1
|
Sun H, He W, Bu J, Zhang H, Huang H, Ma K. Association between triglyceride-glucose index and its combination with obesity indicators and depression: findings from NHANES 2005-2020. Front Psychiatry 2025; 16:1533819. [PMID: 40130189 PMCID: PMC11931011 DOI: 10.3389/fpsyt.2025.1533819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Background The relationship between the triglyceride-glucose (TyG) index, its combination with obesity indicators, and depression remains understudied in the American population. Methods This cross-sectional study analyzed data from 10,423 adults in the National Health and Nutrition Examination Survey (NHANES) conducted between 2005 and 2020. We employed multivariable logistic regression analysis, smoothing techniques, generalized additive models, stratified analyses, and sensitivity analyses to examine the relationship between TyG, its combination (TyG-WC, TyG-WHtR, TyG-BMI) with obesity indicators, and depression. Results The results indicate that the TyG index, TyG-WC, TyG-WHtR, TyG-BMI, and depression exhibited a significant statistical association with depressive symptoms (all P for trend < 0.001). Specifically, a one-unit increase in the TyG index correlated with a 37% increase in the risk of depressive symptoms (95% CI: 1.21-1.55), a one-unit increase in TyG-WC correlated with a 3.26 times increase in the risk of depressive symptoms (95% CI: 2.22-4.80), a one-unit increase in TyG-WHtR correlated with a 27% increase in the risk of depressive symptoms (95% CI: 1.18-1.36), and a one-unit increase in TyG-BMI correlated with a 2.30 times increase in the risk of depressive symptoms (95% CI: 1.72-3.08). There was a significant nonlinear correlation between TyG-WC, TyG-WHtR, and TyG-BMI with depressive symptoms (all P for nonlinearity < 0.001), except for a linear correlation between the TyG index and depressive symptoms (P for linearity < 0.001). Conclusion Monitoring the TyG index, TyG-WC, TyG-WHtR, TyG-BMI may facilitate depression risk assessment and prevention.
Collapse
Affiliation(s)
- Hongli Sun
- Shaanxi Institute for Pediatric Diseases, Xi’an Key Laboratory of Children’s Health and Diseases, Xi’an Children’s Hospital (Affiliated Children’s Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi, China
| | - Wei He
- Department of Laboratory, Xi’an Children’s Hospital (Affiliated Children’s Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi, China
| | - Jingyu Bu
- Department of Pediatrics, Second Affiliated Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Huifang Zhang
- Department of Emergency, Xi’an Children’s Hospital (Affiliated Children’s Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi, China
| | - Huimei Huang
- Department of Nephrology, Xi’an Children’s Hospital (Affiliated Children’s Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi, China
| | - Kai Ma
- Department of Emergency, Xi’an Children’s Hospital (Affiliated Children’s Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Salazar-Hernández E, Bahena-Cuevas OE, Mendoza-Bello JM, Barragán-Bonilla MI, Sánchez-Alavez M, Espinoza-Rojo M. Relationship Between Brain Insulin Resistance, Carbohydrate Consumption, and Protein Carbonyls, and the Link Between Peripheral Insulin Resistance, Fat Consumption, and Malondialdehyde. Biomedicines 2025; 13:404. [PMID: 40002817 PMCID: PMC11853321 DOI: 10.3390/biomedicines13020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The consumption of a high-fat (HFD) or high-carbohydrate/low-fat (LFD) diet is related to insulin resistance; however, central and peripheral alterations can occur independently. In this study, the timeline of insulin resistance was determined while taking into consideration the role of diet in oxidative damage. Background/Objectives: The aim of this study was to ascertain whether a HFD or LFD induces peripheral insulin resistance (PIR) before brain insulin resistance (BIR), and whether the timing of these alterations correlates with heightened oxidative damage markers in plasma, adipose tissue, and the cerebral cortex. Methodology and Results: Three-month-old C57BL/6 male mice were fed with a HFD, LFD, or standard diet for 1, 2, or 3 months. Glucose and insulin tolerance tests were performed to determine PIR, and the hypothalamic thermogenic response to insulin was used to determine their BIR status. For oxidative damage, the levels of malondialdehyde (MDA) and the protein carbonyl group (PCO) and the enzymatic activity of glutathione peroxidase (GSH-Px) were evaluated in plasma, white adipose tissue, brown adipose tissue, and the cerebral cortex. PIR occurred at 3 months of the HFD, but MDA levels in the white adipose tissue increased at 2 months. BIR occurred at 1 and 2 months of the LFD, but the enzymatic activity of GSH-Px was lower at 1 month and the amount of the PCO increased at 2 months. Conclusions: The intake of a HFD or LFD of different durations can influence the establishment of PIR or BIR, and oxidative damage in the fat tissue and cerebral cortex can play an important role.
Collapse
Affiliation(s)
- Elena Salazar-Hernández
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Oscar Ezequiel Bahena-Cuevas
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Juan Miguel Mendoza-Bello
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Martha Isela Barragán-Bonilla
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Manuel Sánchez-Alavez
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico;
| | - Mónica Espinoza-Rojo
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| |
Collapse
|
3
|
Salvi V, Tripodi B, Cerveri G, Migliarese G, Bertoni L, Nibbio G, Barlati S, Vita A, Mencacci C. Insulin-resistance as a modifiable pathway to cognitive dysfunction in schizophrenia: A systematic review. Schizophr Res 2024; 274:78-89. [PMID: 39265262 DOI: 10.1016/j.schres.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cognitive deficits are difficult to treat and negatively influence quality of life and functional outcomes of persons with schizophrenia. In the last twenty years, extensive literature demonstrated that persons with diabetes and insulin resistance (IR) also display cognitive deficits. Being type 2 diabetes (T2DM) and IR highly frequent in persons with schizophrenia, it is plausible to hypothesize that these conditions might play a role in determining dyscognition. If that is the case, acting on glucose dysmetabolism may eventually improve cognitive functioning. This review aims at: 1. evaluating the association between IR or T2DM and cognitive dysfunction in schizophrenia; 2. reviewing the evidence that pharmacological treatment of IR or T2DM may improve dyscognition in schizophrenia. METHODS Two systematic searches were conducted in PubMed, PsycInfo, and Scopus. We followed the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. RESULTS From the first search we included 17 studies, 8 on the effects of T2DM and 9 on the effects of IR-other prediabetes measures on cognition in persons with schizophrenia. From the second search we included 12 studies investigating the effect on cognition of glucose (4 studies), insulin (2 studies), metformin (2 studies), PPAR-γ agonists (2 studies), GLP-1 agonist (1 study), bromocriptine (1 study). CONCLUSIONS T2DM was associated with worse cognitive function in persons with schizophrenia, while IR was less strongly associated with cognitive dysfunction. Evidence regarding the efficacy of glucose-lowering medications on cognition in schizophrenia is inconclusive, yet methodological issues likely contribute to explain conflicting results.
Collapse
Affiliation(s)
- Virginio Salvi
- Department of Mental Health and Addiction, ASST Crema, L.go Ugo Dossena 2, 26013 Crema, CR, Italy.
| | - Beniamino Tripodi
- Department of Mental Health and Addiction, ASST Crema, L.go Ugo Dossena 2, 26013 Crema, CR, Italy
| | - Giancarlo Cerveri
- Department of Mental Health and Addiction, ASST Lodi, Via Mosè Bianchi 26, 26900 Lodi, Italy
| | - Giovanni Migliarese
- Department of Mental Health and Addiction, ASST Pavia, C.so Milano 19, 27029 Vigevano, PV, Italy
| | - Lorenzo Bertoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudio Mencacci
- Director Emeritus, Department of Neurosciences-Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
4
|
Maisto N, Mango D. Nose to brain strategy coupled to nano vesicular system for natural products delivery: Focus on synaptic plasticity in Alzheimer's disease. J Pharm Anal 2024; 14:101057. [PMID: 39802402 PMCID: PMC11718335 DOI: 10.1016/j.jpha.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 07/30/2024] [Indexed: 01/16/2025] Open
Abstract
A wide number of natural molecules demonstrated neuroprotective effects on synaptic plasticity defects induced by amyloid-β (Aβ) in ex vivo and in vivo Alzheimer's disease (AD) models, suggesting a possible use in the treatment of this neurodegenerative disorder. However, several compounds, administered parenterally and orally, are unable to reach the brain due to the presence of the blood-brain barrier (BBB) which prevents the passage of external substances, such as proteins, peptides, or phytocompounds, representing a limit to the development of treatment for neurodegenerative diseases, such as AD. The combination of nano vesicular systems, as colloidal systems, and nose to brain (NtB) delivery depicts a new nanotechnological strategy to overtake this limit and to develop new treatment approaches for brain diseases, including the use of natural molecules in combination therapy for AD. Herein, we will provide an updated overview, examining the literature of the last 20 years and using specific keywords that provide evidence on natural products with the ability to restore synaptic plasticity alterations in AD models, and the possible application using safe and non-invasive strategies focusing on nano vesicular systems for NtB delivery.
Collapse
Affiliation(s)
- Nunzia Maisto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, 00185, Italy
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy
| | - Dalila Mango
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy
- School of Pharmacy, Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
5
|
Doroszkiewicz J, Mroczko J, Winkel I, Mroczko B. Metabolic and Immune System Dysregulation: Unraveling the Connections between Alzheimer's Disease, Diabetes, Inflammatory Bowel Diseases, and Rheumatoid Arthritis. J Clin Med 2024; 13:5057. [PMID: 39274269 PMCID: PMC11396443 DOI: 10.3390/jcm13175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Alzheimer's disease (AD), diabetes mellitus (DM), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic conditions affecting millions globally. Despite differing clinical symptoms, these diseases share pathophysiological mechanisms involving metabolic and immune system dysregulation. This paper examines the intricate connections between these disorders, focusing on shared pathways such as insulin resistance, lipid metabolism dysregulation, oxidative stress, and chronic inflammation. An important aspect is the role of amyloid-beta plaques and tau protein tangles, which are hallmark features of AD. These protein aggregates are influenced by metabolic dysfunction and inflammatory processes similar to those seen in DM, RA, and IBD. This manuscript explores how amyloid and tau pathologies may be exacerbated by shared metabolic and immune dysfunction. Additionally, this work discusses the gut-brain axis and the influence of gut microbiota in mediating disease interactions. Understanding these commonalities opens new avenues for multi-targeted therapeutic approaches that address the root causes rather than merely the symptoms of these conditions. This integrative perspective could lead to more effective interventions and improved patient outcomes, emphasizing the importance of a unified approach in managing these interconnected diseases.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
6
|
Xu ZQ, Liu TT, Qin QR, Yuan H, Li XM, Qiu CY, Hu WP. Insulin enhances acid-sensing ion channel currents in rat primary sensory neurons. Sci Rep 2024; 14:18077. [PMID: 39103432 PMCID: PMC11300854 DOI: 10.1038/s41598-024-69139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Insulin has been shown to modulate neuronal processes through insulin receptors. The ion channels located on neurons may be important targets for insulin/insulin receptor signaling. Both insulin receptors and acid-sensing ion channels (ASICs) are expressed in dorsal root ganglia (DRG) neurons. However, it is still unclear whether there is an interaction between them. Therefore, the purpose of this investigation was to determine the effects of insulin on the functional activity of ASICs. A 5 min application of insulin rapidly enhanced acid-evoked ASIC currents in rat DRG neurons in a concentration-dependent manner. Insulin shifted the concentration-response plot for ASIC currents upward, with an increase of 46.2 ± 7.6% in the maximal current response. The insulin-induced increase in ASIC currents was eliminated by the insulin receptor antagonist GSK1838705, the tyrosine kinase inhibitor lavendustin A, and the phosphatidylinositol-3 kinase antagonist wortmannin. Moreover, insulin increased the number of acid-triggered action potentials by activating insulin receptors. Finally, local administration of insulin exacerbated the spontaneous nociceptive behaviors induced by intraplantar acid injection and the mechanical hyperalgesia induced by intramuscular acid injections through peripheral insulin receptors. These results suggested that insulin/insulin receptor signaling enhanced the functional activity of ASICs via tyrosine kinase and phosphatidylinositol-3 kinase pathways. Our findings revealed that ASICs were targets in primary sensory neurons for insulin receptor signaling, which may underlie insulin modulation of pain.
Collapse
Affiliation(s)
- Zhong-Qing Xu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Ting-Ting Liu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Qing-Rui Qin
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Huan Yuan
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Xue-Mei Li
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Chun-Yu Qiu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Wang-Ping Hu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
- Department of Physiology, Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou, 434020, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Sedhom S, Hammond N, Thanos KZ, Blum K, Elman I, Bowirrat A, Dennen CA, Thanos PK. Potential Link Between Exercise and N-Methyl-D-Aspartate Glutamate Receptors in Alcohol Use Disorder: Implications for Therapeutic Strategies. Psychol Res Behav Manag 2024; 17:2363-2376. [PMID: 38895648 PMCID: PMC11185169 DOI: 10.2147/prbm.s462403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Alcohol use disorder (AUD) is a significant risk factor, accounting for approximately 13% of all deaths in the US. AUD not only destroys families but also causes economic losses due to reduced productivity, absenteeism, and healthcare expenses. Statistics revealing the sustained number of individuals affected by AUD over the years underscore the need for further understanding of the underlying pathophysiology to advance novel therapeutic strategies. Previous research has implicated the limbic brain regions N-methyl-D-aspartate glutamate receptors (NMDAR) in the emotional and behavioral effects of AUD. Given that aerobic exercise can modulate NMDAR activity and sensitivity to alcohol, this review presents a summary of clinical and basic science studies on NMDAR levels induced by alcohol consumption, as well as acute and protracted withdrawal, highlighting the potential role of aerobic exercise as an adjunctive therapy for AUD. Based on our findings, the utility of exercise in the modulation of reward-linked receptors and AUD may be mediated by its effects on NMDA signaling. These data support further consideration of the potential of aerobic exercise as a promising adjunctive therapy for AUD.
Collapse
Affiliation(s)
- Susan Sedhom
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kyriaki Z Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
8
|
Moțățăianu A, Mănescu IB, Șerban G, Bărcuțean L, Ion V, Bălașa R, Andone S. Exploring the Role of Metabolic Hormones in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2024; 25:5059. [PMID: 38791099 PMCID: PMC11121721 DOI: 10.3390/ijms25105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive loss of motor neurons. Emerging evidence suggests a potential link between metabolic dysregulation and ALS pathogenesis. This study aimed to investigate the relationship between metabolic hormones and disease progression in ALS patients. A cross-sectional study was conducted involving 44 ALS patients recruited from a tertiary care center. Serum levels of insulin, total amylin, C-peptide, active ghrelin, GIP (gastric inhibitory peptide), GLP-1 active (glucagon-like peptide-1), glucagon, PYY (peptide YY), PP (pancreatic polypeptide), leptin, interleukin-6, MCP-1 (monocyte chemoattractant protein-1), and TNFα (tumor necrosis factor alpha) were measured, and correlations with ALSFRS-R, evolution scores, and biomarkers were analyzed using Spearman correlation coefficients. Subgroup analyses based on ALS subtypes, progression pattern of disease, and disease progression rate patterns were performed. Significant correlations were observed between metabolic hormones and ALS evolution scores. Insulin and amylin exhibited strong correlations with disease progression and clinical functional outcomes, with insulin showing particularly robust associations. Other hormones such as C-peptide, leptin, and GLP-1 also showed correlations with ALS progression and functional status. Subgroup analyses revealed differences in hormone levels based on sex and disease evolution patterns, with male patients showing higher amylin and glucagon levels. ALS patients with slower disease progression exhibited elevated levels of amylin and insulin. Our findings suggest a potential role for metabolic hormones in modulating ALS progression and functional outcomes. Further research is needed to elucidate the underlying mechanisms and explore the therapeutic implications of targeting metabolic pathways in ALS management.
Collapse
Affiliation(s)
- Anca Moțățăianu
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Ion Bogdan Mănescu
- Department of Laboratory Medicine, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Georgiana Șerban
- Doctoral School, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Laura Bărcuțean
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Valentin Ion
- Faculty of Pharmacy, Department of Analytical Chemistry and Drug Analysis, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- Drug Testing Laboratory, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Rodica Bălașa
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Sebastian Andone
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| |
Collapse
|
9
|
Jahromi HM, Rafati A, Karbalay-Doust S, Keshavarz S, Naseh M. The combination treatment of hypothermia and intranasal insulin ameliorates the structural and functional changes in a rat model of traumatic brain injury. Brain Struct Funct 2024; 229:947-957. [PMID: 38498064 DOI: 10.1007/s00429-024-02769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
The present study aimed to investigate the combination effects of hypothermia (HT) and intranasal insulin (INS) on structural changes of the hippocampus and cognitive impairments in the traumatic brain injury (TBI) rat model. The rats were divided randomly into the following five groups (n = 10): Sham, TBI, TBI with HT treatment for 3 h (TBI + HT), TBI with INS (ten microliters of insulin) treatment daily for 7 days (TBI + INS), and TBI with combining HT and INS (TBI + HT + INS). At the end of the 7th day, the open field and the Morris water maze tests were done for evaluation of anxiety-like behavior and memory performance. Then, after sacrificing, the brain was removed for stereological study. TBI led to an increase in the total volume of hippocampal subfields CA1 and DG and a decrease in the total number of neurons and non-neuronal cells in both sub-regions, which was associated with anxiety-like behavior and memory impairment. Although, the combination of HT and INS prevented the increased hippocampal volume and cell loss and improved behavioral performances in the TBI group. Our study suggests that the combined treatment of HT and INS could prevent increased hippocampal volume and cell loss in CA1 and DG sub-regions and consequently improve anxiety-like behaviors and memory impairment following TBI.
Collapse
Affiliation(s)
- Hadi Moatamed Jahromi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rafati
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Keshavarz
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Albar NY, Hassaballa H, Shikh H, Albar Y, Ibrahim AS, Mousa AH, Alshanberi AM, Elgebaly A, Bahbah EI. The interaction between insulin resistance and Alzheimer's disease: a review article. Postgrad Med 2024; 136:377-395. [PMID: 38804907 DOI: 10.1080/00325481.2024.2360887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Insulin serves multiple functions as a growth-promoting hormone in peripheral tissues. It manages glucose metabolism by promoting glucose uptake into cells and curbing the production of glucose in the liver. Beyond this, insulin fosters cell growth, drives differentiation, aids protein synthesis, and deters degradative processes like glycolysis, lipolysis, and proteolysis. Receptors for insulin and insulin-like growth factor-1 are widely expressed in the central nervous system. Their widespread presence in the brain underscores the varied and critical functions of insulin signaling there. Insulin aids in bolstering cognition, promoting neuron extension, adjusting the release and absorption of catecholamines, and controlling the expression and positioning of gamma-aminobutyric acid (GABA). Importantly, insulin can effortlessly traverse the blood-brain barrier. Furthermore, insulin resistance (IR)-induced alterations in insulin signaling might hasten brain aging, impacting its plasticity and potentially leading to neurodegeneration. Two primary pathways are responsible for insulin signal transmission: the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, which oversees metabolic responses, and the mitogen-activated protein kinase (MAPK) pathway, which guides cell growth, survival, and gene transcription. This review aimed to explore the potential shared metabolic traits between Alzheimer's disease (AD) and IR disorders. It delves into the relationship between AD and IR disorders, their overlapping genetic markers, and shared metabolic indicators. Additionally, it addresses existing therapeutic interventions targeting these intersecting pathways.
Collapse
Affiliation(s)
- Nezar Y Albar
- Internal Medicine Department, Dr. Samir Abbas Hospital, Jeddah, Saudi Arabia
| | | | - Hamza Shikh
- Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Yassin Albar
- Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia
| | | | - Ahmed Hafez Mousa
- Department of Neurosurgery, Postgraduate Medical Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Neurosurgery, Rashid Hospital, Dubai Academic Health Cooperation, Dubai, United Arab Emirates
| | - Asim Muhammed Alshanberi
- Department of Community Medicine and Pilgrims Health Care, Umm Alqura University, Makkah, Saudi Arabia
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed Elgebaly
- Smart Health Academic Unit, University of East London, London, UK
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
11
|
Barutçu Ö, Süer C, Dursun N, Tufan E, Gülpınar EA, Tan B. Insulin-induced long-term potentiation in the dentate gyrus of hippocampal formation. Psychoneuroendocrinology 2023; 157:106343. [PMID: 37562098 DOI: 10.1016/j.psyneuen.2023.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
The discovery that brain areas involving in learning and memory express receptors for insulin hormone, led to the idea that insulin signaling may have a role in regulating cognitive function. Although previous studies have shown a role for insulin in regulation of the threshold of plasticity induction, no study has addressed whether insulin can induce a chemical plasticity per se. Young-adult male rats that are fed with standard diets with or without carbohydrate syrup (sucrose or high-fructose corn syrups) were enrolled in this study. Extracellular field potentials were recorded from the dentate gyrus in response to perforant pathway stimulation at 0.033 Hz in anesthetized rats. The slope of field excitatory postsynaptic potentials (fEPSPs) and the amplitude of population spike (PS) were measured 15 min after a 60-min infusion of insulin (500 nM), NT157 (an IRS inhibitor, 6 μM), alone or together, or physiological saline. mRNA expressions of insulin signaling proteins were measured by rt-PCR in the whole hippocampus. We did not observe any appreciable change in the fEPSP slope and the PS amplitude before and after saline infusion. However, intra-hippocampal insulin application results in the induction of LTP of fEPSP and of PS in the dentate gyrus. Insulin infusion together with NT157 inhibited fEPSP-LTP, but not PS-LTP, and rats that are fed with carbohydrate syrup did not express synaptic LTP. In rats that additional carbohydrate syrup is not given, insulin-induced LTP was accompanied with an increase in PI3K-mRNA, AKT-mRNA, and GSK-3β-mRNA which was not observed when co-administered with NT157. The GSK-3β-mRNA and IRS1-mRNA levels were found to be lower in rats that received supplemental carbohydrate and that not express insulin-induced synaptic LTP, compared to the rats expressing synaptic LTP and fed by standard diet. The results obtained provide a mechanistic link between insulin and synaptic plasticity. We concluded that insulin not only functions as a modulator of synaptic plasticity but also acts as a chemical inducer of LTP.
Collapse
Affiliation(s)
- Özlem Barutçu
- University of Erciyes, Physiology department of Medical School, Türkiye; University of Erciyes, Institute of Health Science, Türkiye; Turkey, Council of Higher Education100/2000 PhD Scholarship Student, Türkiye
| | - Cem Süer
- University of Erciyes, Physiology department of Medical School, Türkiye; University of Erciyes, Institute of Health Science, Türkiye.
| | - Nurcan Dursun
- University of Erciyes, Physiology department of Medical School, Türkiye
| | - Esra Tufan
- University of Erciyes, Physiology department of Medical School, Türkiye; University of Erciyes, Institute of Health Science, Türkiye; Turkey, Council of Higher Education100/2000 PhD Scholarship Student, Türkiye
| | - Ezgi Aslan Gülpınar
- University of Erciyes, Physiology department of Medical School, Türkiye; University of Erciyes, Institute of Health Science, Türkiye; Turkey, Council of Higher Education100/2000 PhD Scholarship Student, Türkiye
| | - Burak Tan
- University of Erciyes, Physiology department of Medical School, Türkiye
| |
Collapse
|
12
|
Zhang L, Zhi K, Su Y, Peng W, Meng X. Effect of eIF2α in Neuronal Injury Induced by High Glucose and the Protective Mechanism of Resveratrol. Mol Neurobiol 2023; 60:6043-6059. [PMID: 37410333 DOI: 10.1007/s12035-023-03457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Diabetes mellitus (DM) is a type of metabolic disease characterized by chronic hyperglycemia, which can lead to different degrees of cognitive decline. Therefore, it is crucial to explore the molecular biological mechanisms of neuronal injury. In this study, we investigated the effect of high glucose on eIF2α expression and the mechanism of neuronal injury, and on this basis, the protective mechanism of resveratrol is explored. Treatment with 50 mM high glucose in cortical neurons increased the levels of eIF2α phosphorylation; the expressions of ATF4 and CHOP increased. ISRIB alleviated high glucose-induced neuronal injury by reducing eIF2α phosphorylation when neurons were pretreated with ISRIB before high glucose treatment. Compared with the high glucose-treated group, resveratrol pretreatment reduced eIF2α phosphorylation, the levels of its downstream molecules ATF4 and CHOP, and LDH release. Resveratrol reduced the level of cortical eIF2α phosphorylation and the expression of its downstream molecules in DM mice and improved the ability of spatial memory and learning in DM mice without affecting anxiety and motor performance. Meanwhile, resveratrol modulated the expression of Bcl-2 protein and also effectively decreased the DM-induced up-regulation of Bax, caspase-3, p53, p21, and p16. Taken together, these results suggested that high glucose caused neuronal injury through the eIF2α/ATF4/CHOP pathway which was inhibited by ISRIB and resveratrol. The present study indicates that eIF2α is the new target for the treatment of high glucose-induced neuronal injury, and resveratrol is a potential new medicine to treat diabetes encephalopathy.
Collapse
Affiliation(s)
- Lijing Zhang
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaining Zhi
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanfang Su
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpeng Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Goodarzi G, Tehrani SS, Fana SE, Moradi-Sardareh H, Panahi G, Maniati M, Meshkani R. Crosstalk between Alzheimer's disease and diabetes: a focus on anti-diabetic drugs. Metab Brain Dis 2023; 38:1769-1800. [PMID: 37335453 DOI: 10.1007/s11011-023-01225-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 06/21/2023]
Abstract
Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM) are two of the most common age-related diseases. There is accumulating evidence of an overlap in the pathophysiological mechanisms of these two diseases. Studies have demonstrated insulin pathway alternation may interact with amyloid-β protein deposition and tau protein phosphorylation, two essential factors in AD. So attention to the use of anti-diabetic drugs in AD treatment has increased in recent years. In vitro, in vivo, and clinical studies have evaluated possible neuroprotective effects of anti-diabetic different medicines in AD, with some promising results. Here we review the evidence on the therapeutic potential of insulin, metformin, Glucagon-like peptide-1 receptor agonist (GLP1R), thiazolidinediones (TZDs), Dipeptidyl Peptidase IV (DPP IV) Inhibitors, Sulfonylureas, Sodium-glucose Cotransporter-2 (SGLT2) Inhibitors, Alpha-glucosidase inhibitors, and Amylin analog against AD. Given that many questions remain unanswered, further studies are required to confirm the positive effects of anti-diabetic drugs in AD treatment. So to date, no particular anti-diabetic drugs can be recommended to treat AD.
Collapse
Affiliation(s)
- Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Leung A, Rangamani P. Computational modeling of AMPK and mTOR crosstalk in glutamatergic synapse calcium signaling. NPJ Syst Biol Appl 2023; 9:34. [PMID: 37460570 DOI: 10.1038/s41540-023-00295-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Neuronal energy consumption is vital for information processing and memory formation in synapses. The brain consists of just 2% of the human body's mass, but consumes almost 20% of the body's energy budget. Most of this energy is attributed to active transport in ion signaling, with calcium being the canonical second messenger of synaptic transmission. Here, we develop a computational model of synaptic signaling resulting in the activation of two protein kinases critical in metabolic regulation and cell fate, AMP-Activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) and investigate the effect of glutamate stimulus frequency on their dynamics. Our model predicts that frequencies of glutamate stimulus over 10 Hz perturb AMPK and mTOR oscillations at higher magnitudes by up to 36% and change the area under curve (AUC) by 5%. This dynamic difference in AMPK and mTOR activation trajectories potentially differentiates high frequency stimulus bursts from basal neuronal signaling leading to a downstream change in synaptic plasticity. Further, we also investigate the crosstalk between insulin receptor and calcium signaling on AMPK and mTOR activation and predict that the pathways demonstrate multistability dependent on strength of insulin signaling and metabolic consumption rate. Our predictions have implications for improving our understanding of neuronal metabolism, synaptic pruning, and synaptic plasticity.
Collapse
Affiliation(s)
- A Leung
- Chemical Engineering Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Noguera Hurtado H, Gresch A, Düfer M. NMDA receptors - regulatory function and pathophysiological significance for pancreatic beta cells. Biol Chem 2023; 404:311-324. [PMID: 36626848 DOI: 10.1515/hsz-2022-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
Due to its unique features amongst ionotropic glutamate receptors, the NMDA receptor is of special interest in the physiological context but even more as a drug target. In the pathophysiology of metabolic disorders, particularly type 2 diabetes mellitus, there is evidence that NMDA receptor activation contributes to disease progression by impairing beta cell function. Consequently, channel inhibitors are suggested for treatment, but up to now there are many unanswered questions about the signaling pathways NMDA receptors are interfering with in the islets of Langerhans. In this review we give an overview about channel structure and function with special regard to the pancreatic beta cells and the regulation of insulin secretion. We sum up which signaling pathways from brain research have already been transferred to the beta cell, and what still needs to be proven. The main focus is on the relationship between an over-stimulated NMDA receptor and the production of reactive oxygen species, the amount of which is crucial for beta cell function. Finally, pilot studies using NMDA receptor blockers to protect the islet from dysfunction are reviewed and future perspectives for the use of such compounds in the context of impaired glucose homeostasis are discussed.
Collapse
Affiliation(s)
- Héctor Noguera Hurtado
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Anne Gresch
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
16
|
Loss of brain energy metabolism control as a driver for memory impairment upon insulin resistance. Biochem Soc Trans 2023; 51:287-301. [PMID: 36606696 DOI: 10.1042/bst20220789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
The pathophysiological mechanisms intersecting metabolic and neurodegenerative disorders include insulin resistance, which has a strong involvement of environmental factors. Besides central regulation of whole-body homeostasis, insulin in the central nervous system controls molecular signalling that is critical for cognitive performance, namely signalling through pathways that modulate synaptic transmission and plasticity, and metabolism in neurons and astrocytes. This review provides an overview on how insulin signalling in the brain might regulate brain energy metabolism, and further identified molecular mechanisms by which brain insulin resistance might impair synaptic fuelling, and lead to cognitive deterioration.
Collapse
|
17
|
Ezkurdia A, Ramírez MJ, Solas M. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: A Focus on Insulin Resistance. Int J Mol Sci 2023; 24:ijms24054354. [PMID: 36901787 PMCID: PMC10001958 DOI: 10.3390/ijms24054354] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the main type of dementia and is a disease with a profound socioeconomic burden due to the lack of effective treatment. In addition to genetics and environmental factors, AD is highly associated with metabolic syndrome, defined as the combination of hypertension, hyperlipidemia, obesity and type 2 diabetes mellitus (T2DM). Among these risk factors, the connection between AD and T2DM has been deeply studied. It has been suggested that the mechanism linking both conditions is insulin resistance. Insulin is an important hormone that regulates not only peripheral energy homeostasis but also brain functions, such as cognition. Insulin desensitization, therefore, could impact normal brain function increasing the risk of developing neurodegenerative disorders in later life. Paradoxically, it has been demonstrated that decreased neuronal insulin signalling can also have a protective role in aging and protein-aggregation-associated diseases, as is the case in AD. This controversy is fed by studies focused on neuronal insulin signalling. However, the role of insulin action on other brain cell types, such as astrocytes, is still unexplored. Therefore, it is worthwhile exploring the involvement of the astrocytic insulin receptor in cognition, as well as in the onset and/or development of AD.
Collapse
Affiliation(s)
- Amaia Ezkurdia
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María J. Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence:
| |
Collapse
|
18
|
Shypshyna M, Kolesnyk O, Fedulova S, Veselovsky N. Insulin modulates the paired-pulse plasticity at glutamatergic synapses of hippocampal neurons under hypoinsulinemia. Front Cell Neurosci 2023; 17:1132325. [PMID: 37025701 PMCID: PMC10072261 DOI: 10.3389/fncel.2023.1132325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Hypoinsulinemia is a pathological consequence of diabetes mellitus that can cause a number of complications of the central and peripheral nervous system. Dysfunction of signaling cascades of insulin receptors under insulin deficiency can contribute to the development of cognitive disorders associated with impaired synaptic plasticity properties. Earlier we have shown that hypoinsulinemia causes a shift of short-term plasticity in glutamatergic hippocampal synapses from facilitation to depression and apparently involves mechanisms of glutamate release probability reduction. Here we used the whole cell patch-clamp recording of evoked glutamatergic excitatory postsynaptic currents (eEPSCs) and the method of local extracellular electrical stimulation of a single presynaptic axon to investigate the effect of insulin (100 nM) on the paired-pulse plasticity at glutamatergic synapses of cultured hippocampal neurons under hypoinsulinemia. Our data indicate that under normoinsulinemia additional insulin enhances the paired-pulse facilitation (PPF) of eEPSCs in hippocampal neurons by stimulating the glutamate release in their synapses. Under hypoinsulinemia, insulin did not have a significant effect on the parameters of paired-pulse plasticity on neurons of PPF subgroup, which may indicate the development of insulin resistance, while the effect of insulin on PPD neurons indicates its ability to recover the form normoinsulinemia, including the increasing probability of plasticity to the control level in of glutamate release in their synapses.
Collapse
|
19
|
Hamzé R, Delangre E, Tolu S, Moreau M, Janel N, Bailbé D, Movassat J. Type 2 Diabetes Mellitus and Alzheimer's Disease: Shared Molecular Mechanisms and Potential Common Therapeutic Targets. Int J Mol Sci 2022; 23:ijms232315287. [PMID: 36499613 PMCID: PMC9739879 DOI: 10.3390/ijms232315287] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors. The amyloid cascade plays a key role in the pathophysiology of Alzheimer's disease. The accumulation of amyloid beta peptides gradually leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting in neurodegeneration and cerebral atrophy. In Alzheimer's disease, apart from these processes, the alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease. The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer's disease has led to the description of this disease as "type 3 diabetes". Available animal models have been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer's disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review, we describe the main molecular mechanisms that may link these two diseases, with an emphasis on impaired insulin and IGF-1 signaling. We also focus on GSK3β and DYRK1A, markers of Alzheimer's disease, which are also closely associated with pancreatic β-cell dysfunction and type 2 diabetes, and thus may represent common therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Rim Hamzé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Etienne Delangre
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Stefania Tolu
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Manon Moreau
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Nathalie Janel
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Danielle Bailbé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Jamileh Movassat
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
- Correspondence: ; Tel.: +33-1-57-27-77-82; Fax: +33-1-57-27-77-91
| |
Collapse
|
20
|
Kubis-Kubiak A, Wiatrak B, Piwowar A. Hyper-glycemia and insulinemia induce morphological changes and modulate secretion of S100B, S100A8, amyloid β 1–40 and amyloid β 1–42, in a model of human dopaminergic neurons. Biomed Pharmacother 2022; 156:113869. [DOI: 10.1016/j.biopha.2022.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
21
|
Liu Q, Wang Z, Cao J, Dong Y, Chen Y. The Role of Insulin Signaling in Hippocampal-Related Diseases: A Focus on Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232214417. [PMID: 36430894 PMCID: PMC9699017 DOI: 10.3390/ijms232214417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a global concern and has become a major public health event affecting human health. Insulin is a metabolic hormone secreted mainly by the peripheral tissue pancreas. In recent years, more and more evidence has proved that insulin regulates various functions of the brain. The hippocampus, one of the earliest brain regions affected by AD, is widely distributed with insulin receptors. Studies have shown that type 2 diabetes mellitus, characterized by insulin resistance, is closely related to AD, which has drawn extensive attention to the relationship between hippocampal insulin signaling and AD. Therefore, we provide an overview of intranasal insulin administration on memory and its underlying mechanism. We also highlight the molecular link between hippocampal insulin resistance and AD and provide a theoretical basis for finding new therapeutic targets for AD in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Yaoxing Chen
- Correspondence: ; Tel.: +86-10-6273-3778; Fax: +86-10-6273-3199
| |
Collapse
|
22
|
Qeva E, Sollazzo C, Bilotta F. Insulin signaling in the central nervous system, a possible pathophysiological mechanism of anesthesia-induced delayed neurocognitive recovery/postoperative neurocognitive disorder: a narrative review. Expert Rev Neurother 2022; 22:839-847. [PMID: 36332201 DOI: 10.1080/14737175.2022.2144234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Impairment in neurocognitive functions ranges between delayed neurocognitive recovery (DNR) and postoperative neurocognitive disorders (pNCD). Incidence varies from 11% after noncardiac surgery to 60% after cardiac surgery. AREAS COVERED Insulin receptors (IRs) signaling pathway in the central nervous system (CNS) could be a possible pathophysiological mechanism of anesthesia-induced DNR/pNCD and perioperative intranasal insulin administration could be a preventive approach. This hypothesis is supported by the following evidence: effects of IRs-CNS signaling pathway on neuromodulation; higher incidence of DNR/pNCD in patients with insulin resistance; neurotoxicity of IRs signaling pathways after anesthetic exposure; improvement of neurocognitive impairment after insulin exposure. This narrative review was conducted after a literature search of PubMed, EMBASE and SCOPUS online medical data performed in May 2022. EXPERT OPINION Perioperative intranasal insulin is shown to be protective and future studies should address: the role of insulin as a neuromodulator; its integration into neuroprotection approaches; patient populations that might benefit from this approach; a well-defined protocol of intranasal insulin administration in a perioperative background and other disciplines; and possible collateral effects.
Collapse
Affiliation(s)
- Ega Qeva
- Department of Anesthesia and Intensive Care Medicine, "Sapienza" University of Rome, 'Policlinico Umberto I' Hospital, 00161 Rome, Italy.,Department of Anesthesia, Intensive Care and Emergency, University of Turin, 'Città Della Salute e Della Scienza' Hospital, 10126 Turin, Italy
| | - Camilla Sollazzo
- Department of Anesthesia and Intensive Care Medicine, "Sapienza" University of Rome, 'Policlinico Umberto I' Hospital, 00161 Rome, Italy
| | - Federico Bilotta
- Department of Anesthesia and Intensive Care Medicine, "Sapienza" University of Rome, 'Policlinico Umberto I' Hospital, 00161 Rome, Italy
| |
Collapse
|
23
|
Guo M, Jia J, Zhang J, Zhou M, Wang A, Chen S, Zhao X. Association of β-cell function and cognitive impairment in patients with abnormal glucose metabolism. BMC Neurol 2022; 22:232. [PMID: 35739484 PMCID: PMC9219116 DOI: 10.1186/s12883-022-02755-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/16/2022] [Indexed: 12/23/2022] Open
Abstract
Background Insulin has been demonstrated to play an important role in the occurrence and development of Alzheimer’s disease, especially in those with diabetes. β cells are important insulin-producing cells in human pancreas. This study aimed to investigate the association between β-cell dysfunction and cognitive impairment among patients over 40-year-old with abnormal glucose metabolism in Chinese rural communities. Methods A sample of 592 participants aged 40 years or older from the China National Stroke Prevention Project (CSPP) between 2015 and 2017 were enrolled in this study. Abnormal glucose metabolism was defined when hemoglobin Alc ≥ 5.7%. Cognitive function was assessed by the Beijing edition of the Montreal Cognitive Assessment scale. Homeostasis assessment of β-cell function was performed and classified into 4 groups according to the quartiles. A lower value of HOMA-β indicated a worse condition of β-cell function. Multivariate logistic regression was used to analyze the association between β-cell function and cognitive impairment. Results In a total of 592 patients with abnormal glucose metabolism, the average age was 60.20 ± 7.63 years and 60.1% patients had cognitive impairment. After adjusting for all potential risk factors, we found the first quartile of β-cell function was significantly associated with cognitive impairment (OR: 2.27, 95%CI: 1.32–3.92), especially at the domains of language (OR: 1.64, 95%CI: 1.01–2.65) and abstraction (OR: 2.29, 95%CI: 1.46–3.58). Conclusions Our study showed that worse β-cell function is associated with cognitive impairment of people over 40-year-old with abnormal glucose metabolism in Chinese rural communities, especially in the cognitive domains of abstraction and language.
Collapse
Affiliation(s)
- Mengyi Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiaokun Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingyue Zhou
- Department of Neurology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shengyun Chen
- Department of Neurology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China. .,Department of Neurology of Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China.
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
24
|
Insulin and Its Key Role for Mitochondrial Function/Dysfunction and Quality Control: A Shared Link between Dysmetabolism and Neurodegeneration. BIOLOGY 2022; 11:biology11060943. [PMID: 35741464 PMCID: PMC9220302 DOI: 10.3390/biology11060943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
Insulin was discovered and isolated from the beta cells of pancreatic islets of dogs and is associated with the regulation of peripheral glucose homeostasis. Insulin produced in the brain is related to synaptic plasticity and memory. Defective insulin signaling plays a role in brain dysfunction, such as neurodegenerative disease. Growing evidence suggests a link between metabolic disorders, such as diabetes and obesity, and neurodegenerative diseases, especially Alzheimer's disease (AD). This association is due to a common state of insulin resistance (IR) and mitochondrial dysfunction. This review takes a journey into the past to summarize what was known about the physiological and pathological role of insulin in peripheral tissues and the brain. Then, it will land in the present to analyze the insulin role on mitochondrial health and the effects on insulin resistance and neurodegenerative diseases that are IR-dependent. Specifically, we will focus our attention on the quality control of mitochondria (MQC), such as mitochondrial dynamics, mitochondrial biogenesis, and selective autophagy (mitophagy), in healthy and altered cases. Finally, this review will be projected toward the future by examining the most promising treatments that target the mitochondria to cure neurodegenerative diseases associated with metabolic disorders.
Collapse
|
25
|
SAPAP3 regulates epileptic seizures involving GluN2A in post-synaptic densities. Cell Death Dis 2022; 13:437. [PMID: 35513389 PMCID: PMC9072407 DOI: 10.1038/s41419-022-04876-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Aberrantly synchronized neuronal discharges in the brain lead to epilepsy, a devastating neurological disease whose pathogenesis and mechanism are unclear. SAPAP3, a cytoskeletal protein expressed at high levels in the postsynaptic density (PSD) of excitatory synapses, has been well studied in the striatum, but the role of SAPAP3 in epilepsy remains elusive. In this study, we sought to investigate the molecular, cellular, electrophysiological and behavioral consequences of SAPAP3 perturbations in the mouse hippocampus. We identified a significant increase in the SAPAP3 levels in patients with temporal lobe epilepsy (TLE) and in mouse models of epilepsy. In addition, behavioral studies showed that the downregulation of SAPAP3 by shRNA decreased the seizure severity and that the overexpression of SAPAP3 by recombinant SAPAP3 yielded the opposite effect. Moreover, SAPAP3 affected action potentials (APs), miniature excitatory postsynaptic currents (mEPSCs) and N-methyl-D-aspartate receptor (NMDAR)-mediated currents in the CA1 region, which indicated that SAPAP3 plays an important role in excitatory synaptic transmission. Additionally, the levels of the GluN2A protein, which is involved in synaptic function, were perturbed in the hippocampal PSD, and this perturbation was accompanied by ultrastructural morphological changes. These results revealed a previously unknown function of SAPAP3 in epileptogenesis and showed that SAPAP3 may represent a novel target for the treatment of epilepsy.
Collapse
|
26
|
Lü W, Yu T, Kuang W. Effects of dietary restriction on cognitive function: a systematic review and meta-analysis. Nutr Neurosci 2022; 26:540-550. [PMID: 35469542 DOI: 10.1080/1028415x.2022.2068876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Potential positive link between cognitive function and dietary restriction has been widely concerned. The present study describes a systematic review and preliminary meta-analysis to assess the efficacy of dietary restriction on cognitive function. We classified dietary restrictions as Calories Restriction (CR) and Intermittent Fasting (IF). METHOD This systematic review and meta-analysis conducted following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Statement (PRISMA) Checklist, Databases including PubMed, Embase, Web of Science, and the Cochrane Library were searched for randomized controlled trials (RCTs) assessing the cognition effectiveness of dietary restriction from database inception to Sep 2021. RESULT Eleven RCTs met the inclusion criteria in the systematic review and meta-analysis. The overall effect of dietary restriction on cognitive function is SMD = 0.22 (95% CI: 0.09-0.34, p < 0.01). The effect on global function SMD = 0.35 (95% CI: 0.04-0.65, p < 0.05) and memory SMD = 0.18 (95% CI: 0.00-0.35, p = 0.05) is significant. MCI showed the best effectiveness SMD = 0.36 (95% CI: 0.05-0.68, p < 0.05), followed by the normal weight population SMD = 0.28 (95% CI: 0.03-0.52, p < 0.05) and overweight population SMD = 0.20 (95% CI: 0.06-0.34, p < 0.01). No statistically significant difference showed between IF and CR (p > 0.05). CONCLUSION Our study demonstrated that dietary restriction has varying degrees of positive effect on cognitive function in overweight/normal-weight people and MCI. However, it should be cautious when generalizing to other populations. Additional high-quality, large-scale, cohort and intervention studies are needed to further assess the effectiveness of dietary restriction on cognition.
Collapse
Affiliation(s)
- Wenqi Lü
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tingting Yu
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Weihong Kuang
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
27
|
Peng D, Qing X, Guan L, Li HY, Qiao L, Chen YB, Cai YF, Wang Q, Zhang SJ. Carnosine improves cognitive impairment through promoting SIRT6 expression and inhibiting ER stress in a diabetic encephalopathy model. Rejuvenation Res 2022; 25:79-88. [PMID: 35302398 DOI: 10.1089/rej.2022.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetic encephalopathy is one of complications of diabetes mellitus. Carnosine is a dipeptide composed of β-alanine and L-histidine. Study has shown that carnosine could ameliorate cognitive impairment in animal model with diabetes mellitus. However, the mechanism remains unclear. An animal model of type 2 diabetes (db/db mice) was used in this study. The animals were treated with 0.9 % saline or carnosine (100 mg/kg) for 8 weeks. Morris water maze was tested after drug administration. Oxidative stress-related factors malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and pro-inflammatory factors inducible nitric oxide synthase (iNOS) were measured. Synapse-related protein postsynapticdensity 95 (PSD95) and brain-derived neurotrophic factor (BDNF) were detected by western blot. Besides, the expressions of sirtuin 6 (SIRT6), binding immunoglobulin protein (BIP), protein kinase R-like endoplasmic reticulum kinase (PERK), phospho-protein kinase R-like endoplasmic reticulum kinase (P-PERK), inositol-requiring enzyme-1α (IRE1α), phospho-inositol-requiring enzyme-1α (P-IRE1α), activating transcription factor 6 (ATF6), C/EBP-homologous protein (CHOP) in the hippocampus of the brain were detected. The results showed that treatment with carnosine ameliorated cognitive impairment in db/db mice. Carnosine reduced neuronal oxidative stress damage and iNOS expression in db/db mice. Meanwhile, carnosine relieved neurodegeneration in the hippocampus of db/db mice. Furthermore, carnosine promoted the expression of SIRT6 and reduced the expressions of endoplasmic reticulum (ER) related factors (BIP, P-PERK, P-IRE1α, ATF6, CHOP). In conclusion, these data suggested that the protective effect of carnosine against diabetic encephalopathy might be related to SIRT6/ER stress pathway.
Collapse
Affiliation(s)
- Dong Peng
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Xia Qing
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Li Guan
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Hong-Ying Li
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Lijun Qiao
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Yun-Bo Chen
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Ye-Feng Cai
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Qi Wang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Shi-Jie Zhang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou University of Chinese Medicine, Guangzhou, China, 510006;
| |
Collapse
|
28
|
Chen W, Cai W, Hoover B, Kahn CR. Insulin action in the brain: cell types, circuits, and diseases. Trends Neurosci 2022; 45:384-400. [PMID: 35361499 PMCID: PMC9035105 DOI: 10.1016/j.tins.2022.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Since its discovery over 100 years ago, insulin has been recognized as a key hormone in control of glucose homeostasis. Deficiencies of insulin signaling are central to diabetes and many other disorders. The brain is among the targets of insulin action, and insulin resistance is a major contributor to many diseases, including brain disorders. Here, we summarize key roles of insulin action in the brain and how this involves different brain cell types. Disordered brain insulin signaling can also contribute to neuropsychiatric diseases, affecting brain circuits involved in mood and cognition. Understanding of insulin signaling in different brain cell types/circuits and how these are altered in disease may lead to the development of new therapeutic approaches to these challenging disorders.
Collapse
|
29
|
Mehan S, Bhalla S, Siddiqui EM, Sharma N, Shandilya A, Khan A. Potential Roles of Glucagon-Like Peptide-1 and Its Analogues in Dementia Targeting Impaired Insulin Secretion and Neurodegeneration. Degener Neurol Neuromuscul Dis 2022; 12:31-59. [PMID: 35300067 PMCID: PMC8921673 DOI: 10.2147/dnnd.s247153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Dementia is a chronic, irreversible condition marked by memory loss, cognitive decline, and mental instability. It is clinically related to various progressive neurological diseases, including Parkinson’s disease, Alzheimer’s disease, and Huntington’s. The primary cause of neurological disorders is insulin desensitization, demyelination, oxidative stress, and neuroinflammation accompanied by various aberrant proteins such as amyloid-β deposits, Lewy bodies accumulation, tau formation leading to neurofibrillary tangles. Impaired insulin signaling is directly associated with amyloid-β and α-synuclein deposition, as well as specific signaling cascades involved in neurodegenerative diseases. Insulin dysfunction may initiate various intracellular signaling cascades, including phosphoinositide 3-kinase (PI3K), c-Jun N-terminal kinases (JNK), and mitogen-activated protein kinase (MAPK). Neuronal death, inflammation, neuronal excitation, mitochondrial malfunction, and protein deposition are all influenced by insulin. Recent research has focused on GLP-1 receptor agonists as a potential therapeutic target. They increase glucose-dependent insulin secretion and are beneficial in neurodegenerative diseases by reducing oxidative stress and cytokine production. They reduce the deposition of abnormal proteins by crossing the blood-brain barrier. The purpose of this article is to discuss the role of insulin dysfunction in the pathogenesis of neurological diseases, specifically dementia. Additionally, we reviewed the therapeutic target (GLP-1) and its receptor activators as a possible treatment of dementia.
Collapse
Affiliation(s)
- Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- Correspondence: Sidharth Mehan, Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India, Tel +91 8059889909; +91 9461322911, Email ;
| | - Sonalika Bhalla
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ehraz Mehmood Siddiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Nidhi Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ambika Shandilya
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Andleeb Khan
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
30
|
De Felice FG, Gonçalves RA, Ferreira ST. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat Rev Neurosci 2022; 23:215-230. [PMID: 35228741 DOI: 10.1038/s41583-022-00558-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
|
31
|
Mohseni-Moghaddam P, Ghobadian R, Khaleghzadeh-Ahangar H. Dementia in Diabetes mellitus and Atherosclerosis; Two Interrelated Systemic Diseases. Brain Res Bull 2022; 181:87-96. [DOI: 10.1016/j.brainresbull.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/18/2021] [Accepted: 01/24/2022] [Indexed: 12/06/2022]
|
32
|
Alkasabera A, Onyali CB, Anim-Koranteng C, Shah HE, Ethirajulu A, Bhawnani N, Mostafa JA. The Effect of Type-2 Diabetes on Cognitive Status and the Role of Anti-diabetes Medications. Cureus 2021; 13:e19176. [PMID: 34877187 PMCID: PMC8642129 DOI: 10.7759/cureus.19176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes mellitus prevalence is constantly increasing; this is explained by the increase of its risk factors and the amelioration of its management. Therefore, people are living longer with diabetes mellitus, which, in turn, has revealed new complications of the disease. Dementia is represented mainly by Alzheimer's disease and is an interesting topic of study. Accordingly, statistics have shown that dementia incidence is doubled in diabetic patients. The establishment of a relation between type-2 diabetes mellitus was studied on several levels in both humans and animal subjects. First, insulin receptors were found in the brain, especially the hippocampus, and insulin transport to the brain is mainly accomplished through the blood-brain barrier. Secondly, several studies showed that insulin affects multiple neurotransmitters in favor of promoting memory and cognition status. Thirdly, multiple pathological studies showed that insulin and Alzheimer's disease share many common lesions in the brain, such as beta-amyloid plaques, amylin-Aβ plaques, hyper-phosphorylated tau protein, and brain atrophy, especially in the hippocampus. After recognizing the positive effect of insulin on cognitive status, and the harmful effect of insulin resistance on cognitive status, multiple studies were focused on the role of anti-diabetes medications in fighting dementia. Consequently, these studies showed a positive impact of oral anti-diabetes medication, as well as insulin in limiting the progression of dementia and promoting cognitive status. Moreover, their effects were also noticed on limiting the pathological lesions of Alzheimer's disease. Accordingly, we can consider type-2 diabetes mellitus as a risk factor for dementia and Alzheimer's disease. Therefore, this can be used on the pharmaceutical level by the promising implication of antidiabetics as a treatment of dementia and Alzheimer's disease or at least to limit its progression. However, multiple clinical studies should be dedicated to proving the true benefits of anti-diabetes medications in treating dementia before they can be used in reality.
Collapse
Affiliation(s)
- Almothana Alkasabera
- General Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | | | - Hira E Shah
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aarthi Ethirajulu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nitin Bhawnani
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
33
|
Reagan L, Cowan H, Woodruff J, Piroli G, Erichsen J, Evans A, Burzynski H, Maxwell N, Loyo-Rosado F, Macht V, Grillo C. Hippocampal-specific insulin resistance elicits behavioral despair and hippocampal dendritic atrophy. Neurobiol Stress 2021; 15:100354. [PMID: 34258333 PMCID: PMC8252121 DOI: 10.1016/j.ynstr.2021.100354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/02/2023] Open
Abstract
Insulin resistance is a major contributor to the neuroplasticity deficits observed in patients with metabolic disorders. However, the relative contribution of peripheral versus central insulin resistance in the development of neuroplasticity deficits remains equivocal. To distinguish between peripheral and central insulin resistance, we developed a lentiviral vector containing an antisense sequence selective for the insulin receptor (LV-IRAS). We previously demonstrated that intra-hippocampal injection of this vector impairs synaptic transmission and hippocampal-dependent learning and memory in the absence of peripheral insulin resistance. In view of the increased risk for the development of neuropsychiatric disorders in patients with insulin resistance, the current study examined depressive and anxiety-like behaviors, as well as hippocampal structural plasticity in rats with hippocampal-specific insulin resistance. Following hippocampal administration of either the LV-control virus or the LV-IRAS, anhedonia was evaluated by the sucrose preference test, despair behavior was assessed in the forced swim test, and anxiety-like behaviors were determined in the elevated plus maze. Hippocampal neuron morphology was studied by Golgi-Cox staining. Rats with hippocampal insulin resistance exhibited anxiety-like behaviors and behavioral despair without differences in anhedonia, suggesting that some but not all components of depressive-like behaviors were affected. Morphologically, hippocampal-specific insulin resistance elicited atrophy of the basal dendrites of CA3 pyramidal neurons and dentate gyrus granule neurons, and also reduced the expression of immature dentate gyrus granule neurons. In conclusion, hippocampal-specific insulin resistance elicits structural deficits that are accompanied by behavioral despair and anxiety-like behaviors, identifying hippocampal insulin resistance as a key factor in depressive illness.
Collapse
Affiliation(s)
- L.P. Reagan
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - H.B. Cowan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - J.L. Woodruff
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - G.G. Piroli
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - J.M. Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - A.N. Evans
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - H.E. Burzynski
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - N.D. Maxwell
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - F.Z. Loyo-Rosado
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - V.A. Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - C.A. Grillo
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| |
Collapse
|
34
|
García-Aviles JE, Méndez-Hernández R, Guzmán-Ruiz MA, Cruz M, Guerrero-Vargas NN, Velázquez-Moctezuma J, Hurtado-Alvarado G. Metabolic Disturbances Induced by Sleep Restriction as Potential Triggers for Alzheimer's Disease. Front Integr Neurosci 2021; 15:722523. [PMID: 34539357 PMCID: PMC8447653 DOI: 10.3389/fnint.2021.722523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
Sleep has a major role in learning, memory consolidation, and metabolic function. Although it is known that sleep restriction increases the accumulation of amyloid β peptide (Aβ) and the risk to develop Alzheimer's disease (AD), the mechanism behind these effects remains unknown. In this review, we discuss how chronic sleep restriction induces metabolic and cognitive impairments that could result in the development of AD in late life. Here, we integrate evidence regarding mechanisms whereby metabolic signaling becomes disturbed after short or chronic sleep restriction in the context of cognitive impairment, particularly in the accumulation of Aβ in the brain. We also discuss the role of the blood-brain barrier in sleep restriction with an emphasis on the transport of metabolic signals into the brain and Aβ clearance. This review presents the unexplored possibility that the alteration of peripheral metabolic signals induced by sleep restriction, especially insulin resistance, is responsible for cognitive deficit and, subsequently, implicated in AD development.
Collapse
Affiliation(s)
- Jesús Enrique García-Aviles
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Cruz
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Unidad de Investigación Médica en Bioquímica, Mexico City, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Javier Velázquez-Moctezuma
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Gabriela Hurtado-Alvarado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
35
|
Insulin and Insulin Resistance in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189987. [PMID: 34576151 PMCID: PMC8472298 DOI: 10.3390/ijms22189987] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Insulin plays a range of roles as an anabolic hormone in peripheral tissues. It regulates glucose metabolism, stimulates glucose transport into cells and suppresses hepatic glucose production. Insulin influences cell growth, differentiation and protein synthesis, and inhibits catabolic processes such as glycolysis, lipolysis and proteolysis. Insulin and insulin-like growth factor-1 receptors are expressed on all cell types in the central nervous system. Widespread distribution in the brain confirms that insulin signaling plays important and diverse roles in this organ. Insulin is known to regulate glucose metabolism, support cognition, enhance the outgrowth of neurons, modulate the release and uptake of catecholamine, and regulate the expression and localization of gamma-aminobutyric acid (GABA). Insulin is also able to freely cross the blood–brain barrier from the circulation. In addition, changes in insulin signaling, caused inter alia insulin resistance, may accelerate brain aging, and affect plasticity and possibly neurodegeneration. There are two significant insulin signal transduction pathways: the PBK/AKT pathway which is responsible for metabolic effects, and the MAPK pathway which influences cell growth, survival and gene expression. The aim of this study is to describe the role played by insulin in the CNS, in both healthy people and those with pathologies such as insulin resistance and Alzheimer’s disease.
Collapse
|
36
|
Tian D, Gao Q, Lin J, Chang Z, Wang Y, Shi Y, Su R, Han Z, Ma D. Uncovering the mechanism of the Shenzhi Jiannao formula against vascular dementia using a combined network pharmacology approach and molecular biology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153637. [PMID: 34273705 DOI: 10.1016/j.phymed.2021.153637] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shenzhi Jiannao formula (SZJNF) is a herbal prescription which is used for detoxification, dredging collaterals, and activating blood circulation and Qi flow in traditional Chinese medicine. SZJNF is a clinical effective prescription for the treatment of vascular dementia (VD) first formulated based on the classical theory of traditional Chinese medicine, but its anti-VD mechanism remains ambiguous. PURPOSE The aim of this study was to elucidate the multi-target mechanisms of SZJNF against VD using a network pharmacology approach and verify its effects through biological experiments. STUDY DESIGN AND METHODS We utilized network pharmacology-based prediction and molecular docking techniques to uncover the potential micro-mechanism of SZJNF against VD. We identified active components and potential targets, and performed network analysis, functional annotation, and pathway enrichment analysis. Subsequently, glutamate-induced PC12 cells and VD rats were used to verify the molecular mechanisms of SZJNF. RESULTS Seventeen active compounds were identified in SZJNF rat plasma; moreover, 773 predicted targets and 1544 VD-related targets were found. Various networks, including the PPI, herb-compound-target, and compound-target-pathway network were constructed. A total of 188 shared targets were identified by network topological analysis, which were closely associated to the anti-VD effects of SZJNF. They were also enriched in various biological processes through hypoxia reaction, promotion of cell proliferation, inhibition of apoptosis, neuroactive ligand-receptor interaction, and calcium signaling pathway, as evaluated by the analysis of advanced functions and pathways. SZJNF components docked well with the key targets. Treatment with SZJNF promoted cell proliferation, ameliorated apoptosis and oxidative stress injury, and improved neurological and cognitive abilities. CONCLUSION This study comprehensively demonstrated the multi-target mechanisms of SZJNF in VD using network pharmacology and molecular biology experiments. This provides evidence for further mechanistic studies and for the development of SZJNF as a potential treatment for patients with VD.
Collapse
Affiliation(s)
- Danfeng Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Gao
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingfeng Lin
- Beijing University of Chinese Medicine, Beijing, China
| | - Ze Chang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yuchun Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Su
- Department of Academic Research, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Zhenyun Han
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen, China.
| | - Dayong Ma
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
37
|
Cai W, Zhang X, Batista TM, García-Martín R, Softic S, Wang G, Ramirez AK, Konishi M, O'Neill BT, Kim JH, Kim JK, Kahn CR. Peripheral Insulin Regulates a Broad Network of Gene Expression in Hypothalamus, Hippocampus, and Nucleus Accumbens. Diabetes 2021; 70:1857-1873. [PMID: 34031123 PMCID: PMC8385615 DOI: 10.2337/db20-1119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/09/2021] [Indexed: 11/13/2022]
Abstract
The brain is now recognized as an insulin-sensitive tissue; however, the role of changing insulin concentrations in the peripheral circulation in gene expression in the brain is largely unknown. Here, we performed a hyperinsulinemic-euglycemic clamp on 3-month-old male C57BL/6 mice for 3 h. We show that, in comparison with results in saline-infused controls, increases in peripheral insulin within the physiological range regulate expression of a broad network of genes in the brain. Insulin regulates distinct pathways in the hypothalamus (HTM), hippocampus, and nucleus accumbens. Insulin shows its most robust effect in the HTM and regulates multiple genes involved in neurotransmission, including upregulating expression of multiple subunits of GABA-A receptors, Na+ and K+ channels, and SNARE proteins; differentially modulating glutamate receptors; and suppressing multiple neuropeptides. Insulin also strongly modulates metabolic genes in the HTM, suppressing genes in the glycolysis and pentose phosphate pathways, while increasing expression of genes regulating pyruvate dehydrogenase and long-chain fatty acyl-CoA and cholesterol biosynthesis, thereby rerouting of carbon substrates from glucose metabolism to lipid metabolism required for the biogenesis of membranes for neuronal and glial function and synaptic remodeling. Furthermore, based on the transcriptional signatures, these changes in gene expression involve neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells. Thus, peripheral insulin acutely and potently regulates expression of a broad network of genes involved in neurotransmission and brain metabolism. Dysregulation of these pathways could have dramatic effects in normal physiology and diabetes.
Collapse
Affiliation(s)
- Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY
| | - Xuemei Zhang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Rubén García-Martín
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Samir Softic
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Pediatrics, University of Kentucky, College of Medicine, Lexington, KY
| | - Guoxiao Wang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Alfred K Ramirez
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Masahiro Konishi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Brian T O'Neill
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jong Hun Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Department of Food Science and Biotechnology, Sungshin University, Seoul, South Korea
| | - Jason K Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
38
|
Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021; 234:113370. [PMID: 33621561 PMCID: PMC8053680 DOI: 10.1016/j.physbeh.2021.113370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
The intranasal (IN) administration of neuropeptides, such as insulin and orexins, has been suggested as a treatment strategy for age-related cognitive decline (ARCD). Because dysfunctional neuropeptide signaling is an observed characteristic of ARCD, it has been suggested that IN delivery of insulin and/or orexins may restore endogenous peptide signaling and thereby preserve cognition. IN administration is particularly alluring as it is a relatively non-invasive method that directly targets peptides to the brain. Several laboratories have examined the behavioral effects of IN insulin in young, aged, and cognitively impaired rodents and humans. These studies demonstrated improved performance on various cognitive tasks following IN insulin administration. Fewer laboratories have assessed the effects of IN orexins; however, this peptide also holds promise as an effective treatment for ARCD through the activation of the cholinergic system and/or the reduction of neuroinflammation. Here, we provide a brief overview of the advantages of IN administration and the delivery pathway, then summarize the current literature on IN insulin and orexins. Additional preclinical studies will be useful to ultimately uncover the mechanisms underlying the pro-cognitive effects of IN insulin and orexins, whereas future clinical studies will aid in the determination of the most efficacious dose and dosing paradigm. Eventually, IN insulin and/or orexin administration may be a widely used treatment strategy in the clinic for ARCD.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States.
| | - Coleman B Calva
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC, 29208, United States
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| |
Collapse
|
39
|
Kuboki A, Kikuta S, Otori N, Kojima H, Matsumoto I, Reisert J, Yamasoba T. Insulin-Dependent Maturation of Newly Generated Olfactory Sensory Neurons after Injury. eNeuro 2021; 8:ENEURO.0168-21.2021. [PMID: 33906971 PMCID: PMC8143024 DOI: 10.1523/eneuro.0168-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Loss of olfactory sensory neurons (OSNs) after injury to the olfactory epithelium (OE) triggers the generation of OSNs that are incorporated into olfactory circuits to restore olfactory sensory perception. This study addresses how insulin receptor-mediated signaling affects the functional recovery of OSNs after OE injury. Insulin levels were reduced in mice by ablating the pancreatic β cells via streptozotocin (STZ) injections. These STZ-induced diabetic and control mice were then intraperitoneally injected with the olfactotoxic drug methimazole to selectively ablate OSNs. The OE of diabetic and control mice regenerated similarly until day 14 after injury. Thereafter, the OE of diabetic mice contained fewer mature and more apoptotic OSNs than control mice. Functionally, diabetic mice showed reduced electro-olfactogram (EOG) responses and their olfactory bulbs (OBs) had fewer c-Fos-active cells following odor stimulation, as well as performed worse in an odor-guided task compared with control mice. Insulin administered intranasally during days 8-13 after injury was sufficient to rescue recovery of OSNs in diabetic mice compared with control levels, while insulin administration between days 1 and 6 did not. During this critical time window on days 8-13 after injury, insulin receptors are highly expressed and intranasal application of an insulin receptor antagonist inhibits regeneration. Furthermore, an insulin-enriched environment could facilitate regeneration even in non-diabetic mice. These results indicate that insulin facilitates the regeneration of OSNs after injury and suggest a critical stage during recovery (8-13 d after injury) during which the maturation of newly generated OSNs is highly dependent on and promoted by insulin.
Collapse
Affiliation(s)
- Akihito Kuboki
- Department of Otolaryngology, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Monell Chemical Senses Center, Philadelphia, PA 19104
| | - Shu Kikuta
- Department of Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Nobuyoshi Otori
- Department of Otolaryngology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hiromi Kojima
- Department of Otolaryngology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
40
|
Irving A, Harvey J. Regulation of hippocampal synaptic function by the metabolic hormone leptin: Implications for health and disease. Prog Lipid Res 2021; 82:101098. [PMID: 33895229 DOI: 10.1016/j.plipres.2021.101098] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Significant advances have been made in our understanding of the hormone, leptin and its CNS actions in recent years. It is now evident that leptin has a multitude of brain functions, that extend beyond its established role in the hypothalamic control of energy balance. Additional brain regions including the hippocampus are important targets for leptin, with a high density of leptin receptors (LepRs) expressed in specific hippocampal regions and localised to CA1 synapses. Extensive evidence indicates that leptin has pro-cognitive actions, as it rapidly modifies synaptic efficacy at excitatory Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 synapses and enhances performance in hippocampal-dependent memory tasks. There is a functional decline in hippocampal responsiveness to leptin with age, with significant reductions in the modulatory effects of leptin at SC-CA1 and TA-CA1 synapses in aged, compared to adult hippocampus. As leptin has pro-cognitive effects, this decline in leptin sensitivity is likely to have negative consequences for cognitive function during the aging process. Here we review how evaluation of the hippocampal actions of leptin has improved our knowledge of the regulatory brain functions of leptin in health and provided significant insight into the impact of leptin in age-related neurodegenerative disorders linked to cognitive decline.
Collapse
Affiliation(s)
- Andrew Irving
- School of Biomolecular and Biomedical Science, The Conway Institute, University College Dublin, Dublin, Ireland
| | - Jenni Harvey
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom.
| |
Collapse
|
41
|
Edlund AK, Chen K, Lee W, Protas H, Su Y, Reiman E, Caselli R, Nielsen HM. Plasma Apolipoprotein E3 and Glucose Levels Are Associated in APOE ɛ3/ɛ4 Carriers. J Alzheimers Dis 2021; 81:339-354. [PMID: 33814450 PMCID: PMC8203224 DOI: 10.3233/jad-210065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Altered cerebral glucose metabolism, especially prominent in APOE ɛ4 carriers, occurs years prior to symptoms in Alzheimer's disease (AD). We recently found an association between a higher ratio of plasma apolipoprotein E4 (apoE4) over apoE3, and cerebral glucose hypometabolism in cognitively healthy APOE ɛ3/ɛ4 subjects. Plasma apoE does not cross the blood-brain barrier, hence we speculate that apoE is linked to peripheral glucose metabolism which is known to affect glucose metabolism in the brain. OBJECTIVE Explore potential associations between levels of plasma insulin and glucose with previously acquired plasma apoE, cerebral metabolic rate of glucose (CMRgl), gray matter volume, and neuropsychological test scores. METHODS Plasma insulin and glucose levels were determined by ELISA and a glucose oxidase assay whereas apoE levels were earlier quantified by mass-spectrometry in 128 cognitively healthy APOE ɛ3/ɛ4 subjects. Twenty-five study subjects had previously undergone FDG-PET and structural MRI. RESULTS Lower plasma apoE3 associated with higher plasma glucose but not insulin in male subjects and subjects with a body mass index above 25. Negative correlations were found between plasma glucose and CMRgl in the left prefrontal and bilateral occipital regions. These associations may have functional implications since glucose levels in turn were negatively associated with neuropsychological test scores. CONCLUSION Plasma apoE3 but not apoE4 may be involved in insulin-independent processes governing plasma glucose levels. Higher plasma glucose, which negatively affects brain glucose metabolism, was associated with lower plasma apoE levels in APOE ɛ3/ɛ4 subjects. High plasma glucose and low apoE levels may be a hazardous combination leading to an increased risk of AD.
Collapse
Affiliation(s)
- Anna K Edlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Wendy Lee
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Hillary Protas
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Eric Reiman
- Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA.,Division of Neurogenomics, Translational Genomics Research Institute, Phoenix, AZ, USA.,Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Richard Caselli
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA.,Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
42
|
Abstract
The intranasal (IN) route enables the delivery of insulin to the central nervous system in the relative absence of systemic uptake and related peripheral side effects. Intranasally administered insulin is assumed to travel along olfactory and adjacent pathways and has been shown to rapidly accumulate in cerebrospinal fluid, indicating efficient transport to the brain. Two decades of studies in healthy humans and patients have demonstrated that IN insulin exerts functional effects on metabolism, such as reductions in food intake and body weight and improvements of glucose homeostasis, as well as cognition, ie, enhancements of memory performance both in healthy individuals and patients with mild cognitive impairment or Alzheimer's disease; these studies moreover indicate a favourable safety profile of the acute and repeated use of IN insulin. Emerging findings suggest that IN insulin also modulates neuroendocrine activity, sleep-related mechanisms, sensory perception and mood. Some, but not all studies point to sex differences in the response to IN insulin that need to be further investigated along with the impact of age. "Brain insulin resistance" is an evolving concept that posits impairments in central nervous insulin signalling as a pathophysiological factor in metabolic and cognitive disorders such as obesity, type 2 diabetes and Alzheimer's disease, and, notably, a target of interventions that rely on IN insulin. Still, the negative outcomes of longer-term IN insulin trials in individuals with obesity or Alzheimer's disease highlight the need for conceptual as well as methodological advances to translate the promising results of proof-of-concept experiments and pilot clinical trials into the successful clinical application of IN insulin.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Brain Insulin Resistance: Focus on Insulin Receptor-Mitochondria Interactions. Life (Basel) 2021; 11:life11030262. [PMID: 33810179 PMCID: PMC8005009 DOI: 10.3390/life11030262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Current hypotheses implicate insulin resistance of the brain as a pathogenic factor in the development of Alzheimer’s disease and other dementias, Parkinson’s disease, type 2 diabetes, obesity, major depression, and traumatic brain injury. A variety of genetic, developmental, and metabolic abnormalities that lead to disturbances in the insulin receptor signal transduction may underlie insulin resistance. Insulin receptor substrate proteins are generally considered to be the node in the insulin signaling system that is critically involved in the development of insulin insensitivity during metabolic stress, hyperinsulinemia, and inflammation. Emerging evidence suggests that lower activation of the insulin receptor (IR) is another common, while less discussed, mechanism of insulin resistance in the brain. This review aims to discuss causes behind the diminished activation of IR in neurons, with a focus on the functional relationship between mitochondria and IR during early insulin signaling and the related roles of oxidative stress, mitochondrial hypometabolism, and glutamate excitotoxicity in the development of IR insensitivity to insulin.
Collapse
|
44
|
Uddin MS, Rahman MM, Sufian MA, Jeandet P, Ashraf GM, Bin-Jumah MN, Mousa SA, Abdel-Daim MM, Akhtar MF, Saleem A, Amran MS. Exploring the New Horizon of AdipoQ in Obesity-Related Alzheimer's Dementia. Front Physiol 2021; 11:567678. [PMID: 33584324 PMCID: PMC7873563 DOI: 10.3389/fphys.2020.567678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which causes abnormalities in learning, thinking, memory, as well as behavior. Generally, symptoms of AD develop gradually and aggravate over time, and consequently severely interfere with daily activities. Furthermore, obesity is one of the common risk factors for dementia. Dysregulation of adipokine and adipocyte dysfunction are assumed to be accountable for the high risk of obesity in people that develop many related disorders such as AD. Moreover, it has been observed that the dysfunction of adipose is connected with changes in brain metabolism, brain atrophy, cognitive decline, impaired mood, neuroinflammation, impaired insulin signaling, and neuronal dysfunction in people with obesity. Conversely, the pathological mechanisms, as well as the molecular players which are involved in this association, have been unclear until now. In this article, we discuss the impact of adiponectin (AdipoQ) on obesity-related Alzheimer's dementia.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Motiar Rahman
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Mohammad Abu Sufian
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, Reims Cedex, France
| | - Ghulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY, United States
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
45
|
Lin C, Lin Y, Luo J, Yu J, Cheng Y, Wu X, Lin L, Lin Y. Maternal High-Fat Diet Multigenerationally Impairs Hippocampal Synaptic Plasticity and Memory in Male Rat Offspring. Endocrinology 2021; 162:bqaa214. [PMID: 33211807 DOI: 10.1210/endocr/bqaa214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/14/2022]
Abstract
As advances are made in the field of developmental origins of health and disease, there is an emphasis on long-term influence of maternal environmental factors on offspring health. Maternal high-fat diet (HFD) consumption has been suggested to exert detrimental effects on cognitive function in offspring, but whether HFD-dependent brain remodeling can be transmitted to the next generations is still unclear. This study tested the hypothesis that HFD consumption during rat pregnancy and lactation multigenerationally influences male offspring hippocampal synaptic plasticity and cognitive function. We observed that hippocampus-dependent learning and memory was impaired in 3 generations from HFD-fed maternal ancestors (referred as F1-F3), as assessed by novel object recognition and Morris water maze tests. Moreover, maternal HFD exposure also affected electrophysiological and ultrastructure measures of hippocampal synaptic plasticity across generations. We observed that intranasal insulin replacement partially rescued hippocampal synaptic plasticity and cognitive deficits in F3 rats, suggesting central insulin resistance may play an important role in maternal diet-induced neuroplasticity impairment. Furthermore, maternal HFD exposure enhanced the palmitoylation of GluA1 critically involved in long-term potentiation induction, while palmitoylation inhibitor 2-bromopalmitate counteracts GluA1 hyperpalmitoylation and partially abolishes the detrimental effects of maternal diet on learning and memory in F3 offspring. Importantly, maternal HFD-dependent GluA1 hyperpalmitoylation was reversed by insulin replacement. Taken together, our data suggest that maternal HFD exposure multigenerationally influences adult male offspring hippocampal synaptic plasticity and cognitive performance, and central insulin resistance may serve as the cross-talk between maternal diet and cognitive impairment across generations.
Collapse
Affiliation(s)
- Cheng Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - YanYan Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ji Luo
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - JunRu Yu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - YaNi Cheng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - XiaoYun Wu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Lin
- Department of Gynecology and Obstetrics, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, China
| | - YuanShao Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Abstract
Brain insulin signaling contributes to memory function and might be a viable target in the prevention and treatment of memory impairments including Alzheimer's disease. This short narrative review explores the potential of central nervous system (CNS) insulin administration via the intranasal pathway to improve memory performance in health and disease, with a focus on the most recent results. Proof-of-concept studies and (pilot) clinical trials in individuals with mild cognitive impairment or Alzheimer's disease indicate that acute and prolonged intranasal insulin administration enhances memory performance, and suggest that brain insulin resistance is a pathophysiological factor in Alzheimer's disease with or without concomitant metabolic dysfunction. Intranasally administered insulin is assumed to trigger improvements in synaptic plasticity and regional glucose uptake as well as alleviations of Alzheimer's disease neuropathology; additional contributions of changes in hypothalamus-pituitary-adrenocortical axis activity and sleep-related mechanisms are discussed. While intranasal insulin delivery has been conclusively demonstrated to be effective and safe, the recent outcomes of large-scale clinical studies underline the need for further investigations, which might also yield new insights into sex differences in the response to intranasal insulin and contribute to the optimization of delivery devices to grasp the full potential of intranasal insulin for Alzheimer's disease.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
| |
Collapse
|
47
|
Triaca V, Ruberti F, Canu N. NGF and the Amyloid Precursor Protein in Alzheimer's Disease: From Molecular Players to Neuronal Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:145-165. [PMID: 34453297 DOI: 10.1007/978-3-030-74046-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), one of the most common causes of dementia in elderly people, is characterized by progressive impairment in cognitive function, early degeneration of basal forebrain cholinergic neurons (BFCNs), abnormal metabolism of the amyloid precursor protein (APP), amyloid beta-peptide (Aβ) depositions, and neurofibrillary tangles. According to the cholinergic hypothesis, dysfunction of acetylcholine-containing neurons in the basal forebrain contributes markedly to the cognitive decline observed in AD. In addition, the neurotrophic factor hypothesis posits that the loss nerve growth factor (NGF) signalling in AD may account for the vulnerability to atrophy of BFCNs and consequent impairment of cholinergic functions. Though acetylcholinesterase inhibitors provide only partial and symptomatic relief to AD patients, emerging data from in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) studies in mild cognitive impairment (MCI) and AD patients highlight the early involvement of BFCNs in MCI and the early phase of AD. These data support the cholinergic and neurotrophic hypotheses of AD and suggest new targets for AD therapy.Different mechanisms account for selective vulnerability of BFCNs to AD pathology, with regard to altered metabolism of APP and tau. In this review, we provide a general overview of the current knowledge of NGF and APP interplay, focusing on the role of APP in regulating NGF receptors trafficking/signalling and on the involvement of NGF in modulating phosphorylation of APP, which in turn controls APP intracellular trafficking and processing. Moreover, we highlight the consequences of APP interaction with p75NTR and TrkA receptor, which share the same binding site within the APP juxta-membrane domain. We underline the importance of insulin dysmetabolism in AD pathology, in the light of our recent data showing that overlapping intracellular signalling pathways stimulated by NGF or insulin can be compensatory. In particular, NGF-based signalling is able to ameliorates deficiencies in insulin signalling in the medial septum of 3×Tg-AD mice. Finally, we present an overview of NGF-regulated microRNAs (miRNAs). These small non-coding RNAs are involved in post-transcriptional regulation of gene expression , and we focus on a subset that are specifically deregulated in AD and thus potentially contribute to its pathology.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo, RM, Italy
| | - Francesca Ruberti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo, RM, Italy
| | - Nadia Canu
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo, RM, Italy. .,Department of System Medicine, Section of Physiology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
48
|
Brzecka A, Madetko N, Nikolenko VN, Ashraf GM, Ejma M, Leszek J, Daroszewski C, Sarul K, Mikhaleva LM, Somasundaram SG, Kirkland CE, Bachurin SO, Aliev G. Sleep Disturbances and Cognitive Impairment in the Course of Type 2 Diabetes-A Possible Link. Curr Neuropharmacol 2020; 19:78-91. [PMID: 32148197 PMCID: PMC7903492 DOI: 10.2174/1570159x18666200309101750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing number of patients worldwide with sleep disturbances and diabetes. Various sleep disorders, including long or short sleep duration and poor sleep quality of numerous causes, may increase the risk of diabetes. Some symptoms of diabetes, such as painful peripheral neuropathy and nocturia, or associated other sleep disorders, such as sleep breathing disorders or sleep movement disorders, may influence sleep quality and quantity. Both sleep disorders and diabetes may lead to cognitive impairment. The risk of development of cognitive impairment in diabetic patients may be related to vascular and non-vascular and other factors, such as hypoglycemia, hyperglycemia, central insulin resistance, amyloid and tau deposits and other causes. Numerous sleep disorders, e.g., sleep apnea, restless legs syndrome, insomnia, and poor sleep quality are most likely are also associated with cognitive impairment. Adequate functioning of the system of clearance of the brain from toxic substances, such as amyloid β, i.e. glymphatic system, is related to undisturbed sleep and prevents cognitive impairment. In the case of coexistence, sleep disturbances and diabetes either independently lead to and/or mutually aggravate cognitive impairment.
Collapse
Affiliation(s)
- Anna Brzecka
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Madetko
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Vladimir N Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Cyryl Daroszewski
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina Sarul
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology,3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426, United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426, United States
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| |
Collapse
|
49
|
Morris JK, John CS, Green ZD, Wilkins HM, Wang X, Kamat A, Swerdlow RS, Vidoni ED, Petersen ME, O’Bryant SE, Honea RA, Burns JM. Characterization of the Meal-Stimulated Incretin Response and Relationship With Structural Brain Outcomes in Aging and Alzheimer's Disease. Front Neurosci 2020; 14:608862. [PMID: 33328877 PMCID: PMC7734152 DOI: 10.3389/fnins.2020.608862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Individuals with Alzheimer's Disease (AD) are often characterized by systemic markers of insulin resistance; however, the broader effects of AD on other relevant metabolic hormones, such as incretins that affect insulin secretion and food intake, remains less clear. METHODS Here, we leveraged a physiologically relevant meal tolerance test to assess diagnostic differences in these metabolic responses in cognitively healthy older adults (CH; n = 32) and AD (n = 23) participants. All individuals also underwent a comprehensive clinical examination, cognitive evaluation, and structural magnetic resonance imaging. RESULTS The meal-stimulated response of glucose, insulin, and peptide tyrosine tyrosine (PYY) was significantly greater in individuals with AD as compared to CH. Voxel-based morphometry revealed negative relationships between brain volume and the meal-stimulated response of insulin, C-Peptide, and glucose-dependent insulinotropic polypeptide (GIP) in primarily parietal brain regions. CONCLUSION Our findings are consistent with prior work that shows differences in metabolic regulation in AD and relationships with cognition and brain structure.
Collapse
Affiliation(s)
- Jill K. Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Casey S. John
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Zachary D. Green
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Heather M. Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Xiaowan Wang
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Ashwini Kamat
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Russell S. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Eric D. Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Melissa E. Petersen
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United states
| | - Sid E. O’Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United states
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Robyn A. Honea
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| |
Collapse
|
50
|
Servizi S, Corrigan RR, Casadesus G. The Importance of Understanding Amylin Signaling Mechanisms for Therapeutic Development in the Treatment of Alzheimer's Disease. Curr Pharm Des 2020; 26:1345-1355. [PMID: 32188374 PMCID: PMC10088426 DOI: 10.2174/1381612826666200318151146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Type II Diabetes (T2D) is a major risk factor for Alzheimer's Disease (AD). These two diseases share several pathological features, including amyloid accumulation, inflammation, oxidative stress, cell death and cognitive decline. The metabolic hormone amylin and amyloid-beta are both amyloids known to self-aggregate in T2D and AD, respectively, and are thought to be the main pathogenic entities in their respective diseases. Furthermore, studies suggest amylin's ability to seed amyloid-beta aggregation, the activation of common signaling cascades in the pancreas and the brain, and the ability of amyloid beta to signal through amylin receptors (AMYR), at least in vitro. However, paradoxically, non-aggregating forms of amylin such as pramlintide are given to treat T2D and functional and neuroprotective benefits of amylin and pramlintide administration have been reported in AD transgenic mice. These paradoxical results beget a deeper study of the complex nature of amylin's signaling through the several AMYR subtypes and other receptors associated with amylin effects to be able to fully understand its potential role in mediating AD development and/or prevention. The goal of this review is to provide such critical insight to begin to elucidate how the complex nature of this hormone's signaling may explain its equally complex relationship with T2D and mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Spencer Servizi
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Rachel R Corrigan
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Ohio, United States.,Department of Biological Sciences, Kent State University, Ohio, United States
| |
Collapse
|