1
|
Hu XF, Loan A, Chan HM. Re-thinking the link between exposure to mercury and blood pressure. Arch Toxicol 2025; 99:481-512. [PMID: 39804370 PMCID: PMC11775068 DOI: 10.1007/s00204-024-03919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025]
Abstract
Hypertension or high blood pressure (BP) is a prevalent and manageable chronic condition which is a significant contributor to the total global disease burden. Environmental chemicals, including mercury (Hg), may contribute to hypertension onset and development. Hg is a global health concern, listed by the World Health Organization (WHO) as a top ten chemical of public health concern. Most people are exposed to some level of Hg, with vulnerable groups, including Indigenous peoples and small-scale gold miners, at a higher risk for exposure. We published a systematic review and meta-analysis in 2018 showing a dose-response relationship between Hg exposure and hypertension. This critical review summarizes the biological effects of Hg (both organic and inorganic form) on the underlying mechanisms that may facilitate the onset and development of hypertension and related health outcomes and updates the association between Hg exposure (total Hg concentrations in hair) and BP outcomes. We also evaluated the weight of evidence using the Bradford Hill criteria. There is a strong dose-response relationship between Hg (both organic and inorganic) exposure and BP in animal studies and convincing evidence that Hg contributes to hypertension by causing structural and functional changes, vascular reactivity, vasoconstriction, atherosclerosis, dyslipidemia, and thrombosis. The underlying mechanisms are vast and include impairments in antioxidant defense mechanisms, increased ROS production, endothelial dysfunction, and alteration of the renin-angiotensin system. We found additional 16 recent epidemiological studies that have reported the relationship between Hg exposure and hypertension in the last 5 years. Strong evidence from epidemiological studies shows a positive association between Hg exposure and the risk of hypertension and elevated BP. The association is mixed at lower exposure levels but suggests that Hg can affect BP even at low doses when co-exposed with other metals. Further research is needed to develop robust conversion factors among different biomarkers and standardized measures of Hg exposure. Regulatory agencies should consider adopting a 2 µg/g hair Hg level as a cut-off for public health regulation, especially for adults older than child-bearing age.
Collapse
Affiliation(s)
- Xue Feng Hu
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Allison Loan
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Hing Man Chan
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
2
|
Mellingen RM, Rasinger JD, Nøstbakken OJ, Myrmel LS, Bernhard A. Dietary protein affects tissue accumulation of mercury and induces hepatic Phase I and Phase II enzyme expression after co-exposure with methylmercury in mice. J Nutr Biochem 2024; 133:109712. [PMID: 39094928 DOI: 10.1016/j.jnutbio.2024.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant, well known for its neurotoxic effects. MeHg can interact with several nutrients in the diet and affect nutrient metabolism, however the interaction between MeHg and dietary proteins has not been thoroughly investigated. Male BALB/c mice were fed diets based on either casein, cod or chicken as protein sources, which were or were not spiked with MeHg (3.5 mg Hg kg-1). Following 13 weeks of dietary exposure to MeHg, the animals accumulated mercury in a varying degree depending on the diet, where the levels of mercury were highest in the mice fed casein and MeHg, lower in mice fed cod and MeHg, and lowest in mice fed chicken and MeHg in all tissues assessed. Assessment of gut microbiota revealed differences in microbiota composition based on the different protein sources. However, the introduction of MeHg eliminated this difference. Proteomic profiling of liver tissue uncovered the influence of the dietary protein sources on a range of enzymes related to Phase I and Phase II detoxification mechanisms, suggesting an impact of the diet on MeHg metabolism and excretion. Also, enzymes linked to pathways including methionine and glycine betaine cycling, which in turn impact the production of glutathione, an important MeHg conjugation molecule, were up-regulated in mice fed chicken as dietary protein. Our findings indicate that dietary proteins can affect expression of hepatic enzymes that potentially influence MeHg metabolism and excretion, highlighting the relevance of considering the dietary composition in risk assessment of MeHg through dietary exposure.
Collapse
Affiliation(s)
- Ragnhild Marie Mellingen
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway; Department of Biomedicine, University of Bergen, Norway
| | - Josef Daniel Rasinger
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Ole Jakob Nøstbakken
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Lene Secher Myrmel
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Annette Bernhard
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway.
| |
Collapse
|
3
|
Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173577. [PMID: 38852866 DOI: 10.1016/j.scitotenv.2024.173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Mercury is a well-known neurotoxicant for humans and wildlife. The epidemic of mercury poisoning in Japan has clearly demonstrated that chronic exposure to methylmercury (MeHg) results in serious neurological damage to the cerebral and cerebellar cortex, leading to the dysfunction of the central nervous system (CNS), especially in infants exposed to MeHg in utero. The occurrences of poisoning have caused a wide public concern regarding the health risk emanating from MeHg exposure; particularly those eating large amounts of fish may experience the low-level and long-term exposure. There is growing evidence that MeHg at environmentally relevant concentrations can affect the health of biota in the ecosystem. Although extensive in vivo and in vitro studies have demonstrated that the disruption of redox homeostasis and microtube assembly is mainly responsible for mercurial toxicity leading to adverse health outcomes, it is still unclear whether we could quantitively determine the occurrence of interaction between mercurial and thiols and/or selenols groups of proteins linked directly to outcomes, especially at very low levels of exposure. Furthermore, intracellular calcium homeostasis, cytoskeleton, mitochondrial function, oxidative stress, neurotransmitter release, and DNA methylation may be the targets of mercury compounds; however, the primary targets associated with the adverse outcomes remain to be elucidated. Considering these knowledge gaps, in this article, we conducted a comprehensive review of mercurial toxicity, focusing mainly on the mechanism, and genes/proteins expression. We speculated that comprehensive analyses of transcriptomics, proteomics, and metabolomics could enhance interpretation of "omics" profiles, which may reveal specific biomarkers obviously correlated with specific pathways that mediate selective neurotoxicity.
Collapse
Affiliation(s)
- Bolun Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
4
|
Blackowicz MJ, Persky VW, Sargis RM, Freels S, Anderson HA, Turyk ME. Polychlorinated biphenyls and incident coronary heart disease-related outcomes in Great Lakes fish consumers. ENVIRONMENTAL RESEARCH 2024; 255:119071. [PMID: 38751005 DOI: 10.1016/j.envres.2024.119071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Exposure to polychlorinated biphenyls (PCBs) has been linked to risk factors for cardiovascular disease such as increased inflammation, accelerated atherosclerosis, diabetes, and sex hormone dysregulation. Furthermore, there is increasing evidence suggesting associations between internal dose of PCBs and cardiovascular outcomes. OBJECTIVES The purpose of this study is to investigate longitudinal associations of PCBs with coronary heart disease (CHD)-related outcomes in a cohort of Great Lakes sport fish consumers. METHODS The Great Lakes Sport Fish Consumer cohort was established in the early 1990's. Eight hundred nineteen participants were followed from 1993 to 2017. Serum PCBs were measured in 1994/1995 (baseline), in 2001, and in 2004, while health history questionnaires were administered in 1996, 2003, 2010, and 2017. Cox models were used to prospectively investigate associations of total PCBs and PCB groupings, based on aryl hydrocarbon receptor activity, with incident self-reported physician diagnosis of coronary heart disease (CHD), myocardial infarction (MI), and angina pectoris. RESULTS A 2-fold increase in phenobarbital-type PCBs was associated with a 72% increase in likelihood of self-reported incident diagnosis of CHD (HR=1.72, 95% CI: 1.06-2.81; p=0.0294). Similar results were observed for total PCBs (HR=1.68, 95% CI: 1.05-2.69; p=0.0306) and mixed methacholine/phenobarbital type (mixed-type) PCBs (HR=1.60, 95% CI: 1.02-2.52; p=0.0427), but not methacholine-type PCBs. PCBs were not strongly associated with risk of MI or angina. CONCLUSIONS This study presents evidence that exposure to PCBs increases the risk of developing coronary heart disease. Given the large number of risk factors and causal pathways for CHD, future research is required to better understand biological mechanisms of action for PCBs on CHD.
Collapse
Affiliation(s)
- Michael J Blackowicz
- Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 W. Taylor Street, Chicago, IL, 60612, USA
| | - Victoria W Persky
- Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 W. Taylor Street, Chicago, IL, 60612, USA; Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Robert M Sargis
- Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL, 60612, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Sally Freels
- Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 W. Taylor Street, Chicago, IL, 60612, USA
| | - Henry A Anderson
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, 610 Walnut St., Madison, WI, 53726, USA
| | - Mary E Turyk
- Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 W. Taylor Street, Chicago, IL, 60612, USA; Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Zhang A, Wei P, Ding L, Zhang H, Jiang Z, Mi L, Yu F, Tang M. Associations of serum lead, cadmium, and mercury concentrations with all-cause and cause-specific mortality among individuals with cardiometabolic multimorbidity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116556. [PMID: 38852466 DOI: 10.1016/j.ecoenv.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Epidemiological evidence indicates an association between exposure to toxic metals and the occurrence of cardiometabolic diseases (CMDs). However, the impact of exposure to harmful metallic elements, such as lead (Pb), cadmium (Cd), and mercury (Hg), on mortality in individuals with cardiometabolic multimorbidity (CMM) remains uncertain. Therefore, in this study, we analyzed data from 4139 adults diagnosed with CMM from the National Health and Nutrition Examination Survey 1999-2016. CMM was defined as the presence of at least two CMDs (hypertension, diabetes, stroke, and coronary artery disease). Over an average follow-up period of 9.0 years, 1379 deaths from all causes, 515 deaths related to cardiovascular disease (CVD), and 215 deaths attributable to cancer were recorded. After adjusting for potential covariates, serum Pb concentrations were not associated with all-cause, CVD, or cancer mortality. Participants exposed to Cd had an elevated risk of all-cause mortality (hazard ratio [HR], 1.23; 95 % CI, 1.16-1.30), CVD-related mortality (HR, 1.23; 95 % CI, 1.12-1.35), and cancer-related mortality (HR, 1.29; 95 % CI, 1.13-1.47). Participants with serum Hg levels in the highest quantile had lower risks of all-cause (HR, 0.64; 95 % CI, 0.52-0.80) and CVD-related (HR, 0.62; 95 % CI, 0.44-0.88) mortality than did those in the lowest quantile. Stratified analyses revealed significant interactions between serum Cd concentrations and age for CVD-related mortality (P for interaction =0.011), indicating that CMM participants aged < 60 years who were exposed to Cd were at a greater risk of CVD-related mortality. A nonlinear relationship was observed between serum Cd concentrations and all-cause (P for nonlinear relationship = 0.012) and CVD-related (P for nonlinear relationship < 0.001) mortality. Minimizing Cd exposure in patients with CMM may help prevent premature death.
Collapse
Affiliation(s)
- Aikai Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Peijian Wei
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Ding
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Hongda Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Zihan Jiang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Lijie Mi
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Fengyuan Yu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Min Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Jiang H, Yan J, Li R, Yang S, Huang G, Wang W, Zhang Y, Li P, Feng X. Economic benefit of ecological remediation of mercury pollution in southwest China 2007-2022. ENVIRONMENT INTERNATIONAL 2024; 189:108792. [PMID: 38838487 DOI: 10.1016/j.envint.2024.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Methylmercury (MeHg) exposure via rice consumption poses health risk to residents in mercury contaminated areas, such as the Wanshan Hg mining area (WSMA) in southwest China. Making use of the published data for WSMA, this study developed a database of rice MeHg concentrations for different villages in this region for the years of 2007, 2012, 2017, and 2019. The temporal changes of human MeHg exposure, health effects, and economic benefits under different ecological remediation measures were then assessed. Results from this study revealed a decrease of 3.88 μg/kg in rice MeHg concentration and a corresponding reduction of 0.039 μg/kg/d in probable daily intake of MeHg in 2019 compared to 2007 on regional average in the WSMA. Ecological remediation measures in this region resulted in the accumulated economic benefits of $38.7 million during 2007-2022, of which 84 % was from pollution source treatment and 16 % from planting structure adjustment. However, a flooding event in 2016 led to an economic loss of $2.43 million (0.38 % of regional total Gross Domestic Product). Planting structure adjustment generates the greatest economic benefits in the short term, whereas pollution source treatment maximizes economic benefits in the long term and prevents the perturbations from flooding event. These findings demonstrate the importance of ecological remediation measures in Hg polluted areas and provide the foundation for risk assessment of human MeHg exposure via rice consumption.
Collapse
Affiliation(s)
- Huifang Jiang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ruolan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaochen Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guopei Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wenjuan Wang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Ping Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Nishimura A, Tang X, Zhou L, Ito T, Kato Y, Nishida M. Sulfur metabolism as a new therapeutic target of heart failure. J Pharmacol Sci 2024; 155:75-83. [PMID: 38797536 DOI: 10.1016/j.jphs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Sulfur-based redox signaling has long attracted attention as critical mechanisms underlying the development of cardiac diseases and resultant heart failure. Especially, post-translational modifications of cysteine (Cys) thiols in proteins mediate oxidative stress-dependent cardiac remodeling including myocardial hypertrophy, senescence, and interstitial fibrosis. However, we recently revealed the existence of Cys persulfides and Cys polysulfides in cells and tissues, which show higher redox activities than Cys and substantially contribute to redox signaling and energy metabolism. We have established simple evaluation methods that can detect polysulfides in proteins and inorganic polysulfides in cells and revealed that polysulfides abundantly expressed in normal hearts are dramatically catabolized by exposure to ischemic/hypoxic and environmental electrophilic stress, which causes vulnerability of the heart to mechanical load. Accumulation of hydrogen sulfide, a nucleophilic catabolite of persulfides/polysulfides, may lead to reductive stress in ischemic hearts, and perturbation of polysulfide catabolism can improve chronic heart failure after myocardial infarction in mice. This review focuses on the (patho)physiological role of sulfur metabolism in hearts, and proposes that sulfur catabolism during ischemic/hypoxic stress has great potential as a new therapeutic strategy for the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| | - Xiaokang Tang
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Tomoya Ito
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Baia-da-Silva DC, Mendes PFS, Silva DCBD, Chemelo VS, Bittencourt LO, Padilha PM, Oriá RB, Aschner M, Lima RR. What does scientometry tell us about mercury toxicology and its biological impairments? Heliyon 2024; 10:e27526. [PMID: 38586377 PMCID: PMC10998116 DOI: 10.1016/j.heliyon.2024.e27526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Mercury is a toxic pollutant that poses risks to both human and environmental health, making it a pressing public health concern. This study aimed to summarize the knowledge on mercury toxicology and the biological impairments caused by exposure to mercury in experimental studies and/or diagnosis in humans. The research was conducted on the main collection of Web of Science, employing as a methodological tool a bibliometric analysis. The selected articles were analyzed, and extracted data such as publication year, journal, author, title, number of citations, corresponding author's country, keywords, and the knowledge mapping was performed about the type of study, chemical form of mercury, exposure period, origin of exposure, tissue/fluid of exposure measurement, mercury concentration, evaluation period (age), mercury effect, model experiments, dose, exposure pathway, and time of exposure. The selected articles were published between 1965 and 2021, with Clarkson TW being the most cited author who has also published the most articles. A total of 38% of the publications were from the USA. These studies assessed the prenatal and postnatal effects of mercury, emphasizing the impact of methylmercury on neurodevelopment, including motor and cognitive evaluations, the association between mercury and autism, and an evaluation of its protective effects against mercury toxicity. In observational studies, the blood, umbilical cord, and hair were the most frequently used for measuring mercury levels. Our data analysis reveals that mercury neurotoxicology has been extensively explored, but the association among the outcomes evaluated in experimental studies has yet to be strengthened. Providing metric evidence on what is unexplored allows for new studies that may help governmental and non-governmental organizations develop guidelines and policies.
Collapse
Affiliation(s)
- Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Diane Cleydes Baia da Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Victória Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Pedro Magalhães Padilha
- School of Veterinary Medicine and Animal Science, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
9
|
Missimer TM, MacDonald JH, Tsegaye S, Thomas S, Teaf CM, Covert D, Kassis ZR. Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:118. [PMID: 38276812 PMCID: PMC10815244 DOI: 10.3390/ijerph21010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1-514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg.
Collapse
Affiliation(s)
- Thomas M. Missimer
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - James H. MacDonald
- Environmental Geology Program & Honors College, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Seneshaw Tsegaye
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Serge Thomas
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Christopher M. Teaf
- Institute for Science & Public Affairs, Florida State University, Tallahassee, FL 32310, USA;
| | - Douglas Covert
- Hazardous Substance & Waste Management Research, 2976 Wellington Circle West, Tallahassee, FL 32309, USA;
| | - Zoie R. Kassis
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| |
Collapse
|
10
|
Homroy S, Chopra R, Singh PK, Dhiman A, Chand M, Talwar B. Role of encapsulation on the bioavailability of omega-3 fatty acids. Compr Rev Food Sci Food Saf 2024; 23:e13272. [PMID: 38284597 DOI: 10.1111/1541-4337.13272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Omega-3 fatty acids (omega-3 FAs) have been widely recognized for their therapeutic advantages, including anti-inflammatory and cardioprotective properties. They have shown promise in enhancing regulatory function, promotingdevelopment and mitigating the progression of diabetes and cancer. The scientific communities, along with industries, are actively endorsing initiatives aimed at increasing the daily intake of lipids rich in omega-3 FAs. Nevertheless, incorporating polyunsaturated FAs (PUFAs) into food products poses several challenges due to their susceptibility to oxidation when exposed to oxygen, high temperatures, and moisture. This oxidative deterioration results in undesirable flavours and a loss of nutritional value. Various methods, including physical blending, interesterification, and encapsulation, have been utilized as ways to enhance the stability of edible oils rich in PUFA against oxidation. Encapsulation has emerged as a proven strategy for enhancing the oxidative stability and functional properties of omega-3 FA-rich oils. Multiple encapsulation methods have been developed to stabilize and improve the delivery of omega-3 FAs in food products. The selection of an appropriate encapsulation method depends on the desired application of the encapsulated oil. In addition, encapsulation enhances the bioavailability of omega-3 FAs by promoting increased absorption of the encapsulated form in the intestinal epithelium. This review discusses the techniques and principles of omega-3 FA-rich oil encapsulation and its role in improving stability and bioavailability. Furthermore, it also investigates the potential health benefits of these encapsulated oils. This review explores the variations in bioavailability based on encapsulation techniques and processing, offering vital insights for nutrition and product development.
Collapse
Affiliation(s)
- Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
11
|
Lundin KK, Qadeer YK, Wang Z, Virani S, Leischik R, Lavie CJ, Strauss M, Krittanawong C. Contaminant Metals and Cardiovascular Health. J Cardiovasc Dev Dis 2023; 10:450. [PMID: 37998508 PMCID: PMC10671885 DOI: 10.3390/jcdd10110450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of research has begun to link exposure to environmental contaminants, such as heavy metals, with a variety of negative health outcomes. In this paper, we sought to review the current research describing the impact of certain common contaminant metals on cardiovascular (CV) health. We reviewed ten metals: lead, barium, nickel, chromium, cadmium, arsenic, mercury, selenium, zinc, and copper. After a literature review, we briefly summarized the routes of environmental exposure, pathophysiological mechanisms, CV health impacts, and exposure prevention and/or mitigation strategies for each metal. The resulting article discloses a broad spectrum of pathological significance, from relatively benign substances with little to no described effects on CV health, such as chromium and selenium, to substances with a wide-ranging and relatively severe spectrum of CV pathologies, such as arsenic, cadmium, and lead. It is our hope that this article will provide clinicians with a practical overview of the impact of these common environmental contaminants on CV health as well as highlight areas that require further investigation to better understand how these metals impact the incidence and progression of CV diseases.
Collapse
Affiliation(s)
- Karl Kristian Lundin
- Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA; (K.K.L.); (Y.K.Q.)
| | - Yusuf Kamran Qadeer
- Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA; (K.K.L.); (Y.K.Q.)
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN 55905, USA
- Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Salim Virani
- Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA; (K.K.L.); (Y.K.Q.)
- The Aga Khan University, Karachi 74800, Pakistan
- Section of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roman Leischik
- Department of Cardiology, Sector Preventive Medicine, Health Promotion, Faculty of Health, School of Medicine, University Witten/Herdecke, 58095 Hagen, Germany
| | - Carl J. Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA 70121, USA
| | - Markus Strauss
- Department of Cardiology, Sector Preventive Medicine, Health Promotion, Faculty of Health, School of Medicine, University Witten/Herdecke, 58095 Hagen, Germany
- Department of Cardiology I- Coronary and Periphal Vascular Disease, Heart Failure Medicine, University Hospital Muenster, Cardiol, 48149 Muenster, Germany
| | - Chayakrit Krittanawong
- Cardiology Division, NYU Langone Health and NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
12
|
Bello KAS, Wilke MCB, Simões RP, Landim-Vieira M, Langa P, Stefanon I, Vassallo DV, Fernandes AA. Chronic exposure to mercury increases arrhythmia and mortality post-acute myocardial infarction in rats. Front Physiol 2023; 14:1260509. [PMID: 37929206 PMCID: PMC10622797 DOI: 10.3389/fphys.2023.1260509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Mercury (Hg) is a heavy metal that causes a variety of toxic effects in eukaryotic cells. Previous studies have reported detrimental effects of mercury toxicity in the cardiovascular system. Given the importance of understanding the relationship between Hg and cardiovascular disease, we sought to investigate if the Hg could worsen the myocardial repercussions following ischemic injury. We demonstrated that once mercury toxicity is established, it can influence the outcome of myocardial infarction (MI). Methods: Male Wistar rats received intramuscular injections of either saline (NaCl 0.9%) or mercuric chloride (HgCl2, first dose of 4.6 μg/kg, and subsequent doses of 0.07 μg/kg/day) for 4 weeks. Three weeks post-exposure, we induced transmural infarction in the left ventricle free wall through coronary artery occlusion surgery. Results: ECG recordings obtained from MI groups demonstrated alterations in the rhythm of the heartbeat/heart electrical activity, as expected, including ventricular extrasystoles and ventricular tachycardia. However, the MI group exposed to Hg (MI-Hg) exhibited augmented ventricular extrasystoles and ventricular tachycardia compared to the MI group. Also, Basckó coefficient revealed that the arrhythmic events-after MI-were aggravated by Hg exposure. Discussion: Our results indicate that the significantly increased mortality in MI-Hg groups when compared to MI (21%, MI vs 32%, MI-Hg) is correlated with greater occurrence of arrhythmias. In conclusion, this study further supports the idea that exposure to mercury (Hg) should be recognized as a significant risk factor that exacerbates the impact of cardiac ischemic injury, potentially leading to an increased mortality rate among patients experiencing acute MI.
Collapse
Affiliation(s)
- Keren A. S. Bello
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Maria Clara B. Wilke
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Rakel P. Simões
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Paulina Langa
- Department of Medicine, Division of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ivanita Stefanon
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Aurélia Araújo Fernandes
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| |
Collapse
|
13
|
Abasilim C, Persky V, Turyk ME. Association of Blood Total Mercury with Dyslipidemia in a sample of U.S. Adolescents: Results from the National Health and Nutrition Examination Survey Database, 2011-2018. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100047. [PMID: 38617034 PMCID: PMC11014419 DOI: 10.1016/j.heha.2023.100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background Abnormal lipid profiles in adolescents predict metabolic and cardiovascular diseases in adulthood. While seafood consumption is the primary source of mercury exposure, it also provides beneficial nutrients such as omega-3 fatty acids (O3FA). Prior studies indicate that blood total mercury (TBHg) has endocrine disrupting effects and may be associated with abnormal lipid profiles in adolescents. However, the impact of beneficial nutrients on this relationship has not been examined. Our study investigated the relationship of TBHg with dyslipidemia and lipid profiles and potential confounding and modification of these relationships by sex, body mass index (BMI), selenium and O3FA from seafood consumption. Methods We examined 1,390 National Health and Nutrition Examination Survey participants 12-19 years of age from the 2011-2018 cycles. Using logistic and linear regression adjusted for survey design variables and stratified by sex a priori, we estimated the associations of TBHg and methylmercury with dyslipidemia, and with total cholesterol (TC), high (HDL-C) and low-density lipoprotein cholesterol (LDL-C) and triglycerides. Results The geometric mean of TBHg in this adolescent population was 0.44 μg/L. After controlling for socio-demographic covariates, BMI, serum selenium, age at menarche (females only) and average daily intake of O3FA; TBHg was significantly associated with higher TC levels (β=3.34, 95% CI: 0.19, 6.50; p<0.05) in females but not males. Methyl Hg was also associated with increased TC, as well as decreased HDL-C in females but not males. We did not find significant associations of Hg exposure with dyslipidemia, LDL-C or triglycerides levels in either male or female adolescents. However, we observed evidence of effect modification by BMI and serum selenium for associations of TBHg with TC levels in male and female adolescents, respectively. Conclusion Our findings of elevated TC levels in females but not males necessitates further research to better understand the underlying mechanisms driving these sex-specific associations.
Collapse
Affiliation(s)
- Chibuzor Abasilim
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL
| | - Victoria Persky
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL
| | - Mary E. Turyk
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL
| |
Collapse
|
14
|
Egwunye J, Cardoso BR, Braat S, Ha T, Hanieh S, Hare D, Duan AX, Doronila A, Tran T, Tuan T, Fisher J, Biggs BA. The role of fingernail selenium in the association between arsenic, lead and mercury and child development in rural Vietnam: a cross-sectional analysis. Br J Nutr 2023; 129:1589-1597. [PMID: 35535482 DOI: 10.1017/s0007114522001374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As, Pb and Hg are common environmental contaminants in low- and middle-income countries. We investigated the association between child toxicant exposure and growth and development and determined if this association was mitigated by Se concentration. Toxicant concentrations in fingernail samples, anthropometry and Bayley's Scales of Infant Development, 3rd edition domains were assessed in 36-month-old children whose mothers had been part of a randomised controlled trial in rural Vietnam. Multivariable regression analyses were performed to estimate the effect of toxicant exposure on clinical outcomes with adjustments for potential confounders and interaction with fingernail Se concentration. We analysed 658 children who had data for at least one physical or developmental outcome, and at least one toxicant measurement, and each of the covariates. Fingernail As concentration was negatively associated with language (estimate per 10 % increase in As: -0·19, 95 % CI: (-0·32, -0·05)). Pb was negatively associated with cognition (estimate per 10 % increase in Pb: -0·08 (-0·15, -0·02)), language (estimate per 10 % increase in Pb: -0·18 (-0·28, -0·10)) and motor skills (estimate per 10 % increase in Pb: -0·12 (-0·24, 0·00)). Hg was negatively associated with cognition (estimate per 10 % increase in Hg: -0·48, (-0·72, -0·23)) and language (estimate per 10 % increase in Hg -0·51, (-0·88, -0·13)) when Se concentration was set at zero in the model. As Se concentration increased, the negative associations between Hg and both cognition and language scores were attenuated. There was no association between toxicant concentration and growth. As, Pb and Hg concentrations in fingernails of 3-year-old children were associated with lower child development scores. The negative association between Hg and neurological development was reduced in magnitude with increasing Se concentration. Se status should be considered when assessing heavy metal toxicants in children and their impact on neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Jacob Egwunye
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
| | - Barbara R Cardoso
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC3004, Australia
| | - Sabine Braat
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC3052, Australia
| | - Tran Ha
- Research and Training Centre for Community Development, Hanoi, Vietnam
| | - Sarah Hanieh
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
| | - Dominic Hare
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC3050, Australia
| | - Alex Xiaofei Duan
- Melbourne TrACEES Platform and School of Chemistry, University of Melbourne, Parkville, VIC3010, Australia
| | - Augustine Doronila
- Melbourne TrACEES Platform and School of Chemistry, University of Melbourne, Parkville, VIC3010, Australia
| | - Thach Tran
- Research and Training Centre for Community Development, Hanoi, Vietnam
- Global and Women's Health, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC3004, Australia
| | - Tran Tuan
- Research and Training Centre for Community Development, Hanoi, Vietnam
| | - Jane Fisher
- Global and Women's Health, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC3004, Australia
| | - Beverley-Ann Biggs
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
- The Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, VIC3050, Australia
| |
Collapse
|
15
|
Naija A, Yalcin HC. Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicol Rep 2023; 10:498-508. [PMID: 37396852 PMCID: PMC10313869 DOI: 10.1016/j.toxrep.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Chemicals are at the top of public health concerns and metals have received much attention in terms of toxicological studies. Cadmium (Cd) and mercury (Hg) are among the most toxic heavy metals and are widely distributed in the environment. They are considered important factors involved in several organ disturbances. Heart and brain tissues are not among the first exposure sites to Cd and Hg but they are directly affected and may manifest intoxication reactions leading to death. Many cases of human intoxication with Cd and Hg showed that these metals have potential cardiotoxic and neurotoxic effects. Human exposure to heavy metals is through fish consumption which is considered as an excellent source of human nutrients. In the current review, we will summarize the most known cases of human intoxication with Cd and Hg, highlight their toxic effects on fish, and investigate the common signal pathways of both Cd and Hg to affect heart and brain tissues. Also, we will present the most common biomarkers used in the assessment of cardiotoxicity and neurotoxicity using Zebrafish model.
Collapse
|
16
|
Stahl LL, Snyder BD, McCarty HB, Kincaid TM, Olsen AR, Cohen TR, Healey JC. Contaminants in fish from U.S. rivers: Probability-based national assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160557. [PMID: 36574550 PMCID: PMC9948096 DOI: 10.1016/j.scitotenv.2022.160557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Most fish consumption advisories in the United States (U.S.) are issued for mercury and polychlorinated biphenyls (PCBs), and recently per- and polyfluoroalkyl substances (PFAS) have become a contaminant group that warrants fish consumption advice. An unequal probability survey design was developed to allow a comprehensive characterization of mercury, PCB, and PFAS contamination in fish from U.S. rivers on a national scale. During 2013-14 and 2018-19, fish fillet samples were collected from 353 and 290 river sites, respectively, selected randomly from the target population of rivers (≥5th order in size) in the conterminous U.S. These comprised nationally representative samples, with results extrapolated to chemical-specific sampled populations of 48,826-79,448 river kilometers (km) in 2013-14 and 66,142 river km in 2018-19. National distribution estimates were developed for total mercury, all 209 PCB congeners, and up to 33 PFAS (including perfluorooctane sulfonate or PFOS) in river fish. All fillet tissue samples contained detectable levels of mercury and PCBs. One or more PFAS were detected in 99.7 % and 95.2 % of the fillet samples from fish collected in 2013-14 and 2018-19, respectively. Fish tissue screening levels applied to national contaminant probability distributions allowed an estimation of the percentage of the sampled population of river lengths that contained fish with fillet concentrations above a level protective of human health. Fish tissue screening level exceedances for an average level of fish consumption ranged from 23.5 % to 26.0 % for mercury, 17.3 % to 51.6 % for PCBs, and 0.7 % to 9.1 % for PFOS.
Collapse
Affiliation(s)
- Leanne L Stahl
- U.S. Environmental Protection Agency, Office of Water/Office of Science and Technology, 1200 Pennsylvania Avenue, NW (MC 4305T), Washington, DC 20460, USA.
| | - Blaine D Snyder
- Tetra Tech, Inc., Center for Ecological Sciences, 10711 Red Brook Boulevard, Suite 105, Owings Mills, MD 21117, USA.
| | - Harry B McCarty
- General Dynamics Information Technology, 3170 Fairview Park Drive, Falls Church, VA 22042, USA.
| | - Thomas M Kincaid
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 S.W. 35(th) Street, Corvallis, OR 97333, USA
| | - Anthony R Olsen
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 S.W. 35(th) Street, Corvallis, OR 97333, USA.
| | - Tara R Cohen
- Tetra Tech, Inc., Center for Ecological Sciences, 10711 Red Brook Boulevard, Suite 105, Owings Mills, MD 21117, USA.
| | - John C Healey
- U.S. Environmental Protection Agency, Office of Water/Office of Science and Technology, 1200 Pennsylvania Avenue, NW (MC 4305T), Washington, DC 20460, USA.
| |
Collapse
|
17
|
Wang C, Xu Z, Qiu X, Wei Y, Peralta AA, Yazdi MD, Jin T, Li W, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Sparrow D, Amarasiriwardena C, Wright RO, Baccarelli AA, Schwartz JD. Epigenome-wide DNA methylation in leukocytes and toenail metals: The normative aging study. ENVIRONMENTAL RESEARCH 2023; 217:114797. [PMID: 36379232 PMCID: PMC9825663 DOI: 10.1016/j.envres.2022.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Environmental metal exposures have been associated with multiple deleterious health endpoints. DNA methylation (DNAm) may provide insight into the mechanisms underlying these relationships. Toenail metals are non-invasive biomarkers, reflecting a medium-term time exposure window. OBJECTIVES This study examined variation in leukocyte DNAm and toenail arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg) among elderly men in the Normative Aging Study, a longitudinal cohort. METHODS We repeatedly collected samples of blood and toenail clippings. We measured DNAm in leukocytes with the Illumina HumanMethylation450 K BeadChip. We first performed median regression to evaluate the effects of each individual toenail metal on DNAm at three levels: individual cytosine-phosphate-guanine (CpG) sites, regions, and pathways. Then, we applied a Bayesian kernel machine regression (BKMR) to assess the joint and individual effects of metal mixtures on DNAm. Significant CpGs were identified using a multiple testing correction based on the independent degrees of freedom approach for correlated outcomes. The approach considers the effective degrees of freedom in the DNAm data using the principal components that explain >95% variation of the data. RESULTS We included 564 subjects (754 visits) between 1999 and 2013. The numbers of significantly differentially methylated CpG sites, regions, and pathways varied by metals. For example, we found six significant pathways for As, three for Cd, and one for Mn. The As-associated pathways were associated with cancer (e.g., skin cancer) and cardiovascular disease, whereas the Cd-associated pathways were related to lung cancer. Metal mixtures were also associated with 47 significant CpG sites, as well as pathways, mainly related to cancer and cardiovascular disease. CONCLUSIONS This study provides an approach to understanding the potential epigenetic mechanisms underlying observed relations between toenail metals and adverse health endpoints.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Adjani A Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wenyuan Li
- School of Public Health and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Sparrow
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chitra Amarasiriwardena
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
18
|
Nascimento BM, de Paula TS, Brito PMM. DNA barcode of tilapia fish fillet from the Brazilian market and a standardized COI haplotyping for molecular identification of Oreochromis spp. (Actinopterygii, Cichlidae). FORENSIC SCIENCE INTERNATIONAL: ANIMALS AND ENVIRONMENTS 2022. [DOI: 10.1016/j.fsiae.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
BAÑERAS J, IGLESIES-GRAU J, TÉLLEZ-PLAZA M, ARRARTE V, BÁEZ-FERRER N, BENITO B, CAMPUZANO RUIZ R, CECCONI A, DOMÍNGUEZ-RODRÍGUEZ A, RODRÍGUEZ-SINOVAS A, UJUETA F, VOZZI C, LAMAS GA, NAVAS-ACIÉN A. [Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment]. Rev Esp Cardiol 2022; 75:1050-1058. [PMID: 36570815 PMCID: PMC9785336 DOI: 10.1016/j.recesp.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi BAÑERAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Josep IGLESIES-GRAU
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canadá
| | - María TÉLLEZ-PLAZA
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, España
| | - Vicente ARRARTE
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, España
| | - Néstor BÁEZ-FERRER
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Begoña BENITO
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Raquel CAMPUZANO RUIZ
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, España
| | - Alberto CECCONI
- Servicio de Cardiología, Hospital Universitario de la Princesa, Madrid, España
| | - Alberto DOMÍNGUEZ-RODRÍGUEZ
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Antonio RODRÍGUEZ-SINOVAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Francisco UJUETA
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Carlos VOZZI
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A. LAMAS
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Ana NAVAS-ACIÉN
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, Estados Unidos
| |
Collapse
|
20
|
Ronchetti GZ, Simões MR, Schereider IRG, Leal MAS, Peçanha GAW, Padilha AS, Vassallo DV. Oxidative Stress Induced by 30 Days of Mercury Exposure Accelerates Hypertension Development in Prehypertensive Young SHRs. Cardiovasc Toxicol 2022; 22:929-939. [DOI: 10.1007/s12012-022-09769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
|
21
|
Bañeras J, Iglesies-Grau J, Téllez-Plaza M, Arrarte V, Báez-Ferrer N, Benito B, Campuzano Ruiz R, Cecconi A, Domínguez-Rodríguez A, Rodríguez-Sinovas A, Ujueta F, Vozzi C, Lamas GA, Navas-Acién A. Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:1050-1058. [PMID: 35931285 PMCID: PMC10266758 DOI: 10.1016/j.rec.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Bañeras
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Josep Iglesies-Grau
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - María Téllez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Arrarte
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, Spain
| | - Néstor Báez-Ferrer
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Begoña Benito
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Raquel Campuzano Ruiz
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, Spain
| | - Alberto Cecconi
- Servicio de Cardiología, Hospital Universitario de La Princesa, Madrid, Spain
| | - Alberto Domínguez-Rodríguez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Antonio Rodríguez-Sinovas
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Francisco Ujueta
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Carlos Vozzi
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A Lamas
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States; Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Ana Navas-Acién
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, United States.
| |
Collapse
|
22
|
Wu B, Qu Y, Lu Y, Ji S, Ding L, Li Z, Zhang M, Gu H, Sun Q, Ying B, Zhao F, Zheng X, Qiu Y, Zhang Z, Zhu Y, Cao Z, Lv Y, Shi X. Mercury may reduce the protective effect of sea fish consumption on serum triglycerides levels in Chinese adults: Evidence from China National Human Biomonitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119904. [PMID: 35961572 DOI: 10.1016/j.envpol.2022.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/12/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Sea fish contain omega-3 polyunsaturated fatty acids (omega-3 PUFAs) which have been found to reduce triglyceride (TG) levels. However, sea fish may contain pollutants such as mercury which cause oxidative stress and increase TG levels. Therefore, the relationship between sea fish and TG remains unclear. We aimed to explore whether blood mercury (BHg) can affect the effect of sea fish consumption frequency on TG level among Chinese adults. A total of 10,780 participants were included in this study. BHg levels were measured using inductively coupled plasma mass spectrometry (ICP-MS). The associations of sea fish consumption frequency with BHg and TG levels as well as the association of BHg with TG levels were evaluated using multiple linear regression. Causal mediation analysis was used to evaluate the mediation effect of BHg levels on the association of sea fish consumption frequency with TG levels. The frequency of sea fish consumption showed a negative association with TG level. Compared with the participants who never ate sea fish, the TG level decreased by 0.193 mmol/L in those who ate sea fish once a week or more [β (95%CI): -0.193 (-0.370, -0.015)]. Significant positive associations were observed of BHg with TG levels. With one unit increase of log2-transformed BHg, the change of TG level was 0.030 mmol/L [0.030 (0.009, 0.051)]. The association between sea fish consumption and TG was mediated by log2-transformed BHg [total effect = -0.037 (-0.074, -0.001); indirect effect = 0.009 (0.004, 0.015)], and the proportion mediated by log2-transformed BHg was 24.25%. BHg may reduce the beneficial effect of sea fish consumption frequency on TG levels among Chinese adults. Overall, sea fish consumption has more benefits than harms to TG.
Collapse
Affiliation(s)
- Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Heng Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Ying
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yidan Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheng Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
Hair methylmercury levels are inversely correlated with arterial stiffness. Atherosclerosis 2022; 357:14-19. [PMID: 36037758 DOI: 10.1016/j.atherosclerosis.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/16/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Cardiovascular diseases (CVD), including coronary heart disease, are the leading cause of death worldwide. Several studies investigating the relationship between fish intake, methylmercury exposure, and CVDs in adults have reported inconsistent results. This study aimed to determine the association between hair methylmercury levels and arterial stiffness using brachial-ankle pulse wave velocity (baPWV). METHODS This cross-sectional study included 891 seemingly healthy Korean adults (418 men and 473 women). The anthropometric and biochemical profiles, including methylmercury levels in the hair, were measured. Arterial stiffness was measured using baPWV, wherein high baPWV was defined as >1375 cm/s (>75th percentile). The odds ratios for high baPWVs were examined using multivariable logistic regression analysis after adjusting for potential confounders across the quintiles of hair methylmercury levels (Q1 = ≤0.6, Q2 = 0.6-0.8, Q3 = 0.8-1.1, Q4 = 1.1-1.5, and Q5=>1.5 μg/g). RESULTS After adjusting for multiple confounders-age, sex, height, body weight, smoking status, weekly alcohol consumption, total metabolic equivalent of task, mean arterial blood pressure, resting heart rate, triglycerides, low density lipoprotein cholesterol, fasting plasma glucose, uric acid and white blood cell count-the odds ratios (95% confidence intervals) for high baPWVs in each quintile of hair methylmercury levels were 1.00, 0.36 (0.17-0.76), 0.38 (0.20-0.76), 0.28 (0.13-0.61), and 0.49 (0.24-0.99), respectively. CONCLUSIONS Within non-toxic low levels, higher hair methylmercury levels are independently associated with lower arterial stiffness in seemingly healthy Korean adults regardless of classical cardiovascular risk factors.
Collapse
|
24
|
Atmospheric Modelling of Mercury in the Southern Hemisphere and Future Research Needs: A Review. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mercury is a toxic pollutant that can negatively impact the population’s health and the environment. The research on atmospheric mercury is of critical concern because of the diverse process that this pollutant suffers in the atmosphere as well as its deposition capacity, which can provoke diverse health issues. The Minamata Convention encourages the protection of the adverse effects of mercury, where research is a part of the strategies and atmospheric modelling plays a critical role in achieving the proposed aim. This paper reviews the study of modelling atmospheric mercury based on the southern hemisphere (SH). The article discusses diverse aspects focused on the SH such as the spatial distribution of mercury, its emissions projections, interhemispheric transport, and deposition. There has been a discrepancy between the observed and the simulated values, especially concerning the seasonality of gaseous elemental mercury and total gaseous mercury. Further, there is a lack of research about the emissions projections in the SH and mercury deposition, which generates uncertainty regarding future global scenarios. More studies on atmospheric mercury behaviour are imperative to better understand the SH’s mercury cycle.
Collapse
|
25
|
Tang J, Zhu Q, Xu Y, Zhou Y, Zhu L, Jin L, Wang W, Gao L, Chen G, Zhao H. Total arsenic, dimethylarsinic acid, lead, cadmium, total mercury, methylmercury and hypertension among Asian populations in the United States: NHANES 2011-2018. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113776. [PMID: 35738098 DOI: 10.1016/j.ecoenv.2022.113776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Non-Hispanic Asians (NHA) in USA have been reported with higher arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg) and their specific species levels, comparing with non-NHA. This study aimed to investigate the associations of these metal/metalloid levels with blood pressure levels and prevalence of hypertension among general NHA using the 2011-2018 National Health and Nutrition and Examination Survey (NHANES) data. METHODS The study included participants aged 20 years and older with determinations of As, Dimethylarsinic acid (DMA), Pb, Cd, Hg and methyl-Hg (MeHg) in blood (n = 10, 177) and urine (n = 5, 175). These metals/metalloid levels were measured by inductively coupled plasma mass spectrometry. Systolic (SBP) and diastolic blood pressure (DBP) levels were examined through a standardized protocol. Censored normal regression model and logistic regression model were employed to explore the associations of As, DMA, Pb, Cd, Hg and MeHg levels with blood pressure levels and prevalence of hypertension respectively, and potential confounders were adjusted in these regression models. Quantile-based g-computation approach was used to analysis joint effect of metals mixture on blood pressure level and hypertension. RESULTS For NHA, urinary As and Hg levels were associated with increased DBP level; Higher blood Hg and MeHg levels were related to increased blood pressure levels and hypertension; However, negative association was observed between urinary Cd and SBP level; Blood metals mixture (including blood Pb, Cd and Hg) was associated with increased DBP level, but not for hypertension. For non-NHA, urinary As and DMA levels were associated with increased SBP level, but not DBP level and prevalence of hypertension; Urinary Pb level was associated with decreased DBP level; Nevertheless, positive associations were observed between blood Pb levels and SBP and prevalence of hypertension; Blood Hg level was associated with decreased DBP level and prevalence of hypertension; Furthermore, blood MeHg level was associated with decreased DBP level; Positive association was observed between blood metals mixture and increased SBP level among non-NHA. CONCLUSIONS Highly exposed to Hg level among NHA was associated with increased blood pressure levels and prevalence of hypertension. Urinary As level was associated with increased DBP level among NHA. Furthermore, blood metals mixture was related to increased DBP level among NHA. Further prospective studies with larger sample size should be performed to warrant the results.
Collapse
Affiliation(s)
- Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qinheng Zhu
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Xu
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yexinyi Zhou
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longtao Zhu
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanfei Jin
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiye Wang
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of public health and preventive medicine, school of medicine, Jinggangshan university, Ji'an, China
| | - Lan Gao
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hao Zhao
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, China.
| |
Collapse
|
26
|
Adsorption and Breaking of Hazardous Methyl Mercury on Hybrid Structures of Ionic Liquids and ZnO Nanoclusters. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Jordan-Ward R, von Hippel FA, Zheng G, Salamova A, Dillon D, Gologergen J, Immingan T, Dominguez E, Miller P, Carpenter D, Postlethwait JH, Byrne S, Buck CL. Elevated mercury and PCB concentrations in Dolly Varden (Salvelinus malma) collected near a formerly used defense site on Sivuqaq, Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154067. [PMID: 35217049 PMCID: PMC9078153 DOI: 10.1016/j.scitotenv.2022.154067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 04/13/2023]
Abstract
Environmental pollution causes adverse health effects in many organisms and contributes to health disparities for Arctic communities that depend on subsistence foods, including the Yupik residents of Sivuqaq (St. Lawrence Island), Alaska. Sivuqaq's proximity to Russia made it a strategic location for U.S. military defense sites during the Cold War. Two radar surveillance stations were installed on Sivuqaq, including at the Northeast Cape. High levels of persistent organic pollutants and toxic metals continue to leach from the Northeast Cape formerly used defense (FUD) site despite remediation efforts. We quantified total mercury (Hg) and polychlorinated biphenyl (PCB) concentrations, and carbon and nitrogen stable isotope signatures, in skin and muscle samples from Dolly Varden (Salvelinus malma), an important subsistence species. We found that Hg and PCB concentrations significantly differed across locations, with the highest concentrations found in fish collected near the FUD site. We found that 89% of fish collected from near the FUD site had Hg concentrations that exceeded the U.S. Environmental Protection Agency's (EPA) unlimited Hg-contaminated fish consumption screening level for subsistence fishers (0.049 μg/g). All fish sampled near the FUD site exceeded the EPA's PCB guidelines for cancer risk for unrestricted human consumption (0.0015 μg/g ww). Both Hg and PCB concentrations had a significant negative correlation with δ13C when sites receiving input from the FUD site were included in the analysis, but these relationships were insignificant when input sites were excluded. δ15N had a significant negative correlation with Hg concentration, but not with PCB concentration. These results suggest that the Northeast Cape FUD site remains a point source of Hg and PCB pollution and contributes to higher concentrations in resident fish, including subsistence species. Moreover, elevated Hg and PCB levels in fish near the FUD site may pose a health risk for Sivuqaq residents.
Collapse
Affiliation(s)
- Renee Jordan-Ward
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., P.O. Box 245210, Tucson, AZ 85724, USA.
| | - Guomao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Jesse Gologergen
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Tiffany Immingan
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Elliott Dominguez
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Pamela Miller
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - David Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Place, Rensselaer, NY 12144, USA
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Samuel Byrne
- Middlebury College, Department of Biology and Global Health Program, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| |
Collapse
|
28
|
Khongsit A, Rajput YS, Meena S, Sharma R. Opportunities for Mercuric Ion Spectrophotometric Determination based on Reduction of Gold Nanoparticles Aggregation by N-containing Cyclic Molecules. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Girolametti F, Panfili M, Colella S, Frapiccini E, Annibaldi A, Illuminati S, Marini M, Truzzi C. Mercury levels in Merluccius merluccius muscle tissue in the central Mediterranean Sea: Seasonal variation and human health risk. MARINE POLLUTION BULLETIN 2022; 176:113461. [PMID: 35193004 DOI: 10.1016/j.marpolbul.2022.113461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In this study we analysed total mercury (THg) levels in European hake (Merluccius merluccius) - an ecologically and commercially important species throughout the Mediterranean - caught in the northern and central Adriatic Sea. To the best of our knowledge, this is the first study evaluating THg levels in hake fillets in relation to ecological (season) and biological (body size, sex, sexual maturity, lipid content) parameters. THg levels in muscle showed no sex-related differences; in contrast, significant season-related differences were found in females, with higher levels in spring-summer compared with autumn-winter. No season-related differences were seen in males. A significant sex effect was found for body size and sexual maturity. Females showed a correlation between THg level and length, THg being significantly higher in mature compared with immature specimens. No significant sex effect was found for muscle lipid content, because a correlation between THg concentration and tissue lipids was found in both sexes. Since the mean THg concentration found in M. merluccius fillets (0.64 ± 0.29 mg kg-1 dry weight; range, 0.20-1.53) was consistently under the level set by EU regulations, this study demonstrates that European hake caught in the northern and central Adriatic is safe for human consumption.
Collapse
Affiliation(s)
- Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Monica Panfili
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy
| | - Sabrina Colella
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy
| | - Emanuela Frapiccini
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy.
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies (FMC), 61032 Fano, Italy
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Mauro Marini
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies (FMC), 61032 Fano, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
30
|
Stivala S, Gobbato S, Bonetti N, Camici GG, Lüscher TF, Beer JH. Dietary alpha-linolenic acid reduces platelet activation and collagen-mediated cell adhesion in sickle cell disease mice. J Thromb Haemost 2022; 20:375-386. [PMID: 34758193 DOI: 10.1111/jth.15581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sickle cell disease (SCD) is a genetic hemoglobinopathy associated with high morbidity and mortality. The primary cause of hospitalization in SCD is vaso-occlusive crisis (VOC), mediated by alteration of red blood cells, platelets, immune cells and a pro-adhesive endothelium. OBJECTIVES We investigated the potential therapeutic use of the plant-derived omega-3 alpha-linolenic acid (ALA) in SCD. METHODS Berkeley mice were fed a low- or high-ALA diet for 4 weeks, followed by analysis of liver fibrosis, endothelial activation, platelet activation and formation of platelet-neutrophils aggregates. Aggregation of platelets over collagen under flow after high-ALA was compared to a blocking P-selectin Fab. RESULTS Dietary high-ALA was able to reduce the number of sickle cells in blood smear, liver fibrosis, and the expression of adhesion molecules on the endothelium of aorta, lungs, liver and kidneys (VCAM-1, ICAM-1 and vWF). Specific parameters of platelet activation were blunted after high-ALA feeding, notably P-selectin exposure and the formation of neutrophil-platelet aggregates, along with a correspondingly reduced expression of PSGL-1 on neutrophils. By comparison, in vivo treatment of SCD mice with the anti-P-selectin Fab was able to similarly reduce the formation of neutrophil-platelet aggregates, but did not reduce GpIbα shedding nor the activation of the αIIb β3 integrin in response to thrombin. Both ALA feeding and P-selectin blocking significantly reduced collagen-mediated cell adhesion under flow. CONCLUSIONS Dietary ALA is able to reduce the pro-inflammatory and pro-thrombotic state occurring in the SCD mouse model and may represent a novel, inexpensive and readily available therapeutic strategy for SCD.
Collapse
Affiliation(s)
- Simona Stivala
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Sara Gobbato
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Nicole Bonetti
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
- Cardiology, Royal Brompton and Harefield Hospitals, Imperial College London, London, UK
| | - Jürg H Beer
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
- Cardiology, Royal Brompton and Harefield Hospitals, Imperial College London, London, UK
- Internal Medicine Cantonal Hospital of Baden, Baden, Switzerland
| |
Collapse
|
31
|
Ghorbani Nejad B, Raeisi T, Janmohammadi P, Mehravar F, Zarei M, Dehghani A, Bahrampour N, Darijani MH, Ahmadipour F, Mohajeri M, Alizadeh S. Mercury Exposure and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Int J Clin Pract 2022; 2022:7640227. [PMID: 36101810 PMCID: PMC9463027 DOI: 10.1155/2022/7640227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/27/2022] Open
Abstract
METHODS Scopus and PubMed databases were systematically searched from their inception to November 2021 to obtain pertinent studies. Standardized mean differences (SMDs) with corresponding 95% confidence intervals (CIs) were calculated to evaluate the difference in Hg levels between people with and without T2DM. The association of the Hg exposure with T2DM was assessed using a random-effects model by pooling the odds ratios (ORs) and 95% CIs. RESULTS A total of 17 studies, with 42,917 participants, aged ≥18 years, were analyzed. Overall, Hg levels were significantly higher in T2DM patients compared with non-T2DM controls (SMD = 1.07; 95%CI = 0.59 to 1.55, P ≤ 0.001), with significant heterogeneity across studies (I2 = 96.1%; P=≤0.001). No significant association was found between Hg exposure and risk of T2DM in the overall analysis and subgroup analysis based on the source of sample and study design. However, higher exposure to Hg was related to reduced risk of T2DM in men (OR = 0.71; 95%CI = 0.57 to 0.88), but not in women. No significant evidence for publication bias was detected. CONCLUSIONS Although the Hg level in T2DM is significantly higher than that of nondiabetics, there was no association between Hg exposure and the overall risk of T2DM. Nevertheless, our study shows that higher exposure to Hg might reduce the risk of T2DM in men.
Collapse
Affiliation(s)
- Behnam Ghorbani Nejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman Medical University, Kerman, Iran
| | - Tahereh Raeisi
- Department of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Janmohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehravar
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahtab Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Dehghani
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niki Bahrampour
- Department of Nutrition, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran, Iran
| | - Mohammad Hosein Darijani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman Medical University, Kerman, Iran
| | - Fatemeh Ahmadipour
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman Medical University, Kerman, Iran
| | - Mohammad Mohajeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman Medical University, Kerman, Iran
| | - Shahab Alizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Noger-Huet É, Vagner M, Le Grand F, Graziano N, Bideau A, Brault-Favrou M, Churlaud C, Bustamante P, Lacoue-Labarthe T. Risk and benefit assessment of seafood consumption harvested from the Pertuis Charentais region of France. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118388. [PMID: 34699922 DOI: 10.1016/j.envpol.2021.118388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/12/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Seafood is well recognized as a major source of Long Chain n-3 Polyunsaturated Fatty Acids (LC n-3 PUFA, especially ecosapentaenoic acid, i.e. EPA and docosaheaxaenoic acid, i.e. DHA) and essential trace elements (As, Cu, Fe, Mn, Se, and Zn). It is also a source of non-essential trace elements (Ag, Cd, Hg, Pb) that can be deleterious for health even at low concentrations. Edible parts of sixteen species (fish, cephalopods, crustaceans and bivalves) of great importance in the Pertuis Charentais region, one of the main shellfish farming and fishing areas along the french coastline, were sampled in winter and analyzed to determine their fatty acid (FA) composition and trace element concentrations. Based on these analyses, a suite of indices was calculated to estimate risk and benefit of seafood consumption: the n-6/n-3 ratio, the atherogenic index, the thrombogenic index, the EPA + DHA daily recommended portion, as well as the maximum safe consumption. The results showed that fish contributed the most to LC n-3 PUFA supply, while bivalves and crustaceans were more beneficial in essential trace elements. Whatever the species, the concentrations of non-essential elements were not limiting for seafood consumption, as important amounts of the analyzed species can be eaten daily or weekly before becoming hazardous to consumers. Yet, concentrations of Hg in dogfish and seabass can become a concern for frequent seafood consumers (>three meals a week), confirming that varying seafood items is a key point for consumers to optimize the benefits of diverse seafood resources. Considering FA composition, whiting and pilchard are the most beneficial fish species for human diet, while surmullet was the least beneficial one. However, using an index integrating the relative risk due to Hg content, the surmullet appears as one of the most beneficial. This study provides a temporal shot of the quality of marine resources consumed in winter period in the studied area and highlights the complexity of a quantitative risk and benefit assessment with respect to the biochemical attributes of selected seafood.
Collapse
Affiliation(s)
- Élise Noger-Huet
- UMR LIENSs, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17 000, La Rochelle, France
| | - Marie Vagner
- UMR LIENSs, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17 000, La Rochelle, France; UMR LEMAR, Univ Brest, IRD, CNRS, Ifremer, Place Nicolas Copernic, Plouzané, 29 280, France
| | - Fabienne Le Grand
- UMR LEMAR, Univ Brest, IRD, CNRS, Ifremer, Place Nicolas Copernic, Plouzané, 29 280, France
| | - Nicolas Graziano
- UMR LEMAR, Univ Brest, IRD, CNRS, Ifremer, Place Nicolas Copernic, Plouzané, 29 280, France
| | - Antoine Bideau
- UMR LEMAR, Univ Brest, IRD, CNRS, Ifremer, Place Nicolas Copernic, Plouzané, 29 280, France
| | - Maud Brault-Favrou
- UMR LIENSs, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17 000, La Rochelle, France
| | - Carine Churlaud
- UMR LIENSs, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17 000, La Rochelle, France
| | - Paco Bustamante
- UMR LIENSs, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17 000, La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes 75005, Paris, France
| | - Thomas Lacoue-Labarthe
- UMR LIENSs, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17 000, La Rochelle, France.
| |
Collapse
|
33
|
Tang Y, Yi Q, Wang S, Xia Y, Geng B. Normal concentration range of blood mercury and bone mineral density: a cross-sectional study of National Health and Nutrition Examination Survey (NHANES) 2005-2010. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7743-7757. [PMID: 34480303 DOI: 10.1007/s11356-021-16162-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
High blood mercury levels could lead to mercury poisoning, undoubtedly causing great harm to human health. However, the impact of the normal concentration of blood mercury on bone mineral density (BMD) is unclear. Therefore, this study explored the relationship between blood mercury levels and BMD and determined whether the relationship between blood mercury and BMD differs by populations. Two researchers extracted data from the 2005-2010 National Health and Nutrition Examination Survey database. Multivariate linear regression models were performed to evaluate the relationship between mercury level and BMD of the femoral regions and spine. Subgroup analysis was used to estimate differences according to population subgroups. Moreover, the nonlinear relationship of blood mercury levels and BMD was assessed using smooth curve fitting and generalized additive models. The results showed increased BMD with increasing mercury levels by multivariable-adjusted linear regression models, especially in the femoral regions. Subgroup analysis showed that the relationship was more likely to be present in non-Hispanic Whites, while a negative correlation between blood mercury levels and spinal BMD was observed in non-Hispanic Blacks. Furthermore, males (aged 20 to 29 years) and females (aged 30 to 39 years) with low blood mercury levels (< 3 ug/L) had increased risks of osteopenia or osteoporosis. This study showed that blood mercury level within the normal reference value of 10 μg/dL may be associated with BMD, especially with a lower blood mercury level, which may suggest an elevated risk of osteopenia or osteoporosis. However, causation could not be established due to the study design.
Collapse
Affiliation(s)
- Yuchen Tang
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Qiong Yi
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Shenghong Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China.
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
34
|
Nishimura A, Tanaka T, Kato Y, Nishiyama K, Nishida M. Cardiac robustness regulated by reactive sulfur species. J Clin Biochem Nutr 2022; 70:1-6. [PMID: 35068674 PMCID: PMC8764107 DOI: 10.3164/jcbn.21-84] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
The human myocardium contains robust cells that constantly beat from birth to death without being replaced, even when exposed to various environmental stresses. Myocardial robustness is thought to depend primarily on the strength of the reducing power to protect the heart from oxidative stress. Myocardial antioxidant systems are controlled by redox reactions, primarily via the redox reaction of Cys sulfhydryl groups, such as found in thioredoxin and glutathione. However, the specific molecular entities that regulate myocardial reducing power have long been debated. Recently, reactive sulfide species, with excellent electron transfer ability, consisting of a series of multiple sulfur atoms, i.e., Cys persulfide and Cys polysulfides, have been found to play an essential role in maintaining mitochondrial quality and function, as well as myocardial robustness. This review presents the latest findings on the molecular mechanisms underlying mitochondrial energy metabolism and the maintenance of quality control by reactive sulfide species and provides a new insight for the prevention of chronic heart failure.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences
| | - Tomohiro Tanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kazuhiro Nishiyama
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences
| |
Collapse
|
35
|
Zhang J, Wang J, Hu J, Zhao J, Li J, Cai X. Associations of total blood mercury and blood methylmercury concentrations with diabetes in adults: An exposure-response analysis of 2005-2018 NHANES. J Trace Elem Med Biol 2021; 68:126845. [PMID: 34418744 DOI: 10.1016/j.jtemb.2021.126845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To examine the exposure-response relationship between mercury exposure and diabetes in adults, and to explore the possible effect modifications by selenium and omega-3 fatty acids. METHODS Biomarker data (total blood mercury and blood methylmercury) from individuals ≥20 years of age were obtained from the 2005-2018 NHANES. Diabetes was defined through questionnaires, fasting plasma glucose, 2 -h plasma glucose and hemoglobin A1c levels. The exposure-response relationship between mercury exposure and diabetes was assessed with logistic regression and restricted cubic splines. RESULTS Comparing the highest to lowest quartile of exposure, the multivariable-adjusted odds ratio (95 % CI) of diabetes was 0.76 (0.63-0.92) with total blood mercury and 0.82 (0.66-1.00) with blood methylmercury. The inverse associations between total blood mercury [0.55 (0.40-0.77)] and blood methylmercury [0.61 (0.38-0.97)] and diabetes were observed among individuals having higher intakes of selenium (Pfor interaction<0.05). Trends toward lower odds of diabetes with mercury exposure were mainly confined to individuals having higher intakes of omega-3 fatty acid, but the interactions were not significant. The inverse associations between total blood mercury and blood methylmercury and diabetes remained in sensitivity analyses after excluding patients with hypertension that may change their dietary intake of fish. Exposure-response analyses showed an initial decrease in odds of diabetes followed by a platform or a weaker decrease beyond 3 μg/L of total blood mercury and methylmercury concentrations, respectively. CONCLUSIONS Total blood mercury and blood methylmercury concentrations were inversely associated with diabetes in adults, and the associations were modified by selenium.
Collapse
Affiliation(s)
- Junguo Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Wang
- The Eighth People's Hospital of Jinan, Jinan, Shandong, China
| | - Jianwei Hu
- Department of Group Health, Maternal and Child Health Institution, Kunshan, Jiangsu, China
| | - Ji Zhao
- Department of Group Health, Maternal and Child Health Institution, Kunshan, Jiangsu, China
| | - Jin Li
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaoqin Cai
- Department of Clinical Laboratory, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, No.189, Chaoyang Road, 215300, Jiangsu, China.
| |
Collapse
|
36
|
Sun Y, Liu B, Rong S, Zhang J, Du Y, Xu G, Snetselaar LG, Wallace RB, Lehmler HJ, Bao W. Association of Seafood Consumption and Mercury Exposure With Cardiovascular and All-Cause Mortality Among US Adults. JAMA Netw Open 2021; 4:e2136367. [PMID: 34842923 PMCID: PMC8630568 DOI: 10.1001/jamanetworkopen.2021.36367] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPORTANCE Although seafood is known to contain heart-healthy omega-3 fatty acids, many people choose to limit their seafood consumption because of fear of mercury exposure from seafood. It is imperative to clarify the potential health effects of current mercury exposure in contemporary populations. OBJECTIVE To examine the association of seafood consumption and mercury exposure with all-cause and cardiovascular disease (CVD)-related mortality in the US general population. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study included adults 20 years or older who participated in the 2003 to 2012 cycles of the National Health and Nutrition Examination Survey; data were linked to mortality records through December 31, 2015. Data analysis was performed from January to March 10, 2021. EXPOSURES Seafood consumption was assessed through two 24-hour dietary recalls, and mercury exposure was assessed by blood mercury levels. MAIN OUTCOMES AND MEASURES All-cause and CVD-related mortality. Multivariable Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% CIs of mortality associated with usual seafood consumption and blood mercury concentration quartiles. RESULTS This study included 17 294 participants (mean [SD] age, 45.9 [17.1] years; 9217 [53.3%] female) with a mean (SD) blood mercury concentration of 1.62 (2.46) μg/L. During 131 276 person-years of follow-up, 1076 deaths occurred, including 181 deaths from CVD. The multivariable-adjusted HR for an increase in seafood consumption of 1 oz equivalent per day and all-cause mortality was 0.84 (95% CI, 0.66-1.07) and for CVD-related mortality was 0.89 (95% CI, 0.54-1.47). Blood mercury level was not associated with all-cause or CVD-related mortality. Comparing the highest with the lowest quartile of blood mercury concentration, the multivariable-adjusted HRs were 0.82 (95% CI, 0.66-1.05) for all-cause mortality and 0.90 (95% CI, 0.53-1.52) for CVD-related mortality. CONCLUSIONS AND RELEVANCE In this cohort study of US adults, seafood consumption and mercury exposure with the current seafood consumption level were not significantly associated with the risk of all-cause or CVD-related mortality. These findings may inform future public health guidelines regarding mercury exposure, seafood consumption, and cardiovascular health promotion.
Collapse
Affiliation(s)
- Yangbo Sun
- Department of Preventive Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of Environmental Health, School of Public Health, Jining Medical University, Jining, China
| | - Yang Du
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City
| | - Guifeng Xu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City
| | - Linda G. Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City
| | - Robert B. Wallace
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City
- Obesity Research and Education Initiative, University of Iowa, Iowa City
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City
- Now with Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
37
|
Yin L, Lin S, Summers AO, Roper V, Campen MJ, Yu X. Children with Amalgam Dental Restorations Have Significantly Elevated Blood and Urine Mercury Levels. Toxicol Sci 2021; 184:104-126. [PMID: 34453845 DOI: 10.1093/toxsci/kfab108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human exposure to organic mercury (Hg) as methylmercury (MeHg) from seafood consumption is widely considered a health risk because pure methylmercury is extremely neurotoxic. In contrast, the clinical significance of Hg exposure from amalgam (AMG) dental restorations, the only other major nonoccupational source of Hg exposure, has long been debated. Here, we examined data from the two most recent National Health and Nutrition Examination Surveys (NHANES) on 14 181 subjects to assess the contributions of seafood consumption versus AMG to blood total mercury (THg), inorganic mercury (IHg), and methyl mercury (MeHg) and to urine creatinine corrected mercury (UTHg). All subjects were also classified as to their self-reported qualitative consumption of seafood (59% fish and 44% shellfish). Subjects with restorations were grouped into three groups (0) those without AMG (64.4%), (1) those with 1-5 dental AMG restorations (19.7%), (2) those with more than five AMG (16%). Seafood consumption increased total mercury in urine (UTHg) and total mercury (THg) and methyl mercury (MeHg) in blood, but unlike AMG, seafood did not increase blood inorganic mercury (IHg). Using stratified covariate (ANOVA) and multivariate (GLM) analyses revealed a strong correlation of blood (THg and IHg) and urine (UTHg) levels with the number of AMGs. In a subpopulation without fish consumption, having more than five AMG restorations raised blood THg (103%), IHg (221%), and urine UTHg (221%) over the group without AMG. The most striking difference was noted in classification by age: subjects under 6 years old with more than five AMG restorations had the highest blood IHg and urine UTHg among all age groups. Elevation of bivalent IHg on a large scale in children warrants urgent in-depth risk assessment with specific attention to genetic- and gender-associated vulnerabilities.
Collapse
Affiliation(s)
- Lei Yin
- Reprotox Biotech, Science & Technology Park, University of New Mexico, Albuquerque, NM, USA
| | - Simon Lin
- The Center for Pediatric Dentistry, University of Washington, WA, USA
| | - Anne O Summers
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Van Roper
- College of Nursing, University of New Mexico, Albuquerque, NM, USA
| | - Matthew J Campen
- College of Pharmacy, University of New Mexico College of Nursing, NM, USA
| | - Xiaozhong Yu
- College of Nursing, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
38
|
Liu J, Cui J, Wei X, Li W, Liu C, Li X, Chen M, Fan Y, Wang J. Investigation on selenium and mercury interactions and the distribution patterns in mice organs with LA-ICP-MS imaging. Anal Chim Acta 2021; 1182:338941. [PMID: 34602200 DOI: 10.1016/j.aca.2021.338941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
It is the first time to investigate local distribution patterns of mercury (Hg) in mice organs after Hg and Se exposure with detection of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Two batch of adult mice were employed to be exposed to inorganic mercury (iHg) and methylmercury (MeHg) with or without Se at the dose of 55 μmol kg-1. Tissue sections of brain, kidney, liver, and spleen from one batch mice were prepared to get local imaging of Hg by LA-ICP-MS. Tissues from another batch mice were used to quantify Hg and Se in tissues with ICP-MS after acid digestion. The results indicated that, for mice exposed to iHg, Hg mainly distributed in kidney, a little in liver, and hardly in brain and spleen; for mice exposed to MeHg, lower amount of Hg was found in kidney, liver and spleen, and almost no Hg was found in brain. It was interesting that for Hg and Se co-administration groups, higher level of Hg was observed in kidney, liver, spleen and even in brain than single Hg administration groups. In addition, Se level in organ tissues increased obviously not only in Se exposure group but also in MeHg exposure group, while the phenomenon was not observed in iHg exposure group. HepG2 cells were employed to investigate Se and Hg interactions in single cell level, similar bioaccumulation behavior of Hg was found between cells and mice organs. Higher level of Hg was observed in cells cultured with Se and Hg medium than cells cultured with single Hg medium. The results are expected to provide new insight to investigate Hg and Se interactions in animal bodies and in-vitro cells.
Collapse
Affiliation(s)
- Jinhui Liu
- , Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jiasen Cui
- , School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases. Shenyang, 110001, China
| | - Xing Wei
- , Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Weitao Li
- , Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chunran Liu
- , School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases. Shenyang, 110001, China
| | - Xuewen Li
- , School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases. Shenyang, 110001, China
| | - Mingli Chen
- , Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Yu Fan
- , School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases. Shenyang, 110001, China.
| | - Jianhua Wang
- , Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
39
|
Chan PHY, Kwok KM, Chan MHM, Li AM, Chan IHS, Fok TF, Lam HS. Prenatal methylmercury exposure is associated with decrease heart rate variability in children. ENVIRONMENTAL RESEARCH 2021; 200:111744. [PMID: 34310966 DOI: 10.1016/j.envres.2021.111744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Although several epidemiological studies have suggested mercury (Hg) might be associated with cardiotoxicity, the impact of Hg exposure on cardiac autonomic activity and blood pressure in children has not been investigated at Hg exposure levels equivalent to the Environmental Protection Agency (EPA) reference dose. OBJECTIVE To investigate the association between low dose prenatal and recent methylmercury (MeHg) exposures and cardiac autonomic function and blood pressure with adjustment for factors such as fish consumption among children from a high fish consumption coastal city. METHODS Children aged 7-8 years were recruited from the birth cohort of our previous study. Heart rate variability (HRV), resting heart rate (RHR) and blood pressure were measured as surrogate markers of cardiac autonomic function. Cord blood and current whole blood Hg concentration were used as biomarkers of prenatal and recent MeHg exposure, respectively. Recent fish consumption information was estimated with a food frequency questionnaire. RESULTS Among 604 children, median cord blood and whole blood Hg concentrations were 45.9 nmol/L (IQR: 32.8-65.03 nmol/L) and 13.57 nmol/L (IQR: 9.29-19.72 nmol/L), respectively. Our results demonstrated that prenatal MeHg exposure was associated with decreased HRV (i.e. low CVRR, SDRR, and RMSSD), reflecting reduced parasympathetic activity (i.e. low CCVHF and HF), and a sympathovagal balance shift toward sympathetic predominance (i.e. high %LF and LF/HF ratio). Adjustment of recent fish consumption further increased the significance and magnitude of the adverse associations of MeHg. CONCLUSION The results of this study suggest that prenatal MeHg exposure is associated with decreased parasympathetic modulation of cardiac autonomic function in children.
Collapse
Affiliation(s)
- Peggy Hiu Ying Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong
| | - Ka Ming Kwok
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Michael Ho Ming Chan
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Albert Martin Li
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Iris Hiu Shuen Chan
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Tai Fai Fok
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Hugh Simon Lam
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
40
|
Notariale R, Infantino R, Palazzo E, Manna C. Erythrocytes as a Model for Heavy Metal-Related Vascular Dysfunction: The Protective Effect of Dietary Components. Int J Mol Sci 2021; 22:6604. [PMID: 34203038 PMCID: PMC8235350 DOI: 10.3390/ijms22126604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Heavy metals are toxic environmental pollutants associated with severe ecological and human health risks. Among them is mercury (Hg), widespread in air, soil, and water, due to its peculiar geo-biochemical cycle. The clinical consequences of Hg exposure include neurotoxicity and nephrotoxicity. Furthermore, increased risk for cardiovascular diseases is also reported due to a direct effect on cardiovascular tissues, including endothelial cells, recently identified as important targets for the harmful action of heavy metals. In this review, we will discuss the rationale for the potential use of erythrocytes as a surrogate model to study Hg-related toxicity on the cardiovascular system. The toxic effects of Hg on erythrocytes have been amply investigated in the last few years. Among the observed alterations, phosphatidylserine exposure has been proposed as an underlying mechanism responsible for Hg-induced increased proatherogenic and prothrombotic activity of these cells. Furthermore, following Hg-exposure, a decrease in NOS activity has also been reported, with consequent lowering of NO bioavailability, thus impairing endothelial function. An additional mechanism that may induce a decrease in NO availability is the generation of an oxidative microenvironment. Finally, considering that chronic Hg exposure mainly occurs through contaminated foods, the protective effect of dietary components is also discussed.
Collapse
Affiliation(s)
- Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Enza Palazzo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
41
|
Salcedo-Bellido I, Gutiérrez-González E, García-Esquinas E, Fernández de Larrea-Baz N, Navas-Acien A, Téllez-Plaza M, Pastor-Barriuso R, Lope V, Gómez-Ariza JL, García-Barrera T, Pollán M, Jiménez Moleón JJ, Pérez-Gómez B. Toxic metals in toenails as biomarkers of exposure: A review. ENVIRONMENTAL RESEARCH 2021; 197:111028. [PMID: 33753073 DOI: 10.1016/j.envres.2021.111028] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 05/04/2023]
Abstract
Toenails have been used as biomarkers of exposure to toxic metals, but their validity for this purpose is not yet clear and might differ depending on the specific agent. To evaluate this issue, we reviewed the literature on: a) the time-window of exposure reflected by toenails; b) the reproducibility of toenail toxic-metal levels in repeated measures over time; c) their relationship with other biomarkers of exposure, and; d) their association with potential determinants (i.e. sociodemographic, anthropometric, or lifestyle characteristics) or with sources of exposure like diet or environmental pollution. Thus, we performed a systematic review, searching for articles that provided original data for levels of any of the following toxic metals in toenails: aluminum, beryllium, cadmium, chromium, mercury, nickel, lead, thallium and uranium. We identified 88 articles, reporting data from 67 different research projects, which were quite heterogeneous with regard to population profile, sample size and analytical technique. The most commonly studied metal was mercury. Concerning the time-window of exposure explored by toenails, some reports indicate that toenail cadmium, nickel and lead may reflect exposures that occurred 7-12 months before sampling. For repeated samples obtained 1-6 years apart, the range of intraindividual correlation coefficients of aluminum, chromium and mercury was 0.33-0.56. The correlation of toxic metal concentrations between toenails and other matrices was higher for hair and fingernails than for urine or blood. Mercury levels were consistently associated with fish intake, while other toxic metals were occasionally associated with specific sources (e.g. drinking water, place of residence, environmental pollution, and occupation). The most frequently evaluated health endpoints were cardiovascular diseases, cancer, and central nervous system diseases. Available data suggest that toenail mercury levels reflected long-term exposures and showed positive associations with fish intake. The lack of standardization in sample collection, quality control, analytical techniques and procedures - along with the heterogeneity and conflicting results among studies - mean it is still difficult to conclude that toenails are a good biomarker of exposure to toxic metals. Further studies are needed to draw solid conclusions about the suitability of toenails as biomarkers of exposure to toxic metals.
Collapse
Affiliation(s)
- Inmaculada Salcedo-Bellido
- Department of Preventive Medicine and Public Health, University of Granada, Av. de La Investigación, 11, 18016, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain.
| | - Enrique Gutiérrez-González
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Public Health & Preventive Medicine Teaching Unit, National School of Public Health, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain; Spanish Agency of Food Safety and Nutrition, Ministry of Consumer Affairs, Alcalá, 56, 28014, Madrid, Spain
| | - Esther García-Esquinas
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Nerea Fernández de Larrea-Baz
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, New York, NY, 10032, USA
| | - María Téllez-Plaza
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - Roberto Pastor-Barriuso
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - Virginia Lope
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Fuerzas Armadas, Ave., 21007, Huelva, Spain; Research Center for Natural Resources, Health and the Environment, University of Huelva, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Fuerzas Armadas, Ave., 21007, Huelva, Spain; Research Center for Natural Resources, Health and the Environment, University of Huelva, Spain
| | - Marina Pollán
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - José Juan Jiménez Moleón
- Department of Preventive Medicine and Public Health, University of Granada, Av. de La Investigación, 11, 18016, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain
| | - Beatriz Pérez-Gómez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Public Health & Preventive Medicine Teaching Unit, National School of Public Health, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain.
| |
Collapse
|
42
|
Tejedor S, Dolz‐Pérez I, Decker CG, Hernándiz A, Diez JL, Álvarez R, Castellano D, García NA, Ontoria‐Oviedo I, Nebot VJ, González‐King H, Igual B, Sepúlveda P, Vicent MJ. Polymer Conjugation of Docosahexaenoic Acid Potentiates Cardioprotective Therapy in Preclinical Models of Myocardial Ischemia/Reperfusion Injury. Adv Healthc Mater 2021; 10:e2002121. [PMID: 33720548 DOI: 10.1002/adhm.202002121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Indexed: 01/16/2023]
Abstract
While coronary angioplasty represents an effective treatment option following acute myocardial infarction, the reperfusion of the occluded coronary artery can prompt ischemia-reperfusion (I/R) injury that significantly impacts patient outcomes. As ω-3 polyunsaturated fatty acids (PUFAs) have proven, yet limited cardioprotective abilities, an optimized polymer-conjugation approach is reported that improves PUFAs bioavailability to enhance cardioprotection and recovery in animal models of I/R-induced injury. Poly-l-glutamic acid (PGA) conjugation improves the solubility and stability of di-docosahexaenoic acid (diDHA) under physiological conditions and protects rat neonatal ventricular myocytes from I/R injury by reducing apoptosis, attenuating autophagy, inhibiting reactive oxygen species generation, and restoring mitochondrial membrane potential. Enhanced protective abilities are associated with optimized diDHA loading and evidence is provided for the inherent cardioprotective potential of PGA itself. Pretreatment with PGA-diDHA before reperfusion in a small animal I/R model provides for cardioprotection and limits area at risk (AAR). Furthermore, the preliminary findings suggest that PGA-diDHA administration in a swine I/R model may provide cardioprotection, limit edema and decrease AAR. Overall, the evaluation of PGA-diDHA in relevant preclinical models provides evidence for the potential of polymer-conjugated PUFAs in the mitigation of I/R injury associated with coronary angioplasty.
Collapse
Affiliation(s)
- Sandra Tejedor
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Irene Dolz‐Pérez
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| | - Caitlin G. Decker
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| | - Amparo Hernándiz
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Jose L. Diez
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Raquel Álvarez
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Delia Castellano
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Nahuel A. García
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Imelda Ontoria‐Oviedo
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Vicent J. Nebot
- Polypeptide Therapeutic Solutions S.L. Av. Benjamin Franklin 19, Paterna Valencia 46980 Spain
| | - Hernán González‐King
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Begoña Igual
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| |
Collapse
|
43
|
Long-term dietary supplementation with plant-derived omega-3 fatty acid improves outcome in experimental ischemic stroke. Atherosclerosis 2021; 325:89-98. [PMID: 33915355 DOI: 10.1016/j.atherosclerosis.2021.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Early revascularization -the gold standard therapy for ischemic stroke- is often withheld in the elderly population due to high risk of complications. Thus, safe and effective preventive and therapeutic options are needed. The plant-derived omega-3-fatty-acid alpha-linolenic-acid (ALA) has emerged as a novel cardiovascular-protective agent. As of yet, little is known about its potential therapeutic effects on stroke. We hereby aimed to investigate the impact of a clinically relevant long-term dietary intervention with ALA on stroke outcome. METHODS Six month-old C57BL/6 wildtype males were either fed an ALA-rich (high ALA) or a control diet (low ALA) for 12 months. At 18 months, brain ischemia/reperfusion was induced by transient middle cerebral artery occlusion (tMCAO). Stroke size and neurological function were assessed. Functional blood-brain-barrier-(BBB) permeability and protein expression were assessed by immunohistochemistry. Baseline inflammatory markers were measured at 18 months. RESULTS High ALA-fed animals displayed decreased circulating TNF-α levels and Neutrophil-to-Lymphocyte Ratios at 18 months. Stroke size and neurological dysfunction were significantly reduced in high ALA-fed animals. Coherently to the reduced stroke size, functional BBB integrity and occludin endothelial expression were maintained by high ALA supplementation. Additionally, ALA reduced endothelial activation and thus recruitment and activation of macrophages and resident microglia. Finally, high ALA diet reduced the expression of BBB-degrading and neurotoxic MMP-3 and MMP-9. CONCLUSIONS We demonstrate the beneficial effects of a clinically relevant and feasible dietary intervention with a safe and readily available compound in the setting of stroke. The protective effects observed with ALA supplementation may relate to blunting of inflammation and might pave the way for novel stroke treatments.
Collapse
|
44
|
Farzan SF, Habre R, Danza P, Lurmann F, Gauderman WJ, Avol E, Bastain T, Hodis HN, Breton C. Childhood traffic-related air pollution and adverse changes in subclinical atherosclerosis measures from childhood to adulthood. Environ Health 2021; 20:44. [PMID: 33853624 PMCID: PMC8048028 DOI: 10.1186/s12940-021-00726-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Chronic exposure to air pollutants is associated with increased risk of cardiovascular disease (CVD) among adults. However, little is known about how air pollution may affect the development of subclinical atherosclerosis in younger populations. Carotid artery intima-media thickness (CIMT) is a measure of subclinical atherosclerosis that provides insight into early CVD pathogenesis. METHODS In a pilot study of 70 participants from the Southern California Children's Health Study, we investigated CIMT progression from childhood to adulthood. Using carotid artery ultrasound images obtained at age 10 and follow-up images at age 21-22, we examined associations between childhood ambient and traffic-related air pollutants with changes in CIMT over time and attained adult CIMT using linear mixed-effects models adjusted for potential confounders. Average residential childhood exposures (i.e., birth to time of measurement at 10-11 years) were assigned for regional, ambient pollutants (ozone, nitrogen dioxide, particulate matter, interpolated from regulatory air monitoring data) and traffic-related nitrogen oxides (NOx) by road class (modeled using the CALINE4 line source dispersion model). Traffic density was calculated within a 300-m residential buffer. RESULTS For each 1 standard deviation (SD) increase in childhood traffic-related total NOx exposure, we observed greater yearly rate of change in CIMT from childhood to adulthood (β: 2.17 μm/yr, 95% CI: 0.78-3.56). Increases in annual rate of CIMT change from childhood to adulthood also were observed with freeway NOx exposure (β: 2.24 μm/yr, 95% CI: 0.84-3.63) and traffic density (β: 2.11 μm/yr, 95% CI: 0.79-3.43). Traffic exposures were also related to increases in attained CIMT in early adulthood. No associations of CIMT change or attained level were observed with ambient pollutants. CONCLUSIONS Overall, we observed adverse changes in CIMT over time in relation to childhood traffic-related NOx exposure and traffic density in our study population. While these results must be cautiously interpreted given the limited sample size, the observed associations of traffic measures with CIMT suggest a need for future studies to more fully explore this relationship.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Rima Habre
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Phoebe Danza
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | | | - W. James Gauderman
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Edward Avol
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Theresa Bastain
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Howard N. Hodis
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089 USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA 90089 USA
| | - Carrie Breton
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| |
Collapse
|
45
|
Hu XF, Lowe M, Chan HM. Mercury exposure, cardiovascular disease, and mortality: A systematic review and dose-response meta-analysis. ENVIRONMENTAL RESEARCH 2021; 193:110538. [PMID: 33285155 DOI: 10.1016/j.envres.2020.110538] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/29/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND There is evidence that exposure to mercury (Hg) may be a risk factor for cardiovascular disease (CVD). OBJECTIVE To conduct a systematic review of published studies and a meta-analysis of the results to examine the associations between chronic Hg exposure and CVD outcomes. METHODS We searched PubMed, Embase, and TOXLINE using previously developed strategies. Studies were selected according to a priori-defined inclusion criteria, and their qualities were assessed. Study estimates were extracted, and subgroup analyses were conducted to explore potential sources of heterogeneity: 1) fatal vs. nonfatal events, 2) cohort study vs. non-cohort study, and 3) inorganic Hg vs. methyl mercury (MeHg). Dose-response meta-analyses were conducted for MeHg exposure and fatal/nonfatal ischemic heart disease (IHD), stroke, and all CVD. RESULTS A total of 14 studies reporting results collected from more than 34,000 participants in 17 countries were included in the meta-analysis. Hg exposure was associated with an increase in nonfatal IHD (relative risk (RR): 1.21 (0.98, 1.50)), all-cause mortality (RR: 1.21 (0.90, 1.62)), CVD mortality (RR: 1.68 (1.15, 2.45)), and mortality due to other heart diseases (RR: 1.50 (1.07, 2.11)). No association was observed between Hg exposure and stroke. A heterogeneous relationship was found between studies reporting fatal and nonfatal outcomes and between cohort and non-cohort studies. However, these differences were mainly due to differences in Hg exposure level. Occupational inorganic Hg exposure was associated with similar increases in different mortality outcomes. A J-shaped relationship between Hg exposure and different fatal/nonfatal outcomes was observed, with turning points at hair Hg concentrations of 1 μg/g for IHD and 2 μg/g for stroke and all CVD. CONCLUSION Chronic exposure to Hg was associated with an increased risk of all-cause mortality and fatal/nonfatal IHD. The risk of multiple cardiovascular endpoints starts to increase consistently at a hair Hg concentration of 2 μg/g.
Collapse
Affiliation(s)
- Xue Feng Hu
- Department of Biology, University of Ottawa (XFH, ML, HMC), Canada
| | - Mackenzie Lowe
- Department of Biology, University of Ottawa (XFH, ML, HMC), Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa (XFH, ML, HMC), Canada.
| |
Collapse
|
46
|
Weinberg RL, Brook RD, Rubenfire M, Eagle KA. Cardiovascular Impact of Nutritional Supplementation With Omega-3 Fatty Acids: JACC Focus Seminar. J Am Coll Cardiol 2021; 77:593-608. [PMID: 33538258 DOI: 10.1016/j.jacc.2020.11.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) are a key component of a heart-healthy diet. For patients without clinical atherosclerotic cardiovascular disease, 2 or more servings of fatty fish per week is recommended to obtain adequate intake of omega-3 PUFAs. If this not possible, dietary supplementation with an appropriate fish oil may be reasonable. Supplementation with omega-3 PUFA capsules serves 2 distinct but overlapping roles: treatment of hypertriglyceridemia and prevention of cardiovascular events. Marine-derived omega-3 PUFAs reduce triglycerides and have pleiotropic effects including decreasing inflammation, improving plaque composition and stability, and altering cellular membranes. Clinical trial data have shown inconsistent results with omega-3 PUFAs improving cardiovascular outcomes. In this paper, the authors provide an overview of PUFAs and a summary of key clinical trial data. Recent trial data suggest the use of prescription eicosapentaenoic acid ethyl ester for atherosclerotic cardiovascular disease event reduction in selected populations.
Collapse
Affiliation(s)
- Richard L Weinberg
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Robert D Brook
- Division of Cardiology, Wayne State University, Detroit, Michigan, USA
| | - Melvyn Rubenfire
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kim A Eagle
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
47
|
Jing M, Lin D, Lin J, Li Q, Yan H, Feng X. Mercury, microcystins and Omega-3 polyunsaturated fatty acids in farmed fish in eutrophic reservoir: Risk and benefit assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116047. [PMID: 33246762 DOI: 10.1016/j.envpol.2020.116047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/17/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Fish is an important source of nutritional omega-3 (n-3) polyunsaturated fatty acids, but it also readily accumulates toxic mercury (Hg) and microcystins (MC) in eutrophic aquatic systems. In China, farmed fish was widely consumed, and aquaculture has caused pervasive eutrophication of freshwater lakes, resulting in the increasing accumulation of MC in fish tissue. To assess the risk-benefit of consuming farmed fish, 205 fish samples of 10 primary species were collected from the eutrophic Wujiangdu (WJD) Reservoir, SW China. The contents of Hg, microcystin-RR (MC-RR), microcystin-LR (MC-LR), and polyunsaturated fatty acids (PUFA) in fish were analyzed. The results showed that THg and MeHg concentrations in all fish sampls were well below the safety limit (500 ng/g w.w) established by the Standardization Administration of China, with average values of 22.9 ± 22.8 and 6.0 ± 6.6 ng/g wet weight (w.w.), respectively. Average concentrations of MC-RR and MC-LR were 40 ± 80 and 50 ± 80 ng/g w.w., respectively. MC-RR and MC-LR concentrations in fish were significantly higher in silver carp and black carp than in perch and catfish (p < 0.05). In nutritional terms, average concentrations of n-3 PUFA and the eicosapentaenoic (EPA) + docosahexaenoic acids (DHA) of fish were 2.0 ± 2.5 and 1.4 ± 0.5 mg/g w.w., respectively. The risk-benefit assessment suggests that the n-3 PUFA benefits from consuming all farmed fish species in the WJD Reservoir outweigh the adverse effects of MeHg. However, except for perch, most fish species still pose a high MC-LR exposure risk that created a requirement for fish consumption advisories and monitoring. Consequently, more attention should be paid on the health risk of combined exposure to pollutants by aquatic product consumption.
Collapse
Affiliation(s)
- Min Jing
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dan Lin
- School of Public Health, Guizhou Medical University, Guiyang, 550025, PR China
| | - Jing Lin
- School of Public Health, Guizhou Medical University, Guiyang, 550025, PR China
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550000, PR China
| | - Haiyu Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| |
Collapse
|
48
|
Hiraoka H, Nomura R, Takasugi N, Akai R, Iwawaki T, Kumagai Y, Fujimura M, Uehara T. Spatiotemporal analysis of the UPR transition induced by methylmercury in the mouse brain. Arch Toxicol 2021; 95:1241-1250. [PMID: 33454823 DOI: 10.1007/s00204-021-02982-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/06/2021] [Indexed: 01/11/2023]
Abstract
Methylmercury (MeHg), an environmental toxicant, induces neuronal cell death and injures a specific area of the brain. MeHg-mediated neurotoxicity is believed to be caused by oxidative stress and endoplasmic reticulum (ER) stress but the mechanism by which those stresses lead to neuronal loss is unclear. Here, by utilizing the ER stress-activated indicator (ERAI) system, we investigated the signaling alterations in the unfolded protein response (UPR) prior to neuronal apoptosis in the mouse brain. In ERAI transgenic mice exposed to MeHg (25 mg/kg, S.C.), the ERAI signal, which indicates activation of the cytoprotective pathway of the UPR, was detected in the brain. Interestingly, detailed ex vivo analysis showed that the ERAI signal was localized predominantly in neurons. Time course analysis of MeHg exposure (30 ppm in drinking water) showed that whereas the ERAI signal was gradually attenuated at the late phase after increasing at the early phase, activation of the apoptotic pathway of the UPR was enhanced in proportion to the exposure time. These results suggest that MeHg induces not only ER stress but also neuronal cell death via a UPR shift. UPR modulation could be a therapeutic target for treating neuropathy caused by electrophiles similar to MeHg.
Collapse
Affiliation(s)
- Hideki Hiraoka
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Ryosuke Nomura
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Ryoko Akai
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Masatake Fujimura
- Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto, 867-0008, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
49
|
Short RE, Cox DTC, Ling Tan Y, Bethel A, Eales JF, Garside R. Review of the evidence for oceans and human health relationships in Europe: A systematic map. ENVIRONMENT INTERNATIONAL 2021; 146:106275. [PMID: 33242730 DOI: 10.1016/j.envint.2020.106275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/02/2020] [Accepted: 11/07/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Globally, there is increasing scientific evidence of critical links between the oceans and human health, with research into issues such as pollution, harmful algal blooms and nutritional contributions. However, Oceans and Human Health (OHH) remains an emerging discipline. As such these links are poorly recognized in policy efforts such as the Sustainable Development Goals, with OHH not included in either marine (SDG14) or health (SDG3) goals. This is arguably short-sighted given recent development strategies such as the EU Blue Growth Agenda. OBJECTIVES In this systematic map we aim to build on recent efforts to enhance OHH in Europe by setting a baseline of existing evidence, asking: What links have been researched between marine environments and the positive and negative impacts to human health and wellbeing? METHODS We searched eight bibliographic databases and queried 57 organizations identified through stakeholder consultation. Results include primary research and systematic reviews which were screened double blind against pre-defined inclusion criteria as per a published protocol. Studies were limited to Europe, US, Australia, New Zealand and Canada. Data was extracted according to a stakeholder-defined code book. A narrative synthesis explores the current evidence for relationships between marine exposures and human health outcomes, trends in knowledge gaps and change over time in the OHH research landscape. The resulting database is available on the website of the Seas, Oceans and Public Health in Europe website (https://sophie2020.eu/). RESULTS A total of 1,542 unique articles were included in the database, including those examined within 56 systematic reviews. Research was dominated by a US focus representing 50.1% of articles. A high number of articles were found to link: marine biotechnology and cardiovascular or immune conditions, consumption of seafood and cardiovascular health, chemical pollution and neurological conditions, microbial pollution and gastrointestinal or respiratory health, and oil industry occupations with mental health. A lack of evidence relates to direct impacts of plastic pollution and work within a number of industries identified as relevant by stakeholders. Research over time is dominated by marine biotechnology, though this is narrow in focus. Pollution, food and disease/injury research follow similar trajectories. Wellbeing and climate change have emerged more recently as key topics but lag behind other categories in volume of evidence. CONCLUSIONS The evidence base for OHH of relevance to European policy is growing but remains patchy and poorly co-ordinated. Considerable scope for future evidence synthesis exists to better inform policy-makers, though reviews need to better incorporate complex exposures. Priorities for future research include: proactive assessments of chemical pollutants, measurable impacts arising from climate change, effects of emerging marine industries, and regional and global assessments for OHH interactions. Understanding of synergistic effects across multiple exposures and outcomes using systems approaches is recommended to guide policies within the Blue Growth Strategy. Co-ordination of research across Europe and dedicated centres of research would be effective first steps.
Collapse
Affiliation(s)
- Rebecca E Short
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, UK; Stockholm Resilience Center, Stockholm University, 106 91 Stockholm, Sweden(1).
| | - Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK.
| | - Yin Ling Tan
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Alison Bethel
- PenCLAHRC, University of Exeter Medical School, St. Luke's Campus, Exeter EX1 2LU, UK.
| | - Jacqualyn F Eales
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, UK.
| | - Ruth Garside
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, UK.
| |
Collapse
|
50
|
Park SK, Ding N, Han D. Perfluoroalkyl substances and cognitive function in older adults: Should we consider non-monotonic dose-responses and chronic kidney disease? ENVIRONMENTAL RESEARCH 2021; 192:110346. [PMID: 33068581 PMCID: PMC7736478 DOI: 10.1016/j.envres.2020.110346] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Although potential neurotoxicity of perfluoroalkyl and polyfluoroalkyl substances (PFAS) is suggested, previous epidemiologic studies have reported a 'protective' association between serum PFAS concentration and cognition function. Poor outcome assessment, residual confounding, non-monotonic dose-responses (NMDRs), and the role of reduced kidney function in PFAS excretion may be alternative explanations of these findings. OBJECTIVES We examined the association of perfluoroalkyls with cognitive functions assessed using the Consortium to Establish a Registry for Alzheimer's Disease word learning and recall; the Animal Fluency; and the Digit Symbol Substitution tests. METHODS We included 903 adults aged ≥60 years from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. We computed a composite z-score as an average of four individual cognitive z-scores and used it as the outcome. Linear and generalized additive models were used to evaluate linear and non-linear associations. RESULTS With the linearity assumption, perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were significantly positively associated with composite z-score after adjustment for age, sex, race/ethnicity, education, smoking, poverty-income ratio, health insurance, food security, alcohol, and physical activity. Smoothing plots suggested NMDRs, especially for perfluorooctane sulfonate (PFOS) with a U-shape dose-response. When restricting to participants without chronic kidney disease (CKD) (n = 613), the positive associations for PFOA and PFNA observed in the whole population diminished, whereas PFOS was inversely and significantly associated with composite z-score. Also, negative confounding effects of fish/seafood consumption seem to be substantial. Effect estimates of composite z-score were -0.055 (95% CI: -0.097, -0.012, P = 0.01) for a doubling increase in PFOS. DISCUSSION These findings suggest that the previous epidemiologic findings of a 'protective' association between PFAS and cognition may be explained by CKD, NMDRs and confounding by fish consumption. PFOS at the current population exposure level in the U.S. may be a risk factor for cognitive decline in older adults with normal kidney function.
Collapse
Affiliation(s)
- Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Dehua Han
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|