, Grocott S, Lee T, Korosec CS, Colwill K, Stephenson H, Law R, Ward LA, Sheikh-Mohamed S, Mailhot G, Delgado-Brand M, Pasculescu A, Wang JH, Qi F, Tursun T, Kardava L, Chau S, Samaan P, Imran A, Copertino DC, Chao G, Choi Y, Reinhard RJ, Kaul R, Heffernan JM, Jones RB, Chun TW, Moir S, Singer J, Gommerman J, Gingras AC, Kovacs C, Ostrowski M. Immunogenicity of COVID-19 vaccines and their effect on HIV reservoir in older people with HIV. iScience 2023; 26:107915. [PMID: 37790281 PMCID: PMC10542941 DOI: 10.1016/j.isci.2023.107915] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Older individuals and people with HIV (PWH) were prioritized for COVID-19 vaccination, yet comprehensive studies of the immunogenicity of these vaccines and their effects on HIV reservoirs are not available. Our study on 68 PWH and 23 HIV-negative participants aged 55 and older post-three vaccine doses showed equally strong anti-spike IgG responses in serum and saliva through week 48 from baseline, while PWH salivary IgA responses were low. PWH had diminished live-virus neutralization responses after two vaccine doses, which were 'rescued' post-booster. Spike-specific T cell immunity was enhanced in PWH with normal CD4+ T cell count, suggesting Th1 imprinting. The frequency of detectable HIV viremia increased post-vaccination, but vaccines did not affect the size of the HIV reservoir in most PWH, except those with low-level viremia. Thus, older PWH require three doses of COVID-19 vaccine for maximum protection, while individuals with unsuppressed viremia should be monitored for adverse reactions from HIV reservoirs.
Collapse
Affiliation(s)
- Vitaliy A. Matveev
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Erik Z. Mihelic
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto ON M5G 1K2, Canada
| | - Patrick Budylowski
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Institute of Medical Science, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Sebastian Grocott
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Microbiology and Immunology, McGill University, Montreal QC H3A 2B4, Canada
| | - Terry Lee
- CIHR Canadian HIV Trials Network (CTN), Vancouver BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences (CHÉOS), Vancouver BC V6Z IY6, Canada
| | - Chapin S. Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Henry Stephenson
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Bioengineering, McGill University, Montreal QC H3A 0E9, Canada
| | - Ryan Law
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Lesley A. Ward
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | | | - Geneviève Mailhot
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | | | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Jenny H. Wang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Tulunay Tursun
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Serena Chau
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Philip Samaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Annam Imran
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Dennis C. Copertino
- Infectious Diseases, Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Gary Chao
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Yoojin Choi
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Robert J. Reinhard
- Independent Public/Global Health Consultant, San Francisco, CA 94114, USA
| | - Rupert Kaul
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Jane M. Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
| | - R. Brad Jones
- Infectious Diseases, Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel Singer
- CIHR Canadian HIV Trials Network (CTN), Vancouver BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences (CHÉOS), Vancouver BC V6Z IY6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Jennifer Gommerman
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto ON M5G 1K2, Canada
- Department of Internal Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health, Toronto ON M5B 1W8, Canada
| |
Collapse
|