1
|
Lin T, Mohammad A, Kolonin MG, Eckel-Mahan KL. Mechanisms and metabolic consequences of adipocyte progenitor replicative senescence. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00046. [PMID: 39211801 PMCID: PMC11356692 DOI: 10.1097/in9.0000000000000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
In recent decades, obesity has become a worldwide epidemic. As a result, the importance of adipose tissue (AT) as a metabolically active storage depot for lipids and a key mediator of body-wide metabolism and energy balance has been increasingly recognized. Emerging from the studies of AT in metabolic disease is a recognition of the importance of the adipocyte progenitor cell (APC) population of AT being the gatekeeper of adipocyte function. APCs have the capability to self-renew and undergo adipogenesis to propagate new adipocytes capable of lipid storage, which is important for maintaining a healthy fat pad, devoid of dysfunctional lipid droplet hypertrophy, inflammation, and fibrosis, which is linked to metabolic diseases, including type 2 diabetes. Like other dividing cells, APCs are at risk for undergoing cell senescence, a state of irreversible cell proliferation arrest that occurs under a variety of stress conditions, including DNA damage and telomere attrition. APC proliferation is controlled by a variety of factors, including paracrine and endocrine factors, quality and timing of energy intake, and the circadian clock system. Therefore, alteration in any of the underlying signaling pathways resulting in excessive proliferation of APCs can lead to premature APC senescence. Better understanding of APCs senescence mechanisms will lead to new interventions extending metabolic health.
Collapse
Affiliation(s)
- Tonghui Lin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aftab Mohammad
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L. Eckel-Mahan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
2
|
Norris AM, Fierman KE, Campbell J, Pitale R, Shahraj M, Kopinke D. Studying intramuscular fat deposition and muscle regeneration: insights from a comparative analysis of mouse strains, injury models, and sex differences. Skelet Muscle 2024; 14:12. [PMID: 38812056 PMCID: PMC11134715 DOI: 10.1186/s13395-024-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Intramuscular fat (IMAT) infiltration, pathological adipose tissue that accumulates between muscle fibers, is a shared hallmark in a diverse set of diseases including muscular dystrophies and diabetes, spinal cord and rotator cuff injuries, as well as sarcopenia. While the mouse has been an invaluable preclinical model to study skeletal muscle diseases, they are also resistant to IMAT formation. To better understand this pathological feature, an adequate pre-clinical model that recapitulates human disease is necessary. To address this gap, we conducted a comprehensive in-depth comparison between three widely used mouse strains: C57BL/6J, 129S1/SvlmJ and CD1. We evaluated the impact of strain, sex and injury type on IMAT formation, myofiber regeneration and fibrosis. We confirm and extend previous findings that a Glycerol (GLY) injury causes significantly more IMAT and fibrosis compared to Cardiotoxin (CTX). Additionally, females form more IMAT than males after a GLY injury, independent of strain. Of all strains, C57BL/6J mice, both females and males, are the most resistant to IMAT formation. In regard to injury-induced fibrosis, we found that the 129S strain formed the least amount of scar tissue. Surprisingly, C57BL/6J of both sexes demonstrated complete myofiber regeneration, while both CD1 and 129S1/SvlmJ strains still displayed smaller myofibers 21 days post injury. In addition, our data indicate that myofiber regeneration is negatively correlated with IMAT and fibrosis. Combined, our results demonstrate that careful consideration and exploration are needed to determine which injury type, mouse model/strain and sex to utilize as preclinical model especially for modeling IMAT formation.
Collapse
Affiliation(s)
- Alessandra M Norris
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Kiara E Fierman
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Jillian Campbell
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Rhea Pitale
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Muhammad Shahraj
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Krase AA, Giannaki CD, Flouris AD, Liakos D, Stefanidis I, Karatzaferi C, Sakkas GK. The Acute, Combined, and Separate Effects of Cold Hemodialysis and Intradialytic Exercise in Insulin Sensitivity and Glucose Disposal. ASAIO J 2024; 70:436-441. [PMID: 38261536 DOI: 10.1097/mat.0000000000002117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Hemodialysis (HD) patients suffer from multiple health problems, including severe insulin resistance. Both cold dialysis and intradialytic exercise training could elicit health benefits; however, it is still unknown whether the combination of those two approaches could enhance overall health. The current study aimed to evaluate the separate and combined acute effects of a single session of cold dialysis and intradialytic exercise in parameters related to insulin sensitivity and glucose disposal. Ten HD patients (57.2 ± 14.9 years) participated in the study. Each patient participated in four different scenarios during HD: a) typical dialysis with dialysate temperature at 37°C (TD), b) cold dialysis with dialysate temperature at 35°C, c) typical HD combined with a single exercise bout, d) cold dialysis combined with a single exercise bout. Glucose disposal and insulin resistance were assessed immediately after the end of the HD session. None of the examined parameters significantly differed between the four scenarios ( p > 0.05). However, slight numerical changes and moderate to high effect size ( d : 0.50-0.85) were observed between TD versus cold dialysis and TD versus TD + exercise in glucose and insulin disposal rates. A single session of cold and TD with intradialytic exercise may provide an "acute" time-efficient stimulus for consecutively improving glucose disposal and insulin sensitivity.
Collapse
Affiliation(s)
- Argyro A Krase
- From the LIVE Lab, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Christoforos D Giannaki
- Department of Life Sciences, University of Nicosia, Nicosia, Cyprus
- Research Centre for Exercise and Nutrition, University of Nicosia, Nicosia, Cyprus
| | - Andreas D Flouris
- FAME Lab, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | | | - Ioannis Stefanidis
- Department of Nephrology, School of Medicine, University of Thessaly, Larisa, Greece
| | - Christina Karatzaferi
- From the LIVE Lab, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Giorgos K Sakkas
- From the LIVE Lab, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- School of Sports and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Wilbon SS, Kolonin MG. GLP1 Receptor Agonists-Effects beyond Obesity and Diabetes. Cells 2023; 13:65. [PMID: 38201269 PMCID: PMC10778154 DOI: 10.3390/cells13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP1RA) have been transformative for patients and clinicians in treating type-2 diabetes and obesity. Drugs of this class, the bioavailability of which is continuously improving, enable weight loss and control blood glucose with minimal unwanted side effects. Since adopting GLP1RA for treating metabolic diseases, animal and clinical studies have revealed their beneficial effects on several other pathologies, including cardiovascular diseases, neurodegeneration, kidney disease, and cancer. A notable commonality between these diseases is their association with older age. Clinical trials and preclinical data suggest that GLP1RA may improve outcomes in these aging-related diseases. Some of the benefits of GLP1RA may be indirect due to their effects on obesity and glucose metabolism. However, there is building evidence that GLP1RA may also act directly on multiple organs implicated in aging-related pathology. This review aims to compile the studies reporting the effects of GLP1RA on aging-related diseases and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| |
Collapse
|
5
|
Parson JC, Zhang X, Craft CS, Magee KL, Scheller EL, Meyer GA. Development and expansion of intramuscular adipose tissue is not dependent on UCP-1-lineage cells in mice. J Orthop Res 2023; 41:2599-2609. [PMID: 37203780 PMCID: PMC10657332 DOI: 10.1002/jor.25627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
Accumulation of adipose tissue within and outside of skeletal muscle is associated with orthopedic injury and metabolic disease, where it is thought to impede muscle function. The close juxtaposition between this adipose and myofibers has led to hypotheses that paracrine interactions between the two regulate local physiology. Recent work suggests that intramuscular adipose tissue (IMAT) may have features of beige or brown fat, indicated by the expression of uncoupling protein-1 (UCP-1). However, this is contested by other studies. Clarification of this point is needed to inform our understanding of the relationship between IMAT and muscle health. To achieve this, we examined the effects of constitutive UCP-1+ cell ablation (UCP1-DTA) on IMAT development and homeostasis. IMAT developed normally in UCP1-DTA mice, with no significant differences in quantity compared with wild-type littermates. Likewise, IMAT accumulation in response to glycerol-induced injury was similar between genotypes, with no significant differences in adipocyte size, quantity, or dispersion. This suggests that neither physiological nor pathological IMAT express UCP-1 and that the development of IMAT does not depend on UCP-1 lineage cells. In response to β3-adrenergic stimulation, we find minor, localized UCP-1 positivity in wildtype IMAT, but the bulk of the adipocytes are unresponsive. In contrast, two depots of muscle-adjacent (epi-muscular) adipose tissue have reduced mass in UCP1-DTA mice and UCP-1 positivity in wildtype littermates, comparable to traditional beige and brown adipose depots. Taken together this evidence strongly supports a white adipose phenotype for mouse IMAT and a brown/beige phenotype for some adipose outside the muscle boundary.
Collapse
Affiliation(s)
| | - Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Clarissa S Craft
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Cellular Biology and Physiology, Washington University, St. Louis, 63108, Missouri, USA
| | - Kristann L Magee
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cellular Biology and Physiology, Washington University, St. Louis, 63108, Missouri, USA
| | - Gretchen A Meyer
- Program in Physical Therapy, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
- Department of Neurology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Zhang T, Li J, Li X, Liu Y. Intermuscular adipose tissue in obesity and related disorders: cellular origins, biological characteristics and regulatory mechanisms. Front Endocrinol (Lausanne) 2023; 14:1280853. [PMID: 37920255 PMCID: PMC10619759 DOI: 10.3389/fendo.2023.1280853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/01/2023] [Indexed: 11/04/2023] Open
Abstract
Intermuscular adipose tissue (IMAT) is a unique adipose depot interspersed between muscle fibers (myofibers) or muscle groups. Numerous studies have shown that IMAT is strongly associated with insulin resistance and muscular dysfunction in people with metabolic disease, such as obesity and type 2 diabetes. Moreover, IMAT aggravates obesity-related muscle metabolism disorders via secretory factors. Interestingly, researchers have discovered that intermuscular brown adipocytes in rodent models provide new hope for obesity treatment by acting on energy dissipation, which inspired researchers to explore the underlying regulation of IMAT formation. However, the molecular and cellular properties and regulatory processes of IMAT remain debated. Previous studies have suggested that muscle-derived stem/progenitor cells and other adipose tissue progenitors contribute to the development of IMAT. Adipocytes within IMAT exhibit features that are similar to either white adipocytes or uncoupling protein 1 (UCP1)-positive brown adipocytes. Additionally, given the heterogeneity of skeletal muscle, which comprises myofibers, satellite cells, and resident mesenchymal progenitors, it is plausible that interplay between these cellular components actively participate in the regulation of intermuscular adipogenesis. In this context, we review recent studies associated with IMAT to offer insights into the cellular origins, biological properties, and regulatory mechanisms of IMAT. Our aim is to provide novel ideas for the therapeutic strategy of IMAT and the development of new drugs targeting IMAT-related metabolic diseases.
Collapse
Affiliation(s)
- Ting Zhang
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Jun Li
- Department of Orthopedics, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yanjun Liu
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| |
Collapse
|
7
|
Zhou H, Chen C, Hu H, Jiang B, Yin Y, Zhang K, Shen M, Wu S, Wang Z. High-intensity interval training improves fatty infiltration in the rotator cuff through the β3 adrenergic receptor in mice. Bone Joint Res 2023; 12:455-466. [PMID: 37524338 PMCID: PMC10390263 DOI: 10.1302/2046-3758.128.bjr-2022-0309.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Aims Rotator cuff muscle atrophy and fatty infiltration affect the clinical outcomes of rotator cuff tear patients. However, there is no effective treatment for fatty infiltration at this time. High-intensity interval training (HIIT) helps to activate beige adipose tissue. The goal of this study was to test the role of HIIT in improving muscle quality in a rotator cuff tear model via the β3 adrenergic receptor (β3AR). Methods Three-month-old C57BL/6 J mice underwent a unilateral rotator cuff injury procedure. Mice were forced to run on a treadmill with the HIIT programme during the first to sixth weeks or seventh to 12th weeks after tendon tear surgery. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice ten minutes before each exercise through intraperitoneal injection. Supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat were harvested at the end of the 12th week after tendon tear and analyzed biomechanically, histologically, and biochemically. Results Histological analysis of supraspinatus muscle showed that HIIT improved muscle atrophy, fatty infiltration, and contractile force compared to the no exercise group. In the HIIT groups, supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat showed increased expression of tyrosine hydroxylase and uncoupling protein 1, and upregulated the β3AR thermogenesis pathway. However, the effect of HIIT was not present in mice injected with SR59230A, suggesting that HIIT affected muscles via β3AR. Conclusion HIIT improved supraspinatus muscle quality and function after rotator cuff tears by activating systemic sympathetic nerve fibre near adipocytes and β3AR.
Collapse
Affiliation(s)
- Hecheng Zhou
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya Medical School of Central South University, Changsha, China
| | - Chuanshun Chen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya Medical School of Central South University, Changsha, China
| | - Hai Hu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Binbin Jiang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuesong Yin
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya Medical School of Central South University, Changsha, China
| | - Kexiang Zhang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minren Shen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Zhou H, Wang Z, Chen C, Hu H, Jiang B, Yin Y, Zhang K, Shen M, Wu S. Effect of High-Intensity Interval Training on Fatty Infiltration After Delayed Rotator Cuff Repair in a Mouse Model. Orthop J Sports Med 2023; 11:23259671231170192. [PMID: 37223073 PMCID: PMC10201644 DOI: 10.1177/23259671231170192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 05/25/2023] Open
Abstract
Background Fatty infiltration (FI) of the rotator cuff muscles is correlated with shoulder function and retear rates after rotator cuff repair. High-intensity interval training (HIIT) induces beige adipose tissue to express more uncoupling protein 1 (UCP1) to consume lipids. The beta-3 adrenergic receptor (β3AR) is located on adipocyte membrane and induces thermogenesis. Purpose To test the role of HIIT in improving muscle quality and contractility in a delayed rotator cuff repair mouse model via β3AR. Study Design Controlled laboratory study. Methods Three-month-old C57BL/6J mice underwent a unilateral supraspinatus (SS) tendon transection with a 6-week delayed tendon repair. Mice ran on a treadmill with the HIIT program for 6 weeks after tendon transection or after delayed repair. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice 10 minutes before each exercise through intraperitoneal injection. The SS, interscapular brown adipose tissue (iBAT), and subcutaneous inguinal white adipose tissue (ingWAT) were harvested at the end of the 12th week after tendon transection and were analyzed by histology and Western blotting. Tests were performed to assess muscle contractility of the SS. Results Histologic analysis of SS showed that HIIT prevented and reversed muscle atrophy and FI. The contractile tests showed higher contractility of the SS in the HIIT groups than in the no-exercise group. In the HIIT groups, SS, iBAT, and ingWAT all showed increased expression of tyrosine hydroxylase, UCP1, and upregulated β3AR thermogenesis pathway. However, SR59230A inhibited HIIT, suggesting that the effect of HIIT depends on β3AR. Conclusion HIIT improved SS quality and function after delayed rotator cuff repair through a β3AR-dependent mechanism. Clinical Relevance HIIT may serve as a new rehabilitation method for patients with rotator cuff muscle atrophy and FI after rotator cuff repair to improve postoperative clinical outcomes.
Collapse
Affiliation(s)
- Hecheng Zhou
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chuanshun Chen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Hai Hu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Binbin Jiang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yuesong Yin
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Kexiang Zhang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Minren Shen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Song Wu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
9
|
Wang D, Li R, Jiang J, Qian H, Xu W. Exosomal circRNAs: Novel biomarkers and therapeutic targets for gastrointestinal tumors. Biomed Pharmacother 2023; 157:114053. [PMID: 36462315 DOI: 10.1016/j.biopha.2022.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the high prevalence of gastrointestinal tumors, early diagnosis and treatment of these tumors is limited by the lack of effective and specific biomarkers and therapeutic targets. Exosomes carry active molecules to mediate cell-to-cell communication, especially in the tumor microenvironment, and are promising biomarkers and therapeutic targets for cancer. Circular RNAs (circRNAs) are stably enriched in exosomes and show a unique circular structure, high stability, conservation, and tissue specificity. Exosomal circRNAs play important roles in regulating cell proliferation, metastasis, angiogenesis, metabolism, and the immune microenvironment of gastrointestinal tumors and exhibit great potential as tumor biomarkers and anti-tumor targets or tools. This review briefly introduces the characteristics and functions of circRNAs and exosomes, and systematically describes the biological roles and mechanisms of exosomal circRNAs in gastrointestinal tumors. This article also summarizes the detection methodology of exosomal circRNAs and discusses their clinical significance as biomarkers and targets for gastrointestinal tumors.
Collapse
Affiliation(s)
- Dongli Wang
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rong Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu 215600, China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenrong Xu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
10
|
Gutierrez AD, Gao Z, Hamidi V, Zhu L, Saint Andre KB, Riggs K, Ruscheinsky M, Wang H, Yu Y, Miller C, Vasquez H, Taegtmeyer H, Kolonin MG. Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes. Cell Rep Med 2022; 3:100813. [PMID: 36384099 PMCID: PMC9729831 DOI: 10.1016/j.xcrm.2022.100813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Mechanisms underlying anti-diabetic effects of GLP1 analogs remain incompletely understood. We observed that in prediabetic humans exenatide treatment acutely induces interleukin-6 (IL-6) secretion by monocytes and IL-6 in systemic circulation. We hypothesized that GLP1 analogs signal through IL-6 in adipose tissue (AT) and used the mouse model to test if IL-6 receptor (IL-6R) signaling underlies the effects of the GLP1-IL-6 axis. We show that liraglutide transiently increases IL-6 in mouse circulation and IL-6R signaling in AT. Metronomic liraglutide treatment resulted in AT browning and thermogenesis linked with STAT3 activation. IL-6-blocking antibody treatment inhibited STAT3 activation in AT and suppressed liraglutide-induced increase in thermogenesis and glucose utilization. We show that adipose IL-6R knockout mice still display liraglutide-induced weight loss but lack thermogenic adipocyte browning and metabolism activation. We conclude that the anti-diabetic effects of GLP1 analogs are mediated by transient upregulation of IL-6, which activates canonical IL-6R signaling and thermogenesis.
Collapse
Affiliation(s)
- Absalon D Gutierrez
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Vala Hamidi
- Department of Medicine, Division of Endocrinology, University of California San Diego, La Jolla, CA 92093, USA
| | - Liang Zhu
- Department of Internal Medicine, Division of Clinical and Translational Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | - Kayla Riggs
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern, Dallas, TX 75225, USA
| | - Monika Ruscheinsky
- Department of Pathology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Hongyu Wang
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Charles Miller
- Department of Cardiothoracic and Vascular Surgery, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Hernan Vasquez
- Department of Internal Medicine, Division of Cardiovascular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiovascular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Martinez-Sanchez N, Sweeney O, Sidarta-Oliveira D, Caron A, Stanley SA, Domingos AI. The sympathetic nervous system in the 21st century: Neuroimmune interactions in metabolic homeostasis and obesity. Neuron 2022; 110:3597-3626. [PMID: 36327900 PMCID: PMC9986959 DOI: 10.1016/j.neuron.2022.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The sympathetic nervous system maintains metabolic homeostasis by orchestrating the activity of organs such as the pancreas, liver, and white and brown adipose tissues. From the first renderings by Thomas Willis to contemporary techniques for visualization, tracing, and functional probing of axonal arborizations within organs, our understanding of the sympathetic nervous system has started to grow beyond classical models. In the present review, we outline the evolution of these findings and provide updated neuroanatomical maps of sympathetic innervation. We offer an autonomic framework for the neuroendocrine loop of leptin action, and we discuss the role of immune cells in regulating sympathetic terminals and metabolism. We highlight potential anti-obesity therapeutic approaches that emerge from the modern appreciation of SNS as a neural network vis a vis the historical fear of sympathomimetic pharmacology, while shifting focus from post- to pre-synaptic targeting. Finally, we critically appraise the field and where it needs to go.
Collapse
Affiliation(s)
| | - Owen Sweeney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Davi Sidarta-Oliveira
- Physician-Scientist Graduate Program, Obesity and Comorbidities Research Center, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
12
|
Lu Y, Zhao M, Peng Y, He S, Zhu X, Hu C, Xia G, Zuo T, Zhang X, Yun Y, Zhang W, Shen X. A physicochemical double-cross-linked gelatin hydrogel with enhanced antibacterial and anti-inflammatory capabilities for improving wound healing. J Nanobiotechnology 2022; 20:426. [PMID: 36153602 PMCID: PMC9509571 DOI: 10.1186/s12951-022-01634-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Skin tissue is vital in protecting the body from injuries and bacterial infections. Wound infection caused by bacterial colonization is one of the main factors hindering wound healing. Wound infection caused by colonization of a large number of bacteria can cause the wound to enter a continuous stage of inflammation, which delays wound healing. Hydrogel wound dressing is composed of natural and synthetic polymers, which can absorb tissue fluid, improve the local microenvironment of wound, and promote wound healing. However, in the preparation process of hydrogel, the complex preparation process and poor biological efficacy limit the application of hydrogel wound dressing in complex wound environment. Therefore, it is particularly important to develop and prepare hydrogel dressings with simple technology, good physical properties and biological effects by using natural polymers. RESULTS In this study, a gelatin-based (Tsg-THA&Fe) hydrogel was created by mixing trivalent iron (Fe3+) and 2,3,4-trihydroxybenzaldehyde (THA) to form a complex (THA&Fe), followed by a simple Schiff base reaction with tilapia skin gelatin (Tsg). The gel time and rheological properties of the hydrogels were adjusted by controlling the number of complexes. The dynamic cross-linking of the coordination bonds (o-phthalmictriol-Fe3+) and Schiff base bonds allows hydrogels to have good self-healing and injectable properties. In vitro experiments confirmed that the hydrogel had good biocompatibility and biodegradability as well as adhesion, hemostasis, and antibacterial properties. The feasibility of Tsg-THA&Fe hydrogel was studied by treating rat skin trauma model. The results showed that compared with Comfeel® Plus Transparent dressing, the Tsg-THA&Fe hydrogel could obvious reduce the number of microorganisms, prevent bacterial colonization, reduce inflammation and accelerate wound healing. Local distribution of the Tsg-THA&Fe hydrogel in the skin tissue did not cause organ toxicity. CONCLUSIONS In summary, the preparation process of Tsg-THA&Fe hydrogel is simple, with excellent performance in physical properties and biological efficacy. It can effectively relieve inflammation and control the colonization of wound microbes, and can be used as a multi-functional dressing to improve wound healing.
Collapse
Affiliation(s)
- Yapeng Lu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Sizhe He
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Xiaopeng Zhu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Chao Hu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China.
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Yonghuan Yun
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Weimin Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
13
|
Burl RB, Rondini EA, Wei H, Pique-Regi R, Granneman JG. Deconstructing cold-induced brown adipocyte neogenesis in mice. eLife 2022; 11:e80167. [PMID: 35848799 PMCID: PMC9348851 DOI: 10.7554/elife.80167] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Cold exposure triggers neogenesis in classic interscapular brown adipose tissue (iBAT) that involves activation of β1-adrenergic receptors, proliferation of PDGFRA+ adipose tissue stromal cells (ASCs), and recruitment of immune cells whose phenotypes are presently unknown. Single-cell RNA-sequencing (scRNA-seq) in mice identified three ASC subpopulations that occupied distinct tissue locations. Of these, interstitial ASC1 were found to be direct precursors of new brown adipocytes (BAs). Surprisingly, knockout of β1-adrenergic receptors in ASCs did not prevent cold-induced neogenesis, whereas pharmacological activation of the β3-adrenergic receptor on BAs was sufficient, suggesting that signals derived from mature BAs indirectly trigger ASC proliferation and differentiation. In this regard, cold exposure induced the delayed appearance of multiple macrophage and dendritic cell populations whose recruitment strongly correlated with the onset and magnitude of neogenesis across diverse experimental conditions. High-resolution immunofluorescence and single-molecule fluorescence in situ hybridization demonstrated that cold-induced neogenesis involves dynamic interactions between ASC1 and recruited immune cells that occur on the micrometer scale in distinct tissue regions. Our results indicate that neogenesis is not a reflexive response of progenitors to β-adrenergic signaling, but rather is a complex adaptive response to elevated metabolic demand within brown adipocytes.
Collapse
Affiliation(s)
- Rayanne B Burl
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Elizabeth Ann Rondini
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Center for Integrative Metabolic and Endocrine Research, Wayne State UniversityDetroitUnited States
| | - Hongguang Wei
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Center for Integrative Metabolic and Endocrine Research, Wayne State UniversityDetroitUnited States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Center for Integrative Metabolic and Endocrine Research, Wayne State UniversityDetroitUnited States
| |
Collapse
|
14
|
Daquinag AC, Gao Z, Yu Y, Kolonin MG. Endothelial TrkA coordinates vascularization and innervation in thermogenic adipose tissue and can be targeted to control metabolism. Mol Metab 2022; 63:101544. [PMID: 35835372 PMCID: PMC9310128 DOI: 10.1016/j.molmet.2022.101544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE Brown adipogenesis and thermogenesis in brown and beige adipose tissue (AT) involve vascular remodeling and sympathetic neuronal guidance. Here, we investigated the molecular mechanism coordinating these processes. METHODS We used mouse models to identify the molecular target of a peptide CPATAERPC homing to the endothelium of brown and beige AT. RESULTS We demonstrate that CPATAERPC mimics nerve growth factor (NGF) and identify a low molecular weight isoform of NGF receptor, TrkA, as the CPATAERPC cell surface target. We show that the expression of truncated endothelial TrkA is selective for brown and subcutaneous AT. Analysis of mice with endothelium-specific TrkA knockout revealed the role of TrkA in neuro-vascular coordination supporting the thermogenic function of brown adipocytes. A hunter-killer peptide D-BAT, composed of CPATAERPC and a pro-apoptotic domain, induced cell death in the endothelium and adipocytes. This resulted in thermogenesis impairment, and predisposed mice to obesity and glucose intolerance. We also tested if this treatment can inhibit the tumor recruitment of lipids mobilized from adipocytes from adjacent AT. Indeed, in a mouse model of breast cancer D-BAT suppressed tumor-associated AT lipolysis, which resulted in reduced fatty acid utilization by cancer cells. CONCLUSION Our study demonstrates that TrkA signaling in the endothelium supports neuro-vascular coordination enabling beige adipogenesis.
Collapse
Affiliation(s)
- Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Ku HC, Cheng CF. Role of adipocyte browning in prostate and breast tumor microenvironment. Tzu Chi Med J 2022; 34:359-366. [PMID: 36578640 PMCID: PMC9791856 DOI: 10.4103/tcmj.tcmj_62_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PC) and breast cancer (BC) are the most common cancers in men and women, respectively, in developed countries. The increased incidence of PC and BC largely reflects an increase in the prevalence of obesity and metabolic syndrome. In pathological conditions involving the development and progression of PC and BC, adipose tissue plays an important role via paracrine and endocrine signaling. The increase in the amount of local adipose tissue, specifically periprostatic adipose tissue, may be a key contributor to the PC pathobiology. Similarly, breast adipose tissue secretion affects various aspects of BC by influencing tumor progression, angiogenesis, metastasis, and microenvironment. In this context, the role of white adipose tissue (WAT) has been extensively studied. However, the influence of browning of the WAT on the development and progression of PC and BC is unclear and has received less attention. In this review, we highlight that adipose tissue plays a vital role in the regulation of the tumor microenvironment in PC or BC and highlight the probable underlying mechanisms linking adipose tissue with PC or BC. We further discuss whether the browning of WAT could be a therapeutic strategy for the treatment of PC and BC.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan,Department of Pediatrics, School of Medicine, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Ching-Feng Cheng, Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Road, Xindian District, New Taipei, Taiwan. E-mail:
| |
Collapse
|
16
|
Fink BD, Rauckhorst AJ, Taylor EB, Yu L, Sivitz WI. Membrane potential-dependent regulation of mitochondrial complex II by oxaloacetate in interscapular brown adipose tissue. FASEB Bioadv 2022; 4:197-210. [PMID: 35392250 PMCID: PMC8973305 DOI: 10.1096/fba.2021-00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/11/2022] Open
Abstract
Classically, mitochondrial respiration responds to decreased membrane potential (ΔΨ) by increasing respiration. However, we found that for succinate-energized complex II respiration in skeletal muscle mitochondria (unencumbered by rotenone), low ΔΨ impairs respiration by a mechanism culminating in oxaloacetate (OAA) inhibition of succinate dehydrogenase (SDH). Here, we investigated whether this phenomenon extends to far different mitochondria of a tissue wherein ΔΨ is intrinsically low, i.e., interscapular brown adipose tissue (IBAT). Also, to advance our knowledge of the mechanism, we performed isotopomer studies of metabolite flux not done in our previous muscle studies. In additional novel work, we addressed possible ways ADP might affect the mechanism in IBAT mitochondria. UCP1 activity, and consequently ΔΨ, were perturbed both by GDP, a well-recognized potent inhibitor of UCP1 and by the chemical uncoupler carbonyl cyanide m-chlorophenyl hydrazone (FCCP). In succinate-energized mitochondria, GDP increased ΔΨ but also increased rather than decreased (as classically predicted under low ΔΨ) O2 flux. In GDP-treated mitochondria, FCCP reduced potential but also decreased respiration. Metabolite studies by NMR and flux analyses by LC-MS support a mechanism, wherein ΔΨ effects on the production of reactive oxygen alters the NADH/NAD+ ratio affecting OAA accumulation and, hence, OAA inhibition of SDH. We also found that ADP-altered complex II respiration in complex fashion probably involving decreased ΔΨ due to ATP synthesis, a GDP-like nucleotide inhibition of UCP1, and allosteric enzyme action. In summary, complex II respiration in IBAT mitochondria is regulated by UCP1-dependent ΔΨ altering substrate flow through OAA and OAA inhibition of SDH.
Collapse
Affiliation(s)
- Brian D. Fink
- Department of Internal Medicine/Endocrinology and MetabolismUniversity of Iowa and the Iowa City Veterans Affairs Medical CenterIowa CityIowaUSA
| | - Adam J. Rauckhorst
- Department of Molecular Physiology and BiophysicsUniversity of IowaIowa CityIowaUSA
| | - Eric B. Taylor
- Department of Molecular Physiology and BiophysicsUniversity of IowaIowa CityIowaUSA
| | - Liping Yu
- Department of Biochemistry and Molecular BiologyUniversity of IowaIowa CityIowaUSA
- NMR Core FacilityUniversity of IowaIowa CityIowaUSA
| | - William I. Sivitz
- Department of Internal Medicine/Endocrinology and MetabolismUniversity of Iowa and the Iowa City Veterans Affairs Medical CenterIowa CityIowaUSA
| |
Collapse
|
17
|
Parra-Peralbo E, Talamillo A, Barrio R. Origin and Development of the Adipose Tissue, a Key Organ in Physiology and Disease. Front Cell Dev Biol 2022; 9:786129. [PMID: 34993199 PMCID: PMC8724577 DOI: 10.3389/fcell.2021.786129] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a dynamic organ, well known for its function in energy storage and mobilization according to nutrient availability and body needs, in charge of keeping the energetic balance of the organism. During the last decades, adipose tissue has emerged as the largest endocrine organ in the human body, being able to secrete hormones as well as inflammatory molecules and having an important impact in multiple processes such as adipogenesis, metabolism and chronic inflammation. However, the cellular progenitors, development, homeostasis and metabolism of the different types of adipose tissue are not fully known. During the last decade, Drosophila melanogaster has demonstrated to be an excellent model to tackle some of the open questions in the field of metabolism and development of endocrine/metabolic organs. Discoveries ranged from new hormones regulating obesity to subcellular mechanisms that regulate lipogenesis and lipolysis. Here, we review the available evidences on the development, types and functions of adipose tissue in Drosophila and identify some gaps for future research. This may help to understand the cellular and molecular mechanism underlying the pathophysiology of this fascinating key tissue, contributing to establish this organ as a therapeutic target.
Collapse
Affiliation(s)
| | - Ana Talamillo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
18
|
Adipogenesis of ear mesenchymal stem cells (EMSCs): adipose biomarker-based assessment of genetic variation, adipocyte function, and brown/brite differentiation. Mol Cell Biochem 2022; 477:1053-1063. [PMID: 34997885 DOI: 10.1007/s11010-021-04350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Ear mesenchymal stem cells (EMSCs) have been investigated to differentiate into adipocytes, chondrocytes, and muscle cells in vitro. However, the factors controlling adipogenesis of this stem cell population in vitro, function, and type of adipocytes raised from them are still unclear. Here we found that genetics have a modest effect on adipogenic capacity of EMSCs. Adipocytes differentiated from EMSCs have a potential function in lipid metabolism as indicated by expression of lipogenic genes and this function of EMSC adipocytes is regulated by genetics. EMSCs failed to be differentiated into brite/brown adipocytes due to their lack of a thermogenic program, but adipocytes raised from EMSCs showed a fate of white adipocytes. Overall, our data suggest that EMSCs differentiate into functional white adipocytes in vitro and this is genetic-dependent.
Collapse
|
19
|
Bruder J, Fromme T. Global Adipose Tissue Remodeling During the First Month of Postnatal Life in Mice. Front Endocrinol (Lausanne) 2022; 13:849877. [PMID: 35250892 PMCID: PMC8892685 DOI: 10.3389/fendo.2022.849877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
During the first month of postnatal life, adipose tissue depots of mice go through a drastic, but transient, remodeling process. Between postnatal days 10 and 20, several white fat depots display a strong and sudden surge in beige adipocyte emergence that reverts until day 30. At the same time, brown fat depots appear to undergo an opposite phenomenon. We comprehensively describe these events, their depot specificity and known environmental and genetic interactions, such as maternal diet, housing temperature and mouse strain. We further discuss potential mechanisms and plausible purposes, including the tempting hypothesis that postnatal transient remodeling creates a lasting adaptive capacity still detectable in adult animals. Finally, we propose postnatal adipose tissue remodeling as a model process to investigate mechanisms of beige adipocyte recruitment advantageous to cold exposure or adrenergic stimulation in its entirely endogenous sequence of events without external manipulation.
Collapse
Affiliation(s)
- Johanna Bruder
- Else Kröner-Fresenius Center for Nutritional Medicine (EKFZ), Technical University of Munich, Freising, Germany
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- *Correspondence: Tobias Fromme,
| |
Collapse
|
20
|
Dietary conjugated linoleic acid and medium-chain triglycerides for obesity management. J Biosci 2021. [DOI: 10.1007/s12038-020-00133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Mitochondrial Uncoupling Proteins (UCPs) as Key Modulators of ROS Homeostasis: A Crosstalk between Diabesity and Male Infertility? Antioxidants (Basel) 2021; 10:antiox10111746. [PMID: 34829617 PMCID: PMC8614977 DOI: 10.3390/antiox10111746] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Uncoupling proteins (UCPs) are transmembrane proteins members of the mitochondrial anion transporter family present in the mitochondrial inner membrane. Currently, six homologs have been identified (UCP1-6) in mammals, with ubiquitous tissue distribution and multiple physiological functions. UCPs are regulators of key events for cellular bioenergetic metabolism, such as membrane potential, metabolic efficiency, and energy dissipation also functioning as pivotal modulators of ROS production and general cellular redox state. UCPs can act as proton channels, leading to proton re-entry the mitochondrial matrix from the intermembrane space and thus collapsing the proton gradient and decreasing the membrane potential. Each homolog exhibits its specific functions, from thermogenesis to regulation of ROS production. The expression and function of UCPs are intimately linked to diabesity, with their dysregulation/dysfunction not only associated to diabesity onset, but also by exacerbating oxidative stress-related damage. Male infertility is one of the most overlooked diabesity-related comorbidities, where high oxidative stress takes a major role. In this review, we discuss in detail the expression and function of the different UCP homologs. In addition, the role of UCPs as key regulators of ROS production and redox homeostasis, as well as their influence on the pathophysiology of diabesity and potential role on diabesity-induced male infertility is debated.
Collapse
|
22
|
Nishikawa H, Asai A, Fukunishi S, Nishiguchi S, Higuchi K. Metabolic Syndrome and Sarcopenia. Nutrients 2021; 13:3519. [PMID: 34684520 PMCID: PMC8541622 DOI: 10.3390/nu13103519] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is a major organ of insulin-induced glucose metabolism. In addition, loss of muscle mass is closely linked to insulin resistance (IR) and metabolic syndrome (Met-S). Skeletal muscle loss and accumulation of intramuscular fat are associated with a variety of pathologies through a combination of factors, including oxidative stress, inflammatory cytokines, mitochondrial dysfunction, IR, and inactivity. Sarcopenia, defined by a loss of muscle mass and a decline in muscle quality and muscle function, is common in the elderly and is also often seen in patients with acute or chronic muscle-wasting diseases. The relationship between Met-S and sarcopenia has been attracting a great deal of attention these days. Persistent inflammation, fat deposition, and IR are thought to play a complex role in the association between Met-S and sarcopenia. Met-S and sarcopenia adversely affect QOL and contribute to increased frailty, weakness, dependence, and morbidity and mortality. Patients with Met-S and sarcopenia at the same time have a higher risk of several adverse health events than those with either Met-S or sarcopenia. Met-S can also be associated with sarcopenic obesity. In this review, the relationship between Met-S and sarcopenia will be outlined from the viewpoints of molecular mechanism and clinical impact.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (A.A.); (S.F.); (K.H.)
- Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan
| | - Akira Asai
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (A.A.); (S.F.); (K.H.)
| | - Shinya Fukunishi
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (A.A.); (S.F.); (K.H.)
- Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan
| | | | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (A.A.); (S.F.); (K.H.)
| |
Collapse
|
23
|
Wargent ET, Ahmad SJS, Lu QR, Kostenis E, Arch JRS, Stocker CJ. Leanness and Low Plasma Leptin in GPR17 Knockout Mice Are Dependent on Strain and Associated With Increased Energy Intake That Is Not Suppressed by Exogenous Leptin. Front Endocrinol (Lausanne) 2021; 12:698115. [PMID: 34646232 PMCID: PMC8503278 DOI: 10.3389/fendo.2021.698115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that agonists of GPR17 stimulate, while antagonists inhibit feeding. However, whole body knockout of GPR17 in mice of the C57Bl/6 strain did not affect energy balance, whereas selective knockout in oligodendrocytes or pro-opiomelanocortin neurons provided protection from high fat diet-induced obesity and impaired glucose homeostasis. We reasoned that whole body knockout of GPR17 in mice of the 129 strain might elicit more marked effects because the 129 strain is more susceptible than the C57Bl/6 strain to increased sympathetic activity and less susceptible to high fat diet-induced obesity. Consistent with this hypothesis, compared to wild-type mice, and when fed on either a chow or a high fat diet, GPR17 -/- mice of the 129 strain displayed increased expression of uncoupling protein-1 in white adipose tissue, lower body weight and fat content, reduced plasma leptin, non-esterified fatty acids and triglycerides, and resistance to high fat diet-induced glucose intolerance. Not only energy expenditure, but also energy intake was raised. Administration of leptin did not suppress the increased food intake in GPR17 -/- mice of the 129 strain, whereas it did suppress food intake in GPR17 +/+ mice. The only difference between GPR17 +/- and GPR17 +/+ mice of the C57Bl/6 strain was that the body weight of the GPR17 -/- mice was lower than that of the GPR17 +/+ mice when the mice were fed on a standard chow diet. We propose that the absence of GPR17 raises sympathetic activity in mice of the 129 strain in response to a low plasma fuel supply, and that the consequent loss of body fat is partly mitigated by increased energy intake.
Collapse
Affiliation(s)
- Edward T. Wargent
- Institute of Translational Medicine, University of Buckingham, Buckingham, United Kingdom
| | - Suhaib J. S. Ahmad
- Department of Surgery, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Qing Richard Lu
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | | | - Jonathan R. S. Arch
- Institute of Translational Medicine, University of Buckingham, Buckingham, United Kingdom
| | | |
Collapse
|
24
|
Zhang H, Liu M, Kim HT, Feeley BT, Liu X. Preconditioning improves muscle regeneration after ischemia-reperfusion injury. J Orthop Res 2021; 39:1889-1897. [PMID: 33232533 PMCID: PMC9257970 DOI: 10.1002/jor.24909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 02/04/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a critical condition associated with serious clinical manifestations. Extensive research has focused on the strategies increasing organ tolerance to IRI. Preconditioning (PC) has been shown to provide protection to various organs toward IRI. However, the underlying mechanisms remain unknown. This study aimed to evaluate the role of PC on muscle regeneration after IRI and the potential underlying mechanisms. Three-month-old male UCP-1 reporter mice underwent unilateral hindlimb IRI with or without PC, the tissue viability and injury index were measured at 24 h after IRI. Hindlimb gait, muscle contractility, muscle histology were analyzed at 2 weeks after IRI. In another group of animals, β3 adrenergic receptor (β3AR) agonist amibegron and β3AR antagonist SR-59230A were administrated before PC/IRI, the hindlimb function and muscle regeneration were evaluated at 2 weeks after IRI. Our results showed that PC has little effect on improving the tissue viability at the acute phase of IRI, but it showed a long-term beneficial role of improving hindlimb function and muscle regeneration as evidenced by increased central nuclei regenerating myofibers. The effects of PC are related to inducing muscle fibro-adipogenic progenitor (FAP) brown/beige-like adipocyte (BAT) differentiation. Amibegron treatment displayed a similar role of PC while SR-59230A abolished the effect of PC. This study suggests PC has a beneficial role in promoting muscle regeneration after IRI through β3AR signaling pathway-stimulated FAP-BAT differentiation.
Collapse
Affiliation(s)
- He Zhang
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA,Department of Exercise Physiology, Beijing Sports University, Beijing, China
| | - Mengyao Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Hubert T. Kim
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
25
|
Abstract
Deiodinases modify the biological activity of thyroid hormone (TH) molecules, ie, they may activate thyroxine (T4) to 3,5,3'-triiodothyronine (T3), or they may inactivate T3 to 3,3'-diiodo-L-thyronine (T2) or T4 to reverse triiodothyronine (rT3). Although evidence of deiodination of T4 to T3 has been available since the 1950s, objective evidence of TH metabolism was not established until the 1970s. The modern paradigm considers that the deiodinases not only play a role in the homeostasis of circulating T3, but they also provide dynamic control of TH signaling: cells that express the activating type 2 deiodinase (D2) have enhanced TH signaling due to intracellular build-up of T3; the opposite is seen in cells that express type 3 deiodinase (D3), the inactivating deiodinase. D2 and D3 are expressed in metabolically relevant tissues such as brown adipose tissue, skeletal muscle and liver, and their roles have been investigated using cell, animal, and human models. During development, D2 and D3 expression customize for each tissue/organ the timing and intensity of TH signaling. In adult cells, D2 is induced by cyclic adenosine monophosphate (cAMP), and its expression is invariably associated with enhanced T3 signaling, expression of PGC1 and accelerated energy expenditure. In contrast, D3 expression is induced by hypoxia-inducible factor 1α (HIF-1a), dampening T3 signaling and the metabolic rate. The coordinated expression of these enzymes adjusts TH signaling in a time- and tissue-specific fashion, affecting metabolic pathways in health and disease states.
Collapse
Affiliation(s)
- Samuel C Russo
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Federico Salas-Lucia
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Antonio C Bianco
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
26
|
Onufer EJ, Han YH, Courtney C, Steinberger A, Tecos M, Sutton S, Sescleifer A, Ou J, Sanguinetti Czepielewski R, Randolph GJ, Warner BW. Liver injury after small bowel resection is prevented in obesity-resistant 129S1/SvImJ mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G907-G918. [PMID: 33729834 PMCID: PMC8202193 DOI: 10.1152/ajpgi.00284.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal failure-associated liver disease is a major morbidity associated with short bowel syndrome. We sought to determine if the obesity-resistant mouse strain (129S1/SvImJ) conferred protection from liver injury after small bowel resection (SBR). Using a parenteral nutrition-independent model of resection-associated liver injury, C57BL/6J and 129S1/SvImJ mice underwent a 50% proximal SBR or sham operation. At postoperative week 10, hepatic steatosis, fibrosis, and cholestasis were assessed. Hepatic and systemic inflammatory pathways were evaluated using oxidative markers and abundance of tissue macrophages. Potential mechanisms of endotoxin resistance were also explored. Serum lipid levels were elevated in all mouse lines. Hepatic triglyceride levels were no different between mouse strains, but there was an increased accumulation of free fatty acids in the C57BL/6J mice. Histological and serum markers of hepatic fibrosis, steatosis, and cholestasis were significantly elevated in resected C57BL/6J SBR mice as well as oxidative stress markers and macrophage recruitment in both the liver and visceral white fat in C57BL/6J mice compared with sham controls and the 129S1/SvImJ mouse line. Serum endotoxin levels were significantly elevated in C57BL/6J mice with significant elevation of hepatic TLR4 and reduction in PPARα expression levels. Despite high levels of serum lipids, 129S1/SvImJ mice did not develop liver inflammation, fibrosis, or cholestasis after SBR, unlike C57BL/6J mice. These data suggest that the accumulation of hepatic free fatty acids as well as increased endotoxin-driven inflammatory pathways through PPARα and TLR4 contribute to the liver injury seen in C57BL/6J mice with short bowel syndrome.NEW & NOTEWORTHY Unlike C57BL/6 mice, the 129S1/SvImJ strain is resistant to liver inflammation and injury after small bowel resection. These disparate outcomes are likely due to the accumulation of hepatic free fatty acids as well as increased endotoxin-driven inflammatory pathways through PPARα and TLR4 in C57BL/6 mice with short bowel syndrome.
Collapse
Affiliation(s)
- Emily J. Onufer
- 1Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Yong-Hyun Han
- 2Laboratory of Pathology and Physiology, College of Pharmacy,
Kangwon National University, Chuncheon, South Korea,3Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Cathleen Courtney
- 1Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Allie Steinberger
- 1Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Maria Tecos
- 1Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Stephanie Sutton
- 1Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Anne Sescleifer
- 1Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Jocelyn Ou
- 1Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | | - Gwendalyn J. Randolph
- 3Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Brad W. Warner
- 1Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
27
|
Hollstein T, Vinales K, Chen KY, Cypess AM, Basolo A, Schlögl M, Krakoff J, Piaggi P. Reduced brown adipose tissue activity during cold exposure is a metabolic feature of the human thrifty phenotype. Metabolism 2021; 117:154709. [PMID: 33476636 PMCID: PMC7956243 DOI: 10.1016/j.metabol.2021.154709] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND We recently demonstrated that thrifty subjects, characterized by a greater decrease in 24 h energy expenditure (24hEE) during short-term fasting, have less capacity for cold-induced thermogenesis (CIT) during 24 h of mild cold exposure. OBJECTIVE As cold-induced brown adipose tissue activation (CIBA) is a determinant of CIT, we sought to investigate whether thrifty individuals also have reduced CIBA. METHODS Twenty-four healthy subjects (age: 29.8 ± 9.5y, body fat: 27.3 ± 12.4%, 63% male) were admitted to our clinical research unit and underwent two 24hEE assessments in a whole-room indirect calorimeter during energy balance and fasting conditions at thermoneutrality to quantify their degree of thriftiness. Positron emission tomography/computed tomography scans were performed after exposure to 16 °C for 2 h to quantify peak CIBA. RESULTS A greater decrease in 24hEE during fasting was associated with lower peak CIBA (r = 0.50, p = 0.01), such that a 100 kcal/day greater reduction in 24hEE related to an average 3.2 g/mL lower peak CIBA. CONCLUSION Our results indicate that reduced CIBA is a metabolic trait of the thrifty phenotype which might explain reduced CIT capacity and greater predisposition towards weight gain in individuals with a thrifty metabolism.
Collapse
Affiliation(s)
- Tim Hollstein
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Division of Endocrinology, Diabetology and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, Arnold Heller Straße 3, Kiel 24105, Germany
| | - Karyne Vinales
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Endocrinology Division, Medicine Department, Phoenix VA Health Care System, Phoenix, AZ 85012, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA
| | - Mathias Schlögl
- Department of Geriatrics and Aging Research, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy.
| |
Collapse
|
28
|
Xu Z, You W, Chen W, Zhou Y, Nong Q, Valencak TG, Wang Y, Shan T. Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle. J Cachexia Sarcopenia Muscle 2021; 12:109-129. [PMID: 33244879 PMCID: PMC7890272 DOI: 10.1002/jcsm.12643] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ageing is accompanied by sarcopenia and intramuscular fat (IMAT) infiltration. In skeletal muscle, fat infiltration is a common feature in several myopathies and is associated with muscular dysfunction and insulin resistance. However, the cellular origin and lipidomic and transcriptomic changes during fat infiltration in skeletal muscle remain unclear. METHODS In the current study, we generated a high IMAT-infiltrated skeletal muscle model by glycerol (GLY) injection. Single-cell RNA sequencing and lineage tracing were performed on GLY-injured skeletal muscle at 5 days post-injection (DPI) to identify the cell origins and dynamics. Lipidomics and RNA sequencing were performed on IMAT-infiltrated skeletal muscle at 14 DPI (or 17 DPI for the cold treatment) to analyse alterations of lipid compositions and gene expression levels. RESULTS We identified nine distinct major clusters including myeloid-derived cells (52.13%), fibroblast/fibro/adipogenic progenitors (FAPs) (23.24%), and skeletal muscle stem cells (2.02%) in GLY-injured skeletal muscle. Clustering and pseudotemporal trajectories revealed six subpopulations in fibroblast/FAPs and 10 subclusters in myeloid-derived cells. A subpopulation of myeloid-derived cells expressing adipocyte-enriched genes and Pdgfra- /Cd68+ cells displayed lipid droplets upon adipogenic induction, indicating their adipogenic potential. Lipidomic analysis revealed the changes of overall lipid classes composition (e.g. triglycerides (TAGs) increased by 19.3 times, P = 0.0098; sulfoquinovosyl diacylglycerol decreased by 83%, P = 0.0056) and in the distribution of lipids [e.g. TAGs (18:2/18:2/22:6) increased by 181.6 times, P = 0.021] between GLY-group and saline control. RNA-seq revealed 1847 up-regulated genes and 321 down-regulated genes and significant changes in lipid metabolism-related pathways (e.g. glycerolipid pathway and glycerophospholipid pathway) in our model of GLY-injured skeletal muscle. Notably, short-term cold exposure altered fatty acid composition (e.g. saturated fatty acid decreased by 6.4%, P = 0.058) in fat-infiltrated muscles through directly affecting lipid metabolism pathways including PI3K-AKT and MAPK signalling pathway. CONCLUSIONS Our results showed that a subpopulation of myeloid-derived cells may contribute to IMAT infiltration. GLY-induced IMAT infiltration changed the lipid composition and gene expression profiles. Short-term cold exposure might regulate lipid metabolism and its related signalling pathways in fat-infiltrated muscle. Our study provides a comprehensive resource describing the molecular signature of fat infiltration in skeletal muscle.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Wenjing You
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Wentao Chen
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Yanbing Zhou
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Qiuyun Nong
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | | | - Yizhen Wang
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Tizhong Shan
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
29
|
Sudeep HV, Gouthamchandra K, Ramanaiah I, Raj A, Shyamprasad K. An edible bioactive fraction from Rosa multiflora regulates adipogenesis in 3T3-L1 adipocytes and high-fat diet-induced C57Bl/6 mice models of obesity. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_175_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Catestatin peptide of chromogranin A as a potential new target for several risk factors management in the course of metabolic syndrome. Biomed Pharmacother 2020; 134:111113. [PMID: 33341043 DOI: 10.1016/j.biopha.2020.111113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity, lipodystrophy, diabetes, and hypertension collectively constitute the main features of Metabolic Syndrome (MetS), together with insulin resistance (IR), which is considered as a defining element. MetS generally leads to the development of cardiovascular disease (CVD), which is a determinant cause of mortality and morbidity in humans and animals. Therefore, it is essential to implement and put in place adequate management strategies for the treatment of this disease. Catestatin is a bioactive peptide with 21 amino acids, which is derived through cleaving of the prohormone chromogranin A (CHGA/CgA) that is co-released with catecholamines from secretory vesicles and, which is responsible for hepatic/plasma lipids and insulin levels regulation, improves insulin sensitivity, reduces hypertension and attenuates obesity in murine models. In humans, there were few published studies, which showed that low levels of catestatin are significant risk factors for hypertension in adult patients. These accumulating evidence documents clearly that catestatin peptide (CST) is linked to inflammatory and metabolic syndrome diseases and can be a novel regulator of insulin and lipid levels, blood pressure, and cardiac function. The goal of this review is to provide an overview of the CST effects in metabolic syndrome given its role in metabolic regulation and thus, provide new insights into the use of CST as a diagnostic marker and therapeutic target.
Collapse
|
31
|
Abstract
Adiposity is caused by an imbalance between energy intake and consumption. Promotion of the browning of white fat increases energy expenditure and could combat adiposity. Thyroid-stimulating hormone (TSH) has been confirmed to positively correlate with adiposity. However, the putative connection between TSH and white adipose browning has never been explored. In this study, we sought to assess the effect of TSH on white adipose tissue browning and energy metabolism. Subclinical hypothyroidism mice, thyroid-specific Tshr-knockout mice injected with TSH, adipocyte-specific and global Tshr-knockout micewere subjected to morphological, physiological, genetic or protein expression analyses and metabolic cages to determine the role of TSH on the browning of white adipose tissue and metabolism. 3T3-L1 and primary SVF cells were used to verify the effects and mechanism of TSH on the browning of white adipocytes. We show that increased circulation TSH level decreases energy expenditure, promotes adiposity, impairs glucose and lipid metabolism. Knockout of Tshr decreases adiposity, increases energy expenditureand markedly promotes the development of beige adipocytesin both epididymal and inguinal subcutaneous white fat via a mechanism that likely involves AMPK/PRDM16/PGC1α. Our results reveal an important role of TSH in regulating energy balance and adiposity by inhibiting the browning of white fat.
Collapse
Affiliation(s)
- Jianmei Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
- Department of Geriatrics, Weihai Municipal Hospital Affiliated to Shandong University
| | - Huixiao Wu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
| | - Fei Jing
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong, P.R. China
| |
Collapse
|
32
|
Li Y, Schwalie PC, Bast-Habersbrunner A, Mocek S, Russeil J, Fromme T, Deplancke B, Klingenspor M. Systems-Genetics-Based Inference of a Core Regulatory Network Underlying White Fat Browning. Cell Rep 2020; 29:4099-4113.e5. [PMID: 31851936 DOI: 10.1016/j.celrep.2019.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/02/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Recruitment of brite/beige cells, known as browning of white adipose tissue (WAT), is an efficient way to turn an energy-storing organ into an energy-dissipating one and may therefore be of therapeutic value in combating obesity. However, a comprehensive understanding of the regulatory mechanisms mediating WAT browning is still lacking. Here, we exploit the large natural variation in WAT browning propensity between inbred mouse strains to gain an inclusive view of the core regulatory network coordinating this cellular process. Combining comparative transcriptomics, perturbation-based validations, and gene network analyses, we present a comprehensive gene regulatory network of inguinal WAT browning, revealing up to four distinct regulatory modules with key roles for uncovered transcriptional factors, while also providing deep insights into the genetic architecture of brite adipogenesis. The presented findings therefore greatly increase our understanding of the molecular drivers mediating the intriguing cellular heterogeneity and plasticity of adipose tissue.
Collapse
Affiliation(s)
- Yongguo Li
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Petra C Schwalie
- Institute of Bio-engineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Andrea Bast-Habersbrunner
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Sabine Mocek
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Julie Russeil
- Institute of Bio-engineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Bart Deplancke
- Institute of Bio-engineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
33
|
Kuryłowicz A, Puzianowska-Kuźnicka M. Induction of Adipose Tissue Browning as a Strategy to Combat Obesity. Int J Mol Sci 2020; 21:ijms21176241. [PMID: 32872317 PMCID: PMC7504355 DOI: 10.3390/ijms21176241] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
The ongoing obesity pandemic generates a constant need to develop new therapeutic strategies to restore the energy balance. Therefore, the concept of activating brown adipose tissue (BAT) in order to increase energy expenditure has been revived. In mammals, two developmentally distinct types of brown adipocytes exist; the classical or constitutive BAT that arises during embryogenesis, and the beige adipose tissue that is recruited postnatally within white adipose tissue (WAT) in the process called browning. Research of recent years has significantly increased our understanding of the mechanisms involved in BAT activation and WAT browning. They also allowed for the identification of critical molecules and critical steps of both processes and, therefore, many new therapeutic targets. Several non-pharmacological approaches, as well as chemical compounds aiming at the induction of WAT browning and BAT activation, have been tested in vitro as well as in animal models of genetically determined and/or diet-induced obesity. The therapeutic potential of some of these strategies has also been tested in humans. In this review, we summarize present concepts regarding potential therapeutic targets in the process of BAT activation and WAT browning and available strategies aiming at them.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-226086591; Fax: +48-226086410
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-826 Warsaw, Poland
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW There is substantial inter-individual variability in body weight change, which is not fully accounted by differences in daily energy intake and physical activity levels. The metabolic responses to short-term perturbations in energy intake can explain part of this variability by quantifying the degree of metabolic "thriftiness" that confers more susceptibility to weight gain and more resistance to weight loss. It is unclear which metabolic factors and pathways determine this human "thrifty" phenotype. This review will investigate and summarize emerging research in the field of energy metabolism and highlight important metabolic mechanisms implicated in body weight regulation in humans. RECENT FINDINGS Dysfunctional adipose tissue lipolysis, reduced brown adipose tissue activity, blunted fibroblast growth factor 21 secretion in response to low-protein hypercaloric diets, and impaired sympathetic nervous system activity might constitute important metabolic factors characterizing "thriftiness" and favoring weight gain in humans. The individual propensity to weight gain in the current obesogenic environment could be ascertained by measuring specific metabolic factors which might open up new pathways to prevent and treat human obesity.
Collapse
Affiliation(s)
- Tim Hollstein
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA.
- Department of Information Engineering, University of Pisa, Pisa, Italy.
| |
Collapse
|
35
|
Wang Z, Liu X, Jiang K, Kim H, Kajimura S, Feeley BT. Intramuscular Brown Fat Activation Decreases Muscle Atrophy and Fatty Infiltration and Improves Gait After Delayed Rotator Cuff Repair in Mice. Am J Sports Med 2020; 48:1590-1600. [PMID: 32282238 DOI: 10.1177/0363546520910421] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Successful repair of large and massive rotator cuff (RC) tears remains a challenge at least partially because of secondary muscle atrophy and fatty infiltration. β3 Adrenergic agonists are a group of drugs that promote fat resorption through "white fat browning" of intramuscular stem cells. PURPOSE To test the role of a β3 adrenergic receptor agonist, amibegron, in improving muscle quality and forelimb function in a delayed RC repair model via promoting brown/beige adipose tissue activation. STUDY DESIGN Controlled laboratory study. METHODS Three-month-old PDGFRα-GFP reporter mice, wild type C57BL/6J mice, and uncoupling protein 1 (UCP-1) knockout mice underwent unilateral supraspinatus tendon transection with a 6-week delayed tendon repair. Animals with sham surgery served as controls. Amibegron was given either immediately after tendon transection or after repair. Gait analysis was conducted to measure forelimb function at 6 weeks after tendon repair. Animals were sacrificed at 6 weeks after repair. Supraspinatus muscles were harvested and analyzed histologically. Reverse transcription polymerase chain reaction was performed to quantify gene expression related to atrophy, fibrosis, and fatty infiltration. RESULTS Histology of PDGFRα reporter mice showed significantly increased UCP-1 expression, suggesting white fat browning in muscle after RC repair. As administered either immediately after tendon transection or after tendon repair, amibegron significantly reduced muscle atrophy and fatty infiltration and resumed normal upper extremity gait in wild type mice. However, the effect of amibegron was not present in UCP-1 knockout mice, suggesting that the effect of amibegron in treating RC muscle atrophy and fatty infiltration is through a UCP 1-dependent mechanism. CONCLUSION Amibegron reduced muscle atrophy and fatty infiltration and improved forelimb function after delayed RC repair through a UCP 1-dependent mechanism. This may be an effective clinical treatment strategy for patients to improve muscle quality after RC repair. CLINICAL RELEVANCE β3 Adrenergic agonists may serve as a new pharmacologic modality to treat RC muscle atrophy and fatty infiltration to improve clinical outcome of RC repair.
Collapse
Affiliation(s)
- Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China.,San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Xuhui Liu
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Kunqi Jiang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hubert Kim
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Shingo Kajimura
- Diabetes Center, Department of Cell and Tissue Biology, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Brian T Feeley
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
36
|
Hossin AY, Inafuku M, Oku H. Dihydropyranocoumarins Exerted Anti-Obesity Activity In Vivo and its Activity Was Enhanced by Nanoparticulation with Polylactic-Co-Glycolic Acid. Nutrients 2019; 11:nu11123053. [PMID: 31847296 PMCID: PMC6949991 DOI: 10.3390/nu11123053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/03/2023] Open
Abstract
Dihydropyranocoumarins (DPCs) were isolated from Peucedanum japonicum Thunb as anti-obesity compounds in 3T3-L1 adipocytes assay; however, it is uncertain whether DPC exerts anti-obesity activity in vivo. Therefore, this study evaluated the oral intake of pure DPCs in mice fed a high-fat diet, and also attempted to enhance its activity by nanoparticulation. Increases in body weight gain and fat accumulation in white adipose tissues were significantly suppressed by the dietary intake of DPCs (1.943 mg/mouse/day). DPCs intake also significantly decreased the mean size of adipocytes and upregulated mRNA levels of thermogenesis-related genes. Nanoparticulation of DPCs with polylactic-co-glycolic acid (PLGA) dramatically increased its activity almost 100-fold over that of a non-nanoparticulated form. Thus, our findings clearly demonstrated the anti-obesity activity of DPCs in vivo and suggested that PLGA nanoparticle encapsulation was useful to enhance the anti-obesity activity of DPCs with the aim to develop natural and safe anti-obesity agents.
Collapse
Affiliation(s)
- Abu Yousuf Hossin
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (H.O.)
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Masashi Inafuku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (H.O.)
- Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
- Correspondence: ; Tel.: +81-98-895-8978; Fax: +81-98895-8944
| | - Hirosuke Oku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (H.O.)
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
37
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
38
|
Liu Y, Fu W, Seese K, Yin A, Yin H. Ectopic brown adipose tissue formation within skeletal muscle after brown adipose progenitor cell transplant augments energy expenditure. FASEB J 2019; 33:8822-8835. [PMID: 31059287 DOI: 10.1096/fj.201802162rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brown adipose tissue (BAT) thermogenesis increases energy expenditure (EE). Expanding the volume of active BAT via transplantation holds promise as a therapeutic strategy for morbid obesity and diabetes. Brown adipose progenitor cells (BAPCs) can be isolated and expanded to generate autologous brown adipocyte implants. However, the transplantation of brown adipocytes is currently impeded by poor efficiency of BAT tissue formation in vivo and undesirably short engraftment time. In this study, we demonstrated that transplanting BAPCs into limb skeletal muscles consistently led to the ectopic formation of uncoupling protein 1 (UCP1)+pos adipose tissue with long-term engraftment (>4 mo). Combining VEGF with the BAPC transplant further improved BAT formation in muscle. Ectopic engraftment of BAPC-derived BAT in skeletal muscle augmented the EE of recipient mice. Although UCP1 expression declined in long-term BAT grafts, this deterioration can be reversed by swimming exercise because of sympathetic activation. This study suggests that intramuscular transplantation of BAPCs represents a promising approach to deriving functional BAT engraftment, which may be applied to therapeutic BAT transplantation and tissue engineering.-Liu, Y., Fu, W., Seese, K., Yin, A., Yin, H. Ectopic brown adipose tissue formation within skeletal muscle after brown adipose progenitor cell transplant augments energy expenditure.
Collapse
Affiliation(s)
- Yang Liu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Wenyan Fu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Kendall Seese
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Amelia Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Hang Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
39
|
Addison WN, Hall KC, Kokabu S, Matsubara T, Fu MM, Gori F, Baron R. Zfp423 Regulates Skeletal Muscle Regeneration and Proliferation. Mol Cell Biol 2019; 39:e00447-18. [PMID: 30692273 PMCID: PMC6447414 DOI: 10.1128/mcb.00447-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/07/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Satellite cells (SCs) are skeletal muscle stem cells that proliferate in response to injury and provide myogenic precursors for growth and repair. Zfp423 is a transcriptional cofactor expressed in multiple immature cell populations, such as neuronal precursors, mesenchymal stem cells, and preadipocytes, where it regulates lineage allocation, proliferation, and differentiation. Here, we show that Zfp423 regulates myogenic progression during muscle regeneration. Zfp423 is undetectable in quiescent SCs but becomes expressed during SC activation. After expansion, Zfp423 is gradually downregulated as committed SCs terminally differentiate. Mice with satellite-cell-specific Zfp423 deletion exhibit severely impaired muscle regeneration following injury, with aberrant SC expansion, defective cell cycle exit, and failure to transition efficiently from the proliferative stage toward commitment. Consistent with a cell-autonomous role of Zfp423, shRNA-mediated knockdown of Zfp423 in myoblasts inhibits differentiation. Surprisingly, forced expression of Zfp423 in myoblasts induces differentiation into adipocytes and arrests myogenesis. Affinity purification of Zfp423 in myoblasts identified Satb2 as a nuclear partner of Zfp423 that cooperatively enhances Zfp423 transcriptional activity, which in turn affects myoblast differentiation. In conclusion, by controlling SC expansion and proliferation, Zfp423 is essential for muscle regeneration. Tight regulation of Zfp423 expression is essential for normal progression of muscle progenitors from proliferation to differentiation.
Collapse
MESH Headings
- Adipocytes/cytology
- Animals
- Cell Differentiation/physiology
- Cell Proliferation/physiology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Mesenchymal Stem Cells/cytology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Development/physiology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/physiology
- Signal Transduction
- Stem Cells/cytology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Wound Healing
Collapse
Affiliation(s)
- William N Addison
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Katherine C Hall
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Martin M Fu
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Francesca Gori
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Chan M, Lim YC, Yang J, Namwanje M, Liu L, Qiang L. Identification of a natural beige adipose depot in mice. J Biol Chem 2019; 294:6751-6761. [PMID: 30824545 DOI: 10.1074/jbc.ra118.006838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/15/2019] [Indexed: 12/23/2022] Open
Abstract
Beige fat is a potential therapeutic target for obesity and other metabolic diseases due to its inducible brown fat-like functions. Inguinal white adipose tissue (iWAT) can undergo robust brown remodeling with appropriate stimuli and is therefore widely considered as a representative beige fat depot. However, adipose tissues residing in different anatomic depots exhibit a broad range of plasticity, raising the possibility that better beige fat depots with greater plasticity may exist. Here we identified and characterized a novel, naturally-existing beige fat depot, thigh adipose tissue (tAT). Unlike classic WATs, tAT maintains beige fat morphology at room temperature, whereas high-fat diet (HFD) feeding or aging promotes the development of typical WAT features, namely unilocular adipocytes. The brown adipocyte gene expression in tAT is consistently higher than in iWAT under cold exposure, HFD feeding, and rosiglitazone treatment conditions. Our molecular profiling by RNA-Seq revealed up-regulation of energy expenditure pathways and repressed inflammation in tAT relative to eWAT and iWAT. Furthermore, we demonstrated that the master fatty acid oxidation regulator peroxisome proliferator-activated receptor α is dispensable for maintaining and activating the beige character of tAT. Therefore, we have identified tAT as a natural beige adipose depot in mice with a unique molecular profile that does not require peroxisome proliferator-activated receptor α.
Collapse
Affiliation(s)
- Michelle Chan
- From the Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032.,the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Yen Ching Lim
- the Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore, and
| | - Jing Yang
- From the Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032.,the Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an City, Shaanxi Province, China
| | - Maria Namwanje
- From the Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Longhua Liu
- From the Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Li Qiang
- From the Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032,
| |
Collapse
|
41
|
Zhang H, Zhu L, Bai M, Liu Y, Zhan Y, Deng T, Yang H, Sun W, Wang X, Zhu K, Fan Q, Li J, Ying G, Ba Y. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int J Cancer 2019; 144:2501-2515. [PMID: 30412280 DOI: 10.1002/ijc.31977] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/18/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022]
Abstract
Cancer-related cachexia is a metabolic syndrome characterized by a wasting disorder of adipose and skeletal muscle and is accompanied by body weight loss and systemic inflammation. The treatment options for cancer cachexia are limited, and the molecular mechanism remains poorly understood. Circular RNAs (circRNAs) are a novel family of endogenous noncoding RNAs that have been proposed to regulate gene expression in mammals. Exosomes are small vesicles derived from cells, and recent studies have shown that circRNAs are stable in exosomes. However, little is known about the biological role of circRNAs in exosomes. In our study, we showed that circRNAs in plasma exosomes have specific expression features in gastric cancer (GC), and ciRS-133 is linked with the browning of white adipose tissue (WAT) in GC patients. Exosomes derived from GC cells deliver ciRS-133 into preadipocytes, promoting the differentiation of preadipocytes into brown-like cells by activating PRDM16 and suppressing miR-133. Moreover, knockdown of ciRS-133 reduced cancer cachexia in tumor-implanted mice, decreasing oxygen consumption and heat production. Thus, exosome-delivered circRNAs are involved in WAT browning and play a key role in cancer-associated cachexia.
Collapse
Affiliation(s)
- Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lei Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ying Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yang Zhan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Haiou Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xinyi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Kegan Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qian Fan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jialu Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
42
|
Buras ED, Converso-Baran K, Davis CS, Akama T, Hikage F, Michele DE, Brooks SV, Chun TH. Fibro-Adipogenic Remodeling of the Diaphragm in Obesity-Associated Respiratory Dysfunction. Diabetes 2019; 68:45-56. [PMID: 30361289 PMCID: PMC6302533 DOI: 10.2337/db18-0209] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Respiratory dysfunction is a common complication of obesity, conferring cardiovascular morbidity and increased mortality and often necessitating mechanical ventilatory support. While impaired lung expansion in the setting of increased adipose mass and reduced central response to hypercapnia have been implicated as pathophysiological drivers, the impact of obesity on respiratory muscles-in particular, the diaphragm-has not been investigated in detail. Here, we demonstrate that chronic high-fat diet (HFD) feeding impairs diaphragm muscle function, as assessed in vivo by ultrasonography and ex vivo by measurement of contractile force. During an HFD time course, progressive adipose tissue expansion and collagen deposition within the diaphragm parallel contractile deficits. Moreover, intradiaphragmatic fibro-adipogenic progenitors (FAPs) proliferate with long-term HFD feeding while giving rise to adipocytes and type I collagen-depositing fibroblasts. Thrombospondin 1 (THBS1), a circulating adipokine, increases with obesity and induces FAP proliferation. These findings suggest a novel role for FAP-mediated fibro-adipogenic diaphragm remodeling in obesity-associated respiratory dysfunction.
Collapse
Affiliation(s)
- Eric D Buras
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Kimber Converso-Baran
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Carol S Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Takeshi Akama
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Fumihito Hikage
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Tae-Hwa Chun
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
43
|
Xiang AS, Meikle PJ, Carey AL, Kingwell BA. Brown adipose tissue and lipid metabolism: New strategies for identification of activators and biomarkers with clinical potential. Pharmacol Ther 2018; 192:141-149. [DOI: 10.1016/j.pharmthera.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Marunaka Y. The Proposal of Molecular Mechanisms of Weak Organic Acids Intake-Induced Improvement of Insulin Resistance in Diabetes Mellitus via Elevation of Interstitial Fluid pH. Int J Mol Sci 2018; 19:ijms19103244. [PMID: 30347717 PMCID: PMC6214001 DOI: 10.3390/ijms19103244] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Blood contains powerful pH-buffering molecules such as hemoglobin (Hb) and albumin, while interstitial fluids have little pH-buffering molecules. Thus, even under metabolic disorder conditions except severe cases, arterial blood pH is kept constant within the normal range (7.35~7.45), but the interstitial fluid pH under metabolic disorder conditions becomes lower than the normal level. Insulin resistance is one of the most important key factors in pathogenesis of diabetes mellitus, nevertheless the molecular mechanism of insulin resistance occurrence is still unclear. Our studies indicate that lowered interstitial fluid pH occurs in diabetes mellitus, causing insulin resistance via reduction of the binding affinity of insulin to its receptor. Therefore, the key point for improvement of insulin resistance occurring in diabetes mellitus is development of methods or techniques elevating the lowered interstitial fluid pH. Intake of weak organic acids is found to improve the insulin resistance by elevating the lowered interstitial fluid pH in diabetes mellitus. One of the molecular mechanisms of the pH elevation is that: (1) the carboxyl group (R-COO−) but not H+ composing weak organic acids in foods is absorbed into the body, and (2) the absorbed the carboxyl group (R-COO−) behaves as a pH buffer material, elevating the interstitial fluid pH. On the other hand, high salt intake has been suggested to cause diabetes mellitus; however, the molecular mechanism is unclear. A possible mechanism of high salt intake-caused diabetes mellitus is proposed from a viewpoint of regulation of the interstitial fluid pH: high salt intake lowers the interstitial fluid pH via high production of H+ associated with ATP synthesis required for the Na+,K+-ATPase to extrude the high leveled intracellular Na+ caused by high salt intake. This review article introduces the molecular mechanism causing the lowered interstitial fluid pH and insulin resistance in diabetes mellitus, the improvement of insulin resistance via intake of weak organic acid-containing foods, and a proposal mechanism of high salt intake-caused diabetes mellitus.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan.
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan.
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
- Japan Institute for Food Education and Health, St. Agnes' University, Kyoto 602-8013, Japan.
| |
Collapse
|
45
|
Targeted Molecular Magnetic Resonance Imaging Detects Brown Adipose Tissue with Ultrasmall Superparamagnetic Iron Oxide. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3619548. [PMID: 30406134 PMCID: PMC6199858 DOI: 10.1155/2018/3619548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 11/18/2022]
Abstract
The peptide (CKGGRAKDC-NH2) specifically targets the brown adipose tissue (BAT). Here we applied this peptide coupled with polyethylene glycol (PEG)-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to detect BAT in vivo by magnetic resonance imaging (MRI). The peptide was conjugated with PEG-coated USPIO nanoparticles to obtain targeted USPIO nanoprobes. Then the nanoprobes for BAT were evaluated in mice. T2⁎-weighted images were performed, precontrast and postcontrast USPIO nanoparticles. Finally, histological analyses proved the specific targeting. The specificity of targeted USPIO nanoprobes was observed in mice. The T2⁎ relaxation time of BAT in the targeted group decreased obviously compared to the controls (P<0.001). Prussian blue staining and transmission electron microscope confirmed the specific presence of iron oxide. This study demonstrated that peptide (CKGGRAKDC-NH2) coupled with PEG-coated USPIO nanoparticles could identify BAT noninvasively in vivo with MRI.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Obesity is a major risk factor for the development of hypertension (HTN), a leading cause of cardiovascular morbidity and mortality. Growing body of research suggests that adipose tissue function is directly associated with the pathogenesis of obesity-related HTN. In this review, we will discuss recent research on the role of adipose tissue in blood pressure (BP) regulation and activation of brown adipose tissue (BAT) as a potentially new therapeutic means for obesity-related HTN. RECENT FINDINGS Adipose tissue provides mechanical protection of the blood vessels and plays a role in regulation of vascular tone. Exercise and fasting activate BAT and induce browning of white adipose tissue (WAT). BAT-secreted FGF21 lowers BP and protects against HTN. Browning of perivascular WAT improves HTN. New insights on WAT browning and BAT activation can open new avenues of potential therapeutic interventions to treat obesity-related HTN.
Collapse
Affiliation(s)
- Eashita Das
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Microbiology, Siliguri College, North Bengal University, Siliguri, West Bengal, 734001, India
| | - Joon Ho Moon
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Nikita Thakkar
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
| | - Zdenka Pausova
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
47
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
48
|
Canter RJ, Le CT, Beerthuijzen JM, Murphy WJ. Obesity as an immune-modifying factor in cancer immunotherapy. J Leukoc Biol 2018; 104:487-497. [PMID: 29762866 PMCID: PMC6113103 DOI: 10.1002/jlb.5ri1017-401rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has achieved breakthrough status in many advanced stage malignancies and is rapidly becoming the fourth arm of cancer treatment. Although cancer immunotherapy has generated significant excitement because of the potential for complete and sometimes durable responses, there is also the potential for severe and occasionally life-threatening toxicities, including cytokine release syndrome and severe autoimmunity. A large body of work also points to a "metainflammatory" state in obesity associated with impairment of immune responses. Because immune checkpoint blockade (and other cancer immunotherapies) have altered the landscape of immunotherapy in cancer, it is important to understand how immune responses are shaped by obesity and how obesity may modify both immunotherapy responses and potential toxicities.
Collapse
Affiliation(s)
- Robert J. Canter
- University of California, Davis, School of Medicine, Department of Surgery, Division of Surgical Oncology, Sacramento, CA 95817
| | - Catherine T Le
- University of California, Davis, School of Medicine, Departments of Dermatology and Internal Medicine, Sacramento, CA 95817
| | - Johanna M.T. Beerthuijzen
- University of California, Davis, School of Medicine, Departments of Dermatology and Internal Medicine, Sacramento, CA 95817
| | - William J. Murphy
- University of California, Davis, School of Medicine, Departments of Dermatology and Internal Medicine, Sacramento, CA 95817
| |
Collapse
|
49
|
Abstract
Adipocytes are lipid-rich parenchymal cells contained in a very plastic organ, whose composition can undergo striking physiologic changes. In standard conditions the organ contains white and brown adipocytes which play opposite roles: lipid storage to meet metabolic requirements and lipid burning for thermogenesis, respectively. During chronic cold exposure, white adipocytes transdifferentiate to brown, to increase thermogenesis, whereas in conditions of chronic positive energy balance brown adipocytes transdifferentiate to white, to increase energy stores. During pregnancy, lactation, and post-lactation, subcutaneous white adipocytes convert to milk-producing glands formed by lipid-rich elements that can be defined as pink adipocytes. Recent fate-mapping data support the conversion of pink to brown adipocytes and the reversible conversion of brown adipocytes to myoepithelial cells of alveoli.
Collapse
Affiliation(s)
- Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020 Ancona, Italy.
| |
Collapse
|
50
|
Jiang J, Li P, Ling H, Xu Z, Yi B, Zhu S. MiR-499/PRDM16 axis modulates the adipogenic differentiation of mouse skeletal muscle satellite cells. Hum Cell 2018; 31:282-291. [PMID: 30097922 DOI: 10.1007/s13577-018-0210-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/03/2018] [Indexed: 01/08/2023]
Abstract
Obesity is associated with increased risks of diverse diseases; brown adipose tissue (BAT) can increase energy expenditure and protect against obesity by increasing the decomposition of white adipose tissue (WAT) to enhance the non-coupled oxidative phosphorylation of fatty acid in adipocytes and contributes to weight loss. However, BAT is abundant in only small rodents and newborn humans, but not in adults. PRDM16 is a key factor that induces the differentiation of skeletal muscle precursors to brown adipocytes and simultaneously inhibits myogenic differentiation. In the present study, we set insulin-induced skeletal muscle satellite cells (SMSCs) adipogenic differentiation model, as confirmed by the contents of adipogenic markers PRDM16, UCP1 and PGC1α and myogenic markers MyoD1 and MyoG. We selected miR-499 as candidate miRNA, which might regulate PRDM16 to affect SMSCs adipogenic differentiation. Possibly through directly binding to PRDM16 3'-UTR, miR-499 negatively regulated PRDM16 expression and hindered SMSCs adipogenic differentiation by reducing adipogenic markers PRDM16, UCP1 and PGC1α and increasing myogenic markers MyoD1 and MyoG. PRDM16 overexpression could partially reverse the effect of miR-499 on the above markers and SMSCs adipogenic differentiation. Taken together, miR-499/PRDM16 axis can affect the balance between SMSC myogenic and adipogenic differentiation, targeting miR-499 to rescue PRDM16 expression, thus promoting SMSCs adipogenic differentiation may be a promising strategy for obesity treatment.
Collapse
Affiliation(s)
- Juan Jiang
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China
| | - PengZhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China
| | - Hao Ling
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China
| | - ZhouZhou Xu
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China
| | - Bo Yi
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China.
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|