1
|
Kindt CK, Alves CL, Ehmsen S, Kragh A, Reinert T, Vogsen M, Kodahl AR, Rønlev JD, Ardik D, Sørensen AL, Evald K, Clemmensen ML, Staaf J, Ditzel HJ. Genomic alterations associated with resistance and circulating tumor DNA dynamics for early detection of progression on CDK4/6 inhibitor in advanced breast cancer. Int J Cancer 2024; 155:2211-2222. [PMID: 39128978 DOI: 10.1002/ijc.35126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Combined CDK4/6 inhibitor (CDK4/6i) and endocrine therapy significantly improves outcome for patients with estrogen receptor-positive (ER+) metastatic breast cancer, but drug resistance and thus disease progression inevitably occur. Herein, we aimed to identify genomic alterations associated with combined CDK4/6i and endocrine therapy resistance, and follow the levels of specific mutations in longitudinal circulating tumor DNA (ctDNA) for early detection of progression. From a cohort of 86 patients with ER+ metastatic breast cancer we performed whole exome sequencing or targeted sequencing of paired tumor (N = 8) or blood samples (N = 5) obtained before initiation of combined CDK4/6i and endocrine therapy and at disease progression. Mutations in oncogenic genes at progression were rare, while amplifications of growth-regulating genes were more frequent. The most frequently acquired alterations observed were PIK3CA and TP53 mutations and PDK1 amplification. Longitudinal ctDNA dynamics of mutant PIK3CA or private mutations revealed increased mutation levels at progression in 8 of 10 patients (80%). Impressively, rising levels of PIK3CA-mutated ctDNA were detected 4-17 months before imaging. Our data add to the growing evidence supporting longitudinal ctDNA analysis for real-time monitoring of CDK4/6i response and early detection of progression in advanced breast cancer. Further, our analysis suggests that amplification of growth-related genes may contribute to combined CDK4/6i and endocrine therapy resistance.
Collapse
Affiliation(s)
- Charlotte K Kindt
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Carla L Alves
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sidse Ehmsen
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Amalie Kragh
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thomas Reinert
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
| | - Marianne Vogsen
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Annette R Kodahl
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jeanette D Rønlev
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | - Johan Staaf
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Lund, Sweden
| | - Henrik J Ditzel
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Scales TQ, Smith B, Blanchard LM, Wixom N, Tuttle ET, Altman BJ, Peppone LJ, Munger J, Campbell TM, Campbell EK, Harris IS. A whole food, plant-based diet reduces amino acid levels in patients with metastatic breast cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.09.24315165. [PMID: 39417128 PMCID: PMC11483017 DOI: 10.1101/2024.10.09.24315165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Amino acids are critical to tumor survival. Tumors can acquire amino acids from the surrounding microenvironment, including the serum. Limiting dietary amino acids is suggested to influence their serum levels. Further, a plant-based diet is reported to contain fewer amino acids than an animal-based diet. The extent to which a plant-based diet lowers the serum levels of amino acids in patients with cancer is unclear. Methods Patients with metastatic breast cancer (n=17) were enrolled in a clinical trial with an ad libitum whole food, plant-based diet for 8 weeks without calorie or portion restriction. Dietary changes by participants were monitored using a three-day food record. Serum was collected from participants at baseline and 8 weeks. Food records and serum were analyzed for metabolic changes. Results We found that a whole food, plant-based diet resulted in a lower intake of calories, fat, and amino acids and higher levels of fiber. Additionally, body weight, serum insulin, and IGF were reduced in participants. The diet contained lower levels of essential and non-essential amino acids, except for arginine (glutamine and asparagine were not measured). Importantly, the lowered dietary intake of amino acids translated to reduced serum levels of amino acids in participants (5/9 essential amino acids; 4/11 non-essential amino acids). Conclusions These findings provide a tractable approach to limiting amino acid levels in persons with cancer. This data lays a foundation for studying the relationship between amino acids in patients and tumor progression. Further, a whole-food, plant-based diet has the potential to synergize with cancer therapies that exploit metabolic vulnerabilities. Trial Registration The clinical trial was registered with ClinicalTrials.gov identifier NCT03045289 on 2017-02-07.
Collapse
|
3
|
Moore HN, Goncalves MD, Johnston AM, Mayer EL, Rugo HS, Gradishar WJ, Zylla DM, Bergenstal RM. Effective Strategies for the Prevention and Mitigation of Phosphatidylinositol-3-Kinase Inhibitor-Associated Hyperglycemia: Optimizing Patient Care. Clin Breast Cancer 2024:S1526-8209(24)00276-3. [PMID: 39462728 DOI: 10.1016/j.clbc.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
Hyperglycemia is a common adverse event (AE) associated with phosphatidylinositol-3-kinase inhibitors (PI3Kis) and considered an on-target effect. Presence of hyperglycemia is associated with poor outcomes in patients with cancer, and there is need for further refinement of hyperglycemia prevention and mitigation strategies in patients receiving PI3Kis. In this review, the authors highlight effective strategies for preventing PI3Ki-induced hyperglycemia before and during treatment as well as hyperglycemia management. Prior to initiating treatment with PI3Ki, identify baseline risk factors of patients at increased risk for developing hyperglycemia, which include older age, obesity, and glycosylated hemoglobin (HbA1c) 5.7%-6.4% (prediabetes or Type 2 diabetes). To prevent new-onset hyperglycemia, optimize blood glucose, and recommend a low-carbohydrate (60-130 g/day) diet along with regular exercise to all patients prior to initiating the PI3Ki. Prophylactic metformin may be considered in all patients starting a PI3Ki with HbA1c ≤6.4%. Although existing recommendations support monitoring fasting blood glucose (FBG) once weekly (twice-weekly for intermediate-risk, daily for high-risk patients) and HbA1c every 3 months upon initiation of PI3Ki, more frequent FBG monitoring may be considered for prompt detection of hyperglycemia. Experts also recommend considering postprandial glucose monitoring because it is an early indicator of glucose intolerance. If hyperglycemia develops, metformin (first-line) and/or sodium glucose co-transporter 2 inhibitors or thiazolidinediones (second-/third-line) are the preferred agents; consider early referral to an endocrinologist. In conclusion, hyperglycemia is a common but manageable AE associated with PI3Kis. Multidisciplinary approach to the prevention, monitoring, and management of hyperglycemia optimizes patient care and allows patients to maintain therapy on PI3Ki.
Collapse
Affiliation(s)
| | | | | | - Erica L Mayer
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Hope S Rugo
- Department of Medicine (Hematology/Oncology), University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | | | - Dylan M Zylla
- The Cancer Research Center, HealthPartners Institute, Minneapolis, MN
| | | |
Collapse
|
4
|
Asiri A, Al Qarni A, Bakillah A. The Interlinking Metabolic Association between Type 2 Diabetes Mellitus and Cancer: Molecular Mechanisms and Therapeutic Insights. Diagnostics (Basel) 2024; 14:2132. [PMID: 39410536 PMCID: PMC11475808 DOI: 10.3390/diagnostics14192132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer share common risk factors including obesity, inflammation, hyperglycemia, and hyperinsulinemia. High insulin levels activate the PI3K/Akt/mTOR signaling pathway promoting cancer cell growth, survival, proliferation, metastasis, and anti-apoptosis. The inhibition of the PI3K/Akt/mTOR signaling pathway for cancer remains a promising therapy; however, drug resistance poses a major problem in clinical settings resulting in limited efficacy of agents; thus, combination treatments with therapeutic inhibitors may solve the resistance to such agents. Understanding the metabolic link between diabetes and cancer can assist in improving the therapeutic strategies used for the management of cancer patients with diabetes and vice versa. This review provides an overview of shared molecular mechanisms between diabetes and cancer as well as discusses established and emerging therapeutic anti-cancer agents targeting the PI3K/Akt/mTOR pathway in cancer management.
Collapse
Affiliation(s)
- Abutaleb Asiri
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ali Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| |
Collapse
|
5
|
Bildik HN, Esenboga S, Halaclı SO, Karaatmaca B, Aytekin ES, Nabiyeva N, Akarsu A, Ocak M, Erman B, Tan C, Arikoglu T, Yaz I, Cicek B, Tezcan I, Cagdas D. A single center experience on PI3K/AKT/MTOR signaling defects: Towards pathogenicity assessment for four novel defects. Pediatr Allergy Immunol 2024; 35:e14245. [PMID: 39312287 DOI: 10.1111/pai.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Phosphoinositide 3 kinases (PI3K) are lipid kinases expressed in lymphocytes/myeloid cells. PI3K/AKT/mTOR signaling defects present with recurrent infections, autoimmunity, lymphoproliferation, and agammaglobulinemia. OBJECTIVE To characterize the PI3K/AKT/mTOR pathway defects and perform pathway analyses to assess novel variant pathogenicity. METHODS We included 12 patients (heterozygous PIK3CD (n = 9) and PIK3R1 (n = 1) (activated PI3K delta syndrome (APDS) with gain-of-function mutations) and homozygous PIK3R1 variant (n = 2)), performed clinical/laboratory/genetic evaluation, and flow cytometric PI3K/AKT/mTOR pathway analyses. RESULTS Median age at onset of complaints was 17.5 months (3 months to 12 years) and at diagnosis was 15.7 years (2.5-37) in APDS. Median diagnostic delay was 12.9 years (1.6-27). Recurrent respiratory tract infections (90%), lymphoproliferation (70%), autoimmune/inflammatory findings (60%), and allergy (40%) were common in APDS. Recurrent viral infections were present in 4/10 and malignancy (non-Hodgkin lymphoma and testicular yolk sac tumor) was present in 2/10 in APDS. Low CD4+ T cells(5/8) with increased CD4+ effector memory (8/8) and CD4+ TEMRA cells (6/8) were present in the given number of APDS patients. We diagnosed tubulointerstitial nephritis, Langerhans cell histiocytosis, and late-onset congenital adrenal hyperplasia in APDS. Allergic findings, lymphoproliferation/malignancy, and high IgM were present in the APDS but not in PIK3R1 deficiency. Low IgM/IgG/CD19+ B cell counts were characteristic in patients with PIK3R1 homozygous loss-of function mutations. CONCLUSION Differential diagnosis with combined immunodeficiency and diseases of immune dysregulation make molecular genetic analysis crucial for diagnosing mTOR pathway defects. It is easy to differentiate APDS and homozygous PIK3R1 defects with specific laboratory features. Additionally, mTOR pathway functional analysis is a definitive diagnostic and pathogenicity assessment tool for novel APDS mutations.
Collapse
Affiliation(s)
- Hacer Neslihan Bildik
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboga
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevil Oskay Halaclı
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Betül Karaatmaca
- Pediatric Allergy and Immunology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Elif Soyak Aytekin
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nadira Nabiyeva
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayşegul Akarsu
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Melike Ocak
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Baran Erman
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tugba Arikoglu
- Department of Pediatrics, Division of Allergy and Immunology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ismail Yaz
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Begum Cicek
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
6
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
7
|
Chen H, Sun B, Gao W, Qiu Y, Wei W, Li Y, Ye W, Song H, Hua C, Lin X. PIK3CA mutations enhance the adipogenesis of ADSCs in facial infiltrating lipomatosis through TRPV1. iScience 2024; 27:110467. [PMID: 39104411 PMCID: PMC11298645 DOI: 10.1016/j.isci.2024.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Facial infiltrating lipomatosis (FIL) is a congenital disorder. The pathogenesis of FIL is associated with PIK3CA mutations, but the underlying mechanisms remain undetermined. We found that the adipose tissue in FIL demonstrated adipocytes hypertrophy and increased lipid accumulation. All adipose-derived mesenchymal stem cells from FIL (FIL-ADSCs) harbored PIK3CA mutations. Moreover, FIL-ADSCs exhibited a greater capacity for adipogenesis. Knockdown of PIK3CA resulted in a reduction in the adipogenic potential of FIL-ADSCs. Furthermore, WX390, a dual-target PI3K/mTOR inhibitor, was found to impede PIK3CA-mediated adipogenesis both in vivo and in vitro. RNA sequencing (RNA-seq) revealed that the expression of transient receptor potential vanilloid subtype 1 (TRPV1) was upregulated after PI3K pathway inhibition, and overexpression or activation of TRPV1 both inhibited adipogenesis. Our study showed that PIK3CA mutations promoted adipogenesis in FIL-ADSCs and this effect was achieved by suppressing TPRV1. Pathogenesis experiments suggested that WX390 may serve as an agent for the treatment of FIL.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Bin Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yajing Qiu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Wei
- Shanghai Jiatan Pharmatech Co, LTD, Shanghai, China
| | - Yongguo Li
- Shanghai Jiatan Pharmatech Co, LTD, Shanghai, China
| | - Wei Ye
- Shanghai Jiatan Pharmatech Co, LTD, Shanghai, China
| | | | - Chen Hua
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaoxi Lin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
8
|
Fries BD, Tobias F, Wang Y, Holbrook JH, Hummon AB. Lipidomics Profiling Reveals Differential Alterations after FAS Inhibition in 3D Colon Cancer Cell Culture Models. J Proteome Res 2024; 23:2919-2933. [PMID: 38063332 PMCID: PMC11161555 DOI: 10.1021/acs.jproteome.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cancerous cells synthesize most of their lipids de novo to keep up with their rapid growth and proliferation. Fatty acid synthase (FAS) is a key enzyme in the lipogenesis pathway that is upregulated in many cancers and has gained popularity as a druggable target of interest for cancer treatment. The first FAS inhibitor discovered, cerulenin, initially showed promise for chemotherapeutic purposes until it was observed that it had adverse side effects in mice. TVB-2640 (Denifanstat) is part of the newer generation of inhibitors. With multiple generations of FAS inhibitors being developed, it is vital to understand their distinct molecular downstream effects to elucidate potential interactions in the clinic. Here, we profile the lipidome of two different colorectal cancer (CRC) spheroids treated with a generation 1 inhibitor (cerulenin) or a generation 2 inhibitor (TVB-2640). We observe that the cerulenin causes drastic changes to the spheroid morphology as well as alterations to the lipid droplets found within CRC spheroids. TVB-2640 causes higher abundances of polyunsaturated fatty acids (PUFAs) whereas cerulenin causes a decreased abundance of PUFAs. The increase in PUFAs in TVB-2640 exposed spheroids indicates it is causing cells to die via a ferroptotic mechanism rather than a conventional apoptotic or necrotic mechanism.
Collapse
Affiliation(s)
- Brian D Fries
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fernando Tobias
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Integrated Molecular Structure Education and Research Center (IMSERC), Northwestern University, Evanston, Illinois 60208, United States
| | - Yijia Wang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Mohammadzadeh M, Abdi F, Mamaghanian M, Paydareh A, Bahrami A, Sheikhi Z, Hejazi E. Carbohydrate quality indices and lung cancer risk: a case-control study from Iran. Eur J Cancer Prev 2024:00008469-990000000-00163. [PMID: 39150686 DOI: 10.1097/cej.0000000000000913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Considering that carbohydrates play an important role in supplying the body with energy and exhibit diverse mechanisms that can either prevent or stimulate cancer, we hypothesize that the quality of carbohydrate intake may be associated with cancer risk, including lung cancer. This hospital-based case-control study was conducted on 135 newly diagnosed lung cancer patients, and 237 healthy age- and sex-matched hospitalized controls. We used a valid and reliable 148-item Food Frequency Questionnaire to collect the dietary intake of subjects. Multivariate logistic regression was used to estimate the association between carbohydrate quality indices and the odds of lung cancer. After adjustment for confounding variables, the high glycemic index appears to be an increased risk factor for lung cancer [odds ratio (OR) = 2.51, 95% confidence interval (CI): 1.28-4.91]. No statistically significant association was found between glycemic load and lung cancer (OR = 2.51, 95% CI: 0.98-6.43). In contrast, the carbohydrate quality index (OR = 0.23, 95% CI: 0.11-0.48) and low-carbohydrate diet score (OR = 0.17, 95% CI: 0.08-0.36), were associated with a decrease in the risk of lung cancer. In summary, our study showed that a high glycemic index is a risk factor for lung cancer, however carbohydrate quality index and low-carbohydrate diet score is a dietary approach to reduce the risk of lung cancer.
Collapse
Affiliation(s)
- Milad Mohammadzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran
| | - Fatemeh Abdi
- Department of Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz
| | - Melika Mamaghanian
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran
| | - Amin Paydareh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran
| | - Alireza Bahrami
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran
| | - Zahra Sheikhi
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran
| |
Collapse
|
10
|
Yu L, Fu M, Yang L, Sun H. Fasting Blood Glucose-Based Novel Predictors in Detecting Metastases and Predicting Prognosis for Patients with PNENs. J Pers Med 2024; 14:760. [PMID: 39064013 PMCID: PMC11277919 DOI: 10.3390/jpm14070760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE To explore three novel fasting blood glucose (FBG)-based novel indicators, including the FBG-to-albumin ratio (FAR), FBG-to-lymphocytes ratio (FLR), and FBG-to-hemoglobin ratio (FHR), in predicting prognosis and detecting metastasis for patients with pancreatic neuroendocrine neoplasms (pNENs) after resection. MATERIALS AND METHODS A total of 178 pNENs patients who underwent surgical resection were included in this study. Receiver operating characteristic (ROC) curves were used to evaluate the diagnosis values of FAR, FLR, and FHR, and the cutoff values were obtained for further analyses. Univariate and multivariate analyses were conducted to determine the independent predictors. The Kaplan-Meier method was used to evaluate the progression-free survival (PFS) and overall survival (OS) of the pNENs patients. RESULTS The optimal cutoff values of FAR, FLR, and FHR were 0.17, 2.85, and 0.028, respectively. As for PFS, the area under the curve (AUC) was 0.693 for FAR, 0.690 for FLR, and 0.661 for FHR, respectively. The AUC was 0.770, 0.692, and 0.715 accordingly for OS. The groups with lower FAR, FLR, and FHR were significantly associated with prolonged PFS and OS (p < 0.05). In patients with metastasis, the lower FAR group was correlated with significantly longer PFS and OS (p = 0.022 and 0.002, respectively). The FLR was an independent predictor of PFS in pNENs patients, and the FAR was a predictor of OS. FAR was an independent indicator of PFS in patients with metastasis. CONCLUSIONS Preoperative FAR, FLR, and FHR are effective in predicting the prognosis of pNEN patients and detecting the synchronous metastases.
Collapse
Affiliation(s)
- Li Yu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Mengfei Fu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.F.); (L.Y.)
| | - Liu Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.F.); (L.Y.)
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.F.); (L.Y.)
| |
Collapse
|
11
|
Chen H, Sun B, Liu H, Gao W, Qiu Y, Hua C, Lin X. Delineation of the phenotypes and genotypes of PIK3CA-related overgrowth spectrum in East asians. Mol Genet Genomics 2024; 299:66. [PMID: 38980418 DOI: 10.1007/s00438-024-02159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
PIK3CA-related overgrowth spectrum (PROS) is an umbrella term to describe a diverse range of developmental disorders. Research to date has predominantly emerged from Europe and North America, resulting in a notable scarcity of studies focusing on East Asian populations. Currently, the prevalence and distribution of PIK3CA variants across various genetic loci and their correlation with distinct phenotypes in East Asian populations remain unclear. This study aims to elucidate the phenotype-genotype correlations of PROS in East Asian populations. We presented the phenotypes and genotypes of 82 Chinese patients. Among our cohort, 67 individuals carried PIK3CA variants, including missense, frameshift, and splice variants. Six patients presented with both PIK3CA and an additional variant. Seven PIK3CA-negative patients exhibited overlapping PROS manifestations with variants in GNAQ, AKT1, PTEN, MAP3K3, GNA11, or KRAS. An integrative review of the literature pertaining to East Asian populations revealed that specific variants are uniquely associated with certain PROS phenotypes. Some rare variants were exclusively identified in cases of megalencephaly and diffuse capillary malformation with overgrowth. Non-hotspot variants with undefined oncogenicity were more common in CNS phenotypes. Diseases with vascular malformation were more likely to have variants in the helical domain, whereas phenotypes involving adipose/muscle overgrowth without vascular abnormalities predominantly presented variants in the C2 domain. Our findings underscore the unique phenotype-genotype patterns within the East Asian PROS population, highlighting the necessity for an expanded cohort to further elucidate these correlations. Such endeavors would significantly facilitate the development of PI3Kα selective inhibitors tailored for the East Asian population in the future.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Bin Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Hongyuan Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Wei Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Yajing Qiu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Chen Hua
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| | - Xiaoxi Lin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| |
Collapse
|
12
|
Song R, Stopsack KH, Ren J, Mucci LA, Clinton SK, Loda M, Wang M, Giovannucci EL, Wilson KM, Smith-Warner SA. Coffee, Phosphoinositide 3-Kinase Signaling Pathway, and Prostate Cancer: A Prospective Study in the Health Professionals Follow-Up Study. J Acad Nutr Diet 2024:S2212-2672(24)00537-9. [PMID: 38971221 DOI: 10.1016/j.jand.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Higher coffee intake has been associated with reduced risk of prostate cancer, particularly aggressive forms. The activation of the phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in prostate carcinogenesis. OBJECTIVE To evaluate associations between prediagnostic coffee intake and a PI3K activation score, the expression/presence of PI3K regulators, and downstream effectors in tumor tissue from men with prostate cancer in the Health Professionals Follow-Up Study, a prospective cohort study conducted in the United States. DESIGN A case-only study design was applied. Coffee intake was assessed using validated food frequency questionnaires completed in 1986 and every 4 years thereafter until prostate cancer diagnosis. PARTICIPANTS SETTING Study participants comprised 1242 men diagnosed with prostate cancer from 1986 to 2009 and with tumor markers assessed from tissue microarrays constructed from tumor specimens. MAIN OUTCOME MEASURES The outcomes include the PI3K activation score; expression of insulin receptor and insulin-like growth factor 1 receptor; angiogenesis markers; and presence of the tumor suppressor phosphatase and tensin homolog, chronic and acute inflammation, simple atrophy, and post-atrophic hyperplasia. STATISTICAL ANALYSES PERFORMED Multivariable linear or logistic regression was conducted to estimate associations between coffee intake and tumor marker expression/presence. RESULTS Among coffee drinkers (86.6% of the population), median (25th, 75th percentile) coffee intake was 2 c/day (1, 3 c/day). The associations between coffee consumption and the tumor markers of interest were generally weak with modest precision. When comparing men who drank >3 c/day coffee with nondrinkers, the absolute percent difference in the PI3K activation score and angiogenesis markers ranged from 0.6% to 3.6%. The odds ratios for phosphatase and tensin homolog loss, insulin-like growth factor 1 receptor and insulin receptor expression, and presence of chronic and acute inflammation, simple atrophy, and postatrophic hyperplasia also were not statistically significant, were imprecise, and ranged from 0.82 to 1.58. CONCLUSIONS Coffee intake was not observed to be associated with PI3K activation, related regulators, and several effectors in prostate tumor tissue. Studies exploring alternative pathways or earlier steps in carcinogenesis are needed to investigate the underlying mechanisms of the coffee and prostate cancer association.
Collapse
Affiliation(s)
- Rui Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Analysis Group, Boston, Massachusetts
| | - Konrad H Stopsack
- Clinical and Translational Epidemiology Unit, Massachusetts General, Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Junkun Ren
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts; Biology Department, Woods Hole Oceanographic Institution, Falmouth, Massachusetts
| | | | - Steven K Clinton
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio; Genitourinary Oncology, The Arthur G. James Cancer Hospital, The Ohio State University, Columbus, Ohio; Molecular Carcinogenesis and Chemoprevention, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York; Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Molin Wang
- Clinical and Translational Epidemiology Unit, Massachusetts General, Hospital and Harvard Medical School, Boston, Massachusetts; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kathryn M Wilson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Navitas Data Sciences, Pottstown, Pennsylvania
| | - Stephanie A Smith-Warner
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
13
|
Chen Q, Li J. Molecular mechanism analysis of nontuberculous mycobacteria infection in patients with cystic fibrosis. Future Microbiol 2024; 19:877-888. [PMID: 38700285 PMCID: PMC11290754 DOI: 10.2217/fmb-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Aim: This study aims to explore the molecular mechanisms of cystic fibrosis (CF) complicated with nontuberculous mycobacteria (NTM) infection. Materials & methods: Expression profiles of CF with NTM-infected patients were downloaded from GEO database. Intersection analysis yielded 78 genes associated with CF with NTM infection. The protein-protein interaction (PPI) network and the functions of hub genes were investigated. Results: Five hub genes (PIK3R1, IL1A, CXCR4, ACTN1, PFN1) were identified, which were primarily enriched in actin-related biological processes and pathways. Transcription factors RELA, JUN, NFKB1 and FOS that regulated hub genes modulated IL1A expression, while 21 other transcription factors regulated CXCR4 expression. Conclusion: In summary, this study may provide new insights into the mechanisms of CF with NTM infection.
Collapse
Affiliation(s)
- Qihuang Chen
- Department of Tuberculosis, 900TH Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Jin Li
- Department of Tuberculosis, 900TH Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| |
Collapse
|
14
|
Stonestrom AJ, Levine RL. Inhibiting PI3Kγ in acute myeloid leukemia. NATURE CANCER 2024; 5:958-959. [PMID: 39048732 DOI: 10.1038/s43018-024-00791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Affiliation(s)
- Aaron J Stonestrom
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Nakamura K, Ishikawa M, Kawano R, Aimono E, Mizuno T, Nohara S, Tanishima S, Hayashi H, Nishihara H. Characterizing multi-PIK3CA mutations across cancer types: Toward precision oncology. Cancer Med 2024; 13:e70052. [PMID: 39054873 PMCID: PMC11272953 DOI: 10.1002/cam4.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND PIK3CA mutations are implicated in various cancers, but the implications of multiple concurrent mutations and their orientations within the gene have not been fully explored. METHODS In this study, we analyzed multi-PIK3CA mutations across a diverse pan-cancer cohort comprising 3564 tumors. RESULTS Multi-PIK3CA mutations were present in 10.3% of all PIK3CA-mutant tumors, predominantly occurring in breast and gynecological cancers. Notably, mutations within the helical domain (E542:E545) exclusively occurred in the trans-orientation, contrasting with mutations in the kinase ABD and C2 domains, which mainly appeared in the cis orientation. CONCLUSIONS The distinct pattern of mutation orientations in PIK3CA suggests variable oncogenic potential, with helical domain mutations in the trans-orientation potentially being less oncogenic. These findings highlight the importance of mutation orientation in the PIK3CA gene as potential biomarkers for targeted therapy. This understanding is crucial for designing clinical trials that leverage PI3K inhibitors, aiming for more effective and precise cancer treatment.
Collapse
Affiliation(s)
- Kohei Nakamura
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineShinjuku‐ku, TokyoJapan
- Department of Obstetrics and GynecologyKumagaya General HospitalKumagayaSaitamaJapan
| | - Marin Ishikawa
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Ryutaro Kawano
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Eriko Aimono
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineShinjuku‐ku, TokyoJapan
- Department of Cancer Pathology, Faculty of MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - Takaaki Mizuno
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Sachio Nohara
- Department of Biomedical Informatics, Communication Engineering Center, Electronic Systems Business GroupMitsubishi Electric Software Co., Ltd.AmagasakiHyogoJapan
| | - Shigeki Tanishima
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineShinjuku‐ku, TokyoJapan
- Department of Biomedical Informatics, Communication Engineering Center, Electronic Systems Business GroupMitsubishi Electric Software Co., Ltd.AmagasakiHyogoJapan
| | - Hideyuki Hayashi
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineShinjuku‐ku, TokyoJapan
| |
Collapse
|
16
|
Schmidt C, Stöhr R, Dimitrova L, Beckmann MW, Rübner M, Fasching PA, Denkert C, Lehmann U, Vollbrecht C, Haller F, Hartmann A, Erber R. Quality-Assured Analysis of PIK3CA Mutations in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Tissue. J Mol Diagn 2024; 26:624-637. [PMID: 38697471 DOI: 10.1016/j.jmoldx.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
In precision oncology, reliable testing of predictive molecular biomarkers is a prerequisite for optimal patient treatment. Interlaboratory comparisons are a crucial tool to verify diagnostic performance and reproducibility of one's approach. Herein is described the design and results of the first recurrent, internationally performed PIK3CA (phosphatidylinositol-4,5-bisphosphate 3 kinase catalytic subunit α) breast cancer tissue external quality assessment (EQA), organized by German Quality in Pathology GmbH and started in 2021. After the internal pretesting phase performed by the (lead) panel institutes, in both 2021 and 2022, each EQA test set comprised n = 10 tissue samples of hormone receptor-positive, human epidermal growth factor receptor 2-negative invasive breast cancer that had to be analyzed and reported by the participants. In 2021, the results were evaluated separately for German-speaking countries (part 1) and international laboratories (part 2). In 2022, the EQA was performed across the European Union. The EQA success rates were 84.6% (n = 11/13), 88.6% (n = 39/44), and 87.9% (n = 29/33) for EQA 2021 part 1, part 2, and EQA 2022, respectively. The most commonly used methods were next-generation sequencing and mutation-/allele-specific qualitative PCR-based assays. In summary, this recurrent PIK3CA EQA proved to be a suitable approach to obtain an international overview of methods used for PIK3CA mutation analysis, to evaluate them qualitatively, and identify the strengths and weaknesses of individual methods.
Collapse
Affiliation(s)
- Carolin Schmidt
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-European Metropolitan Region Nuremberg, Erlangen, Germany; Bavarian Cancer Research Center, Erlangen, Germany.
| | - Robert Stöhr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-European Metropolitan Region Nuremberg, Erlangen, Germany; Bavarian Cancer Research Center, Erlangen, Germany
| | - Lora Dimitrova
- Qualitätssicherungs-Initiative Pathologie GmbH, Berlin, Germany
| | - Matthias W Beckmann
- Bavarian Cancer Research Center, Erlangen, Germany; Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-European Metropolitan Region Nuremberg, Erlangen, Germany
| | - Matthias Rübner
- Bavarian Cancer Research Center, Erlangen, Germany; Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-European Metropolitan Region Nuremberg, Erlangen, Germany
| | - Peter A Fasching
- Bavarian Cancer Research Center, Erlangen, Germany; Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-European Metropolitan Region Nuremberg, Erlangen, Germany
| | - Carsten Denkert
- Institute of Pathology, University Hospital of Gießen and Marburg-University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Claudia Vollbrecht
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Florian Haller
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-European Metropolitan Region Nuremberg, Erlangen, Germany; Bavarian Cancer Research Center, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-European Metropolitan Region Nuremberg, Erlangen, Germany; Bavarian Cancer Research Center, Erlangen, Germany
| | - Ramona Erber
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-European Metropolitan Region Nuremberg, Erlangen, Germany; Bavarian Cancer Research Center, Erlangen, Germany
| |
Collapse
|
17
|
Wang J, Wu X, Fang J, Li Q. Intervention of exogenous VEGF protect brain microvascular endothelial cells from hypoxia-induced injury by regulating PLCγ/RAS/ERK and PI3K/AKT pathways. Exp Gerontol 2024; 192:112452. [PMID: 38718888 DOI: 10.1016/j.exger.2024.112452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
Ischemic stroke rapidly increases the expression level of vascular endothelial growth factor (VEGF), which promotes neovascularization during hypoxia. However, the effect and mechanism of VEGF intervention on cerebrovascular formation remain unclear. Therefore, our research discussed the protective effect of exogenous VEGF on cells in hypoxia environment in cerebral microvascular endothelial cells, simulating ischemic stroke in hypoxic environment. Firstly, we detected the proliferation and apoptosis of cerebral microvascular endothelial cells under hypoxia environment, as well the expression levels of VEGF-E, vascular endothelial growth factor re-ceptor-2 (VEGFR-2), BCL2, PRKCE and PINK1. Moreover, immunofluorescence and western blotting were used to verify the regulation of exogenous VEGF-E on VEGFR-2 expression in hypoxic or normal oxygen environment. Lastly, we manipulated the concentration of VEGF-E in the culture medium to investigate its impact on phospholipase Cγ1 (PLCγ1)/extracellular signaling regulatory protein kinase (ERK) -1/2 and protein kinase B (AKT) pathways. Additionally, we employed a PLCγ1 inhibitor (U73122) to investigate its impact on proliferation and PLCγ1/ERK pathways. The results show that hypoxia inhibited the proliferation of cerebral microvascular endothelial cells, promoted cell apoptosis, significantly up-regulated the expression of VEGF-E, VEGFR-2, PRKCE and PINK1, but down-regulated the expression of BCL2. Interference from exogenous VEGF-E activated PLCγ1/ERK-1/2 and AKT pathways, promoting cell proliferation and inhibiting apoptosis of hypoxic brain microvascular endothelial cells. In summary, exogenous VEGF-E prevents hypoxia-induced damage to cerebral microvascular endothelial cells by activating the PLCγ1/ERK and AKT pathways. This action inhibits the apoptosis pathway in hypoxic cerebral microvascular endothelial cells, thereby safeguarding the blood-brain barrier and the nervous system.
Collapse
Affiliation(s)
- Jiani Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Wu
- Department of Neurology, Wushan County People's Hospital of Chongqing, Chongqing, China
| | - Jincai Fang
- Department of Neurosurgery, Second Affiliated Hospital of Jiaxing University, Jiaxing, China.
| | - Qian Li
- Chongqing Health Center for Women and Children, Chongqing, China; Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Cho HM, Choe SH, Lee JR, Park HR, Ko MG, Lee YJ, Lee HY, Park SH, Park SJ, Kim YH, Huh JW. Transcriptome analysis of cynomolgus macaques throughout their lifespan reveals age-related immune patterns. NPJ AGING 2024; 10:30. [PMID: 38902280 PMCID: PMC11189941 DOI: 10.1038/s41514-024-00158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Despite the different perspectives by diverse research sectors spanning several decades, aging research remains uncharted territory for human beings. Therefore, we investigated the transcriptomic characteristics of eight male healthy cynomolgus macaques, and the annual sampling was designed with two individuals in four age groups. As a laboratory animal, the macaques were meticulously shielded from all environmental factors except aging. The results showed recent findings of certain immune response and the age-associated network of primate immunity. Three important aging patterns were identified and each gene clusters represented a different immune response. The increased expression pattern was predominantly associated with innate immune cells, such as Neutrophils and NK cells, causing chronic inflammation with aging whereas the other two decreased patterns were associated with adaptive immunity, especially "B cell activation" affecting antibody diversity of aging. Furthermore, the hub gene network of the patterns reflected transcriptomic age and correlated with human illness status, aiding in future human disease prediction. Our macaque transcriptome profiling results offer systematic insights into the age-related immunological features of primates.
Collapse
Affiliation(s)
- Hyeon-Mu Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science & Technology (UST), Cheongju, 28116, Republic of Korea
| | - Se-Hee Choe
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Ja-Rang Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56216, Republic of Korea
| | - Hye-Ri Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science & Technology (UST), Cheongju, 28116, Republic of Korea
| | - Min-Gyeong Ko
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science & Technology (UST), Cheongju, 28116, Republic of Korea
| | - Yun-Jung Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science & Technology (UST), Cheongju, 28116, Republic of Korea
| | - Hwal-Yong Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Sung Hyun Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science & Technology (UST), Cheongju, 28116, Republic of Korea.
| |
Collapse
|
19
|
Browne IM, Okines AFC. Resistance to Targeted Inhibitors of the PI3K/AKT/mTOR Pathway in Advanced Oestrogen-Receptor-Positive Breast Cancer. Cancers (Basel) 2024; 16:2259. [PMID: 38927964 PMCID: PMC11201395 DOI: 10.3390/cancers16122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The PI3K/AKT/mTOR signalling pathway is one of the most frequently activated pathways in breast cancer and also plays a central role in the regulation of several physiologic functions. There are major efforts ongoing to exploit precision medicine by developing inhibitors that target the three kinases (PI3K, AKT, and mTOR). Although multiple compounds have been developed, at present, there are just three inhibitors approved to target this pathway in patients with advanced ER-positive, HER2-negative breast cancer: everolimus (mTOR inhibitor), alpelisib (PIK3CA inhibitor), and capivasertib (AKT inhibitor). Like most targeted cancer drugs, resistance poses a major problem in the clinical setting and is a factor that has frequently limited the overall efficacy of these agents. Drug resistance can be categorised into intrinsic or acquired resistance depending on the timeframe it has developed within. Whereas intrinsic resistance exists prior to a specific treatment, acquired resistance is induced by a therapy. The majority of patients with ER-positive, HER2-negative advanced breast cancer will likely be offered an inhibitor of the PI3K/AKT/mTOR pathway at some point in their cancer journey, with the options available depending on the approval criteria in place and the cancer's mutation status. Within this large cohort of patients, it is likely that most will develop resistance at some point, which makes this an area of interest and an unmet need at present. Herein, we review the common mechanisms of resistance to agents that target the PI3K/AKT/mTOR signalling pathway, elaborate on current management approaches, and discuss ongoing clinical trials attempting to mitigate this significant issue. We highlight the need for additional studies into AKT1 inhibitor resistance in particular.
Collapse
|
20
|
Ziegengeist JL, Elmes JB, Strassels SA, Patel JN, Moore DC. Alpelisib-Induced Diabetic Ketoacidosis: A Pharmacovigilance Analysis of the FDA Adverse Event Reporting System and Review of the Literature. Clin Breast Cancer 2024; 24:e204-e209. [PMID: 38245400 DOI: 10.1016/j.clbc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/26/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Alpelisib is a PI3K inhibitor indicated with fulvestrant for treatment of advanced or metastatic hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, PIK3CA-mutated breast cancer. In the phase III SOLAR-1 trial, grade 3/4 hyperglycemic events were reported in 36.6% of patients receiving alpelisib-fulvestrant compared to 0.7% receiving placebo-fulvestrant. As case reports of diabetic ketoacidosis (DKA) have been associated with alpelisib use, the goal of this study was to characterize the FAERS reported cases of this severe adverse effect. METHODS A retrospective disproportionality analysis was performed using the FAERS database by calculating the reporting odds ratio (ROR) of DKA events with alpelisib from 2019 to 2022. A PubMed literature review of case reports characterizing alpelisib-induced DKA was performed. RESULTS Pharmacovigilance database analysis revealed significance in reporting among 87 DKA cases with alpelisib (ROR 9.84, 95% confidence interval 7.3-13.2), including hospitalization and death as reported outcomes. Review of 11 published case reports reveals median onset of DKA at 14 days with successful rechallenge possible. CONCLUSION Significant association with reporting exists between DKA and alpelisib exposure. We observed similar median time to onset of hyperglycemia between our analysis compared to that reported in SOLAR-1. Considering early onset of this toxicity, it is imperative that patients be closely monitored when initiating alpelisib. Addition of a preemptive antihyperglycemic or escalation in those previously on antihyperglycemic medications is beneficial in decreasing the severity of hyperglycemia with alpelisib. Further study investigating risk factors is warranted to better elucidate which patients require preemptive therapy.
Collapse
Affiliation(s)
- Julia L Ziegengeist
- Department of Pharmacy, Clinical Pharmacist Coordinator, Levine Cancer Institute, Atrium Health, Charlotte, NC.
| | - Joseph B Elmes
- Department of Pharmacy, Oncology Clinical Staff Pharmacist, Levine Cancer Institute, Atrium Health, Concord, NC
| | | | - Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Clinical Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Donald C Moore
- Department of Pharmacy, Clinical Oncology Pharmacy Manager, Levine Cancer Institute, Atrium Health, Charlotte, NC
| |
Collapse
|
21
|
Hu C, Lei Y, Liu X, Yu X, Geng Z, Liu Y, Yang L, Tie X, Zhou W, Li X, Zhang Y, Liang Y. Dissecting microenvironment in cystadenomas and hepatic cysts based on single nucleus RNA-sequencing data. Comput Biol Med 2024; 176:108541. [PMID: 38744012 DOI: 10.1016/j.compbiomed.2024.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Hepatic cystadenoma is a rare disease, accounting for about 5% of all cystic lesions, with a high tendency of malignant transformation. The preoperative diagnosis of cystadenoma is difficult, and some cystadenomas are easily misdiagnosed as hepatic cysts at first. Hepatic cyst is a relatively common liver disease, most of which are benign, but large hepatic cysts can lead to pressure on the bile duct, resulting in abnormal liver function. To better understand the difference between the microenvironment of cystadenomas and hepatic cysts, we performed single-nuclei RNA-sequencing on cystadenoma and hepatic cysts samples. In addition, we performed spatial transcriptome sequencing of hepatic cysts. Based on nucleus RNA-sequencing data, a total of seven major cell types were identified. Here we described the tumor microenvironment of cystadenomas and hepatic cysts, particularly the transcriptome signatures and regulators of immune cells and stromal cells. By inferring copy number variation, it was found that the malignant degree of hepatic stellate cells in cystadenoma was higher. Pseudotime trajectory analysis demonstrated dynamic transformation of hepatocytes in hepatic cysts and cystadenomas. Cystadenomas had higher immune infiltration than hepatic cysts, and T cells had a more complex regulatory mechanism in cystadenomas than hepatic cysts. Immunohistochemistry confirms a cystadenoma-specific T-cell immunoregulatory mechanism. These results provided a single-cell atlas of cystadenomas and hepatic cyst, revealed a more complex microenvironment in cystadenomas than in hepatic cysts, and provided new perspective for the molecular mechanisms of cystadenomas and hepatic cyst.
Collapse
Affiliation(s)
- Congxue Hu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yongqi Lei
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyang Liu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xingxin Yu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Zhida Geng
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yu Liu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Liyu Yang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xuehong Tie
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wenzhe Zhou
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yunpeng Zhang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yingjian Liang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
22
|
Hou Y, Yang Z, Xiang B, Liu J, Geng L, Xu D, Zhan M, Xu Y, Zhang B. Metformin is a potential therapeutic for COVID-19/LUAD by regulating glucose metabolism. Sci Rep 2024; 14:12406. [PMID: 38811809 PMCID: PMC11137110 DOI: 10.1038/s41598-024-63081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common and aggressive subtype of lung cancer, and coronavirus disease 2019 (COVID-19) has become a serious public health threat worldwide. Patients with LUAD and COVID-19 have a poor prognosis. Therefore, finding medications that can be used to treat COVID-19/LUAD patients is essential. Bioinformatics analysis was used to identify 20 possible metformin target genes for the treatment of COVID-19/LUAD. PTEN and mTOR may serve as hub target genes of metformin. Metformin may be able to cure COVID-19/LUAD comorbidity through energy metabolism, oxidoreductase NADH activity, FoxO signalling pathway, AMPK signalling system, and mTOR signalling pathway, among other pathways, according to the results of bioinformatic research. Metformin has ability to inhibit the proliferation of A549 cells, according to the results of colony formation and proliferation assays. In A549 cells, metformin increased glucose uptake and lactate generation, while decreasing ATP synthesis and the NAD+/NADH ratio. In summary, PTEN and mTOR may be potential targets of metformin for the treatment of COVID-19/LUAD. The mechanism by which metformin inhibits lung adenocarcinoma cell proliferation may be related to glucose metabolism regulated by PI3K/AKT signalling and mTOR signalling pathways. Our study provides a new theoretical basis for the treatment of COVID-19/LUAD.
Collapse
Affiliation(s)
- Yongwang Hou
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Zhicong Yang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Baoli Xiang
- Respiratory Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jiangmin Liu
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Lina Geng
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Minghua Zhan
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Yuhuan Xu
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Bin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
| |
Collapse
|
23
|
Ye M, Xu H, Ding J, Jiang L. Therapy for Hormone Receptor-Positive, Human Epidermal Growth Receptor 2-Negative Metastatic Breast Cancer Following Treatment Progression via CDK4/6 Inhibitors: A Literature Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:181-197. [PMID: 38617842 PMCID: PMC11016260 DOI: 10.2147/bctt.s438366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/16/2024] [Indexed: 04/16/2024]
Abstract
Endocrine therapy (ET) with a cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) is currently the first-line standard treatment for most patients with hormone receptor-positive (HR+) and human epidermal growth receptor 2-negative (HER2-) metastatic or advanced breast cancer. However, the majority of tumors response to and eventually develop resistance to CDK4/6is. The mechanisms of resistance are poorly understood, and the optimal postprogression treatment regimens and their sequences continue to evolve in the rapidly changing treatment landscape. In this review, we generally summarize the mechanisms of resistance to CDK4/6is and ET, and describe the findings from clinical trials using small molecule inhibitors, antibody-drug conjugates and immunotherapy, providing insights into how these novel strategies may reverse treatment resistance, and discussing how some have not translated into clinical benefit. Finally, we provide rational treatment strategies based on the current emerging evidence.
Collapse
Affiliation(s)
- Meixi Ye
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, People’s Republic of China
| | - Hao Xu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, People’s Republic of China
| | - Jinhua Ding
- Department of Breast and Thyroid Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, People’s Republic of China
| | - Li Jiang
- Department of General Practice, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, People’s Republic of China
| |
Collapse
|
24
|
Lin Y, Zheng X, Chen Y, Nian Q, Lin L, Chen M. A real-world disproportionality analysis of FDA adverse event reporting system (FAERS) events for alpelisib. Heliyon 2024; 10:e27529. [PMID: 38496864 PMCID: PMC10944239 DOI: 10.1016/j.heliyon.2024.e27529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
In this study, we delved into the safety profile of alpelisib, an FDA-approved treatment for hormone receptor-positive, HER2-negative, PIK3CA-mutated advanced or metastatic breast cancer, and PIK3CA-Related Overgrowth Spectrum (PROS). Despite its approval, real-world, long-term safety data is lacking. Our research scrutinizes the FDA database to assess alpelisib 's safety. We retrospectively analyzed data from April 2019 to June 2023 using four algorithms. Among 7,609,450 reports, 6692 implicated alpelisib as the primary suspected drug, uncovering adverse events (AEs) across 26 organ systems. Notably, we identified 21 previously unlisted AEs. Furthermore, differences in AEs emerged between patients with PIK3CA-mutated breast cancer and those with PROS. This study provides vital insights for healthcare professionals to navigate AEs in clinical practice and informs future research for enhancing alpelisib 's safety profile.
Collapse
Affiliation(s)
- Yu Lin
- Department of Orthopedics, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, 350400, PR China
- Department of Orthopedics, Fujian Medical University Union Hospital, NO.29 Xinquan road, Fuzhou, 350001, PR China
| | - Xinlei Zheng
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, 350400, PR China
| | - Yan Chen
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, 350400, PR China
| | - Qichun Nian
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, 350400, PR China
| | - Li Lin
- Department of Medical Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, NO.134 Dongjie Street, Fuzhou, 350001, Fujian, PR China
| | - Maohua Chen
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, 350400, PR China
| |
Collapse
|
25
|
Wang S, Li M, Qin S, Wang R, Dong L, Wang S, Xiao F. Serum lipidomic changes and sex differences in androgenetic alopecia. Heliyon 2024; 10:e26204. [PMID: 38390155 PMCID: PMC10881354 DOI: 10.1016/j.heliyon.2024.e26204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Background Androgenetic alopecia (AGA) is the most common form of hair loss. Studies have suggested a potential link to metabolic disorders, but with conflicting results. To elucidate the lipidomics profile and sex-specific variations in AGA, while exploring correlation between AGA and metabolic syndrome (MetS). Methods The AGA patients (n = 83) and healthy controls (n = 84) were collected in the study. The lipid profiles were analyzed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Serum levels of important factors associated with AGA, namely dihydrotestosterone (DHT), prostaglandin D2 (PGD2) and transforming growth factor-β1 (TGF-β1) were quantified using ELISA. Results Compared with controls, AGA patients had a higher probability of MetS (26.51% vs 11.9%, P < 0.05). Fifty-one differentially expressed lipids were identified in AGA. The kind of triglyceride (TG) were significantly increased, while phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylserine (PS) exhibited remarkable decrease. PC (16:2/21:6), PC (34:4p), PE (41:7), PE (44:12), PG (40:9), PI (32:2) and TG (15:0/18:1/18:1) were identified as potential biomarkers of AGA with the highest specificity. The levels of DHT, PGD2 and TGF-β1 were significantly elevated in AGA. All seven lipids showed significant correlations with DHT, PC (34:4p) and TG (15:0/18:1/18:1) were significantly associated with PGD2, TGF-β1 displayed exclusively correlation with TG (15:0/18:1/18:1) (all P < 0.05). Furthermore, these lipids were also significantly linked to systolic blood pressure and BMI, while some of them also showed significant associations with total cholesterol and HDL-C. In subgroups, forty-two differentially expressed lipids were identified in male AGA vs male control and eighty-one in female AGA vs female control. PC (16:2/21:6) was the only specific lipids common to both sexes. Conclusions Aberrant lipid metabolism was observed in AGA, with distinct lipidomic profiles between male and female AGA. The potential biomarkers were closely related to DHT, PGD2, TGF-β1 and MetS-related indicators. It provides the foundation for revealing the mechanisms of AGA.
Collapse
Affiliation(s)
- Shuqin Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Department of Dermatology, Anhui Public Health Clinical Center, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Mei Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shichun Qin
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Rui Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Liping Dong
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Sheng Wang
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fengli Xiao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China
- The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
26
|
Varkaris A, Pazolli E, Gunaydin H, Wang Q, Pierce L, Boezio AA, Bulku A, DiPietro L, Fridrich C, Frost A, Giordanetto F, Hamilton EP, Harris K, Holliday M, Hunter TL, Iskandar A, Ji Y, Larivée A, LaRochelle JR, Lescarbeau A, Llambi F, Lormil B, Mader MM, Mar BG, Martin I, McLean TH, Michelsen K, Pechersky Y, Puente-Poushnejad E, Raynor K, Rogala D, Samadani R, Schram AM, Shortsleeves K, Swaminathan S, Tajmir S, Tan G, Tang Y, Valverde R, Wehrenberg B, Wilbur J, Williams BR, Zeng H, Zhang H, Walters WP, Wolf BB, Shaw DE, Bergstrom DA, Watters J, Fraser JS, Fortin PD, Kipp DR. Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia. Cancer Discov 2024; 14:240-257. [PMID: 37916956 PMCID: PMC10850943 DOI: 10.1158/2159-8290.cd-23-0944] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
PIK3CA (PI3Kα) is a lipid kinase commonly mutated in cancer, including ∼40% of hormone receptor-positive breast cancer. The most frequently observed mutants occur in the kinase and helical domains. Orthosteric PI3Kα inhibitors suffer from poor selectivity leading to undesirable side effects, most prominently hyperglycemia due to inhibition of wild-type (WT) PI3Kα. Here, we used molecular dynamics simulations and cryo-electron microscopy to identify an allosteric network that provides an explanation for how mutations favor PI3Kα activation. A DNA-encoded library screen leveraging electron microscopy-optimized constructs, differential enrichment, and an orthosteric-blocking compound led to the identification of RLY-2608, a first-in-class allosteric mutant-selective inhibitor of PI3Kα. RLY-2608 inhibited tumor growth in PIK3CA-mutant xenograft models with minimal impact on insulin, a marker of dysregulated glucose homeostasis. RLY-2608 elicited objective tumor responses in two patients diagnosed with advanced hormone receptor-positive breast cancer with kinase or helical domain PIK3CA mutations, with no observed WT PI3Kα-related toxicities. SIGNIFICANCE Treatments for PIK3CA-mutant cancers are limited by toxicities associated with the inhibition of WT PI3Kα. Molecular dynamics, cryo-electron microscopy, and DNA-encoded libraries were used to develop RLY-2608, a first-in-class inhibitor that demonstrates mutant selectivity in patients. This marks the advance of clinical mutant-selective inhibition that overcomes limitations of orthosteric PI3Kα inhibitors. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 227 . This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Andreas Varkaris
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | | - Qi Wang
- D. E. Shaw Research, New York, New York
| | - Levi Pierce
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Adam Frost
- Altos Labs, Institute of Science, San Francisco, California
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California
- California Institute of Quantitative Biosciences (QB3), University of California San Francisco, San Francisco, California
| | | | - Erika P. Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Katherine Harris
- MGH/Mass General Cancer Center at Danvers, Danvers, Massachusetts
| | | | | | | | - Yongli Ji
- Hematology/Oncology, Exeter Hospital, Exeter, New Hampshire
| | | | | | | | | | - Brenda Lormil
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | | - Iain Martin
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Kevin Raynor
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | - Alison M. Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Shahein Tajmir
- MGH Radiology, Harvard Medical School, Boston, Massachusetts
| | - Gege Tan
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | - Yong Tang
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Hongtao Zeng
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | - Hanmo Zhang
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | - W. Patrick Walters
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Beni B. Wolf
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | - David E. Shaw
- D. E. Shaw Research, New York, New York
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
| | | | | | - James S. Fraser
- California Institute of Quantitative Biosciences (QB3), University of California San Francisco, San Francisco, California
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | | | | |
Collapse
|
27
|
Hein KZ, Stephen B, Fu S. Therapeutic Role of Synthetic Lethality in ARID1A-Deficient Malignancies. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:41-52. [PMID: 38327752 PMCID: PMC10846636 DOI: 10.36401/jipo-22-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/28/2023] [Accepted: 09/21/2023] [Indexed: 02/09/2024]
Abstract
AT-rich interaction domain 1A (ARID1A), a mammalian switch/sucrose nonfermenting complex subunit, modulates several cellular processes by regulating chromatin accessibility. It is encoded by ARID1A, an immunosuppressive gene frequently disrupted in a many tumors, affecting the proliferation, migration, and invasion of cancer cells. Targeting molecular pathways and epigenetic regulation associated with ARID1A loss, such as inhibiting the PI3K/AKT pathway or modulating Wnt/β-catenin signaling, may help suppress tumor growth and progression. Developing epigenetic drugs like histone deacetylase or DNA methyltransferase inhibitors could restore normal chromatin structure and function in cells with ARID1A loss. As ARID1A deficiency correlates with enhanced tumor mutability, microsatellite instability, high tumor mutation burden, increased programmed death-ligand 1 expression, and T-lymphocyte infiltration, ARID1A-deficient cells can be a potential therapeutic target for immune checkpoint inhibitors that warrants further exploration. In this review, we discuss the role of ARID1A in carcinogenesis, its crosstalk with other signaling pathways, and strategies to make ARID1A-deficient cells a potential therapeutic target for patients with cancer.
Collapse
Affiliation(s)
- Kyaw Z. Hein
- Department of Internal Medicine, HCA Florida Westside Hospital, Plantation, FL, USA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
28
|
Liu S, Liang Z, Wang Y, Ren Y, Gu Y, Qiao Y, He H, Li Y, Cheng Y, Liu Y. MCM2 is involved in subtyping and tamoxifen resistance of ERα-positive breast cancer by acting as the downstream factor of ERα. Biotechnol J 2024; 19:e2300560. [PMID: 38403459 DOI: 10.1002/biot.202300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024]
Abstract
Tamoxifen (TAM) resistance is finally developed in over 40% of patients with estrogen receptor α-positive breast cancer (ERα+ -BC), documenting that discovering new molecular subtype is needed to confer perception to the heterogeneity of ERα+ -BC. We obtained representative gene sets subtyping ERα+ -BC using gene set variation analysis (GSVA), non-negative matrix factorization (NMF), and COX regression methods on the basis of METABRIC, TCGA, and GEO databases. Furthermore, the risk score of ERα+ -BC subtyping was established using least absolute shrinkage and selection operator (LASSO) regression on the basis of genes in the representative gene sets, thereby generating the two subtypes of ERα+ -BC. We further found that minichromosome maintenance complex component 2 (MCM2) functioned as the hub gene subtyping ERα+ -BC using GO, KEGG, and MCODE. MCM2 expression was capable for specifically predicting 1-year overall survival (OS) of ERα+ -BC and correlated with T stage, AJCC stage, and tamoxifen (TAM) sensitivity of ERα+ -BC. The downregulation of MCM2 expression inhibited proliferation, migration, and invasion of TAM-resistant cells and promoted G0/G1 arrest. Altogether, tamoxifen resistance entails that MCM2 is a hub gene subtyping ERα+ -BC, providing a novel dimension for discovering a potential target of TAM-resistant BC.
Collapse
Affiliation(s)
- Sainan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Zhuoshuai Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yujian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yaxuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yulu Gu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Huan He
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yi Cheng
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
29
|
Chuang YM, Tzeng SF, Ho PC, Tsai CH. Immunosurveillance encounters cancer metabolism. EMBO Rep 2024; 25:471-488. [PMID: 38216787 PMCID: PMC10897436 DOI: 10.1038/s44319-023-00038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Tumor cells reprogram nutrient acquisition and metabolic pathways to meet their energetic, biosynthetic, and redox demands. Similarly, metabolic processes in immune cells support host immunity against cancer and determine differentiation and fate of leukocytes. Thus, metabolic deregulation and imbalance in immune cells within the tumor microenvironment have been reported to drive immune evasion and to compromise therapeutic outcomes. Interestingly, emerging evidence indicates that anti-tumor immunity could modulate tumor heterogeneity, aggressiveness, and metabolic reprogramming, suggesting that immunosurveillance can instruct cancer progression in multiple dimensions. This review summarizes our current understanding of how metabolic crosstalk within tumors affects immunogenicity of tumor cells and promotes cancer progression. Furthermore, we explain how defects in the metabolic cascade can contribute to developing dysfunctional immune responses against cancers and discuss the contribution of immunosurveillance to these defects as a feedback mechanism. Finally, we highlight ongoing clinical trials and new therapeutic strategies targeting cellular metabolism in cancer.
Collapse
Affiliation(s)
- Yu-Ming Chuang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sheue-Fen Tzeng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| | - Chin-Hsien Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
30
|
Gallagher EJ, Moore H, Lacouture ME, Dent SF, Farooki A, Goncalves MD, Isaacs C, Johnston A, Juric D, Quandt Z, Spring L, Berman B, Decker M, Hortobagyi GN, Kaffenberger BH, Kwong BY, Pluard T, Rao R, Schwartzberg L, Broder MS. Managing hyperglycemia and rash associated with alpelisib: expert consensus recommendations using the Delphi technique. NPJ Breast Cancer 2024; 10:12. [PMID: 38297009 PMCID: PMC10831089 DOI: 10.1038/s41523-024-00613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Hyperglycemia and rash are expected but challenging adverse events of phosphatidylinositol-3-kinase inhibition (such as with alpelisib). Two modified Delphi panels were conducted to provide consensus recommendations for managing hyperglycemia and rash in patients taking alpelisib. Experts rated the appropriateness of interventions on a 1-to-9 scale; median scores and dispersion were used to classify the levels of agreement. Per the hyperglycemia panel, it is appropriate to start alpelisib in patients with HbA1c 6.5% (diabetes) to <8%, or at highest risk for developing hyperglycemia, if they have a pre-treatment endocrinology consult. Recommend prophylactic metformin in patients with baseline HbA1c 5.7% to 6.4%. Metformin is the preferred first-line anti-hyperglycemic agent. Per the rash panel, initiate prophylactic nonsedating H1 antihistamines in patients starting alpelisib. Nonsedating H1 antihistamines and topical steroids are the preferred initial management for rash. In addition to clinical trial evidence, these recommendations will help address gaps encountered in clinical practice.
Collapse
Affiliation(s)
- Emily J Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Heather Moore
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Mario E Lacouture
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susan F Dent
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Azeez Farooki
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Zoe Quandt
- School of Medicine, University of California, San Francisco, CA, USA
| | - Laura Spring
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brian Berman
- University of Miami School of Medicine and Center for Clinical and Cosmetic Research, Aventura, FL, USA
| | - Melanie Decker
- Woodland Memorial Hospital, Woodland, CA, and Kaiser Permanente, Sacramento, CA, USA
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Bernice Y Kwong
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy Pluard
- St. Luke's Hospital Koontz Center for Advanced Breast Cancer, Kansas City, MO, USA
| | - Ruta Rao
- Rush Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
31
|
Grote I, Poppe A, Lehmann U, Christgen M, Kreipe H, Bartels S. Frequency of genetic alterations differs in advanced breast cancer between metastatic sites. Genes Chromosomes Cancer 2024; 63:e23199. [PMID: 37672607 DOI: 10.1002/gcc.23199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
About 20%-30% of breast cancer (BC) patients will develop distant metastases, preferentially in bones, liver, lung, and brain. BCs with different intrinsic subtypes prefer different sites for metastasis. These subtypes vary in the abundance of genetic alterations which may influence the localization of metastases. Currently, information about the relation between metastatic site and mutational profile of BC is limited. In this study, n = 521 BC metastases of the most frequently affected sites (bone, brain, liver, and lung) were investigated for the frequency of AKT1, ERBB2, ESR1, PIK3CA, and TP53 mutations via NGS and pyrosequencing. Somatic mutations were present in 64% cases. PIK3CA and TP53 were the most frequently mutated genes under study. We provide an analysis of the mutational profile of BCs and the affected metastatic site. Genetic alterations differed significantly depending on the organ site affected by metastases. TP53 mutations were mostly observed in brain metastases (51.0%), metastases outside of the brain revealed a much lower proportion of TP53 mutated samples. PIK3CA mutations are frequent in liver (40.6%), lung (36.8%), and bone metastases (35.7%), whereas less common in brain metastases (18.4%). The highest percentage of ESR1 mutations was observed in liver and lung metastases (about 30% each), whereas metastatic lesions in the brain showed significantly less ESR1 mutations, only in 2.0% of the cases. In summary, we found significant differences of mutational status in mBC depending on the affected organ and intrinsic subtype. Organotropism of metastatic cancer spread may be influenced by the mutational profile of individual BCs.
Collapse
Affiliation(s)
- Isabel Grote
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Alexandra Poppe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Stephan Bartels
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Al Saedi A, Yacoub AS, Awad K, Karasik D, Brotto M, Duque G. The Interplay of Lipid Signaling in Musculoskeletal Cross Talk: Implications for Health and Disease. Methods Mol Biol 2024; 2816:1-11. [PMID: 38977583 DOI: 10.1007/978-1-0716-3902-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The intricate interplay between the muscle and bone tissues is a fundamental aspect of musculoskeletal physiology. Over the past decades, emerging research has highlighted the pivotal role of lipid signaling in mediating communication between these tissues. This chapter delves into the multifaceted mechanisms through which lipids, particularly phospholipids, sphingolipids, and eicosanoids, participate in orchestrating cellular responses and metabolic pathways in both muscle and bone. Additionally, we examine the clinical implications of disrupted lipid signaling in musculoskeletal disorders, offering insights into potential therapeutic avenues. This chapter aims to shed light on the complex lipid-driven interactions between the muscle and bone tissues, paving the way for a deeper understanding of musculoskeletal health and disease.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Ahmed S Yacoub
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Gustavo Duque
- Research Institute of McGill University Health Center, Department of Medicine, McGill University, Québec, Canada
| |
Collapse
|
33
|
Lu H, Yu X, Xu Z, Deng J, Zhang MJ, Zhang Y, Sun S. Prognostic Value of IGFBP6 in Breast Cancer: Focus on Glucometabolism. Technol Cancer Res Treat 2024; 23:15330338241271998. [PMID: 39275851 PMCID: PMC11402086 DOI: 10.1177/15330338241271998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024] Open
Abstract
IGFBP6, a member of the IGF binding protein (IGFBP) family, is a specific inhibitor of insulin-like growth factor II (IGF-II) and can inhibit the growth of malignant tumors overexpressing IGF-II. Type 2 diabetes (T2D) is a basic disorder of glucose metabolism that can be regulated by IGF-related pathways. We performed bioinformatics analysis of the TCGA database to explore the possible mechanism of IGFBP6 in breast cancer (BC) metabolism and prognosis and collected clinical samples from BC patients with and without T2D to compare and verify the prognostic effect of IGFBP6. In our study, the levels of IGFBP1-6 were positively correlated with overall survival (OS) in patients with breast cancer. IGFBP6 was upregulated in estrogen receptor (ER)-positive BC, and ER-positive and progesterone receptor (PR) positive patients had a higher expression level of IGFBP6 than ER-negative and PR-negative patients. IGFBP6 could be used as an independent prognostic factor in BC. The expression of IGFBP6 was decreased in BC tissue, and BC tissue from patients with T2D had lower IGFBP6 expression levels than BC tissue from patients without T2D. IGFBP6 is mainly involved in the PI3K-Akt and TGF-β signaling pathways and tumor microenvironment regulation. In terms of metabolism, the expression of IGFBP6 was negatively correlated with that of most glucose metabolism-related genes. IGFBP6 expression was mainly correlated with mutations in TP53, PIK3CA, CDH1, and MAP3K1. In addition, the upregulation of IGFBP6 in BC increased the drug sensitivity to docetaxel, paclitaxel and gemcitabine. Overall, these results indicated that high expression of IGFBP6 is associated with a good prognosis in BC patients, especially in those without T2D. It is not only involved in the maintenance of the tumor microenvironment in BC but also inhibits the energy metabolism of cancer cells through glucose metabolism-related pathways. These findings may provide a new perspective on IGFBP6 as a potential prognostic marker for BC.
Collapse
Affiliation(s)
- Hang Lu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Cardiovascular Surgery, Xijing Hospital, Xian, Shanxi, China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiliang Xu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingwen Deng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Master Jingwen Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yimin Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
34
|
Weintraub MA, Liu D, DeMatteo R, Goncalves MD, Flory JH. Sodium-glucose cotransporter-2 inhibitors for hypergycemia in phosphoinositide 3-kinase pathway inhibition. Breast Cancer Res Treat 2024; 203:85-93. [PMID: 37704834 DOI: 10.1007/s10549-023-07110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Phosphoinositide 3-kinase (PI3K) inhibition is used for the treatment of certain cancers, but can cause profound hyperglycemia and insulin resistance, for which sodium-glucose cotransporter-2 (SGLT2) inhibitors have been proposed as a preferred therapy. The objective of this research is to assess the effectiveness and safety of SGLT2 inhibitors for hyperglycemia in PI3K inhibition. METHODS We conducted a single-center retrospective review of adults initiating the PI3K inhibitor alpelisib. Exposure to different antidiabetic drugs and adverse events including diabetic ketoacidosis (DKA) were assessed through chart review. Plasma and point-of-care blood glucoses were extracted from the electronic medical record. Change in serum glucose and the rate of DKA on SGLT2 inhibitor versus other antidiabetic drugs were examined as co-primary outcomes. RESULTS We identified 103 patients meeting eligibility criteria with median follow-up of 92 days after starting alpelisib. When SGLT2 inhibitors were used to treat hyperglycemia, they were associated with a decrease in mean random glucose by -46 mg/dL (95% CI - 77 to - 15) in adjusted linear modeling. Five cases of DKA were identified, two occurring in patients on alpelisib plus SGLT2 inhibitor. Estimated incidence of DKA was: alpelisib plus SGLT2 inhibitor, 48 DKA cases per 100 patient-years (95% CI 6, 171); alpelisib with non-SGLT2 inhibitor antidiabetic drugs, 15 (95% CI 2, 53); alpelisib only, 4 (95% CI 0.1, 22). CONCLUSIONS SGLT2 inhibitors are effective treatments for hyperglycemia in the setting of PI3K inhibition.
Collapse
Affiliation(s)
- Michael A Weintraub
- New York University Diabetes & Endocrine Associates, 222 East 41st Street, 23rd Floor, New York, NY, 10017, USA
| | - Dazhi Liu
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Raymond DeMatteo
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - James H Flory
- Endocrinology Service, Division of Subspecialty Medicine, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
35
|
Debouki-Joudi S, Ben Kridis W, Trifa F, Ayadi W, Khabir A, Sellami-Boudawara T, Daoud J, Khanfir A, Mokdad-Gargouri R. A novel PIK3CA hot-spot mutation in breast cancer patients detected by HRM-COLD-PCR analysis. Breast Dis 2024; 43:213-221. [PMID: 38943378 PMCID: PMC11307001 DOI: 10.3233/bd-240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
BACKGROUND The PI3K protein is involved in the PI3K/AKT/mTOR pathway. Deregulation of this pathway through PIK3CA mutation is common in various tumors. The aim of this work is to identify hotspot mutation at exons 9 and 20 in Tunisian patients with sporadic or hereditary breast cancer. METHODS Hotspot mutations in exon 9 and exon 20 of the PIK3CA gene were identified by QPCR-High Resolution Melting followed by COLD-PCR and sequencing in 63 (42 sporadic cases and 21 hereditary cases) tumor tissues collected from Tunisian patient with breast cancer. MCF7, and BT20 breast cancer cell lines harboring the PIK3CA hotspot mutations E545K and H1047R in exon 9 and exon 20 respectively, were used as controls in HRM experiments. RESULTS PIK3CA hotspot mutations were detected in 66.7% (28 out of 42) of sporadic BC cases, and in 14.3% (3 out of 21) of hereditary BC. The E545K and the H1048Y were the most prevalent mutations identified in patients with sporadic and hereditary BC, whereas the H1047R hotspot mutation was not found in our patients. Statistical analysis showed that PIK3CA mutation associated with an aggressive behavior in patients with sporadic BC, while it's correlated with age, tumor stage and tumor size in the group patients with hereditary breast cancer. CONCLUSIONS Our results showed a novel PIK3CA hotspot mutation in Tunisian breast cancer patients detected by HRM-COLD-PCR. Moreover, the absence of PIK3CA hotspot mutation associated with good prognosis.
Collapse
Affiliation(s)
- Saoussen Debouki-Joudi
- Department of Cancer Genetics, Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Wala Ben Kridis
- Department of Medical Oncology, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Fatma Trifa
- Department of Cancer Genetics, Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Wajdi Ayadi
- Department of Cancer Genetics, Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Abdelmajid Khabir
- Department of Anatomopathology, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Tahia Sellami-Boudawara
- Department of Anatomopathology, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Jamel Daoud
- Department of Radiotherapy, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Afef Khanfir
- Department of Medical Oncology, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Raja Mokdad-Gargouri
- Department of Cancer Genetics, Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
36
|
Shen S, Chen Y, Carpio A, Chang C, Iyengar NM. Incidence, risk factors, and management of alpelisib-associated hyperglycemia in metastatic breast cancer. Cancer 2023; 129:3854-3861. [PMID: 37743730 PMCID: PMC10863751 DOI: 10.1002/cncr.34928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE The combination of fulvestrant with alpelisib, a PI3K inhibitor, improves progression-free survival in metastatic hormone receptor-positive, PIK3CA-mutant breast cancer. This study describes the incidence, risk factors, and treatment of alpelisib-associated hyperglycemia. METHODS Patients with metastatic breast cancer who received alpelisib from 2013 to 2021 at Memorial Sloan Kettering Cancer Center were included in this retrospective study. Alpelisib prescription dates and patient/tumor characteristics were abstracted from medical records. Risk factors associated with hyperglycemia and alpelisib dose reduction/discontinuation were evaluated using Pearson's χ2 tests. RESULTS Among 247 patients, baseline median body mass index was 25.4 kg/m2 and median hemoglobin A1c (HbA1c) was 5.5%. A total of 152 patients (61.5%) developed any-grade hyperglycemia and 72 patients (29.2%) developed grade 3-4 hyperglycemia; median time to onset was 16 days. A total of 100 patients (40.5%) received alpelisib on a clinical trial; rates of hyperglycemia were significantly higher in patients treated as standard care versus on a clinical trial (any-grade hyperglycemia 80.3% vs. 34.0%, grade 3-4 hyperglycemia 40.2% vs. 13.0%, p < .001). Baseline HbA1c was significantly associated with development of hyperglycemia (p < .001) and alpelisib dose reduction/discontinuation (p = .015). Among those who developed hyperglycemia, 101 (40.9%) received treatment, most commonly with metformin. A total of 49 patients (19.8%) were referred to an endocrinologist, which was associated with SGLT2 inhibitor prescription (p = .007). CONCLUSIONS Rates of hyperglycemia among patients treated with alpelisib as standard care were significantly higher than patients treated on clinical trials. Elevated baseline HbA1c is associated with alpelisib-induced hyperglycemia and requiring dose modification. Optimization of glycemic status before alpelisib initiation should become routine practice.
Collapse
Affiliation(s)
- Sherry Shen
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yuan Chen
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrea Carpio
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Neil M. Iyengar
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical Center, New York, NY
| |
Collapse
|
37
|
Durham BH, Hershkovitz-Rokah O, Abdel-Wahab O, Yabe M, Chung YR, Itchaki G, Ben-Sasson M, Asher-Guz VA, Groshar D, Doe-Tetteh SA, Alano T, Solit DB, Shpilberg O, Diamond EL, Mazor RD. Mutant PIK3CA is a targetable driver alteration in histiocytic neoplasms. Blood Adv 2023; 7:7319-7328. [PMID: 37874915 PMCID: PMC10711187 DOI: 10.1182/bloodadvances.2022009349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm characterized by the accumulation of clonal mononuclear phagocyte system cells expressing CD1a and CD207. In the past decade, molecular profiling of LCH as well as other histiocytic neoplasms demonstrated that these diseases are driven by MAPK activating alterations, with somatic BRAFV600E mutations in >50% of patients with LCH, and clinical inhibition of MAPK signaling has demonstrated remarkable clinical efficacy. At the same time, activating alterations in kinase-encoding genes, such as PIK3CA, ALK, RET, and CSF1R, which can activate mitogenic pathways independent from the MAPK pathway, have been reported in a subset of histiocytic neoplasms with anecdotal evidence of successful targeted treatment of histiocytoses harboring driver alterations in RET, ALK, and CSF1R. However, evidence supporting the biological consequences of expression of PIK3CA mutations in hematopoietic cells has been lacking, and whether targeted inhibition of PI3K is clinically efficacious in histiocytic neoplasms is unknown. Here, we provide evidence that activating mutations in PIK3CA can drive histiocytic neoplasms in vivo using a conditional knockin mouse expressing mutant PIK3CAH1047R in monocyte/dendritic cell progenitors. In parallel, we demonstrate successful treatment of PIK3CA-mutated, multisystemic LCH using alpelisib, an inhibitor of the alpha catalytic subunit of PI3K. Alpelisib demonstrated a tolerable safety profile at a dose of 750 mg per week and clinical and metabolic complete remission in a patient with PIK3CA-mutated LCH. These data demonstrate PIK3CA as a targetable noncanonical driver of LCH and underscore the importance of mutational analysis-based personalized treatment in histiocytic neoplasms.
Collapse
Affiliation(s)
- Benjamin H. Durham
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
- Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mariko Yabe
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Young Rock Chung
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gilad Itchaki
- Department of Hematology, Rabin Medical Center, Petah Tikva, Israel
| | - Maayan Ben-Sasson
- The Institute for Pain Medicine, Rambam Medical Center, Haifa, Israel
- The Rappaport School of Medicine, Technion, Haifa, Israel
- Meuhedet Health Maintenance Organization, Zikhron Ya'akov, Israel
| | - Vered A. Asher-Guz
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
- Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel
| | - David Groshar
- Department of Imaging, Assuta Medical Center, Tel Aviv, Israel
| | - Seyram A. Doe-Tetteh
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tina Alano
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Nursing, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David B. Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel
- Clinic of Histiocytic Neoplasms, Institute of Hematology, Assuta Medical Center, Tel Aviv, Israel
- The Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Eli L. Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Roei D. Mazor
- Clinic of Histiocytic Neoplasms, Institute of Hematology, Assuta Medical Center, Tel Aviv, Israel
| |
Collapse
|
38
|
Noch EK, Palma LN, Yim I, Bullen N, Qiu Y, Ravichandran H, Kim J, Rendeiro A, Davis MB, Elemento O, Pisapia DJ, Zhai K, LeKaye HC, Koutcher JA, Wen PY, Ligon KL, Cantley LC. Insulin feedback is a targetable resistance mechanism of PI3K inhibition in glioblastoma. Neuro Oncol 2023; 25:2165-2176. [PMID: 37399061 PMCID: PMC10708938 DOI: 10.1093/neuonc/noad117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Insulin feedback is a critical mechanism responsible for the poor clinical efficacy of phosphatidylinositol 3-kinase (PI3K) inhibition in cancer, and hyperglycemia is an independent factor associated with poor prognosis in glioblastoma (GBM). We investigated combination anti-hyperglycemic therapy in a mouse model of GBM and evaluated the association of glycemic control in clinical trial data from patients with GBM. METHODS The effect of the anti-hyperglycemic regimens, metformin and the ketogenic diet, was evaluated in combination with PI3K inhibition in patient-derived GBM cells and in an orthotopic GBM mouse model. Insulin feedback and the immune microenvironment were retrospectively evaluated in blood and tumor tissue from a Phase 2 clinical trial of buparlisib in patients with recurrent GBM. RESULTS We found that PI3K inhibition induces hyperglycemia and hyperinsulinemia in mice and that combining metformin with PI3K inhibition improves the treatment efficacy in an orthotopic GBM xenograft model. Through examination of clinical trial data, we found that hyperglycemia was an independent factor associated with poor progression-free survival in patients with GBM. We also found that PI3K inhibition increased insulin receptor activation and T-cell and microglia abundance in tumor tissue from these patients. CONCLUSION Reducing insulin feedback improves the efficacy of PI3K inhibition in GBM in mice, and hyperglycemia worsens progression-free survival in patients with GBM treated with PI3K inhibition. These findings indicate that hyperglycemia is a critical resistance mechanism associated with PI3K inhibition in GBM and that anti-hyperglycemic therapy may enhance PI3K inhibitor efficacy in GBM patients.
Collapse
Affiliation(s)
- Evan K Noch
- Division of Neuro-oncology, Department of Neurology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Laura N Palma
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Isaiah Yim
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Nayah Bullen
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Yuqing Qiu
- Department of Population Health Sciences, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Hiranmayi Ravichandran
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Andre Rendeiro
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kevin Zhai
- Division of Neuro-oncology, Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Hongbiao Carl LeKaye
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason A Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick Y Wen
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-oncology, Boston, Massachusetts, USA
| | - Keith L Ligon
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Boston, Massachusetts, USA
| | - Lewis C Cantley
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
40
|
Hu Y, Zhang RQ, Liu SL, Wang ZG. In-situ quantification of lipids in live cells through imaging approaches. Biosens Bioelectron 2023; 240:115649. [PMID: 37678059 DOI: 10.1016/j.bios.2023.115649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Lipids are important molecules that are widely distributed within the cell, and they play a crucial role in several biological processes such as cell membrane formation, signaling, cell motility and division. Monitoring the spatiotemporal dynamics of cellular lipids in real-time and quantifying their concentrations in situ is crucial since the local concentration of lipids initiates various signaling pathways that regulate cellular processes. In this review, we first introduced the historical background of lipid quantification methods. We then delve into the current state of the art of in situ lipid quantification, including the establishment and utility of fluorescence imaging techniques based on sensors of lipid-binding domains labeled with organic dyes or fluorescent proteins, and Raman and magnetic resonance imaging (MRI) techniques that do not require lipid labeling. Next, we highlighted the biological applications of live-cell lipid quantification techniques in the study of in situ lipid distribution, lipid transformation, and lipid-mediated signaling pathways. Finally, we discussed the technical challenges and prospects for the development of lipid quantification in live cells, with the aim of promoting the development of in situ lipid quantification in live cells, which may have a profound impact on the biological and medical fields.
Collapse
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rui-Qiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
41
|
Raheem F, Karikalan SA, Batalini F, El Masry A, Mina L. Metastatic ER+ Breast Cancer: Mechanisms of Resistance and Future Therapeutic Approaches. Int J Mol Sci 2023; 24:16198. [PMID: 38003387 PMCID: PMC10671474 DOI: 10.3390/ijms242216198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Endocrine therapy is the main treatment for hormone receptor-positive (HR+) breast cancer. However, advanced tumors develop resistance to endocrine therapy, rendering it ineffective as the disease progresses. There are several molecular mechanisms of primary and secondary endocrine resistance. Resistance can develop due to either alteration of the estrogen receptor pathway (e.g., ESR1 mutations) or upstream growth factors signaling pathways (e.g., PI3K/Akt/mTOR pathway). Despite progress in the development of molecularly targeted anticancer therapies, the emergence of resistance remains a major limitation and an area of unmet need. In this article, we review the mechanisms of acquired endocrine resistance in HR+ advanced breast cancer and discuss current and future investigational therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Aya El Masry
- Phoenix Country Day School, Paradise Valley, AZ 85253, USA
| | - Lida Mina
- Mayo Clinic, Phoenix, AZ 85054, USA; (F.R.)
| |
Collapse
|
42
|
Wu HF, Liu H, Zhang ZW, Chen JM. CENPE and LDHA were potential prognostic biomarkers of chromophobe renal cell carcinoma. Eur J Med Res 2023; 28:481. [PMID: 37925501 PMCID: PMC10625266 DOI: 10.1186/s40001-023-01449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/15/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Most sarcomatoid differentiated renal cell carcinoma was differentiated from Chromophobe renal cell carcinoma (KICH) and related to a bad prognosis. Thus, finding biomarkers is important for the therapy of KICH. METHODS The UCSC was used for determining the expression of mRNA and miRNA and clinical data in KICH and normal samples. KEGG and GO were used for predicting potential function of differently expressed genes (DEGs). Optimal prognostic markers were determined by Lasso regression. Kaplan-Meier survival, ROC, and cox regression were used for assessing prognosis value. GSEA was used for predicting potential function of markers. The relations between markers and immune cell infiltration were determined by Pearson method. The upstream miRNA of markers was predicted in TargetScan and DIANA. RESULTS The 6162 upregulated and 13,903 downregulated DEGs were identified in KICH. Further CENPE and LDHA were screened out as optimal prognostic risk signatures. CENPE was highly expressed while LDHA was lowly expressed in KICH samples, and the high expressions of 2 genes contributed to bad prognosis. The functions of CENPE and LDHA were mainly enriched in proliferation related pathways such as cell cycle and DNA replication. In addition, the correlation of 2 genes with immune infiltrates in KICH was also observed. Finally, we found that has-miR-577 was the common upstream of 2 genes and the binding sites can be predicted. CONCLUSION CENPE and LDHA were identified as the important prognostic biomarkers in KICH, and they might be involved in the proliferation of cancer cell.
Collapse
Affiliation(s)
- Hui-Feng Wu
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Hao Liu
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China.
| | - Zhe-Wei Zhang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Ji-Min Chen
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
43
|
Schnack TH, Oliveira DVNP, Christiansen AP, Høgdall C, Høgdall E. Prognostic impact of molecular profiles and molecular signatures in clear cell ovarian cancer. Cancer Genet 2023; 278-279:9-16. [PMID: 37567101 DOI: 10.1016/j.cancergen.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
OBJECTIVE Ovarian Clear cell carcinomas (OCCC) are characterized by low response to chemotherapy and a poor prognosis in advanced stages. Several studies have demonstrated that OCCC are heterogenous entities. We have earlier identified four molecular profiles based on the mutational status of ARID1A and PIK3CA. In this study we aimed to examine the association between molecular profiles, Tumor Mutational Burden (TMB), and molecular signatures with the clinical outcome in OCCC METHODS: We identified 55 OCCC cases with corresponding data and biological tissue samples in the Danish Gynecological Cancer Database during 2005-2016. Mutational profiling and TMB were performed using the Oncomine Tumor Mutational Load Assay. Chi-square and Cox regression analyses were used. P-values < 0.05 were considered statistically significant. RESULTS Mutations in the PIK3CA gene (p=0.04) and low TMB (p=0.05) were associated with disease progression. In multivariate analyses adjusted for stage, patients with tumor mutations in the ARID1A and/or PIK3CA genes had a significantly impaired Progression Free Survival (PFS) and Overall Survival (OS) compared to patients who were wildtype ARID1A and PIK3CA (undetermined subgroup) (HR= 5.42 and HR= 2.77, respectively). High TMB status was associated with an improved PFS (HR= 0.36) and OS (HR= 0.46). A trend towards an improved PFS in patients with APOBEC enrichment was observed (HR 0.45). CONCLUSION TMB-High was associated with decreased risk of progression and with an improved PFS and OS. Furthermore, OCCC with mutations in either ARID1A and/or PIK3CA genes had a significantly impaired prognosis compared to the undetermined subgroup in stage adjusted analyses.
Collapse
Affiliation(s)
- Tine Henrichsen Schnack
- Department of Gynecology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 København Ø, Denmark; Department of Gynecology and Obstetrics, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense.
| | | | - Anne Pernille Christiansen
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 København Ø, Denmark
| | - Claus Høgdall
- Department of Gynecology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 København Ø, Denmark
| | - Estrid Høgdall
- Department of Pathology, unit of Molecular Medicine, Herlev University Hospital
| |
Collapse
|
44
|
Soni UK, Jenny L, Hegde RS. IGF-1R targeting in cancer - does sub-cellular localization matter? J Exp Clin Cancer Res 2023; 42:273. [PMID: 37858153 PMCID: PMC10588251 DOI: 10.1186/s13046-023-02850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The insulin-like growth factor receptor (IGF-1R) was among the most intensively pursued kinase targets in oncology. However, even after a slew of small-molecule and antibody therapeutics reached clinical trials for a range of solid tumors, the initial promise remains unfulfilled. Mechanisms of resistance to, and toxicities resulting from, IGF-1R-targeted drugs are well-catalogued, and there is general appreciation of the fact that a lack of biomarker-based patient stratification was a limitation of previous clinical trials. But no next-generation therapeutic strategies have yet successfully exploited this understanding in the clinic.Currently there is emerging interest in re-visiting IGF-1R targeted therapeutics in combination-treatment protocols with predictive biomarker-driven patient-stratification. One such biomarker that emerged from early clinical trials is the sub-cellular localization of IGF-1R. After providing some background on IGF-1R, its drugging history, and the trials that led to the termination of drug development for this target, we look more deeply into the correlation between sub-cellular localization of IGF-1R and susceptibility to various classes of IGF-1R - targeted agents.
Collapse
Affiliation(s)
- Upendra K Soni
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liam Jenny
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
45
|
Aldred GG, Rooney TPC, Willems HMG, Boffey HK, Green C, Winpenny D, Skidmore J, Clarke JH, Andrews SP. The rational design of ARUK2007145, a dual inhibitor of the α and γ isoforms of the lipid kinase phosphatidylinositol 5-phosphate 4-kinase (PI5P4K). RSC Med Chem 2023; 14:2035-2047. [PMID: 37859710 PMCID: PMC10583824 DOI: 10.1039/d3md00355h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023] Open
Abstract
The phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are therapeutic targets for diseases such as cancer, neurodegeneration and immunological disorders as they are key components in regulating cell signalling pathways. In an effort to make probe molecules available for further exploring these targets, we have previously reported PI5P4Kα-selective and PI5P4Kγ-selective ligands. Herein we report the rational design of PI5P4Kα/γ dual inhibitors, using knowledge gained during the development of selective inhibitors for these proteins. ARUK2007145 (39) is disclosed as a potent, cell-active probe molecule with ADMET properties amenable to conducting experiments in cells.
Collapse
Affiliation(s)
- Gregory G Aldred
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Timothy P C Rooney
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Henriette M G Willems
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Helen K Boffey
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Christopher Green
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - David Winpenny
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Jonathan H Clarke
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Stephen P Andrews
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| |
Collapse
|
46
|
Ciarambino T, Crispino P, Guarisco G, Giordano M. Gender Differences in Insulin Resistance: New Knowledge and Perspectives. Curr Issues Mol Biol 2023; 45:7845-7861. [PMID: 37886939 PMCID: PMC10605445 DOI: 10.3390/cimb45100496] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023] Open
Abstract
Insulin resistance is the main mechanism in a whole series of pathological conditions, which are not only of metabolic interest but also of a systemic type. This phenomenon means that the body's cells become less sensitive to the hormone insulin, leading to higher levels of insulin in the blood. Insulin resistance is a phenomenon that can be found in both men and women and in particular, in the latter, it is found mainly after menopause. Premenopause, hormonal fluctuations during the menstrual cycle, and the presence of estrogen can affect insulin sensitivity. Androgens, such as testosterone, are typically higher in men and can contribute to insulin resistance. In both sexes, different human body types affect the distribution and location of body fat, also influencing the development of diabetes and cardiovascular disease. Insulin resistance is also associated with some neurological and neurogenerative disorders, polycystic ovary syndrome, atherosclerosis, and some of the main neoplastic pathologies. A healthy lifestyle, including regular physical activity, a balanced diet, and self-maintenance, can help to prevent the onset of insulin resistance, regardless of gender, although the different habits between men and women greatly affect the implementation of preventative guidelines that help in fighting the manifestations of this metabolic disorder. This review may help to shed light on gender differences in metabolic diseases by placing a necessary focus on personalized medical management and by inspiring differentiated therapeutic approaches.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, 81100 Caserta, Italy
| | - Pietro Crispino
- Internal Medicine Department, Hospital of Latina, 04100 Latina, Italy;
| | - Gloria Guarisco
- Diabetology, University Sapienza of Rome, Hospital of Latina, 04100 Latina, Italy;
| | - Mauro Giordano
- Internal Medicine Department, University of Campania, L. Vanvitelli, 81100 Naples, Italy;
| |
Collapse
|
47
|
Chung C, Yeung VTY, Wong KCW. Prognostic and predictive biomarkers with therapeutic targets in breast cancer: A 2022 update on current developments, evidence, and recommendations. J Oncol Pharm Pract 2023; 29:1343-1360. [PMID: 35971313 DOI: 10.1177/10781552221119797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To evaluate and validate the recent and emerging data for prognostic and predictive biomarkers with therapeutic targets in breast cancer. DATA SOURCES A literature search from January 2015 to March 2022 was performed using the key terms breast cancer, clinical practice guidelines, gene mutations, genomic assay, immune cancer therapy, predictive and/or prognostic biomarkers, and targeted therapies. STUDY SELECTION AND DATA EXTRACTION Relevant clinical trials, meta-analyses, seminal articles, and published evidence- and consensus-based clinical practice guidelines in the English language were identified, reviewed and evaluated. DATA SYNTHESIS Breast cancer is a biologically heterogeneous disease, leading to wide variability in treatment responses and survival outcomes. Biomarkers for breast cancer are evolving from traditional biomarkers in immunohistochemistry (IHC) such as estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor type 2 (HER2) to genetic biomarkers with therapeutic implications (e.g. breast cancer susceptibility gene 1/2 [BRCA1/2], estrogen receptor α [ESR1] gene mutation, HER2 gene mutation, microsatellite instability [MSI], phosphatidylinositol 3-kinase catalytic subunit 3Cα [PIK3CA] gene mutation, neurotrophic tyrosine receptor kinase [NTRK] gene mutation). In addition, current data are most robust for biomarkers in immunotherapy (e.g. programmed cell death receptor ligand-1 [PD-L1], microsatellite instability-high [MSI-H] or deficient mismatch repair [dMMR]). Oncotype DX assay remains the best validated gene expression assay that is both predictive and prognostic whereas MammaPrint is prognostic for genomic risk. CONCLUSIONS Biomarker-driven therapies have the potential to confer greater therapeutic advantages than standard-of-care therapies. The purported survival benefits associated with biomarker-driven therapies should be weighed against their potential harms.
Collapse
Affiliation(s)
- Clement Chung
- Department of Pharmacy, Houston Methodist West Hospital, Houston, TX, USA
| | - Vanessa T Y Yeung
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kenneth C W Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
48
|
Chiu CC, Cheng KC, Lin YH, He CX, Bow YD, Li CY, Wu CY, Wang HMD, Sheu SJ. Prolonged Exposure to High Glucose Induces Premature Senescence Through Oxidative Stress and Autophagy in Retinal Pigment Epithelial Cells. Arch Immunol Ther Exp (Warsz) 2023; 71:21. [PMID: 37638991 DOI: 10.1007/s00005-023-00686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/29/2023]
Abstract
Chronic hyperglycemia involves persistent high-glucose exposure and correlates with retinal degeneration. It causes various diseases, including diabetic retinopathy (DR), a major cause of adult vision loss. Most in vitro studies have investigated the damaging short-term effects of high glucose exposure on retinal pigment epithelial (RPE) cells. DR is also a severe complication of diabetes. In this study, we established a model with prolonged high-glucose exposure (15 and 75 mM exogenous glucose for two months) to mimic RPE tissue pathophysiology in patients with hyperglycemia. Prolonged high-glucose exposure attenuated glucose uptake and clonogenicity in ARPE-19 cells. It also significantly increased reactive oxygen species levels and decreased antioxidant protein (superoxide dismutase 2) levels in RPE cells, possibly causing oxidative stress and DNA damage and impairing proliferation. Western blotting showed that autophagic stress, endoplasmic reticulum stress, and genotoxic stress were induced by prolonged high-glucose exposure in RPE cells. Despite a moderate apoptotic cell population detected using the Annexin V-staining assay, the increases in the senescence-associated proteins p53 and p21 and SA-β-gal-positive cells suggest that prolonged high-glucose exposure dominantly sensitized RPE cells to premature senescence. Comprehensive next-generation sequencing suggested that upregulation of oxidative stress and DNA damage-associated pathways contributed to stress-induced premature senescence of ARPE-19 cells. Our findings elucidate the pathophysiology of hyperglycemia-associated retinal diseases and should benefit the future development of preventive drugs. Prolonged high-glucose exposure downregulates glucose uptake and oxidative stress by increasing reactive oxygen species (ROS) production through regulation of superoxide dismutase 2 (SOD2) expression. Autophagic stress, ER stress, and DNA damage stress (genotoxic stress) are also induced by prolonged high-glucose exposure in RPE cells. Consequently, multiple stresses induce the upregulation of the senescence-associated proteins p53 and p21. Although both apoptosis and premature senescence contribute to high glucose exposure-induced anti-proliferation of RPE cells, the present work shows that premature senescence rather than apoptosis is the dominant cause of RPE degeneration, eventually leading to the pathogenesis of DR.
Collapse
Affiliation(s)
- Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, 807, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Xi He
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yung-Ding Bow
- Ph.D. Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
49
|
Watanabe K, Sato E, Mishima E, Moriya S, Sakabe T, Sato A, Fujiwara M, Fujimaru T, Ito Y, Taki F, Nagahama M, Tanaka K, Kazama JJ, Nakayama M. Changes in Metabolomic Profiles Induced by Switching from an Erythropoiesis-Stimulating Agent to a Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor in Hemodialysis Patients: A Pilot Study. Int J Mol Sci 2023; 24:12752. [PMID: 37628932 PMCID: PMC10454178 DOI: 10.3390/ijms241612752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are a new class of medications for managing renal anemia in patients with chronic kidney disease (CKD). In addition to their erythropoietic activity, HIF-PHIs exhibit multifaceted effects on iron and glucose metabolism, mitochondrial metabolism, and angiogenesis through the regulation of a wide range of HIF-responsive gene expressions. However, the systemic biological effects of HIF-PHIs in CKD patients have not been fully explored. In this prospective, single-center study, we comprehensively investigated changes in plasma metabolomic profiles following the switch from an erythropoiesis-stimulating agent (ESA) to an HIF-PHI, daprodustat, in 10 maintenance hemodialysis patients. Plasma metabolites were measured before and three months after the switch from an ESA to an HIF-PHI. Among 106 individual markers detected in plasma, significant changes were found in four compounds (erythrulose, n-butyrylglycine, threonine, and leucine), and notable but non-significant changes were found in another five compounds (inositol, phosphoric acid, lyxose, arabinose, and hydroxylamine). Pathway analysis indicated decreased levels of plasma metabolites, particularly those involved in phosphatidylinositol signaling, ascorbate and aldarate metabolism, and inositol phosphate metabolism. Our results provide detailed insights into the systemic biological effects of HIF-PHIs in hemodialysis patients and are expected to contribute to an evaluation of the potential side effects that may result from long-term use of this class of drugs.
Collapse
Affiliation(s)
- Kimio Watanabe
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Eikan Mishima
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Shinobu Moriya
- Clinical Engineering Center, St Luke’s International Hospital, Tokyo 104-8560, Japan;
| | - Takuma Sakabe
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
| | - Atsuya Sato
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
| | - Momoko Fujiwara
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
| | - Takuya Fujimaru
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| | - Yugo Ito
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| | - Fumika Taki
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| | - Masahiko Nagahama
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| | - Kenichi Tanaka
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
| | - Junichiro James Kazama
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
| | - Masaaki Nakayama
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| |
Collapse
|
50
|
Meng J, Ruan X, Wei F, Xue Q. High expression of ENPP2 is an independent predictor of poor prognosis in liver cancer. Medicine (Baltimore) 2023; 102:e34480. [PMID: 37543832 PMCID: PMC10402965 DOI: 10.1097/md.0000000000034480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2023] Open
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) has been identified as a potential biomarker in lung and prostate cancers; however, its expression and clinical relevance in hepatocellular carcinoma (HCC) remain incompletely understood. This study comprehensively assessed ENPP2 expression in pan-cancer using bioinformatics. We analyzed the expression of ENPP2 mRNA in primary liver cancer and adjacent tissues of patients with HCC using data from the TCGA database. Cox regression and Kaplan-Meier methods were used to identify clinicopathological factors associated with survival, and the diagnostic value of ENPP2 expression was evaluated using receiver operating characteristic curve analysis. We also validated our findings by performing real-time PCR on clinical liver cancer samples. Furthermore, we conducted gene set enrichment analysis using the Cancer Genome Atlas dataset to gain additional insights into the biological significance of ENPP2 in HCC. High ENPP2 expression in HCC patients is associated with gender and clinical stage, and is a significant prognostic factor for worse outcomes. ENPP2 expression is an independent risk factor for progression-free and disease-specific survival in both cohorts, suggesting its potential as an HCC biomarker. ENPP2's diagnostic value in HCC patients was confirmed by the area under the receiver operating characteristic curve, which was 0.806. real-time PCR analysis validated the higher expression of ENPP2 in clinical liver cancer tissues. Gene set enrichment analysis identified pathways enriched in HCC patients with high ENPP2 expression, including those related to the cell cycle, MTOR and T cell receptor signaling, and phosphatidylinositol signaling systems. We have demonstrated that ENPP2 is highly expressed in HCC and is a potential independent molecular marker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Jiyu Meng
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | | | | | | |
Collapse
|