1
|
Zhang H, Xie Z, Tu X, Liu A, Chen J, He Y, Wu B, Zhou Z. Morphological and proteomic study of waterlogging tolerance in cotton. Sci Rep 2024; 14:14550. [PMID: 38914604 PMCID: PMC11196664 DOI: 10.1038/s41598-024-64322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
Floating seedling cultivation technique is a novel seedling method in cotton and it provides an ideal model to study cotton growing under waterlogging stress. Morphological character and proteomic profile of the primary root from the seedling cultured by the new technology were evaluated in this study. Compared to seedlings cultured by the traditional method, the diameter of the taproot from floating technology is small at all five seedling stages from one-leaf stage to five-leaf stage. There are similar changes between the thickness of cortex and diameter of stele, which increased from the one- to the two-leaf stage but decreased from the two- to the five-leaf stage. At the one-leaf stage, the number and volume of mitochondria in the primary root-tip cells were less than those in the control. At the two-leaf stage, there was significantly less electron-dense material in the primary root-tip cells than those in the control group. From the one- to the two-leaf stage, the vacuole volume was significantly smaller than that in the control. Total 28 differentially expressed proteins were revealed from aquatic and control group roots of cotton seedlings at the three-leaf stage by two-dimensional electrophoresis, which included 24 up-regulated and four down-regulated proteins. The relative expression of the phosphoglycerate kinase (PGK) gene in aquatic roots increased from the one- to the four-leaf stage but declined rapidly from the four- to the five-leaf stage. The relative expression of the 14-3-3b gene tended to decrease from the one- to the five-leaf stage. The PGK and 14-3-3b genes were specifically expressed in the aquatic roots at the three-leaf stage. In brief, these changes induced waterlogging resistance in the aquatic roots of cotton seedlings in the floating nursery, thereby causing the roots to adapt to the aquatic environment, promoting the growth and development of cotton seedlings.
Collapse
Affiliation(s)
- Hao Zhang
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China
| | - Zhangshu Xie
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China
| | - Xiaoju Tu
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China
| | - Aiyu Liu
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China
| | - Jinxiang Chen
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde, 415101, China
| | - Bibo Wu
- Hunan Biological and Electromechanical Polytechmic, Changsha, 410127, China.
| | - Zhonghua Zhou
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China.
| |
Collapse
|
2
|
Tong P, Liao G, Lu D, Zhou X, Zhang W, Xu Q, Wu C, Wang J. ZjHXK5 and ZjHXK6 negatively regulate the sugar metabolism of Ziziphus jujuba Mill. FRONTIERS IN PLANT SCIENCE 2024; 15:1335120. [PMID: 38410733 PMCID: PMC10895003 DOI: 10.3389/fpls.2024.1335120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
Hexokinase (HXK) plays a crucial role in plants, catalyzing the phosphorylation of hexose substances, which is one of the key steps in sugar metabolism and energy production. While HXK genes have been well-studied in model plants, the evolutionary and functional characteristics of HXK gene family in jujube is unknow. In this study, the HXK gene family members were identified by bioinformatics methods, the key members regulating glucose metabolism were identified by transcriptome data, and finally the function of the key genes was verified by instantaneous and stable genetic transformation. Our results showed that seven HXK genes were identified in the jujube genome, all of which were predict located in the chloroplast and contain Hexokinase-1 (PF00349) and Hexokinase-2 (PF03727) conserved domains. Most of HXK proteins were transmembrane protein with stable, lipid-soluble, hydrophilic. The secondary structure of ZjHXK proteins main α-helix, and contains two distinct tertiary structure. All ZjHXK genes contain nine exons and eight introns. Predictions of cis-regulatory elements indicate that the promoter region of ZjHXK contains a large number of MeJA responsive elements. Finally, combined with the analysis of the relationship between the expression and glucose metabolism, found that ZjHXK5 and ZjHXK6 may the key genes regulating sugar metabolism. Transient overexpression of ZjHXK5 and ZjHXK6 on jujube, or allogeneic overexpression of ZjHXK5 and ZjHXK6 on tomato would significantly reduce the content of total sugar and various sugar components. Transient silencing of ZjHXK5 and ZjHXK6 genes results in a significant increase in sucrose and total sugar content. Interestingly, the expression of ZjHXK5 and ZjHXK6 were also affected by methyl jasmonate.
Collapse
Affiliation(s)
- Panpan Tong
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- National-Local Joint Engineering Laboratory of High Efficiency and Superior Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, Alar, Xinjiang, China
| | - Guanglian Liao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dengyang Lu
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- National-Local Joint Engineering Laboratory of High Efficiency and Superior Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, Alar, Xinjiang, China
| | - Xiaofeng Zhou
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- National-Local Joint Engineering Laboratory of High Efficiency and Superior Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, Alar, Xinjiang, China
| | - Wang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Cuiyun Wu
- National-Local Joint Engineering Laboratory of High Efficiency and Superior Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, Alar, Xinjiang, China
- College of Horticulture and Forestry, Tarim University, Alar, Xinjiang, China
| | - Jiangbo Wang
- National-Local Joint Engineering Laboratory of High Efficiency and Superior Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, Alar, Xinjiang, China
- College of Horticulture and Forestry, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
3
|
Jiao F, Chen Y, Zhang D, Wu J. Genome-Wide Characterization of Soybean Hexokinase Genes Reveals a Positive Role of GmHXK15 in Alkali Stress Response. PLANTS (BASEL, SWITZERLAND) 2023; 12:3121. [PMID: 37687370 PMCID: PMC10490225 DOI: 10.3390/plants12173121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Hexokinase (HXK) proteins catalyze hexose phosphorylation and are important for the sensing and signaling of sugar. In order to determine the roles played by HXKs in soybean growth and stress responsiveness, seventeen HXK genes (GmHXK1-17) were isolated and analyzed. The phylogenic analysis and subcellular location prediction showed that GmHXKs were clearly classified into type A (GmHXK1-4) and type B (GmHXK5-17). There were similar protein structures and conserved regions in GmHXKs to the HXKs of other plants. An expression analysis of the GmHXK genes in soybean organs or tissues demonstrated that GmHXK3 and GmHXK12, 15, and 16 were the dominant HXKs in all the examined tissues. In addition, salt, osmotic, and alkaline stress treatments dramatically increased the activity and transcripts of GmHXKs. There is the possibility that a type-B isoform (GmHXK15) plays a crucial role in soybean adaptation to alkali, as the expression levels of this isoform correlate well with the HXK enzyme activity. Based on an enzyme assay performed on recombinant plant HXK15 proteins expressed in Escherichia coli, we found that GmHXK15 had functional HXK activities. A further analysis indicated that GmHXK15 specifically targeted the mitochondria, and the overexpression of the GmHXK15 gene could significantly enhance the resistance of transgenic soybean to alkali stress. The present findings will serve as a basis for a further analysis of the function of the GmHXK gene family.
Collapse
Affiliation(s)
| | | | | | - Jinhua Wu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (F.J.); (Y.C.); (D.Z.)
| |
Collapse
|
4
|
Wu M, Su H, Li C, Fu Z, Wu F, Yang J, Wang L. Effects of foliar application of single-walled carbon nanotubes on carbohydrate metabolism in crabapple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:214-222. [PMID: 36427383 DOI: 10.1016/j.plaphy.2022.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanotubes (CNTs) regulate growth in many plants. Carbohydrates provide energy and carbon skeleton for cell growth. However, how CNTs influence plant carbohydrate metabolism remains largely unknown. For a comprehensive understanding the response of carbohydrate metabolism and accumulation in leaves of crabapple (Malus hupehensis Rehd) to single-walled carbon nanotubes (SWCNTs), the expression of key enzymes and genes involved in apple sugar metabolism was investigated. In this report, TEM showed that SWCNTs particles were absorbed in apple leaf. Foliar application of 10 and 20 mg/L SWCNTs promoted chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. SWCNTs up-regulate the activity of aldose-6-phosphate reductase (A6PR), accompanied by increased concentration of photosynthetic assimilate‒sorbitol. However, the activities of sucrose phosphate synthase (SPS) and the accumulation of sucrose did not change significantly in SWCNTs-sprayed apple leaves compared with the control. In addition, the activities of photoassimilate degradation enzyme (sorbitol dehydrogenase, SDH; sucrose synthase, SUSY; neutral invertase, NINV) and hexose degradation enzyme (fructokinase, FRK; hexokinase, HK) were higher in SWCNTs-treated apple leaves than that in the control leaves. Quantitative real-time polymerase chain reaction (qRT‒PCR) results indicated that the expression of genes associated with sugar metabolism changed significantly after SWCNTs application. Taken together, we propose that spraying apple leaves with 10 and 20 mg/L SWCNTs can improve photosynthetic activity and accelerate carbohydrate metabolism in apple leaves. Our results provide insight into understanding the biological effects of CNTs in plants and are valuable for continued use of SWCNTs in agri-nanotechnology.
Collapse
Affiliation(s)
- Mingqi Wu
- College of life Sciences, Ludong Universtiy, Yantai, 264025, PR China
| | - Hongyan Su
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China; The Institute of Ecological Garden, Ludong University, Yantai, 264025, PR China
| | - Chuanshou Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Zhishun Fu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Fanlin Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Jingjing Yang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China.
| | - Lei Wang
- College of life Sciences, Ludong Universtiy, Yantai, 264025, PR China.
| |
Collapse
|
5
|
Lin Y, Tang H, Zhao B, Lei D, Zhou X, Yao W, Fan J, Zhang Y, Chen Q, Wang Y, Li M, He W, Luo Y, Wang X, Tang H, Zhang Y. Comparative changes of health-promoting phytochemicals and sugar metabolism of two hardy kiwifruit ( Actinidia arguta) cultivars during fruit development and maturity. FRONTIERS IN PLANT SCIENCE 2022; 13:1087452. [PMID: 36589092 PMCID: PMC9798231 DOI: 10.3389/fpls.2022.1087452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Introduction Hardy kiwifruit (Actinidia arguta) has an extensive range of nutritional and bioactive compounds and has been valued as a great resource for kiwifruit breeding. A better understanding of the dynamic changes of the composition and accumulation of nutritional compounds during fruit development and ripening is required before genetic or cultural improvements can be targeted. Methods In the present study, the phytochemical analysis of two A. arguta cultivars 'Yilv' and 'Lvmi-1' showed that they comprised different morphology, with a higher fruit diameter while a lower vertical fruit diameter of 'Lvmi-1' compared with 'Yilv'. The antioxidant capacity of both cultivars decreased during the maturity time and showed no significant difference between them. Furthermore, although glucose gradually increased during the maturity time, the predominant sugar composition was speculated to be fructose in 'Lvmi-1' fruit while sucrose in 'Yilv' fruit at the early fruit developmental stages. Moreover, the predominant acids in 'Yilv' and 'Lvmi-1' were citric acid followed by quinic acid, malic acid, and oxalic acid. The expression of sugar- and starch-related genes encoding the crucial enzymes suggested different changes in 'Yilv' and 'Lvmi-1'. Notably, a subsequent correlation analysis showed a significant positive correlation between sucrose phosphate synthase (SPS) expression and glucose in 'Yilv', fructokinase (FK) expression, and starch content in 'Lvmi-1', implying their vital roles in sugar and starch accumulation. By contrast, a significant negative correlation between FK expression and fructose in 'Lvmi-1' fruit was observed. Results and Discussion In summary, our results provide supplementary information for the dynamic changes of nutritional compounds and antioxidant capacity during hardy kiwifruit maturity time and give a clue for exploring the mechanism of sugar and starch accumulation in hardy kiwifruit.
Collapse
Affiliation(s)
- Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Honglan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Bing Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Diya Lei
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xuan Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wantian Yao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jinming Fan
- General Manager's Office, Sichuan Innofresh Agricultural Science and Technology Co., Ltd., Ya’an, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Marmiroli M, Mussi F, Gallo V, Gianoncelli A, Hartley W, Marmiroli N. Combination of Biochemical, Molecular, and Synchrotron-Radiation-Based Techniques to Study the Effects of Silicon in Tomato ( Solanum Lycopersicum L.). Int J Mol Sci 2022; 23:15837. [PMID: 36555489 PMCID: PMC9785873 DOI: 10.3390/ijms232415837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
The work focused on the analysis of two cultivars of tomato (Solanum lycopersicum L.), Aragon and Gladis, under two different treatments of silicon, Low, 2 L of 0.1 mM CaSiO3, and High, 0.5 mM CaSiO3, weekly, for 8 weeks, under stress-free conditions. We subsequently analyzed the morphology, chemical composition, and elemental distribution using synchrotron-based µ-XRF techniques, physiological, and molecular aspects of the response of the two cultivars. The scope of the study was to highlight any significant response of the plants to the Si treatments, in comparison with any response to Si of plants under stress. The results demonstrated that the response was mainly cultivar-dependent, also at the level of mitochondrial-dependent oxidative stress, and that it did not differ from the two conditions of treatments. With Si deposited mainly in the cell walls of the cells of fruits, leaves, and roots, the treatments did not elicit many significant changes from the point of view of the total elemental content, the physiological parameters that measured the oxidative stress, and the transcriptomic analyses focalized on genes related to the response to Si. We observed a priming effect of the treatment on the most responsive cultivar, Aragon, in respect to future stress, while in Gladis the Si treatment did not significantly change the measured parameters.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze 93/A, 43124 Parma, Italy
| | - Francesca Mussi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy
| | - Valentina Gallo
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy
| | - Alessandra Gianoncelli
- Elettra-Sincrotrone Trieste, Strada Statale 14—km 163.5 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - William Hartley
- Agriculture and Environment, Harper Adams University, Newport B5062, UK
| | - Nelson Marmiroli
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze 93/A, 43124 Parma, Italy
| |
Collapse
|
7
|
Fan L, Zhang W, Xu Z, Li S, Liu D, Wang L, Zhou X. A Comparative Characterization and Expression Profiling Analysis of Fructokinase and Fructokinase-like Genes: Exploring Their Roles in Cucumber Development and Chlorophyll Biosynthesis. Int J Mol Sci 2022; 23:ijms232214260. [PMID: 36430739 PMCID: PMC9698557 DOI: 10.3390/ijms232214260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Fructokinase (FRK) and fructokinase-like (FLN), belonging to the phosphofructokinase B type subfamily, share substantial sequence similarity, and are crucial in various plant physiological processes. However, there is limited information regarding what functionally differentiates plant FRKs from FLNs. Here, a total of three CsFRKs and two CsFLNs were identified from the cucumber genome. Their significant difference lay in the structure of their G/AXGD motif, which existed as GAGD in CsFRKs, but as G/ASGD in CsFLNs. Comparative phylogenetic analysis classified CsFRKs and CsFLNs into five sub-branches consistent with their quite different exon/intron organizations. Both transcriptome data and RT-qPCR analyses revealed that CsFRK3 was the most active gene, with the highest expression in the majority of tissues tested. Moreover, the expression levels of two putative plastidic genes, CsFRK1 and CsFLN2, were significantly positively associated with chlorophyll accumulation in the chlorophyll-reduced cucumber mutant. Briefly, both CsFRK and CsFLN genes were involved in the development of sink tissues, especially CsFRK3. CsFRK1 and CsFLN2 were recognized as candidates in the chlorophyll biosynthesis pathway of cucumber. These results would greatly assist in further investigation on functional characterization of FRKs and FLNs, especially in the development and chlorophyll biosynthesis of cucumber.
Collapse
Affiliation(s)
- Lianxue Fan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenshuo Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhuo Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shengnan Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Dong Liu
- Division of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiuyan Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence:
| |
Collapse
|
8
|
Liu R, Deng Y, Liu Y, Wang Z, Yu S, Nie Y, Zhu W, Zhou Z, Diao J. Combined Analysis of Transcriptome and Metabolome Reveals the Potential Mechanism of the Enantioselective Effect of Chiral Penthiopyrad on Tomato Fruit Flavor Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10872-10885. [PMID: 36006413 DOI: 10.1021/acs.jafc.2c03870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated the enantioselective effects of S-, R-, and rac-penthiopyrad (PEN) on the flavor quality of tomato fruit through the levels of sugars, acids, volatiles, and nutrients and explored the potential mechanism by combined analysis of the transcriptome and metabolome. The results revealed that the S-enantiomer increased the content of soluble sugars while decreasing the content of organic acids, thereby increasing the taste of tomato fruit. Furthermore, S-(+)-PEN promoted the accumulation of volatile compounds and nutrients (total phenols, flavonoids, and vitamin C). Transcriptome and metabolome data showed that the S-enantiomer improved fruit flavor and quality by influencing metabolites and genes in glycolysis, starch and sucrose metabolism, the citrate cycle, and amino acid biosynthesis pathways. However, R-(-)-PEN had a negative effect on tomato flavor. The effect of the racemate on fruit flavor quality was between a pair of enantiomers. The comprehensive data of PEN enantiomers will provide theoretical support for the application of PEN in tomatoes. Thus, developing enantiopure S-(+)-PEN products might be more conducive to the flavor and quality of the tomato fruit.
Collapse
Affiliation(s)
- Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| |
Collapse
|
9
|
De Rocchis V, Jammer A, Camehl I, Franken P, Roitsch T. Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153755. [PMID: 35961165 DOI: 10.1016/j.jplph.2022.153755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 05/28/2023]
Abstract
Plant growth-promoting and stress resilience-inducing root endophytic fungi represent an additional carbohydrate sink. This study aims to test if such root endophytes affect the sugar metabolism of the host plant to divert the flow of resources for their purposes. Fresh and dry weights of roots and shoots of tomato (Solanum lycopersicum) colonised by the closely related Serendipita indica and Serendipita herbamans were recorded. Plant carbohydrate metabolism was analysed by measuring sugar levels, by determining activity signatures of key enzymes of carbohydrate metabolism, and by quantifying mRNA levels of genes involved in sugar transport and turnover. During the interaction with the tomato plants, both fungi promoted root growth and shifted shoot biomass from stem to leaf tissues, resulting in increased leaf size. A common effect induced by both fungi was the inhibition of phosphofructokinase (PFK) in roots and leaves. This glycolytic-pacing enzyme shows how the glycolysis rate is reduced in plants and, eventually, how sugars are allocated to different tissues. Sucrose phosphate synthase (SPS) activity was strongly induced in colonised roots. This was accompanied by increased SPS-A1 gene expression in S. herbamans-colonised roots and by increased sucrose amounts in roots colonised by S. indica. Other enzyme activities were barely affected by S. indica, but mainly induced in leaves of S. herbamans-colonised plants and decreased in roots. This study suggests that two closely related root endophytic fungi differentially influence plant carbohydrate metabolism locally and systemically, but both induce a similar increase in plant biomass. Notably, both fungal endophytes induce an increase in SPS activity and, in the case of S. indica, sucrose resynthesis in roots. In leaves of S. indica-colonised plants, SWEET11b expression was enhanced, thus we assume that excess sucrose was exported by this transporter to the roots. .
Collapse
Affiliation(s)
- Vincenzo De Rocchis
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Iris Camehl
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
10
|
Xue Y, Xue J, Ren X, Li C, Sun K, Cui L, Lyu Y, Zhang X. Nutrient Supply Is Essential for Shifting Tree Peony Reflowering Ahead in Autumn and Sugar Signaling Is Involved. Int J Mol Sci 2022; 23:ijms23147703. [PMID: 35887047 PMCID: PMC9315773 DOI: 10.3390/ijms23147703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023] Open
Abstract
The flowering time of tree peony is short and concentrated in spring, which limits the development of its industry. We previously achieved tree peony reflowering in autumn. Here, we further shifted its reflowering time ahead through proper gibberellin (GA) treatment plus nutrient supply. GA treatment alone initiated bud differentiation, but it aborted later, whereas GA plus nutrient (G + N) treatment completed the opening process 38 days before the control group. Through microstructural observation of bud differentiation and starch grains, we concluded that GA plays a triggering role in flowering induction, whereas the nutriment supply ensured the continuous developing for final opening, and both are necessary. We further determined the expression of five floral induction pathway genes and found that PsSOC1 and PsLFY probably played key integral roles in flowering induction and nutrient supply, respectively. Considering the GA signaling, PsGA2ox may be mainly involved in GA regulation, whereas PsGAI may regulate further flower formation after nutrient application. Furthermore, G + N treatment, but not GA alone, inhibited the expression of PsTPS1, a key restricting enzyme in sugar signaling, at the early stage, indicating that sugar signaling is also involved in this process; in addition, GA treatment induced high expression of PsSnRK1, a major nutrient insufficiency indicator, and the induction of PsHXK1, a rate-limiting enzyme for synthesis of sugar signaling substances, further confirmed the nutrient shortage. In short, besides GA application, exogenous nutrient supply is essential to shift tree peony reflowering ahead in autumn under current forcing culture technologies.
Collapse
Affiliation(s)
- Yuqian Xue
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China;
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Xiuxia Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Changyue Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Kairong Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Litao Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China;
- Correspondence: (Y.L.); (X.Z.); Tel.: +86-130-5191-3339 (Y.L.); +86-10-8210-5944 (X.Z.)
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
- Correspondence: (Y.L.); (X.Z.); Tel.: +86-130-5191-3339 (Y.L.); +86-10-8210-5944 (X.Z.)
| |
Collapse
|
11
|
Lugassi N, Stein O, Egbaria A, Belausov E, Zemach H, Arad T, Granot D, Carmi N. Sucrose Synthase and Fructokinase Are Required for Proper Meristematic and Vascular Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:1035. [PMID: 35448763 PMCID: PMC9025968 DOI: 10.3390/plants11081035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/25/2022]
Abstract
Sucrose synthase (SuSy) and fructokinase (FRK) work together to control carbohydrate flux in sink tissues. SuSy cleaves sucrose into fructose and UDP-glucose; whereas FRK phosphorylates fructose. Previous results have shown that suppression of the SUS1,3&4 genes by SUS-RNAi alters auxin transport in the shoot apical meristems of tomato plants and affects cotyledons and leaf structure; whereas antisense suppression of FRK2 affects vascular development. To explore the joint developmental roles of SuSy and FRK, we crossed SUS-RNAi plants with FRK2-antisense plants to create double-mutant plants. The double-mutant plants exhibited novel phenotypes that were absent from the parent lines. About a third of the plants showed arrested shoot apical meristem around the transition to flowering and developed ectopic meristems. Use of the auxin reporter DR5::VENUS revealed a significantly reduced auxin response in the shoot apical meristems of the double-mutant, indicating that auxin levels were low. Altered inflorescence phyllotaxis and significant disorientation of vascular tissues were also observed. In addition, the fruits and the seeds of the double-mutant plants were very small and the seeds had very low germination rates. These results show that SUS1,3&4 and FRK2 enzymes are jointly essential for proper meristematic and vascular development, and for fruit and seed development.
Collapse
Affiliation(s)
- Nitsan Lugassi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel; (N.L.); (O.S.); (A.E.); (E.B.); (H.Z.); (T.A.); (D.G.)
| | - Ofer Stein
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel; (N.L.); (O.S.); (A.E.); (E.B.); (H.Z.); (T.A.); (D.G.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Aiman Egbaria
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel; (N.L.); (O.S.); (A.E.); (E.B.); (H.Z.); (T.A.); (D.G.)
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel; (N.L.); (O.S.); (A.E.); (E.B.); (H.Z.); (T.A.); (D.G.)
| | - Hanita Zemach
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel; (N.L.); (O.S.); (A.E.); (E.B.); (H.Z.); (T.A.); (D.G.)
| | - Tal Arad
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel; (N.L.); (O.S.); (A.E.); (E.B.); (H.Z.); (T.A.); (D.G.)
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel; (N.L.); (O.S.); (A.E.); (E.B.); (H.Z.); (T.A.); (D.G.)
| | - Nir Carmi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel; (N.L.); (O.S.); (A.E.); (E.B.); (H.Z.); (T.A.); (D.G.)
| |
Collapse
|
12
|
Yang H, Tian C, Ji S, Ni F, Fan X, Yang Y, Sun C, Gong H, Zhang A. Integrative analyses of metabolome and transcriptome reveals metabolomic variations and candidate genes involved in sweet cherry (Prunus avium L.) fruit quality during development and ripening. PLoS One 2021; 16:e0260004. [PMID: 34780562 PMCID: PMC8592472 DOI: 10.1371/journal.pone.0260004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/30/2021] [Indexed: 01/05/2023] Open
Abstract
Sweet cherry (Prunus avium L.), one of the most appreciated and most important commercial temperate fruits, has high sensory quality and nutritional value. Investigating its metabolic variations provides valuable information on the formation of fruit quality. In this study, widely targeted LC-MS/MS based metabolomics was used to identify and quantify metabolic changes during 'Black Pearl' sweet cherry development and ripening. A total of 263 significant differentially expressed metabolites (DEMs) were detected during the four fruit-development stages. Significant differences were observed in the composition and content of compounds in the four stages of cherry development, especially sugars, organic acids, and flavonoids. Moreover, transcriptome analysis provided a molecular basis for metabolic variations during fruit development. A total of 6724 significant differentially expressed genes (DEGs) were identified. Further correlation analysis of major DEMs and DEGs showed that 19 key DEGs were involved in sugar metabolism, 23 key DEGs in organic acid metabolism, and 13 key DEGs in flavonoid metabolism. The upregulated genes involved in the flavonoid pathway probably play an important role in regulating the rapid increase of anthocyanin content during fruit development. These comprehensive analysis data provide a better understanding to improve fruit quality traits based on molecular and metabolic levels.
Collapse
Affiliation(s)
- Haiying Yang
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Changping Tian
- Cherry Research Department, Yantai Agricultural Science and Technology Institute, No.26, West Gangcheng Street, Yantai, 265500, China
| | - Shujun Ji
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Fengzhu Ni
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Xinguang Fan
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Yanqing Yang
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Chanchan Sun
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Aidi Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| |
Collapse
|
13
|
Abbas F, Nian X, Zhou Y, Ke Y, Liu L, Yu R, Fan Y. Putative regulatory role of hexokinase and fructokinase in terpenoid aroma biosynthesis in Lilium 'Siberia'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:619-629. [PMID: 34479030 DOI: 10.1016/j.plaphy.2021.08.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 05/17/2023]
Abstract
Lily is one of the most economically important flowers worldwide due to its elegant appearance and appealing scent, which is mainly composed of monoterpene ocimene, linalool and benzenoids. Sugars are the primary products of plants, with fructose and hexose sugars being the substrate material for most organic compounds and metabolic pathways in plants. Herein, we isolated and functionally characterized hexokinase (LoHXK) and fructokinase (LoFRK) from Lilium 'Siberia' flower, which indicated their potential roles in floral aroma production. Real-time PCR analysis showed that LoHXK and LoFRK were highly expressed in the flower filament. Overexpression and virus-induced gene silencing (VIGS) assays revealed that LoHXK and LoFRK significantly modified the emission of β-ocimene and linalool contents via regulation of expression of key structural volatile synthesis genes (LoTPS1 and LoTPS3). Under exogenous glucose and fructose application, the volatile contents of β-ocimene and linalool were increased and the expression levels of key structural genes were upregulated. The emission of β-ocimene and linalool followed a diurnal circadian rhythm. Determination of carbon fluxes via 13C-labeled glucose and 13C-labeled fructose experiments showed that the mass spectra of ocimene and linalool significantly increased, however, the m/z ratio of ethyl benzoate did not change. Furthermore, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that LoFRK interacted with LoMYB1 and LoMYB2 proteins. Together, these results suggest that hexokinase and fructokinase may play significant roles in the regulation of ocimene and linalool biosynthesis in Lilium 'Siberia'.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinxin Nian
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Liang Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Li N, Wang J, Wang B, Huang S, Hu J, Yang T, Asmutola P, Lan H, Qinghui Y. Identification of the Carbohydrate and Organic Acid Metabolism Genes Responsible for Brix in Tomato Fruit by Transcriptome and Metabolome Analysis. Front Genet 2021; 12:714942. [PMID: 34539743 PMCID: PMC8446636 DOI: 10.3389/fgene.2021.714942] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Background Sugar and organic acids not only contribute to the formation of soluble solids (Brix) but also are an essential factor affecting the overall flavor intensity. However, the possible metabolic targets and molecular synthesis mechanisms remain to be further clarified. Methods UHPLC-HRMS (ultrahigh-performance liquid chromatography and high-resolution mass spectrometry) combined with comparative transcriptome analysis were performed in fruits at green ripe (S1), turning-color (S2), and red ripe (S3) stages of two tomato genotypes TM-1 (Solanum galapagense L., LA0436) and TM-38 (S. lycopersicum L. cultivar M82, LA3475) that vary in fruit Brix. Results The fruit Brix of TM-1 was nearly twice that of TM-38 at S3. Nevertheless, TM-1 accumulated 1.84- and 2.77-fold the L-malic acid and citric acid in red ripe fruit (S3) compared with TM-38, respectively. D-glucose and D-fructose in TM-1 and TM-38 fruits tended to be similar at S3. Concomitantly, the sugar/organic acid ratio of TM-38 fruits were 23. 08-, 4. 38-, and 2.59-fold higher than that of TM-1 fruits at S1, S2, and S3, respectively. Among starch and sucrose (carbohydrate, CHO) metabolism (ko00500) genes, SUS (Solyc07g042550.3) and BAM (Solyc08g077530.3) were positively (r = 0.885–0.931) correlated with the sugar/organic acid ratio. Besides, INV (Solyc09g010080.3 and Solyc09g010090.5.1), AAM (Solyc04g082090.3), 4-α-GTase (Solyc02g020980.2.1), BGL2 (Solyc06g073750.4, Solyc06g073760.3, and Solyc01g081170.3), TPS (Solyc01g005210.2 and Solyc07g006500.3), and TPP (Solyc08g079060.4) were negatively (r = −0.823 to −0.918) correlated with the sugar/organic acid ratio. The organic acid (TCA cycle) metabolism (ko00020) gene ALMT (Solyc01g096140.3) was also negatively (r = −0.905) correlated with the sugar/organic acid ratio. Conclusion Citric acid may play a more dominant role in the sugar/organic acid ratio of the tomato fruit, and the contribution of both L-malic acid and citric acid to the fruit Brix was much greater than that of D-glucose and D-fructose. Genes involved in CHO and TCA metabolism, which have a significant correlation with the sugar/organic acid ratio were considered to be the contributing factors of fruit Brix.
Collapse
Affiliation(s)
- Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shaoyong Huang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Jiahui Hu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Patiguli Asmutola
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yu Qinghui
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
15
|
Zuo Z, Sun X, Cao L, Zhang S, Yu J, Xu X, Xu Z, Liu G, Qu C. Genome-wide identification of FRK genes in Populus trichocarpa and their expression under different nitrogen treatments. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1919-1931. [PMID: 34616114 PMCID: PMC8484491 DOI: 10.1007/s12298-021-01055-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Fructokinase (FRK) is the main fructose phosphorylase and plays an important role in catalyzing the irreversible reaction of free fructose phosphorylation. In order to study the regulatory effect of different forms and concentrations of nitrogen on PtFRK genes in Populus trichocarpa, seven genes encoding the hypothetical FRK proteins were identified in Populus trichocarpa genome by bioinformatics method. Phylogenetic analysis revealed that PtFRK family genes can be divided into two subgroups: SI (PtFRK 1, 3, 4, 6) and SII (PtFRK 2, 5, 7). The tissue-specific expression data obtained from PopGenIE indicate that PtFRK2, 3, 4 and 5 are expressed highly in the stem. Quantitative real-time RT-PCR illustrate that PtFRK1-7 showed different expression patterns in different tissues under different concentrations and morphological nitrogen application. Under high nitrate treatment, the expression levels of PtFRK1, 2, 3 and 6 in stem increased significantly, while under low nitrate treatment, only the expression of PtFRK1, 4 in the upper stem and the expression of PtFRK3, 5 in the lower stem increased significantly. In contrast, ammonium tends to inhibit the expression of PtFRKs in lower stems, the expression levels of PtFRK2, 3, 4 and 5 are significantly reduced under ammonium treatment. However, high ammonium had significant effects on PtFRK6 in the apical bud and upper leaves, which were 6 and 8 times of the control, respectively. These results laid the foundation for the study of the PtFRK gene family of poplar and provided a theoretical basis for the molecular mechanism of nitrogen regulating cell wall development. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01055-6.
Collapse
Affiliation(s)
- Zhuang Zuo
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Daxinganling Survey, Planning and Design Institute of State Forestry and Grassland Administration, Jiagedaqi, 165000 People’s Republic of China
| | - Xue Sun
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Lina Cao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Shuang Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040 People’s Republic of China
- College of Life Science, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Zhiru Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040 People’s Republic of China
- College of Life Science, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- School of Forestry, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- College of Forestry, Guizhou University, Guiyang, 550025 People’s Republic of China
| |
Collapse
|
16
|
Shen C, Zhang Y, Li Q, Liu S, He F, An Y, Zhou Y, Liu C, Yin W, Xia X. PdGNC confers drought tolerance by mediating stomatal closure resulting from NO and H 2 O 2 production via the direct regulation of PdHXK1 expression in Populus. THE NEW PHYTOLOGIST 2021; 230:1868-1882. [PMID: 33629353 DOI: 10.1111/nph.17301] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/14/2021] [Indexed: 05/28/2023]
Abstract
Drought is one of the primary abiotic stresses, seriously implicating plant growth and productivity. Stomata play a crucial role in regulating drought tolerance. However, the molecular mechanism on stomatal movement-mediated drought tolerance remains unclear. Using genetic, molecular and biochemical techniques, we identified that the PdGNC directly activating the promoter of PdHXK1 by binding the GATC element, a hexokinase (HXK) synthesis key gene. Here, PdGNC, a member of the GATA transcription factor family, was greatly induced by abscisic acid and dehydration. Overexpressing PdGNC in poplar (Populus clone 717) resulted in reduced stomatal aperture with greater water-use efficiency and increased water deficit tolerance. By contrast, CRISPR/Cas9-mediated poplar mutant gnc exhibited increased stomatal aperture and water loss with reducing drought resistance. PdGNC activates PdHXK1 (a hexokinase synthesis key gene), resulting in a remarkable increase in hexokinase activity in poplars subjected to water deficit. Furthermore, hexokinase promoted nitric oxide (NO) and hydrogen peroxide (H2 O2 ) production in guard cells, which ultimately reduced stomatal aperture and increased drought resistance. Together, PdGNC confers drought stress tolerance by reducing stomatal aperture caused by NO and H2 O2 production via the direct regulation of PdHXK1 expression in poplars.
Collapse
Affiliation(s)
- Chao Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qing Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shujing Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yi An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yangyan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
17
|
Fang P, Long X, Fang Y, Chen H, Yu M. A predominant isoform of fructokinase, HbFRK2, is involved in Hevea brasiliensis (para rubber tree) latex yield and regeneration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:211-220. [PMID: 33706182 DOI: 10.1016/j.plaphy.2021.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Fructokinase (FRK) mediates fructose phosphorylation to regulate the carbon flow and its assignment to sink tissues. Out of five HbFRKs in the genome of the rubber tree, three (HbFRK1-3) that were highly expressed in latex (cytoplasm of laticifers) were isolated and examined. According to phylogenetic analysis and intracellular location experiment, both HbFRK2 and HbFRK3 were highly possible to be expressed in cytosol, while HbFRK1 was in plastid. As the predominant isoform in laticifers, HbFRK2 had the highest transcripts, followed by HbFRK3 and HbFRK1. In enzymatic function, HbFRK2 also showed the highest affinity for fructose. To examine the roles of FRKs in latex yield and regeneration, changes in HbFRKs were examined when latex outflow from the trees were increased through two experimental interventions. In the first approach, tapping was initiated on previously untapped trees, resulting in latex yield increasing with consecutive tapping at the initial stage before it stabilized. In the second approach, latex yield from trees that were already in regular tapping was stimulated by treatment with the ethylene-based yield stimulant, ethephon. Using either method to induce an increase in latex yield, the abundance of HbFRK2 and HbFRK3 in transcripts, was increased. This development, which was especially marked in HbFRK2, may reflect a strengthening of glycolysis to meet the carbon flux and energy demands for increased rubber biosynthesis to replace rubber lost in the increased latex yield. Our results, therefore, suggest that HbFRK2 plays a critical role in fructose catabolism to facilitate rubber regeneration in the commercially exploited rubber tree.
Collapse
Affiliation(s)
- Pingchang Fang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Xiangyu Long
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Yongjun Fang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Hua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
18
|
Liu Z, Shi Y, Xue Y, Wang X, Huang Z, Xue J, Zhang X. Non-structural carbohydrates coordinate tree peony flowering both as energy substrates and as sugar signaling triggers, with the bracts playing an essential role. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:80-88. [PMID: 33341082 DOI: 10.1016/j.plaphy.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/12/2020] [Indexed: 05/15/2023]
Abstract
The natural fluorescence of tree peony is short. Forcing culture, mainly by defoliation and gibberellin (GA) treatment, is frequently used for its industrial production. We previously found forcing culture to be coordinated by non-structural carbohydrates (NSCs). Herein, we further revealed the specific role of NSCs during this process. We observed that both defoliation and GA treatment increased the photosynthesis in the bracts, and defoliation had a greater effect on NSC assimilation. We further determined the NSC content and PsSWEETs expression in the bracts, and the results indicated that GA may contribute more to NSC allocation by inducing PsSWEET7. Furthermore, we determined the trehalose-6-phosphate (T6P) content and sugar signaling-related gene (PsTPS1, PsSnRK1, and PsHXK1) expression in both the petals and bracts and found that both defoliation and GA treatment induced T6P levels as well as PsTPS1 expression in both tissues. This indicated that the sugar signaling pathway may also be involved in NSC-coordinated tree peony flowering. In particular, PsSnRK1 was more rapidly induced in the bracts (as an energy shortage response) in the control plants and was completely prohibited by defoliation and GA treatment, indicating the key role of the bracts in sugar signaling. In conclusion, NSCs induced tree peony flowering both as an energy substrate and sugar signaling trigger, with the bracts playing an essential role. These results may provide further evidence on the mechanism of NSC-coordinated flower opening in tree peony under forcing culture conditions, which may also provide a foundation for improving this technology.
Collapse
Affiliation(s)
- Zhiyong Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Yantong Shi
- Beijing Agricultural Technology Extension Station, Beijing, 100029, China.
| | - Yuqian Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Xiaoping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Zhen Huang
- Zaozhuang Vocational College, Shandong, 277800, China.
| | - Jingqi Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
19
|
Lacrampe N, Lopez-Lauri F, Lugan R, Colombié S, Olivares J, Nicot PC, Lecompte F. Regulation of sugar metabolism genes in the nitrogen-dependent susceptibility of tomato stems to Botrytis cinerea. ANNALS OF BOTANY 2021; 127:143-154. [PMID: 32853354 PMCID: PMC7750717 DOI: 10.1093/aob/mcaa155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS The main soluble sugars are important components of plant defence against pathogens, but the underlying mechanisms are unclear. Upon infection by Botrytis cinerea, the activation of several sugar transporters, from both plant and fungus, illustrates the struggle for carbon resources. In sink tissues, the metabolic use of the sugars mobilized in the synthesis of defence compounds or antifungal barriers is not fully understood. METHODS In this study, the nitrogen-dependent variation of tomato stem susceptibility to B. cinerea was used to examine, before and throughout the course of infection, the transcriptional activity of enzymes involved in sugar metabolism. Under different nitrate nutrition regimes, the expression of genes that encode the enzymes of sugar metabolism (invertases, sucrose synthases, hexokinases, fructokinases and phosphofructokinases) was determined and sugar contents were measured before inoculation and in asymptomatic tissues surrounding the lesions after inoculation. KEY RESULTS At high nitrogen availability, decreased susceptibility was associated with the overexpression of several genes 2 d after inoculation: sucrose synthases Sl-SUS1 and Sl-SUS3, cell wall invertases Sl-LIN5 to Sl-LIN9 and some fructokinase and phosphofructokinase genes. By contrast, increased susceptibility corresponded to the early repression of several genes that encode cell wall invertase and sucrose synthase. The course of sugar contents was coherent with gene expression. CONCLUSIONS The activation of specific genes that encode sucrose synthase is required for enhanced defence. Since the overexpression of fructokinase is also associated with reduced susceptibility, it can be hypothesized that supplementary sucrose cleavage by sucrose synthases is dedicated to the production of cell wall components from UDP-glucose, or to the additional implication of fructose in the synthesis of antimicrobial compounds, or both.
Collapse
Affiliation(s)
- Nathalie Lacrampe
- PSH unit, INRAE, Avignon, France
- UMR Qualisud, Avignon Université, Avignon, France
| | | | | | - Sophie Colombié
- UMR 1332 BFP, INRAE, Univ Bordeaux, Villenave d’Ornon, France
| | | | | | | |
Collapse
|
20
|
Zhong H, Zhang F, Pan M, Wu X, Zhang W, Han S, Xie H, Zhou X, Wang M, Ai CM, He T. Comparative phenotypic and transcriptomic analysis of Victoria and flame seedless grape cultivars during berry ripening. FEBS Open Bio 2020; 10:2616-2630. [PMID: 33090714 PMCID: PMC7714085 DOI: 10.1002/2211-5463.12996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Grape berry development is a highly coordinated and intricate process. Herein, we analyzed the phenotypic and transcriptomic patterns of Victoria (VT) and Flame Seedless (FS) grape varieties during berry development. Physiological analysis and transcriptomic sequencing were performed at four berry developmental phases. VT berry size was comparatively larger to the FS variety. At maturity, 80 days postanthesis (DPA), the FS soluble solids were 61.8% higher than VT. Further, 4889 and 2802 differentially expressed genes were identified from VT and FS 40 DPA to 80 DPA development stages, respectively. VvSWEET15, VvHXK, and MYB44 genes were up‐regulated during the postanthesis period, while bHLH14, linked to glucose metabolism, was gradually down‐regulated during berry development. These genes may have significant roles in berry development, ripening, and sugar accumulation.
Collapse
Affiliation(s)
- Haixia Zhong
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Fuchun Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Mingqi Pan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xinyu Wu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shouan Han
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hui Xie
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiaoming Zhou
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Min Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Caikasimu Maikeer Ai
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tianming He
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
21
|
Lü J, Tao X, Yao G, Zhang S, Zhang H. Transcriptome Analysis of Low- and High-Sucrose Pear Cultivars Identifies Key Regulators of Sucrose Biosynthesis in Fruits. PLANT & CELL PHYSIOLOGY 2020; 61:1493-1506. [PMID: 32396606 DOI: 10.1093/pcp/pcaa068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Sucrose accumulation is one of the important factors that determine fruit enlargement and quality. Evaluation of the sugar profile of 105 pear cultivars revealed low-sucrose and high-sucrose (HS) types of pear fruits. To better understand the molecular mechanisms governing the sucrose content of pear fruits, this study performed transcriptome analysis during fruit development using low-sucrose 'Korla' fragrant pear and HS 'Hosui' pear, and a coexpression module uniquely associated with the control of high-sucrose accumulation was identified by weighted gene coexpression network analysis. These results suggested that there are seven candidate genes encoding key enzymes (fructokinase, glucose-6-phosphate isomerase, sucrose phosphate synthase and sucrose synthase) involved in sucrose biosynthesis and several transcription factors (TFs) whose expression patterns correlate with those of genes associated with sucrose biosynthesis. This correlation was confirmed by linear regression analysis between predicted gene expression and sucrose content in different pear cultivars during fruit development. This study provides insight into the molecular mechanism underlying differences in sucrose content across pear cultivars and presents candidate structural genes and TFs that could play important roles in regulating carbohydrate partitioning and sucrose accumulation.
Collapse
Affiliation(s)
- Jiahong Lü
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaifang Yao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Zheng W, Zhang Y, Zhang Q, Wu R, Wang X, Feng S, Chen S, Lu C, Du L. Genome-Wide Identification and Characterization of Hexokinase Genes in Moso Bamboo ( Phyllostachys edulis). FRONTIERS IN PLANT SCIENCE 2020; 11:600. [PMID: 32508863 PMCID: PMC7248402 DOI: 10.3389/fpls.2020.00600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/20/2020] [Indexed: 05/18/2023]
Abstract
Plant hexokinases (HXKs) are a class of multifunctional proteins that not only act as the enzymes required for hexose phosphorylation but also serve as sugar sensors that repress the expression of some photosynthetic genes when internal glucose level increases and regulators of cell metabolism and some sugar-related signaling pathways independent on their catalytic actives. The HXKs have been studied in many plants; however, limited information is available on HXKs of moso bamboo (Phyllostachys edulis). In this study, we identified and characterized 12 hexokinase genes in moso bamboo. Phylogenetic analysis revealed that the moso bamboo hexokinases (PeHXKs) were classifiable into five subfamilies which represented the three types of hexokinases in plants. Gene structure and conserved motif analysis showed that the PeHXK genes contained diverse numbers of introns and exons and that the encoded proteins showed similar motif organization within each subfamily. Multiple sequence alignment revealed that the PeHXK proteins contained conserved domains, such as phosphate 1 (P1), phosphate 2 (P2), adenosine, and a sugar-binding domain. Evolutionary divergence analysis indicated that the PeHXK, OsHXK, and BdHXK families underwent negative selection and experienced a large-scale duplication event approximately 19-319 million years ago. Expression analysis of the PeHXK genes in the leaf, stem, root, and rhizome of moso bamboo seedlings indicated that the PeHXKs perform pivotal functions in the development of moso bamboo. A protein subcellular localization assay showed that PeHXK5a, PeHXK8, and PeHXK3b were predominantly localized in mitochondria, and PeHXK8 protein was also detected in the nucleus. The HXK activity of the PeHXK5a, PeHXK8, and PeHXK3b was verified by a functional complementation assay using the HXK-deficient triple-mutant yeast strain YSH7.4-3C (hxk1, hxk2, and glk1), and the results showed that the three PeHXKs had the plant HXK-specific enzyme traits. The present findings would provide a foundation for further functional analysis of the PeHXK gene family.
Collapse
Affiliation(s)
- Wenqing Zheng
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuan Zhang
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qian Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinwei Wang
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shengnian Feng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cunfu Lu
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Du
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
23
|
Xu W, Zhao Y, Chen S, Xie J, Zhang D. Evolution and Functional Divergence of the Fructokinase Gene Family in Populus. FRONTIERS IN PLANT SCIENCE 2020; 11:484. [PMID: 32499793 PMCID: PMC7243158 DOI: 10.3389/fpls.2020.00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/31/2020] [Indexed: 05/06/2023]
Abstract
New kinase has emerged throughout evolution, but how new kinase evolve while maintaining their functions and acquiring new functions remains unclear. Fructokinase (FRK), the gateway kinase to fructose metabolism, plays essential roles in plant development, and stress tolerance. Here, we explored the evolution of FRK gene family in 20 plant species (from green algae to angiosperms) and their functional roles in Populus. We identified 125 putative FRK genes in the 20 plant species with an average of 6 members per species. Phylogenetic analysis separated these 125 genes into 8 clades including 3 conserved clades and 5 specific clades, the 5 of which only exist in green algae or angiosperms. Evolutionary analysis revealed that FRK genes in ancient land plants have the largest number of functional domains with the longest amino acid sequences, and the length of FRK genes became shorter during the transition to vascular plants. This was accompanied by loss, acquisition, and diversification of functional domains. In Populus, segmental duplication appears to be the main mechanism for the expansion of FRK genes. Specially, most FRK genes duplicated in salicoids are regulated by Populus-specific microRNAs. Furthermore, compared with common FRKs, Populus-specific FRKs have showed higher expression specificity and are associated with fewer growth and wood property traits, which suggests that these FRKs may have undergone functional divergence. Our study explores the specific roles of FRKs in the Populus genome and provides new insights for functional investigation of this gene family.
Collapse
Affiliation(s)
- Weijie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing, China
| | - Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing, China
| | - Sisi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing, China
| |
Collapse
|
24
|
Lugassi N, Kelly G, Arad T, Farkash C, Yaniv Y, Yeselson Y, Schaffer AA, Raveh E, Granot D, Carmi N. Expression of Hexokinase in Stomata of Citrus Fruit Reduces Fruit Transpiration and Affects Seed Development. FRONTIERS IN PLANT SCIENCE 2020; 11:255. [PMID: 32211009 PMCID: PMC7068913 DOI: 10.3389/fpls.2020.00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The temporal formation and spatial distribution of stomata on the surface of citrus floral organs and, specifically, on the ovule from which the fruit develops, were analyzed using citrus plants that express green fluorescent protein (GFP) under the guard cell-specific KST1 promoter. Stomata are found on the style, sepal, and anther of the closed flower and on ovules from the stage of anthesis. It has previously been shown that hexokinase (HXK) mediates sugar-sensing in leaf guard cells and stimulates stomatal closure. The activity and response of citrus fruit stomata to sugar-sensing by HXK was examined using plants that express HXK under the KST1 promoter. Those plants are referred to as GCHXK plants. The transpiration of young green GCHXK citrus fruits was significantly reduced, indicating that their stomata respond to sugar similar to leaf stomata. Toward fruit maturation, fruit stomata are plugged and stop functioning, which explains why WT and GCHXK mature yellow fruits exhibited similar water loss. Seeds of the GCHXK plants were smaller and germinated more slowly than the WT seeds. We suggest that the stomata of young green citrus fruits, but not mature yellow fruits, respond to sugar levels via HXK and that fruit stomata are important for proper seed development.
Collapse
Affiliation(s)
- Nitsan Lugassi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tal Arad
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Chagai Farkash
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Yossi Yaniv
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Yelena Yeselson
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Arthur A. Schaffer
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Eran Raveh
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Gilat Research Center, Negev, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Nir Carmi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| |
Collapse
|
25
|
Lugassi N, Yadav BS, Egbaria A, Wolf D, Kelly G, Neuhaus E, Raveh E, Carmi N, Granot D. Expression of Arabidopsis Hexokinase in Tobacco Guard Cells Increases Water-Use Efficiency and Confers Tolerance to Drought and Salt Stress. PLANTS (BASEL, SWITZERLAND) 2019; 8:E613. [PMID: 31888275 PMCID: PMC6963886 DOI: 10.3390/plants8120613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/17/2022]
Abstract
Abiotic stresses such as drought and saline water impose major limitations on plant growth. Modulation of stomatal behavior may help plants cope with such stresses by reducing both water loss and salt uptake. Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in guard cells' sugar-sensing, mediating stomatal closure and coordinating photosynthesis with transpiration. We generated transgenic tobacco lines expressing the Arabidopsis hexokinase1 (AtHXK1) under the guard cell-specific promoter KST1 and examined those plants using growth room and greenhouse experiments. The expression of AtHXK1 in tobacco guard cells reduced stomatal conductance and transpiration by about 25% with no negative effects on photosynthesis or growth, leading to increased water-use efficiency. In addition, these plants exhibited tolerance to drought and salt stress due to their lower transpiration rate, indicating that improved stomatal function has the potential to improve plant performance under stress conditions.
Collapse
Affiliation(s)
- Nitsan Lugassi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; (N.L.); (B.S.Y.); (A.E.); (D.W.); (G.K.); (N.C.)
| | - Brijesh Singh Yadav
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; (N.L.); (B.S.Y.); (A.E.); (D.W.); (G.K.); (N.C.)
| | - Aiman Egbaria
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; (N.L.); (B.S.Y.); (A.E.); (D.W.); (G.K.); (N.C.)
| | - Dalia Wolf
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; (N.L.); (B.S.Y.); (A.E.); (D.W.); (G.K.); (N.C.)
| | - Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; (N.L.); (B.S.Y.); (A.E.); (D.W.); (G.K.); (N.C.)
| | - Efrat Neuhaus
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Gilat Research Center, Negev, Israel; (E.N.); (E.R.)
| | - Eran Raveh
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Gilat Research Center, Negev, Israel; (E.N.); (E.R.)
| | - Nir Carmi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; (N.L.); (B.S.Y.); (A.E.); (D.W.); (G.K.); (N.C.)
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; (N.L.); (B.S.Y.); (A.E.); (D.W.); (G.K.); (N.C.)
| |
Collapse
|
26
|
Yang J, Zhang J, Li C, Zhang Z, Ma F, Li M. Response of sugar metabolism in apple leaves subjected to short-term drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:164-171. [PMID: 31170640 DOI: 10.1016/j.plaphy.2019.05.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 05/02/2023]
Abstract
For a comprehensive understanding of gene expression, enzyme activity and sugar concentrations in response to short-term water deficit in apple (Greensleeves), sugar-modulated gene expression and enzyme activities were analyzed. Water stress resulted in the accumulation of sorbitol, glucose, fructose, galactose and starch, accompanied by a significant reduction in photosynthesis and sucrose concentration. In response to short-term water deficits, the activities of aldose-6-phosphate reductase (A6PR; EC 1.1.1.200), sorbitol dehydrogenase (SDH; EC 1.1.1.14), neutral invertase (NINV; EC 3.2.1.26), sucrose synthase (SUSY; EC 2.4.1.13), and fructokinase (FK; EC 2.7.1.4) were higher, whereas cell wall invertase (CWINV; EC 3.2.1.26) and hexokinase (HK; EC 2.7.1.1) activities were lower. In addition, sucrose phosphate synthase (SPS; EC 2.4.1.14) activity increased during the initial stages of dehydration and then decreased as the drought strengthened. Transcript levels of MdA6PR, MdSDH1/2, MdNINV1/2, MdSUSY3, MdFK1/2/4, MdSOT1/2, MdSUC1-3, MdTMT2/3, MdvGT1, MdpGlcT1-4 were upregulated, whereas transcript levels of MdCWINV1/2, MdHK1/2/3/5, and MdTMT1 were downregulated after 6 days of water stress. These findings suggest that the sorbitol metabolism pathway is induced and high levels of hexose derived from photosynthetic products are transported into vacuoles for adjustment to the water deficit. Our results provide insights into the relationships between sugar levels and sugar-modulated gene and enzyme activity in response to the imposition of short-term water stress.
Collapse
Affiliation(s)
- Jingjing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chuang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
27
|
Shu H, Zhang J, Liu F, Bian C, Liang J, Liang J, Liang W, Lin Z, Shu W, Li J, Shi Q, Liao B. Comparative Transcriptomic Studies on a Cadmium Hyperaccumulator Viola baoshanensis and Its Non-Tolerant Counterpart V. inconspicua. Int J Mol Sci 2019; 20:E1906. [PMID: 30999673 PMCID: PMC6515270 DOI: 10.3390/ijms20081906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022] Open
Abstract
Many Viola plants growing in mining areas exhibit high levels of cadmium (Cd) tolerance and accumulation, and thus are ideal organisms for comparative studies on molecular mechanisms of Cd hyperaccumulation. However, transcriptomic studies of hyperaccumulative plants in Violaceae are rare. Viola baoshanensis is an amazing Cd hyperaccumulator in metalliferous areas of China, whereas its relative V. inconspicua is a non-tolerant accumulator that resides at non-metalliferous sites. Here, comparative studies by transcriptome sequencing were performed to investigate the key pathways that are potentially responsible for the differential levels of Cd tolerance between these two Viola species. A cascade of genes involved in the ubiquitin proteosome system (UPS) pathway were observed to have constitutively higher transcription levels and more activation in response to Cd exposure in V. baoshanensis, implying that the enhanced degradation of misfolded proteins may lead to high resistance against Cd in this hyperaccumulator. Many genes related to sucrose metabolism, especially those involved in callose and trehalose biosynthesis, are among the most differentially expressed genes between the two Viola species, suggesting a crucial role of sucrose metabolism not only in cell wall modification through carbon supply but also in the antioxidant system as signaling molecules or antioxidants. A comparison among transcriptional patterns of some known transporters revealed that several tonoplast transporters are up-regulated in V. baoshanensis under Cd stress, suggesting more efficient compartmentalization of Cd in the vacuoles. Taken together, our findings provide valuable insight into Cd hypertolerance in V. baoshanensis, and the corresponding molecular mechanisms will be useful for future genetic engineering in phytoremediation.
Collapse
Affiliation(s)
- Haoyue Shu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jun Zhang
- School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Fuye Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Jieliang Liang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Jiaqi Liang
- School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Weihe Liang
- School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhiliang Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Jintian Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Bin Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
Zeng X, Xu Y, Jiang J, Zhang F, Ma L, Wu D, Wang Y, Sun W. iTRAQ-Based Comparative Proteomic Analysis of the Roots of TWO Winter Turnip Rapes ( Brassica rapa L.) with Different Freezing-Tolerance. Int J Mol Sci 2018; 19:E4077. [PMID: 30562938 PMCID: PMC6321220 DOI: 10.3390/ijms19124077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023] Open
Abstract
The freezing tolerance of roots is crucial for winter turnip rape (Brassica rapa L.) survival in the winter in Northwest China. Cold acclimation (CA) can alleviate the root damage caused by freezing stress. To acknowledge the molecular mechanisms of freezing tolerance in winter turnip rape, two Brassica rapa genotypes, freezing stressed after the induction of cold acclimation, were used to compare the proteomic profiles of roots by isobaric tags for relative and absolute quantification (iTRAQ). Under freezing stress (-4 °C) for 8 h, 139 and 96 differentially abundant proteins (DAPs) were identified in the roots of "Longyou7" (freezing-tolerant) and "Tianyou4" (freezing-sensitive), respectively. Among these DAPs, 91 and 48 proteins were up- and down-accumulated in "Longyou7", respectively, and 46 and 50 proteins were up- and down-accumulated in "Tianyou4", respectively. Under freezing stress, 174 DAPs of two varieties were identified, including 9 proteins related to ribosome, 19 DAPs related to the biosynthesis of secondary metabolites (e.g., phenylpropanoid and the lignin pathway), and 22 down-accumulated DAPs enriched in oxidative phosphorylation, the pentose phosphate pathway, fructose and mannose metabolism, alpha-linolenic acid metabolism, carbon fixation in photosynthetic organisms, ascorbate and aldarate metabolism. The expressional pattern of the genes encoding the 15 significant DAPs were consistent with the iTRAQ data. This work indicates that protein biosynthesis, lignin synthesis, the reduction of energy consumption and a higher linolenic acid content contribute to the freezing tolerance of winter turnip rape. Functional analyses of these DAPs would be helpful in dissecting the molecular mechanisms of the stress responses in B. rapa.
Collapse
Affiliation(s)
- Xiucun Zeng
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
| | - Yaozhao Xu
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Fenqin Zhang
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
| | - Li Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
29
|
Yang J, Zhu L, Cui W, Zhang C, Li D, Ma B, Cheng L, Ruan YL, Ma F, Li M. Increased activity of MdFRK2, a high-affinity fructokinase, leads to upregulation of sorbitol metabolism and downregulation of sucrose metabolism in apple leaves. HORTICULTURE RESEARCH 2018; 5:71. [PMID: 30534388 PMCID: PMC6269498 DOI: 10.1038/s41438-018-0099-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 05/10/2023]
Abstract
To investigate the functions of fructokinase (FRK) in apple (Malus domestica) carbohydrate metabolism, we cloned the coding sequences of MdFRK1 and MdFRK2 from the 'Royal Gala' apple. The results showed that MdFRK2 expression was extremely high in shoot tips and young fruit. Analyses of heterologously expressed proteins revealed that MdFRK2 had a higher affinity for fructose than did MdFRK1, with Km values of 0.1 and 0.62 mM for MdFRK2 and MdFRK1, respectively. The two proteins, however, exhibited similar Vmax values when their activities were significantly inhibited by high concentrations of fructose. MdFRK2 ectopic expression was associated with a general decrease in fructose concentration in transgenic lines. In leaves, increased FRK activity similarly resulted in reduced concentrations of glucose and sucrose but no alterations in sorbitol concentration. When compared with those in the untransformed control, genes involved in sorbitol synthesis (A6PR) and the degradation pathway (SDH1/2) were significantly upregulated in transgenic lines, whereas those involved in sucrose synthesis (SPS1) and other degradation processes (SUSY4, NINV1/2, and HxK2) were downregulated. The activity of enzymes participating in carbohydrate metabolism was proportional to the level of gene expression. However, the growth performance and photosynthetic efficiency did not differ between the transgenic and wild-type plants. These results provide new genetic evidence to support the view that FRK plays roles in regulating sugar and sorbitol metabolism in Rosaceae plants.
Collapse
Affiliation(s)
- Jingjing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Weifang Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Chen Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Dongxia Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
30
|
Cao Y, Li S, Han Y, Meng D, Jiao C, Abdullah M, Li D, Jin Q, Lin Y, Cai Y. A new insight into the evolution and functional divergence of FRK genes in Pyrus bretschneideri. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171463. [PMID: 30109040 PMCID: PMC6083675 DOI: 10.1098/rsos.171463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/15/2018] [Indexed: 06/01/2023]
Abstract
In plants, plant fructokinases (FRKs) are considered to be the main gateway of fructose metabolism as they can phosphorylate fructose to fructose-6-phosphate. Chinese white pears (Pyrus bretschneideri) are one of the popular fruits in the world market; sugar content is an important factor affecting the quality of the fruit. We identified 49 FRKs from four Rosaceae species; 20 of these sequences were from Chinese white pear. Subsequently, phylogenic relationship, gene structure and micro-collinearity were analysed. Phylogenetic and exon-intron analysis classified these FRKs into 10 subfamilies, and it was aimed to further reveal the variation of the gene structure and the evolutionary relationship of this gene family. Remarkably, gene expression patterns in different tissues or different development stages of the pear fruit suggested functional redundancy for PbFRKs derived from segmental duplication or genome-wide duplication and sub-functionalization for some of them. Additionally, PbFRK11, PbFRK13 and PbFRK16 were found to play important roles in regulating the sugar content in the fruit. Overall, this study provided important insights into the evolution of the FRK gene family in four Rosaceae species, and highlighted its roles in both pear tissue and fruits. Results presented here provide the appropriate candidate of PbFRKs that might contribute to fructose efflux in the pear fruit.
Collapse
Affiliation(s)
- Yunpeng Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Shumei Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Yahui Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Dandan Meng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Chunyan Jiao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Muhammad Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Dahui Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Qing Jin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| |
Collapse
|
31
|
Hei S, Liu Z, Huang A, She X. The regulator of G-protein signalling protein mediates D-glucose-induced stomatal closure via triggering hydrogen peroxide and nitric oxide production in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:509-518. [PMID: 32290990 DOI: 10.1071/fp17180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/02/2017] [Indexed: 06/11/2023]
Abstract
2-Deoxy-D-glucose, 3-O-methyl-D-glucose and D-mannose are all non-metabolisable D-glucose analogues. Among these, 2-deoxy-D-glucose and D-mannose are substrates for hexokinase (HXK). D-sorbitol and D-mannitol are reduced forms of D-glucose and are typically used as comparable osmotic solutes. Similar to 2-deoxy-D-glucose and D-mannose, D-glucose induced stomatal closure in Arabidopsis, whereas 3-O-methyl-D-glucose, D-sorbitol and D-mannitol did not. The data show that the effect of D-glucose on stomata is metabolism-independent, HXK-dependent and irrelevant to osmotic stress. Additionally, the D-glucose induced closure of stomata in wild-type Arabidopsis, but did not in rgs1-1 and rgs1-2 or gpa1-3 and gpa1-4 mutants, indicating that the regulator of G-protein signalling protein (RGS1) and heterotrimeric guanine nucleotide-binding proteins (G proteins)-α subunit (Gα) also mediate the stomatal closure triggered by D-glucose. Furthermore, the effects of D-glucose on hydrogen peroxide (H2O2) or nitric oxide (NO) production and stomatal closure were more significant in AtrbohD or Nia2-1 mutants than in AtrbohF and AtrbohD/F or Nia1-2 and Nia2-5/Nia1-2. The data indicate that H2O2 sourced from AtrbohF and NO generated by Nia1 are essential for D-glucose-mediated stomatal closure. D-glucose-induced H2O2 and NO production in guard cells were completely abolished in rgs1-1 and rgs1-2, which suggests that RGS1 stimulates H2O2 and NO production in D-glucose-induced stomatal closure. Collectively, our data reveal that both HXK and RGS1 are required for D-glucose-mediated stomatal closure. In this context, D-glucose can be sensed by its receptor RGS1, thereby inducing AtrbohF-dependent H2O2 production and Nia1-catalysed NO accumulation, which in turn stimulates stomatal closure.
Collapse
Affiliation(s)
- Shumei Hei
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Zhifeng Liu
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Aixia Huang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoping She
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
32
|
Yao Y, Geng MT, Wu XH, Sun C, Wang YL, Chen X, Shang L, Lu XH, Li Z, Li RM, Fu SP, Duan RJ, Liu J, Hu XW, Guo JC. Identification, Expression, and Functional Analysis of the Fructokinase Gene Family in Cassava. Int J Mol Sci 2017; 18:E2398. [PMID: 29137155 PMCID: PMC5713366 DOI: 10.3390/ijms18112398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/03/2022] Open
Abstract
Fructokinase (FRK) proteins play important roles in catalyzing fructose phosphorylation and participate in the carbohydrate metabolism of storage organs in plants. To investigate the roles of FRKs in cassava tuber root development, seven FRK genes (MeFRK1-7) were identified, and MeFRK1-6 were isolated. Phylogenetic analysis revealed that the MeFRK family genes can be divided into α (MeFRK1, 2, 6, 7) and β (MeFRK3, 4, 5) groups. All the MeFRK proteins have typical conserved regions and substrate binding residues similar to those of the FRKs. The overall predicted three-dimensional structures of MeFRK1-6 were similar, folding into a catalytic domain and a β-sheet ''lid" region, forming a substrate binding cleft, which contains many residues involved in the binding to fructose. The gene and the predicted three-dimensional structures of MeFRK3 and MeFRK4 were the most similar. MeFRK1-6 displayed different expression patterns across different tissues, including leaves, stems, tuber roots, flowers, and fruits. In tuber roots, the expressions of MeFRK3 and MeFRK4 were much higher compared to those of the other genes. Notably, the expression of MeFRK3 and MeFRK4 as well as the enzymatic activity of FRK were higher at the initial and early expanding tuber stages and were lower at the later expanding and mature tuber stages. The FRK activity of MeFRK3 and MeFRK4 was identified by the functional complementation of triple mutant yeast cells that were unable to phosphorylate either glucose or fructose. The gene expression and enzymatic activity of MeFRK3 and MeFRK4 suggest that they might be the main enzymes in fructose phosphorylation for regulating the formation of tuber roots and starch accumulation at the tuber root initial and expanding stages.
Collapse
Affiliation(s)
- Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Meng-Ting Geng
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Xiao-Hui Wu
- Prisys Biotechnologies Company Limited, Shanghai 201203, China.
| | - Chong Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Yun-Lin Wang
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Xia Chen
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Lu Shang
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Xiao-Hua Lu
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Zhan Li
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Rui-Mei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shao-Ping Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Rui-Jun Duan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xin-Wen Hu
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Jian-Chun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
33
|
Kelly G, Sade N, Doron-Faigenboim A, Lerner S, Shatil-Cohen A, Yeselson Y, Egbaria A, Kottapalli J, Schaffer AA, Moshelion M, Granot D. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:325-339. [PMID: 28390076 DOI: 10.1111/tpj.13568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 05/27/2023]
Abstract
Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration.
Collapse
Affiliation(s)
- Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Nir Sade
- The Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Stephen Lerner
- The Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Arava Shatil-Cohen
- The Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Yelena Yeselson
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Aiman Egbaria
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Jayaram Kottapalli
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Arthur A Schaffer
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Menachem Moshelion
- The Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| |
Collapse
|
34
|
Shen C, Wang J, Shi X, Kang Y, Xie C, Peng L, Dong C, Shen Q, Xu Y. Transcriptome Analysis of Differentially Expressed Genes Induced by Low and High Potassium Levels Provides Insight into Fruit Sugar Metabolism of Pear. FRONTIERS IN PLANT SCIENCE 2017; 8:938. [PMID: 28620410 PMCID: PMC5450510 DOI: 10.3389/fpls.2017.00938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/19/2017] [Indexed: 05/14/2023]
Abstract
Potassium (K) deficiency is a common abiotic stress that can inhibit the growth of fruit and thus reduce crop yields. Little research has been conducted on pear transcriptional changes under low and high K conditions. Here, we performed an experiment with 7-year-old pot-grown "Huangguan" pear trees treated with low, Control or high K levels (0, 0.4, or 0.8 g·K2O/kg soil, respectively) during fruit enlargement and mature stages. We identified 36,444 transcripts from leaves and fruit using transcriptome sequencing technology. From 105 days after full blooming (DAB) to 129 DAB, the number of differentially expressed genes (DEGs) in leaves and fruit in response to low K increased, while in response to high K, the number of DEGs in leaves and fruit decreased. We selected 17 of these DEGs for qRT-PCR analysis to confirm the RNA sequencing results. Based on GO enrichment and KEGG pathway analysis, we found that low-K treatment significantly reduced K nutrient and carbohydrate metabolism of the leaves and fruit compared with the Control treatment. During the fruit development stages, AKT1 (gene39320) played an important role on K+ transport of the leaves and fruit response to K stress. At maturity, sucrose and acid metabolic pathways were inhibited by low K. The up-regulation of the expression of three SDH and two S6PDH genes involved in sorbitol metabolism was induced by low K, promoting the fructose accumulation. Simultaneously, higher expression was found for genes encoding amylase under low K, promoting the decomposition of the starch and leading the glucose accumulation. High K could enhance leaf photosynthesis, and improve the distribution of the nutrient and carbohydrate from leaf to fruit. Sugar components of the leaves and fruit under low K were regulated by the expression of genes encoding 8 types of hormone signals and reactive oxygen species (ROS). Our data revealed the gene expression patterns of leaves and fruit in response to different K levels during the middle and late stages of fruit development as well as the molecular mechanism of improvement of fruit sugar levels by K and provided a scientific basis for improving fruit quality with supplemental K fertilizers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caixia Dong
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Jiangsu Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Science, Nanjing Agricultural UniversityNanjing, China
| | | | | |
Collapse
|
35
|
Geng MT, Yao Y, Wang YL, Wu XH, Sun C, Li RM, Fu SP, Duan RJ, Liu J, Hu XW, Guo JC. Structure, Expression, and Functional Analysis of the Hexokinase Gene Family in Cassava. Int J Mol Sci 2017; 18:E1041. [PMID: 28498327 PMCID: PMC5454953 DOI: 10.3390/ijms18051041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
Hexokinase (HXK) proteins play important roles in catalyzing hexose phosphorylation and sugar sensing and signaling. To investigate the roles of HXKs in cassava tuber root development, seven HXK genes (MeHXK1-7) were isolated and analyzed. A phylogenetic analysis revealed that the MeHXK family can be divided into five subfamilies of plant HXKs. MeHXKs were clearly divided into type A (MeHXK1) and type B (MeHXK2-7) based on their N-terminal sequences. MeHXK1-5 all had typical conserved regions and similar protein structures to the HXKs of other plants; while MeHXK6-7 lacked some of the conserved regions. An expression analysis of the MeHXK genes in cassava organs or tissues demonstrated that MeHXK2 is the dominant HXK in all the examined tissues (leaves, stems, fruits, tuber phloems, and tuber xylems). Notably, the expression of MeHXK2 and the enzymatic activity of HXK were higher at the initial and expanding tuber stages, and lower at the mature tuber stage. Furthermore, the HXK activity of MeHXK2 was identified by functional complementation of the HXK-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). The gene expression and enzymatic activity of MeHXK2 suggest that it might be the main enzyme for hexose phosphorylation during cassava tuber root development, which is involved in sucrose metabolism to regulate the accumulation of starch.
Collapse
Affiliation(s)
- Meng-Ting Geng
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yun-Lin Wang
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Xiao-Hui Wu
- Prisys Biotechnologies Company Limited, Shanghai 201203, China.
| | - Chong Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Rui-Mei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shao-Ping Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Rui-Jun Duan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xin-Wen Hu
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Jian-Chun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
36
|
Riggs JW, Cavales PC, Chapiro SM, Callis J. Identification and biochemical characterization of the fructokinase gene family in Arabidopsis thaliana. BMC PLANT BIOLOGY 2017; 17:83. [PMID: 28441933 PMCID: PMC5405513 DOI: 10.1186/s12870-017-1031-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/12/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Fructose is an abundant sugar in plants as it is a breakdown product of both major sucrose-cleaving enzymes. To enter metabolism, fructose is phosphorylated by a fructokinase (FRK). Known FRKs are members of a diverse family of carbohydrate/purine kinases known as the phosphofructokinase B (pfkB) family. The complete complement of active fructokinases has not been reported for any plant species. RESULTS Protein sequence analysis of the 22 Arabidopsis thaliana pfkB members identified eight highly related predicted proteins, including one with previously demonstrated FRK activity. For one, At1g50390, the predicted open reading frame is half the size of active FRKs, and only incompletely spliced RNAs were identified, which led to a premature stop codon, both indicating that this gene does not produce active FRK. The remaining seven proteins were expressed in E. coli and phosphorylated fructose specifically in vitro leading us to propose a unifying nomenclature (FRK1-7). Substrate inhibition was observed for fructose in all FRKs except FRK1. Fructose binding was on the same order of magnitude for FRK1-6, between 260 and 480 μM. FRK7 was an outlier with a fructose Km of 12 μM. ATP binding was similar for all FRKs and ranged between 52 and 280 μM. YFP-tagged AtFRKs were cytosolic, except plastidic FRK3. T-DNA alleles with non-detectable wild-type RNAs in five of the seven active FRK genes produced no overt phenotype. We extended our sequence comparisons to include putative FRKs encoded in other plant sequenced genomes. We observed that different subgroups expanded subsequent to speciation. CONCLUSIONS Arabidopsis thaliana as well as all other plant species analyzed contain multiple copies of genes encoding FRK activity. Sequence comparisons among multiple species identified a minimal set of three distinct FRKs present on all species investigated including a plastid-localized form. The selective expansion of specific isozymes results in differences in FRK gene number among species. AtFRKs exhibit substrate inhibition, typical of their mammalian counterparts with the single AtFRK1 lacking this property, suggesting it may have a distinct in vivo role. Results presented here provide a starting point for the engineering of specific FRKs to affect biomass production.
Collapse
Affiliation(s)
- John W. Riggs
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
| | - Philip C. Cavales
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
| | - Sonia M. Chapiro
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
- Present Address: Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
- Present Address: Joint Bioenergy Institute, Emeryville, CA 94608 USA
| | - Judy Callis
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
37
|
Hirsche J, García Fernández JM, Stabentheiner E, Großkinsky DK, Roitsch T. Differential Effects of Carbohydrates on Arabidopsis Pollen Germination. PLANT & CELL PHYSIOLOGY 2017; 58:691-701. [PMID: 28339807 DOI: 10.1093/pcp/pcx020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/30/2017] [Indexed: 05/12/2023]
Abstract
Pollen germination as a crucial process in plant development strongly depends on the accessibility of carbon as energy source. Carbohydrates, however, function not only as a primary energy source, but also as important signaling components. In a comprehensive study, we analyzed various aspects of the impact of 32 different sugars on in vitro germination of Arabidopsis pollen comprising about 150 variations of individual sugars and combinations. Twenty-six structurally different mono-, di- and oligosaccharides, and sugar analogs were initially tested for their ability to support pollen germination. Whereas several di- and oligosaccharides supported pollen germination, hexoses such as glucose, fructose and mannose did not support and even considerably inhibited pollen germination when added to germination-supporting medium. Complementary experiments using glucose analogs with varying functional features, the hexokinase inhibitor mannoheptulose and the glucose-insensitive hexokinase-deficient Arabidopsis mutant gin2-1 suggested that mannose- and glucose-mediated inhibition of sucrose-supported pollen germination depends partially on hexokinase signaling. The results suggest that, in addition to their role as energy source, sugars act as signaling molecules differentially regulating the complex process of pollen germination depending on their structural properties. Thus, a sugar-dependent multilayer regulation of Arabidopsis pollen germination is supported, which makes this approach a valuable experimental system for future studies addressing sugar sensing and signaling.
Collapse
Affiliation(s)
- Jörg Hirsche
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Würzburg, Germany
| | - José M García Fernández
- Instituto de Investigaciones Químicas, CSIC, Universidad de Sevilla, Américo Vespucio, Isla de la Cartuja, Sevilla, Spain
| | - Edith Stabentheiner
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, Graz, Austria
| | - Dominik K Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
| | - Thomas Roitsch
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Würzburg, Germany
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, Graz, Austria
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
- Global Change Research Institute CAS, Drásov, Drásov, Czech Republic
| |
Collapse
|
38
|
Stein O, Avin-Wittenberg T, Krahnert I, Zemach H, Bogol V, Daron O, Aloni R, Fernie AR, Granot D. Arabidopsis Fructokinases Are Important for Seed Oil Accumulation and Vascular Development. FRONTIERS IN PLANT SCIENCE 2017; 7:2047. [PMID: 28119723 PMCID: PMC5222831 DOI: 10.3389/fpls.2016.02047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/21/2016] [Indexed: 05/25/2023]
Abstract
Sucrose (a disaccharide made of glucose and fructose) is the primary carbon source transported to sink organs in many plants. Since fructose accounts for half of the hexoses used for metabolism in sink tissues, plant fructokinases (FRKs), the main fructose-phosphorylating enzymes, are likely to play a central role in plant development. However, to date, their specific functions have been the subject of only limited study. The Arabidopsis genome contains seven genes encoding six cytosolic FRKs and a single plastidic FRK. T-DNA knockout mutants for five of the seven FRKs were identified and used in this study. Single knockouts of the FRK mutants did not exhibit any unusual phenotype. Double-mutants of AtFRK6 (plastidic) and AtFRK7 showed normal growth in soil, but yielded dark, distorted seeds. The seed distortion could be complemented by expression of the well-characterized tomato SlFRK1, confirming that a lack of FRK activity was the primary cause of the seed phenotype. Seeds of the double-mutant germinated, but failed to establish on 1/2 MS plates. Seed establishment was made possible by the addition of glucose or sucrose, indicating reduced seed storage reserves. Metabolic profiling of the double-mutant seeds revealed decreased TCA cycle metabolites and reduced fatty acid metabolism. Examination of the mutant embryo cells revealed smaller oil bodies, the primary storage reserve in Arabidopsis seeds. Quadruple and penta FRK mutants showed growth inhibition and leaf wilting. Anatomical analysis revealed smaller trachea elements and smaller xylem area, accompanied by necrosis around the cambium and the phloem. These results demonstrate overlapping and complementary roles of the plastidic AtFRK6 and the cytosolic AtFRK7 in seed storage accumulation, and the importance of AtFRKs for vascular development.
Collapse
Affiliation(s)
- Ofer Stein
- Volcani Center, Institute of Plant Sciences, Agricultural Research OrganizationBet Dagan, Israel
- Robert H. Smith Faculty of Agriculture, Institute of Plant Sciences and Genetics in Agriculture, Food and Environment, Hebrew University of JerusalemRehovot, Israel
| | - Tamar Avin-Wittenberg
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Department of Plant and Environmental Sciences, Hebrew University of JerusalemGivat Ram, Jerusalem, Israel
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Hanita Zemach
- Volcani Center, Institute of Plant Sciences, Agricultural Research OrganizationBet Dagan, Israel
| | - Vlada Bogol
- Volcani Center, Institute of Plant Sciences, Agricultural Research OrganizationBet Dagan, Israel
| | - Oksana Daron
- Department of Life Sciences, Ben-Gurion UniversityBeer-Sheva, Israel
| | - Roni Aloni
- Department of Plant Sciences, Tel Aviv UniversityTel Aviv, Israel
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - David Granot
- Volcani Center, Institute of Plant Sciences, Agricultural Research OrganizationBet Dagan, Israel
| |
Collapse
|
39
|
Hu DG, Sun CH, Zhang QY, An JP, You CX, Hao YJ. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple. PLoS Genet 2016; 12:e1006273. [PMID: 27560976 PMCID: PMC4999241 DOI: 10.1371/journal.pgen.1006273] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 08/02/2016] [Indexed: 01/03/2023] Open
Abstract
Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants.
Collapse
Affiliation(s)
- Da-Gang Hu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Quan-Yan Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Jian-Ping An
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
40
|
Tang W, Zheng Y, Dong J, Yu J, Yue J, Liu F, Guo X, Huang S, Wisniewski M, Sun J, Niu X, Ding J, Liu J, Fei Z, Liu Y. Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis). FRONTIERS IN PLANT SCIENCE 2016; 7:335. [PMID: 27594858 PMCID: PMC5007456 DOI: 10.3389/fpls.2016.00335] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/04/2016] [Indexed: 05/18/2023]
Abstract
Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis "Hongyang" at immature, mature, and postharvest ripening stages of fruit development, and generated over 66.2 million paired-end and 24.4 million single-end reads. From this dataset, here we have identified 7051 long noncoding RNAs (lncRNAs), 29,327 alternative splicing (AS) events and 2980 novel protein-coding genes that were not annotated in the draft genome of "Hongyang." AS events were demonstrated in genes involved in the synthesis of nutritional metabolites in fruit, such as ascorbic acids, carotenoids, anthocyanins, and chlorophylls, and also in genes in the ethylene signaling pathway, which plays an indispensable role in fruit ripening. Additionally, transcriptome profiles and the contents of sugars, organic and main amino acids were compared between immature, mature, and postharvest ripening stages in kiwifruits. A total of 5931 differentially expressed genes were identified, including those associated with the metabolism of sugar, organic acid, and main amino acids. The data generated in this study provide a foundation for further studies of fruit development and ripening in kiwifruit, and identify candidate genes and regulatory elements that could serve as targets for improving important agronomic traits through marker assisted breeding and biotechnology.
Collapse
Affiliation(s)
- Wei Tang
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Yi Zheng
- Section of Plant Biology, Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Jing Dong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Jia Yu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Junyang Yue
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Fangfang Liu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Xiuhong Guo
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Shengxiong Huang
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Michael Wisniewski
- U.S. Department of Agriculture – Agricultural Research ServiceKearneysville, WV, USA
| | - Jiaqi Sun
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Xiangli Niu
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Jian Ding
- Sichuan Technical Exchange CenterChengdu, China
| | - Jia Liu
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Zhangjun Fei
- Section of Plant Biology, Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Yongsheng Liu
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| |
Collapse
|
41
|
Stein O, Damari-Weissler H, Secchi F, Rachmilevitch S, German MA, Yeselson Y, Amir R, Schaffer A, Holbrook NM, Aloni R, Zwieniecki MA, Granot D. The tomato plastidic fructokinase SlFRK3 plays a role in xylem development. THE NEW PHYTOLOGIST 2016; 209:1484-95. [PMID: 26467542 DOI: 10.1111/nph.13705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/08/2015] [Indexed: 05/20/2023]
Abstract
Plants have two kinds of fructokinases (FRKs) that catalyze the key step of fructose phosphorylation, cytosolic and plastidic. The major cytosolic tomato FRK, SlFRK2, is essential for the development of xylem vessels. In order to study the role of SlFRK3, which encodes the only plastidic FRK, we generated transgenic tomato (Solanum lycopersicon) plants with RNAi suppression of SlFRK3 as well as plants expressing beta-glucoronidase (GUS) under the SlFRK3 promoter. GUS staining indicated SlFRK3 expression in vascular tissues of the leaves and stems, including cambium, differentiating xylem, young xylem fibers and phloem companion cells. Suppression of SlFRK3 reduced the stem xylem area, stem and root water conductance, and whole-plant transpiration, with minor effects on plant development. However, suppression of SlFRK3 accompanied by partial suppression of SlFRK2 induced significant growth-inhibition effects, including the wilting of mature leaves. Grafting experiments revealed that these growth effects are imposed primarily by the leaves, whose petioles had unlignified, thin-walled xylem fibers with collapsed parenchyma cells around the vessels. A cross between the SlFRK2-antisense and SlFRK3-RNAi lines exhibited similar wilting and anatomical effects, confirming that these effects are the result of the combined suppression of SlFRK3 and SlFRK2. These results demonstrate a role of the plastidic SlFRK3 in xylem development and hydraulic conductance.
Collapse
Affiliation(s)
- Ofer Stein
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
- The Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Hila Damari-Weissler
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Francesca Secchi
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Shimon Rachmilevitch
- Albert Katz Department of Dryland Biotechnologies, Blaustein Institutes for Desert Research, Ben Gurion University, Sede Boqer Campus, 84990, Israel
| | - Marcelo A German
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Yelena Yeselson
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Research Center, PO Box 831, Kiryat Shmona, 12100, Israel
| | - Arthur Schaffer
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Roni Aloni
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
42
|
Lugassi N, Kelly G, Fidel L, Yaniv Y, Attia Z, Levi A, Alchanatis V, Moshelion M, Raveh E, Carmi N, Granot D. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration. FRONTIERS IN PLANT SCIENCE 2015; 6:1114. [PMID: 26734024 PMCID: PMC4679854 DOI: 10.3389/fpls.2015.01114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/24/2015] [Indexed: 05/20/2023]
Abstract
Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.
Collapse
Affiliation(s)
- Nitsan Lugassi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani CenterBet Dagan, Israel
| | - Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani CenterBet Dagan, Israel
| | - Lena Fidel
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani CenterBet Dagan, Israel
| | - Yossi Yaniv
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani CenterBet Dagan, Israel
| | - Ziv Attia
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Asher Levi
- Institute of Agricultural Engineering, Agricultural Research Organization, The Volcani CenterBet Dagan, Israel
| | - Victor Alchanatis
- Institute of Agricultural Engineering, Agricultural Research Organization, The Volcani CenterBet Dagan, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Eran Raveh
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Gilat Research CenterNegev, Israel
| | - Nir Carmi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani CenterBet Dagan, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani CenterBet Dagan, Israel
| |
Collapse
|
43
|
Mukherjee T, Ivanova M, Dagda M, Kanayama Y, Granot D, Holaday AS. Constitutively overexpressing a tomato fructokinase gene (LeFRK1) in cotton (Gossypium hirsutum L. cv. Coker 312) positively affects plant vegetative growth, boll number and seed cotton yield. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:899-908. [PMID: 32480732 DOI: 10.1071/fp15035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/12/2015] [Indexed: 06/11/2023]
Abstract
Increasing fructokinase (FRK) activity in cotton (Gossypium hirsutum L.) plants may reduce fructose inhibition of sucrose synthase (Sus) and lead to improved fibre yield and quality. Cotton was transformed with a tomato (Solanum lycopersicum L.) fructokinase gene (LeFRK1) under the control of the CMV 35S promoter. In a greenhouse, the LeFRK1 plants had increased fibre and leaf FRK activity over nonexpressing nulls, but not improved fibre length and strength. Compared with the nulls, LeFRK1 plants yielded 13-100% more seed-cotton mass per boll and more bolls per plant, and therefore more seed cotton and fibre yield per plant. The enhanced yield was related to a greater seed number per boll for LeFRK1 plants. Photosynthetic rates were not appreciably different among genotypes. However, more area per leaf and leaf number (in some instances) for LeFRK1 plants than for nulls enhanced the capacity for C gain. Larger leaf areas for LeFRK1 plants were associated with larger stem diameters. Lower sucrose levels in developing leaves of LeFRK1 plants suggest that LeFRK1 overexpression leads to improved in vivo Sus activity in developing leaves and possibly in developing seeds. The improvement in yield for LeFRK1 plants may also be the result of improvements in photosynthate supply as a consequence of greater leaf area.
Collapse
Affiliation(s)
- Thiya Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Mariana Ivanova
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Marisela Dagda
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University Aoba-ku, Sendai 981-8555, Japan
| | - David Granot
- Department of Vegetables Research, Institute of Plant Sciences, Agricultural Research Organisation, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - A Scott Holaday
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
44
|
Berthier A, Meuriot F, Dédaldéchamp F, Lemoine R, Prud'homme MP, Noiraud-Romy N. Identification of a new sucrose transporter in rye-grass (LpSUT2): effect of defoliation and putative fructose sensing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:32-44. [PMID: 25240108 DOI: 10.1016/j.plaphy.2014.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/01/2014] [Indexed: 05/22/2023]
Abstract
Rye-grass fast regrowth after defoliation results from an efficient mobilization of C reserves which are transported as sucrose towards regrowing leaves, and which can be supported by one or several sucrose transporters (SUTs) like LpSUT1. Therefore, our objectives were to isolate, identify, characterize and immunolocalize such sucrose transporters. A protein (LpSUT2) showing a twelve spanning trans-membrane domain, extended N terminal and internal cytoplasmic loop, and kinetic properties consistent with well-known sucrose transporters, was isolated and successfully characterized. Along with LpSUT1, it was mainly localized in mesophyll cells of leaf sheaths and elongating leaf bases. These transporters were also found in parenchyma bundle sheath (PBS) cells but they were not detected in the sieve element/companion cell complex of the phloem. Unlike LpSUT1 transcript levels which increased as a response to defoliation in source and sink tissues, LpSUT2 transcript levels were unaffected by defoliation and weakly expressed. Interestingly, sucrose transport by LpSUT2 was inhibited by fructose. LpSUT1 and LpSUT2 appeared to have different functions. LpSUT1 is proposed to play a key role in C storage and mobilization by allowing sucrose transport between PBS and mesophyll cells, depending on the plant C status. LpSUT2 could be involved in sucrose/fructose sensing at sub-cellular level.
Collapse
Affiliation(s)
- Alexandre Berthier
- Université de Caen Basse Normandie, UMR Ecophysiologie Végétale, Agronomie and Nutritions NCS, F-14032 Caen, France; INRA UMR 950, Ecophysiologie Végétale, Agronomie and Nutritions NCS, F-14032 Caen, France
| | - Frédéric Meuriot
- Université de Caen Basse Normandie, UMR Ecophysiologie Végétale, Agronomie and Nutritions NCS, F-14032 Caen, France; INRA UMR 950, Ecophysiologie Végétale, Agronomie and Nutritions NCS, F-14032 Caen, France
| | - Fabienne Dédaldéchamp
- UMR 7267 CNRS-Université de Poitiers équipe PHYMOTS, Université Poitiers, Bât Botanique (B5), BP 633, 86022 Poitiers, France
| | - Rémi Lemoine
- UMR 7267 CNRS-Université de Poitiers équipe PHYMOTS, Université Poitiers, Bât Botanique (B5), BP 633, 86022 Poitiers, France
| | - Marie-Pascale Prud'homme
- Université de Caen Basse Normandie, UMR Ecophysiologie Végétale, Agronomie and Nutritions NCS, F-14032 Caen, France; INRA UMR 950, Ecophysiologie Végétale, Agronomie and Nutritions NCS, F-14032 Caen, France
| | - Nathalie Noiraud-Romy
- Université de Caen Basse Normandie, UMR Ecophysiologie Végétale, Agronomie and Nutritions NCS, F-14032 Caen, France; INRA UMR 950, Ecophysiologie Végétale, Agronomie and Nutritions NCS, F-14032 Caen, France.
| |
Collapse
|
45
|
Sheen J. Master Regulators in Plant Glucose Signaling Networks. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2014; 57:67-79. [PMID: 25530701 PMCID: PMC4270195 DOI: 10.1007/s12374-014-0902-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The daily life of photosynthetic plants revolves around sugar production, transport, storage and utilization, and the complex sugar metabolic and signaling networks integrate internal regulators and environmental cues to govern and sustain plant growth and survival. Although diverse sugar signals have emerged as pivotal regulators from embryogenesis to senescence, glucose is the most ancient and conserved regulatory signal that controls gene and protein expression, cell-cycle progression, central and secondary metabolism, as well as growth and developmental programs. Glucose signals are perceived and transduced by two principal mechanisms: direct sensing through glucose sensors and indirect sensing via a variety of energy and metabolite sensors. This review focuses on the comparative and functional analyses of three glucose-modulated master regulators in Arabidopsis thaliana, the hexokinase1 (HXK1) glucose sensor, the energy sensor kinases KIN10/KIN11 inactivated by glucose, and the glucose-activated target of rapamycin (TOR) kinase. These regulators are evolutionarily conserved, but have evolved universal and unique regulatory wiring and functions in plants and animals. They form protein complexes with multiple partners as regulators or effectors to serve distinct functions in different subcellular locales and organs, and play integrative and complementary roles from cellular signaling and metabolism to development in the plant glucose signaling networks.
Collapse
Affiliation(s)
- Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
46
|
Granot D, Kelly G, Stein O, David-Schwartz R. Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:809-19. [PMID: 24293612 DOI: 10.1093/jxb/ert400] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic requirements for plant growth are light, CO2, water, and minerals. However, the absorption and utilization of each of these requires investment on the part of the plant. The primary products of plants are sugars, and the hexose sugars glucose and fructose are the raw material for most of the metabolic pathways and organic matter in plants. To be metabolized, hexose sugars must first be phosphorylated. Only two families of enzymes capable of catalysing the essential irreversible phosphorylation of glucose and fructose have been identified in plants, hexokinases (HXKs) and fructokinases (FRKs). These hexose-phosphorylating enzymes appear to coordinate sugar production with the abilities to absorb light, CO2, water, and minerals. This review describes the long- and short-term effects mediated by HXK and FRK in various tissues, as well as the role of these enzymes in the coordination of sugar production with the absorption of light, CO2, water, and minerals.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | |
Collapse
|
47
|
Kelly G, Moshelion M, David-Schwartz R, Halperin O, Wallach R, Attia Z, Belausov E, Granot D. Hexokinase mediates stomatal closure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:977-88. [PMID: 23738737 DOI: 10.1111/tpj.12258] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 05/19/2023]
Abstract
Stomata, composed of two guard cells, are the gates whose controlled movement allows the plant to balance the demand for CO2 for photosynthesis with the loss of water through transpiration. Increased guard-cell osmolarity leads to the opening of the stomata and decreased osmolarity causes the stomata to close. The role of sugars in the regulation of stomata is not yet clear. In this study, we examined the role of hexokinase (HXK), a sugar-phosphorylating enzyme involved in sugar-sensing, in guard cells and its effect on stomatal aperture. We show here that increased expression of HXK in guard cells accelerates stomatal closure. We further show that this closure is induced by sugar and is mediated by abscisic acid. These findings support the existence of a feedback-inhibition mechanism that is mediated by a product of photosynthesis, namely sucrose. When the rate of sucrose production exceeds the rate at which sucrose is loaded into the phloem, the surplus sucrose is carried toward the stomata by the transpiration stream and stimulates stomatal closure via HXK, thereby preventing the loss of precious water.
Collapse
Affiliation(s)
- Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Granot D, David-Schwartz R, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. FRONTIERS IN PLANT SCIENCE 2013; 4:44. [PMID: 23487525 PMCID: PMC3594732 DOI: 10.3389/fpls.2013.00044] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/20/2013] [Indexed: 05/18/2023]
Abstract
Hexose sugars, such as glucose and fructose produced in plants, are ubiquitous in most organisms and are the origin of most of the organic matter found in nature. To be utilized, hexose sugars must first be phosphorylated. The central role of hexose-phosphorylating enzymes has attracted the attention of many researchers, leading to novel discoveries. Only two families of enzymes capable of phosphorylating glucose and fructose have been identified in plants; hexokinases (HXKs), and fructokinases (FRKs). Intensive investigations of these two families in numerous plant species have yielded a wealth of knowledge regarding the genes number, enzymatic characterization, intracellular localization, and developmental and physiological roles of several HXKs and FRKs. The emerging picture indicates that HXK and FRK enzymes found at specific intracellular locations play distinct roles in plant metabolism and development. Individual HXKs were shown for the first time to be dual-function enzymes - sensing sugar levels independent of their catalytic activity and controlling gene expression and major developmental pathways, as well as hormonal interactions. FRK, on the other hand, seems to play a central metabolic role in vascular tissues, controlling the amounts of sugars allocated for vascular development. While a clearer picture of the roles of these two types of enzymes is emerging, many questions remain unsolved, such as the specific tissues and types of cells in which these enzymes function, the roles of individual HXK and FRK genes, and how these enzymes interact with hormones in the regulation of developmental processes. It is anticipated that ongoing efforts will broaden our knowledge of these important plant enzymes and their potential uses in the modification of plant traits.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| | - Gilor Kelly
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| |
Collapse
|
49
|
David-Schwartz R, Weintraub L, Vidavski R, Zemach H, Murakhovsky L, Swartzberg D, Granot D. The SlFRK4 promoter is active only during late stages of pollen and anther development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:61-70. [PMID: 23265319 DOI: 10.1016/j.plantsci.2012.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/07/2012] [Accepted: 09/24/2012] [Indexed: 05/20/2023]
Abstract
Carbohydrates are essential for male gametophyte development. However, our understanding of the mechanism by which the sugar supply is controlled in the stamen is still in its infancy. We previously reported on the stamen-specific expression of the tomato (Solanum lycopersicum) sugar metabolic gene, fructokinase 4 (SlFRK4). Here, we present the cloning and the characterization of the SlFRK4 promoter and show its differential activation during anther development. We also show that the tissue-specific expression of SlFRK4 promoter is maintained in Arabidopsis thaliana. By histochemical analyses of the GUS reporter gene and DTA toxin driven by the SlFRK4 promoter, we show that the SlFRK4 promoter is gradually activated in pollen grains throughout the later stages of anther development and upon pollen germination. In addition, we analyzed the expression profile of SlFRK4 and other sugar metabolic genes and found that SlFRK4 and the invertase LIN7 are co-expressed in mature and germinated pollen. These findings point to the existence of a specialized mechanism in which carbohydrates are provided to the male gametophyte during the later stages of its development and suggest a valuable tool for manipulating the development of male gametophytes in crop species.
Collapse
Affiliation(s)
- Rakefet David-Schwartz
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Roach M, Gerber L, Sandquist D, Gorzsás A, Hedenström M, Kumar M, Steinhauser MC, Feil R, Daniel G, Stitt M, Sundberg B, Niittylä T. Fructokinase is required for carbon partitioning to cellulose in aspen wood. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:967-77. [PMID: 22288715 DOI: 10.1111/j.1365-313x.2012.04929.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sucrose is the main transported form of carbon in several plant species, including Populus species. Sucrose metabolism in developing wood has therefore a central role in carbon partitioning to stem biomass. Half of the sucrose-derived carbon is in the form of fructose, but metabolism of fructose has received little attention as a factor in carbon partitioning to walls of wood cells. We show that RNAi-mediated reduction of FRK2 activity in developing wood of hybrid aspen (Populus tremula × tremuloides) led to the accumulation of soluble neutral sugars and a decrease in hexose phosphates and UDP-glucose, indicating that carbon flux to cell-wall polysaccharide precursors is decreased. Reduced FRK2 activity also led to thinner fiber cell walls with a reduction in the proportion of cellulose. No pleiotropic effects on stem height or diameter were observed. The results establish a central role for FRK2 activity in carbon flux to wood cellulose.
Collapse
Affiliation(s)
- Melissa Roach
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|