1
|
Nirwan N, Jain S, Vohora D. Linagliptin-metformin combination: A novel approach to mitigate 4-vinyl cyclohexene di epoxide and dexamethasone-induced osteoporosis in mice. Bone 2025; 198:117526. [PMID: 40398630 DOI: 10.1016/j.bone.2025.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Elevated levels of dipeptidyl-peptidase (DPP-4) enzyme, associated with accelerated bone resorption, are linked to both post-menopausal osteoporosis (PMO) and glucocorticoid-induced osteoporosis (GIO). Consequently, DPP-4 inhibitors, a class of anti-diabetic drugs, emerge as potential candidates for repurposing as anti-osteoporotic agents. In this study, we explored the effect of 4-week treatment with linagliptin (a DPP-4 inhibitor) and its combination with metformin on PMO and GIO in mice. PMO was induced in Balb/c mice by injecting 4-vinyl cyclohexene diepoxide (VCD), 160 mg/kg, ip for 15 days while GIO was induced by administering dexamethasone (DEX) 5 mg/kg, ip for 21 days. A significant improvement in bone architectural parameters and bone mineral density (BMD) was observed following the linagliptin-metformin combination, which was consistent with the altered bone turnover markers i.e., increased ALP, osteocalcin, BMP-2, and reduced serum calcium, TRAP, sclerostin and pro-inflammatory cytokines. Results from bone immunohistochemistry (IHC) demonstrated that the combination led to an increase in immunopositive OPG cells, while RANKL expression was diminished. Linagliptin, however, demonstrated only partial improvement in the PMO model. Conversely, in the GIO model, linagliptin did not show a significant effect except for improved BMD and sclerostin levels. Treatment with metformin did not show significant changes in either model. These findings suggest that the combination of linagliptin with metformin could alleviate the PMO and GIO, possibly through targeting AMPK and Wnt signaling pathway and thereby modulating BMP-2, sclerostin and RANKL/OPG.
Collapse
Affiliation(s)
- Nikita Nirwan
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shreshta Jain
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Nicchio IG, Cirelli T, Quil LCDC, Camilli AC, Scarel-Caminaga RM, Leite FRM. Understanding the peroxisome proliferator-activated receptor gamma (PPAR-γ) role in periodontitis and diabetes mellitus: A molecular perspective. Biochem Pharmacol 2025; 237:116908. [PMID: 40157459 DOI: 10.1016/j.bcp.2025.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Periodontitis and Type 2 Diabetes Mellitus (T2DM) are chronic conditions with dysregulated immune responses. Periodontitis involves immune dysfunction and dysbiotic biofilms, leading to tissue destruction. T2DM is marked by insulin resistance and systemic inflammation, driving metabolic and tissue damage. Both conditions share activation of key pathways, including Nuclear Factor Kappa B (NF-κB), Activator Protein-1 (AP-1), and Signal Transducer and Activator of Transcription (STAT) proteins, reinforcing an inflammatory feedback loop. This review highlights the role of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), a transcription factor central to lipid and glucose metabolism, adipogenesis, and immune regulation. PPAR-γ activation has been shown to suppress inflammatory mediators such as Tumor Necrosis Factor Alpha (TNF-α) and Interleukin 6 (IL-6) through the inhibition of NF-κB, AP-1, and STAT pathways, thereby potentially disrupting the inflammatory-metabolic cycle that drives both diseases. PPAR-γ agonists, including thiazolidinediones (TZDs) and endogenous ligands such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), show promise in reducing inflammation and improving insulin sensitivity, but they are limited by adverse effects. Therapies, including Selective Peroxisome Proliferator-Activated Receptor Modulators (SPPARMs), have been developed to offer a more targeted approach, allowing for selective modulation of PPAR-γ activity to retain its anti-inflammatory benefits while minimizing their side effects. By integrating insights into PPAR-γ's molecular mechanisms, this review underscores its therapeutic potential in mitigating inflammation and enhancing metabolic control.
Collapse
Affiliation(s)
- Ingra Gagno Nicchio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Thamiris Cirelli
- Department of Dentistry, Centro Universitário das Faculdades Associadas, São João da Boa Vista 13870-377, SP, Brazil.
| | - Lucas César da Costa Quil
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Angelo Constantino Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Raquel Mantuaneli Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Fabio Renato Manzolli Leite
- National Dental Research Institute Singapore, National Dental Centre Singapore, 168938, Singapore; Oral Health Academic Clinical Programme, Duke-NUS Medical School, 169857, Singapore.
| |
Collapse
|
3
|
Kaku K, Shimoda M, Osonoi T, Iwamoto M, Kaneto H. Efficacy and safety of imeglimin add-on to DPP-4 inhibitor therapy in Japanese patients with type 2 diabetes mellitus: An interim analysis of the randomised, double-blind FAMILIAR trial. Diabetes Obes Metab 2025; 27:3212-3222. [PMID: 40116188 PMCID: PMC12046477 DOI: 10.1111/dom.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
AIMS The ongoing FAMILIAR trial aims to provide evidence for clinical decision-making and offer a novel treatment paradigm in type 2 diabetes mellitus (T2DM) management. The interim findings of FAMILIAR through Week 24 are reported. MATERIALS AND METHODS FAMILIAR is a multicentre, randomised, double-blind study comparing the efficacy and safety of imeglimin versus placebo in adult Japanese patients with T2DM and inadequate glycaemic control despite dipeptidyl peptidase-4 (DPP-4) inhibitor monotherapy, plus diet/exercise modifications. Patients entered a 24-week double-blind treatment phase (oral imeglimin 1000 mg or placebo twice daily) followed by an 80-week open-label phase (oral imeglimin 1000 mg twice daily). The primary end-point was change in glycated haemoglobin (HbA1c) level from baseline at Week 24. Safety was also monitored. RESULTS Overall, 117 patients were randomised (imeglimin, n = 58; placebo, n = 54; excluded, n = 5). The least squares mean (standard error) changes in HbA1c level (baseline to Week 24) for the imeglimin and placebo groups, respectively, were -0.65% (0.11%) and 0.38% (0.11%) in the overall population (group-difference -1.02% [95% confidence interval -1.33%, -0.72%]; p < 0.001); -0.47% (0.17%) and 0.32% (0.18%) in patients aged <65 years (-0.79% [-1.29%, -0.29%]; p = 0.003); and -0.80% (0.14%) and 0.42% (0.14%) in patients aged ≥65 years (-1.22% [-1.61%, -0.82%]; p < 0.001). One patient in the imeglimin group had mild hypoglycaemia; the safety profile was favourable. CONCLUSIONS Imeglimin represents a potential new treatment option for patients with T2DM and inadequate glycaemic control with DPP-4 inhibitors, including those aged ≥65 years. CLINICAL TRIAL REGISTRATION jRCTs061210082.
Collapse
Affiliation(s)
- Kohei Kaku
- Department of Diabetes, Endocrinology and MetabolismKawasaki Medical SchoolOkayamaJapan
| | - Masashi Shimoda
- Department of Diabetes, Endocrinology and MetabolismKawasaki Medical SchoolOkayamaJapan
| | | | | | - Hideaki Kaneto
- Department of Diabetes, Endocrinology and MetabolismKawasaki Medical SchoolOkayamaJapan
| |
Collapse
|
4
|
Pereira de Lima R, Li A, Gilani A, Rubio-Navarro A, Warren CD, Kong IY, Geri JB, Lo JC. C3aR1 on β cells enhances β cell function and survival to maintain glucose homeostasis. Mol Metab 2025; 96:102134. [PMID: 40189102 PMCID: PMC12018202 DOI: 10.1016/j.molmet.2025.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE Pancreatic β cell dysfunction is critical to the development of type 2 diabetes (T2D). Our previous studies suggested that C3aR1 on β cells promotes insulin secretion and cell survival. However, as C3aR1 is expressed on many other cell types including within the islets, whole-body C3aR1 knockout models confound the analyses of direct impacts on β cells. METHODS To clarify the role of C3aR1 in β cells under T2D conditions, we generated β cell-specific C3aR1 knockout mice. We assessed glucose homeostasis, focusing on β cell function and mass under metabolic stress conditions, to interrogate the effects of C3aR1 on β cells in a mouse model of T2D. We performed proteomic analyses on islets from control and β cell-specific C3aR1 knockout mice. To determine potential translational relevance, C3AR1 was assessed alongside glucose-stimulated insulin secretion in human islets. RESULTS We show that the complement receptor C3aR1 on β cells plays an essential role in maintaining β cell homeostasis, especially under the metabolic duress of obesity and T2D. Male mice with β cell specific deletion of C3ar1 (β-C3aR1 KO) exhibit worse glucose tolerance and lower insulin levels when fed regular or high fat diet. Under high fat diet, β-C3aR1 KO also have diminished β cell mass. Islets from β-C3aR1 KO mice demonstrate impaired insulin secretion. β cells lacking C3aR1 display increased susceptibility to lipotoxicity-mediated cell death. Markers of β cell identity are decreased in β-C3aR1 KO mice while stress markers are elevated. Disruption of C3ar1 on β cells ablates the insulin secretory response to C3a, establishing a signaling axis between C3a and β cell-derived C3aR1. Islet proteomic analyses highlight the MAPK pathway and mitochondrial dysfunction with C3aR1 loss in β cells. Finally, we show that C3AR1 is positively correlated with insulin secretion in human islets. CONCLUSIONS These findings indicate that C3aR1 expression on β cells is necessary to maintain optimal β cell function and preserve β cell mass in T2D.
Collapse
Affiliation(s)
- Renan Pereira de Lima
- Division of Cardiology, Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ang Li
- Division of Cardiology, Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ankit Gilani
- Division of Cardiology, Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Charles D Warren
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Isabella Y Kong
- Division of Pediatric Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jacob B Geri
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - James C Lo
- Division of Cardiology, Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Magwenyane AM, Kumalo HM. Computational Approaches for PPARγ Inhibitor Development: Recent Advances and Perspectives. ChemistryOpen 2025:e2500087. [PMID: 40326962 DOI: 10.1002/open.202500087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/26/2025] [Indexed: 05/07/2025] Open
Abstract
The development of peroxisome proliferator-activated receptor gamma (PPARγ) inhibitors has attracted significant interest for treating metabolic disorders, cancer, and inflammatory diseases. This review highlights the crucial role of computational modelling in advancing PPARγ inhibitor development, emphasizing how these techniques streamline the identification, optimization, and evaluation of new drug candidates. Key methods include molecular docking, QSAR, and molecular dynamics simulations, which enhance the efficiency and accuracy of inhibitor design. Computational modelling has deepened our understanding of PPARγ binding mechanisms and conformational dynamics, allowing researchers to predict and optimize ligand-receptor complex stability. Despite these advancements, challenges remain, such as improving predictions of pharmacokinetic properties (ADME) to evaluate drug-like qualities. In conclusion, computational modelling has significantly enhanced PPARγ inhibitor discovery and development, offering new opportunities to address complex diseases. Continued refinement of these models, combined with experimental validation and emerging technologies, is crucial for overcoming current limitations and achieving successful clinical outcomes.
Collapse
Affiliation(s)
- Ayanda M Magwenyane
- Chemistry Department, Faculty of Applied and Health Sciences, Mangosuthu University of Technology, Durban, 4031, South Africa
| | - Hezekiel M Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| |
Collapse
|
6
|
Li W, Wang Y, Liu C, Yu Y, Xu L, Dong B. Comparing Efficacy of Chiglitazar, Pioglitazone, and Semaglutide in Type 2 Diabetes: A Retrospective Study. Diabetes Ther 2025; 16:993-1017. [PMID: 40126828 PMCID: PMC12006573 DOI: 10.1007/s13300-025-01724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is a complex chronic metabolic disease characterized by insulin resistance, dyslipidemia, inflammation, and visceral fat accumulation, leading to complications, such as cardiovascular disease and kidney damage. Emerging metabolic regulators, including chiglitazar, semaglutide, and pioglitazone, have gained prominence in managing T2D and associated metabolic disorders. However, their relative efficacy and optimal clinical applications remain unclear. This study's objective was to compare the effects of chiglitazar, semaglutide, and pioglitazone on glycemic control, lipid metabolism, insulin resistance, inflammatory response, liver function, kidney function, and dawn phenomenon intensity in T2D participants, and to explore their relative efficacy and clinical value. METHODS This retrospective study was conducted from October 2024 to November 2024 to compare the effects of chiglitazar, semaglutide, and pioglitazone in managing type 2 diabetes (T2D) and associated metabolic disorders.This retrospective cohort study included 175 participants with T2D divided into three groups: chiglitazar (n = 55), semaglutide (n = 57), and pioglitazone (n = 63). participants underwent a 4-week treatment period. Core metrics, including blood glucose, lipid metabolism indicators, urinary albumin-to-creatinine ratio (UACR), and metabolic insulin resistance score (METS-IR), were assessed before and after treatment to evaluate drug efficacy. RESULTS Dawn phenomenon: chiglitazar significantly improved dawn phenomenon intensity (Δ0.004 ± 0.80 to -0.77 ± 0.67, p < 0.01), outperforming other drugs. Lipid metabolism: semaglutide demonstrated superior efficacy in reducing total cholesterol (TC) and free fatty acids (FFA) (p < 0.05). Kidney function: both semaglutide and chiglitazar significantly lowered UACR (p < 0.01), with semaglutide showing greater efficacy (-0.13 ± 0.02 versus -0.08 ± 0.01, p < 0.05). Insulin resistance and cardiovascular protection: all three drugs significantly improved METS-IR, with no statistical differences between groups (p > 0.05). SAFETY all drugs exhibited good tolerability with no severe adverse events. CONCLUSIONS Chiglitazar is particularly effective for participants with pronounced dawn phenomenon, semaglutide excels in lipid metabolism improvement and kidney protection, while pioglitazone remains effective for insulin resistance and glycemic control. These findings provide evidence-based guidance for individualized T2D management.
Collapse
Affiliation(s)
- Wenxuan Li
- The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yangang Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanfeng Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongzhuo Yu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingzi Dong
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Hu Y, Zou H, Shen Y, Ni Q, Li Y, Zhang H, Chen X, Ung COL, Hu H, Mu Y. Long- and Short-Term Cost-Effectiveness of Once-Weekly Semaglutide versus Dulaglutide for the Treatment of Type 2 Diabetes in China: A Hypothetical Modeling Exercise. Diabetes Ther 2025; 16:915-929. [PMID: 40106226 PMCID: PMC12006588 DOI: 10.1007/s13300-025-01716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION This study aimed to evaluate the long- and short-term cost-effectiveness of once-weekly semaglutide versus dulaglutide for treating patients with type 2 diabetes uncontrolled with metformin after the renewal of China's national reimbursement drug list. METHODS This analysis was conducted using the Institute of Health Economics Diabetes Cohort Model (IHE-DCM) to evaluate the long-term health and economic outcomes of semaglutide 0.5 mg, 1.0 mg, and dulaglutide 1.5 mg. It was performed from the perspective of the Chinese healthcare systems over a 40-year time horizon, with an annual discount rate of 5%. Baseline cohort characteristics and treatment effects were sourced from the head-to-head clinical trial SUSTAIN 7, which compared the efficacy and safety of semaglutide and dulaglutide. The analysis included direct medical costs regarding antidiabetic treatment and complication treatment. The long-term cost-effectiveness analysis used quality-adjusted life years (QALYs) as the primary health outcome. The robustness of the results was evaluated through one-way sensitivity analyses and probabilistic sensitivity analyses. The short-term cost-effectiveness analysis, focusing on the proportion of patients achieving clinical targets as the health outcome, compared the control costs of successfully treating a patient to meet clinical treatment goals between semaglutide 0.5 mg, 1.0 mg, and dulaglutide 1.5 mg over a 40-week study period. RESULTS Compared with dulaglutide 1.5 mg, once-weekly semaglutide 0.5 mg demonstrated an improvement of 0.08 QALYs and a reduction in total direct medical costs of 5476 Chinese yuan (CNY); Once-weekly semaglutide 1.0 mg showed an increase of 0.19 QALYs, and a decrease in total direct medical costs of 6711 CNY. Sensitivity analyses confirmed the robustness of these results. In the short-term cost-of-control study, once-weekly semaglutide 0.5 mg demonstrated lower treatment costs for all targets: the costs of control for dulaglutide 1.5 mg were 1.2-2.1 times as much as that of semaglutide 0.5 mg once weekly. Semaglutide 1.0 mg achieved similar treatment costs for the good glycemic control goal (HbA1c < 7%) to dulaglutide 1.5 mg. However, when looking at tight glycemic control, weight management targets, and composite targets relating to weight loss, once-weekly semaglutide 1.0 mg showed lower treatment costs compared to dulaglutide 1.5 mg to bring at least one patient to achieve these targets. CONCLUSIONS Compared to dulaglutide 1.5 mg, once-weekly semaglutide remains cost-effective for treating type 2 diabetes uncontrolled on metformin in China under the new negotiation price. However, limitations exist, including the reliance on SUSTAIN-7 data and the lack of specific utility data for the Chinese population.
Collapse
Affiliation(s)
- Ying Hu
- Department of Endocrinology, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Huimin Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Yang Shen
- School of Public Health, Peking University, Beijing, China
- China Center for Health Development Studies, Peking University, Beijing, China
| | - Qi Ni
- Department of Endocrinology, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yijun Li
- Department of Endocrinology, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Hao Zhang
- Novo Nordisk (China) Pharmaceuticals Co., Ltd., Beijing, China
| | - Xianwen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Taipa, Macao
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macao
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Taipa, Macao.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macao.
| | - Yiming Mu
- Department of Endocrinology, First Medical Center of Chinese, PLA General Hospital, Beijing, China.
| |
Collapse
|
8
|
Shah AS, Kelsey MM, Wolf RM, Nadeau KJ. Shaping the future of youth-onset type 2 diabetes: a call to action. Trends Endocrinol Metab 2025:S1043-2760(25)00048-7. [PMID: 40187960 DOI: 10.1016/j.tem.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Youth-onset type 2 diabetes (YO-T2D) is an urgent public health challenge that demands immediate and innovative action. The devastating trajectory of this disease - from rapid β-cell decline to early complications and poor responses to medications - compels us to rethink our approach. Here, we argue that by investing in targeted research to unravel the unique mechanisms of this condition, ensuring equitable access to cutting-edge clinical trials, and building clinical care models tailored specifically for youth, we can rewrite the narrative for these at-risk youth.
Collapse
Affiliation(s)
- Amy S Shah
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Department of Pediatrics, Division of Endocrinology, Cincinnati, OH, USA.
| | - Megan M Kelsey
- Section of Endocrinology, Department of Pediatrics, School of Medicine and Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Risa M Wolf
- Department of Pediatrics, Division of Endocrinology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kristen J Nadeau
- Section of Endocrinology, Department of Pediatrics, School of Medicine and Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Han Y, Zhang J, Wang W, Zhou K, Yang W, Pan Q, Nie Z, Guo L. Development and validation of an individual weight-loss model for patients with diabetes treated with metformin. Diabetes Res Clin Pract 2025; 222:112073. [PMID: 40023291 DOI: 10.1016/j.diabres.2025.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
AIMS To develop a machine learning model for predicting weight loss response to metformin in Chinese patients with type 2 diabetes. METHODS Data were obtained from three Chinese randomized controlled trials (RCT) screening newly diagnosed diabetes patients who received metformin monotherapy. Multiple machine learning methods, including gradient boosting regressor (GBR), were used to predict weight loss at the end of treatment based on baseline clinical characteristics and weight data collected at baseline and after up to weeks 4, 8, or 12. GBR was identified as the optimal model on the validation set according to minimum Mean Absolute Error (MAE) for subsequent analyses. Model performance on predicting categorical weight loss at 3% or 5% was measured using classification metrics, including the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). RESULTS Three trials with a total of 1325 individuals with diabetes were pooled in the final analysis. We randomly selected 1126 individuals for the training and the validation group and 119 for the test group. In the test set, all AUC values exceeded 0.71 (with a maximum of 0.83). Additionally, the precision improved when weight data from the 4, 8, and 12-week time points were included in the training group. An online web-based tool was constructed based on the machine learning prediction model. CONCLUSIONS The developed machine learning model can be used to predict the individual weight loss responses to metformin and provide new insights for clinical practice regarding weight management in Chinese patients with diabetes.
Collapse
Affiliation(s)
- Yujia Han
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking University Fifth School of Clinical Medicine, China
| | - Weihao Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Kaixin Zhou
- No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005 Guangdong Province, China
| | | | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zedong Nie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Cheng AYY, Heine RJ, Del Prato S, Green JB, Thieu VT, Zeytinoglu M. Striving for early effective glycaemic and weight management in type 2 diabetes: A narrative review. Diabetes Obes Metab 2025; 27:1708-1718. [PMID: 39871817 PMCID: PMC11885087 DOI: 10.1111/dom.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
Despite the recognition by key guidelines that achieving early glycaemic control has important benefits in individuals with type 2 diabetes (T2D) and that addressing excess adiposity is one of the central components of comprehensive person-centred T2D care, a substantial proportion of individuals with T2D do not meet their metabolic treatment goals. Prior treatment paradigms were limited by important treatment-associated risks such as hypoglycaemia and body weight gain. Therefore, a more conservative, sequential approach to treatment was typically utilized. One potential consequence of this approach has been a missed opportunity to achieve a 'legacy effect', where early treatment to reach glycaemic targets is associated with enduring long-term benefits in T2D. Additionally, while previous treatment approaches have addressed core defects in T2D, including insulin resistance and β-cell function decline, they have been unable to address one of the underlying causal abnormalities-excess adiposity. Here, we review currently available evidence for the beneficial long-term effects of early glycaemic control and management of body weight in people with T2D and discuss potential next steps.
Collapse
|
11
|
Papatheodorou K, Shubrook JH. Beta-cell preservation in T2DM using a pathophysiologic approach. Postgrad Med 2025; 137:235-242. [PMID: 40247637 DOI: 10.1080/00325481.2025.2494502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Type 2 diabetes and obesity rates continue to rise. Type 2 diabetes affects 1-2 million new individuals annually. Despite a wide range of treatment options for type 2 diabetes, many people still fail to achieve therapeutic goals. Treating type 2 diabetes more proactively with a pathophysiologic approach can ensure higher rates of success and reduce complications. This article summarizes the progressive understanding of the pathophysiology of diabetes, draws a connection between illness and beta-cell health, and introduces the pathophysiologic approach to type 2 diabetes and its focus on beta-cell preservation. This article compiled clinical data, evidence-based medicine, and experimental results to create a comprehensive narrative review.
Collapse
Affiliation(s)
| | - Jay H Shubrook
- Department of Clinical Sciences and Community Health, Touro University, California, College of Osteopathic Medicine, Vallejo, CA, USA
| |
Collapse
|
12
|
Long J, Shi Z, Miao Z, Dong L, Yan D. Lactobacillus murinus alleviates insulin resistance via promoting L-citrulline synthesis. J Endocrinol Invest 2025; 48:1005-1015. [PMID: 39560906 DOI: 10.1007/s40618-024-02500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
AIMS The role of Lactobacillus murinus as a potential probiotic is being explored. Our objectives were to explore the effects of Lactobacillus murinus on insulin resistance and the underlying mechanism. METHODS Insulin resistance animal models were applied to study the effect of L. murinus and the underlying mechanism by six weeks of treatment. Metformin was administered in vitro to analyze the growth and metabolites of L. murinus. Serum metabolites were further analyzed after L. murinus administration. The effect of L-citrulline and the underlying mechanism in alleviating insulin resistance were evaluated. RESULTS L. murinus not only reduced body weight gain and postprandial blood glucose (PBG) but improved impaired glucose tolerance (IGT) and insulin resistance. Moreover, L. murinus inhibited the secretion of pro-inflammatory factors (IL-1β, IL-6 and TNF-α) while promoted the secretion of anti-inflammatory factor (IL-10). Further, L. murinus promoted the expression of carnitine palmitoyl transferase 1 (CPT1) while inhibited phosphoenolpyruvate carboxykinase (PCK) and glucose-6-phosphatase (G6Pase). A total of 147 metabolites of L. murinus were identified, in which the content of L-citrulline increased to 7.94 times after metformin regulation. Further, the serum concentration of L-citrulline significantly increased after L. murinus administration. Similarly, L-citrulline reduced body weight gain and PBG, improved IGT and insulin resistance. Additionally, L-citrulline improved inflammation, promoted CPT1 while inhibited PCK and G6Pase. CONCLUSIONS L. murinus mediated by L-citrulline alleviated insulin resistance via promoting fatty acid oxidation and inhibiting gluconeogenesis, suggesting that supplementation of L. murinus could be a potential therapeutic approach for type 2 diabetes related to insulin resistance.
Collapse
Affiliation(s)
- Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhe Shi
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zenghui Miao
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Linjie Dong
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2025; 21:245-261. [PMID: 39613954 PMCID: PMC11916920 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
14
|
Jerkins TW, Bell DSH. Stroke in the Patient With Type 2 Diabetes. Endocr Pract 2025; 31:547-553. [PMID: 39914491 DOI: 10.1016/j.eprac.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVE Persons living with type 2 diabetes mellitus (T2DM) have a significantly greater risk of stroke (1.5 to 3 times higher than normoglycemic individuals). The traditional approach to primary and secondary stroke prevention has been control of risk factors. While this has resulted in prolongation of life in patients with diabetes, the risk for recurrent stroke in these patients still remains higher than in the normoglycemic population, and patients with T2DM post stroke have a poorer quality of life (increases in handicap and death). METHODS Multiple publications on the pathophysiology which increases stroke in T2DM were reviewed as well as new publications looking at the effect of traditional and new risk factor modification on stroke are summarized. RESULTS Traditional risk factor modification is refined with recommended levels of lipids and blood pressure and methods of anticoagulation. More recently, studies with antidiabetic drugs (glucagon-like peptide 1 RA and pioglitazone) have been shown to prevent both primary and secondary stroke in patients with diabetes. CONCLUSIONS Worldwide, stroke is the second leading cause of death and the third leading cause of disability. Both risk and the outcomes are greatly worsened by the presence of T2DM. Newer recommendations can improve these outcomes.
Collapse
|
15
|
Kruczkowska W, Gałęziewska J, Buczek P, Płuciennik E, Kciuk M, Śliwińska A. Overview of Metformin and Neurodegeneration: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:486. [PMID: 40283923 PMCID: PMC12030719 DOI: 10.3390/ph18040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
This comprehensive review examines the therapeutic potential of metformin, a well-established diabetes medication, in treating neurodegenerative disorders. Originally used as a first-line treatment for type 2 diabetes, recent studies have begun investigating metformin's effects beyond metabolic disorders, particularly its neuroprotective capabilities against conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis. Key findings demonstrate that metformin's neuroprotective effects operate through multiple pathways: AMPK activation enhancing cellular energy metabolism and autophagy; upregulation of antioxidant defenses; suppression of inflammation; inhibition of protein aggregation; and improvement of mitochondrial function. These mechanisms collectively address common pathological features in neurodegeneration and neuroinflammation, including oxidative stress, protein accumulation, and mitochondrial dysfunction. Clinical and preclinical evidence supporting metformin's association with improved cognitive performance, reduced risk of dementia, and modulation of pathological hallmarks of neurodegenerative diseases is critically evaluated. While metformin shows promise as a therapeutic agent, this review emphasizes the need for further investigation to fully understand its mechanisms and optimal therapeutic applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Paulina Buczek
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
16
|
Sawalha K, Gautam N, Sivakumar K, Paydak H, Mehta JL. Metformin: Its salutary effects beyond diabetes mellitus. J Investig Med 2025:10815589251327511. [PMID: 40033492 DOI: 10.1177/10815589251327511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metformin, an oral hypoglycemic agent, is commonly used in patients with type II diabetes mellitus. Studies have shown its use is associated with a reduction in major cardiovascular events (MACE) in patients with type 2 diabetes such as hospitalization for acute myocardial infarction, stroke, transient ischemic attack, or cardiovascular death. There is also a suggestion that metformin may have effects beyond those relating to lowering of blood sugar. The goal of this review is to assess the effects of metformin in coronary artery disease (CAD), but more importantly, its effects on disease states other than CAD.
Collapse
Affiliation(s)
- Khalid Sawalha
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nitesh Gautam
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kalaivani Sivakumar
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hakan Paydak
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jawaher L Mehta
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
17
|
Ling W, Wang YC, Huang Y, Ou YF, Jiang YC. Islet β-cell function preservation by different anti-diabetic treatments in Chinese elderly patients with type 2 diabetes mellitus. World J Diabetes 2025; 16:94976. [PMID: 39959281 PMCID: PMC11718476 DOI: 10.4239/wjd.v16.i2.94976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/07/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND The preservation of islet β-cell function in elderly patients with type 2 diabetes mellitus (T2DM) is a top priority for diabetic control. AIM To assess the preservation of islet β-cell function among elderly Chinese patients with T2DM after different anti-diabetic treatments. METHODS In this longitudinal observational study, elderly patients with T2DM treated with insulin, oral antidiabetic drugs or a combination of both were enrolled to disclose their islet β-cell function between baseline and follow-up. Islet β-cell function was determined by the plasma Homeostasis Model for β-cell function (HOMA-β), C-peptide and area under the curve (AUC) based on oral glucose tolerance test. Changes in β-cell function (decrement or increment from baseline) between different therapy groups were the outcomes. RESULTS In total, 745 elderly patients (≥ 60 years) with T2DM [insulin monotherapy, n = 105; oral anti-diabetic drugs (OAD) monotherapy, n = 321; insulin plus OAD, n = 319] had their baseline and follow-up β-cell function assessed during a median observation period of 4.5 years (range, 3.0-7.2 years). Overall, islet β-cell function (HOMA-β, fasting C-peptide, fasting insulin, AUCc-pep, AUCins, AUCc-pep/AUCglu, AUCins/AUCglu) consistently deteriorated over time regardless of the three different antidiabetic treatments. No statistical differences in decrement were observed among the three groups regarding the islet β-cell function indices. All three groups showed an increased ratio of delayed insulin secretion response after 4.5 years of observation. CONCLUSION In Chinese elderly patients with T2DM, islet β-cell function progressively declines regardless of insulin supplement or insulin plus OAD treatments.
Collapse
Affiliation(s)
- Wei Ling
- Department of Science Laboratory, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, Guangxi Zhuang Autonomous Region, China
| | - Yan-Chao Wang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin 541100, Guangxi Zhuang Autonomous Region, China
| | - Yi Huang
- Faculty of Basic Medicine, Guilin Medical University, Guilin 541100, Guangxi Zhuang Autonomous Region, China
| | - Yang-Fu Ou
- Department of Geriatrics, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Yan-Chun Jiang
- Department of Neurology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
18
|
St-Amour S, Tessier L, Harnois J, Allard C, Lavoie A, Caron P, Bouchard L, Perron P, Tremblay K. PCK1 and SLC22A2 gene variants associated with response to metformin treatment in type 2 diabetes. PLoS One 2025; 20:e0305511. [PMID: 39928707 PMCID: PMC11809887 DOI: 10.1371/journal.pone.0305511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/17/2025] [Indexed: 02/12/2025] Open
Abstract
Type 2 diabetes (T2D) is a chronic disorder affecting 462 million worldwide, often managed with metformin as first-line treatment. However, metformin's response varies among individuals, including up to 30% experiencing serious adverse drug reactions (ADRs) and 20-50% inefficacy. These differences may be due to various factors, including pharmacogenetic (PGx) variants. The PGx variants documented so far could affect both the safety and efficacy of metformin, but due to a lack of replication studies, none reached the clinical evidence-level needed to be used as a predictive marker for treatment response. Therefore, this study aims to evaluate the association between the presence of candidate PGx variants and metformin response in T2D subjects. We conducted an association study involving 108 T2D participants currently or previously treated with metformin. A characterization of their therapeutic response was carried out through questionnaires and pharmacological profile reviews. DNA samples were collected during their single visit to perform genotyping of 24 selected candidate PGx variants. Association analyses between candidate PGx variants and metformin response were performed. Among the subjects included in the analyses (n = 84), 25% were non-responders, and 58% experienced ADRs. At the time of study enrollment, 93.9% of non-responders continued to use metformin. The odds of being a non-responder to metformin are 5.6 times higher for homozygous carriers of the alternative allele of a variant within the PCK1 gene (rs4810083) compared to the other genotypes (95% interval confidence [1.9-16.6]). Two variants in perfect linkage disequilibrium within the SLC22A2 gene (rs316019 and rs316009) were associated with increase odds of having ADRs, where homozygous genotype carriers are 7.3 times more likely to have ADRs presentation (95% interval confidence [1.85-29.01]). This study identified associations between PCK1 and SLC22A2 candidate PGx variants and metformin response in T2D treatment. Additional genetic and functional studies are necessary to elucidate the variants' impact in metformin's pharmacological mechanisms.
Collapse
Affiliation(s)
- Sophie St-Amour
- Research Center, Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-Saint-Jean, Saguenay, Quebec, Canada
- Department of Pharmacology-physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Saguenay, Quebec, Canada
- Research Center, Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Laurence Tessier
- Research Center, Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-Saint-Jean, Saguenay, Quebec, Canada
- Department of Pharmacology-physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Saguenay, Quebec, Canada
| | - Janie Harnois
- Research Center, Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-Saint-Jean, Saguenay, Quebec, Canada
- Department of Pharmacology-physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Saguenay, Quebec, Canada
| | - Catherine Allard
- Research Center, Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
- Unité de Recherche Clinique et Epidemiologique, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alexandre Lavoie
- Pharmacy Department, Centre intégré universitaire de santé et services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Quebec, Canada
| | - Philippe Caron
- Endocrinology Division, Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-Saint-Jean, Saguenay, Quebec, Canada
| | - Luigi Bouchard
- Research Center, Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Saguenay, Quebec, Canada
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean, Saguenay, Quebec, Canada
| | - Patrice Perron
- Research Center, Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Saguenay, Quebec, Canada
| | - Karine Tremblay
- Research Center, Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-Saint-Jean, Saguenay, Quebec, Canada
- Department of Pharmacology-physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Saguenay, Quebec, Canada
- Research Center, Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| |
Collapse
|
19
|
Chen Y, Jiang Q, Xing X, Yuan T, Li P. Clinical research progress on β-cell dysfunction in T2DM development in the Chinese population. Rev Endocr Metab Disord 2025; 26:31-53. [PMID: 39382753 DOI: 10.1007/s11154-024-09914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/10/2024]
Abstract
The prevalence of type-2 diabetes mellitus (T2DM) has increased over 10-fold in the past 40 years in China, which now has the largest T2DM population in the world. Insulin resistance and β-cell dysfunction are the typical features of T2DM. Although both factors play a role, decreased β-cell function and β-cell mass are the predominant factors for progression to T2DM. Considering the differences between Chinese T2DM patients and those of other ethnicities, it is important to characterize β-cell dysfunction in Chinese patients during T2DM progression. Herein, we reviewed the studies on the relationships between β-cell function and T2DM progression in the Chinese population and discussed the differences among individuals of varying ethnicities. Meanwhile, we summarized the risk factors and current treatments of T2DM in Chinese individuals and discussed their impacts on β-cell function with the hope of identifying a better T2DM therapy.
Collapse
Affiliation(s)
- Yibing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Qian Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Xiaowei Xing
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China.
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China.
| |
Collapse
|
20
|
Akimoto H, Nagashima T, Minagawa K, Hayakawa T, Takahashi Y, Asai S. Non-Linear Dose-Response Relationship for Metformin in Japanese Patients With Type 2 Diabetes: Analysis of Irregular Longitudinal Data by Interpretable Machine Learning Models. Pharmacol Res Perspect 2025; 13:e70055. [PMID: 39908147 PMCID: PMC11797302 DOI: 10.1002/prp2.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025] Open
Abstract
The dose-response relationship between metformin and change in hemoglobin A1c (HbA1c) shows a maximum at 1500-2000 mg/day in patients with type 2 diabetes (T2D) in the U.S. In Japan, there is little evidence on the HbA1c-lowering effect of high-dose metformin because the maintenance and maximum doses of metformin were raised in 2010. The aim of this study was to investigate whether there is saturation of the dose-response relationship for metformin in Japanese T2D patients. Longitudinal clinical information of T2D patients was extracted from electronic medical records. Supervised machine learning models with random effect were constructed to predict change in HbA1c: generalized linear mixed-effects models (GLMM) with/without a feature selection and combining tree-boosting with Gaussian process and mixed-effects models (GPBoost). GPBoost was interpreted by SHapley Additive exPlanations (SHAP) and partial dependence. GPBoost had better predictive performance than GLMM with/without feature selection: root mean square error was 0.602 (95%CI 0.523-0.684), 0.698 (0.629-0.774) and 0.678 (0.609-0.753), respectively. Interpretation of GPBoost by SHAP and partial dependence suggested that the relationship between the daily dose of metformin and change in HbA1c is non-linear rather than linear, and the HbA1c-lowering effect of metformin reaches a maximum at 1500 mg/day. Interpretation of GPBoost, a non-linear supervised machine-learning algorithm, suggests that there is saturation of the dose-response relationship of metformin in Japanese patients with T2D. This finding may be useful for decision-making in pharmacotherapy for T2D.
Collapse
Affiliation(s)
- Hayato Akimoto
- Division of Pharmacology, Department of Biomedical SciencesNihon University School of Medicine; Oyaguchi‐Kamicho 30‐1Itabashi‐kuTokyoJapan
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research CenterNihon University School of MedicineItabashi‐kuTokyoJapan
| | - Takuya Nagashima
- Division of Pharmacology, Department of Biomedical SciencesNihon University School of Medicine; Oyaguchi‐Kamicho 30‐1Itabashi‐kuTokyoJapan
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research CenterNihon University School of MedicineItabashi‐kuTokyoJapan
| | - Kimino Minagawa
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research CenterNihon University School of MedicineItabashi‐kuTokyoJapan
| | - Takashi Hayakawa
- Division of Pharmacology, Department of Biomedical SciencesNihon University School of Medicine; Oyaguchi‐Kamicho 30‐1Itabashi‐kuTokyoJapan
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research CenterNihon University School of MedicineItabashi‐kuTokyoJapan
| | - Yasuo Takahashi
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research CenterNihon University School of MedicineItabashi‐kuTokyoJapan
| | - Satoshi Asai
- Division of Pharmacology, Department of Biomedical SciencesNihon University School of Medicine; Oyaguchi‐Kamicho 30‐1Itabashi‐kuTokyoJapan
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research CenterNihon University School of MedicineItabashi‐kuTokyoJapan
| |
Collapse
|
21
|
Powell J, Taylor J. Medications That May be Contributing to Your Patient's Weight Gain. South Med J 2025; 118:122-127. [PMID: 39883152 DOI: 10.14423/smj.0000000000001792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Nearly 42% of adults in the United States are considered obese. Although there are a number of contributing factors to obesity, one sometimes overlooked contributor to weight gain is medications. Within many classes of medications that may affect weight, the degree of weight gain varies. Although factors such as efficacy, cost, interactions, and adverse effects play a role in selecting a medication, the effects on weight also should be considered in those who are overweight or obese. This article reviews some of the classes of medications used in the outpatient setting that may affect weight to provide a guide to clinicians.
Collapse
Affiliation(s)
- Jason Powell
- From the Department of Pharmacy Education and Practice, College of Pharmacy, University of Florida, Gainesville
| | - James Taylor
- From the Department of Pharmacy Education and Practice, College of Pharmacy, University of Florida, Gainesville
| |
Collapse
|
22
|
Shah MU, Roebuck A, Srinivasan B, Ward JK, Squires PE, Hills CE, Lee K. Diagnosis and management of type 2 diabetes mellitus in patients with ischaemic heart disease and acute coronary syndromes - a review of evidence and recommendations. Front Endocrinol (Lausanne) 2025; 15:1499681. [PMID: 39911238 PMCID: PMC11794822 DOI: 10.3389/fendo.2024.1499681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents a major healthcare condition of the 21st century. It is characterised by persistently elevated blood glucose occurring as a result of peripheral insulin resistance and reduced insulin production which may lead to multiple long-term health conditions such as retinopathy, neuropathy, and nephropathy. The estimated number of individuals suffering from diabetes mellitus (DM) is expected to rise to 591 million by the year 2035 with 4.4 million in the United Kingdom (UK) alone, 90% of which is attributed to T2DM. Moreover, a significant proportion of individuals may have undetected diabetes mellitus, especially among those presenting with symptoms of ischaemic heart disease (IHD). This is particularly important in those individuals presenting with acute coronary syndromes (ACS) who are at the highest risk of complications and sudden cardiac death. Identifying abnormal levels of common biochemical markers of diabetes, such as capillary blood glucose or glycated haemoglobin (HbA1c) in these patients is important for early diagnosis, which will then allow for timely intervention to improve outcomes. However, a significant proportion of individuals who meet the criteria for the diagnosis of diabetes remain undiagnosed, representing missed opportunities for early intervention. This may result in a prolonged period of untreated hyperglycaemia, which can result resulting in significant further microvascular and macrovascular complications. There is an increased risk of IHD, heart failure, cerebrovascular accidents (CVA), and peripheral artery disease (PVD). These account accounting for 50% of deaths in patients with T2DM. Cardiovascular diseases in the context of diabetes particular represent a significant cause of morbidity and mortality with a two to three times higher risk of cardiovascular disease in individuals with T2DM than in those without the condition normo-glycaemia. In the United Kingdom UK alone, around 120 amputations, 770 CVA, 590 heart attacks, and more than 2300 presentations with heart failure per week are attributed to diabetes DM. with One 1 in six 6 hospital beds and around 10% of the healthcare budget may be being spent on managing diabetes DM or its complications. Therefore, it represents a significant burden on our healthcare system.
Collapse
Affiliation(s)
- Muhammad Usman Shah
- Cardiorenal Group, Diabetes, Metabolism, & Inflammation, Joseph Bank Laboratories, University of Lincoln, Lincoln, United Kingdom
- Lincoln Heart Centre, United Lincolnshire Hospitals, Lincoln, United Kingdom
| | - Alun Roebuck
- Lincoln Heart Centre, United Lincolnshire Hospitals, Lincoln, United Kingdom
| | - Bala Srinivasan
- Department of Diabetes and Endocrinology, United Lincolnshire Hospitals, Lincoln, United Kingdom
| | - Joanna Kate Ward
- Cardiorenal Group, Diabetes, Metabolism, & Inflammation, Joseph Bank Laboratories, University of Lincoln, Lincoln, United Kingdom
| | - Paul Edward Squires
- Cardiorenal Group, Diabetes, Metabolism, & Inflammation, Joseph Bank Laboratories, University of Lincoln, Lincoln, United Kingdom
| | - Claire Elizabeth Hills
- Cardiorenal Group, Diabetes, Metabolism, & Inflammation, Joseph Bank Laboratories, University of Lincoln, Lincoln, United Kingdom
| | - Kelvin Lee
- Cardiorenal Group, Diabetes, Metabolism, & Inflammation, Joseph Bank Laboratories, University of Lincoln, Lincoln, United Kingdom
- Lincoln Heart Centre, United Lincolnshire Hospitals, Lincoln, United Kingdom
| |
Collapse
|
23
|
Gorgojo-Martínez JJ. Adipocentric Strategy for the Treatment of Type 2 Diabetes Mellitus. J Clin Med 2025; 14:678. [PMID: 39941348 PMCID: PMC11818433 DOI: 10.3390/jcm14030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
The global prevalence of obesity and type 2 diabetes mellitus (T2D) has risen in parallel over recent decades. Most individuals diagnosed with T2D exhibit adiposopathy-related diabetes (ARD), a condition characterized by hyperglycemia accompanied by three core features: increased ectopic and visceral fat deposition, dysregulated adipokine secretion favoring a pro-inflammatory state, and insulin resistance. Despite advancements in precision medicine, international guidelines for T2D continue to prioritize individualized therapeutic approaches focused on glycemic control and complications, and many healthcare providers predominantly maintain a glucocentric strategy. This review advocates for an adipocentric treatment paradigm for most individuals with T2D, emphasizing the importance of prioritizing weight loss and visceral fat reduction as key drivers of therapeutic intensification. By combining lifestyle modifications with pharmacological agents that promote weight loss-including SGLT-2 inhibitors, GLP-1 receptor agonists, or dual GLP-1/GIP receptor agonists-and, when appropriate, metabolic surgery, this approach offers the potential for disease remission in patients with shorter disease duration. For others, it enables superior metabolic control compared to traditional glucose-centered strategies while simultaneously delivering cardiovascular and renal benefits. In conclusion, an adipocentric treatment framework for ARD, which represents the majority of T2D cases, effectively integrates glucocentric and cardio-nephrocentric goals. This approach constitutes the optimal strategy for ARD due to its efficacy in achieving disease remission, improving metabolic control, addressing obesity-related comorbidities, and reducing cardiovascular and renal morbidity and mortality.
Collapse
Affiliation(s)
- Juan J Gorgojo-Martínez
- Department of Endocrinology and Nutrition, Hospital Universitario Fundación Alcorcón, C/Budapest 1, 28922 Alcorcón, Spain
| |
Collapse
|
24
|
American Diabetes Association Professional Practice Committee, ElSayed NA, McCoy RG, Aleppo G, Bajaj M, Balapattabi K, Beverly EA, Briggs Early K, Bruemmer D, Echouffo-Tcheugui JB, Ekhlaspour L, Gaglia JL, Garg R, Girotra M, Khunti K, Lal R, Lingvay I, Matfin G, Neumiller JJ, Pandya N, Pekas EJ, Pilla SJ, Polsky S, Segal AR, Seley JJ, Stanton RC, Bannuru RR. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2025. Diabetes Care 2025; 48:S181-S206. [PMID: 39651989 PMCID: PMC11635045 DOI: 10.2337/dc25-s009] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
25
|
Authors/Task Force Members:, Jeppsson A, (Co-Chairperson) (Sweden), Rocca B, (Co-Chairperson) (Italy), Hansson EC, (Sweden), Gudbjartsson T, (Iceland), James S, (Sweden), Kaski JC, (United Kingdom), Landmesser U, (Germany), Landoni G, (Italy), Magro P, (Portugal), Pan E, (Finland), Ravn HB, (Denmark), Sandner S, (Austria), Sandoval E, (Spain), Uva MS, (Portugal), Milojevic M, (Serbia), EACTS Scientific Document Group
. 2024 EACTS Guidelines on perioperative medication in adult cardiac surgery. Eur J Cardiothorac Surg 2024; 67:ezae355. [PMID: 39385505 DOI: 10.1093/ejcts/ezae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/14/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Affiliation(s)
| | - Anders Jeppsson
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Bianca Rocca
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
- Department of Safety and Bioethics, Catholic University School of Medicine, Rome, Italy
| | | | - Emma C Hansson
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Tomas Gudbjartsson
- Department of Cardiothoracic Surgery, Landspitali University Hospital, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Stefan James
- Department of Medical Sciences, Uppsala University Uppsala Sweden
| | | | - Juan Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St. George's University of London, UK
| | | | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine; Deutsches Herzzentrum Charité, Campus Benjamin Franklin, Berlin, Germany
- Charité-University Medicine Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité Berlin, Universitätsmedizin Berlin, Germany
| | | | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Pedro Magro
- Department of Cardiac Surgery, Hospital Santa Cruz, Carnaxide, Portugal
| | | | - Emily Pan
- Department of Surgery, Central Finland Central Hospital, Jyväskylä, Finland
| | | | - Hanne Berg Ravn
- Department of Anaesthesia, Odense University Hospital, Institute of Clinical Medicine, University of Southern, Denmark
| | | | - Sigrid Sandner
- Department of Cardiac Surgery, Medical University Vienna, Vienna, Austria
| | | | - Elena Sandoval
- Department of Cardiovascular Surgery, Hospital Clinic, Barcelona, Spain
| | | | - Miguel Sousa Uva
- Department of Cardiac Surgery, Hospital Santa Cruz, Carnaxide, Portugal
- Cardiovascular Research Centre, Department of Surgery and Physiology, Faculty of Medicine-University of Porto, Porto, Portugal
| | | | - Milan Milojevic
- Department of Cardiac Surgery and Cardiovascular Research, Dedinje Cardiovascular Institute, Belgrade, Serbia
| | | | | |
Collapse
Collaborators
Matthias Siepe, Vesa Anttila, Lauren Barron, Dobromir Dobrev, Fabio Guarracino, Ziad Hijazi, Andreas Koster, Tomislav Kostic, Vladimir Lomivorotov, Vojislava Neskovic, Bjorn Redfors, Lars Peter Riber, Andrea Székely, Juan Tamargo, Theis Tönnessen, Alicja Zientara,
Collapse
|
26
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
27
|
Shah AS, Barrientos-Pérez M, Chang N, Fu JF, Hannon TS, Kelsey M, Peña AS, Pinhas-Hamiel O, Urakami T, Wicklow B, Wong J, Mahmud FH. ISPAD Clinical Practice Consensus Guidelines 2024: Type 2 Diabetes in Children and Adolescents. Horm Res Paediatr 2024; 97:555-583. [PMID: 39675348 PMCID: PMC11854986 DOI: 10.1159/000543033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024] Open
Abstract
Youth-onset type 2 diabetes (T2D) results from genetic, environmental, and metabolic causes that differ among individuals and populations. This chapter builds on the 2022 ISPAD guidelines and summarizes recent advances in the management of T2D in children and adolescents. Updates include diagnostic algorithm for youth with new onset T2D, algorithms and tables for treatment, management, and assessment of comorbidities and complications and recommendations on recently approved pharmacologic therapies for the treatment of youth-onset T2D and management strategies. Youth-onset type 2 diabetes (T2D) results from genetic, environmental, and metabolic causes that differ among individuals and populations. This chapter builds on the 2022 ISPAD guidelines and summarizes recent advances in the management of T2D in children and adolescents. Updates include diagnostic algorithm for youth with new onset T2D, algorithms and tables for treatment, management, and assessment of comorbidities and complications and recommendations on recently approved pharmacologic therapies for the treatment of youth-onset T2D and management strategies.
Collapse
Affiliation(s)
- Amy S. Shah
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | | | - Nancy Chang
- Center for Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jun-Fen Fu
- Department of Endocrinology, Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tamara S. Hannon
- Division of Endocrinology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Megan Kelsey
- Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Alexia S. Peña
- Robinson Research Institute and Women’s and Children’s Hospital, The University of Adelaide, North Adelaide, SA, Australia
| | - Orit Pinhas-Hamiel
- Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Brandy Wicklow
- Division of Endocrinology, Children’s Hospital Research Institute of Manitoba, Winnipeg Children’s Hospital and University of Manitoba, Winnipeg, MB, Canada
| | - Jencia Wong
- Department of Endocrinology, Royal Prince Alfred Hospital and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Farid H. Mahmud
- Division of Endocrinology, Hospital for Sick Children, Sick Kids Research Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Pillai AA, Melo L, Frishman WH, Aronow WS. The Effects of Metformin on Weight Loss, Cardiovascular Health, and Longevity. Cardiol Rev 2024:00045415-990000000-00378. [PMID: 39660840 DOI: 10.1097/crd.0000000000000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Metformin, a biguanide derived from Galega officinalis, was first synthesized by Werner and Bell in 1922. Metformin was approved for the treatment of diabetes by the US Food and Drug Administration in 1994. It has since become the most widely used oral antidiabetic agent. The exact mechanisms by which metformin exerts its clinical effects remain the subject of ongoing research. Metformin interacts with multiple molecular pathways, and the downstream effects of which affect weight, cardiovascular health, and longevity. Metformin reduces hunger by mitigating insulin resistance in the hypothalamic pro-opiomelanocortin neurons. It enhances satiety by stimulating the enteral release of glucagon-like peptide 1. It also induces favorable changes to enteric microbiota, enhancing metabolism. These effects cumulatively contribute to metformin-induced weight loss. Metformin use has shown associations with improved cardiovascular outcomes including reduced all-cause mortality, lower rates of myocardial infarctions, and improved heart failure outcomes. Many of these actions are mediated through the direct activation of adenosine monophosphate-activated kinase (AMPK), which, in turn, enhances cellular energy production and endothelial nitric oxide synthase-mediated vascular relaxation. It antagonizes proinflammatory cytokines, reducing cardiac fibrosis and remodeling. The metformin-AMPK pathway may also explain the potential utility of metformin in mitigating aging. Acting through AMPK, it inhibits the mammalian target of rapamycin, leading to increased autophagy and cell growth. The metformin-AMPK-sirtuin pathway may also contribute to longevity. In this review, we will discuss the use of metformin in weight loss, cardiovascular health, and longevity, highlighting the historic background, molecular mechanisms, and current evidence.
Collapse
Affiliation(s)
- Ashwin A Pillai
- From the Department of Medicine, University of Connecticut, Farmington, CT
| | - Lara Melo
- From the Department of Medicine, University of Connecticut, Farmington, CT
| | - William H Frishman
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
29
|
Berra C, Manfrini R, Bifari F, Cipponeri E, Ghelardi R, Centofanti L, Mortola U, Lunati E, Bucciarelli L, Cimino V, Folli F. Improved glycemic and weight control with Dulaglutide addition in SGLT2 inhibitor treated obese type 2 diabetic patients at high cardiovascular risk in a real-world setting. The AWARE-2 study. Pharmacol Res 2024; 210:107517. [PMID: 39613122 DOI: 10.1016/j.phrs.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
We evaluated the effects on glycemic control and body weight of a GLP1-RA in obese type 2 diabetic patients treated with SGLT2-inhibitors and other hypoglycemic agents and/or insulin, in a real-world setting. A cohort of 583 type 2 diabetic outpatients treated with a SGLT2 inhibitor and/or other anti-diabetic medications were examined. Because patients had suboptimal glycemic control, the GLP1-RA Dulaglutide was added to ongoing medications. At 6 months, 334 patients had a follow-up visit. Patients were classified in terms of cardiovascular risk (CVR) employing the ESC-EASD 2019 criteria, with the AWARE app. The study's primary endpoints were changes in: 1) HbA1c level, 2) BMI, and 3) body weight after six months of treatment. Secondary endpoints were evaluation of Dulaglutide addition in type 2 diabetic patients: 1) with more or less than ten years of T2DM; 2) more or less than 75 years of age and in different subgroups of CVR. In the 334 patients which had a 6 months follow-up visit, age was 65,9+9,8; 33.5 % (112) were females and 66.5 % (222) were males. After six months of Dulaglutide treatment, we found a significant reduction in HbA1c levels (8.0+10.5 mmol/mol; p<0.0001) and in body mass index (1.1+1.1 kg/m2; p<0.0001). Efficacy of Dulaglutide was not affected by different CVD risk categories, age and T2DM duration. This real world study provides evidence for significant reductions in HbA1c level, body mass index and body weight in obese type 2 diabetic patients who received add-on treatment with the weekly GLP-1RA, Dulaglutide.
Collapse
Affiliation(s)
- Cesare Berra
- Department of Endocrinology and Metabolic Diseases, IRCCS Multimedica, Milan, Italy.
| | - Roberto Manfrini
- Department of Endocrinology and Metabolic Diseases, IRCCS Multimedica, Milan, Italy; Departmental Unit of Diabetes and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy; Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Segrate, Italy
| | - Elisa Cipponeri
- Department of Endocrinology and Metabolic Diseases, IRCCS Multimedica, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Renata Ghelardi
- UOC Coordinamento e Integrazione Rete ASST Melegnano e della Martesana
| | - Lucia Centofanti
- Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Umberto Mortola
- Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Elena Lunati
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Loredana Bucciarelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Vincenzo Cimino
- Department of Biomedical and Clinical Sciences L. Sacco Endocrinology and Diabetology, Milan, Italy
| | - Franco Folli
- Departmental Unit of Diabetes and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy; Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
30
|
de Lima RP, Li A, Gilani A, Lo JC. C3aR1 on β cells enhances β cell function and survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622969. [PMID: 39605339 PMCID: PMC11601266 DOI: 10.1101/2024.11.11.622969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Pancreatic β cell dysfunction is critical to the development of type 2 diabetes (T2D). We show that the complement receptor C3aR1 on β cells plays an essential role in maintaining β cell homeostasis, especially under the metabolic duress of obesity and T2D. Mice with β cell specific deletion of C3ar1 have worse glucose tolerance, lower insulin levels, and decreased β cell mass. Islets from β cell specific C3ar1 knockout (β-C3aR1 KO) mice demonstrate impaired insulin secretion. Disruption of C3ar1 on β cells ablates the insulin secretory response to C3a, establishing a signaling axis between C3a and β cell-derived C3aR1. Markers of β cell identity were decreased while stress markers were increased in β-C3aR1 KO mice. Islets from β-C3aR1 KO also exhibit increased β cell death to lipotoxicity. Finally, we show that C3AR1 is positively correlated with insulin secretion in human islets. These findings indicate that C3aR1 expression on β cells is necessary to maintain optimal β cell function and preserve β cell mass in T2D.
Collapse
|
31
|
Khan F, Hussain T, Chaudhry TZ, Payal F, Shehryar A, Rehman A, Ramadhan A, Hayat MT, Dabas MM, Khan M. Comparing the Efficacy and Long-Term Outcomes of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors, Dipeptidyl Peptidase-4 (DPP-4) Inhibitors, Metformin, and Insulin in the Management of Type 2 Diabetes Mellitus. Cureus 2024; 16:e74400. [PMID: 39723311 PMCID: PMC11669386 DOI: 10.7759/cureus.74400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia, insulin resistance, and decreased insulin secretion. With its rising global prevalence, effective management strategies are critical to reducing morbidity and mortality. This systematic review compares the efficacy, safety, and long-term outcomes of four major pharmacological treatments for T2DM: sodium-glucose cotransporter-2 (SGLT2) inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, metformin, and insulin. We focused on randomized controlled trials (RCTs) published within the last five years (2019-2024) to provide an up-to-date assessment of glycemic control, cardiovascular and renal benefits, weight effects, and the risk of hypoglycemia. The review highlights that while all four medication classes effectively reduce HbA1c levels, SGLT2 inhibitors stand out for their additional cardiovascular and renal benefits, including significant reductions in major adverse cardiovascular events and chronic kidney disease progression. Metformin remains a cornerstone first-line therapy due to its safety, efficacy, and affordability. DPP-4 inhibitors are a weight-neutral, well-tolerated option, although their efficacy may diminish over time. Insulin, while the most potent glucose-lowering agent, carries a higher risk of hypoglycemia and weight gain. Our findings emphasize the importance of personalized, patient-centered approaches that account for the distinct therapeutic profiles of these treatments. Future research should prioritize head-to-head comparisons and optimal therapy sequencing to refine treatment guidelines for diverse patient populations.
Collapse
Affiliation(s)
- Farhan Khan
- Internal Medicine, Rehman Medical Institute, Peshawar, PAK
| | - Tanjil Hussain
- Internal Medicine, London North West Hospitals NHS Trust, London, GBR
| | | | - Fnu Payal
- Internal Medicine, Ghulam Muhammad Mahar Medical College, Karachi, PAK
| | | | | | - Afif Ramadhan
- Internal Medicine, Gadjah Mada University, Yogyakarta, IDN
| | - Muhammad Tassaduq Hayat
- Internal Medicine, Chandka Medical College, Larkana, PAK
- Internal Medicine, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, PAK
| | | | - Mustafa Khan
- General Surgery, Nishtar Medical University, Multan, PAK
| |
Collapse
|
32
|
Davidson MB. Glycaemic treatment of newly diagnosed type 2 diabetes. Diabetes Obes Metab 2024; 26:5492-5493. [PMID: 39205647 DOI: 10.1111/dom.15904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
|
33
|
Jin Z, Liu M, Zhao H, Xie J, Yin W, Zheng M, Cai D, Liu H, Liu J. Effects of Zeaxanthin on the Insulin Resistance and Gut Microbiota of High-Fat-Diet-Induced Obese Mice. Foods 2024; 13:3388. [PMID: 39517172 PMCID: PMC11544810 DOI: 10.3390/foods13213388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Obesity-induced insulin resistance (IR) can precipitate metabolic disorders such as diabetes. Zeaxanthin, a crucial member of the carotenoid family, has been found to mitigate the damage caused by obesity. However, reports on the effects of zeaxanthin on obesity-induced IR are lacking. Our objective was to examine the metabolic regulatory impacts of zeaxanthin on mice subjected to a high-fat diet (HFD) that triggered IR and to explore their influence on gut microbiota regulation. This study constructed a mouse model of metabolic dysfunction caused by lipid-rich nutritional patterns to investigate physiological and biochemical indices, liver pathway expression, and the intestinal microbiota. The mechanisms by which zeaxanthin improved both IR and glucose metabolic disorders were elucidated. The results demonstrate that zeaxanthin effectively suppressed obesity. The fasting blood glucose, area under curve of oral glucose tolerance test and insulin tolerance test, and homeostatic model assessment-insulin resistance (HOMA-IR) indices in the HFDZEA group decreased by 14.9%, 25.2%, 28.9%, and 29.8%. Additionally, zeaxanthin improved the lipid metabolism and alleviated damage to the liver and pancreas while also activating the PI3K/Akt pathway, regulating hepatic gluconeogenesis and the glycogen metabolism. The number of OTUs in the HFDZEA group increased by 29.04%. Zeaxanthin improved the structure and profile of the gastrointestinal microbiome and enhanced its diversity, increasing probiotics abundance, decreasing pathogen abundance, and thereby ameliorating the dysbiosis of enteric microbial communities in rodents with obesity resulting from excessive fat consumption. The outcomes of our analysis provide a rational basis for advancing zeaxanthin-based nutritional products.
Collapse
Affiliation(s)
- Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Hongyu Zhao
- Key Laboratory of TCM Pharmacology, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China;
| | - Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Wandi Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
| | - Jingsheng Liu
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
34
|
Goron AR, Connolly C, Valdez-Sinon AN, Hesson A, Helou C, Kirschen GW. Anti-Hyperglycemic Medication Management in the Perioperative Setting: A Review and Illustrative Case of an Adverse Effect of GLP-1 Receptor Agonist. J Clin Med 2024; 13:6259. [PMID: 39458209 PMCID: PMC11509032 DOI: 10.3390/jcm13206259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
A host of anti-hyperglycemic agents are currently available and widely prescribed for diabetes and weight loss management. In patients undergoing surgery, use of these agents poses a clinical challenge to surgeons, anesthesiologists, and other perioperative care providers with regard to optimal timing of discontinuation and resumption of use, as well as possible effects of these agents on physiology and risk of postoperative complications. Here, we provide a comprehensive review of anti-hyperglycemic medications' effects on physiology, risks/benefits, and best practice management in the perioperative setting. Additionally, we report an illustrative case of small bowel obstruction in a patient taking semaglutide for 6 months prior to an otherwise uncomplicated laparoscopic hysterectomy and bilateral salpingo-oophorectomy. This review is meant to serve not as a replacement of, but rather as a consolidated complement to, various society guidelines regarding perioperative anti-hyperglycemic agent management.
Collapse
Affiliation(s)
- Abby R. Goron
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Courtney Connolly
- Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (C.C.); (A.N.V.-S.)
| | - Arielle N. Valdez-Sinon
- Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (C.C.); (A.N.V.-S.)
| | - Ashley Hesson
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Christine Helou
- Department of Obstetrics and Gynecology, Greater Baltimore Medical Center, Towson, MD 21204, USA;
| | - Gregory W. Kirschen
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Shah BR, Bajaj HS, Butalia S, Dasgupta K, Eurich DT, Jain R, Leung K, Mansell K, Simpson S. Pharmacologic Glycemic Management of Type 2 Diabetes in Adults---2024 Update. Can J Diabetes 2024; 48:415-424. [PMID: 39550176 DOI: 10.1016/j.jcjd.2024.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
|
37
|
Ostrowska-Czyżewska A, Zgliczyński W, Bednarek-Papierska L, Mrozikiewicz-Rakowska B. Is It Time for a New Algorithm for the Pharmacotherapy of Steroid-Induced Diabetes? J Clin Med 2024; 13:5801. [PMID: 39407860 PMCID: PMC11605232 DOI: 10.3390/jcm13195801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024] Open
Abstract
Glucocorticoids (GS) are widely used in multiple medical indications due to their anti-inflammatory, immunosuppressive, and antiproliferative effects. Despite their effectiveness in treating respiratory, skin, joint, renal, and neoplastic diseases, they dysregulate glucose metabolism, leading to steroid-induced diabetes (SID) or a significant increase of glycemia in people with previously diagnosed diabetes. The risk of adverse event development depends on the prior therapy, the duration of the treatment, the form of the drug, and individual factors, i.e., BMI, genetics, and age. Unfortunately, SID and steroid-induced hyperglycemia (SIH) are often overlooked, because the fasting blood glucose level, which is the most commonly used diagnostic test, is insufficient for excluding both conditions. The appropriate control of post-steroid hyperglycemia remains a major challenge in everyday clinical practice. Recently, the most frequently used antidiabetic strategies have been insulin therapy with isophane insulin or multiple injections in the basal-bolus regimen. Alternatively, in patients with lower glycemia, sulphonylureas or glinides were used. Taking into account the pathogenesis of post-steroid-induced hyperglycemia, the initiation of therapy with glucagon-like peptide 1 (GLP-1) analogs and dipeptidyl peptidase 4 (DPP-4) inhibitors should be considered. In this article, we present a universal practical diagnostic algorithm of SID/SIH in patients requiring steroids, in both acute and chronic conditions, and we present a new pharmacotherapy algorithm taking into account the use of all currently available antidiabetic drugs.
Collapse
Affiliation(s)
| | | | | | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Marymoncka St. 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
38
|
Cimellaro A, Cavallo M, Mungo M, Suraci E, Spagnolo F, Addesi D, Pintaudi M, Pintaudi C. Cardiovascular Effectiveness and Safety of Antidiabetic Drugs in Patients with Type 2 Diabetes and Peripheral Artery Disease: Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1542. [PMID: 39336583 PMCID: PMC11434261 DOI: 10.3390/medicina60091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic condition commonly complicating type 2 diabetes (T2D), leading to poor quality of life and increased risk of major adverse lower-limb (MALE) and cardiovascular (CV) events (MACE). Therapeutic management of PAD in T2D patients is much more arduous, often due to bilateral, multi-vessel, and distal vascular involvement, in addition to increased systemic polyvascular atherosclerotic burden. On the other hand, the pathophysiological link between PAD and T2D is very complex, involving mechanisms such as endothelial dysfunction and increased subclinical inflammation in addition to chronic hyperglycemia. Therefore, the clinical approach should not ignore vascular protection with the aim of reducing limb and overall CV events besides a mere glucose-lowering effect. However, the choice of the best medications in this setting is challenging due to low-grade evidence or lacking targeted studies in PAD patients. The present review highlighted the strong relationship between T2D and PAD, focusing on the best treatment strategy to reduce CV risk and prevent PAD occurrence and worsening in patients with T2D. The Medline databases were searched for studies including T2D and PAD up to June 2024 and reporting the CV effectiveness and safety of the most used glucose-lowering agents, with no restriction on PAD definition, study design, or country. The main outcomes considered were MACE-including nonfatal acute myocardial infarction, nonfatal stroke, and CV death-and MALE-defined as lower-limb complications, amputations, or need for revascularization. To the best of our current knowledge, GLP-1 receptor agonists and SGLT2 inhibitors represent the best choice to reduce CV risk in T2D and PAD settings, but a personalized approach should be considered. GLP-1 receptor agonists should be preferred in subjects with prevalent atherosclerotic burden and a history of previous MALE, while SGLT2 inhibitors should be used in those with heart failure if overall CV benefits outweigh the risk of lower-limb complications.
Collapse
Affiliation(s)
- Antonio Cimellaro
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Michela Cavallo
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Marialaura Mungo
- Internal Medicine Unit, Department of Medical and Surgical Sciences, ‘Magna Græcia’ University of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy;
| | - Edoardo Suraci
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Francesco Spagnolo
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Desirée Addesi
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Medea Pintaudi
- Unit of Plastic Surgery, Department of Surgery, Azienda Ospedaliero-Universitaria “Gaetano Martino”, 98124 Messina, Italy;
| | - Carmelo Pintaudi
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| |
Collapse
|
39
|
Arshad M, Hoda F, Siddiqui NA, Najmi AK, Ahmad M. Genito Urinary Infection and Urinary Tract Infection in Patients with Type 2 Diabetes Mellitus Receiving SGLT2 Inhibitors: Evidence from a Systematic Literature Review of Landmark Randomized Clinical Trial. Drug Res (Stuttg) 2024; 74:307-313. [PMID: 38991530 DOI: 10.1055/a-2347-9824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND PURPOSE SGLT2 inhibitors are class of drugs that are used in adults with type 2 diabetes through a novel mechanism of action by reducing renal tubular glucose reabsorption, leading to a reduction in blood glucose without stimulating insulin release. In this systematic review, we report the effects of treatment with SGLT2 inhibitors on urinary tract infection (UTI) and genitourinary infection (GUI). METHOD The study integrated data from landmark trials of SGLT2 inhibitors (CANVAS, CREDENCE, DECLARE-TIMI 58, and EMPA-REG) to interpret the association of SGLT2 inhibitors with genital infection (GI) and UTI. We reported the review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The primary outcome was a composite of participants reporting UTI and GUI prescribed on SGLT2 inhibitors. RESULTS The analysis of four studies involving 38,723 participants revealed incidences of both UTIs and GUI. In the SGLT2 inhibitor group, comprising 21,266 participants, 222 (1.04%) experienced UTIs, and 477 (2.24%) reported GUI. In contrast, among the placebo group consisting of 17,457 participants, 201 (1.15%) reported UTIs, and 70 (0.40%) reported genital infections. These findings underscore the elevated risk associated with SGLT2 inhibitor use, particularly regarding GUI, necessitating careful consideration in clinical practice and patient management strategies. CONCLUSION The incidence of UTIs and particularly more pronounced GUI associated with SGLT2 inhibitors highlights the importance of careful risk assessment and monitoring in clinical decision-making, underscoring the need for patient management strategies.
Collapse
Affiliation(s)
- Mawrah Arshad
- Department of Pharmacy, Integral University, Lucknow, India
| | - Farazul Hoda
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nasir Ali Siddiqui
- Department of Pharmacognosy and Phytochemistry, Kind Saud University, Kingdom of Saudi Arabia
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Ahmad
- Department of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
40
|
Cho YK, Kim KS, Lee BW, Hong JH, Yu JM, Lim S, Kim YA, Lee CB, Kim SS, Kwak SH, Lee WJ. Efficacy and Safety of Pioglitazone Add-on in Patients with Type 2 Diabetes Mellitus Inadequately Controlled with Metformin and Dapagliflozin: A Multicenter, Randomized, Double-blind, and Placebo-controlled Study. Clin Ther 2024; 46:662-669. [PMID: 39068060 DOI: 10.1016/j.clinthera.2024.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE The purpose of this study was to determine the efficacy and safety profile of pioglitazone compared with placebo (PBO) in patients with type 2 diabetes (T2D) inadequately controlled with metformin and dapagliflozin. METHODS In this prospective, multicenter, randomized, double-blind, PBO-controlled trial, 366 patients with T2D who did not meet glycemic targets (7.0% ≤ glycosylated hemoglobin [HbA1c] ≤ 10.5%), despite treatment with metformin ≥1000 mg and dapagliflozin 10 mg, received either a PBO, 15 mg of pioglitazone daily (PIO15), or 30 mg of pioglitazone daily (PIO30). The primary end point was the mean change in HbA1c from baseline at 24 weeks across the groups. FINDINGS For the 366 participants (PBO, n = 124; PIO15, n = 118; PIO30, n = 124), the mean age was 55.6 years and mean duration of diabetes was 8.7 years, with a baseline HbA1c of 7.9%. After 24 weeks, HbA1c reduced significantly in the PIO15 and PIO30 groups from baseline, with intergroup differences of -0.38% and -0.83%, respectively, compared with the PBO group. The proportion of patients with HbA1c levels <7% was significantly higher in the PIO15 and PIO30 groups than in the PBO group. The adverse event rates did not significantly differ across the groups, indicating favorable safety profiles for triple combination therapy using metformin, dapagliflozin, and pioglitazone. IMPLICATIONS The addition of pioglitazone as a third oral antidiabetic medication is an appropriate option for patients with T2D inadequately controlled with metformin and dapagliflozin based on the resulting significant efficacy in glycemic control and favorable safety profile. CLINICALTRIALS gov identifier: NCT04885712.
Collapse
Affiliation(s)
- Yun Kyung Cho
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Diabetes Center, Asan Medical Center, Seoul, Republic of Korea
| | - Kyung-Soo Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Byung-Wan Lee
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Hwa Hong
- Department of Internal Medicine, Eulji University Hospital, Daejeon, Republic of Korea
| | - Jae Myung Yu
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Ye An Kim
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Chang Beom Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Sang Soo Kim
- Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Woo Je Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Diabetes Center, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Bouchi R, Kondo T, Ohta Y, Goto A, Tanaka D, Satoh H, Yabe D, Nishimura R, Harada N, Kamiya H, Suzuki R, Yamauchi T, JDS Committee on Consensus Statement Development. A consensus statement from the Japan Diabetes Society: A proposed algorithm for pharmacotherapy in people with type 2 diabetes - 2nd edition (English version). J Diabetes Investig 2024; 15:1326-1342. [PMID: 38988282 PMCID: PMC11363114 DOI: 10.1111/jdi.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 07/12/2024] Open
Abstract
This algorithm was issued for the appropriate use of drugs for the treatment of type 2 diabetes mellitus in Japan. The revisions include safety considerations, fatty liver disease as a comorbidity to be taken into account and the position of tirzepatide.
Collapse
Affiliation(s)
- Ryotaro Bouchi
- Diabetes and Metabolism Information Center, Diabetes Research CenterNational Center for Global Health and MedicineTokyoJapan
| | - Tatsuya Kondo
- Department of Diabetes, Metabolism and EndocrinologyKumamoto University HospitalKumamotoJapan
| | - Yasuharu Ohta
- Division of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineYamaguchiJapan
| | - Atsushi Goto
- Department of Health Data Science, Graduate School of Data ScienceYokohama City UniversityYokohamaJapan
| | - Daisuke Tanaka
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroaki Satoh
- Department of Diabetes and EndocrinologyJuntendo University Urayasu HospitalChibaJapan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism and Department of Rheumatology and Clinical ImmunologyGifu University Graduate School of MedicineGifuJapan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism and EndocrinologyJikei University School of MedicineTokyoJapan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal MedicineAichi Medical UniversityNagakuteJapan
| | - Ryo Suzuki
- Department of Diabetes, Metabolism and EndocrinologyTokyo Medical UniversityTokyoJapan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic DiseasesUniversity of Tokyo Graduate School of MedicineTokyoJapan
| | | |
Collapse
|
42
|
Leungsuwan DS, Chandran M. Bone Fragility in Diabetes and its Management: A Narrative Review. Drugs 2024; 84:1111-1134. [PMID: 39103693 DOI: 10.1007/s40265-024-02078-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Bone fragility is a serious yet under-recognised complication of diabetes mellitus (DM) that is associated with significant morbidity and mortality. Multiple complex pathophysiological mechanisms mediating bone fragility amongst DM patients have been proposed and identified. Fracture risk in both type 1 diabetes (T1D) and type 2 diabetes (T2D) continues to be understated and underestimated by conventional risk assessment tools, posing an additional challenge to the identification of at-risk patients who may benefit from earlier intervention or preventive strategies. Over the years, an increasing body of evidence has demonstrated the efficacy of osteo-pharmacological agents in managing skeletal fragility in DM. This review seeks to elaborate on the risk of bone fragility in DM, the underlying pathogenesis and skeletal alterations, the approach to fracture risk assessment in DM, management strategies and therapeutic options.
Collapse
Affiliation(s)
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, 20 College Road, ACADEMIA, Singapore, 169856, Singapore.
- DUKE NUS Medical School, Singapore, Singapore.
| |
Collapse
|
43
|
Sjöholm Å. Glucokinase activators and imeglimin: new weaponry in the armamentarium against type 2 diabetes. BMJ Open Diabetes Res Care 2024; 12:e004291. [PMID: 39214626 PMCID: PMC11367400 DOI: 10.1136/bmjdrc-2024-004291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
The prevalence of type 2 diabetes (T2D) is increasing relentlessly all over the world, in parallel with a similar increase in obesity, and is striking ever younger patients. Only a minority of patients with T2D attain glycemic targets, indicating a clear need for novel antidiabetic drugs that not only control glycemia but also halt or slow the progressive loss of β-cells. Two entirely novel classes of antidiabetic agents-glucokinase activators and imeglimin-have recently been approved and will be the subject of this review.Allosteric activators of glucokinase, an enzyme stimulating insulin secretion in β-cells and suppressing hepatic glucose production, are oral low-molecular-weight drugs. One of these, dorzagliatin, is approved in China for use in adult patients with T2D, either as monotherapy or as an add-on to metformin. It remains to be seen whether the drug will produce sustained antidiabetic effects over many years and whether the side effects that led to the discontinuation of early drug candidates will limit the usefulness of dorzagliatin.Imeglimin-which shares structural similarities with metformin-targets mitochondrial dysfunction and was approved in Japan against T2D. In preclinical studies, the drug has also shown promising β-cell protective and preservative effects that may translate into disease-modifying effects.Hopefully, these two newcomers will contribute to filling the great medical need for new treatment modalities, preferably with disease-modifying potential. It remains to be seen where they will fit in contemporary treatment algorithms, which combinations of drugs are effective and which should be avoided. Time will tell to what extent these new antidiabetic agents will add value to the current treatment options against T2D in terms of sustained antidiabetic effect, acceptable safety, utility in combination therapy, and impact on hard end-points such as cardiovascular disease.
Collapse
Affiliation(s)
- Åke Sjöholm
- University of Gävle, Gavle, Sweden
- Department of Internal Medicine, Region Gävleborg, Gavle, Sweden
| |
Collapse
|
44
|
Sirtori CR, Castiglione S, Pavanello C. METFORMIN: FROM DIABETES TO CANCER TO PROLONGATION OF LIFE. Pharmacol Res 2024; 208:107367. [PMID: 39191336 DOI: 10.1016/j.phrs.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Sofia Castiglione
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
45
|
Titmuss A, Korula S, Wicklow B, Nadeau KJ. Youth-onset Type 2 Diabetes: An Overview of Pathophysiology, Prognosis, Prevention and Management. Curr Diab Rep 2024; 24:183-195. [PMID: 38958831 PMCID: PMC11269415 DOI: 10.1007/s11892-024-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW This review explores the emerging evidence regarding pathogenesis, future trajectories, treatment options, and phenotypes of youth-onset type 2 diabetes (T2D). RECENT FINDINGS Youth-onset T2D is increasing in incidence and prevalence worldwide, disproportionately affecting First Nations communities, socioeconomically disadvantaged youth, and people of colour. Youth-onset T2D differs in pathogenesis to later-onset T2D and progresses more rapidly. It is associated with more complications, and these occur earlier. While there are limited licensed treatment options available, the available medications also appear to have a poorer response in youth with T2D. Multiple interacting factors likely contribute to this rising prevalence, as well as the increased severity of the condition, including structural inequities, increasing obesity and sedentary lifestyles, and intergenerational transmission from in-utero exposure to maternal hyperglycemia and obesity. Youth-onset T2D is also associated with stigma and poorer mental health, and these impact clinical management. There is an urgent need to develop effective interventions to prevent youth-onset T2D and enhance engagement of affected youth. It is also critical to better understand the differing phenotypes of youth-onset T2D, to effectively target treatments, and to address intergenerational transmission in high-risk populations.
Collapse
Affiliation(s)
- Angela Titmuss
- Wellbeing and Preventable Chronic Diseases Division, Menzies School of Health Research, Charles Darwin University, Casuarina, PO Box 41096, Darwin, Northern Territory, Australia.
- Department of Paediatrics, Division of Women, Child and Youth, Royal Darwin Hospital, Darwin, Northern Territory, Australia.
| | - Sophy Korula
- Paediatric Endocrinology and Metabolism Division, Paediatric Unit-1, Christian Medical College Hospital, Vellore, India
- Department of Paediatrics, Latrobe Regional Hospital, Traralgon, Victoria, Australia
| | - Brandy Wicklow
- Department of Paediatrics and Child Health, University of Manitoba, Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Kristen J Nadeau
- Children's Hospital Colorado, Aurora, Colorado, USA
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
46
|
MacDonald BJ, Turgeon RD, McCormack J. Metformin for Type 2 diabetes mellitus. Acad Emerg Med 2024; 31:832-834. [PMID: 38661224 DOI: 10.1111/acem.14922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Blair J MacDonald
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ricky D Turgeon
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James McCormack
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Chan JCN, Yang A, Chu N, Chow E. Current type 2 diabetes guidelines: Individualized treatment and how to make the most of metformin. Diabetes Obes Metab 2024; 26 Suppl 3:55-74. [PMID: 38992869 DOI: 10.1111/dom.15700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024]
Abstract
Evidence-based guidelines provide the premise for the delivery of quality care to preserve health and prevent disabilities and premature death. The systematic gathering of observational, mechanistic and experimental data contributes to the hierarchy of evidence used to guide clinical practice. In the field of diabetes, metformin was discovered more than 100 years ago, and with 60 years of clinical use, it has stood the test of time regarding its value in the prevention and management of type 2 diabetes. Although some guidelines have challenged the role of metformin as the first-line glucose-lowering drug, it is important to point out that the cardiovascular-renal protective effects of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists were gathered from patients with type 2 diabetes, the majority of whom were treated with metformin. Most national, regional and international guidelines recommend metformin as a foundation therapy with emphasis on avoidance of therapeutic inertia and early attainment of multiple treatment goals. Moreover, real-world evidence has confirmed the glucose-lowering and cardiovascular-renal benefits of metformin accompanied by an extremely low risk of lactic acidosis. In patients with type 2 diabetes and advanced chronic kidney disease (estimated glomerular filtration rate 15-30 mL/min/1.73m2), metformin discontinuation was associated with an increased risk of cardiovascular-renal events compared with metformin persistence. Meanwhile, it is understood that microbiota, nutrients and metformin can interact through the gut-brain-kidney axis to modulate homeostasis of bioactive molecules, systemic inflammation and energy metabolism. While these biological changes contribute to the multisystem effects of metformin, they may also explain the gastrointestinal side effects and vitamin B12 deficiency associated with metformin intolerance. By understanding the interactions between metformin, foods and microbiota, healthcare professionals are in a better position to optimize the use of metformin and mitigate potential side effects. The United Kingdom Prospective Diabetes Study and the Da Qing Diabetes Prevention Program commenced 40 years ago provided the first evidence that type 2 diabetes is preventable and treatable. To drive real-world impact from this evidence, payors, practitioners and planners need to co-design and implement an integrated, data-driven, metformin-based programme to detect people with undiagnosed diabetes and prediabetes (intermediate hyperglycaemia), notably impaired glucose tolerance, for early intervention. The systematic data collection will create real-world evidence to bring out the best of metformin and make healthcare sustainable, affordable and accessible.
Collapse
Affiliation(s)
- Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Natural Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
48
|
Hoekx CA, Straat ME, Bizino MB, van Eyk HJ, Lamb HJ, Smit JWA, Jazet IM, de Jager SCA, Boon MR, Martinez‐Tellez B. Growth differentiation factor 15 is not modified after weight loss induced by liraglutide in South Asians and Europids with type 2 diabetes mellitus. Exp Physiol 2024; 109:1292-1304. [PMID: 38965822 PMCID: PMC11291866 DOI: 10.1113/ep091815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists induce weight loss in patients with type 2 diabetes mellitus (T2DM), but the underlying mechanism is unclear. Recently, the mechanism by which metformin induces weight loss could be explained by an increase in growth differentiation factor 15 (GDF15), which suppresses appetite. Therefore, we aimed to investigate whether the GLP-1R agonist liraglutide modifies plasma GDF15 levels in patients with T2DM. GDF15 levels were measured in plasma samples obtained from Dutch Europids and Dutch South Asians with T2DM before and after 26 weeks of treatment with daily liraglutide (n = 44) or placebo (n = 50) added to standard care. At baseline, circulating GDF15 levels did not differ between South Asians and Europids with T2DM. Treatment with liraglutide, compared to placebo, decreased body weight, but did not modify plasma GDF15 levels in all patients, or when data were split by ethnicity. Also, the change in plasma GDF15 levels after treatment with liraglutide did not correlate with changes in body weight or HbA1c levels. In addition, the dose of metformin used did not correlate with baseline plasma GDF15 levels. Compared to placebo, liraglutide treatment for 26 weeks does not modify plasma GDF15 levels in Dutch Europid or South Asian patients with T2DM. Thus, the weight loss induced by liraglutide is likely explained by other mechanisms beyond the GDF15 pathway. HIGHLIGHTS: What is the central question of this study? Growth differentiation factor 15 (GDF15) suppresses appetite and is increased by metformin: does the GLP-1R agonist liraglutide modify plasma GDF15 levels in patients with type 2 diabetes mellitus (T2DM)? What is the main finding and its importance? Plasma GDF15 levels did not differ between South Asians and Europids with T2DM and were not modified by 26 weeks of liraglutide in either ethnicity. Moreover, there was no correlation between the changes in plasma GDF15 levels and dosage of metformin administered, changes in body weight or HbA1c levels. The appetite-suppressing effect of liraglutide is likely exerted via pathways other than GDF15.
Collapse
Affiliation(s)
- Carlijn A. Hoekx
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike E. Straat
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Maurice B. Bizino
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Huub J. van Eyk
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | | | - Johannes W. A. Smit
- Department of MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Ingrid M. Jazet
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Saskia C. A. de Jager
- Laboratory of Translational ImmunologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Borja Martinez‐Tellez
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Nursing Physiotherapy and Medicine, SPORT Research Group (CTS‐1024), CERNEP Research CenterUniversity of AlmeríaAlmeríaSpain
- Biomedical Research UnitTorrecárdenas University HospitalAlmeríaSpain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Instituto de Salud Carlos IIIGranadaSpain
| |
Collapse
|
49
|
Long J, Fang Q, Shi Z, Miao Z, Yan D. Integrated biomarker profiling for predicting the response of type 2 diabetes to metformin. Diabetes Obes Metab 2024; 26:3439-3447. [PMID: 38828802 DOI: 10.1111/dom.15689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
AIM To explore biomarkers that can predict the response of type 2 diabetes (T2D) patients to metformin at an early stage to provide better treatment for T2D. METHODS T2D patients with (responders) or without response (non-responders) to metformin were recruited, and their serum samples were used for metabolomic analysis to identify candidate biomarkers. Moreover, the efficacy of metformin was verified by insulin-resistant mice, and the candidate biomarkers were verified to determine the biomarkers. Five different machine learning methods were used to construct the integrated biomarker profiling (IBP) with the biomarkers to predict the response of T2D patients to metformin. RESULTS A total of 73 responders and 63 non-responders were recruited, and 88 differential metabolites were identified in the serum samples. After being verified in mice, 19 of the 88 were considered as candidate biomarkers. Next, after metformin regulation, nine candidate biomarkers were confirmed as the biomarkers. After comparing five machine learning models, the nine biomarkers were constructed into the IBP for predicting the response of T2D patients to metformin based on the Naïve Bayes classifier, which was verified with an accuracy of 89.70%. CONCLUSIONS The IBP composed of nine biomarkers can be used to predict the response of T2D patients to metformin, enabling clinicians to start a combined medication strategy as soon as possible if T2D patients do not respond to metformin.
Collapse
Affiliation(s)
- Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qiushi Fang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhe Shi
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zenghui Miao
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Bailey CJ. Metformin: Therapeutic profile in the treatment of type 2 diabetes. Diabetes Obes Metab 2024; 26 Suppl 3:3-19. [PMID: 38784991 DOI: 10.1111/dom.15663] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Metformin (dimethyl-biguanide) can claim its origins in the use of Galega officinalis as a plant treatment for symptoms ascribed to diabetes. Since the first clinical use of metformin as a glucose-lowering agent in 1957, this medicine has emerged as a first-line pharmacological option to support lifestyle interventions in the management of type 2 diabetes (T2D). It acts through multiple cellular pathways, principally in the gut, liver and muscle, to counter insulin resistance and lower blood glucose without weight gain or risk of overt hypoglycaemia. Other effects include improvements in lipid metabolism, decreased inflammation and lower long-term cardiovascular risk. Metformin is conveniently combined with other diabetes medications, can be prescribed in prediabetes to reduce the risk of progression to T2D, and is used in some regions to assist glycaemic control in pregnancy. Consistent with its diversity of actions, established safety profile and cost-effectiveness, metformin is being assessed for further possible clinical applications. The use of metformin requires adequate renal function for drug elimination, and may cause initial gastrointestinal side effects, which can be moderated by taking with meals or using an extended-release formulation. Thus, metformin serves as a valuable therapeutic resource for use throughout the natural history of T2D.
Collapse
|