1
|
Wang G, Jiang N, Ma Y, Suo D, Liu T, Funahashi S, Yan T. Using a deep generation network reveals neuroanatomical specificity in hemispheres. PATTERNS (NEW YORK, N.Y.) 2024; 5:100930. [PMID: 38645770 PMCID: PMC11026975 DOI: 10.1016/j.patter.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 04/23/2024]
Abstract
Asymmetry is an important property of brain organization, but its nature is still poorly understood. Capturing the neuroanatomical components specific to each hemisphere facilitates the understanding of the establishment of brain asymmetry. Since deep generative networks (DGNs) have powerful inference and recovery capabilities, we use one hemisphere to predict the opposite hemisphere by training the DGNs, which automatically fit the built-in dependencies between the left and right hemispheres. After training, the reconstructed images approximate the homologous components in the hemisphere. We use the difference between the actual and reconstructed hemispheres to measure hemisphere-specific components due to asymmetric expression of environmental and genetic factors. The results show that our model is biologically plausible and that our proposed metric of hemispheric specialization is reliable, representing a wide range of individual variation. Together, this work provides promising tools for exploring brain asymmetry and new insights into self-supervised DGNs for representing the brain.
Collapse
Affiliation(s)
- Gongshu Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ning Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yunxiao Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Kokoro Research Center, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Pauls KAM, Salmela E, Korsun O, Kujala J, Salmelin R, Renvall H. Human Sensorimotor Beta Event Characteristics and Aperiodic Signal Are Highly Heritable. J Neurosci 2024; 44:e0265232023. [PMID: 37973377 PMCID: PMC10860623 DOI: 10.1523/jneurosci.0265-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Individuals' phenotypes, including the brain's structure and function, are largely determined by genes and their interplay. The resting brain generates salient rhythmic patterns that can be characterized noninvasively using functional neuroimaging such as magnetoencephalography (MEG). One of these rhythms, the somatomotor (rolandic) beta rhythm, shows intermittent high amplitude "events" that predict behavior across tasks and species. Beta rhythm is altered in neurological disease. The aperiodic (1/f) signal present in electrophysiological recordings is also modulated by some neurological conditions and aging. Both sensorimotor beta and aperiodic signal could thus serve as biomarkers of sensorimotor function. Knowledge about the extent to which these brain functional measures are heritable could shed light on the mechanisms underlying their generation. We investigated the heritability and variability of human spontaneous sensorimotor beta rhythm events and aperiodic activity in 210 healthy male and female adult siblings' spontaneous MEG activity. The most heritable trait was the aperiodic 1/f signal, with a heritability of 0.87 in the right hemisphere. Time-resolved beta event amplitude parameters were also highly heritable, whereas the heritabilities for overall beta power, peak frequency, and measures of event duration remained nonsignificant. Human sensorimotor neural activity can thus be dissected into different components with variable heritability. We postulate that these differences partially reflect different underlying signal-generating mechanisms. The 1/f signal and beta event amplitude measures may depend more on fixed, anatomical parameters, whereas beta event duration and its modulation reflect dynamic characteristics, guiding their use as potential disease biomarkers.
Collapse
Affiliation(s)
- K Amande M Pauls
- Department of Neurology, Helsinki University Hospital, and Department of Clinical Neurosciences, University of Helsinki, 00029 Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Elina Salmela
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Olesia Korsun
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 02150 Espoo, Finland
| | - Jan Kujala
- Department of Psychology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 02150 Espoo, Finland
| | - Hanna Renvall
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
3
|
Wan B, Hong SJ, Bethlehem RAI, Floris DL, Bernhardt BC, Valk SL. Diverging asymmetry of intrinsic functional organization in autism. Mol Psychiatry 2023; 28:4331-4341. [PMID: 37587246 PMCID: PMC10827663 DOI: 10.1038/s41380-023-02220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI. Whereas language network asymmetry varied across age groups in NAI, this was not the case in autism, suggesting atypical functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of functional organization asymmetry in autism.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Seok-Jun Hong
- Centre for Neuroscience Imaging Research, Institute for Basic Science, Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | | | - Dorothea L Floris
- Department of Psychology, University of Zürich, Zürich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sofie L Valk
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Dahmen R, Fagard J, Ghamgui S. Influence of target location, task complexity, and gender on children's use of their preferred foot. Exp Brain Res 2023; 241:2241-2247. [PMID: 37537307 DOI: 10.1007/s00221-023-06678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
The goal of the present study was to compare the choice of foot of right-footed children with varying strengths of foot preference when performing two tasks of different levels of complexity at three spatial locations. 30 right-footed children were tested. The results showed that the general tendency to use one's preferred foot to interact with an object is more or less pronounced depending on the object's location and the complexity of the task. The children used their non-preferred left foot more often during the simple task and when the object was presented to the left. Our findings also revealed interactions between gender, age, and spatial location. At five, girls used globally less their left foot than boys. In addition, girls used their preferred right foot more frequently than boys when the object was presented to the left. Based on these results, it can be concluded that foot selection depends on foot preference, task demand, environmental context, and biological factors associated with motor dominance.
Collapse
Affiliation(s)
- Riadh Dahmen
- High Institute of Sport and Physical Education of Sfax, Sfax, Tunisia
| | - Jacqueline Fagard
- Integrative Neuroscience and Cognition Center, CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006, Paris, France
| | - Sana Ghamgui
- High Institute of Sport and Physical Education of Gafsa, Gafsa, Tunisia.
| |
Collapse
|
5
|
Lyons‐Ruth K, Ahtam B, Li FH, Dickerman S, Khoury JE, Sisitsky M, Ou Y, Bosquet Enlow M, Teicher MH, Grant PE. Negative versus withdrawn maternal behavior: Differential associations with infant gray and white matter during the first 2 years of life. Hum Brain Mapp 2023; 44:4572-4589. [PMID: 37417795 PMCID: PMC10365238 DOI: 10.1002/hbm.26401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Distinct neural effects of threat versus deprivation emerge by childhood, but little data are available in infancy. Withdrawn versus negative parenting may represent dimensionalized indices of early deprivation versus early threat, but no studies have assessed neural correlates of withdrawn versus negative parenting in infancy. The objective of this study was to separately assess the links of maternal withdrawal and maternal negative/inappropriate interaction with infant gray matter volume (GMV), white matter volume (WMV), amygdala, and hippocampal volume. Participants included 57 mother-infant dyads. Withdrawn and negative/inappropriate aspects of maternal behavior were coded from the Still-Face Paradigm at four months infant age. Between 4 and 24 months (M age = 12.28 months, SD = 5.99), during natural sleep, infants completed an MRI using a 3.0 T Siemens scanner. GMV, WMV, amygdala, and hippocampal volumes were extracted via automated segmentation. Diffusion weighted imaging volumetric data were also generated for major white matter tracts. Maternal withdrawal was associated with lower infant GMV. Negative/inappropriate interaction was associated with lower overall WMV. Age did not moderate these effects. Maternal withdrawal was further associated with reduced right hippocampal volume at older ages. Exploratory analyses of white matter tracts found that negative/inappropriate maternal behavior was specifically associated with reduced volume in the ventral language network. Results suggest that quality of day-to-day parenting is related to infant brain volumes during the first two years of life, with distinct aspects of interaction associated with distinct neural effects.
Collapse
Affiliation(s)
- Karlen Lyons‐Ruth
- Department of PsychiatryCambridge Hospital, Harvard Medical SchoolCambridgeMassachusettsUSA
| | - Banu Ahtam
- Fetal‐Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Frances Haofei Li
- Department of PsychiatryCambridge Hospital, Harvard Medical SchoolCambridgeMassachusettsUSA
| | - Sarah Dickerman
- Department of Psychiatry, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer E. Khoury
- Department of PsychiatryCambridge Hospital, Harvard Medical SchoolCambridgeMassachusettsUSA
- Present address:
Department of PsychologyMount Saint Vincent UniversityHalifaxNova ScotiaCanada
| | - Michaela Sisitsky
- Fetal‐Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yangming Ou
- Fetal‐Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Radiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Michelle Bosquet Enlow
- Department of PsychiatryCambridge Hospital, Harvard Medical SchoolCambridgeMassachusettsUSA
- Department of Psychiatry, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Martin H. Teicher
- Department of PsychiatryMcLean Hospital, Harvard Medical SchoolBelmontMassachusettsUSA
| | - P. Ellen Grant
- Fetal‐Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
6
|
Senatorial signatures Absence of male-female differences in left-handedness. Politics Life Sci 2023; 41:38-44. [PMID: 36877107 DOI: 10.1017/pls.2021.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A greater frequency of left-handedness among males than females has been observed in general populations. Past studies have explained this difference with reference to males' greater susceptibility to adverse birth events, while more recent studies have identified other contributing factors. On January 16, 2020, U.S. senators signed an oath to act impartially during the president's impeachment trial. This televised event allowed direct comparison of the proportion of right-handedness and left-handedness in a professionally accomplished sample of males and females. As expected, no sex difference in the proportion of left-handed senators was found, although the small sample size offered low statistical power. Replicating this finding with a larger sample would support the view that left-handedness among select groups of males is linked to genetic factors.
Collapse
|
7
|
Asymmetry of Endocast Surface Shape in Modern Humans Based on Diffeomorphic Surface Matching. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain asymmetry is associated with handedness and cognitive function, and is also reflected in the shape of endocasts. However, comprehensive quantification of the asymmetry in endocast shapes is limited. Here, we quantify and visualize the variation of endocast asymmetry in modern humans using diffeomorphic surface matching. Our results show that two types of lobar fluctuating asymmetry contribute most to global asymmetry variation. A dominant pattern of local directional asymmetry is shared in the majority of the population: (1) the left occipital pole protrudes more than the right frontal pole in the left-occipital and right-frontal petalial asymmetry; (2) the left Broca’s cap appears to be more globular and bulges laterally, anteriorly, and ventrally compared to the right side; and (3) the asymmetrical pattern of the parietal is complex and the posterior part of the right temporal lobes are more bulbous than the contralateral sides. This study confirms the validity of endocasts for obtaining valuable information on encephalic asymmetries and reveals a more complicated pattern of asymmetry of the cerebral lobes than previously reported. The endocast asymmetry pattern revealed here provides more shape information to explore the relationships between brain structure and function, to re-define the uniqueness of human brains related to other primates, and to trace the timing of the human asymmetry pattern within hominin lineages.
Collapse
|
8
|
Antrobus MR, Brazier J, Callus PC, Herbert AJ, Stebbings GK, Khanal P, Day SH, Kilduff LP, Bennett MA, Erskine RM, Raleigh SM, Collins M, Pitsiladis YP, Heffernan SM, Williams AG. Concussion-Associated Polygenic Profiles of Elite Male Rugby Athletes. Genes (Basel) 2022; 13:820. [PMID: 35627205 PMCID: PMC9141383 DOI: 10.3390/genes13050820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Due to the high-velocity collision-based nature of elite rugby league and union, the risk of sustaining a concussion is high. Occurrence of and outcomes following a concussion are probably affected by the interaction of multiple genes in a polygenic manner. This study investigated whether suspected concussion-associated polygenic profiles of elite rugby athletes differed from non-athletes and between rugby union forwards and backs. We hypothesised that a total genotype score (TGS) using eight concussion-associated polymorphisms would be higher in elite rugby athletes than non-athletes, indicating selection for protection against incurring or suffering prolonged effects of, concussion in the relatively high-risk environment of competitive rugby. In addition, multifactor dimensionality reduction was used to identify genetic interactions. Contrary to our hypothesis, TGS did not differ between elite rugby athletes and non-athletes (p ≥ 0.065), nor between rugby union forwards and backs (p = 0.668). Accordingly, the TGS could not discriminate between elite rugby athletes and non-athletes (AUC ~0.5), suggesting that, for the eight polymorphisms investigated, elite rugby athletes do not have a more ‘preferable’ concussion-associated polygenic profile than non-athletes. However, the COMT (rs4680) and MAPT (rs10445337) GC allele combination was more common in rugby athletes (31.7%; p < 0.001) and rugby union athletes (31.8%; p < 0.001) than non-athletes (24.5%). Our results thus suggest a genetic interaction between COMT (rs4680) and MAPT (rs10445337) assists rugby athletes in achieving elite status. These findings need exploration vis-à-vis sport-related concussion injury data and could have implications for the management of inter-individual differences in concussion risk.
Collapse
Affiliation(s)
- Mark R. Antrobus
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
- Sport and Exercise Science, University of Northampton, Northampton NN1 5PH, UK
| | - Jon Brazier
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
- Department of Psychology and Sports Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Peter C. Callus
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
| | - Adam J. Herbert
- Research Centre for Life and Sport Sciences (C-LaSS), School of Health Sciences, Birmingham City University, Birmingham B15 3TN, UK;
| | - Georgina K. Stebbings
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
| | - Praval Khanal
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
| | - Stephen H. Day
- School of Medicine and Clinical Practice, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Liam P. Kilduff
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea SA1 8EN, UK; (L.P.K.); (M.A.B.); (S.M.H.)
| | - Mark A. Bennett
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea SA1 8EN, UK; (L.P.K.); (M.A.B.); (S.M.H.)
| | - Robert M. Erskine
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
- Institute of Sport, Exercise and Health, University College London, London WC1E 6BT, UK
| | - Stuart M. Raleigh
- Cardiovascular and Lifestyle Medicine Research Group, CSELS, Coventry University, Coventry CV1 5FB, UK;
| | - Malcolm Collins
- Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Department of Human Biology, and the International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa;
| | - Yannis P. Pitsiladis
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton BN20 7SP, UK;
- Centre for Exercise Sciences and Sports Medicine, FIMS Collaborating Centre of Sports Medicine, Piazza L. de Bosis 6, 00135 Rome, Italy
| | - Shane M. Heffernan
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea SA1 8EN, UK; (L.P.K.); (M.A.B.); (S.M.H.)
| | - Alun G. Williams
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea SA1 8EN, UK; (L.P.K.); (M.A.B.); (S.M.H.)
- Institute of Sport, Exercise and Health, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Sha Z, Banihashemi L. Integrative omics analysis identifies differential biological pathways that are associated with regional grey matter volume changes in major depressive disorder. Psychol Med 2022; 52:924-935. [PMID: 32723400 DOI: 10.1017/s0033291720002676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is accompanied by alterations in grey matter volume. However, the biological processes associated with regional structural perturbations remain elusive. METHODS We applied integrative omics analysis to investigate specialized transcriptome signatures and translational determinants associated with regional grey matter variations in 2737 MDD patients relative to 3098 controls by summarizing the results from gene co-expression network analysis of Allen human brain transcriptome profiles in six donors, enrichment analysis of gene-sets and cellular structure from rodents and mediation analysis of BrainSpan proteome profile in six donors. RESULTS We found convergent alterations of grey matter volume in MDD were associated with transcriptome profiles enriched for synaptic transmission, metabolism, immune processes and transmembrane transport. Genes with abnormal expression in post-mortem tissue in MDD were also associated with transcriptome signatures. Further gene co-expression network and enrichment analysis of MDD-related genes in these signatures revealed the modules with higher neuronal expression were enriched in the medial temporal cortex and temporo-parietal junction with genes differentially associated with neuronal development and metabolism. Also, the modules with higher non-neuronal (e.g. astrocyte and oligodendrocyte) expression were concentrated in the rostral and dorsal anterior cingulate cortex and were separately associated with immune response and transmembrane transport. Moreover, proteins as the gene expression products mediated the association between transcriptome signatures and brain volume changes in the visual and dorsolateral prefrontal cortex. CONCLUSIONS Our multidimensional analyses offer a novel approach to detect specific biological pathways that capture regional structural variations in MDD, which suggests structural endophenotypes associated with MDD.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Pfeifer LS, Schmitz J, Papadatou-Pastou M, Peterburs J, Paracchini S, Ocklenburg S. Handedness in twins: meta-analyses. BMC Psychol 2022; 10:11. [PMID: 35033205 PMCID: PMC8760823 DOI: 10.1186/s40359-021-00695-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/24/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND In the general population, 10.6% of people favor their left hand over the right for motor tasks. Previous research suggests higher prevalence of atypical (left-, mixed-, or non-right-) handedness in (i) twins compared to singletons, and in (ii) monozygotic compared to dizygotic twins. Moreover, (iii) studies have shown a higher rate of handedness concordance in monozygotic compared to dizygotic twins, in line with genetic factors playing a role for handedness. METHODS By means of a systematic review, we identified 59 studies from previous literature and performed three sets of random effects meta-analyses on (i) twin-to-singleton Odds Ratios (21 studies, n = 189,422 individuals) and (ii) monozygotic-to-dizygotic twin Odds Ratios (48 studies, n = 63,295 individuals), both times for prevalence of left-, mixed-, and non-right-handedness. For monozygotic and dizygotic twin pairs we compared (iii) handedness concordance Odds Ratios (44 studies, n = 36,217 twin pairs). We also tested for potential effects of moderating variables, such as sex, age, the method used to assess handedness, and the twins' zygosity. RESULTS We found (i) evidence for higher prevalence of left- (Odds Ratio = 1.40, 95% Confidence Interval = [1.26, 1.57]) and non-right- (Odds Ratio = 1.36, 95% Confidence Interval = [1.22, 1.52]), but not mixed-handedness (Odds Ratio = 1.08, 95% Confidence Interval = [0.52, 2.27]) among twins compared to singletons. We further showed a decrease in Odds Ratios in more recent studies (post-1975: Odds Ratio = 1.30, 95% Confidence Interval = [1.17, 1.45]) compared to earlier studies (pre-1975: Odds Ratio = 1.90, 95% Confidence Interval = [1.59-2.27]). While there was (ii) no difference between monozygotic and dizygotic twins regarding prevalence of left- (Odds Ratio = 0.98, 95% Confidence Interval = [0.89, 1.07]), mixed- (Odds Ratio = 0.96, 95% Confidence Interval = [0.46, 1.99]), or non-right-handedness (Odds Ratio = 1.01, 95% Confidence Interval = [0.91, 1.12]), we found that (iii) handedness concordance was elevated among monozygotic compared to dizygotic twin pairs (Odds Ratio = 1.11, 95% Confidence Interval = [1.06, 1.18]). By means of moderator analyses, we did not find evidence for effects of potentially confounding variables. CONCLUSION We provide the largest and most comprehensive meta-analysis on handedness in twins. Although a raw, unadjusted analysis found a higher prevalence of left- and non-right-, but not mixed-handedness among twins compared to singletons, left-handedness was substantially more prevalent in earlier than in more recent studies. The single large, recent study which included birth weight, Apgar score and gestational age as covariates found no twin-singleton difference in handedness rate, but these covariates could not be included in the present meta-analysis. Together, the secular shift and the influence of covariates probably make it unsafe to conclude that twinning has a genuine relationship to handedness.
Collapse
Affiliation(s)
- Lena Sophie Pfeifer
- Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| | - Judith Schmitz
- School of Medicine, University of St Andrews, St Andrews, Scotland
| | - Marietta Papadatou-Pastou
- School of Education, Department of Primary Education, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jutta Peterburs
- Institute of Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | | | | |
Collapse
|
11
|
Floris DL, Wolfers T, Zabihi M, Holz NE, Zwiers MP, Charman T, Tillmann J, Ecker C, Dell'Acqua F, Banaschewski T, Moessnang C, Baron-Cohen S, Holt R, Durston S, Loth E, Murphy DGM, Marquand A, Buitelaar JK, Beckmann CF. Atypical Brain Asymmetry in Autism-A Candidate for Clinically Meaningful Stratification. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:802-812. [PMID: 33097470 DOI: 10.1016/j.bpsc.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism spectrum disorder ("autism") is a highly heterogeneous neurodevelopmental condition with few effective treatments for core and associated features. To make progress we need to both identify and validate neural markers that help to parse heterogeneity to tailor therapies to specific neurobiological profiles. Atypical hemispheric lateralization is a stable feature across studies in autism, but its potential as a neural stratification marker has not been widely examined. METHODS In order to dissect heterogeneity in lateralization in autism, we used the large EU-AIMS (European Autism Interventions-A Multicentre Study for Developing New Medications) Longitudinal European Autism Project dataset comprising 352 individuals with autism and 233 neurotypical control subjects as well as a replication dataset from ABIDE (Autism Brain Imaging Data Exchange) (513 individuals with autism, 691 neurotypical subjects) using a promising approach that moves beyond mean group comparisons. We derived gray matter voxelwise laterality values for each subject and modeled individual deviations from the normative pattern of brain laterality across age using normative modeling. RESULTS Individuals with autism had highly individualized patterns of both extreme right- and leftward deviations, particularly in language, motor, and visuospatial regions, associated with symptom severity. Language delay explained most variance in extreme rightward patterns, whereas core autism symptom severity explained most variance in extreme leftward patterns. Follow-up analyses showed that a stepwise pattern emerged, with individuals with autism with language delay showing more pronounced rightward deviations than individuals with autism without language delay. CONCLUSIONS Our analyses corroborate the need for novel (dimensional) approaches to delineate the heterogeneous neuroanatomy in autism and indicate that atypical lateralization may constitute a neurophenotype for clinically meaningful stratification in autism.
Collapse
Affiliation(s)
- Dorothea L Floris
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.
| | - Thomas Wolfers
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Psychology, University of Oslo, Norway; Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo Hospital and Oslo University Hospital, Oslo, Norway
| | - Mariam Zabihi
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Julian Tillmann
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Applied Psychology: Health, Development, Enhancement, and Intervention, University of Vienna, Vienna, Austria
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany; Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Flavio Dell'Acqua
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Rosemary Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Durston
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eva Loth
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Declan G M Murphy
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Andre Marquand
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
12
|
Borghesani V, Wang C, Miller C, Mandelli M, Shapiro K, Miller Z, Fox C, Dronkers N, Gorno-Tempini M, Watson C. The resilience of the developing reading system: multi-modal evidence of incident and recovery after a pediatric stroke. Neurocase 2021; 27:338-348. [PMID: 34503393 PMCID: PMC8814732 DOI: 10.1080/13554794.2021.1957119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Decades of neuroscientific findings have elucidated the highly specialized brain areas involved in reading, especially along the ventral occipitotemporal stream where the critical step of recognizing words occurs. We report on a 14-year-old female with temporary dyslexia after a left ventral occipitotemporal ischemic stroke. Our longitudinal multimodal findings show that the resolution of the reading impairment was associated with heightened activity in the left posterior superior and inferior temporal gyri. Our findings highlight the role of the left inferior temporal gyrus in reading and the importance of perilesional and ipsilateral cortical areas for functional recovery after childhood stroke.
Collapse
Affiliation(s)
- V. Borghesani
- Memory and Aging Center, Department of Neurology, University of California San Francisco
- Department of Neurology, University of California, San Francisco, CA
| | - C. Wang
- Memory and Aging Center, Department of Neurology, University of California San Francisco
- Department of Neurology, University of California, San Francisco, CA
| | - C. Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco
- Department of Neurology, University of California, San Francisco, CA
| | - M.L. Mandelli
- Memory and Aging Center, Department of Neurology, University of California San Francisco
- Department of Neurology, University of California, San Francisco, CA
| | - K. Shapiro
- Memory and Aging Center, Department of Neurology, University of California San Francisco
- Department of Neurology, University of California, San Francisco, CA
| | - Z. Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco
- Department of Neurology, University of California, San Francisco, CA
| | - C. Fox
- Department of Neurology, University of California, San Francisco, CA
| | - N.F. Dronkers
- Department of Psychology, University of California, Berkeley, CA
- Department of Neurology, University of California, Davis, CA3
| | - M.L. Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco
- Department of Neurology, University of California, San Francisco, CA
- Dyslexia Center, University of California, San Francisco, CA
| | - C Watson
- Memory and Aging Center, Department of Neurology, University of California San Francisco
- Department of Neurology, University of California, San Francisco, CA
- Dyslexia Center, University of California, San Francisco, CA
| |
Collapse
|
13
|
Huber KB, Marsolek CJ. Do cerebral motivational asymmetries mediate the relationship between handedness and personality? Laterality 2021; 27:21-56. [PMID: 34238115 DOI: 10.1080/1357650x.2021.1942483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Handedness has long been tied to personality, but detailed explanations for the association are lacking. Importantly for purposes of theory development, measures of approach and withdrawal associated with Big Five personality traits have also been traced back to activity in brain areas that relate to handedness. Specifically, increased right-hemisphere frontal activity appears to be linked to both withdrawal motivation and left/inconsistent-handedness, while increased left-hemisphere frontal activity is associated with approach motivation and right/consistent-handedness. Cerebral motivational asymmetries therefore present one plausible mechanism by which approach and withdrawal motivation could mediate the relationship between handedness and personality. We tested this possibility in a large online study (N = 499) in which participants completed multiple survey measures. Results indicated that approach/withdrawal motivation partially accounts for relationships between handedness and personality.
Collapse
Affiliation(s)
- Katie B Huber
- Psychological Sciences Department, University of Wisconsin-River Falls, River Falls, WI, USA.,Department of Psychology, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Chad J Marsolek
- Department of Psychology, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
14
|
Bisiacchi P, Cainelli E. Structural and functional brain asymmetries in the early phases of life: a scoping review. Brain Struct Funct 2021; 227:479-496. [PMID: 33738578 PMCID: PMC8843922 DOI: 10.1007/s00429-021-02256-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Asymmetry characterizes the brain in both structure and function. Anatomical asymmetries explain only a fraction of functional variability in lateralization, with structural and functional asymmetries developing at different periods of life and in different ways. In this work, we perform a scoping review of the cerebral asymmetries in the first brain development phases. We included all English-written studies providing direct evidence of hemispheric asymmetries in full-term neonates, foetuses, and premature infants, both at term post-conception and before. The final analysis included 57 studies. The reviewed literature shows large variability in the used techniques and methodological procedures. Most structural studies investigated the temporal lobe, showing a temporal planum more pronounced on the left than on the right (although not all data agree), a morphological asymmetry already present from the 29th week of gestation. Other brain structures have been poorly investigated, and the results are even more discordant. Unlike data on structural asymmetries, functional data agree with each other, identifying a leftward dominance for speech stimuli and an overall dominance of the right hemisphere in all other functional conditions. This generalized dominance of the right hemisphere for all conditions (except linguistic stimuli) is in line with theories stating that the right hemisphere develops earlier and that its development is less subject to external influences because it sustains functions necessary to survive.
Collapse
Affiliation(s)
- Patrizia Bisiacchi
- Department of General Psychology, University of Padova, Via Venezia, 8, 35121, Padova, Italy. .,Padova Neuroscience Centre, PNC, Padova, Italy.
| | - Elisa Cainelli
- Department of General Psychology, University of Padova, Via Venezia, 8, 35121, Padova, Italy
| |
Collapse
|
15
|
Ahtam B, Turesky TK, Zöllei L, Standish J, Grant PE, Gaab N, Im K. Intergenerational Transmission of Cortical Sulcal Patterns from Mothers to their Children. Cereb Cortex 2021; 31:1888-1897. [PMID: 33230560 PMCID: PMC7945013 DOI: 10.1093/cercor/bhaa328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Intergenerational effects are described as the genetic, epigenetic, as well as pre- and postnatal environmental influence parents have on their offspring's behavior, cognition, and brain. During fetal brain development, the primary cortical sulci emerge with a distinctive folding pattern that are under strong genetic influence and show little change of this pattern throughout postnatal brain development. We examined intergenerational transmission of cortical sulcal patterns by comparing primary sulcal patterns between children (N = 16, age 5.5 ± 0.81 years, 8 males) and their biological mothers (N = 15, age 39.72 ± 4.68 years) as well as between children and unrelated adult females. Our graph-based sulcal pattern comparison method detected stronger sulcal pattern similarity for child-mother pairs than child-unrelated pairs, where higher similarity between child-mother pairs was observed mostly for the right lobar regions. Our results also show that child-mother versus child-unrelated pairs differ for daughters and sons with a trend toward significance, particularly for the left hemisphere lobar regions. This is the first study to reveal significant intergenerational transmission of cortical sulcal patterns, and our results have important implications for the study of the heritability of complex behaviors, brain-based disorders, the identification of biomarkers, and targets for interventions.
Collapse
Affiliation(s)
- Banu Ahtam
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA
| | - Ted K Turesky
- Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Julianna Standish
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA
| | - Nadine Gaab
- Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kiho Im
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA
| |
Collapse
|
16
|
Human Connectome Project: heritability of brain volumes in young healthy adults. Exp Brain Res 2021; 239:1273-1286. [PMID: 33611617 DOI: 10.1007/s00221-021-06057-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/04/2021] [Indexed: 01/17/2023]
Abstract
Here we report on the heritability and Intraclass Correlation Coefficients (ICCs) of brain volumes in 1,103 young healthy adults with mean age 29.2 years. Among them are: 153 monozygotic (MZ) twin pairs and 86 dizygotic (DZ) twin pairs, 133 non-twin siblings of MZ twins, 76 non-twin siblings of DZ twins, 335 siblings, and 81 unrelated individuals. ICCs were calculated between pairs of the following genetic groups: (1) MZ twins; (2) DZ twins; (3) MZ twins-their singleton siblings; (4) DZ twins-their singleton siblings; (5) siblings (SB); and (6) unrelated individuals (NR). We studied 4 brain groups: global, lobar, subcortical, and cortical brain regions. For each of 4 brain groups we found the same order of ICCs ranging from the highest values for MZ twins, statistically significantly smaller for the DZ twins and 3 sibling groups, and practically zero for NR. The DZ twins and 3 sibling groups were not different. No hemispheric difference was found in any genetic group. Among brain groups, the highest heritability was for the global regions, followed by lobar and subcortical groups. Only the cortical brain group heritability was statistically lower than other brain groups. We found less genetic control on the left hemisphere than on the right but no significant difference between hemispheres, and no hemispheric lateralization of heritability for any of the brain groups. These findings document substantial and systematic heritability of global and regional brain volumes.
Collapse
|
17
|
Antrobus MR, Brazier J, Stebbings GK, Day SH, Heffernan SM, Kilduff LP, Erskine RM, Williams AG. Genetic Factors That Could Affect Concussion Risk in Elite Rugby. Sports (Basel) 2021; 9:19. [PMID: 33499151 PMCID: PMC7910946 DOI: 10.3390/sports9020019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Elite rugby league and union have some of the highest reported rates of concussion (mild traumatic brain injury) in professional sport due in part to their full-contact high-velocity collision-based nature. Currently, concussions are the most commonly reported match injury during the tackle for both the ball carrier and the tackler (8-28 concussions per 1000 player match hours) and reports exist of reduced cognitive function and long-term health consequences that can end a playing career and produce continued ill health. Concussion is a complex phenotype, influenced by environmental factors and an individual's genetic predisposition. This article reviews concussion incidence within elite rugby and addresses the biomechanics and pathophysiology of concussion and how genetic predisposition may influence incidence, severity and outcome. Associations have been reported between a variety of genetic variants and traumatic brain injury. However, little effort has been devoted to the study of genetic associations with concussion within elite rugby players. Due to a growing understanding of the molecular characteristics underpinning the pathophysiology of concussion, investigating genetic variation within elite rugby is a viable and worthy proposition. Therefore, we propose from this review that several genetic variants within or near candidate genes of interest, namely APOE, MAPT, IL6R, COMT, SLC6A4, 5-HTTLPR, DRD2, DRD4, ANKK1, BDNF and GRIN2A, warrant further study within elite rugby and other sports involving high-velocity collisions.
Collapse
Affiliation(s)
- Mark R. Antrobus
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
- Sport and Exercise Science, University of Northampton, Northampton NN1 5PH, UK
| | - Jon Brazier
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
- Department of Psychology and Sports Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Georgina K. Stebbings
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
| | - Stephen H. Day
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Shane M. Heffernan
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea SA1 8EN, UK; (S.M.H.); (L.P.K.)
| | - Liam P. Kilduff
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea SA1 8EN, UK; (S.M.H.); (L.P.K.)
| | - Robert M. Erskine
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
- Institute of Sport, Exercise and Health, University College London, London WC1E 6BT, UK
| | - Alun G. Williams
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
- Institute of Sport, Exercise and Health, University College London, London WC1E 6BT, UK
| |
Collapse
|
18
|
Ferrari C, Polito C, Berti V, Lombardi G, Lucidi G, Bessi V, Bagnoli S, Piaceri I, Nacmias B, Sorbi S. High Frequency of Crossed Aphasia in Dextral in an Italian Cohort of Patients with Logopenic Primary Progressive Aphasia. J Alzheimers Dis 2020; 72:1089-1096. [PMID: 31683481 DOI: 10.3233/jad-190677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Primary progressive aphasia (PPA) has been described as a neurodegenerative language disorder mainly affecting the left hemisphere. Few cases of right hemisphere damage in right-handed PPA subjects have been reported. This condition, named crossed aphasia in dextral (CAD), is relatively rare and probably related to an alteration during neurodevelopment of language networks. OBJECTIVE To explore the prevalence of CAD in an Italian cohort of 68 PPA patients, in order to evaluate whether right hemisphere language lateralization could be a risk factor for PPA. METHODS Clinical-demographic and cerebral [18F]-fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) scan were analyzed, resulting in 23 logopenic variant (lvPPA) patients, 26 non-fluent variant (nfvPPA) patients, and 19 semantic variant (svPPA) patients. SPM single subject routine was performed for diagnostic purposes in order to identify the hypometabolic pattern of each patient. Based on brain metabolic profile, PPA patients were divided in right and left lvPPA, nfvPPA, and svPPA. [18F]FDG-PET group analyses were performed with SPM two-sample t-test routine. RESULTS 26% of lvPPA cases were identified as CAD based on right hypometabolic pattern. CAD patients did not differ from left lvPPA regarding demographic features and general cognitive performance; however, they performed better in specific working memory tasks and showed brain hypometabolism limited to the superior, middle, and supramarginal temporal gyri. CONCLUSION Atypical lateralization of language function could determine a vulnerability of the phonological language loop and in that way could be a risk factor for lvPPA.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Cristina Polito
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Valentina Berti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Giulia Lucidi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
19
|
Kruggel F, Solodkin A. Heritability of Structural Patterning in the Human Cerebral Cortex. Neuroimage 2020; 221:117169. [PMID: 32693166 DOI: 10.1016/j.neuroimage.2020.117169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 01/11/2023] Open
Abstract
Genetic influences that govern the spatial patterning of the human cortex and its structural variability are still incompletely known. We analyzed structural MR images in twins, siblings, and pairs of unrelated subjects. A comprehensive set of methods was employed to quantify properties of cortical features at different spatial scales. Measures were used to assess the influence of genetic similarity on structural patterning. Results indicated that: (1) Genetic effects significantly influence all structural features assessed here at all spatial resolutions, albeit at different strengths. (2) While strong genetic effects were found at the whole-brain and hemisphere level, effects were weaker at the regional and vertex level, depending on the measure under study. (3) Besides cortical thickness, sulcal (geodesic) depth was found to be under strong genetic control. The local pattern indicated that two axes along (a) the anterior-posterior direction (insula to parieto-occipital sulcus), and (b) superior-inferior direction (central sulcus to callosal sulcus) presumably determine the segregation of four quadrants in each hemisphere early in development. (4) While strong structural asymmetries were found at the regional level, genetic influences on laterality were relatively minor.
Collapse
Affiliation(s)
- Frithjof Kruggel
- Department of Biomedical Engineering, University of California, Irvine, USA.
| | - Ana Solodkin
- School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| |
Collapse
|
20
|
Bishop DV, Bates TC. Heritability of language laterality assessed by functional transcranial Doppler ultrasound: a twin study. Wellcome Open Res 2020; 4:161. [PMID: 32399495 PMCID: PMC7194484 DOI: 10.12688/wellcomeopenres.15524.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Prior studies have estimated heritability of around 0.25 for the trait of handedness, with studies of structural brain asymmetry giving estimates in a similar or lower range. Little is known about heritability of functional language lateralization. This report describes heritability estimates using functional language laterality and handedness phenotypes in a twin sample previously reported by Wilson and Bishop (2018). Methods: The total sample consisted of 194 twin pairs (49% monozygotic) aged from 6 to 11 years. A language laterality index was obtained for 141 twin pairs, who completed a protocol where relative blood flow through left and right middle cerebral arteries was measured using functional transcranial Doppler ultrasound (fTCD) while the child described animation sequences. Handedness data was available from the Edinburgh Handedness Inventory (EHI) and Quantification of Hand Preference (QHP) for all 194 pairs. Heritability was assessed using conventional structural equation modeling, assuming no effect of shared environment (AE model). Results: For the two handedness measures, heritability estimates (95% CI) were consistent with prior research: .25 (.03 - .34) and .18 (0 - .31) respectively for the EHI and QHP. For the language laterality index, however, the twin-cotwin correlations were close to zero for both MZ and DZ twins, and the heritability estimate was zero (0 - .15). Conclusions: A single study cannot rule out a genetic effect on language lateralisation. It is possible that the low twin-cotwin correlations were affected by noisy data: although the split-half reliability of the fTCD-based laterality index was high (0.85), we did not have information on test-retest reliability in children, which is likely to be lower. We cannot reject the hypothesis that there is low but nonzero heritability for this trait, but our data suggest that individual variation in language lateralisation is predominantly due to stochastic variation in neurodevelopment.
Collapse
Affiliation(s)
- Dorothy V.M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, Oxon, OX2 6GG, UK
| | - Timothy C. Bates
- Psychology Department, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
21
|
Jouravlev O, Kell AJE, Mineroff Z, Haskins AJ, Ayyash D, Kanwisher N, Fedorenko E. Reduced Language Lateralization in Autism and the Broader Autism Phenotype as Assessed with Robust Individual-Subjects Analyses. Autism Res 2020; 13:1746-1761. [PMID: 32935455 DOI: 10.1002/aur.2393] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
One of the few replicated functional brain differences between individuals with autism spectrum disorders (ASD) and neurotypical (NT) controls is reduced language lateralization. However, most prior reports relied on comparisons of group-level activation maps or functional markers that had not been validated at the individual-subject level, and/or used tasks that do not isolate language processing from other cognitive processes, complicating interpretation. Furthermore, few prior studies have examined functional responses in other brain networks, as needed to determine the spatial selectivity of the effect. Using functional magnetic resonance imaging (fMRI), we compared language lateralization between 28 adult ASD participants and carefully pairwise-matched controls, with the language regions defined individually using a well-validated language "localizer" task. Across two language comprehension paradigms, ASD participants showed less lateralized responses due to stronger right hemisphere activity. Furthermore, this effect did not stem from a ubiquitous reduction in lateralization of function across the brain: ASD participants did not differ from controls in the lateralization of two other large-scale networks-the Theory of Mind network and the Multiple Demand network. Finally, in an exploratory study, we tested whether reduced language lateralization may also be present in NT individuals with high autism-like traits. Indeed, autistic trait load in a large set of NT participants (n = 189) was associated with less lateralized language responses. These results suggest that reduced language lateralization is robustly associated with autism and, to some extent, with autism-like traits in the general population, and this lateralization reduction appears to be restricted to the language system. LAY SUMMARY: How do brains of individuals with autism spectrum disorders (ASD) differ from those of neurotypical (NT) controls? One of the most consistently reported differences is the reduction of lateralization during language processing in individuals with ASD. However, most prior studies have used methods that made this finding difficult to interpret, and perhaps even artifactual. Using robust individual-level markers of lateralization, we found that indeed, ASD individuals show reduced lateralization for language due to stronger right-hemisphere activity. We further show that this reduction is not due to a general reduction of lateralization of function across the brain. Finally, we show that greater autistic trait load is associated with less lateralized language responses in the NT population. These results suggest that reduced language lateralization is robustly associated with autism and, to some extent, with autism-like traits in the general population. Autism Res 2020, 13: 1746-1761. © 2020 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Olessia Jouravlev
- Brain and Cognitive Sciences Department, MIT, Cambridge, Massachusetts, USA.,Department of Cognitive Science, Carleton University, Ottawa, Ontario, Canada
| | - Alexander J E Kell
- Brain and Cognitive Sciences Department, MIT, Cambridge, Massachusetts, USA.,Zuckerman Institute, Columbia University, New York, New York, USA
| | - Zachary Mineroff
- Brain and Cognitive Sciences Department, MIT, Cambridge, Massachusetts, USA.,Eberly Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Amanda J Haskins
- Brain and Cognitive Sciences Department, MIT, Cambridge, Massachusetts, USA.,Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dima Ayyash
- Brain and Cognitive Sciences Department, MIT, Cambridge, Massachusetts, USA.,McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA
| | - Nancy Kanwisher
- Brain and Cognitive Sciences Department, MIT, Cambridge, Massachusetts, USA.,McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA
| | - Evelina Fedorenko
- Brain and Cognitive Sciences Department, MIT, Cambridge, Massachusetts, USA.,McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Pizzagalli F, Auzias G, Yang Q, Mathias SR, Faskowitz J, Boyd JD, Amini A, Rivière D, McMahon KL, de Zubicaray GI, Martin NG, Mangin JF, Glahn DC, Blangero J, Wright MJ, Thompson PM, Kochunov P, Jahanshad N. The reliability and heritability of cortical folds and their genetic correlations across hemispheres. Commun Biol 2020; 3:510. [PMID: 32934300 PMCID: PMC7493906 DOI: 10.1038/s42003-020-01163-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cortical folds help drive the parcellation of the human cortex into functionally specific regions. Variations in the length, depth, width, and surface area of these sulcal landmarks have been associated with disease, and may be genetically mediated. Before estimating the heritability of sulcal variation, the extent to which these metrics can be reliably extracted from in-vivo MRI must be established. Using four independent test-retest datasets, we found high reliability across the brain (intraclass correlation interquartile range: 0.65-0.85). Heritability estimates were derived for three family-based cohorts using variance components analysis and pooled (total N > 3000); the overall sulcal heritability pattern was correlated to that derived for a large population cohort (N > 9000) calculated using genomic complex trait analysis. Overall, sulcal width was the most heritable metric, and earlier forming sulci showed higher heritability. The inter-hemispheric genetic correlations were high, yet select sulci showed incomplete pleiotropy, suggesting hemisphere-specific genetic influences.
Collapse
Grants
- P41 EB015922 NIBIB NIH HHS
- R01 EB015611 NIBIB NIH HHS
- P01 AG026276 NIA NIH HHS
- R21 NS064534 NINDS NIH HHS
- R01 MH078111 NIMH NIH HHS
- R01 HD050735 NICHD NIH HHS
- R01 NS056307 NINDS NIH HHS
- R01 MH121246 NIMH NIH HHS
- P50 MH071616 NIMH NIH HHS
- R03 EB012461 NIBIB NIH HHS
- R01 AG059874 NIA NIH HHS
- U24 RR021382 NCRR NIH HHS
- P30 AG066444 NIA NIH HHS
- P01 AG003991 NIA NIH HHS
- P50 AG005681 NIA NIH HHS
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- U54 MH091657 NIMH NIH HHS
- R01 AG021910 NIA NIH HHS
- R01 MH078143 NIMH NIH HHS
- P41 RR015241 NCRR NIH HHS
- S10 OD023696 NIH HHS
- R01 MH083824 NIMH NIH HHS
- This research was funded in part by NIH ENIGMA Center grant U54 EB020403, supported by the Big Data to Knowledge (BD2K) Centers of Excellence program funded by a cross-NIH initiative. Additional grant support was provided by: R01 AG059874, R01 MH117601, R01 MH121246, and P41 EB015922. QTIM was supported by NIH R01 HD050735, and the NHMRC 486682, Australia; GOBS: Financial support for this study was provided by the National Institute of Mental Health grants MH078143 (PI: DC Glahn), MH078111 (PI: J Blangero), and MH083824 (PI: DC Glahn & J Blangero); HCP data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University; UK Biobank: This research was conducted using the UK Biobank Resource under Application Number ‘11559’; BrainVISA’s Morphologist software development received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No 720270 & 785907 (Human Brain ProjectSGA1 & SGA2), and by the FRM DIC20161236445. OASIS: Cross-Sectional: Principal Investigators: D. Marcus, R. Buckner, J. Csernansky J. Morris; P50 AG05681, P01 AG03991, P01 AG026276, R01 AG021910, P20 MH071616, U24 RR021382. KKI was supported by NIH grants NCRR P41 RR015241 (Peter C.M. van Zijl), 1R01NS056307 (Jerry Prince), 1R21NS064534-01A109 (Bennett A. Landman/Jerry L. Prince), 1R03EB012461-01 (Bennett A. Landman). Neda Jahanshad and Paul Thompson are MPIs of a research project grant from Biogen, Inc. (PO 969323).
Collapse
Affiliation(s)
- Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université & CNRS, Marseille, France
| | - Qifan Yang
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Joshua Faskowitz
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Joshua D Boyd
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Armand Amini
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France
- CATI, Multicenter Neuroimaging Platform, Paris, France
| | - Katie L McMahon
- School of Clinical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Greig I de Zubicaray
- Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | | | - Jean-François Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France
- CATI, Multicenter Neuroimaging Platform, Paris, France
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
| |
Collapse
|
23
|
Spocter MA, Sherwood CC, Schapiro SJ, Hopkins WD. Reproducibility of leftward planum temporale asymmetries in two genetically isolated populations of chimpanzees ( Pan troglodytes). Proc Biol Sci 2020; 287:20201320. [PMID: 32900313 PMCID: PMC7542794 DOI: 10.1098/rspb.2020.1320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Once considered a hallmark of human uniqueness, brain asymmetry has emerged as a feature shared with several other species, including chimpanzees, one of our closest living relatives. Most notable has been the discovery of asymmetries in homologues of cortical language areas in apes, particularly in the planum temporale (PT), considered a central node of the human language network. Several lines of evidence indicate a role for genetic mechanisms in the emergence of PT asymmetry; however, the genetic determinants of cerebral asymmetries have remained elusive. Studies in humans suggest that there is heritability of brain asymmetries of the PT, but this has not been explored to any extent in chimpanzees. Furthermore, the potential influence of non-genetic factors has raised questions about the reproducibility of earlier observations of PT asymmetry reported in chimpanzees. As such, the present study was aimed at examining both the heritability of phenotypic asymmetries in PT morphology, as well as their reproducibility. Using magnetic resonance imaging, we evaluated morphological asymmetries of PT surface area (mm2) and mean depth (mm) in captive chimpanzees (n = 291) derived from two genetically isolated populations. Our results confirm that chimpanzees exhibit a significant population-level leftward asymmetry for PT surface area, as well as significant heritability in the surface area and mean depth of the PT. These results conclusively demonstrate the existence of a leftward bias in PT asymmetry in chimpanzees and suggest that genetic mechanisms play a key role in the emergence of anatomical asymmetry in this region.
Collapse
Affiliation(s)
- Muhammad A. Spocter
- Department of Anatomy, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA
- School of Anatomical Sciences, University of Witwatersrand, Johannesburg 2094, South Africa
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Steven J. Schapiro
- Department of Comparative Medicine, UT MD Anderson Cancer Center Bastrop, TX 78602, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - William D. Hopkins
- Department of Comparative Medicine, UT MD Anderson Cancer Center Bastrop, TX 78602, USA
| |
Collapse
|
24
|
Spatial and temporal patterns of lateralization in a parrot species complex. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Zhong S, Wei L, Zhao C, Yang L, Di Z, Francks C, Gong G. Interhemispheric Relationship of Genetic Influence on Human Brain Connectivity. Cereb Cortex 2020; 31:77-88. [DOI: 10.1093/cercor/bhaa207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022] Open
Abstract
Abstract
To understand the origins of interhemispheric differences and commonalities/coupling in human brain wiring, it is crucial to determine how homologous interregional connectivities of the left and right hemispheres are genetically determined and related. To address this, in the present study, we analyzed human twin and pedigree samples with high-quality diffusion magnetic resonance imaging tractography and estimated the heritability and genetic correlation of homologous left and right white matter (WM) connections. The results showed that the heritability of WM connectivity was similar and coupled between the 2 hemispheres and that the degree of overlap in genetic factors underlying homologous WM connectivity (i.e., interhemispheric genetic correlation) varied substantially across the human brain: from complete overlap to complete nonoverlap. Particularly, the heritability was significantly stronger and the chance of interhemispheric complete overlap in genetic factors was higher in subcortical WM connections than in cortical WM connections. In addition, the heritability and interhemispheric genetic correlations were stronger for long-range connections than for short-range connections. These findings highlight the determinants of the genetics underlying WM connectivity and its interhemispheric relationships, and provide insight into genetic basis of WM connectivity asymmetries in both healthy and disease states.
Collapse
Affiliation(s)
- Suyu Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Long Wei
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zengru Di
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
26
|
Vaquero L, Rousseau PN, Vozian D, Klein D, Penhune V. What you learn & when you learn it: Impact of early bilingual & music experience on the structural characteristics of auditory-motor pathways. Neuroimage 2020; 213:116689. [DOI: 10.1016/j.neuroimage.2020.116689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/18/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023] Open
|
27
|
From Evaluation to Prediction: Behavioral Effects and Biological Markers of Cognitive Control Intervention. Neural Plast 2020; 2020:1869459. [PMID: 32184812 PMCID: PMC7060425 DOI: 10.1155/2020/1869459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 01/30/2020] [Indexed: 12/02/2022] Open
Abstract
Although the intervention effectiveness of cognitive control is disputed, some methods, such as single-task training, integrated training, meditation, aerobic exercise, and transcranial stimulation, have been reported to improve cognitive control. This review of recent advances from evaluation to prediction of cognitive control interventions suggests that brain modularity may be an important candidate marker for informing clinical decisions regarding suitable interventions. The intervention effect of cognitive control has been evaluated by behavioral performance, transfer effect, brain structure and function, and brain networks. Brain modularity can predict the benefits of cognitive control interventions based on individual differences and is independent of intervention method, group, age, initial cognitive ability, and education level. The prediction of cognitive control intervention based on brain modularity should extend to task states, combine function and structure networks, and assign different weights to subnetwork modularity.
Collapse
|
28
|
Hegarty JP, Lazzeroni LC, Raman MM, Pegoraro LFL, Monterrey JC, Cleveland SC, Hallmayer JF, Wolke ON, Phillips JM, Reiss AL, Hardan AY. Genetic and Environmental Influences on Lobar Brain Structures in Twins With Autism. Cereb Cortex 2020; 30:1946-1956. [PMID: 31711118 DOI: 10.1093/cercor/bhz215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/26/2019] [Accepted: 08/18/2019] [Indexed: 11/13/2022] Open
Abstract
This investigation examined whether the variation of cerebral structure is associated with genetic or environmental factors in children with autism spectrum disorder (ASD) compared with typically developing (TD) controls. T1-weighted magnetic resonance imaging scans were obtained from twin pairs (aged 6-15 years) in which at least one twin was diagnosed with ASD or both were TD. Good quality data were available from 30 ASD, 18 discordant, and 34 TD pairs (n = 164). Structural measures (volume, cortical thickness, and surface area) were generated with FreeSurfer, and ACE modeling was completed. Lobar structures were primarily genetically mediated in TD twins (a2 = 0.60-0.89), except thickness of the temporal (a2 = 0.33 [0.04, 0.63]) and occipital lobes (c2 = 0.61 [0.45, 0.77]). Lobar structures were also predominantly genetically mediated in twins with ASD (a2 = 0.70-1.00); however, thickness of the frontal (c2 = 0.81 [0.71, 0.92]), temporal (c2 = 0.77 [0.60, 0.93]), and parietal lobes (c2 = 0.87 [0.77, 0.97]), and frontal gray matter (GM) volume (c2 = 0.79 [0.63, 0.95]), were associated with environmental factors. Conversely, occipital thickness (a2 = 0.93 [0.75, 1.11]) did not exhibit the environmental contributions that were found in controls. Differences in GM volume were associated with social communication impairments for the frontal (r = 0.52 [0.18, 0.75]), temporal (r = 0.61 [0.30, 0.80]), and parietal lobes (r = 0.53 [0.19, 0.76]). To our knowledge, this is the first investigation to suggest that environmental factors influence GM to a larger extent in children with ASD, especially in the frontal lobe.
Collapse
Affiliation(s)
- John P Hegarty
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Laura C Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.,Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Mira M Raman
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Luiz F L Pegoraro
- Department of Psychiatry, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas 13083-970, Brazil
| | - Julio C Monterrey
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sue C Cleveland
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Joachim F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Olga N Wolke
- Department of Anesthesiology, Stanford University, Stanford, CA 94305, USA
| | - Jennifer M Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Allan L Reiss
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Bishop DV, Bates TC. Heritability of language laterality assessed by functional transcranial Doppler ultrasound: a twin study. Wellcome Open Res 2020; 4:161. [PMID: 32399495 PMCID: PMC7194484 DOI: 10.12688/wellcomeopenres.15524.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Prior studies have estimated heritability of around 0.25 for the trait of handedness, with studies of structural brain asymmetry giving estimates in a similar or lower range. Little is known about heritability of functional language lateralization. This report describes heritability estimates using functional language laterality and handedness phenotypes in a twin sample previously reported by Wilson and Bishop (2018). Methods: The total sample consisted of 194 twin pairs (49% monozygotic) aged from 6 to 11 years. A language laterality index was obtained for 141 twin pairs, who completed a protocol where relative blood flow through left and right middle cerebral arteries was measured using functional transcranial Doppler ultrasound (fTCD) while the child described animation sequences. Handedness data was available from the Edinburgh Handedness Inventory (EHI) and Quantification of Hand Preference (QHP) for all 194 pairs. Heritability was assessed using conventional structural equation modeling, assuming no effect of shared environment (AE model). Results: For the two handedness measures, heritability estimates were consistent with prior research: 0.23 and 0.22 respectively for the EHI and QHP. For the language laterality index, however, the twin-cotwin correlations were close to zero for both MZ and DZ twins, and the heritability estimate was zero. Conclusions: A single study cannot rule out a genetic effect on language lateralisation. It is possible that the low twin-cotwin correlations were affected by noisy data: although the split-half reliability of the fTCD-based laterality index was high (0.85), we did not have information on test-retest reliability in children, which is likely to be lower. We cannot reject the hypothesis that there is low but nonzero heritability for this trait, but our data suggest that individual variation in language lateralisation is predominantly due to stochastic variation in neurodevelopment.
Collapse
Affiliation(s)
- Dorothy V.M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, Oxon, OX2 6GG, UK
| | - Timothy C. Bates
- Psychology Department, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
30
|
Bishop DV, Bates TC. Negligible heritability of language laterality assessed by functional transcranial Doppler ultrasound: a twin study. Wellcome Open Res 2019; 4:161. [PMID: 32399495 PMCID: PMC7194484 DOI: 10.12688/wellcomeopenres.15524.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 01/02/2024] Open
Abstract
Background: It is widely assumed that individual differences in language lateralisation have a strong genetic basis, yet prior studies show low heritability (around 0.25) for the related trait of handedness, and two twin studies of structural brain asymmetry obtained similarly low estimates. This report describes heritability estimates from a twin study of language laterality and handedness phenotypes. Methods: The total sample consisted of 194 twin pairs (49% monozygotic) aged from 6 to 11 years. A language laterality index was obtained for 141 twin pairs, who completed a protocol where relative blood flow through left and right middle cerebral arteries was measured using functional transcranial Doppler ultrasound (fTCD) while the child described animation sequences. Handedness data was available from the Edinburgh Handedness Inventory (EHI) and Quantification of Hand Preference (QHP) for all 194 pairs. Heritability was assessed using conventional structural equation modeling, assuming no effect of shared environment (AE model). Results: For the two handedness measures, heritability estimates were consistent with prior research: 0.23 and 0.22 respectively for the EHI and QHP. For the language laterality index, however, the twin-cotwin correlations were very close to zero for both MZ and DZ twins, and the heritability estimate was zero. Conclusions: A single study showing negligible heritability for language laterality cannot rule out a genetic effect on language lateralisation. It is possible that the low twin-cotwin correlations were affected by noisy data: although the split-half reliability of the fTCD-based laterality index was high (0.85), we did not have information on test-retest reliability in children, which is likely to be lower. We cannot rule out the possibility that true heritability of differences in language lateralization is non-zero, but results indicate that the heritability of this trait is low at best. Stochastic variation in neurodevelopment appears to play a major role in determining cerebral lateralisation.
Collapse
Affiliation(s)
- Dorothy V.M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, Oxon, OX2 6GG, UK
| | - Timothy C. Bates
- Psychology Department, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
31
|
Le Guen Y, Auzias G, Leroy F, Noulhiane M, Dehaene-Lambertz G, Duchesnay E, Mangin JF, Coulon O, Frouin V. Genetic Influence on the Sulcal Pits: On the Origin of the First Cortical Folds. Cereb Cortex 2019; 28:1922-1933. [PMID: 28444225 DOI: 10.1093/cercor/bhx098] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
The influence of genes on cortical structures has been assessed through various phenotypes. The sulcal pits, which are the putative first cortical folds, have for long been assumed to be under tight genetic control, but this was never quantified. We estimated the pit depth heritability in various brain regions using the high quality and large sample size of the Human Connectome Project pedigree cohort. Analysis of additive genetic variance indicated that their heritability ranges between 0.2 and 0.5 and displays a regional genetic control with an overall symmetric pattern between hemispheres. However, a noticeable asymmetry of heritability estimates is observed in the superior temporal sulcus and could thus be related to language lateralization. The heritability range estimated in this study reinforces the idea that cortical shape is determined primarily by nongenetic factors, which is consistent with the important increase of cortical folding from birth to adult life and thus predominantly constrained by environmental factors. Nevertheless, the genetic cues, implicated with various local levels of heritability in the formation of sulcal pits, play a fundamental role in the normal gyral pattern development. Quantifying their influence and identifying the underlying genetic variants would provide insight into neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yann Le Guen
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille 13000, France.,Laboratoire des Sciences de l'Information et des Systèmes, UMR 7296, Aix Marseille Université, CNRS, Marseille 13000, France
| | - François Leroy
- Cognitive Neuroimaging Unit, U992, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Marion Noulhiane
- UNIACT, U1129, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, U992, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Edouard Duchesnay
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Jean-François Mangin
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille 13000, France.,Laboratoire des Sciences de l'Information et des Systèmes, UMR 7296, Aix Marseille Université, CNRS, Marseille 13000, France
| | - Vincent Frouin
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
32
|
van der Lee SJ, Knol MJ, Chauhan G, Satizabal CL, Smith AV, Hofer E, Bis JC, Hibar DP, Hilal S, van den Akker EB, Arfanakis K, Bernard M, Yanek LR, Amin N, Crivello F, Cheung JW, Harris TB, Saba Y, Lopez OL, Li S, van der Grond J, Yu L, Paus T, Roshchupkin GV, Amouyel P, Jahanshad N, Taylor KD, Yang Q, Mathias RA, Boehringer S, Mazoyer B, Rice K, Cheng CY, Maillard P, van Heemst D, Wong TY, Niessen WJ, Beiser AS, Beekman M, Zhao W, Nyquist PA, Chen C, Launer LJ, Psaty BM, Ikram MK, Vernooij MW, Schmidt H, Pausova Z, Becker DM, De Jager PL, Thompson PM, van Duijn CM, Bennett DA, Slagboom PE, Schmidt R, Longstreth WT, Ikram MA, Seshadri S, Debette S, Gudnason V, Adams HHH, DeCarli C. A genome-wide association study identifies genetic loci associated with specific lobar brain volumes. Commun Biol 2019; 2:285. [PMID: 31396565 PMCID: PMC6677735 DOI: 10.1038/s42003-019-0537-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Brain lobar volumes are heritable but genetic studies are limited. We performed genome-wide association studies of frontal, occipital, parietal and temporal lobe volumes in 16,016 individuals, and replicated our findings in 8,789 individuals. We identified six genetic loci associated with specific lobar volumes independent of intracranial volume. Two loci, associated with occipital (6q22.32) and temporal lobe volume (12q14.3), were previously reported to associate with intracranial and hippocampal volume, respectively. We identified four loci previously unknown to affect brain volumes: 3q24 for parietal lobe volume, and 1q22, 4p16.3 and 14q23.1 for occipital lobe volume. The associated variants were located in regions enriched for histone modifications (DAAM1 and THBS3), or close to genes causing Mendelian brain-related diseases (ZIC4 and FGFRL1). No genetic overlap between lobar volumes and neurological or psychiatric diseases was observed. Our findings reveal part of the complex genetics underlying brain development and suggest a role for regulatory regions in determining brain volumes.
Collapse
Affiliation(s)
- Sven J. van der Lee
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Maria J. Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Ganesh Chauhan
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, 33000 Bordeaux, France
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012 India
| | - Claudia L. Satizabal
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229 USA
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
| | - Albert Vernon Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036 Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, 8036 Austria
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA
| | - Derrek P. Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Saima Hilal
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Pharmacology, National University of Singapore, Singapore, 117600 Singapore
- Memory, Aging and Cognition Center, National University Health System, Singapore, 119228 Singapore
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Erik B. van den Akker
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, 2628XE the Netherlands
- Department of Biomedical Data Sciences, Statistical Genetics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Manon Bernard
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 ON Canada
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Fabrice Crivello
- Neurofunctional Imaging Group - Neurodegenerative Diseases Institute, UMR 5293, Team 5 - CEA - CNRS - Bordeaux University, Bordeaux, 33076 France
| | - Josh W. Cheung
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yasaman Saba
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, M4G 1R8 Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, M5S 1A1 Canada
| | - Gennady V. Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Philippe Amouyel
- Univ. Lille, Inserm, Centre Hosp. Univ Lille, Institut Pasteur de Lille, LabEx DISTALZ-UMR1167 - RID-AGE - Risk factors and molecular determinants of aging-related, 59000 Lille, France
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics at LABioMed-Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Qiong Yang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Stefan Boehringer
- Department of Biomedical Data Sciences, Statistical Genetics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Bernard Mazoyer
- Neurofunctional Imaging Group - Neurodegenerative Diseases Institute, UMR 5293, Team 5 - CEA - CNRS - Bordeaux University, Bordeaux, 33076 France
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195 USA
| | - Ching Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Pauline Maillard
- Imaging of Dementia and Aging (IDeA) Laboratory, University of California-Davis, Davis, CA 95817 USA
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Wiro J. Niessen
- Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Faculty of Applied Sciences, Delft University of Technology, Delft, 2629HZ the Netherlands
| | - Alexa S. Beiser
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Marian Beekman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Wanting Zhao
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Paul A. Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Christopher Chen
- Department of Pharmacology, National University of Singapore, Singapore, 117600 Singapore
- Memory, Aging and Cognition Center, National University Health System, Singapore, 119228 Singapore
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892 USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195 USA
- Department of Health Services, University of Washington, Seattle, WA 98195 USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101 USA
| | - M. Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 ON Canada
- Departments of Physiology and Nutritional Sciences, The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 Canada
| | - Diane M. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY 10032 USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - P. Eline Slagboom
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036 Austria
| | - W. T. Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA 98195 USA
- Department of Neurology, University of Washington, Seattle, WA 98195 USA
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Sudha Seshadri
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229 USA
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
| | - Stéphanie Debette
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, 33000 Bordeaux, France
- Department of Neurology, University Hospital of Bordeaux, Bordeaux, 33000 France
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Hieab H. H. Adams
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Davis, CA 95817 USA
| |
Collapse
|
33
|
Henderson RD, Garton FC, Kiernan MC, Turner MR, Eisen A. Human cerebral evolution and the clinical syndrome of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2019; 90:570-575. [PMID: 29666205 PMCID: PMC6581076 DOI: 10.1136/jnnp-2017-317245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Robert D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Fleur C Garton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew C Kiernan
- Brain & Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Andrew Eisen
- Division of Neurology Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Gómez-Gastiasoro A, Zubiaurre-Elorza L, Peña J, Ibarretxe-Bilbao N, Rilo O, Schretlen DJ, Ojeda N. Altered frontal white matter asymmetry and its implications for cognition in schizophrenia: A tractography study. Neuroimage Clin 2019; 22:101781. [PMID: 30991613 PMCID: PMC6449782 DOI: 10.1016/j.nicl.2019.101781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/05/2019] [Accepted: 03/14/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND White matter (WM) alterations are well documented in schizophrenia. Abnormalities in interhemispheric fibers appear to account for altered WM asymmetry in the illness. However, the regional specificity (e.g., frontal versus occipital) of these alterations and their potential contribution to cognitive dysfunction in schizophrenia remain unknown. METHODS Forty one patients with schizophrenia and 21 healthy controls (HC) underwent diffusion-weighted imaging on a 3 Tesla MRI machine. Tract-based spatial statistic (FSL) was used to assess whole brain differences in WM. Probabilistic tractography was performed in order to separately measure frontal and occipital WM tracts. Participants also completed tests of verbal memory and processing speed. Repeated measures analyses of covariance and Pearson correlation analyses were performed. RESULTS A significant group x cerebral hemisphere interaction was found for fractional anisotropy (FA) (F(1,17) = 7.03; p = .017; ηp2 = 0.29) and radial diffusivity (RD) (F(1,17) = 4.84; p = .042; ηp2 = 0.22) in the frontal tract of patients versus HC. Healthy controls showed higher mean FA and lower mean RD in the left frontal tract compared to patients, who showed the opposite pattern. In patients with schizophrenia, mean FA and RD in the right frontal tract correlated with verbal memory (r = -0.68, p = .046; r = 0.77, p = .015). CONCLUSIONS Asymmetric WM alterations were found in a frontal tract of patients with schizophrenia. Higher mean FA in the right frontal tract correlated with worse verbal memory performance, suggesting a possible contribution these brain changes to cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Ainara Gómez-Gastiasoro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain.
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Oiane Rilo
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - David J Schretlen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 218, Baltimore, MD 21287-7218. United States
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| |
Collapse
|
35
|
Alexander-Bloch AF, Mathias SR, Fox PT, Olvera RL, Göring HHH, Duggirala R, Curran JE, Blangero J, Glahn DC. Human Cortical Thickness Organized into Genetically-determined Communities across Spatial Resolutions. Cereb Cortex 2019; 29:106-118. [PMID: 29190330 PMCID: PMC6676978 DOI: 10.1093/cercor/bhx309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex may be organized into anatomical genetic modules, communities of brain regions with shared genetic influences via pleiotropy. Such modules could represent novel phenotypes amenable to large-scale gene discovery. This modular structure was investigated with network analysis of in vivo MRI of extended pedigrees, revealing a "multiscale" structure where smaller and larger modules exist simultaneously and in partially overlapping fashion across spatial scales, in contrast to prior work suggesting a specific number of cortical thickness modules. Inter-regional genetic correlations, gene co-expression patterns and computational models indicate that two simple organizational principles account for a large proportion of the apparent complexity in the network of genetic correlations. First, regions are strongly genetically correlated with their homologs in the opposite cerebral hemisphere. Second, regions are strongly genetically correlated with nearby regions in the same hemisphere, with an initial steep decrease in genetic correlation with anatomical distance, followed by a more gradual decline. Understanding underlying organizational principles of genetic influence is a critical step towards a mechanistic model of how specific genes influence brain anatomy and mediate neuropsychiatric risk.
Collapse
Affiliation(s)
| | - Samuel R Mathias
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - Peter T Fox
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Rene L Olvera
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Harold H H Göring
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Ravi Duggirala
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| |
Collapse
|
36
|
Cabestrero-Rincón MA, Balzeau A, Lorenzo C. Differential evolution of cerebral and cerebellar fossae in recent Homo: A new methodological approach. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2018; 69:289-303. [PMID: 30463675 DOI: 10.1016/j.jchb.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 10/04/2018] [Indexed: 12/01/2022]
Abstract
The endocranium shows the influence of the shape and development of brain tissues and overall brain modifications. During the late Upper Pleistocene and Holocene smaller brains appeared and the higher position of endinion relative to inion might indicate changes in cerebellar and occipital lobes. In previous studies, the depths of the cerebral and cerebellar fossae were not specifically considered; new tools for quantitatively measuring these irregular, problematic curved areas need to be developed. This paper's main objective is to investigate to what degree changes in the fossae's depths of extant humans have occurred with respect to fossil anatomically modern humans (AMH) and older Homo species. The proportions of the occipital and nuchal planes are compared measuring the inner and outer surfaces of the bone. Additionally, this paper proposes a quantitative geometric methodology based on endocranial landmarks that create a plane with which to measure the position of the deepest part of the fossa: it represents a curvature maxima - concavity - associated with local structures. The four points thus obtained could be framed in Bookstein's Type II landmarks but without biomechanical implication. Through univariate, bivariate and multivariate analyses (principal components analysis) of raw and size-corrected data we study the differential evolution in recent Homo species, which presents a more vertical occipital area than ancient fossils. Our results corroborate this derived trait; additionally, we have observed a tendency towards a relative decrease in the depth of the cerebral fossae and maintenance of the cerebellar fossae.
Collapse
Affiliation(s)
- M A Cabestrero-Rincón
- Castell de Bellver-Museu d'Història de la Ciutat, c/Camilo José Cela, s/n. 07014 Palma de Mallorca, Balearic Islands, Spain; Àrea de Prehistòria, Fac. Lletres, Universitat Rovira i Virgili, Av. Catalunya, 35 43002 Tarragona, Spain.
| | - A Balzeau
- Département Hommes et environnement, UMR 7194 du CNRS, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17, place du Trocadéro, F-75016 Paris, France
| | - C Lorenzo
- Àrea de Prehistòria, Fac. Lletres, Universitat Rovira i Virgili, Av. Catalunya, 35 43002 Tarragona, Spain; Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Carrer Marcel·lí Domingo s/n - Campus Sescelades URV (Edifici W3), 43007 Tarragona, Spain
| |
Collapse
|
37
|
Botha H, Duffy JR, Whitwell JL, Strand EA, Machulda MM, Spychalla AJ, Tosakulwong N, Senjem ML, Knopman DS, Petersen RC, Jack CR, Lowe VJ, Josephs KA. Non-right handed primary progressive apraxia of speech. J Neurol Sci 2018; 390:246-254. [PMID: 29801898 PMCID: PMC5986290 DOI: 10.1016/j.jns.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 12/12/2022]
Abstract
In recent years a large and growing body of research has greatly advanced our understanding of primary progressive apraxia of speech. Handedness has emerged as one potential marker of selective vulnerability in degenerative diseases. This study evaluated the clinical and imaging findings in non-right handed compared to right handed participants in a prospective cohort diagnosed with primary progressive apraxia of speech. A total of 30 participants were included. Compared to the expected rate in the population, there was a higher prevalence of non-right handedness among those with primary progressive apraxia of speech (6/30, 20%). Small group numbers meant that these results did not reach statistical significance, although the effect sizes were moderate-to-large. There were no clinical differences between right handed and non-right handed participants. Bilateral hypometabolism was seen in primary progressive apraxia of speech compared to controls, with non-right handed participants showing more right hemispheric involvement. This is the first report of a higher rate of non-right handedness in participants with isolated apraxia of speech, which may point to an increased vulnerability for developing this disorder among non-right handed participants. This challenges prior hypotheses about a relative protective effect of non-right handedness for tau-related neurodegeneration. We discuss potential avenues for future research to investigate the relationship between handedness and motor disorders more generally.
Collapse
Affiliation(s)
- Hugo Botha
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph R Duffy
- Department of Neurology (Speech Pathology), Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L Whitwell
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, MN 55905, USA
| | - Edythe A Strand
- Department of Neurology (Speech Pathology), Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology (Neuropsychology), Mayo Clinic, Rochester, MN 55905, USA
| | - Anthony J Spychalla
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, MN 55905, USA
| | - Nirubol Tosakulwong
- Department of Health Sciences Research (Biostatistics), Mayo Clinic, Rochester, MN, USA
| | - Matthew L Senjem
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, MN 55905, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David S Knopman
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN 55905, USA
| | - Ronald C Petersen
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology (Nuclear Medicine), Mayo Clinic, Rochester, MN 55905, USA
| | - Keith A Josephs
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN 55905, USA; Department of Neurology (Movement Disorders), Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
38
|
Atypical structural and functional motor networks in autism. PROGRESS IN BRAIN RESEARCH 2018; 238:207-248. [DOI: 10.1016/bs.pbr.2018.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Twins methods quantitatively explore the genetic impact on children and adolescents brain gray matter volume. Sci Rep 2017; 7:5327. [PMID: 28706186 PMCID: PMC5509710 DOI: 10.1038/s41598-017-03962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 05/08/2017] [Indexed: 02/05/2023] Open
Abstract
The gray matter volumes of 58 pairs of twins ranging in age from 12 to 18 were measured by MRI to explore the genetic and environmental impacts on gray matter volume in twin children and adolescents. By means of A/C/E structural equation modeling, it was found that the gray matter volume in children and adolescents was jointly affected by genetic (A: 0.89) and environmental factors while genetic factors play a greater role. The gray matter volume in frontal lobe, parietal lobe, occipital lobe and lateral temporal lobe was mainly affected by genetics (A: 0.7-0.89), where as the gray matter volume in medial temporal lobe and cingulate cortex was affected by both genetics and environment.
Collapse
|
40
|
Lukies MW, Watanabe Y, Tanaka H, Takahashi H, Ogata S, Omura K, Yorifuji S, Tomiyama N. Heritability of brain volume on MRI in middle to advanced age: A twin study of Japanese adults. PLoS One 2017; 12:e0175800. [PMID: 28426696 PMCID: PMC5398540 DOI: 10.1371/journal.pone.0175800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
Brain atrophy is part of the aging process and accelerated by neurodegenerative diseases, so an understanding of the background heritability of brain volume is essential. The purpose of this study was to determine the heritability of brain volume in middle to advanced age East Asian adults, an age group less studied and an ethnicity not previously studied. 3T magnetic resonance images were obtained and volumetric analyses conducted for a total of 74 individuals, 20 monozygotic twin pairs (mean age 61y min 41y max 75y) and 17 dizygotic twin pairs (mean age 64y min 41y max 85y). Total brain volume and a further seven regions were assessed, including lobar volumes, lateral divisions, and separated grey and white matter. Additive genetics and unique environment (AE) models for global brain volumes including total brain (90%), grey matter (91%) and white matter (84%) and many lobar volumes demonstrated high heritability in our study population. Our results present the heritability of brain volume in middle to advanced age as possibly higher in East Asian adults.
Collapse
Affiliation(s)
- Matthew W. Lukies
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiyuki Watanabe
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
- * E-mail:
| | - Hisashi Tanaka
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroto Takahashi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Soshiro Ogata
- Department of Health Promotion Science, Osaka University Graduate School of Medicine, Suita, Japan
- Osaka University Twin Research Group, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kayoko Omura
- Department of Public Health and Community Nursing, Mie Prefectural Nursing College, Mie, Japan
| | - Shiro Yorifuji
- Division of Functional Diagnostic Science, Osaka University Medical School, Suita, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
41
|
Casey KF, Levesque ML, Szyf M, Ismaylova E, Verner M, Suderman M, Vitaro F, Brendgen M, Dionne G, Boivin M, Tremblay RE, Booij L. Birth weight discordance, DNA methylation, and cortical morphology of adolescent monozygotic twins. Hum Brain Mapp 2017; 38:2037-2050. [PMID: 28032437 PMCID: PMC6866862 DOI: 10.1002/hbm.23503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Several studies have shown that the in utero environment, which can be indexed by birth weight (BW), is associated with cortical morphology in adolescence and adulthood. Work in monozygotic (MZ) twins suggests that this association is driven by non-shared environmental factors. This correlation could be the result of in utero impacts on DNA methylation. The aim of the present study with MZ twins is to replicate the association between discordance in BW and brain morphology and test whether discordance in DNA methylation mediates this relationship. METHODS One hundred and four adolescent MZ twins (52 pairs, of which 42% were male pairs) who have been followed regularly since birth underwent T1 weighted structural MRI, and epigenome-wide assessment of DNA methylation from saliva at age 15. RESULTS Co-twins had very similar measures of DNA methylation and cortical morphology. Higher BW members of a twin pair had increased total cortical surface area, and decreased cortical thickness compared to their lower BW sibling. BW Discordance was positively associated with both cortical surface area and cortical volume discordance. Genes involved in neurodevelopment were tentatively identified as mediators of both the BW - cortical volume, and BW- cortical surface area relationships. CONCLUSIONS The association between BW and cortical morphology in adolescence appears to be attributable to in utero environmental effects, and DNA methylation may play a role in mediating this relationship. Hum Brain Mapp 38:2037-2050, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Melissa L. Levesque
- CHU Sainte‐Justine Research CenterMontrealQuébecCanada
- Department of PsychiatryUniversity of MontrealMontrealQuébecCanada
| | - Moshe Szyf
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealQuébecCanada
| | - Elmira Ismaylova
- CHU Sainte‐Justine Research CenterMontrealQuébecCanada
- Department of PsychiatryUniversity of MontrealMontrealQuébecCanada
| | - Marie‐Pier Verner
- CHU Sainte‐Justine Research CenterMontrealQuébecCanada
- Department of PsychiatryUniversity of MontrealMontrealQuébecCanada
| | - Matthew Suderman
- Department of Social and Community MedicineUniversity of BristolBristolUnited Kingdom
| | - Frank Vitaro
- Psychoeducation, University of MontrealMontrealQuébecCanada
| | | | - Ginette Dionne
- School of PsychologyUniversity of LavalQuébec CityQuébecCanada
| | - Michel Boivin
- School of PsychologyUniversity of LavalQuébec CityQuébecCanada
- Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, TomskSiberiaRussian Federation
| | - Richard E. Tremblay
- CHU Sainte‐Justine Research CenterMontrealQuébecCanada
- Department of Psychology & PediatricsUniversity of MontrealMontrealQuébecCanada
- School of Public Health, Physiotherapy and Population Science, University College DublinDublinIreland
| | - Linda Booij
- CHU Sainte‐Justine Research CenterMontrealQuébecCanada
- Department of PsychiatryUniversity of MontrealMontrealQuébecCanada
- Department of PsychologyConcordia UniversityMontrealQuébecCanada
- Department of PsychiatryMcGill UniversityMontrealQuébecCanada
| |
Collapse
|
42
|
Muntané G, Santpere G, Verendeev A, Seeley WW, Jacobs B, Hopkins WD, Navarro A, Sherwood CC. Interhemispheric gene expression differences in the cerebral cortex of humans and macaque monkeys. Brain Struct Funct 2017; 222:3241-3254. [PMID: 28317062 DOI: 10.1007/s00429-017-1401-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/05/2017] [Indexed: 11/25/2022]
Abstract
Handedness and language are two well-studied examples of asymmetrical brain function in humans. Approximately 90% of humans exhibit a right-hand preference, and the vast majority shows left-hemisphere dominance for language function. Although genetic models of human handedness and language have been proposed, the actual gene expression differences between cerebral hemispheres in humans remain to be fully defined. In the present study, gene expression profiles were examined in both hemispheres of three cortical regions involved in handedness and language in humans and their homologues in rhesus macaques: ventrolateral prefrontal cortex, posterior superior temporal cortex (STC), and primary motor cortex. Although the overall pattern of gene expression was very similar between hemispheres in both humans and macaques, weighted gene correlation network analysis revealed gene co-expression modules associated with hemisphere, which are different among the three cortical regions examined. Notably, a receptor-enriched gene module in STC was particularly associated with hemisphere and showed different expression levels between hemispheres only in humans.
Collapse
Affiliation(s)
- Gerard Muntané
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052, USA.
- Institut Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003, Barcelona, Spain.
| | - Gabriel Santpere
- Institut Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003, Barcelona, Spain
| | - Andrey Verendeev
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, 94158, USA
| | - Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, CO, 80903, USA
| | - William D Hopkins
- Neuroscience Institute and the Language Research Center, Georgia State University, Atlanta, GA, 30302, USA
| | - Arcadi Navarro
- Institut Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003, Barcelona, Spain
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
43
|
Ambeskovic M, Soltanpour N, Falkenberg EA, Zucchi FC, Kolb B, Metz GA. Ancestral Exposure to Stress Generates New Behavioral Traits and a Functional Hemispheric Dominance Shift. Cereb Cortex 2017; 27:2126-2138. [PMID: 26965901 PMCID: PMC5963819 DOI: 10.1093/cercor/bhw063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In a continuously stressful environment, the effects of recurrent prenatal stress (PS) accumulate across generations and generate new behavioral traits in the absence of genetic variation. Here, we investigated if PS or multigenerational PS across 4 generations differentially affect behavioral traits, laterality, and hemispheric dominance in male and female rats. Using skilled reaching and skilled walking tasks, 3 findings support the formation of new behavioral traits and shifted laterality by multigenerational stress. First, while PS in the F1 generation did not alter paw preference, multigenerational stress in the F4 generation shifted paw preference to favor left-handedness only in males. Second, multigenerational stress impaired skilled reaching and skilled walking movement abilities in males, while improving these abilities in females beyond the levels of controls. Third, the shift toward left-handedness in multigenerationally stressed males was accompanied by increased dendritic complexity and greater spine density in the right parietal cortex. Thus, cumulative multigenerational stress generates sexually dimorphic left-handedness and dominance shift toward the right hemisphere in males. These findings explain the origins of apparently heritable behavioral traits and handedness in the absence of DNA sequence variations while proposing epigenetic mechanisms.
Collapse
Affiliation(s)
- Mirela Ambeskovic
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
| | - Nasrin Soltanpour
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
| | - Erin A. Falkenberg
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
| | - Fabiola C.R. Zucchi
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
- Department of Physiological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
| | - Gerlinde A.S. Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
| |
Collapse
|
44
|
Multi-factorial modulation of hemispheric specialization and plasticity for language in healthy and pathological conditions: A review. Cortex 2017; 86:314-339. [DOI: 10.1016/j.cortex.2016.05.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/16/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
|
45
|
Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC. The heritability of chimpanzee and human brain asymmetry. Proc Biol Sci 2016; 283:20161319. [PMID: 28003442 PMCID: PMC5204159 DOI: 10.1098/rspb.2016.1319] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
Human brains are markedly asymmetric in structure and lateralized in function, which suggests a relationship between these two properties. The brains of other closely related primates, such as chimpanzees, show similar patterns of asymmetry, but to a lesser degree, indicating an increase in anatomical and functional asymmetry during hominin evolution. We analysed the heritability of cerebral asymmetry in chimpanzees and humans using classic morphometrics, geometric morphometrics, and quantitative genetic techniques. In our analyses, we separated directional asymmetry and fluctuating asymmetry (FA), which is indicative of environmental influences during development. We show that directional patterns of asymmetry, those that are consistently present in most individuals in a population, do not have significant heritability when measured through simple linear metrics, but they have marginally significant heritability in humans when assessed through three-dimensional configurations of landmarks that reflect variation in the size, position, and orientation of different cortical regions with respect to each other. Furthermore, genetic correlations between left and right hemispheres are substantially lower in humans than in chimpanzees, which points to a relatively stronger environmental influence on left-right differences in humans. We also show that the level of FA has significant heritability in both species in some regions of the cerebral cortex. This suggests that brain responsiveness to environmental influences, which may reflect neural plasticity, has genetic bases in both species. These results have implications for the evolvability of brain asymmetry and plasticity among humans and our close relatives.
Collapse
Affiliation(s)
- Aida Gómez-Robles
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - William D Hopkins
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322, USA
| | - Steven J Schapiro
- National Center for Chimpanzee Care, Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
46
|
The Contribution of the Corpus Callosum to Language Lateralization. J Neurosci 2016; 36:4522-33. [PMID: 27098695 DOI: 10.1523/jneurosci.3850-14.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/03/2015] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The development of hemispheric lateralization for language is poorly understood. In one hypothesis, early asymmetric gene expression assigns language to the left hemisphere. In an alternate view, language is represented a priori in both hemispheres and lateralization emerges via cross-hemispheric communication through the corpus callosum. To address this second hypothesis, we capitalized on the high temporal and spatial resolution of magnetoencephalographic imaging to measure cortical activity during language processing, speech preparation, and speech execution in 25 participants with agenesis of the corpus callosum (AgCC) and 21 matched neurotypical individuals. In contrast to strongly lateralized left hemisphere activations for language in neurotypical controls, participants with complete or partial AgCC exhibited bilateral hemispheric activations in both auditory or visually driven language tasks, with complete AgCC participants showing significantly more right hemisphere activations than controls or than individuals with partial AgCC. In AgCC individuals, language laterality positively correlated with verbal IQ. These findings suggest that the corpus callosum helps to drive language lateralization. SIGNIFICANCE STATEMENT The role that corpus callosum development has on the hemispheric specialization of language is poorly understood. Here, we used magnetoencephalographic imaging during linguistic tests (verb generation, picture naming) to test for hemispheric dominance in patients with agenesis of the corpus callosum (AgCC) and found reduced laterality (i.e., greater likelihood of bilaterality or right hemisphere dominance) in this cohort compared with controls, especially in patients with complete agenesis. Laterality was positively correlated with behavioral measures of verbal intelligence. These findings provide support for the hypothesis that the callosum aids in functional specialization throughout neural development and that the loss of this mechanism correlates with impairments in verbal performance.
Collapse
|
47
|
Neef NE, Bütfering C, Anwander A, Friederici AD, Paulus W, Sommer M. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses. Neuroimage 2016; 142:628-644. [PMID: 27542724 DOI: 10.1016/j.neuroimage.2016.08.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/03/2016] [Accepted: 08/15/2016] [Indexed: 01/03/2023] Open
Abstract
Area 44 is a cytoarchitectonically distinct portion of Broca's region. Parallel and overlapping large-scale networks couple with this region thereby orchestrating heterogeneous language, cognitive, and motor functions. In the context of stuttering, area 44 frequently comes into focus because structural and physiological irregularities affect developmental trajectories, stuttering severity, persistency, and etiology. A remarkable phenomenon accompanying stuttering is the preserved ability to sing. Speaking and singing are connatural behaviours recruiting largely overlapping brain networks including left and right area 44. Analysing which potential subregions of area 44 are malfunctioning in adults who stutter, and what effectively suppresses stuttering during singing, may provide a better understanding of the coordination and reorganization of large-scale brain networks dedicated to speaking and singing in general. We used fMRI to investigate functionally distinct subregions of area 44 during imagery of speaking and imaginary of humming a melody in 15 dextral males who stutter and 17 matched control participants. Our results are fourfold. First, stuttering was specifically linked to a reduced activation of left posterior-dorsal area 44, a subregion that is involved in speech production, including phonological word processing, pitch processing, working memory processes, sequencing, motor planning, pseudoword learning, and action inhibition. Second, functional coupling between left posterior area 44 and left inferior parietal lobule was deficient in stuttering. Third, despite the preserved ability to sing, males who stutter showed bilaterally a reduced activation of area 44 when imagine humming a melody, suggesting that this fluency-enhancing condition seems to bypass posterior-dorsal area 44 to achieve fluency. Fourth, time courses of the posterior subregions in area 44 showed delayed peak activations in the right hemisphere in both groups, possibly signaling the offset response. Because these offset response-related activations in the right hemisphere were comparably large in males who stutter, our data suggest a hyperactive mechanism to stop speech motor responses and thus possibly reflect a pathomechanism, which, until now, has been neglected. Overall, the current results confirmed a recently described co-activation based parcellation supporting the idea of functionally distinct subregions of left area 44.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 03104 Leipzig, Germany.
| | - Christoph Bütfering
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany.
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 03104 Leipzig, Germany.
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 03104 Leipzig, Germany.
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany.
| | - Martin Sommer
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany.
| |
Collapse
|
48
|
Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Mol Psychiatry 2016; 21:872-84. [PMID: 27217152 PMCID: PMC5414093 DOI: 10.1038/mp.2016.74] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/09/2016] [Accepted: 04/01/2016] [Indexed: 01/16/2023]
Abstract
The adult form of attention-deficit/hyperactivity disorder has a prevalence of up to 5% and is the most severe long-term outcome of this common disorder. Family studies in clinical samples as well as twin studies suggest a familial liability and consequently different genes were investigated in association studies. Pharmacotherapy with methylphenidate (MPH) seems to be the first-line treatment of choice in adults with attention-deficit hyperactive disorder (ADHD) and some studies were conducted on the genes influencing the response to this drug. Finally some peripheral biomarkers were identified in ADHD adult patients. We believe this work is the first systematic review and meta-analysis of candidate gene association studies, pharmacogenetic and biochemical (metabolomics) studies performed in adults with ADHD to identify potential genetic, predictive and peripheral markers linked specifically to ADHD in adults. After screening 5129 records, we selected 87 studies of which 61 were available for candidate gene association studies, 5 for pharmacogenetics and 21 for biochemical studies. Of these, 15 genetic, 2 pharmacogenetic and 6 biochemical studies were included in the meta-analyses. We obtained an association between adult ADHD and the gene BAIAP2 (brain-specific angiogenesis inhibitor 1-associated protein 2), even after Bonferroni correction, with any heterogeneity in effect size and no publication bias. If we did not apply the Bonferroni correction, a trend was found for the carriers allele 9R of dopamine transporter SLC6A3 40 bp variable tandem repeat polymorphism (VNTR) and for 6/6 homozygotes of SLC6A3 30 bp VNTR. Negative results were obtained for the 9-6 haplotype, the dopamine receptor DRD4 48 bp VNTR, and the enzyme COMT SNP rs4680. Concerning pharmacogenetic studies, no association was found for the SLC6A3 40 bp and response to MPH with only two studies selected. For the metabolomics studies, no differences between ADHD adults and controls were found for salivary cortisol, whereas lower serum docosahexaenoic acid (DHA) levels were found in ADHD adults. This last association was significant even after Bonferroni correction and in absence of heterogeneity. Other polyunsaturated fatty acids (PUFAs) such as AA (arachidonic acid), EPA (eicosapentaenoic acid) and DyLA (dihomogammalinolenic acid) levels were not different between patients and controls. No publication biases were observed for these markers. Genes linked to dopaminergic, serotoninergic and noradrenergic signaling, metabolism (DBH, TPH1, TPH2, DDC, MAOA, MAOB, BCHE and TH), neurodevelopment (BDNF and others), the SNARE system and other forty genes/proteins related to different pathways were not meta-analyzed due to insufficient data. In conclusion, we found that there were not enough genetic, pharmacogenetic and biochemical studies of ADHD in adults and that more investigations are needed. Moreover we confirmed a significant role of BAIAP2 and DHA in the etiology of ADHD exclusively in adults. Future research should be focused on the replication of these findings and to assess their specificity for ADHD.
Collapse
|
49
|
Philip BA, Frey SH. Increased functional connectivity between cortical hand areas and praxis network associated with training-related improvements in non-dominant hand precision drawing. Neuropsychologia 2016; 87:157-168. [PMID: 27212059 PMCID: PMC4903896 DOI: 10.1016/j.neuropsychologia.2016.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/05/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023]
Abstract
Chronic forced use of the non-dominant left hand yields substantial improvements in the precision and quality of writing and drawing. These changes may arise from increased access by the non-dominant (right) hemisphere to dominant (left) hemisphere mechanisms specialized for end-point precision control. To evaluate this prediction, 22 healthy right-handed adults underwent resting state functional connectivity (FC) MRI scans before and after 10 days of training on a left hand precision drawing task. 89% of participants significantly improved left hand speed, accuracy, and smoothness. Smoothness gains were specific to the trained left hand and persistent: 6 months after training, 71% of participants exhibited above-baseline movement smoothness. Contrary to expectations, we found no evidence of increased FC between right and left hemisphere hand areas. Instead, training-related improvements in left hand movement smoothness were associated with increased FC between both sensorimotor hand areas and a left-lateralized parieto-prefrontal network implicated in manual praxis. By contrast, skill retention at 6 months was predicted by changes including decreased FC between the representation of the trained left hand and bilateral sensorimotor, parietal, and premotor cortices, possibly reflecting consolidation and a disengagement of early learning processes. These data indicate that modest amounts of training (< 200 min total) can induce substantial, persistent improvements the precision and quality of non-dominant hand control in healthy adults, supported by strengthened connectivity between bilateral sensorimotor hand areas and a left-lateralized parieto-prefrontal praxis network.
Collapse
Affiliation(s)
- Benjamin A Philip
- Department of Psychology, University of Missouri, Columbia, MO 65211, USA.
| | - Scott H Frey
- Department of Psychology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
50
|
Comprehensive cortical thickness and surface area comparison between young Uyghur and Han Chinese cohorts. Magn Reson Imaging 2016; 34:1043-9. [PMID: 27067474 DOI: 10.1016/j.mri.2016.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/04/2016] [Accepted: 03/27/2016] [Indexed: 11/20/2022]
Abstract
We hypothesized that the brain structural differences as discovered previously between Westerners and East Asians could also be revealed between Han Chinese and Uyghur, which were genetically related ethnic groups with distinct languages. We conducted a brain MRI structural comparison in terms of cortical thickness and surface area between 15 healthy young Uyghurs and 15 age-matched Han Chinese. Widespread regions with significantly greater cortical thickness were found in the Uyghurs, and their distribution showed strong resemblance to previous "Westerners vs. Asians" findings. While surface area analysis displayed less widespread brain differences. Notably, our detected regions with structural differences contained a large part of language-specific or at least closely language-related brain areas, which may partly be attributable to the brain plasticity respectively driven by Uyghur and Mandarin. Our findings will help to better understand the neurobiological basis of interethnic differences along with the language processing mechanisms of Han Chinese and Uyghur.
Collapse
|