1
|
Hoste L, Meertens B, Ogunjimi B, Sabato V, Guerti K, van der Hilst J, Bogie J, Joos R, Claes K, Debacker V, Janssen F, Tavernier SJ, Jacques P, Callens S, Dehoorne J, Haerynck F. Identification of a 5-Plex Cytokine Signature that Differentiates Patients with Multiple Systemic Inflammatory Diseases. Inflammation 2024:10.1007/s10753-024-02183-3. [PMID: 39528768 DOI: 10.1007/s10753-024-02183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Patients with non-infectious systemic inflammation may suffer from one of many diseases, including hyperinflammation (HI), autoinflammatory disorders (AID), and systemic autoimmune disease (AI). Despite their clinical overlap, the pathophysiology and patient management differ between these disorders. We aimed to investigate blood biomarkers able to discriminate between patient groups. We included 44 patients with active clinical and/or genetic systemic inflammatory disease (9 HI, 27 AID, 8 systemic AI) and 16 healthy controls. We quantified 55 serum proteins and combined multiple machine learning algorithms to identify five proteins (CCL26, CXCL10, ICAM-1, IL-27, and SAA) that maximally separated patient groups. High ICAM-1 was associated with HI. AID was characterized by an increase in SAA and decrease in CXCL10 levels. A trend for higher CXCL10 and statistically lower SAA was observed in patients with systemic AI. Principal component analysis and unsupervised hierarchical clustering confirmed separation of disease groups. Logistic regression modelling revealed a high statistical significance for HI (P = 0.001), AID, and systemic AI (P < 0.0001). Predictive accuracy was excellent for systemic AI (AUC 0.94) and AID (0.91) and good for HI (0.81). Further research is needed to validate findings in a larger prospective cohort. Results will contribute to a better understanding of the pathophysiology of systemic inflammatory disorders and can improve diagnosis and patient management.
Collapse
Affiliation(s)
- Levi Hoste
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium
| | - Bram Meertens
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium
| | - Benson Ogunjimi
- Rheumatology Department, Antwerp Hospital Network, Antwerp, Belgium
- Division of Pediatric Rheumatology, Antwerp University Hospital, Edegem, Belgium
- Antwerp Center for Pediatric Rheumatology and Autoinflammatory Diseases, Antwerp, Belgium
- Division of Pediatric Rheumatology, Brussels University Hospital, Jette, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO) ,Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), University of Antwerp, Antwerp, Belgium
| | - Vito Sabato
- Department of Immunology, Allergology, and Rheumatology, Antwerp University Hospital, Edegem, Belgium
| | - Khadija Guerti
- Department of Clinical Chemistry, Antwerp University Hospital, Edegem, Belgium
| | - Jeroen van der Hilst
- Department of Infectious Diseases and Immune Pathology, Jessa General Hospital, Hasselt, Belgium
- Limburg Clinical Research Center, Hasselt University, Hasselt, Belgium
| | - Jeroen Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Rik Joos
- Division of Pediatric Rheumatology, Antwerp University Hospital, Edegem, Belgium
- Department of Immunology, Allergology, and Rheumatology, Antwerp University Hospital, Edegem, Belgium
- Department of Pediatric Rheumatology, Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN-RITA) Center, Ghent, Belgium
| | - Karlien Claes
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium
| | - Veronique Debacker
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Fleur Janssen
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Simon J Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Peggy Jacques
- Department of Rheumatology, University Hospital Ghent, Ghent, Belgium
| | - Steven Callens
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Joke Dehoorne
- Department of Pediatric Rheumatology, Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN-RITA) Center, Ghent, Belgium
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium.
| |
Collapse
|
2
|
Kwon OC, Lee HS, Yang J, Park MC. Cardiovascular risk according to biological agent exposure in patients with ankylosing spondylitis: a nationwide population-based study. Clin Rheumatol 2024:10.1007/s10067-024-07225-7. [PMID: 39509079 DOI: 10.1007/s10067-024-07225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/29/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES Patients with ankylosing spondylitis (AS) have a higher risk of cardiovascular events than controls. Although biological disease-modifying anti-rheumatic drugs (bDMARDs) are efficacious in treating AS, their effect on cardiovascular risk remains unclear. This study evaluated the effect of tumour necrosis factor inhibitors (TNFis) and interleukin-17 inhibitors (IL-17is) on cardiovascular risk in patients with AS. METHODS Data of 43,502 patients diagnosed with AS from 2010 onwards and without prior history of cardiovascular events were extracted from the Korean nationwide database. Cardiovascular events were defined as incident myocardial infarctions or strokes. Patients were followed-up through 2021. The risk of cardiovascular events was compared between TNFis exposure (vs. bDMARDs non-exposure), IL-17is exposure (vs. bDMARDs non-exposure), and IL-17is exposure (vs. TNFis exposure), using time-dependent Cox models. RESULTS The incidence rates of cardiovascular events during bDMARDs non-exposure, TNFis exposure, and IL-17is exposure were 18.66, 8.92, and 12.87 per 10,000 person-years, respectively. TNFis exposure (vs. bDMARDs non-exposure) was significantly associated with a lower risk of cardiovascular events (adjusted hazard ratio [aHR] = 0.697, 95% confidence interval [CI] = 0.499-0.973), whereas IL-17is exposure (vs. bDMARDs non-exposure) was not (aHR = 0.962, 95% CI = 0.134-6.920). The risk of cardiovascular events did not differ between IL-17is and TNFis exposures (aHR = 1.381, 95% CI = 0.189-10.087). CONCLUSIONS TNFis exposure (vs. bDMARDs non-exposure) was associated with approximately 30% lower risk of cardiovascular events in patients with AS. IL-17is exposure had no significant association with the risk of cardiovascular events compared with bDMARDs non-exposure or TNFis exposure. Key Points • TNFis exposure was associated with a 30% lower cardiovascular risk in patients with AS. • IL-17is exposure had no significant association with cardiovascular risk in patients with AS. • TNFis could be the preferred bDMARD with regard to cardiovascular risk in patients with AS.
Collapse
Affiliation(s)
- Oh Chan Kwon
- Division of Rheumatology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-Gu, Seoul, 06273, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Juyeon Yang
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Chan Park
- Division of Rheumatology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-Gu, Seoul, 06273, South Korea.
| |
Collapse
|
3
|
Solitano V, Yuan Y, Singh S, Ma C, Nardone OM, Fiorino G, Acosta Felquer ML, Barra L, D'Agostino MA, Pope J, Peyrin-Biroulet L, Danese S, Jairath V. Efficacy and safety of Advanced Combination Treatment in immune-mediated inflammatory disease: A systematic review and meta-analysis of randomized controlled trials. J Autoimmun 2024; 149:103331. [PMID: 39509741 DOI: 10.1016/j.jaut.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES Advanced combination treatment (ACT), defined as a combination of at least 2 biologic agents, a biologic agent and an oral small molecule, 2 oral small molecules drug with different mechanisms of action is a proposed strategy to improve outcomes in patients with immune-mediated inflammatory disease (IMID). We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing ACT with monotherapy in patients with select IMIDs. METHODS Through a systematic literature search, we identified 10 RCTs (n = 1154) comparing ACT with single agent therapy (monotherapy). The primary outcome was induction of clinical remission. Secondary outcomes were adverse events, serious adverse events, infections, and serious infections. We performed random-effects meta-analysis and used GRADE to appraise certainty of evidence. RESULTS Eight out of 10 trials investigated an anti-TNF-α drug (e.g., etanercept, infliximab, golimumab, certolizumab) combined with another biologic (e.g anti-IL-23, anti-integrin, anti-IL-1) or an oral small molecule. There was no significant difference in the likelihood of achieving clinical remission with ACT vs. monotherapy in patients with rheumatoid arthritis (n = 7 RCTs) (RR, 1.75 [95 % CI 0.60-5.13]; moderate heterogeneity (I2 = 33 %)] and systemic lupus erythematosus (n = 1) (RR, 1.20 [0.53-2.72]) (GRADE; low certainty evidence). Patients with rheumatoid arthritis in the ACT arm were more likely to experience adverse events (RR, 1.07 [1.01-1.12]) compared to monotherapy. ACT led to higher rates of induction of clinical remission in patients with IBD (n = 2 RCTs) (RR, 1.68 [1.15-2.46]) with minimal heterogeneity (I2 = 15 %) (GRADE; low certainty evidence), and no differences in the likelihood of adverse events (RR 0.92 [0.80-1.05]). There were no differences in the risk of infections or serious infections in patients treated with ACT or monotherapy with rheumatological disease or IBD. CONCLUSIONS ACT did not offer clinical benefit in patients with rheumatological IMIDs and resulted in higher rate adverse events in rheumatoid arthritis. ACT may offer clinical benefit without a clear safety signal in patients with IBD, but further trials are warranted. The variability in ACT regimens across studies limits the generalizability of these findings.
Collapse
Affiliation(s)
- Virginia Solitano
- Department of Medicine, Division of Gastroenterology, Western University, London, Ontario, Canada; Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele and University Vita-Salute San Raffaele, Milan, Italy
| | - Yuhong Yuan
- Department of Medicine, Division of Gastroenterology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London Health Science Center, London, Ontario, Canada
| | - Siddharth Singh
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Ma
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Olga Maria Nardone
- Gastroenterology, Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Gionata Fiorino
- Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele and University Vita-Salute San Raffaele, Milan, Italy; IBD Unit, Department of Gastroenterology & Digestive Endoscopy, San Camillo-Forlanini Hospital, 00152, Rome, Italy
| | - Maria Laura Acosta Felquer
- Rheumatology Unit, Internal Medical Services, Hospital Italiano de Buenos Aires, Argentina and Instituto Universitario, Peron 4190 (C1199ABB), CABA, Argentina
| | - Lillian Barra
- Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada; Department of Medicine, Division of Rheumatology, Western University, London, ON, Canada
| | - Maria-Antonietta D'Agostino
- Department of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Catholic University of Sacred Heart, Rome, Italy
| | - Janet Pope
- Department of Medicine, Division of Rheumatology, Western University, London, ON, Canada
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500, Vandœuvre-lès-Nancy, France; INFINY Institute, Nancy University Hospital, F-54500, Vandœuvre-lès-Nancy, France; Groupe Hospitalier Privé Ambroise Paré - Hartmann Paris IBD Center, 92200, Neuilly sur Seine, France
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele and University Vita-Salute San Raffaele, Milan, Italy
| | - Vipul Jairath
- Department of Medicine, Division of Gastroenterology, Western University, London, Ontario, Canada; Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada.
| |
Collapse
|
4
|
Spencer EA, Bergstein S, Dolinger M, Pittman N, Kellar A, Dunkin D, Dubinsky MC. Single-center Experience With Upadacitinib for Adolescents With Refractory Inflammatory Bowel Disease. Inflamm Bowel Dis 2024; 30:2057-2063. [PMID: 38134405 DOI: 10.1093/ibd/izad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Upadacitinib (UPA) is a novel selective JAK inhibitor approved for adults with ulcerative colitis (UC) and with positive phase 3 data for Crohn's disease (CD). Pediatric off-label use is common due to delays in pediatric approvals; real-world data on UPA are needed to understand the safety and effectiveness in pediatric IBD. METHODS This is a single-center retrospective case series study of adolescents (12-17 years) with inflammatory bowel disease IBD on UPA. The primary outcome was postinduction steroid-free clinical remission (SF-CR) defined as Pediatric UC Activity Index (PUCAI) or Pediatric CD Activity Index (PCDAI) ≤10. Secondary outcomes include postinduction clinical response (decrease ≥12.5 in PUCAI/PCDAI), postinduction C-reactive protein (CRP) normalization, 6-month SF-CR, and intestinal ultrasound response and remission. Adverse events were recorded through last follow-up. RESULTS Twenty patients (9 CD, 10 UC, 1 IBD-U; 55% female; median age 15 years, 90% ≥2 biologics) were treated with UPA for ≥12 weeks (median 51 [43-63] weeks). Upadacitinib was used as monotherapy in 55% and as combination with ustekinumab and vedolizumab in 35% and 10%, respectively. Week 12 SF-CR was achieved in 75% (15/20) and 80% (16/20) with CRP normalization. About 3/4 (14/19) achieved SF-CR at 6 months. Adverse event occurred in 2 patients (10%): Cytomegalovirus colitis requiring hospitalization and hyperlipidemia requiring no treatment. In the 75% with ultrasound monitoring, response and remission were achieved in 77% and 60%, respectively. CONCLUSION While awaiting pediatric registration trials, our data suggest that UPA is effective in inducing and maintaining SF-CR in adolescents with highly-refractory IBD with an acceptable safety profile.
Collapse
Affiliation(s)
- Elizabeth A Spencer
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics Mount Sinai, Icahn School of Medicine, 17 E. 102nd Street, Fifth Floor, New York, NY, 10029, USA
| | - Suzannah Bergstein
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics Mount Sinai, Icahn School of Medicine, 17 E. 102nd Street, Fifth Floor, New York, NY, 10029, USA
| | - Michael Dolinger
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics Mount Sinai, Icahn School of Medicine, 17 E. 102nd Street, Fifth Floor, New York, NY, 10029, USA
| | - Nanci Pittman
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics Mount Sinai, Icahn School of Medicine, 17 E. 102nd Street, Fifth Floor, New York, NY, 10029, USA
| | - Amelia Kellar
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics Mount Sinai, Icahn School of Medicine, 17 E. 102nd Street, Fifth Floor, New York, NY, 10029, USA
| | - David Dunkin
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics Mount Sinai, Icahn School of Medicine, 17 E. 102nd Street, Fifth Floor, New York, NY, 10029, USA
| | - Marla C Dubinsky
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics Mount Sinai, Icahn School of Medicine, 17 E. 102nd Street, Fifth Floor, New York, NY, 10029, USA
| |
Collapse
|
5
|
Yuan L, Li Y, Liu D, Zhang H, Yang J, Shen H, Xia L, Yao L, Lu J. Interleukin-35 protein inhibits osteoclastogenesis and attenuates collagen-induced arthritis in mice. J Cell Physiol 2024; 239:e31231. [PMID: 38451477 DOI: 10.1002/jcp.31231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease. Its pathological features include synovial inflammation, bone erosion, and joint structural damage. Our previous studies have shown that interleukin (IL)-35 is involved in the pathogenesis of bone loss in RA patients. In this study, we are further evaluating the efficacy of IL-35 on collagen-induced arthritis (CIA) in the mouse model. Male DBA/1J mice (n = 10) were initially immunized, 2 μg/mouse IL-35 was injected intraperitoneally every week for 3 weeks after the establishment of the CIA model. Clinical arthritis, histopathological analysis, and three-dimensional micro‑computed tomography (3D micro‑CT) were determined after the mice were anesthetized on the 42th day. In vitro, RANKL/M-CSF induced mouse preosteoclasts (RAW264.7 cells line) was subjected to antiarthritis mechanism study in the presence of IL-35. The results of clinical arthritis, histopathological analysis, and 3D micro‑CT, the expression of RANK/RANKL/OPG axis, inflammatory cytokines, and osteoclastogenesis-related makers demonstrated decreasing severity of synovitis and bone destruction in the ankle joints after IL-35 treatment. Furthermore, IL-35 attenuated inflammatory cytokine production and the expression of osteoclastogenesis-related makers in a mouse preosteoclasts cell line RAW264.7. The osteoclastogenesis-related makers were significantly reduced in IL-35 treated RAW264.7 cells line after blockage with the JAK/STAT1 signaling pathway. These results demonstrated that IL-35 protein could inhibits osteoclastogenesis and attenuates CIA in mice. We concluded that IL-35 can exhibit anti-osteoclastogenesis effects by reducing the expression of inflammatory cytokines and osteoclastogenesis-related makers, thus alleviating bone destruction in the ankle joint and could be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Health Management, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuxuan Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Liu
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, The Fifth People Hospital, Shenyang, China
| | - Jie Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Liping Xia
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lutian Yao
- Department of Orthopedic, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Lu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Lauton PM, Pereira FS, Oliveira LB, Brauer AMNW, de Araújo Costa Beisl Noblat L, Santana GO, Santos PM. Adherence to infliximab treatment in patients with immune-mediated inflammatory diseases from a referral center in Brazil: a cohort study. BMC Gastroenterol 2024; 24:384. [PMID: 39472788 PMCID: PMC11523816 DOI: 10.1186/s12876-024-03455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Infliximab therapy is effective in controlling symptoms and attaining clinical remission of immune-mediated inflammatory diseases. However, treatment adherence is essential to achieve the therapeutic objective. This study aimed to determine the rate of adherence to infliximab treatment in patients treated at a referral center at a university hospital. METHOD This ambispective cohort study included patients treated at the Professor Edgard Santos University Hospital (HUPES) referral center of our university hospital between March 2022 and February 2023. Sociodemographic, clinical, and pharmacotherapeutic data were collected from 101 patients through interviews and medical record reviews using a structured form. The adherence rate was defined as the proportion of days covered in a year. Patients who achieved an adherence rate > 80% were considered adherent. RESULTS The treatment adherence rate was 91.04%. Individuals with inflammatory bowel diseases had a 39.1% higher risk of non-adherence to treatment compared with other patients in our sample (p < 0,05). Most patients achieved remission or control of the underlying disease activity and had good functional capacities. The main reason for absence on the scheduled date was difficulty traveling to the referral center. CONCLUSIONS Despite the reported difficulties, treatment adherence was observed to be high. As the study was conducted in a reference unit with multidisciplinary care and continuous monitoring for treatment effectiveness, safety, and adherence, welcoming and good communication between professionals and patients may have contributed to the high adherence rate.
Collapse
Affiliation(s)
- Priscila Moreira Lauton
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brasil
- Programa de Pós-Graduação em Assistência Farmacêutica em Rede e Associação de Instituições de Ensino Superior, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brasil
| | | | - Livia Brito Oliveira
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brasil
| | | | - Lucia de Araújo Costa Beisl Noblat
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brasil
- Programa de Pós-Graduação em Assistência Farmacêutica em Rede e Associação de Instituições de Ensino Superior, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brasil
| | | | - Pablo Moura Santos
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brasil.
- Programa de Pós-Graduação em Assistência Farmacêutica em Rede e Associação de Instituições de Ensino Superior, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brasil.
| |
Collapse
|
7
|
Vassilopoulos A, Thomas K, Vassilopoulos D. Infections in psoriatic arthritis: association with treatment. Ther Adv Musculoskelet Dis 2024; 16:1759720X241289201. [PMID: 39429971 PMCID: PMC11487508 DOI: 10.1177/1759720x241289201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/30/2024] [Indexed: 10/22/2024] Open
Abstract
Serious infections (SIs) remain one of the most significant comorbidities in patients with inflammatory arthritides including psoriatic arthritis (PsA). Apart from methotrexate (MTX) and biologics such as tumor necrosis factor (TNFi), interleukin-12/23 (IL-12/23i), and IL-17 inhibitors (IL-17i), traditionally used for the treatment of PsA, recently biologics such as IL-23i and targeted synthetic agents like JAK inhibitors (JAKi) have been introduced in the daily clinical practice for the treatment of this disease. Although overall the incidence of SIs in patients with PsA treated with these agents is lower compared to patients with rheumatoid arthritis, still a number of unresolved issues regarding their safety remain. Current evidence is reassuring regarding the safety profile of conventional synthetic disease-modifying anti-rheumatic drugs, such as MTX. The increased risk for reactivation of latent infections, such as tuberculosis and hepatitis B virus (HBV) with the use of TNFi, is well described; nevertheless, it is significantly ameliorated with the appropriate screening and prophylaxis. Regarding IL-12/23i and IL-17i, there are no significant safety signals, except from an increased incidence of usually mild Candida infections with the latter class. Newer biologics such as IL-23i and targeted synthetic agents like JAKi have been recently introduced in the daily clinical practice for the treatment of this disease. While IL-23i has not been shown to increase the risk for common or opportunistic infections, a well-established association of JAKi with herpes zoster warrants the attention of rheumatologists. In this narrative review, we summarize the infectious complications of available treatment options by drug class in patients with PsA.
Collapse
Affiliation(s)
- Athanasios Vassilopoulos
- Division of Internal Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Konstantinos Thomas
- Fourth Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Athens, Greece
| | - Dimitrios Vassilopoulos
- Joint Rheumatology Program, Clinical Immunology–Rheumatology Unit, Second Department of Medicine and Laboratory, National and Kapodistrian University of Athens School of Medicine, General Hospital of Athens Hippokration, 114 Vass. Sophias Avenue, Athens 115 27, Greece
| |
Collapse
|
8
|
Kwon OC, Lee HS, Jeon SY, Park MC. Incidence rate of recurrent cardiovascular events in patients with radiographic axial spondyloarthritis and the effect of tumor necrosis factor inhibitors. Arthritis Res Ther 2024; 26:174. [PMID: 39367448 PMCID: PMC11451105 DOI: 10.1186/s13075-024-03405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Patients with radiographic axial spondyloarthritis (r-axSpA) are at increased risk of incident cardiovascular events. Tumor necrosis factor inhibitors (TNFi) have shown a protective effect against incident cardiovacular events. However, the incidence of recurrent cardiovascular events in patients with r-axSpA with a history of cardiovascular events, and the effect of TNFi on recurrent cardiovascular events remain unclear. We aimed to assess the incidence rate of recurrent cardiovascular events in patients with r-axSpA with a history of cardiovascular events and evaluate the effect of TNFi on the risk of recurrent cardiovascular events. METHODS This nationwide cohort study used data from the Korean National Claims Database. Data of patients with r-axSpA who had a history of cardiovascular events after being diagnosed with r-axSpA were extracted from the database. The outcome of interest was the recurrence of cardiovascular events (myocardial infarction or stroke). Patients were followed from the index date (date of the first cardiovascular event) to the date of cardiovascular event recurrence, the last date with claims data, or December 31, 2021, whichever occured first. The incidence rate of recurrent cardiovascular events was calculated. An inverse probability weighted Cox model was used to assess the effect of TNFi exposure on the risk of recurrent cardiovascular events. RESULTS This study included 413 patients (TNFi non-exposure, n = 338; TNFi exposure, n = 75). The incidence rate of recurrent cardiovascular events was 32 (95% confidence interval [CI] 22-42) per 1,000 person-years (TNFi non-exposure, 36 [95% CI 24-48] per 1,000 person-years; TNFi exposure, 19 [95% CI 2-35] per 1,000 person-years). In the inverse probability weighted Cox model, TNFi exposure was significantly associated with a lower risk of recurrent cardiovascular events (hazard ratio 0.33, 95% CI 0.12-0.94). CONCLUSIONS The incidence rate of recurrent cardiovascular events in patients with r-axSpA is substantial. TNFi exposure was associated with a lower risk of recurrent cardiovascular events.
Collapse
Affiliation(s)
- Oh Chan Kwon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - So Young Jeon
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Chan Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
- Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul, 06273, South Korea.
| |
Collapse
|
9
|
Buch MH, Mallat Z, Dweck MR, Tarkin JM, O'Regan DP, Ferreira V, Youngstein T, Plein S. Current understanding and management of cardiovascular involvement in rheumatic immune-mediated inflammatory diseases. Nat Rev Rheumatol 2024; 20:614-634. [PMID: 39232242 DOI: 10.1038/s41584-024-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a spectrum of disorders of overlapping immunopathogenesis, with a prevalence of up to 10% in Western populations and increasing incidence in developing countries. Although targeted treatments have revolutionized the management of rheumatic IMIDs, cardiovascular involvement confers an increased risk of mortality and remains clinically under-recognized. Cardiovascular pathology is diverse across rheumatic IMIDs, ranging from premature atherosclerotic cardiovascular disease (ASCVD) to inflammatory cardiomyopathy, which comprises myocardial microvascular dysfunction, vasculitis, myocarditis and pericarditis, and heart failure. Epidemiological and clinical data imply that rheumatic IMIDs and associated cardiovascular disease share common inflammatory mechanisms. This concept is strengthened by emergent trials that indicate improved cardiovascular outcomes with immune modulators in the general population with ASCVD. However, not all disease-modifying therapies that reduce inflammation in IMIDs such as rheumatoid arthritis demonstrate equally beneficial cardiovascular effects, and the evidence base for treatment of inflammatory cardiomyopathy in patients with rheumatic IMIDs is lacking. Specific diagnostic protocols for the early detection and monitoring of cardiovascular involvement in patients with IMIDs are emerging but are in need of ongoing development. This Review summarizes current concepts on the potentially targetable inflammatory mechanisms of cardiovascular pathology in rheumatic IMIDs and discusses how these concepts can be considered for the diagnosis and management of cardiovascular involvement across rheumatic IMIDs, with an emphasis on the potential of cardiovascular imaging for risk stratification, early detection and prognostication.
Collapse
Affiliation(s)
- Maya H Buch
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Ziad Mallat
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, Chancellors Building, Little France Crescent, University of Edinburgh, Edinburgh, UK
| | - Jason M Tarkin
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Vanessa Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Taryn Youngstein
- National Heart & Lung Institute, Imperial College London, London, UK
- Department of Rheumatology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Sven Plein
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| |
Collapse
|
10
|
Zack SR, Alzoubi O, Satoeya N, Singh KP, Deen S, Nijim W, Lewis MJ, Pitzalis C, Sweiss N, Ivashkiv LB, Shahrara S. Another Notch in the Belt of Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1475-1487. [PMID: 38961731 PMCID: PMC11421962 DOI: 10.1002/art.42937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Notch ligands and receptors, including JAG1/2, DLL1/4, and Notch1/3, are enriched on macrophages (MΦs), fibroblast-like synoviocytes (FLS), and/or endothelial cells in rheumatoid arthritis (RA) compared with normal synovial tissues (ST). Power Doppler ultrasound-guided ST studies reveal that the Notch family is highly involved in early active RA, especially during neovascularization. In contrast, the Notch family is not implicated during the erosive stage, evidenced by their lack of correlation with radiographic damage in RA ST. Toll-like receptors and tumor necrosis factor (TNF) are the common inducers of Notch expression in RA MΦs, FLS, and endothelial cells. Among Notch ligands, JAG1 and/or DLL4 are most inducible by inflammatory responses in RA MΦs or endothelial cells and transactivate their receptors on RA FLS. TNF plays a central role on Notch ligands, as anti-TNF good responders display JAG1/2 and DLL1/4 transcriptional downregulation in RA ST myeloid cells. In in vitro studies, TNF increases Notch3 expression in MΦs, which is further amplified by RA FLS addition. Specific disease-modifying antirheumatic drugs reduced JAG1 and Notch3 expression in MΦ and RA FLS cocultures. Organoids containing FLS and endothelial cells have increased expression of JAG1 and Notch3. Nonetheless, Methotrexate, interleukin-6 receptor (IL-6R) antibodies, and B cell blockers are mostly ineffective at decreasing Notch family expression. NF-κB, MAPK, and AKT pathways are involved in Notch signaling, whereas JAK/STATs are not. Although Notch blockade has been effective in RA preclinical studies, its small molecule inhibitors have failed in phase I and II studies, suggesting that alternative strategies may be required to intercept their function.
Collapse
Affiliation(s)
- Stephanie R Zack
- Jesse Brown VA Medical Center and The University of Illinois at Chicago, Chicago, Illinois
| | - Osama Alzoubi
- Jesse Brown VA Medical Center and The University of Illinois at Chicago, Chicago, Illinois
| | - Neha Satoeya
- Jesse Brown VA Medical Center and The University of Illinois at Chicago, Chicago, Illinois
| | - Kunwar P Singh
- The University of Illinois at Chicago, Chicago, Illinois
| | - Sania Deen
- The University of Illinois at Chicago, Chicago, Illinois
| | - Wes Nijim
- The University of Illinois at Chicago, Chicago, Illinois
| | - Myles J Lewis
- Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK
| | - Costantino Pitzalis
- Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK, Humanitas University and Humanitas Research Hospital, Milan, Italy
| | - Nadera Sweiss
- The University of Illinois at Chicago, Chicago, Illinois
| | - Lionel B Ivashkiv
- Hospital for Special Surgery, Weill Cornell Graduate School of Medical Sciences, and Weill Cornell Medical College, New York, New York
| | - Shiva Shahrara
- Jesse Brown VA Medical Center and The University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Masaki S, Honjo H, Kurimoto M, Okai N, Otsuka Y, Masuta Y, Kamata K, Minaga K, Kudo M, Watanabe T. Concurrent occurrence of ulcerative duodenitis and ulcerative colitis displaying unique responses to golimumab and ustekinumab. Clin J Gastroenterol 2024; 17:854-860. [PMID: 39023824 DOI: 10.1007/s12328-024-02012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Recent studies have reported the occurrence of upper gastrointestinal (UGI) inflammation in patients with ulcerative colitis (UC). However, whether UC-associated UGI and colorectal lesions share pathogenic cytokine profiles and responses to biologics remains unknown. Herein, we report a case of concurrent UC and ulcerative duodenitis (UD) that displayed unique responses to biologic treatment. Although treatment with prednisolone (PSL) failed to induce remission in both disorders, golimumab (GLM) and ustekinumab (UST) were effective against UD and UC, respectively, and remission of both disorders was achieved using UST. Immunofluorescence analyses revealed that numbers of immune cells expressing TNF-α were comparable in both duodenal and rectal mucosa before the treatment. GLM or UST treatment markedly decreased numbers of TNF-α-expressing duodenal immune cells, suggesting the presence of correlation between TNF-α expression and disease activity of UD. In contrast, TNF-α expression was not parallel to disease activity of UC because GLM or PSL failed to induce remission despite a marked reduction in TNF-α expression. Responsiveness to GLM or UST together with immunofluorescence studies suggests that TNF-α and IL-12/23p40 are pathogenic cytokines causing UD and UC, respectively, in the present case.
Collapse
Affiliation(s)
- Sho Masaki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hajime Honjo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Natsuki Okai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| |
Collapse
|
12
|
Kim JG, Koo BS, Lee JH, Yoon BY. Anemia as an indicator of a higher retention rate for tocilizumab versus tumor necrosis factor inhibitors in patients with rheumatoid arthritis from a Korean multi-center registry. JOURNAL OF RHEUMATIC DISEASES 2024; 31:212-222. [PMID: 39355549 PMCID: PMC11439637 DOI: 10.4078/jrd.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 10/03/2024]
Abstract
Objective To examine whether simple laboratory tests can guide selection between tocilizumab (TCZ) and tumor necrosis factor inhibitors (TNFi) in biologic-naive patients with rheumatoid arthritis (RA), by investigating their influence on drug retention. Methods Data of RA patients prescribed TCZ or TNFi as the initial biologics from March 2013 to December 2021 were obtained from the KOrean College of Rheumatology BIOlogics and Targeted Therapy (KOBIO) registry. Propensity score matching was performed to adjust for baseline confounding factors. Hazards of drug discontinuation for TCZ were calculated compared to those for TNFi. Interaction analyses with a Bonferroni-corrected p-value threshold were conducted to determine whether the hemoglobin level, C-reactive protein level, erythrocyte sedimentation rate, and platelet count affected the hazards of drug discontinuation. Results Overall, 893 patients were analyzed, of whom 315 and 578 were treated with TCZ and TNFi, respectively. The hazards of drug discontinuation in all patients were lower for TCZ than for TNFi (hazard ratio [HR] 0.53, 95% confidence interval [CI] 0.44~0.66). Notably, only the presence of anemia indicated a significant interaction (p for interaction=0.010); the HRs for drug discontinuation were 0.41 (95% CI 0.30~0.55) and 0.70 (95% CI 0.53~0.92) in the anemic and non-anemic groups, respectively. In the anemic subgroup, biologics were discontinued because of a lack of efficacy in 35.0% of TNFi initiators and 7.4% of TCZ initiators.Conclusion The drug discontinuation rate in biologic-naïve patients with RA was significantly lower for TCZ than for TNFi, particularly in those with anemia.
Collapse
Affiliation(s)
- Jung Gon Kim
- Division of Rheumatology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Bon San Koo
- Division of Rheumatology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Joo-Hyun Lee
- Division of Rheumatology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Bo Young Yoon
- Division of Rheumatology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
13
|
Adams CE, Rutherford DG, Jones GR, Ho GT. Immunometabolism and mitochondria in inflammatory bowel disease: a role for therapeutic intervention? Dis Model Mech 2024; 17:dmm050895. [PMID: 39415736 PMCID: PMC11512101 DOI: 10.1242/dmm.050895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Inflammatory bowel diseases (IBDs), incurable conditions characterised by recurrent episodes of immune-mediated gut inflammation and damage of unknown aetiology, are common. Current advanced therapies target key leukocyte-trafficking and cytokine-signalling hubs but are only effective in 50% of patients. With growing evidence of mitochondrial dysfunction in IBD and advances in our understanding of the role of metabolism in inflammation, we provide an overview of novel metabolic approaches to IBD therapy, challenging the current 'therapeutic ceiling', identifying critical pathways for intervention and re-imagining metabolic biomarkers for the 21st century.
Collapse
Affiliation(s)
- Claire E. Adams
- Gut Research Unit, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Duncan G. Rutherford
- Gut Research Unit, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gareth R. Jones
- Gut Research Unit, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gwo-tzer Ho
- Gut Research Unit, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
14
|
Maier JA, Castiglioni S, Petrelli A, Cannatelli R, Ferretti F, Pellegrino G, Sarzi Puttini P, Fiorina P, Ardizzone S. Immune-Mediated Inflammatory Diseases and Cancer - a dangerous liaison. Front Immunol 2024; 15:1436581. [PMID: 39359726 PMCID: PMC11445042 DOI: 10.3389/fimmu.2024.1436581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Patients with Immune-Mediated Inflammatory Diseases (IMIDs) are known to have an elevated risk of developing cancer, but the exact causative factors remain subject to ongoing debate. This narrative review aims to present the available evidence concerning the intricate relationship between these two conditions. Environmental influences and genetic predisposition lead to a dysregulated immune response resulting in chronic inflammation, which is crucial in the pathogenesis of IMIDs and oncogenic processes. Mechanisms such as the inflammatory microenvironment, aberrant intercellular communication due to abnormal cytokine levels, excessive reparative responses, and pathological angiogenesis are involved. The chronic immunosuppression resulting from IMIDs treatments further adds to the complexity of the pathogenic scenario. In conclusion, this review highlights critical gaps in the current literature, suggesting potential avenues for future research. The intricate interplay between IMIDs and cancer necessitates more investigation to deepen our understanding and improve patient management.
Collapse
Affiliation(s)
- Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Alessandra Petrelli
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | | | | | | | - Piercarlo Sarzi Puttini
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Paolo Fiorina
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sandro Ardizzone
- Gastroenterology Unit, ASST Fatebenefratelli-Sacco, Milano, Italy
| |
Collapse
|
15
|
Privitera G, Bezzio C, Dal Buono A, Gabbiadini R, Loy L, Brandaleone L, Marcozzi G, Migliorisi G, Armuzzi A. How comparative studies can inform treatment decisions for Crohn's disease. Expert Opin Biol Ther 2024; 24:955-972. [PMID: 39132872 DOI: 10.1080/14712598.2024.2389985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION As new therapies for the treatment of Crohn's disease (CD) are approved, there is an increasing need for evidence that clarifies their positioning and sequencing. AREAS COVERED Comparative effectiveness research (CER) aims to inform physicians' decisions when they choose which intervention (drug or treatment strategy) to administer to their patients. Pragmatic head-to-head trials represent the best tools for CER, but only a few have been published in the IBD field. Network meta-analyses can point toward the superiority of one drug over another, but they do not reflect everyday clinical practice. Finally, real-world evidence complements that coming from head-to-head trials and network meta-analyses, assessing the real-life effectiveness of therapeutic interventions. EXPERT OPINION There is insufficient evidence to create a definitive therapeutic algorithm for CD, but some general considerations can be made. Anti-TNF-α agents seemingly represent the most 'sustainable' first-line choice, considering benefit-harm ratio and costs; vedolizumab, ustekinumab, and risankizumab may be considered as first-line choice when safety issues become prominent. In the event of pharmacodynamic failure, out-of-class swap is to be preferred - possibly with anti-IL23p19 as the best option, with unclear data regarding upadacitinib positioning; a second anti-TNF-α could be considered, as a second choice, after pharmacokinetic failure.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Cristina Bezzio
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Laura Loy
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Brandaleone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Giacomo Marcozzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Giulia Migliorisi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
16
|
Braun J, Sieper J, Märker-Hermann E. Looking back on 51 years of the Carol Nachman Prize in Rheumatology-significance for the field of spondyloarthritis research. Z Rheumatol 2024; 83:563-574. [PMID: 38864856 PMCID: PMC11442482 DOI: 10.1007/s00393-024-01496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 06/13/2024]
Abstract
The city and casino of Wiesbaden, capital of the German state Hessen, have endowed the Carol Nachman Prize to promote research work in the field of rheumatology since 1972. The prize, endowed with 37,500 €, is the second highest medical award in Germany and serves to promote clinical, therapeutic, and experimental research work in the field of rheumatology. In June 2022, the 50-year anniversary was celebrated. In the symposium preceding the award ceremony, an overview was given on the significance of spondyloarthritis for the work of the awardees in the past 30 years. This overview has now been put together to inform the interested community of the work performed, including the opinion of the awardees regarding what they consider to be their most important contribution.
Collapse
Affiliation(s)
- Jürgen Braun
- Rheumatologisches Versorgungszentrum Steglitz, Schloßstr. 110, 12163, Berlin, Germany.
| | - Joachim Sieper
- Rheumatologie am Campus Benjamin Franklin, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
17
|
Patterson BK, Guevara-Coto J, Mora J, Francisco EB, Yogendra R, Mora-Rodríguez RA, Beaty C, Lemaster G, Kaplan DO G, Katz A, Bellanti JA. Long COVID diagnostic with differentiation from chronic lyme disease using machine learning and cytokine hubs. Sci Rep 2024; 14:19743. [PMID: 39187577 PMCID: PMC11347643 DOI: 10.1038/s41598-024-70929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
The absence of a long COVID (LC) or post-acute sequelae of COVID-19 (PASC) diagnostic has profound implications for research and potential therapeutics given the lack of specificity with symptom-based identification of LC and the overlap of symptoms with other chronic inflammatory conditions. Here, we report a machine-learning approach to LC/PASC diagnosis on 347 individuals using cytokine hubs that are also capable of differentiating LC from chronic lyme disease (CLD). We derived decision tree, random forest, and gradient-boosting machine (GBM) classifiers and compared their diagnostic capabilities on a dataset partitioned into training (178 individuals) and evaluation (45 individuals) sets. The GBM model generated 89% sensitivity and 96% specificity for LC with no evidence of overfitting. We tested the GBM on an additional random dataset (106 LC/PASC and 18 Lyme), resulting in high sensitivity (97%) and specificity (90%) for LC. We constructed a Lyme Index confirmatory algorithm to discriminate LC and CLD.
Collapse
Affiliation(s)
- Bruce K Patterson
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA.
| | - Jose Guevara-Coto
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | - Javier Mora
- Lab of Tumor Chemosensitivity, Faculty of Microbiology, CIET/CICICA, Universidad de Costa Rica, San José, Costa Rica
| | - Edgar B Francisco
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | | | - Rodrigo A Mora-Rodríguez
- Lab of Tumor Chemosensitivity, Faculty of Microbiology, CIET/CICICA, Universidad de Costa Rica, San José, Costa Rica
| | - Christopher Beaty
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | - Gwyneth Lemaster
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | - Gary Kaplan DO
- Department of Community and Family Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Amiram Katz
- Neurology Specialist Affiliated With Norwalk Hospital, Orange, CT, USA
| | - Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology, and the International Center for Interdisciplinary Studies of Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
18
|
Neurath N, Kesting M. Cytokines in gingivitis and periodontitis: from pathogenesis to therapeutic targets. Front Immunol 2024; 15:1435054. [PMID: 39253090 PMCID: PMC11381234 DOI: 10.3389/fimmu.2024.1435054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Chronic inflammatory processes in the oral mucosa and periodontitis are common disorders caused by microflora and microbial biofilms. These factors activate both the innate and adaptive immune systems, leading to the production of pro-inflammatory cytokines. Cytokines are known to play a crucial role in the pathogenesis of gingivitis and periodontitis and have been proposed as biomarkers for diagnosis and follow-up of these diseases. They can activate immune and stromal cells, leading to local inflammation and tissue damage. This damage can include destruction of the periodontal ligaments, gingiva, and alveolar bone. Studies have reported increased local levels of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta), tumor necrosis factor (TNF), IL-6, IL-17, and IL-23, in patients with periodontitis. In experimental models of periodontitis, TNF and the IL-23/IL-17 axis play a pivotal role in disease pathogenesis. Inactivation of these pro-inflammatory pathways through neutralizing antibodies, genetic engineering or IL-10 function has been demonstrated to reduce disease activity. This review discusses the role of cytokines in gingivitis and periodontitis, with particular emphasis on their role in mediating inflammation and tissue destruction. It also explores new therapeutic interventions that offer potential for research and clinical therapy in these chronic inflammatory diseases.
Collapse
Affiliation(s)
- Nicole Neurath
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Uniklinikum Erlangen, Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Uniklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
19
|
Faggiani I, Fanizza J, D’Amico F, Allocca M, Zilli A, Parigi TL, Barchi A, Danese S, Furfaro F. Extraintestinal Manifestations in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024; 12:1839. [PMID: 39200303 PMCID: PMC11351332 DOI: 10.3390/biomedicines12081839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The inflammatory bowel diseases (IBDs) are systemic conditions that affect not only the gastrointestinal tract but also other parts of the body. The presence of extraintestinal manifestations can significantly impact the quality of life in IBD patients. Peripheral arthritis, episcleritis, and erythema nodosum are frequently associated with active intestinal inflammation and often improve with standard treatment targeting intestinal inflammation. In contrast, anterior uveitis, ankylosing spondylitis, and primary sclerosing cholangitis typically occur independently of disease flares. The incidence of these conditions in individuals with IBD can reach up to 50% of patients over the course of their lifetime. In addition, some advanced therapies utilized for the treatment of IBD potentially result in side effects that may resemble extraintestinal manifestations. This review provides a thorough analysis of the pathophysiology and treatment of extraintestinal manifestations associated with Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Ilaria Faggiani
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (I.F.); (J.F.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Jacopo Fanizza
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (I.F.); (J.F.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Ferdinando D’Amico
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (I.F.); (J.F.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (I.F.); (J.F.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (I.F.); (J.F.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (I.F.); (J.F.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alberto Barchi
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (I.F.); (J.F.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (I.F.); (J.F.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (I.F.); (J.F.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
| |
Collapse
|
20
|
Lu H, Suo Z, Lin J, Cong Y, Liu Z. Monocyte-macrophages modulate intestinal homeostasis in inflammatory bowel disease. Biomark Res 2024; 12:76. [PMID: 39095853 PMCID: PMC11295551 DOI: 10.1186/s40364-024-00612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Monocytes and macrophages play an indispensable role in maintaining intestinal homeostasis and modulating mucosal immune responses in inflammatory bowel disease (IBD). Although numerous studies have described macrophage properties in IBD, the underlying mechanisms whereby the monocyte-macrophage lineage modulates intestinal homeostasis during gut inflammation remain elusive. MAIN BODY In this review, we decipher the cellular and molecular mechanisms governing the generation of intestinal mucosal macrophages and fill the knowledge gap in understanding the origin, maturation, classification, and functions of mucosal macrophages in intestinal niches, particularly the phagocytosis and bactericidal effects involved in the elimination of cell debris and pathogens. We delineate macrophage-mediated immunoregulation in the context of producing pro-inflammatory and anti-inflammatory cytokines, chemokines, toxic mediators, and macrophage extracellular traps (METs), and participating in the modulation of epithelial cell proliferation, angiogenesis, and fibrosis in the intestine and its accessory tissues. Moreover, we emphasize that the maturation of intestinal macrophages is arrested at immature stage during IBD, and the deficiency of MCPIP1 involves in the process via ATF3-AP1S2 signature. In addition, we confirmed the origin potential of IL-1B+ macrophages and defined C1QB+ macrophages as mature macrophages. The interaction crosstalk between the intestine and the mesentery has been described in this review, and the expression of mesentery-derived SAA2 is upregulated during IBD, which contributes to immunoregulation of macrophage. Moreover, we also highlight IBD-related susceptibility genes (e.g., RUNX3, IL21R, GTF2I, and LILRB3) associated with the maturation and functions of macrophage, which provide promising therapeutic opportunities for treating human IBD. CONCLUSION In summary, this review provides a comprehensive, comprehensive, in-depth and novel description of the characteristics and functions of macrophages in IBD, and highlights the important role of macrophages in the molecular and cellular process during IBD.
Collapse
Affiliation(s)
- Huiying Lu
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
21
|
Neurath L, Sticherling M, Schett G, Fagni F. Targeting cytokines in psoriatic arthritis. Cytokine Growth Factor Rev 2024; 78:1-13. [PMID: 39068140 DOI: 10.1016/j.cytogfr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Psoriatic arthritis (PsA) is part of the psoriatic disease spectrum and is characterized by a chronic inflammatory process that affects entheses, tendons and joints. Cytokines produced by immune and non-immune cells play a central role in the pathogenesis of PsA by orchestrating key aspects of the inflammatory response. Pro-inflammatory cytokines such as TNF, IL-23 and IL-17 have been shown to regulate the initiation and progression of PsA, ultimately leading to the destruction of the architecture of the local tissues such as soft tissue, cartilage and bone. The important role of cytokines in PsA has been underscored by the clinical success of antibodies that neutralize their function. In addition to biologic agents targeting individual pro-inflammatory cytokines, signaling inhibitors that block multiple cytokines simultaneously such as JAK inhibitors have been approved for PsA therapy. In this review, we will focus on our current understanding of the role of cytokines in the disease process of PsA and discuss potential new treatment options based on modulation of cytokine function.
Collapse
Affiliation(s)
- Laura Neurath
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Sticherling
- Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Dermatology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
22
|
Liu Z, Luo S, Liu C, Hu X. Resistant starch and tannic acid synergistically ameliorated dextran sulfate sodium-induced ulcerative colitis, particularly in the distal colon. Food Funct 2024; 15:7553-7566. [PMID: 38932628 DOI: 10.1039/d4fo00531g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
We previously confirmed that tannic acid could delay the metabolism of resistant starch in vitro, which suggested that tannic acid might deliver resistant starch to the distal colon in vivo. Accordingly, co-supplementation of resistant starch and tannic acid might be beneficial for keeping the distal colon healthy. Thus, this study compared the effects of resistant starch, tannic acid and their mixtures on dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. It was found that the mixtures had a more profound effect on ameliorating DSS-induced ulcerative colitis than resistant starch or tannic acid. In particular, the mixtures reversed the histology damage of the distal colon induced by DSS, while resistant starch or tannic acid alone did not. The mixtures also had a stronger ability to resist oxidative stress and inhibit inflammation in the distal colon. These results suggested that resistant starch and tannic acid synergistically alleviated DSS-induced ulcerative colitis, particularly in the distal colon. On the other hand, DSS decreased the production of short-chain fatty acids and induced significant microbial disorder, while the administration of resistant starch, tannic acid and their mixtures reversed the above shifts caused by DSS. In particular, the mixtures exhibited stronger prebiotic activity, as indicated by the microbial composition and production of short-chain fatty acids. Therefore, it was inferred that tannic acid delivered resistant starch to the distal colon of mice, and thus the mixtures had stronger prebiotic activity. As a result, the mixtures effectively alleviated ulcerative colitis in the whole colon.
Collapse
Affiliation(s)
- Zijun Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- International Institute of Food Innovation Co., Ltd, Nanchang 330200, Jiangxi, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- International Institute of Food Innovation Co., Ltd, Nanchang 330200, Jiangxi, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- International Institute of Food Innovation Co., Ltd, Nanchang 330200, Jiangxi, China
| | - Xiuting Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- International Institute of Food Innovation Co., Ltd, Nanchang 330200, Jiangxi, China
| |
Collapse
|
23
|
Yang L, Ou YN, Wu BS, Liu WS, Deng YT, He XY, Chen YL, Kang J, Fei CJ, Zhu Y, Tan L, Dong Q, Feng J, Cheng W, Yu JT. Large-scale whole-exome sequencing analyses identified protein-coding variants associated with immune-mediated diseases in 350,770 adults. Nat Commun 2024; 15:5924. [PMID: 39009607 PMCID: PMC11250857 DOI: 10.1038/s41467-024-49782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
The genetic contribution of protein-coding variants to immune-mediated diseases (IMDs) remains underexplored. Through whole exome sequencing of 40 IMDs in 350,770 UK Biobank participants, we identified 162 unique genes in 35 IMDs, among which 124 were novel genes. Several genes, including FLG which is associated with atopic dermatitis and asthma, showed converging evidence from both rare and common variants. 91 genes exerted significant effects on longitudinal outcomes (interquartile range of Hazard Ratio: 1.12-5.89). Mendelian randomization identified five causal genes, of which four were approved drug targets (CDSN, DDR1, LTA, and IL18BP). Proteomic analysis indicated that mutations associated with specific IMDs might also affect protein expression in other IMDs. For example, DXO (celiac disease-related gene) and PSMB9 (alopecia areata-related gene) could modulate CDSN (autoimmune hypothyroidism-, psoriasis-, asthma-, and Graves' disease-related gene) expression. Identified genes predominantly impact immune and biochemical processes, and can be clustered into pathways of immune-related, urate metabolism, and antigen processing. Our findings identified protein-coding variants which are the key to IMDs pathogenesis and provided new insights into tailored innovative therapies.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yi-Lin Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200443, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Chen-Jie Fei
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200443, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200443, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
24
|
Ma H, Liang X, Li SS, Li W, Li TF. The role of anti-citrullinated protein antibody in pathogenesis of RA. Clin Exp Med 2024; 24:153. [PMID: 38972923 PMCID: PMC11228005 DOI: 10.1007/s10238-024-01359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/21/2024] [Indexed: 07/09/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune rheumatic disease that causes chronic synovitis, bone erosion, and joint destruction. The autoantigens in RA include a wide array of posttranslational modified proteins, such as citrullinated proteins catalyzed by peptidyl arginine deiminase4a. Pathogenic anti-citrullinated protein antibodies (ACPAs) directed against a variety of citrullinated epitopes are abundant both in plasma and synovial fluid of RA patients. ACPAs play an important role in the onset and progression of RA. Intensive and extensive studies are being conducted to unveil the mechanisms of RA pathogenesis and evaluate the efficacy of some investigative drugs. In this review, we focus on the formation and pathogenic function of ACPAs.
Collapse
Affiliation(s)
- Hang Ma
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xu Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shan-Shan Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
25
|
Abstract
Background Food allergic (FA) conditions have been classified as immunoglobulin E (IgE) and non-IgE-mediated reactions that affect as many as 8% of young children and 2% of adults in Western countries, and their prevalence seems to be rising. Although the immunologic basis of IgE-mediated FA is well established, the mechanisms that govern non-IgE-mediated FA are not well understood and are marked by a paucity of comprehensive insights. Objective The purpose of the present report is to examine the current classification and epidemiology of non-IgE-mediated FA, the latest immunologic mechanisms that underlie the three most commonly cited non-IgE FA conditions, viz., eosinophilic esophagitis, food protein-induced enterocolitis, and food protein-induced allergic proctocolitis, and explore what allergist/immunologists in practice should be aware of with regard to the condition. Methods An extensive research was conducted in medical literature data bases by applying terms such as FA, non-IgE allergy, tolerance, unresponsiveness, cytokines, CD4+ T helper cell pathways, and key cytokine pathways involved in FA. Results Current evidence now supports the view that immune dysregulation and cytokine-induced inflammation are the fundamental bases for both IgE- and non-IgE-mediated FA. The existing non-IgE-related FA literature is mostly characterized by a relative dearth of mechanistic information in contrast to IgE-mediated FA, in which the immunologic underpinnings as a T helper type 2 directed entity are well established. Although the need for future methodologic research and adherence to rigorous scientific protocols is essential, it is also necessary to acknowledge past contributions that have given much to our understanding of the condition. In the present report, a novel signature cytokine-based classification of IgE-mediated and non-IgE-mediated allergy is proposed that may offer a novel template for future research in the field of non-IgE-mediated FA. Conclusion The present report provides an overview of the current classification and frequency of IgE- and non-IgE-mediated FAs, and offers insights and potential solutions to address lingering questions, particularly when concerning the latest immunologic mechanisms that underlie the pathogenesis of non-IgE-mediated FA. Although some progress has been made in recent years toward making diagnostic and treatment options available for these conditions, there still remain many lingering questions and concerns to be addressed, which can be fully understood by future research.
Collapse
Affiliation(s)
- Joseph A Bellanti
- From the Department of Pediatrics
- Microbiology & Immunology, and
- International Center for Interdisciplinary Studies of Immunology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
26
|
Honap S, Jairath V, Danese S, Peyrin-Biroulet L. Navigating the complexities of drug development for inflammatory bowel disease. Nat Rev Drug Discov 2024; 23:546-562. [PMID: 38778181 DOI: 10.1038/s41573-024-00953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) - consisting of ulcerative colitis and Crohn's disease - is a complex, heterogeneous, immune-mediated inflammatory condition with a multifactorial aetiopathogenesis. Despite therapeutic advances in this arena, a ceiling effect has been reached with both single-agent monoclonal antibodies and advanced small molecules. Therefore, there is a need to identify novel targets, and the development of companion biomarkers to select responders is vital. In this Perspective, we examine how advances in machine learning and tissue engineering could be used at the preclinical stage where attrition rates are high. For novel agents reaching clinical trials, we explore factors decelerating progression, particularly the decline in IBD trial recruitment, and assess how innovative approaches such as reconfiguring trial designs, harmonizing end points and incorporating digital technologies into clinical trials can address this. Harnessing opportunities at each stage of the drug development process may allow for incremental gains towards more effective therapies.
Collapse
Affiliation(s)
- Sailish Honap
- Department of Gastroenterology, St George's University Hospitals NHS Foundation Trust, London, UK.
- School of Immunology and Microbial Sciences, King's College London, London, UK.
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
| | - Vipul Jairath
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Laurent Peyrin-Biroulet
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
- Department of Gastroenterology, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
- INSERM, NGERE, University of Lorraine, Nancy, France.
- FHU-CURE, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
- Groupe Hospitalier privé Ambroise Paré - Hartmann, Paris IBD Center, Neuilly sur Seine, France.
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Ray CM, Panaccione R, Ma C. A practical guide to combination advanced therapy in inflammatory bowel disease. Curr Opin Gastroenterol 2024; 40:251-257. [PMID: 38662117 DOI: 10.1097/mog.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW To provide an overview of the current literature regarding the use of advanced combination therapy (ACT) in patients with inflammatory bowel disease (IBD). Although the treatment of IBD has come a long way, many patients do not respond or will lose response to currently available treatments over time. ACT has been proposed as a model to create sustained remission in difficult-to-treat IBD patient populations. This review discusses the available literature supporting the use of ACT, followed by practical tips for applying this model of treatment to clinical practice. RECENT FINDINGS Both observational and controlled evidence have demonstrated that there may be an increased benefit of ACT in specific IBD patient populations compared to advanced targeted immunomodulator (TIM) monotherapy. Additional data is required to understand how to best use combination TIMs and the long-term risks associated with this strategy. SUMMARY While the literature has demonstrated the potential for benefit in both Crohn's disease and ulcerative colitis, the use of ACT is currently off-label and long-term controlled data is needed. The successful application of ACT requires careful consideration of both patient and disease profiles as well as close monitoring of treatment response and adverse events.
Collapse
Affiliation(s)
| | - Remo Panaccione
- Division of Gastroenterology & Hepatology, Department of Medicine
| | - Christopher Ma
- Division of Gastroenterology & Hepatology, Department of Medicine
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Yang D, Peng M, Fu F, Zhao W, Zhang B. Diosmetin ameliorates psoriasis-associated inflammation and keratinocyte hyperproliferation by modulation of PGC-1α / YAP signaling pathway. Int Immunopharmacol 2024; 134:112248. [PMID: 38749332 DOI: 10.1016/j.intimp.2024.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Psoriasis, characterized by aberrant epidermal keratinocyte proliferation and differentiation, is a chronic inflammatory immune-related skin disease. Diosmetin (Dios), derived from citrus fruits, exhibits anti-inflammatory and anti-proliferative properties. In this study, IL-17A-induced HaCaT cell model and Imiquimod (IMQ)-induced mouse model were utilized to investigate the effects of Dios against psoriasis. The morphology and biomarkers of psoriasis were regarded as the preliminary evaluation including PASI score, skin thickness, H&E staining, EdU staining and inflammatory factors. Transcriptomics analysis revealed PGC-1α as a key target for Dios in ameliorating psoriasis. Specifically, Dios, through PGC-1α, suppressed YAP-mediated proliferation and inflammatory responses in psoriatic keratinocytes. In conclusion, Dios shows promise in psoriasis treatment and holds potential for development as targeted medications for application in psoriasis.
Collapse
Affiliation(s)
- Dailin Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Mingwei Peng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Fengping Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Wenjuan Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
29
|
Galajda NÁ, Meznerics FA, Mátrai P, Fehérvári P, Lengyel AS, Kolonics MV, Sipos Z, Kemény LV, Csupor D, Hegyi P, Bánvölgyi A, Holló P. Reducing cardiovascular risk in immune-mediated inflammatory diseases: Tumour necrosis factor inhibitors compared to conventional therapies-A systematic review and meta-analysis. J Eur Acad Dermatol Venereol 2024; 38:1070-1088. [PMID: 38433519 DOI: 10.1111/jdv.19900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
Immune-mediated inflammatory disease (IMID) patients including psoriasis, inflammatory arthritides and bowel diseases have a higher risk of developing cardiovascular (CV) diseases compared to the general population. The increased CV risk may be promoted by tumour necrosis factor (TNF)-α-mediated immunological processes, which are present both in the pathomechanism of IMIDs and atherosclerosis. Our objective was to comprehensively investigate the effect of TNF inhibitors (TNFi) on CV risk compared with conventional therapies in IMIDs. The systematic literature search was conducted in three databases (MEDLINE, EMBASE, Cochrane Library) on 14 November 2022. Randomized controlled trials, cohort and case-control studies were eligible for inclusion. Outcomes consisted of the incidence of CV events, with major adverse cardiovascular events (MACE) as a main endpoint. A random-effects meta-analysis was performed by pooling fully adjusted multivariate hazard ratios (HR) and incidence rate ratios (IRR) with a 95% confidence interval (CI) comparing TNFis with conventional systemic non-biologicals (CSNBs). Of a total of 8724 search results, 56 studies were included overall, of which 29 articles were eligible for the meta-analysis, and 27 were involved in the systematic review. Including all IMIDs, the TNFi group showed a significantly reduced risk of MACE compared with the CSNB group (HR = 0.74, 95% confidence interval (CI) 0.58-0.95, p = 0.025; IRR = 0.77, 95% CI 0.67-0.88, p < 0.001). Subgroup analysis of Pso, PsA patients by pooling IRRs also confirmed the significantly decreased risk of MACE in TNFi-treated patients compared with CSNB groups (IRR = 0.79, 95% CI 0.64-0.98). The observational nature of most included studies leading to high heterogeneity represents a limitation. Based on the results, TNFis may reduce the risk of CV events compared to CSNBs. Therefore, earlier use of TNFis compared to conventional systemic agents in the therapeutic sequence may benefit CV risk in IMID patients.
Collapse
Affiliation(s)
- N Á Galajda
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - F A Meznerics
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - P Mátrai
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - P Fehérvári
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| | - A S Lengyel
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - M V Kolonics
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Z Sipos
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - L V Kemény
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - D Csupor
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - P Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - A Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - P Holló
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
30
|
Olofsson PS. Living bioelectronics resolve inflammation. Science 2024; 384:962-963. [PMID: 38815044 DOI: 10.1126/science.adp5201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Coupling skin bacteria and electronics opens paths to adaptive treatment of inflammation.
Collapse
Affiliation(s)
- Peder S Olofsson
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Hagn-Meincke R, Yadav D, Andersen DK, Vege SS, Fogel EL, Serrano J, Bellin MD, Topazian MD, Conwell DL, Li L, Van Den Eeden SK, Drewes AM, Pandol SJ, Forsmark CE, Fisher WE, Hart PA, Olesen SS, Park WG. Circulating immune signatures in chronic pancreatitis with and without preceding acute pancreatitis: A pilot study. Pancreatology 2024; 24:384-393. [PMID: 38461145 PMCID: PMC11023786 DOI: 10.1016/j.pan.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE To investigate profiles of circulating immune signatures in healthy controls and chronic pancreatitis patients (CP) with and without a preceding history of acute pancreatitis (AP). METHODS We performed a phase 1, cross-sectional analysis of prospectively collected serum samples from the PROspective Evaluation of Chronic Pancreatitis for EpidEmiologic and Translation StuDies (PROCEED) study. All samples were collected during a clinically quiescent phase. CP subjects were categorized into two subgroups based on preceding episode(s) of AP. Healthy controls were included for comparison. Blinded samples were analyzed using an 80-plex Luminex assay of cytokines, chemokines, and adhesion molecules. Group and pairwise comparisons of analytes were performed between the subgroups. RESULTS In total, 133 patients with CP (111 with AP and 22 without AP) and 50 healthy controls were included. Among the 80 analytes studied, CP patients with a history of AP had significantly higher serum levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-8, IL-1 receptor antagonist, IL-15) and chemokines (Cutaneous T-Cell Attracting Chemokine (CTACK), Monokine induced Gamma Interferon (MIG), Macrophage-derived Chemokine (MDC), Monocyte Chemoattractant Protein-1 (MCP-1)) compared to CP without preceding AP and controls. In contrast, CP patients without AP had immune profiles characterized by low systemic inflammation and downregulation of anti-inflammatory mediators, including IL-10. CONCLUSION CP patients with a preceding history of AP have signs of systemic inflammatory activity even during a clinically quiescent phase. In contrast, CP patients without a history of AP have low systemic inflammatory activity. These findings suggest the presence of two immunologically diverse subtypes of CP.
Collapse
Affiliation(s)
- Rasmus Hagn-Meincke
- Centre for Pancreatic Diseases and Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark; Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Santhi Swaroop Vege
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Evan L Fogel
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melena D Bellin
- Division of Pediatric Endocrinology, University of Minnesota, Minnesota, MN, USA
| | - Mark D Topazian
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Darwin L Conwell
- Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Liang Li
- Department of Biostatistics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Asbjørn M Drewes
- Centre for Pancreatic Diseases and Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chris E Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition. University of Florida, Gainesville, FL, USA
| | - William E Fisher
- Division of General Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Søren S Olesen
- Centre for Pancreatic Diseases and Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Walter G Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
32
|
Seidel P, Magnolo N. [Treatment of psoriasis vulgaris : Therapy strategies for optimal patient-centered care]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:417-427. [PMID: 38451270 DOI: 10.1007/s00105-024-05310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/08/2024]
Abstract
Psoriasis is a chronic inflammatory systemic disease that requires optimal long-term management due to its high prevalence in the population and the numerous comorbidities that severely impair quality of life. A variety of treatment options are now available. In addition to objective skin findings and a specific location such as nails or genital area, the presence of psoriatic arthritis and other comorbidities as well as the disease burden of the affected person play a decisive role in individualized treatment decision-making. Good communication with the patient is fundamental to understand the individual needs and expectations of the patient. Shared decision-making can positively influence adherence and thus also the clinical outcome and patient satisfaction. In addition, interdisciplinary collaboration is crucial and often necessary for a comprehensive therapy strategy.
Collapse
Affiliation(s)
- Paloma Seidel
- Hautklinik, Zentrale Studienkoordination für Innovative Dermatologie, Universitätsklinikum Münster, Von-Esmarch-Str. 58, 48149, Münster, Deutschland
| | - Nina Magnolo
- Hautklinik, Zentrale Studienkoordination für Innovative Dermatologie, Universitätsklinikum Münster, Von-Esmarch-Str. 58, 48149, Münster, Deutschland.
| |
Collapse
|
33
|
Rauber S, Mohammadian H, Schmidkonz C, Atzinger A, Soare A, Treutlein C, Kemble S, Mahony CB, Geisthoff M, Angeli MR, Raimondo MG, Xu C, Yang KT, Lu L, Labinsky H, Saad MSA, Gwellem CA, Chang J, Huang K, Kampylafka E, Knitza J, Bilyy R, Distler JHW, Hanlon MM, Fearon U, Veale DJ, Roemer FW, Bäuerle T, Maric HM, Maschauer S, Ekici AB, Buckley CD, Croft AP, Kuwert T, Prante O, Cañete JD, Schett G, Ramming A. CD200 + fibroblasts form a pro-resolving mesenchymal network in arthritis. Nat Immunol 2024; 25:682-692. [PMID: 38396288 DOI: 10.1038/s41590-024-01774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Fibroblasts are important regulators of inflammation, but whether fibroblasts change phenotype during resolution of inflammation is not clear. Here we use positron emission tomography to detect fibroblast activation protein (FAP) as a means to visualize fibroblast activation in vivo during inflammation in humans. While tracer accumulation is high in active arthritis, it decreases after tumor necrosis factor and interleukin-17A inhibition. Biopsy-based single-cell RNA-sequencing analyses in experimental arthritis show that FAP signal reduction reflects a phenotypic switch from pro-inflammatory MMP3+/IL6+ fibroblasts (high FAP internalization) to pro-resolving CD200+DKK3+ fibroblasts (low FAP internalization). Spatial transcriptomics of human joints indicates that pro-resolving niches of CD200+DKK3+ fibroblasts cluster with type 2 innate lymphoid cells, whereas MMP3+/IL6+ fibroblasts colocalize with inflammatory immune cells. CD200+DKK3+ fibroblasts stabilized the type 2 innate lymphoid cell phenotype and induced resolution of arthritis via CD200-CD200R1 signaling. Taken together, these data suggest a dynamic molecular regulation of the mesenchymal compartment during resolution of inflammation.
Collapse
Affiliation(s)
- Simon Rauber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hashem Mohammadian
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Industrial Engineering and Health, Technical University Amberg-Weiden, Institute of Medical Engineering, Weiden, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christoph Treutlein
- Institute of Radiology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Samuel Kemble
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Christopher B Mahony
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Manuel Geisthoff
- Department of Nuclear Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario R Angeli
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria G Raimondo
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cong Xu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kai-Ting Yang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Le Lu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Labinsky
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mina S A Saad
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Charles A Gwellem
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jiyang Chang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kaiyue Huang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eleni Kampylafka
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Johannes Knitza
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rostyslav Bilyy
- Department of Histology, Cytology, Embryology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Clinic for Rheumatology, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Megan M Hanlon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Douglas J Veale
- EULAR Centre for Arthritis & Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Frank W Roemer
- Institute of Radiology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hans M Maric
- Rudolf-Virchow-Center for Integrative and Translational Imaging, University of Würzburg, Würzburg, Germany
| | - Simone Maschauer
- Department of Nuclear Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Adam P Croft
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Torsten Kuwert
- Department of Nuclear Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
34
|
Harris DMM, Szymczak S, Schuchardt S, Labrenz J, Tran F, Welz L, Graßhoff H, Zirpel H, Sümbül M, Oumari M, Engelbogen N, Junker R, Conrad C, Thaçi D, Frey N, Franke A, Weidinger S, Hoyer B, Rosenstiel P, Waschina S, Schreiber S, Aden K. Tryptophan degradation as a systems phenomenon in inflammation - an analysis across 13 chronic inflammatory diseases. EBioMedicine 2024; 102:105056. [PMID: 38471395 PMCID: PMC10943670 DOI: 10.1016/j.ebiom.2024.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Chronic inflammatory diseases (CIDs) are systems disorders that affect diverse organs including the intestine, joints and skin. The essential amino acid tryptophan (Trp) can be broken down to various bioactive derivatives important for immune regulation. Increased Trp catabolism has been observed in some CIDs, so we aimed to characterise the specificity and extent of Trp degradation as a systems phenomenon across CIDs. METHODS We used high performance liquid chromatography and targeted mass spectrometry to assess the serum and stool levels of Trp and Trp derivatives. Our retrospective study incorporates both cross-sectional and longitudinal components, as we have included a healthy population as a reference and there are also multiple observations per patient over time. FINDINGS We found reduced serum Trp levels across the majority of CIDs, and a prevailing negative relationship between Trp and systemic inflammatory marker C-reactive protein (CRP). Notably, serum Trp was low in several CIDs even in the absence of measurable systemic inflammation. Increases in the kynurenine-to-Trp ratio (Kyn:Trp) suggest that these changes result from increased degradation along the kynurenine pathway. INTERPRETATION Increases in Kyn:Trp indicate the kynurenine pathway as a major route for CID-related Trp metabolism disruption and the specificity of the network changes indicates excessive Trp degradation relative to other proteogenic amino acids. Our results suggest that increased Trp catabolism is a common metabolic occurrence in CIDs that may directly affect systemic immunity. FUNDING This work was supported by the DFG Cluster of Excellence 2167 "Precision medicine in chronic inflammation" (KA, SSchr, PR, BH, SWa), the BMBF (e:Med Juniorverbund "Try-IBD" 01ZX1915A and 01ZX2215, the e:Med Network iTREAT 01ZX2202A, and GUIDE-IBD 031L0188A), EKFS (2020_EKCS.11, KA), DFG RU5042 (PR, KA), and Innovative Medicines Initiative 2 Joint Undertakings ("Taxonomy, Treatments, Targets and Remission", 831434, "ImmUniverse", 853995, "BIOMAP", 821511).
Collapse
Affiliation(s)
- Danielle M M Harris
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Institute for Human Nutrition and Food Science, Division Nutriinformatics, Kiel University, Kiel, Germany
| | - Silke Szymczak
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Johannes Labrenz
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Institute for Human Nutrition and Food Science, Division Nutriinformatics, Kiel University, Kiel, Germany
| | - Hanna Graßhoff
- Department of Rheumatology University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Henner Zirpel
- Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Melike Sümbül
- Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mhmd Oumari
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nils Engelbogen
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ralf Junker
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Claudio Conrad
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Diamant Thaçi
- Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Norbert Frey
- Department of Medicine III: Cardiology, Angiology, and Pneumology, Heidelberg University, Heidelberg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Bimba Hoyer
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Division Nutriinformatics, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
35
|
Shankar-Hari M, Calandra T, Soares MP, Bauer M, Wiersinga WJ, Prescott HC, Knight JC, Baillie KJ, Bos LDJ, Derde LPG, Finfer S, Hotchkiss RS, Marshall J, Openshaw PJM, Seymour CW, Venet F, Vincent JL, Le Tourneau C, Maitland-van der Zee AH, McInnes IB, van der Poll T. Reframing sepsis immunobiology for translation: towards informative subtyping and targeted immunomodulatory therapies. THE LANCET. RESPIRATORY MEDICINE 2024; 12:323-336. [PMID: 38408467 PMCID: PMC11025021 DOI: 10.1016/s2213-2600(23)00468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 02/28/2024]
Abstract
Sepsis is a common and deadly condition. Within the current model of sepsis immunobiology, the framing of dysregulated host immune responses into proinflammatory and immunosuppressive responses for the testing of novel treatments has not resulted in successful immunomodulatory therapies. Thus, the recent focus has been to parse observable heterogeneity into subtypes of sepsis to enable personalised immunomodulation. In this Personal View, we highlight that many fundamental immunological concepts such as resistance, disease tolerance, resilience, resolution, and repair are not incorporated into the current sepsis immunobiology model. The focus for addressing heterogeneity in sepsis should be broadened beyond subtyping to encompass the identification of deterministic molecular networks or dominant mechanisms. We explicitly reframe the dysregulated host immune responses in sepsis as altered homoeostasis with pathological disruption of immune-driven resistance, disease tolerance, resilience, and resolution mechanisms. Our proposal highlights opportunities to identify novel treatment targets and could enable successful immunomodulation in the future.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Thierry Calandra
- Service of Immunology and Allergy, Center of Human Immunology Lausanne, Department of Medicine and Department of Laboratory Medicine and Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kenneth J Baillie
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lieuwe D J Bos
- Department of Intensive Care, Academic Medical Center, Amsterdam, Netherlands
| | - Lennie P G Derde
- Intensive Care Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Simon Finfer
- Critical Care Division, The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Richard S Hotchkiss
- Department of Anesthesiology and Critical Care Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - John Marshall
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
| | | | - Christopher W Seymour
- Department of Critical Care Medicine, The Clinical Research, Investigation, and Systems Modeling of Acute illness (CRISMA) Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabienne Venet
- Immunology Laboratory, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Iain B McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Yokota K. Osteoclast differentiation in rheumatoid arthritis. Immunol Med 2024; 47:6-11. [PMID: 37309864 DOI: 10.1080/25785826.2023.2220931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Osteoclasts, derived from the monocyte/macrophage line of bone marrow hematopoietic stem cell progenitors, are the sole bone-resorbing cells of the body. Conventional osteoclast differentiation requires macrophage colony-stimulating factor and receptor activator of nuclear factor kappa-B ligand (RANKL) signaling. Rheumatoid arthritis (RA) is the most prevalent systemic autoimmune disease and inflammatory arthritis characterized by bone destruction. Increased levels of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), in the serum and joints, cause excessive bone destruction. We have recently reported that stimulation of human peripheral blood monocytes with TNF-α and IL-6 induces the differentiation of osteoclasts with bone resorption activity. This review presents the functional differences between representative osteoclasts, conventional RANKL-induced osteoclasts, and recently identified proinflammatory cytokine (TNF-α and IL-6)-induced osteoclasts in RA patients. We believe novel pathological osteoclasts associated with RA will be identified, and new therapeutic strategies will be developed to target these osteoclasts and prevent the progression of bone destruction.
Collapse
Affiliation(s)
- Kazuhiro Yokota
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
38
|
Hong CS, Diergaarde B, Whiteside TL. Small extracellular vesicles in plasma carry luminal cytokines that remain undetectable by antibody-based assays in cancer patients and healthy donors. BJC REPORTS 2024; 2:16. [PMID: 38938748 PMCID: PMC11210721 DOI: 10.1038/s44276-024-00037-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 06/29/2024]
Abstract
Background Small (30-150nm) extracellular vesicles (sEV), also known as exosomes, play a key role in cell-to-cell signaling. They are produced by all cells, circulate freely and are present in all body fluids. Evidence indicates that cytokines are present on the surface and/or in the lumen of sEV. The contribution of intravesicular cytokines to cytokine levels in plasma are unknown. Methods sEV were isolated by ultrafiltration/size exclusion chromatography from pre-cleared plasma obtained from patients with head and neck squamous cell carcinoma (HNSCC) and healthy donors (HDs). Multiplex immunoassays were used to measure cytokine levels in paired untreated and detergent-treated (0.5% Triton X-100) plasma and plasma-derived detergent-treated sEV. Non-parametric tests were used to assess differences in cytokine levels. Results The presence of cytokines in sEV isolated from patients' and HDs' plasma was confirmed by immunoblots and on-bead flow cytometry. sEV-associated cytokines were functional in various in vitro assays. Levels of cytokines in sEV varied among the HNSCC patients and were generally significantly higher than the levels observed in sEV from HDs. Compared to untreated plasma, levels for the majority (40/51) of the evaluated proteins were significantly higher in detergent-treated plasma (P<0.0001-0.03). In addition, levels of 24/51 proteins in sEV, including IL6, TNFRII, IL-17a, IFNa and IFNg, were significantly positively correlated with the difference between levels detected in detergent-treated plasma and untreated plasma. Discussion The data indicate that sEV-associated cytokines account for the differences in cytokine levels measured in detergent-treated versus untreated plasma. Ab-based assays using untreated plasma detect only soluble cytokines and miss cytokines carried in the lumen of sEV. Permeabilization of sEV with a mild detergent allows for Ab-based detection of sEV-associated and soluble cytokines in plasma. The failure to detect cytokines carried in the sEV lumen leads to inaccurate estimates of cytokine levels in body fluids.
Collapse
Affiliation(s)
- Chang Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15213 USA
| | - Brenda Diergaarde
- Department of Human Genetics, School of Public Health, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA 15213 USA
| | - Theresa L. Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| |
Collapse
|
39
|
Takahama M, Patil A, Richey G, Cipurko D, Johnson K, Carbonetto P, Plaster M, Pandey S, Cheronis K, Ueda T, Gruenbaum A, Kawamoto T, Stephens M, Chevrier N. A pairwise cytokine code explains the organism-wide response to sepsis. Nat Immunol 2024; 25:226-239. [PMID: 38191855 PMCID: PMC10834370 DOI: 10.1038/s41590-023-01722-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Sepsis is a systemic response to infection with life-threatening consequences. Our understanding of the molecular and cellular impact of sepsis across organs remains rudimentary. Here, we characterize the pathogenesis of sepsis by measuring dynamic changes in gene expression across organs. To pinpoint molecules controlling organ states in sepsis, we compare the effects of sepsis on organ gene expression to those of 6 singles and 15 pairs of recombinant cytokines. Strikingly, we find that the pairwise effects of tumor necrosis factor plus interleukin (IL)-18, interferon-gamma or IL-1β suffice to mirror the impact of sepsis across tissues. Mechanistically, we map the cellular effects of sepsis and cytokines by computing changes in the abundance of 195 cell types across 9 organs, which we validate by whole-mouse spatial profiling. Our work decodes the cytokine cacophony in sepsis into a pairwise cytokine message capturing the gene, cell and tissue responses of the host to the disease.
Collapse
Affiliation(s)
- Michihiro Takahama
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | - Gabriella Richey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Denis Cipurko
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Katherine Johnson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Peter Carbonetto
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Research Computing Center, University of Chicago, Chicago, IL, USA
| | - Madison Plaster
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Surya Pandey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Katerina Cheronis
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Tatsuki Ueda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Adam Gruenbaum
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Statistics, University of Chicago, Chicago, IL, USA
| | - Nicolas Chevrier
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
40
|
Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP, Bomer N, Voors AA, van der Meer P. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 2024; 21:119-149. [PMID: 37709934 DOI: 10.1038/s41569-023-00919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
41
|
Liu WC, Chang CM, Zhang Y, Liao HT, Chang WC. Dynamics of T-cell receptor repertoire in patients with ankylosing spondylitis after biologic therapy. Int Immunopharmacol 2024; 127:111342. [PMID: 38101220 DOI: 10.1016/j.intimp.2023.111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease in which T-cell immune responses play important roles. AS has been characterized by altered T-cell receptor (TCR) repertoire profiles, which are thought to be caused by expansion of disease-related TCR clonotypes. However, how biological agents affect the TCR repertoire status and whether their therapeutic outcomes are associated with certain features or dynamic patterns of the TCR repertoire are still elusive. MATERIAL AND METHODS We collected clinical samples from AS patients pre- and post-treatment with biologics. TCR repertoire sequencing was conducted to investigate associations of TCRα and TCRβ repertoire characteristics with disease activity and inflammatory indicators/cytokines. RESULTS Our results showed that good responders were associated with an increase in the TCR repertoire diversity with higher proportions of contracted TCR clonotypes. Additionally, we further identified a positive correlation between TCR repertoire diversity and interleukin (IL)-23 levels in AS patients. A network analysis revealed that contracted AS-associated TCR clonotypes with the same complementary-determining region 3 (CDR3) motifs, which represented high probabilities of sharing TCR specificities to AS-related antigens, were dominant in good responders of AS after treatment with biologic therapies. CONCLUSIONS Our findings suggested an important connection between TCR repertoire changes and therapeutic outcomes in biologic-treated AS patients. The status and dynamics of TCR repertoire profiles are useful for assessing the prognosis of biologic treatments in AS patients.
Collapse
Affiliation(s)
- Wei-Chih Liu
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Che-Mai Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yanfeng Zhang
- Genetics Research Division, University of Alabama at Birmingham, USA
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan; Integrative Research Center for Critical Care, Department of Pharmacy, Taipei Medical University-Wanfang Hospital, Taipei, Taiwan; Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
42
|
Cao S, Li Y, Song R, Meng X, Fuchs M, Liang C, Kachler K, Meng X, Wen J, Schlötzer-Schrehardt U, Taudte V, Gessner A, Kunz M, Schleicher U, Zaiss MM, Kastbom A, Chen X, Schett G, Bozec A. L-arginine metabolism inhibits arthritis and inflammatory bone loss. Ann Rheum Dis 2024; 83:72-87. [PMID: 37775153 PMCID: PMC10803985 DOI: 10.1136/ard-2022-223626] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES To investigate the effect of the L-arginine metabolism on arthritis and inflammation-mediated bone loss. METHODS L-arginine was applied to three arthritis models (collagen-induced arthritis, serum-induced arthritis and human TNF transgenic mice). Inflammation was assessed clinically and histologically, while bone changes were quantified by μCT and histomorphometry. In vitro, effects of L-arginine on osteoclast differentiation were analysed by RNA-seq and mass spectrometry (MS). Seahorse, Single Cell ENergetIc metabolism by profilIng Translation inHibition and transmission electron microscopy were used for detecting metabolic changes in osteoclasts. Moreover, arginine-associated metabolites were measured in the serum of rheumatoid arthritis (RA) and pre-RA patients. RESULTS L-arginine inhibited arthritis and bone loss in all three models and directly blocked TNFα-induced murine and human osteoclastogenesis. RNA-seq and MS analyses indicated that L-arginine switched glycolysis to oxidative phosphorylation in inflammatory osteoclasts leading to increased ATP production, purine metabolism and elevated inosine and hypoxanthine levels. Adenosine deaminase inhibitors blocking inosine and hypoxanthine production abolished the inhibition of L-arginine on osteoclastogenesis in vitro and in vivo. Altered arginine levels were also found in RA and pre-RA patients. CONCLUSION Our study demonstrated that L-arginine ameliorates arthritis and bone erosion through metabolic reprogramming and perturbation of purine metabolism in osteoclasts.
Collapse
Affiliation(s)
- Shan Cao
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixuan Li
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Song
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianyi Meng
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Maximilian Fuchs
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Chunguang Liang
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Bioinformatics, Biocenter, University of Würzburg Am Hubland, Würzburg, Germany
| | - Katerina Kachler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Xinyu Meng
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinming Wen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Core Facility for Metabolomics, Department of Medicine, Philipps University of Marburg, Marburg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Alf Kastbom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| |
Collapse
|
43
|
D'Cunha R, Kupper H, Arikan D, Zhao W, Carter D, Blaes J, Ruzek M, Pang Y. A first-in-human study of the novel immunology antibody-drug conjugate, ABBV-3373, in healthy participants. Br J Clin Pharmacol 2024; 90:189-199. [PMID: 37596703 DOI: 10.1111/bcp.15888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/20/2023] Open
Abstract
AIMS ABBV-3373, an immunology antibody-drug conjugate composed of adalimumab conjugated to a proprietary glucocorticoid receptor modulator (the small-molecule payload), has the potential to treat immune-mediated inflammatory diseases. This first-in-human study investigated the pharmacokinetics (PK), immunogenicity, pharmacodynamics (PD) using a safety PD marker, and safety/tolerability of ABBV-3373 in healthy adults. METHODS Fifty-five participants were randomly assigned to single-dose subcutaneous (SC; 30, 100 or 300 mg) or intravenous (IV; 30, 300 or 900 mg) ABBV-3373 or placebo. Eight additional participants received a single dose of 10 mg oral prednisone for evaluation of systemic glucocorticoid effects. Blood samples were collected for up to 85 days postdose for PK, anti-drug antibody and serum cortisol (safety PD marker) assessments. RESULTS ABBV-3373 and total antibody displayed antibody-like SC/IV PK profiles and the unconjugated/free payload in circulation exhibited formation rate-limited kinetics with exposure several fold lower than ABBV-3373 or total antibody. Treatment-emergent anti-drug antibody incidence was 69%, with loss of exposure in 6% (SC) and 5% (IV) of participants, but without any impact on safety. ABBV-3373 up to 300 mg SC/IV had no apparent impact on serum cortisol, and only caused a transient decrease at 900 mg IV. Treatment-emergent adverse events were primarily mild in severity, and no pattern emerged with respect to dose or route of administration. CONCLUSIONS ABBV-3373 had favourable PK profiles, manageable immunogenicity, and was generally well-tolerated. Except for a transient effect at 900 mg IV, there was no apparent impact on serum cortisol. Study results supported further clinical development of ABBV-3373.
Collapse
Affiliation(s)
| | | | | | | | | | - Jonas Blaes
- AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Melanie Ruzek
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | |
Collapse
|
44
|
Venetsanopoulou AI, Mavridou K, Pelechas E, Voulgari PV, Drosos AA. Development of Morphea Following Treatment with an ADA Biosimilar: A Case Report. Curr Rheumatol Rev 2024; 20:451-454. [PMID: 38243962 DOI: 10.2174/0115733971266803231117072453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNFα) is a pivotal cytokine involved in the pathogenesis of certain inflammatory diseases, such as rheumatoid arthritis (RA), spondyloarthropathies, and inflammatory bowel diseases. In the last two decades, TNFα inhibitors (TNFi) have revolutionized the treatment and outcome of the above disorders. However, the use of TNFi has been associated with the development of many autoimmune phenomena and paradoxical skin manifestations that may present as the same type of clinical indications for which the TNFi effectively used. Thus, they may display as arthritis, uveitis, colitis, psoriasis, and several other cutaneous clinical manifestations, among them the development of morphea, a localized scleroderma skin lesion. CASE PRESENTATION We describe a 58-year-old woman with seronegative RA, refractory to methotrexate, who was treated with ABP-501 (Hefiya), an adalimumab (ADA) biosimilar and developed an oval-shaped, deep skin lesion of approximately 3.5cm in size, affecting the left part of her back compatible with morphea 3 months after the initiation of therapy. ADA biosimilar was discontinued and two months later, she had substantial skin improvement. CONCLUSION This is the first report of morphea manifestation during TNFi biosimilar since the patient had no other trigger factors for morphea development like trauma and infections. Physicians dealing with patients treated with TNFi biosimilars should be aware of paradoxical skin reactions, among them morphea; thus, close monitoring, a minute and careful clinical examination, and a follow- up check are required.
Collapse
Affiliation(s)
- Aliki I Venetsanopoulou
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | | | - Eleftherios Pelechas
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Paraskevi V Voulgari
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Alexandros A Drosos
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
45
|
Nasonov EL. [Autoimmunity in rheumatology: A review]. TERAPEVT ARKH 2023; 95:1056-1063. [PMID: 38158939 DOI: 10.26442/00403660.2023.12.202501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Autoimmunity and autoinflammation, co-potentiating pathological processes, are considered within the "immune-inflammatory" continuum (continuity with a variety of elements), reflecting the close relationship between the innate and acquired immune responses. Autoimmunity is the leading pathogenetic mechanism for a specific type of human chronic inflammatory disorders - autoimmune diseases, affecting more than 10% of people in the general population. Advances in molecular biology, pharmacogenetics, and bioinformatics provided the background for individualizing therapy for systemic autoimmune rheumatic diseases within personalized medicine. Studying the immunopathogenesis mechanisms, improving diagnostics, interpreting the molecular taxonomy, and developing approaches to the prevention and personalized therapy of systemic autoimmune rheumatic diseases are the priority issues of modern medicine.
Collapse
Affiliation(s)
- E L Nasonov
- Nasonova Research Institute of Rheumatology
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
46
|
Chen YH, van Zon S, Adams A, Schmidt-Arras D, Laurence ADJ, Uhlig HH. The Human GP130 Cytokine Receptor and Its Expression-an Atlas and Functional Taxonomy of Genetic Variants. J Clin Immunol 2023; 44:30. [PMID: 38133879 PMCID: PMC10746620 DOI: 10.1007/s10875-023-01603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
Genetic variants in IL6ST encoding the shared cytokine receptor for the IL-6 cytokine family GP130 have been associated with a diverse number of clinical phenotypes and disorders. We provide a molecular classification for 59 reported rare IL6ST pathogenic or likely pathogenic variants and additional polymorphisms. Based on loss- or gain-of-function, cytokine selectivity, mono- and biallelic associations, and variable cellular mosaicism, we grade six classes of IL6ST variants and explore the potential for additional variants. We classify variants according to the American College of Medical Genetics and Genomics criteria. Loss-of-function variants with (i) biallelic complete loss of GP130 function that presents with extended Stüve-Wiedemann Syndrome; (ii) autosomal recessive hyper-IgE syndrome (HIES) caused by biallelic; and (iii) autosomal dominant HIES caused by monoallelic IL6ST variants both causing selective IL-6 and IL-11 cytokine loss-of-function defects; (iv) a biallelic cytokine-specific variant that exclusively impairs IL-11 signaling, associated with craniosynostosis and tooth abnormalities; (v) somatic monoallelic mosaic constitutively active gain-of-function variants in hepatocytes that present with inflammatory hepatocellular adenoma; and (vi) mosaic constitutively active gain-of-function variants in hematopoietic and non-hematopoietic cells that are associated with an immune dysregulation syndrome. In addition to Mendelian IL6ST coding variants, there are common non-coding cis-acting variants that modify gene expression, which are associated with an increased risk of complex immune-mediated disorders and trans-acting variants that affect GP130 protein function. Our taxonomy highlights IL6ST as a gene with particularly strong functional and phenotypic diversity due to the combinatorial biology of the IL-6 cytokine family and predicts additional genotype-phenotype associations.
Collapse
Affiliation(s)
- Yin-Huai Chen
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sarah van Zon
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Alex Adams
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Dirk Schmidt-Arras
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Biomedical Research Centre, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
47
|
Chen T, Li S, Lian D, Hu Q, Hou H, Niu D, Li H, Song L, Gao Y, Chen Y, Hu X, Li J, Ye Z, Peng B, Zhang G. Integrated Network Pharmacology and Experimental Approach to Investigate the Protective Effect of Jin Gu Lian Capsule on Rheumatoid Arthritis by Inhibiting Inflammation via IL-17/NF-κB Pathway. Drug Des Devel Ther 2023; 17:3723-3748. [PMID: 38107658 PMCID: PMC10725692 DOI: 10.2147/dddt.s423022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose This study aimed to investigate the main pharmacological action and underlying mechanisms of Jin Gu Lian Capsule (JGL) against rheumatoid arthritis (RA) based on network pharmacology and experimental verification. Methods Network pharmacology approaches were performed to explore the core active compounds of JGL, key therapeutic targets, and signaling pathways. Molecular docking was used to predict the binding affinity of compounds with targets. In vivo experiments were undertaken to validate the findings from network analysis. Results A total of 52 targets were identified as candidate JGL targets for RA. Sixteen ingredients were identified as the core active compounds, including, quercetin, myricetin, salidroside, etc. Interleukin-1 beta (IL1B), transcription factor AP-1 (JUN), growth-regulated alpha protein (CXCL1), C-X-C motif chemokine (CXCL)3, CXCL2, signal transducer and activator of transcription 1 (STAT1), prostaglandin G/H synthase 2 (PTGS2), matrix metalloproteinase (MMP)1, inhibitor of nuclear factor kappa-B kinase subunit beta (IKBKB) and transcription factor p65 (RELA) were obtained as the key therapeutic targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the efficacy of JGL was functionally involved in regulating immune-mediated inflammation, in which IL-17/NF-κB signaling was recommended as one of the main pathways. Molecular docking suggested that the core active compounds bound strongly to their respective targets. Experimentally, JGL treatment mitigated inflammation, showed analgesic activity, and ameliorated collagen-induced arthritis. Enzyme-linked immunosorbent assay showed that JGL effectively reduced the serum levels of cytokines, chemokines, and MMPs. Immunohistochemistry staining showed that JGL markedly reduced the expression of the targets in IL-17/NF-κB pathway including IL-17A, IL-17RA, NF-κB p65, C-X-C motif ligand 2, MMP1 and MMP13. Conclusion This investigation provided evidence that JGL may alleviate RA symptoms by partially inhibiting the immune-mediated inflammation via IL-17/NF-κB pathway.
Collapse
Affiliation(s)
- Tengfei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Sihan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Dongyin Lian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Hongping Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Delian Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ling Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yunhang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Xiaoru Hu
- National Institute for Food and Drug Control, Beijing, People's Republic of China
| | - Jianrong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Zuguang Ye
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
48
|
Bonfils L, Karachalia Sandri A, Poulsen GJ, Agrawal M, Ward DJ, Colombel JF, Jess T, Allin KH. Medication-Wide Study: Exploring Medication Use 10 Years Before a Diagnosis of Inflammatory Bowel Disease. Am J Gastroenterol 2023; 118:2220-2229. [PMID: 37410928 PMCID: PMC11148653 DOI: 10.14309/ajg.0000000000002399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION There is growing interest in the prediagnostic phase of inflammatory bowel disease (IBD) and in the overlap of IBD with other diseases. We described and compared use of any prescription medication between individuals with and without IBD in a 10-year period preceding diagnosis. METHODS Based on cross-linked nationwide registers, we identified 29,219 individuals diagnosed with IBD in Denmark between 2005 and 2018 and matched to 292,190 IBD-free individuals. The primary outcome was use of any prescription medication in years 1-10 before IBD diagnosis/matching date. Participants were considered as medication users if they redeemed ≥1 prescription for any medication in the World Health Organization Anatomical Therapeutic Chemical (ATC) main groups or subgroups before diagnosis/matching. RESULTS The IBD population had a universally increased use of medications compared with the matched population before IBD diagnosis. At 10 years before diagnosis, the proportion of users was 1.1-fold to 1.8-fold higher in the IBD population in 12 of 14 ATC main groups of medication ( P -value < 0.0001). This applied across age, sex, and IBD subtypes, although it was the most pronounced for Crohn's disease (CD). Two years before diagnosis, the IBD population had a steep increase in medication use for several organ systems. When analyzing therapeutic subgroups of medication, the CD population exhibited 2.7, 2.3, 1.9, and 1.9 times more users of immunosuppressants, antianemic preparations, analgesics, and psycholeptics, respectively, than the matched population 10 years before diagnosis ( P -value < 0.0001). DISCUSSION Our findings demonstrate universally increased medication use years before IBD, especially CD, diagnosis and indicates multiorgan involvement in IBD.
Collapse
Affiliation(s)
- Linéa Bonfils
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Anastasia Karachalia Sandri
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Gry J Poulsen
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- The Dr Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel J Ward
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Jean-Frederic Colombel
- The Dr Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
49
|
Gisondi P, Simon D, Alarcon I, Pournara E, Puig L. Immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in patients receiving secukinumab: a literature review. J DERMATOL TREAT 2023; 34:2167487. [PMID: 36625506 DOI: 10.1080/09546634.2023.2167487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Purpose: There is a paucity of evidence on the impact of immune-mediated inflammatory disease (IMID) treatments on the immunogenicity of SARS-CoV-2 vaccination. The purpose of this literature review is to address the question of whether patients with IMIDs receiving secukinumab, a fully human anti-interleukin-17A monoclonal antibody, have an adequate immune response after SARS-CoV-2 vaccination. Materials and Methods: Clinical studies that evaluated the effect of secukinumab on immune responses in patients with IMIDs after SARS-CoV-2 vaccination were searched in publication databases, including Medline and Embase, until May 2022. Results: From the 53 articles identified, a total of 11 articles were included. Overall, the majority of the patients treated with secukinumab elicited an adequate immune response to SARS-CoV-2 vaccines. Patients receiving secukinumab for IMIDs developed cellular immune responses following vaccination with the BNT162b2 vaccine, and there were no significant differences in the overall humoral and cellular immune responses between patients and healthy individuals. The third dose of the BNT162b2 mRNA vaccine resulted in a positive antibody response in secukinumab-treated patients. Conclusion: The available data provide no evidence of impairment in immunological response to SARS-CoV-2 vaccines by secukinumab in patients with IMIDs.
Collapse
Affiliation(s)
- Paolo Gisondi
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - David Simon
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
50
|
Trussoni CE, LaRusso NF. Macrophages make a difference in cholestatic liver diseases - but how? J Hepatol 2023; 79:1349-1351. [PMID: 37821021 DOI: 10.1016/j.jhep.2023.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Christy E Trussoni
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|