1
|
Fischer M, Kukley M. Hidden in the white matter: Current views on interstitial white matter neurons. Neuroscientist 2024:10738584241282969. [PMID: 39365761 DOI: 10.1177/10738584241282969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The mammalian brain comprises two structurally and functionally distinct compartments: the gray matter (GM) and the white matter (WM). In humans, the WM constitutes approximately half of the brain volume, yet it remains significantly less investigated than the GM. The major cellular elements of the WM are neuronal axons and glial cells. However, the WM also contains cell bodies of the interstitial neurons, estimated to number 10 to 28 million in the adult bat brain, 67 million in Lar gibbon brain, and 450 to 670 million in the adult human brain, representing as much as 1.3%, 2.25%, and 3.5% of all neurons in the cerebral cortex, respectively. Many studies investigated the interstitial WM neurons (IWMNs) using immunohistochemistry, and some information is available regarding their electrophysiological properties. However, the functional role of IWMNs in physiologic and pathologic conditions largely remains unknown. This review aims to provide a concise update regarding the distribution and properties of interstitial WM neurons, highlight possible functions of these cells as debated in the literature, and speculate about other possible functions of the IWMNs and their interactions with glial cells. We hope that our review will inspire new research on IWMNs, which represent an intriguing cell population in the brain.
Collapse
Affiliation(s)
- Maximilian Fischer
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria Kukley
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Marshall-Phelps KLH, Almeida RG. Axonal neurotransmitter release in the regulation of myelination. Biosci Rep 2024; 44:BSR20231616. [PMID: 39230890 PMCID: PMC11427734 DOI: 10.1042/bsr20231616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024] Open
Abstract
Myelination of axons is a key determinant of fast action potential propagation, axonal health and circuit function. Previously considered a static structure, it is now clear that myelin is dynamically regulated in response to neuronal activity in the central nervous system (CNS). However, how activity-dependent signals are conveyed to oligodendrocytes remains unclear. Here, we review the potential mechanisms by which neurons could communicate changing activity levels to myelin, with a focus on the accumulating body of evidence to support activity-dependent vesicular signalling directly onto myelin sheaths. We discuss recent in vivo findings of activity-dependent fusion of neurotransmitter vesicles from non-synaptic axonal sites, and how modulation of this vesicular fusion regulates the stability and growth of myelin sheaths. We also consider the potential mechanisms by which myelin could sense and respond to axon-derived signals to initiate remodelling, and the relevance of these adaptations for circuit function. We propose that axonal vesicular signalling represents an important and underappreciated mode of communication by which neurons can transmit activity-regulated signals to myelinating oligodendrocytes and, potentially, more broadly to other cell types in the CNS.
Collapse
Affiliation(s)
- Katy L H Marshall-Phelps
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| | - Rafael G Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
3
|
Osso LA, Hughes EG. Dynamics of mature myelin. Nat Neurosci 2024; 27:1449-1461. [PMID: 38773349 PMCID: PMC11515933 DOI: 10.1038/s41593-024-01642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Myelin, which is produced by oligodendrocytes, insulates axons to facilitate rapid and efficient action potential propagation in the central nervous system. Traditionally viewed as a stable structure, myelin is now known to undergo dynamic modulation throughout life. This Review examines these dynamics, focusing on two key aspects: (1) the turnover of myelin, involving not only the renewal of constituents but the continuous wholesale replacement of myelin membranes; and (2) the structural remodeling of pre-existing, mature myelin, a newly discovered form of neural plasticity that can be stimulated by external factors, including neuronal activity, behavioral experience and injury. We explore the mechanisms regulating these dynamics and speculate that myelin remodeling could be driven by an asymmetry in myelin turnover or reactivation of pathways involved in myelin formation. Finally, we outline how myelin remodeling could have profound impacts on neural function, serving as an integral component of behavioral adaptation.
Collapse
Affiliation(s)
- Lindsay A Osso
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
4
|
Parsaei M, Sheipouri A, Partovifar P, Shahriarinamin M, Sani SM, Taebi M, Arvin A. Diffusion magnetic resonance imaging for treatment response prediction in schizophrenia spectrum disorders: A systematic review. Psychiatry Res Neuroimaging 2024; 342:111841. [PMID: 38870842 DOI: 10.1016/j.pscychresns.2024.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
A substantial portion of schizophrenia spectrum disorder (SSD) patients exhibit resistance to antipsychotic treatments, emphasizing the need for reliable treatment response biomarkers. Previous magnetic resonance imaging (MRI) studies have identified various imaging predictors in SSD. This study focuses on evaluating the effectiveness of diffusion MRI sequences, diffusion tensor imaging (DTI) and diffusion-weighted imaging (DWI), in predicting antipsychotic response in SSD patients. A systematic search for relevant articles was conducted in PubMed, Embase, Scopus, and Web of Science on February 11, 2024. Twelve studies involving a total of 742 patients were systematically reviewed. The baseline DTI/DWI biomarkers revealed significant associations with antipsychotic treatment response. Notably a consistent negative link was found between response and baseline fractional anisotropy (FA) in fronto-temporo-limbic white matter tracts, specifically the superior longitudinal fasciculus, providing moderate-level evidence. In addition, weak-level evidence was found for the negative association between the treatment response and baseline FA in the corpus callosum, internal, and external capsule tracts. Collectively, this review demonstrated that obtaining pre-treatment brain diffusion MRI scans, particularly from white matter tracts of fronto-temporo-limbic network, can assist in delineating the treatment response trajectory in patients with SSD. However, additional larger randomized controlled trials are required to further substantiate these findings.
Collapse
Affiliation(s)
- Mohammadamin Parsaei
- Breastfeeding Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Maternal, Fetal & Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirmahdi Sheipouri
- NCweb Association, Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Paniz Partovifar
- Maternal, Fetal & Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shahriarinamin
- NCweb Association, Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sheida Mobader Sani
- NCweb Association, Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Morvarid Taebi
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Arvin
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Song J, Saglam A, Zuchero JB, Buch VP. Translating Molecular Approaches to Oligodendrocyte-Mediated Neurological Circuit Modulation. Brain Sci 2024; 14:648. [PMID: 39061389 PMCID: PMC11275066 DOI: 10.3390/brainsci14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The central nervous system (CNS) exhibits remarkable adaptability throughout life, enabled by intricate interactions between neurons and glial cells, in particular, oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs). This adaptability is pivotal for learning and memory, with OLs and OPCs playing a crucial role in neural circuit development, synaptic modulation, and myelination dynamics. Myelination by OLs not only supports axonal conduction but also undergoes adaptive modifications in response to neuronal activity, which is vital for cognitive processing and memory functions. This review discusses how these cellular interactions and myelin dynamics are implicated in various neurocircuit diseases and disorders such as epilepsy, gliomas, and psychiatric conditions, focusing on how maladaptive changes contribute to disease pathology and influence clinical outcomes. It also covers the potential for new diagnostics and therapeutic approaches, including pharmacological strategies and emerging biomarkers in oligodendrocyte functions and myelination processes. The evidence supports a fundamental role for myelin plasticity and oligodendrocyte functionality in synchronizing neural activity and high-level cognitive functions, offering promising avenues for targeted interventions in CNS disorders.
Collapse
Affiliation(s)
- Jingwei Song
- Medical Scientist Training Program, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Aybike Saglam
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - Vivek P. Buch
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| |
Collapse
|
6
|
Rivera AD, Normanton JR, Butt AM, Azim K. The Genomic Intersection of Oligodendrocyte Dynamics in Schizophrenia and Aging Unravels Novel Pathological Mechanisms and Therapeutic Potentials. Int J Mol Sci 2024; 25:4452. [PMID: 38674040 PMCID: PMC11050044 DOI: 10.3390/ijms25084452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Schizophrenia is a significant worldwide health concern, affecting over 20 million individuals and contributing to a potential reduction in life expectancy by up to 14.5 years. Despite its profound impact, the precise pathological mechanisms underlying schizophrenia continue to remain enigmatic, with previous research yielding diverse and occasionally conflicting findings. Nonetheless, one consistently observed phenomenon in brain imaging studies of schizophrenia patients is the disruption of white matter, the bundles of myelinated axons that provide connectivity and rapid signalling between brain regions. Myelin is produced by specialised glial cells known as oligodendrocytes, which have been shown to be disrupted in post-mortem analyses of schizophrenia patients. Oligodendrocytes are generated throughout life by a major population of oligodendrocyte progenitor cells (OPC), which are essential for white matter health and plasticity. Notably, a decline in a specific subpopulation of OPC has been identified as a principal factor in oligodendrocyte disruption and white matter loss in the aging brain, suggesting this may also be a factor in schizophrenia. In this review, we analysed genomic databases to pinpoint intersections between aging and schizophrenia and identify shared mechanisms of white matter disruption and cognitive dysfunction.
Collapse
Affiliation(s)
- Andrea D. Rivera
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Via A. Gabelli 65, 35127 Padua, Italy;
| | - John R. Normanton
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
| | - Arthur M. Butt
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- School of Pharmacy and Biomedical Science, University of Portsmouth, Hampshire PO1 2UP, UK
| | - Kasum Azim
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- Independent Data Lab UG, Frauenmantelanger 31, 80937 Munich, Germany
| |
Collapse
|
7
|
Tabata K, Son S, Miyata J, Toriumi K, Miyashita M, Suzuki K, Itokawa M, Takahashi H, Murai T, Arai M. Association of homocysteine with white matter dysconnectivity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:39. [PMID: 38509166 PMCID: PMC10954654 DOI: 10.1038/s41537-024-00458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Several studies have shown white matter (WM) dysconnectivity in people with schizophrenia (SZ). However, the underlying mechanism remains unclear. We investigated the relationship between plasma homocysteine (Hcy) levels and WM microstructure in people with SZ using diffusion tensor imaging (DTI). Fifty-three people with SZ and 83 healthy controls (HC) were included in this retrospective observational study. Tract-Based Spatial Statistics (TBSS) were used to evaluate group differences in WM microstructure. A significant negative correlation between plasma Hcy levels and WM microstructural disruption was noted in the SZ group (Spearman's ρ = -.330, P = 0.016) but not in the HC group (Spearman's ρ = .041, P = 0.712). These results suggest that increased Hcy may be associated with WM dysconnectivity in SZ, and the interaction between Hcy and WM dysconnectivity could be a potential mechanism of the pathophysiology of SZ. Further, longitudinal studies are required to investigate whether high Hcy levels subsequently cause WM microstructural disruption in people with SZ.
Collapse
Grants
- 19K17061 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H02749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H05130 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H05064 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04979 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02849 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H05173 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H02844 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP18dm0307008 Japan Agency for Medical Research and Development (AMED)
- JP21uk1024002 Japan Agency for Medical Research and Development (AMED)
- JPMJCR22P3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- The Novartis Pharma Research Grant; SENSHIN Medical Research Foundation; SUZUKEN Memorial Foundation; the Takeda Science Foundation.
- the Brain/MINDS Beyond program (23dm0307008) from the Japan Agency for Medical Research
Collapse
Affiliation(s)
- Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
8
|
Nilsson G, Mottahedin A, Zelco A, Lauschke VM, Ek CJ, Song J, Ardalan M, Hua S, Zhang X, Mallard C, Hagberg H, Leavenworth JW, Wang X. Two different isoforms of osteopontin modulate myelination and axonal integrity. FASEB Bioadv 2023; 5:336-353. [PMID: 37554545 PMCID: PMC10405251 DOI: 10.1096/fba.2023-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 08/10/2023] Open
Abstract
Abnormal myelination underlies the pathology of white matter diseases such as preterm white matter injury and multiple sclerosis. Osteopontin (OPN) has been suggested to play a role in myelination. Murine OPN mRNA is translated into a secreted isoform (sOPN) or an intracellular isoform (iOPN). Whether there is an isoform-specific involvement of OPN in myelination is unknown. Here we generated mouse models that either lacked both OPN isoforms in all cells (OPN-KO) or lacked sOPN systemically but expressed iOPN specifically in oligodendrocytes (OLs-iOPN-KI). Transcriptome analysis of isolated oligodendrocytes from the neonatal brain showed that genes and pathways related to increase of myelination and altered cell cycle control were enriched in the absence of the two OPN isoforms in OPN-KO mice compared to control mice. Accordingly, adult OPN-KO mice showed an increased axonal myelination, as revealed by transmission electron microscopy imaging, and increased expression of myelin-related proteins. In contrast, neonatal oligodendrocytes from OLs-iOPN-KI mice compared to control mice showed differential regulation of genes and pathways related to the increase of cell adhesion, motility, and vasculature development, and the decrease of axonal/neuronal development. OLs-iOPN-KI mice showed abnormal myelin formation in the early phase of myelination in young mice and signs of axonal degeneration in adulthood. These results suggest an OPN isoform-specific involvement, and a possible interplay between the isoforms, in myelination, and axonal integrity. Thus, the two isoforms of OPN need to be separately considered in therapeutic strategies targeting OPN in white matter injury and diseases.
Collapse
Affiliation(s)
- Gisela Nilsson
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Amin Mottahedin
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Aura Zelco
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Volker M. Lauschke
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
- Dr Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - C. Joakim Ek
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Juan Song
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Maryam Ardalan
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sha Hua
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Cardiology, Ruijin Hospital/Luwan Branch, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoli Zhang
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Carina Mallard
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jianmei W. Leavenworth
- Department of NeurosurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Xiaoyang Wang
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
9
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Becker LJ, Fillinger C, Waegaert R, Journée SH, Hener P, Ayazgok B, Humo M, Karatas M, Thouaye M, Gaikwad M, Degiorgis L, Santin MDN, Mondino M, Barrot M, Ibrahim EC, Turecki G, Belzeaux R, Veinante P, Harsan LA, Hugel S, Lutz PE, Yalcin I. The basolateral amygdala-anterior cingulate pathway contributes to depression-like behaviors and comorbidity with chronic pain behaviors in male mice. Nat Commun 2023; 14:2198. [PMID: 37069164 PMCID: PMC10110607 DOI: 10.1038/s41467-023-37878-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
While depression and chronic pain are frequently comorbid, underlying neuronal circuits and their psychopathological relevance remain poorly defined. Here we show in mice that hyperactivity of the neuronal pathway linking the basolateral amygdala to the anterior cingulate cortex is essential for chronic pain-induced depression. Moreover, activation of this pathway in naive male mice, in the absence of on-going pain, is sufficient to trigger depressive-like behaviors, as well as transcriptomic alterations that recapitulate core molecular features of depression in the human brain. These alterations notably impact gene modules related to myelination and the oligodendrocyte lineage. Among these, we show that Sema4a, which was significantly upregulated in both male mice and humans in the context of altered mood, is necessary for the emergence of emotional dysfunction. Overall, these results place the amygdalo-cingulate pathway at the core of pain and depression comorbidity, and unravel the role of Sema4a and impaired myelination in mood control.
Collapse
Affiliation(s)
- Léa J Becker
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Department of Anesthesiology, Center for Clinical Pharmacology Washington University in St. Louis, St. Louis, MO, USA
| | - Clémentine Fillinger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Robin Waegaert
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Sarah H Journée
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Hener
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Beyza Ayazgok
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Department of Biochemistry, Faculty of Pharmacy, University of Hacettepe, Ankara, Turkey
| | - Muris Humo
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Meltem Karatas
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Mithil Gaikwad
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Laetitia Degiorgis
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Marie des Neiges Santin
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Mary Mondino
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Gustavo Turecki
- Department of Psychiatry, McGill University and Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Raoul Belzeaux
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
- Department of Psychiatry, CHU de Montpellier, Montpellier, France
| | - Pierre Veinante
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Laura A Harsan
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Sylvain Hugel
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
11
|
Sotoyama H, Namba H, Tohmi M, Nawa H. Schizophrenia Animal Modeling with Epidermal Growth Factor and Its Homologs: Their Connections to the Inflammatory Pathway and the Dopamine System. Biomolecules 2023; 13:biom13020372. [PMID: 36830741 PMCID: PMC9953688 DOI: 10.3390/biom13020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Epidermal growth factor (EGF) and its homologs, such as neuregulins, bind to ErbB (Her) receptor kinases and regulate glial differentiation and dopaminergic/GABAergic maturation in the brain and are therefore implicated in schizophrenia neuropathology involving these cell abnormalities. In this review, we summarize the biological activities of the EGF family and its neuropathologic association with schizophrenia, mainly overviewing our previous model studies and the related articles. Transgenic mice as well as the rat/monkey models established by perinatal challenges of EGF or its homologs consistently exhibit various behavioral endophenotypes relevant to schizophrenia. In particular, post-pubertal elevation in baseline dopaminergic activity may illustrate the abnormal behaviors relevant to positive and negative symptoms as well as to the timing of this behavioral onset. With the given molecular interaction and transactivation of ErbB receptor kinases with Toll-like receptors (TLRs), EGF/ErbB signals are recruited by viral infection and inflammatory diseases such as COVID-19-mediated pneumonia and poxvirus-mediated fibroma and implicated in the immune-inflammatory hypothesis of schizophrenia. Finally, we also discuss the interaction of clozapine with ErbB receptor kinases as well as new antipsychotic development targeting these receptors.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiology, School of Medicine, Niigata University, Niigata 951-8122, Japan
- Correspondence: (H.N.); (H.S.)
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Manavu Tohmi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
- Correspondence: (H.N.); (H.S.)
| |
Collapse
|
12
|
de Carvalho Borges B, Meng X, Long P, Kanold PO, Corfas G. Loss of oligodendrocyte ErbB receptor signaling leads to hypomyelination, reduced density of parvalbumin-expressing interneurons, and inhibitory function in the auditory cortex. Glia 2023; 71:187-204. [PMID: 36052476 PMCID: PMC9771935 DOI: 10.1002/glia.24266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022]
Abstract
For a long time, myelin was thought to be restricted to excitatory neurons, and studies on dysmyelination focused primarily on excitatory cells. Recent evidence showed that axons of inhibitory neurons in the neocortex are also myelinated, but the role of myelin on inhibitory circuits remains unknown. Here we studied the impact of mild hypomyelination on both excitatory and inhibitory connectivity in the primary auditory cortex (A1) with well-characterized mouse models of hypomyelination due to loss of oligodendrocyte ErbB receptor signaling. Using laser-scanning photostimulation, we found that mice with mild hypomyelination have reduced functional inhibitory connections to A1 L2/3 neurons without changes in excitatory connections, resulting in altered excitatory/inhibitory balance. These effects are not associated with altered expression of GABAergic and glutamatergic synaptic components, but with reduced density of parvalbumin-positive (PV+ ) neurons, axons, and synaptic terminals, which reflect reduced PV expression by interneurons rather than PV+ neuronal loss. While immunostaining shows that hypomyelination occurs in both PV+ and PV- axons, there is a strong correlation between MBP and PV expression, suggesting that myelination influences PV expression. Together, the results indicate that mild hypomyelination impacts A1 neuronal networks, reducing inhibitory activity, and shifting networks towards excitation.
Collapse
Affiliation(s)
- Beatriz de Carvalho Borges
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205,Department of Biology, University of Maryland, College Park, MD 20742
| | - Patrick Long
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Patrick Oliver Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205,Department of Biology, University of Maryland, College Park, MD 20742
| | - Gabriel Corfas
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
13
|
Huang Z, Zhang Y, Ma X, Feng Y, Zong X, Jordan JD, Zhang Q. Photobiomodulation attenuates oligodendrocyte dysfunction and prevents adverse neurological consequences in a rat model of early life adversity. Theranostics 2023; 13:913-930. [PMID: 36793860 PMCID: PMC9925323 DOI: 10.7150/thno.78777] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: Adverse experiences in early life including abuse, trauma and neglect, have been linked to poor physical and mental health outcomes. Emerging evidence implies that those who experienced early life adversity (ELA) are more likely to develop cognitive dysfunction and depressive-like symptoms in adulthood. The molecular mechanisms responsible for the negative consequences of ELA, however, remain unclear. In the absence of effective management options, anticipatory guidance is the mainstay of ELA prevention. Furthermore, there is no available treatment that prevents or alleviates the neurologic sequelae of ELA, especially traumatic stress. Hence, the present study aims to investigate the mechanisms for these associations and evaluate whether photobiomodulation (PBM), a non-invasive therapeutic procedure, can prevent the negative cognitive and behavioral manifestations of ELA in later life. Methods: ELA was induced by repeated inescapable electric foot shock of rats from postnatal day 21 to 26. On the day immediately following the last foot shock, 2-min daily PBM treatment was applied transcranially for 7 consecutive days. Cognitive dysfunction and depression-like behaviors were measured by a battery of behavioral tests in adulthood. Subsequently, oligodendrocyte progenitor cells (OPCs) differentiation, the proliferation and apoptosis of oligodendrocyte lineage cells (OLs), mature oligodendrocyte, myelinating oligodendrocyte, the level of oxidative damage, reactive oxygen species (ROS) and total antioxidant capacity were measured and analyzed using immunofluorescence staining, capillary-based immunoassay (ProteinSimple®) and antioxidant assay kit. Results: The rats exposed to ELA exhibited obvious oligodendrocyte dysfunction, including a reduction in OPCs differentiation, diminished generation and survival of OLs, decreased OLs, and decreased matured oligodendrocyte. Furthermore, a deficit in myelinating oligodendrocytes was observed, in conjunction with an imbalance in redox homeostasis and accumulated oxidative damage. These alternations were concomitant with cognitive dysfunction and depression-like behaviors. Importantly, we found that early PBM treatment largely prevented these pathologies and reversed the neurologic sequelae resulting from ELA. Conclusions: Collectively, these findings provide new insights into the mechanism by which ELA affects neurological outcomes. Moreover, our findings support that PBM may be a promising strategy to prevent ELA-induced neurologic sequelae that develops later in life.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| |
Collapse
|
14
|
Ma Y, Liu T, Li X, Kong A, Xiao R, Xie R, Gao J, Wang Z, Cai Y, Zou J, Yang L, Wang L, Zhao J, Xu H, Margaret W, Xu X, Gustafsson JA, Fan X. Estrogen receptor β deficiency impairs gut microbiota: a possible mechanism of IBD-induced anxiety-like behavior. MICROBIOME 2022; 10:160. [PMID: 36175956 PMCID: PMC9520828 DOI: 10.1186/s40168-022-01356-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although the lack of estrogen receptor β (ERβ) is a risk factor for the development of inflammatory bowel disease (IBD) and psychiatric disorders, the underlying cellular and molecular mechanisms are not fully understood. Herein, we revealed the role of gut microbiota in the development of IBD and related anxiety-like behavior in ERβ-deficient mice. RESULTS In response to dextran sodium sulfate (DSS) insult, the ERβ knockout mice displayed significant shift in α and β diversity in the fecal microbiota composition and demonstrated worsening of colitis and anxiety-like behaviors. In addition, DSS-induced colitis also induced hypothalamic-pituitary-adrenal (HPA) axis hyperactivity in ERβ-deficient mice, which was associated with colitis and anxiety-like behaviors. In addition, RNA sequencing data suggested that ErbB4 might be the target of ERβ that is involved in regulating the HPA axis hyperactivity caused by DSS insult. Gut microbiota remodeling by co-housing showed that both the colitis and anxiety-like behaviors were aggravated in co-housed wild-type mice compared to single-housed wild-type mice. These findings suggest that gut microbiota play a critical role in mediating colitis disease activity and anxiety-like behaviors via aberrant neural processing within the gut-brain axis. CONCLUSIONS ERβ has the potential to inhibit colitis development and anxiety-like behaviors via remodeling of the gut microbiota, which suggests that ERβ is a promising therapeutic target for the treatment of IBD and related anxiety-like behaviors. Video Abstract.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Anqi Kong
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Rui Xiao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Ruxin Xie
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Zhongke Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Warner Margaret
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Jan-Ake Gustafsson
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, USA.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
15
|
Keady J, Fisher M, Anderson E, LeMalenfant R, Turner J. Age-specific impacts of nicotine and withdrawal on hippocampal neuregulin signalling. Eur J Neurosci 2022; 56:4705-4719. [PMID: 35899607 PMCID: PMC9710301 DOI: 10.1111/ejn.15780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Smoking remains the leading cause of preventable death in the United States, with 87% of smokers starting before the age of 18. Age of initiation is a major predictive factor for smoking frequency and successful smoking cessation. People who initiate smoking during adolescences are 2.33 times more likely to become heavy smokers and half as likely to quit compared with smokers who started during adulthood. Additionally, schizophrenia, a disease state linked to altered neurodevelopment during adolescence, is a major predictive factor for smoking status. Smoking rates among people suffering from schizophrenia are between 60% and 90%. Interestingly, the Neuregulin Signalling Pathway (NSP), which plays an important role in neurodevelopment, is implicated in both schizophrenia and nicotine use disorder. Specifically, SNPS in neuregulin 3 (Nrg3) and Erb-B2 Receptor Tyrosine Kinase 4 (ErbB4) have been associated with smoking cessation outcomes and schizophrenia. Here, we examine the effects of chronic nicotine (18 mg/kg/day) and 24-h withdrawal on NSP gene expression in the hippocampus of adult (20-week-old) and adolescent (4-week-old) mice. We show that withdrawal from chronic nicotine decreased the expression of Erbb4 mRNA in the hippocampus of the adult mice but increased the expression of cytosolic Erbb4 protein in adolescent mice. Nrg3 mRNA and protein expression was not altered by chronic nicotine or withdrawal in the adult or adolescent cohorts, but Nrg3 mRNA and synaptosomal protein expression was lower in the adult withdrawal group when compared with their adolescent counterparts. These results highlight the age-specific effects of nicotine withdrawal on the NSP and may contribute to the lower quit rate and higher cigarette consumption of smokers who initiation during adolescences.
Collapse
Affiliation(s)
- Jack Keady
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| | - Miranda Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| | - Erin Anderson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Rachel LeMalenfant
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Jill Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| |
Collapse
|
16
|
Greenwood TA. Genetic Influences on Cognitive Dysfunction in Schizophrenia. Curr Top Behav Neurosci 2022; 63:291-314. [PMID: 36029459 DOI: 10.1007/7854_2022_388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a severe and debilitating psychotic disorder that is highly heritable and relatively common in the population. The clinical heterogeneity associated with schizophrenia is substantial, with patients exhibiting a broad range of deficits and symptom severity. Large-scale genomic studies employing a case-control design have begun to provide some biological insight. However, this strategy combines individuals with clinically diverse symptoms and ignores the genetic risk that is carried by many clinically unaffected individuals. Consequently, the majority of the genetic architecture underlying schizophrenia remains unexplained, and the pathways by which the implicated variants contribute to the clinically observable signs and symptoms are still largely unknown. Parsing the complex, clinical phenotype of schizophrenia into biologically relevant components may have utility in research aimed at understanding the genetic basis of liability. Cognitive dysfunction is a hallmark symptom of schizophrenia that is associated with impaired quality of life and poor functional outcome. Here, we examine the value of quantitative measures of cognitive dysfunction to objectively target the underlying neurobiological pathways and identify genetic variants and gene networks contributing to schizophrenia risk. For a complex disorder, quantitative measures are also more efficient than diagnosis, allowing for the identification of associated genetic variants with fewer subjects. Such a strategy supplements traditional analyses of schizophrenia diagnosis, providing the necessary biological insight to help translate genetic findings into actionable treatment targets. Understanding the genetic basis of cognitive dysfunction in schizophrenia may thus facilitate the development of novel pharmacological and procognitive interventions to improve real-world functioning.
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Cannabinoid CB 1 receptor gene inactivation in oligodendrocyte precursors disrupts oligodendrogenesis and myelination in mice. Cell Death Dis 2022; 13:585. [PMID: 35798697 PMCID: PMC9263142 DOI: 10.1038/s41419-022-05032-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/21/2023]
Abstract
Cannabinoids are known to modulate oligodendrogenesis and developmental CNS myelination. However, the cell-autonomous action of these compounds on oligodendroglial cells in vivo, and the molecular mechanisms underlying these effects have not yet been studied. Here, by using oligodendroglial precursor cell (OPC)-targeted genetic mouse models, we show that cannabinoid CB1 receptors exert an essential role in modulating OPC differentiation at the critical periods of postnatal myelination. We found that selective genetic inactivation of CB1 receptors in OPCs in vivo perturbs oligodendrogenesis and postnatal myelination by altering the RhoA/ROCK signaling pathway, leading to hypomyelination, and motor and cognitive alterations in young adult mice. Conversely, pharmacological CB1 receptor activation, by inducing E3 ubiquitin ligase-dependent RhoA proteasomal degradation, promotes oligodendrocyte development and CNS myelination in OPCs, an effect that was not evident in OPC-specific CB1 receptor-deficient mice. Moreover, pharmacological inactivation of ROCK in vivo overcomes the defects in oligodendrogenesis and CNS myelination, and behavioral alterations found in OPC-specific CB1 receptor-deficient mice. Overall, this study supports a cell-autonomous role for CB1 receptors in modulating oligodendrogenesis in vivo, which may have a profound impact on the scientific knowledge and therapeutic manipulation of CNS myelination by cannabinoids.
Collapse
|
18
|
Wilding B, Scharn D, Böse D, Baum A, Santoro V, Chetta P, Schnitzer R, Botesteanu DA, Reiser C, Kornigg S, Knesl P, Hörmann A, Köferle A, Corcokovic M, Lieb S, Scholz G, Bruchhaus J, Spina M, Balla J, Peric-Simov B, Zimmer J, Mitzner S, Fett TN, Beran A, Lamarre L, Gerstberger T, Gerlach D, Bauer M, Bergner A, Schlattl A, Bader G, Treu M, Engelhardt H, Zahn S, Fuchs JE, Zuber J, Ettmayer P, Pearson M, Petronczki M, Kraut N, McConnell DB, Solca F, Neumüller RA. Discovery of potent and selective HER2 inhibitors with efficacy against HER2 exon 20 insertion-driven tumors, which preserve wild-type EGFR signaling. NATURE CANCER 2022; 3:821-836. [PMID: 35883003 DOI: 10.1038/s43018-022-00412-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.
Collapse
Affiliation(s)
| | | | | | - Anke Baum
- Boehringer Ingelheim RCV, Vienna, Austria
| | | | | | | | | | | | | | - Petr Knesl
- Boehringer Ingelheim RCV, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gerd Bader
- Boehringer Ingelheim RCV, Vienna, Austria
| | | | | | | | | | - Johannes Zuber
- Institute of Molecular Pathology (IMP), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Targeting microglia–oligodendrocyte crosstalk in neurodegenerative and psychiatric disorders. Drug Discov Today 2022; 27:2562-2573. [DOI: 10.1016/j.drudis.2022.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/09/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
|
20
|
Rivera AD, Azim K, Macchi V, Porzionato A, Butt AM, De Caro R. Epidermal Growth Factor Pathway in the Age-Related Decline of Oligodendrocyte Regeneration. Front Cell Neurosci 2022; 16:838007. [PMID: 35370556 PMCID: PMC8968959 DOI: 10.3389/fncel.2022.838007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/23/2022] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocytes (OLs) are specialized glial cells that myelinate CNS axons. OLs are generated throughout life from oligodendrocyte progenitor cells (OPCs) via a series of tightly controlled differentiation steps. Life-long myelination is essential for learning and to replace myelin lost in age-related pathologies such as Alzheimer's disease (AD) as well as white matter pathologies such as multiple sclerosis (MS). Notably, there is considerable myelin loss in the aging brain, which is accelerated in AD and underpins the failure of remyelination in secondary progressive MS. An important factor in age-related myelin loss is a marked decrease in the regenerative capacity of OPCs. In this review, we will contextualize recent advances in the key role of Epidermal Growth Factor (EGF) signaling in regulating multiple biological pathways in oligodendroglia that are dysregulated in aging.
Collapse
Affiliation(s)
- Andrea D. Rivera
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Kasum Azim
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Arthur M. Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| |
Collapse
|
21
|
Prats C, Fatjó-Vilas M, Penzol MJ, Kebir O, Pina-Camacho L, Demontis D, Crespo-Facorro B, Peralta V, González-Pinto A, Pomarol-Clotet E, Papiol S, Parellada M, Krebs MO, Fañanás L. Association and epistatic analysis of white matter related genes across the continuum schizophrenia and autism spectrum disorders: The joint effect of NRG1-ErbB genes. World J Biol Psychiatry 2022; 23:208-218. [PMID: 34338147 DOI: 10.1080/15622975.2021.1939155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Schizophrenia-spectrum disorders (SSD) and Autism spectrum disorders (ASD) are neurodevelopmental disorders that share clinical, cognitive, and genetic characteristics, as well as particular white matter (WM) abnormalities. In this study, we aimed to investigate the role of a set of oligodendrocyte/myelin-related (OMR) genes and their epistatic effect on the risk for SSD and ASD. METHODS We examined 108 SNPs in a set of 22 OMR genes in 1749 subjects divided into three independent samples (187 SSD trios, 915 SSD cases/control, and 91 ASD trios). Genetic association and gene-gene interaction analyses were conducted with PLINK and MB-MDR, and permutation procedures were implemented in both. RESULTS Some OMR genes showed an association trend with SSD, while after correction, the ones that remained significantly associated were MBP, ERBB3, and AKT1. Significant gene-gene interactions were found between (i) NRG1*MBP (perm p-value = 0.002) in the SSD trios sample, (ii) ERBB3*AKT1 (perm p-value = 0.001) in the SSD case-control sample, and (iii) ERBB3*QKI (perm p-value = 0.0006) in the ASD trios sample. DISCUSSION Our results suggest the implication of OMR genes in the risk for both SSD and ASD and highlight the role of NRG1 and ERBB genes. These findings are in line with the previous evidence and may suggest pathophysiological mechanisms related to NRG1/ERBBs signalling in these disorders.
Collapse
Affiliation(s)
- C Prats
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Fatjó-Vilas
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - M J Penzol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - O Kebir
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,GHU Psychiatrie et Neurosciences de Paris, Paris, France
| | - L Pina-Camacho
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - D Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Aarhus, Denmark
| | - B Crespo-Facorro
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,University Hospital Virgen del Rocio, IbiS Department of Psychiatry, School of Medicine, University of Sevilla, Sevilla, Spain
| | - V Peralta
- Gerencia de Salud Mental, Servicio Navarro de Salud-Osasunbidea, Pamplona, Navarra, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNa), Pamplona, Navarra, Spain
| | - A González-Pinto
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Psychiatry Service, University Hospital of Alava-Santiago, EMBREC, EHU/UPV University of the Basque Country, Kronikgune, Vitoria, Spain
| | - E Pomarol-Clotet
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - S Papiol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - M Parellada
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - M O Krebs
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France
| | - L Fañanás
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
22
|
Huang M, Xu L, Liu J, Huang P, Tan Y, Chen S. Cell–Cell Communication Alterations via Intercellular Signaling Pathways in Substantia Nigra of Parkinson’s Disease. Front Aging Neurosci 2022; 14:828457. [PMID: 35283752 PMCID: PMC8914319 DOI: 10.3389/fnagi.2022.828457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative movement disorder characterized with dopaminergic neuron (DaN) loss within the substantia nigra (SN). Despite bulk studies focusing on intracellular mechanisms of PD inside DaNs, few studies have explored the pathogeneses outside DaNs, or between DaNs and other cells. Here, we set out to probe the implication of intercellular communication involving DaNs in the pathogeneses of PD at a systemic level with bioinformatics methods. We harvested three online published single-cell/single-nucleus transcriptomic sequencing (sc/snRNA-seq) datasets of human SN (GSE126838, GSE140231, and GSE157783) from the Gene Expression Omnibus (GEO) database, and integrated them with one of the latest integration algorithms called Harmony. We then applied CellChat, the latest cell–cell communication analytic algorithm, to our integrated dataset. We first found that the overall communication quantity was decreased while the overall communication strength was enhanced in PD sample compared with control sample. We then focused on the intercellular communication where DaNs are involved, and found that the communications between DaNs and other cell types via certain signaling pathways were selectively altered in PD, including some growth factors, neurotrophic factors, chemokines, etc. pathways. Our bioinformatics analysis showed that the alteration in intercellular communications involving DaNs might be a previously underestimated aspect of PD pathogeneses with novel translational potential.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Xu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yuyan Tan,
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
- Shengdi Chen,
| |
Collapse
|
23
|
Sun Y, Chen X, Ou Z, Wang Y, Chen W, Zhao T, Liu C, Chen Y. Dysmyelination by Oligodendrocyte-Specific Ablation of Ninj2 Contributes to Depressive-Like Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103065. [PMID: 34787377 PMCID: PMC8787401 DOI: 10.1002/advs.202103065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/21/2021] [Indexed: 05/04/2023]
Abstract
Depression is a mental disorder affecting more than 300 million people in the world. Abnormalities in white matter are associated with the development of depression. Here, the authors show that mice with oligodendrocyte-specific deletion of Nerve injury-induced protein 2 (Ninj2) exhibit depressive-like behaviors. Loss of Ninj2 in oligodendrocytes inhibits oligodendrocyte development and myelination, and impairs neuronal structure and activities. Ninj2 competitively inhibits TNFα/TNFR1 signaling pathway by directly binding to TNFR1 in oligodendrocytes. Loss of Ninj2 activates TNFα-induced necroptosis, and increases C-C Motif Chemokine Ligand 2 (Ccl2) production, which might mediate the signal transduction from oligodendrocyte to neurons. Inhibition of necroptosis by Nec-1s administration synchronously restores oligodendrocyte development, improves neuronal excitability, and alleviates depressive-like behaviors. This study thus illustrates the role of Ninj2 in the development of depression and myelination, reveals the relationship between oligodendrocytes and neurons, and provides a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Yuxia Sun
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Xiang Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Yue Wang
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Wenjing Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyZhongshan HospitalFudan UniversityShanghai200438China
| | - Changqin Liu
- Department of Endocrinology and DiabetesThe First Affiliated Hospital of Xiamen UniversityFujian Province Key Laboratory of Diabetes Translational MedicineXiamenFujian361101China
| | - Ying Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| |
Collapse
|
24
|
Peterson AR, Garcia TA, Ford BD, Binder DK. Regulation of NRG-1-ErbB4 signaling and neuroprotection by exogenous neuregulin-1 in a mouse model of epilepsy. Neurobiol Dis 2021; 161:105545. [PMID: 34742879 DOI: 10.1016/j.nbd.2021.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/27/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy. Dysregulation of glutamate transporters has been a common finding across animal models of epilepsy and in patients with TLE. In this study, we investigate NRG-1/ErbB4 signaling in epileptogenesis and the neuroprotective effects of NRG-1 treatment in a mouse model of temporal lobe epilepsy. Using immunohistochemistry, we report the first evidence for NRG-1/ErbB4-dependent selective upregulation of glutamate transporter EAAC1 and bihemispheric neuroprotection by exogeneous NRG-1 in the intrahippocampal kainic acid (IHKA) model of TLE. Our findings provide evidence that dysregulation of glutamate transporter EAAC1 contributes to the development of epilepsy and can be therapeutically targeted to reduce neuronal death following IHKA-induced status epilepticus (SE).
Collapse
Affiliation(s)
- Allison R Peterson
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Terese A Garcia
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Byron D Ford
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA.
| |
Collapse
|
25
|
Extracellular Vesicle-Encapsulated miR-183-5p from Rhynchophylline-Treated H9c2 Cells Protect against Methamphetamine-Induced Dependence in Mouse Brain by Targeting NRG1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2136076. [PMID: 34484386 PMCID: PMC8416368 DOI: 10.1155/2021/2136076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
Methamphetamine (Meth) is a highly addictive substance and the largest drug threat across the globe. There is evidence to indicate that Meth use has serious damage on central nervous system (CNS) and heart in several animal and human studies. However, the connection in the process of Meth addiction between these two systems has not been determined. Emerging data suggest that extracellular vesicles (EVs) carrying behavior-altering microRNA (miRNAs) play a crucial role in cell communication between CNS and peripheral system. Rhynchophylline (Rhy), an antiaddictive alkaloid, was used to protect the brain and heart from Meth-induced damage, which has caught our attention. Here, we used Meth-dependent conditioned place preference (CPP) animal model and cell model to verify the protective effect of Rhy-treated EVs. Further, small RNA sequencing analysis, qPCR, dual-luciferase reporter assay, and transfection test were used to identify the key EVs-encapsulated miRNAs, isolated from cultured H9c2 cells with different treatments, involved in the therapeutic effect and the underlying mechanisms of Rhy. The results demonstrate that Rhy-treated EVs exert protective effects against Meth dependence through the pathway of miR-183-5p-neuregulin-1 (NRG1). Our collective findings provide novel insights into the roles of EVs miRNAs in Meth addiction and support their potential application in the development of novel therapeutic approaches.
Collapse
|
26
|
Duan J, Wei Y, Womer FY, Zhang X, Chang M, Zhu Y, Liu Z, Li C, Yin Z, Zhang R, Sun J, Wang P, Wang S, Jiang X, Wei S, Zhang Y, Tang Y, Wang F. Neurobiological substrates of major psychiatry disorders: transdiagnostic associations between white matter abnormalities, neuregulin 1 and clinical manifestation. J Psychiatry Neurosci 2021; 46:E506-E515. [PMID: 34467747 PMCID: PMC8526153 DOI: 10.1503/jpn.200166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Schizophrenia, bipolar disorder and major depressive disorder are increasingly being conceptualized as a transdiagnostic continuum. Disruption of white matter is a common alteration in these psychiatric disorders, but the molecular mechanisms underlying the disruption remain unclear. Neuregulin 1 (NRG1) is genetically linked with susceptibility to schizophrenia, bipolar disorder and major depressive disorder, and it is also related to white matter. METHODS Using a transdiagnostic approach, we aimed to identify white matter differences associated with NRG1 and their relationship to transdiagnostic symptoms and cognitive function. We examined the white matter of 1051 participants (318 healthy controls and 733 patients with major psychiatric disorders: 254 with schizophrenia, 212 with bipolar disorder and 267 with major depressive disorder) who underwent diffusion tensor imaging. We measured the plasma NRG1-β1 levels of 331 participants. We also evaluated clinical symptoms and cognitive function. RESULTS In the patient group, abnormal white matter was negatively associated with NRG1-β1 levels in the genu of the corpus callosum, right uncinate fasciculus, bilateral inferior fronto-occipital fasciculus, right external capsule, fornix, right optic tract, left straight gyrus white matter and left olfactory radiation. These NRG1-associated white matter abnormalities were also associated with depression and anxiety symptoms and executive function in patients with a major psychiatric disorder. Furthermore, across the 3 disorders we observed analogous alterations in white matter, NRG1-β1 levels and clinical manifestations. LIMITATIONS Medication status, the wide age range and our cross-sectional findings were limitations of this study. CONCLUSION This study is the first to provide evidence for an association between NRG1, white matter abnormalities, clinical symptoms and cognition in a transdiagnostic psychiatric cohort. These findings provide further support for an understanding of the molecular mechanisms that underlie the neuroimaging substrates of major psychiatric disorders and their clinical implications.
Collapse
Affiliation(s)
- Jia Duan
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Yange Wei
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Fay Y Womer
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Xizhe Zhang
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Miao Chang
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Yue Zhu
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Zhuang Liu
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Chao Li
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Zhiyang Yin
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Ran Zhang
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Jiaze Sun
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Pengshuo Wang
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Shuai Wang
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Xiaowei Jiang
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Shengnan Wei
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Yanbo Zhang
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Yanqing Tang
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| | - Fei Wang
- From the Department of Psychiatry, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Duan, Zhu, Yin, R. Zhang, Sun, P. Wang, S. Wang, Tang, F. Wang); the Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China (Duan, Y. Wei, R. Zhang, F. Wang); the Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, St. Louis, MO (Womer); the School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, PR China (X. Zhang); the Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China (Chang, Li, Jiang, S.Wei); the School of Public Health, China Medical University, Shenyang, Liaoning, PR China (Liu); the Department of Psychiatry, College of Medicine, University of Saskatchewan, SK (Y. Zhang)
| |
Collapse
|
27
|
Kraguljac NV, Anthony T, Morgan CJ, Jindal RD, Burger MS, Lahti AC. White matter integrity, duration of untreated psychosis, and antipsychotic treatment response in medication-naïve first-episode psychosis patients. Mol Psychiatry 2021; 26:5347-5356. [PMID: 32398721 PMCID: PMC7658031 DOI: 10.1038/s41380-020-0765-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023]
Abstract
It is becoming increasingly clear that longer duration of untreated psychosis (DUP) is associated with adverse clinical outcomes in patients with psychosis spectrum disorders. Because this association is often cited when justifying early intervention efforts, it is imperative to better understand underlying biological mechanisms. We enrolled 66 antipsychotic-naïve first-episode psychosis (FEP) patients and 45 matched healthy controls in this trial. At baseline, we used a human connectome style diffusion-weighted imaging (DWI) sequence to quantify white matter integrity in both groups. Patients then received 16 weeks of treatment with risperidone, 51 FEP completed the trial. We compared whole-brain fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), and radial diffusivity between groups. To test if structural white matter integrity mediates the relationship between longer DUP and poorer treatment response, we fit a mediator model and estimated indirect effects. We found decreased whole-brain FA and AD in medication-naive FEP compared with controls. In patients, lower FA was correlated with longer DUP (r = -0.32; p = 0.03) and poorer subsequent response to antipsychotic treatment (r = 0.40; p = 0.01). Importantly, we found a significant mediation effect for FA (indirect effect: -2.70; p = 0.03), indicating that DUP exerts its effects on treatment response through affecting white matter integrity. Our data provide empirical support to the idea the DUP may have fundamental pathogenic effects on the natural history of psychosis, suggest a biological mechanism underlying this phenomenon, and underscore the importance of early intervention efforts in this disabling neuropsychiatric syndrome.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Thomas Anthony
- Department of Electrical and Computer Engineering/ IT Research Computing, University of Alabama at Birmingham
| | | | - Ripu Daman Jindal
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham,Department of Neurology, Birmingham VA Medical Center
| | - Mark Steven Burger
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
28
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Yalçın B, Monje M. Microenvironmental interactions of oligodendroglial cells. Dev Cell 2021; 56:1821-1832. [PMID: 34192527 DOI: 10.1016/j.devcel.2021.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Developmental myelination is a protracted process that extends well into postnatal life. Cell-intrinsic mechanisms operate in myelin-forming oligodendrocytes, as well as microenvironmental interactions that guide and modulate every aspect of myelination, from oligodendrocyte precursor cell migration to oligodendrocyte differentiation and the formation of stable myelin internodes. During development and throughout adult life, neuron-oligodendroglial interactions shape activity and experience-dependent myelin adaptations to fine-tune neural circuit dynamics and promote healthy neurological function.
Collapse
Affiliation(s)
- Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94304, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
30
|
Extreme Glycemic Fluctuations Debilitate NRG1, ErbB Receptors and Olig1 Function: Association with Regeneration, Cognition and Mood Alterations During Diabetes. Mol Neurobiol 2021; 58:4727-4744. [PMID: 34165684 DOI: 10.1007/s12035-021-02455-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022]
Abstract
Neuronal regeneration is crucial for maintaining intact neural interactions for perpetuation of cognitive and emotional functioning. The NRG1-ErbB receptor signaling is a key pathway for regeneration in adult brain and also associated with learning and mood stabilization by modulating synaptic transmission. Extreme glycemic stress is known to affect NRG1-ErbB-mediated regeneration in brain; yet, it remains unclear how the ErbB receptor subtypes are differentially affected due to such metabolic variations. Here, we assessed the alterations in NRG1, ErbB receptor subtypes to study the regenerative potential, both in rodents as well as in neuronal and glial cell models of hyperglycemia and hypoglycemic insults during hyperglycemia. The pro-oxidant and anti-oxidant status leading to degenerative changes in brain regions were determined. The spatial memory and anxiogenic behaviour of experimental rodents were tested using 'T' maze and Elevated Plus Maze. Our data revealed that the extreme glycemic discrepancies during diabetes and recurrent hypoglycemia lead to altered expression of NRG1, ErbB receptor subtypes, Syntaxin1 and Olig1 that shows association with impaired regeneration, synaptic dysfunction, demyelination, cognitive deficits and anxiety.
Collapse
|
31
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Buchsbaum BR, Mukherjee J, Lehrer DS. Dopamine receptor density and white mater integrity: 18F-fallypride positron emission tomography and diffusion tensor imaging study in healthy and schizophrenia subjects. Brain Imaging Behav 2021; 14:736-752. [PMID: 30523488 DOI: 10.1007/s11682-018-0012-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopaminergic dysfunction and changes in white matter integrity are among the most replicated findings in schizophrenia. A modulating role of dopamine in myelin formation has been proposed in animal models and healthy human brain, but has not yet been systematically explored in schizophrenia. We used diffusion tensor imaging and 18F-fallypride positron emission tomography in 19 healthy and 25 schizophrenia subjects to assess the relationship between gray matter dopamine D2/D3 receptor density and white matter fractional anisotropy in each diagnostic group. AFNI regions of interest were acquired for 42 cortical Brodmann areas and subcortical gray matter structures as well as stereotaxically placed in representative white matter areas implicated in schizophrenia neuroimaging literature. Welch's t-test with permutation-based p value adjustment was used to compare means of z-transformed correlations between fractional anisotropy and 18F-fallypride binding potentials in hypothesis-driven regions of interest in the diagnostic groups. Healthy subjects displayed an extensive pattern of predominantly negative correlations between 18F-fallypride binding across a range of cortical and subcortical gray matter regions and fractional anisotropy in rostral white matter regions (internal capsule, frontal lobe, anterior corpus callosum). These patterns were disrupted in subjects with schizophrenia, who displayed significantly weaker overall correlations as well as comparatively scant numbers of significant correlations with the internal capsule and frontal (but not temporal) white matter, especially for dopamine receptor density in thalamic nuclei. Dopamine D2/D3 receptor density and white matter integrity appear to be interrelated, and their decreases in schizophrenia may stem from hyperdopaminergia with dysregulation of dopaminergic impact on axonal myelination.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY, 11373, USA.
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA.,Department of Psychiatry and Human Behavior, Irvine School of Medicine, University of California, 101 The City Dr. S, Orange, CA, 92868, USA
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI, 53705, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St, Toronto, ON, M6A 2E1, Canada
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, Irvine School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| |
Collapse
|
32
|
Zhou B, Zhu Z, Ransom BR, Tong X. Oligodendrocyte lineage cells and depression. Mol Psychiatry 2021; 26:103-117. [PMID: 33144710 PMCID: PMC7815509 DOI: 10.1038/s41380-020-00930-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
Depression is a common mental illness, affecting more than 300 million people worldwide. Decades of investigation have yielded symptomatic therapies for this disabling condition but have not led to a consensus about its pathogenesis. There are data to support several different theories of causation, including the monoamine hypothesis, hypothalamic-pituitary-adrenal axis changes, inflammation and immune system alterations, abnormalities of neurogenesis and a conducive environmental milieu. Research in these areas and others has greatly advanced the current understanding of depression; however, there are other, less widely known theories of pathogenesis. Oligodendrocyte lineage cells, including oligodendrocyte progenitor cells and mature oligodendrocytes, have numerous important functions, which include forming myelin sheaths that enwrap central nervous system axons, supporting axons metabolically, and mediating certain forms of neuroplasticity. These specialized glial cells have been implicated in psychiatric disorders such as depression. In this review, we summarize recent findings that shed light on how oligodendrocyte lineage cells might participate in the pathogenesis of depression, and we discuss new approaches for targeting these cells as a novel strategy to treat depression.
Collapse
Affiliation(s)
- Butian Zhou
- Center for Brain Science, Shanghai Children's Medical Center; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bruce R Ransom
- Neuroscience Department, City University of Hong Kong, Hong Kong, China.
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Kosaraju J, Seegobin M, Gouveia A, Syal C, Sarma SN, Lu KJ, Ilin J, He L, Wondisford FE, Lagace D, De Repentigny Y, Kothary R, Wang J. Metformin promotes CNS remyelination and improves social interaction following focal demyelination through CBP Ser436 phosphorylation. Exp Neurol 2020; 334:113454. [PMID: 32877653 DOI: 10.1016/j.expneurol.2020.113454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023]
Abstract
Individuals with demyelinating diseases often experience difficulties during social interactions that are not well studied in preclinical models. Here, we describe a novel juvenile focal corpus callosum demyelination murine model exhibiting a social interaction deficit. Using this preclinical murine demyelination model, we discover that application of metformin, an FDA-approved drug, in this model promotes oligodendrocyte regeneration and remyelination and improves the social interaction. This beneficial effect of metformin acts through stimulating Ser436 phosphorylation in CBP, a histone acetyltransferase. In addition, we found that metformin acts through two distinct molecular pathways to enhance oligodendrocyte precursor (OPC) proliferation and differentiation, respectively. Metformin enhances OPC proliferation through early-stage autophagy inhibition, while metformin promotes OPC differentiation into mature oligodendrocytes through activating CBP Ser436 phosphorylation. In summary, we identify that metformin is a promising remyelinating agent to improve juvenile demyelination-associated social interaction deficits by promoting oligodendrocyte regeneration and remyelination.
Collapse
Affiliation(s)
- Jayasankar Kosaraju
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Matthew Seegobin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ayden Gouveia
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sailendra Nath Sarma
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kevin Jiaqi Lu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Julius Ilin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Diane Lagace
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON K1G 5Z3, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON K1G 5Z3, Canada.
| |
Collapse
|
34
|
Vaes JEG, Brandt MJV, Wanders N, Benders MJNL, de Theije CGM, Gressens P, Nijboer CH. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia 2020; 69:1311-1340. [PMID: 33595855 PMCID: PMC8246971 DOI: 10.1002/glia.23939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development. At present, there are no treatment options available, despite the enormous burden of EoP on patients, their families, and society. Over the years, research in the field of neonatal brain injury and other white matter pathologies has led to the identification of several promising trophic factors and cytokines that contribute to the survival and maturation of oligodendrocytes, and/or dampening neuroinflammation. In this review, we discuss the current literature on selected factors and their therapeutic potential to combat EoP, covering a wide range of in vitro, preclinical and clinical studies. Furthermore, we offer a future perspective on the translatability of these factors into clinical practice.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Myrna J V Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Nikki Wanders
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | | | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
35
|
Cocaine Administration and Its Abstinence Conditions Modulate Neuroglia. Int J Mol Sci 2020; 21:ijms21217970. [PMID: 33120991 PMCID: PMC7663194 DOI: 10.3390/ijms21217970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Cocaine induces neuronal changes as well as non-neuronal (astrocytes, microglia, oligodendroglia) mechanisms, but these changes can also be modulated by various types of drug abstinence. Due to the very complex and still incompletely understood nature of cocaine use disorder, understanding of the mechanisms involved in addictive behavior is necessary to further search for effective pharmacotherapy of this disease. The aim of this study was to investigate changes at the gene and protein levels associated with glial cell activity after cocaine exposure, as well as during early cocaine abstinence (3 days) with extinction training or in home cage isolation. Cocaine self-administration significantly decreased myelin regulatory factor (MYRF) and cyclic nucleotide phosphodiesterase (CNP) expression in the hippocampus as well as pleckstrin (PLEK) and T-lymphocyte activation antigen (CD86) in the rat striatum. Depending on cocaine abstinence conditions, microglial PLEK expression was increased through extinction training but did not change in the home cage isolation. In addition, downregulation of gene expression associated with oligodendrocytes (CNP, MYRF) and microglia regulator of G protein signaling 1 (RGS1) was observed in the hippocampus, regardless of the type of drug abstinence, while downregulation of myelin and lymphocyte protein (MAL) expression was found only in rats exposed to abstinence in the home cage. Taken together, the presented results strongly suggest that cocaine abstinence evokes significant changes in gene expression associated with the proper functioning of glial cells, suggesting their significant involvement in adaptive changes in the brain associated with cocaine exposure. Interestingly, drug abstinence conditions are important factors influencing observed changes at the transcript levels of selected genes, which may be of clinical interest.
Collapse
|
36
|
Huerga-Gómez A, Aguado T, Sánchez-de la Torre A, Bernal-Chico A, Matute C, Mato S, Guzmán M, Galve-Roperh I, Palazuelos J. Δ 9 -Tetrahydrocannabinol promotes oligodendrocyte development and CNS myelination in vivo. Glia 2020; 69:532-545. [PMID: 32956517 PMCID: PMC7821226 DOI: 10.1002/glia.23911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Δ9‐Tetrahydrocannabinol (THC), the main bioactive compound found in the plant Cannabis sativa, exerts its effects by activating cannabinoid receptors present in many neural cells. Cannabinoid receptors are also physiologically engaged by endogenous cannabinoid compounds, the so‐called endocannabinoids. Specifically, the endocannabinoid 2‐arachidonoylglycerol has been highlighted as an important modulator of oligodendrocyte (OL) development at embryonic stages and in animal models of demyelination. However, the potential impact of THC exposure on OL lineage progression during the critical periods of postnatal myelination has never been explored. Here, we show that acute THC administration at early postnatal ages in mice enhanced OL development and CNS myelination in the subcortical white matter by promoting oligodendrocyte precursor cell cycle exit and differentiation. Mechanistically, THC‐induced‐myelination was mediated by CB1 and CB2 cannabinoid receptors, as demonstrated by the blockade of THC actions by selective receptor antagonists. Moreover, the THC‐mediated modulation of oligodendroglial differentiation relied on the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, as mTORC1 pharmacological inhibition prevented the THC effects. Our study identifies THC as an effective pharmacological strategy to enhance oligodendrogenesis and CNS myelination in vivo.
Collapse
Affiliation(s)
- Alba Huerga-Gómez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Tania Aguado
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Aníbal Sánchez-de la Torre
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Ana Bernal-Chico
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Carlos Matute
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Susana Mato
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces Bizkaia, Multiple Sclerosis and Other Demyelinating Diseases Unit, Barakaldo, Spain
| | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Javier Palazuelos
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| |
Collapse
|
37
|
Goldman SA. Glial evolution as a determinant of human behavior and its disorders. Ann N Y Acad Sci 2020; 1471:72-85. [PMID: 32449961 DOI: 10.1111/nyas.14372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
Astroglial complexity and pleomorphism have increased significantly with hominid evolution. This suggests a potential association between glial evolution and the development of human cognition, as well as between glial evolution and the advent of human-selective neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York.,Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science, Copenhagen N, Denmark.,Neuroscience Center, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
38
|
Paterson C, Cumming B, Law AJ. Temporal Dynamics of the Neuregulin-ErbB Network in the Murine Prefrontal Cortex across the Lifespan. Cereb Cortex 2020; 30:3325-3339. [PMID: 31897479 DOI: 10.1093/cercor/bhz312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neuregulin-ErbB signaling is essential for numerous functions in the developing, adult, and aging brain, particularly in the prefrontal cortex (PFC). Mouse models with disrupted Nrg and/or ErbB genes are relevant to psychiatric, developmental, and age-related disorders, displaying a range of abnormalities stemming from cortical circuitry impairment. Many of these models display nonoverlapping phenotypes dependent upon the gene target and timing of perturbation, suggesting that cortical expression of the Nrg-ErbB network undergoes temporal regulation across the lifespan. Here, we report a comprehensive temporal expression mapping study of the Nrg-ErbB signaling network in the mouse PFC across postnatal development through aging. We find that Nrg and ErbB genes display distinct expression profiles; moreover, splice isoforms of these genes are differentially expressed across the murine lifespan. We additionally find a developmental switch in ErbB4 splice isoform expression potentially mediated through coregulation of the lncRNA Miat expression. Our results are the first to comprehensively and quantitatively map the expression patterns of the Nrg-ErbB network in the mouse PFC across the postnatal lifespan and may help disentangle the pathway's involvement in normal cortical sequences of events across the lifespan, as well as shedding light on the pathophysiological mechanisms of abnormal Nrg-ErbB signaling in neurological disease.
Collapse
Affiliation(s)
- Clare Paterson
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooke Cumming
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda J Law
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Cell and Developmental Biology, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Medicine, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
39
|
Zhang S, Zhang S, Zhu D, Jiao Z, Zhao X, Sun M, Che Y, Feng X. Effects of 17β-trenbolone exposure on sex hormone synthesis and social behaviours in adolescent mice. CHEMOSPHERE 2020; 245:125679. [PMID: 31869672 DOI: 10.1016/j.chemosphere.2019.125679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
17β-Trenbolone (17β-TBOH) is an endocrine disruptor that has been widely reported in aquatic organisms. However, little is known about the effect of 17β-TBOH on mammals, particularly on the development of adolescents. Through a series of behavioural experiments, exposure to at 80 μg kg -1 d -1 and 800 μg kg -1 d -1 17β-TBOH during puberty (from PND 28 to 56, male mice) increased anxiety-like behaviours. Exposure to the low dose of 80 μg kg -1 d -1 resulted in a clear social avoidance behaviour in mice. The two doses affected testicular development and endogenous androgen synthesis in male mice. In addition, 17β-TBOH exposure altered the differentiation of oligodendrocytes and the formation of the myelin sheath in the medial prefrontal cortex (mPFC). These results reveal the effects of 17β-TBOH on the behaviours, gonadal and neurodevelopment of adolescent mammals. In addition, the inhibition of the secretion of endogenous hormones and decrease in the formation of the myelin sheath in mPFC may be associated with the 17β-TBOH-induced behavioural changes in mice.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Shuyu Zhang
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Dashuai Zhu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zihao Jiao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China.
| | - Yongzhe Che
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
40
|
Langley MR, Yoon H, Kim HN, Choi CI, Simon W, Kleppe L, Lanza IR, LeBrasseur NK, Matveyenko A, Scarisbrick IA. High fat diet consumption results in mitochondrial dysfunction, oxidative stress, and oligodendrocyte loss in the central nervous system. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165630. [PMID: 31816440 PMCID: PMC7982965 DOI: 10.1016/j.bbadis.2019.165630] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome is a key risk factor and co-morbidity in multiple sclerosis (MS) and other neurological conditions, such that a better understanding of how a high fat diet contributes to oligodendrocyte loss and the capacity for myelin regeneration has the potential to highlight new treatment targets. Results demonstrate that modeling metabolic dysfunction in mice with chronic high fat diet (HFD) consumption promotes loss of oligodendrocyte progenitors across the brain and spinal cord. A number of transcriptomic and metabolomic changes in ER stress, mitochondrial dysfunction, and oxidative stress pathways in HFD-fed mouse spinal cords were also identified. Moreover, deficits in TCA cycle intermediates and mitochondrial respiration were observed in the chronic HFD spinal cord tissue. Oligodendrocytes are known to be particularly vulnerable to oxidative damage, and we observed increased markers of oxidative stress in both the brain and spinal cord of HFD-fed mice. We additionally identified that increased apoptotic cell death signaling is underway in oligodendrocytes from mice chronically fed a HFD. When cultured under high saturated fat conditions, oligodendrocytes decreased both mitochondrial function and differentiation. Overall, our findings show that HFD-related changes in metabolic regulators, decreased mitochondrial function, and oxidative stress contribute to a loss of myelinating cells. These studies identify HFD consumption as a key modifiable lifestyle factor for improved myelin integrity in the adult central nervous system and in addition new tractable metabolic targets for myelin protection and repair strategies.
Collapse
Affiliation(s)
- Monica R Langley
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyesook Yoon
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Ha Neui Kim
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Chan-Il Choi
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Whitney Simon
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Laurel Kleppe
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Ian R Lanza
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
41
|
Dietz AG, Goldman SA, Nedergaard M. Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry 2020; 7:272-281. [PMID: 31704113 PMCID: PMC7267935 DOI: 10.1016/s2215-0366(19)30302-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
The cellular neurobiology of schizophrenia remains poorly understood. We discuss neuroimaging studies, pathological findings, and experimental work supporting the idea that glial cells might contribute to the development of schizophrenia. Experimental studies suggest that abnormalities in the differentiation competence of glial progenitor cells lead to failure in the morphological and functional maturation of oligodendrocytes and astrocytes. We propose that immune activation of microglial cells during development, superimposed upon genetic risk factors, could contribute to defective differentiation competence of glial progenitor cells. The resulting hypomyelination and disrupted white matter integrity might contribute to transmission desynchronisation and dysconnectivity, whereas the failure of astrocytic differentiation results in abnormal glial coverage and support of synapses. The delayed and deficient maturation of astrocytes might, in parallel, lead to disruption of glutamatergic, potassium, and neuromodulatory homoeostasis, resulting in dysregulated synaptic transmission. By highlighting a role for glial cells in schizophrenia, these studies potentially point to new mechanisms for disease modification.
Collapse
Affiliation(s)
- Andrea G Dietz
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
42
|
Boda E. Myelin and oligodendrocyte lineage cell dysfunctions: New players in the etiology and treatment of depression and stress‐related disorders. Eur J Neurosci 2019; 53:281-297. [DOI: 10.1111/ejn.14621] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/06/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi‐Montalcini University of Turin Turin Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO) University of Turin Turin Italy
| |
Collapse
|
43
|
Vanes LD, Moutoussis M, Ziegler G, Goodyer IM, Fonagy P, Jones PB, Bullmore ET, Dolan RJ. White matter tract myelin maturation and its association with general psychopathology in adolescence and early adulthood. Hum Brain Mapp 2019; 41:827-839. [PMID: 31661180 PMCID: PMC7268015 DOI: 10.1002/hbm.24842] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Adolescence is a time period associated with marked brain maturation that coincides with an enhanced risk for onset of psychiatric disorder. White matter tract myelination, a process that continues to unfold throughout adolescence, is reported to be abnormal in several psychiatric disorders. Here, we ask whether psychiatric vulnerability is linked to aberrant developmental myelination trajectories. We assessed a marker of myelin maturation, using magnetisation transfer (MT) imaging, in 10 major white matter tracts. We then investigated its relationship to the expression of a general psychopathology "p-factor" in a longitudinal analysis of 293 healthy participants between the ages of 14 and 24. We observed significant longitudinal MT increase across the full age spectrum in anterior thalamic radiation, hippocampal cingulum, dorsal cingulum and superior longitudinal fasciculus. MT increase in the inferior fronto-occipital fasciculus, inferior longitudinal fasciculus and uncinate fasciculus was pronounced in younger participants but levelled off during the transition into young adulthood. Crucially, longitudinal MT increase in dorsal cingulum and uncinate fasciculus decelerated as a function of mean p-factor scores over the study period. This suggests that an increased expression of psychopathology is closely linked to lower rates of myelin maturation in selective brain tracts over time. Impaired myelin growth in limbic association fibres may serve as a neural marker for emerging mental illness during the course of adolescence and early adulthood.
Collapse
Affiliation(s)
- Lucy D Vanes
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Michael Moutoussis
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ian M Goodyer
- Department of Psychiatry, University of Cambridge Clinical School, Cambridge, UK
| | - Peter Fonagy
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge Clinical School, Cambridge, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge Clinical School, Cambridge, UK
| | -
- Department of Psychiatry, University of Cambridge Clinical School, Cambridge, UK
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
44
|
Palaniyappan L, Al-Radaideh A, Mougin O, Das T, Gowland P, Liddle PF. Aberrant myelination of the cingulum and Schneiderian delusions in schizophrenia: a 7T magnetization transfer study. Psychol Med 2019; 49:1890-1896. [PMID: 30229713 DOI: 10.1017/s0033291718002647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The structural integrity of the anterior cingulum has been repeatedly observed to be abnormal in patients with schizophrenia. More recently, aberrant myelination of frontal fasciculi, especially, cingulum has been proposed to underlie delayed corollary discharges that can affect sense of agency and contribute to delusions of control (Schneiderian delusions). Using the magnetization transfer phenomenon at an ultra-high field 7T MRI, we investigated the putative myelin content of cingulum bundle in patients with schizophrenia. METHODS Seventeen clinically stable patients with schizophrenia and 20 controls were recruited for this 7T MRI study. We used a region-of-interest method and extracted magnetization transfer ratio (MTR) from left and right dorsal cingulum bundles and estimated patients v. controls differences. We also related the cingulum MTR values to the severity of Schneiderian delusions. RESULTS Patients had a significant reduction in the MTR, indicating reduced myelin content, in the cingulum bundle (right cingulum Hedges' g = 0.91; left cingulum g = 0.03). The reduced MTR of left cingulum was associated with higher severity of Schneiderian delusions (τ = -0.45, p = 0.026) but no such relationship was seen for the right cingulum MTR (τ = -0.136, p = 0.50) among patients. The association between the left cingulum MTR and Schneiderian delusions was not explained by the presence of other delusions, hallucinations, disorganization or negative symptoms. CONCLUSIONS Dysmyelination of the cingulum bundle is seen in a subgroup of patients with schizophrenia and may be involved in the mechanism of Schneiderian delusions.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Robarts Research Institute, University of Western Ontario,London, Ontario,Canada
| | - Ali Al-Radaideh
- Department of Medical Imaging, Faculty of Allied Health Sciences,The Hashemite University,Zarqa,Jordan
| | - Olivier Mougin
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham,Nottingham,UK
| | - Tushar Das
- Robarts Research Institute, University of Western Ontario,London, Ontario,Canada
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham,Nottingham,UK
| | - Peter F Liddle
- Translational Neuroimaging for Mental Health, Division of Psychiatry and Applied Psychology,University of Nottingham,Nottingham,UK
| |
Collapse
|
45
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
46
|
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019; 180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Neuregulin-1 (Nrg-1) is a member of the Neuregulin family of growth factors with essential roles in the developing and adult nervous system. Six different types of Nrg-1 (Nrg-1 type I-VI) and over 30 isoforms have been discovered; however, their specific roles are not fully determined. Nrg-1 signals through a complex network of protein-tyrosine kinase receptors, ErbB2, ErbB3, ErbB4 and multiple intracellular pathways. Genetic and pharmacological studies of Nrg-1 and ErbB receptors have identified a critical role for Nrg-1/ErbB network in neurodevelopment including neuronal migration, neural differentiation, myelination as well as formation of synapses and neuromuscular junctions. Nrg-1 signaling is best known for its characterized role in development and repair of the peripheral nervous system (PNS) due to its essential role in Schwann cell development, survival and myelination. However, our knowledge of the impact of Nrg-1/ErbB on the central nervous system (CNS) has emerged in recent years. Ongoing efforts have uncovered a multi-faceted role for Nrg-1 in regulating CNS injury and repair processes. In this review, we provide a timely overview of the most recent updates on Nrg-1 signaling and its role in nervous system injury and diseases. We will specifically highlight the emerging role of Nrg-1 in modulating the glial and immune responses and its capacity to foster neuroprotection and remyelination in CNS injury. Nrg-1/ErbB network is a key regulatory pathway in the developing nervous system; therefore, unraveling its role in neuropathology and repair can aid in development of new therapeutic approaches for nervous system injuries and associated disorders.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
47
|
Islam MS, Khan MAAK, Murad MW, Karim M, Islam ABMMK. In silico analysis revealed Zika virus miRNAs associated with viral pathogenesis through alteration of host genes involved in immune response and neurological functions. J Med Virol 2019; 91:1584-1594. [PMID: 31095749 DOI: 10.1002/jmv.25505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The concurrent Zika Virus (ZIKV) outbreaks in the United States and Northeast Brazil have evoked global surveillance. Zika infection has been correlated with severe clinical symptoms, such as microcephaly, Guillain-Barré syndrome, and other congenital brain abnormalities. Recent data suggest that ZIKV predominantly targets neural progenitor cells leading to neurological impairment. Despite the clinical evidence, detailed experimental mechanism of ZIKV neurotropic pathogenesis has not been fully understood yet. Here we hypothesized that ZIKV produces miRNAs, which target essential host genes involved in various cellular pathways facilitating their survival through immune evasion and progression of disease during brain development. METHODS From genome sequence information using several bioinformatic tools, we predicted pri-miRNAs, pre-miRNAs, and finally the mature miRNAs produced by ZIKV. We also identified their target genes and performed functional enrichment analysis to identify the biological processes associated with these genes. Finally, we analyzed a publicly available RNA-seq data set to determine the altered expression level of the targeted genes. RESULTS From ZIKV genome sequence, we identified and validated 47 putative novel miRNAs. Functional enrichment of the targeted genes demonstrates the involvement of various biological pathways regulating cellular signaling, neurological functions, cancer, and fetal development. The expression analysis of these genes showed that ZIKV-produced miRNAs downregulate the key genes involved in these pathways, which in turn may lead to impaired brain development. CONCLUSIONS Our finding proposes novel ZIKV miRNAs and their targets, which upon experimental validation could help developing new therapeutics to combat ZIKV infection and minimize ZIKV-mediated pathologies.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Md Wahid Murad
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Marwah Karim
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
48
|
Takahashi Y, Uchino A, Shioya A, Sano T, Matsumoto C, Numata-Uematsu Y, Nagano S, Araki T, Murayama S, Saito Y. Altered immunoreactivity of ErbB4, a causative gene product for ALS19, in the spinal cord of patients with sporadic ALS. Neuropathology 2019; 39:268-278. [PMID: 31124187 PMCID: PMC6852233 DOI: 10.1111/neup.12558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
Abstract
ErbB4 is the protein implicated in familial amyotrophic lateral sclerosis (ALS), designated as ALS19. ErbB4 is a receptor tyrosine kinase activated by its ligands, neuregulins (NRG), and plays an essential role in the function and viability of motor neurons. Mutations in the ALS19 gene lead to the reduced autophosphorylation capacity of the ErbB4 protein upon stimulation with NRG‐1, suggesting that the disruption of the NRG–ErbB4 pathway causes motor neuron degeneration. We used immunohistochemistry to study ErbB4 in the spinal cord of patients with sporadic ALS (SALS) to test the hypothesis that ErbB4 may be involved in the pathogenesis of SALS. ErbB4 was specifically immunoreactive in the cytoplasm of motor neurons in the anterior horns of the spinal cord. In patients with SALS, some of the motor neurons lost immunoreactivity with ErbB4, with the proportion of motor neurons with a loss of immunoreactivity correlated with the severity of motor neuron loss. The subcellular localization was altered, demonstrating nucleolar or nuclear localization, threads/dots and spheroids. The ectopic glial immunoreactivity was observed, mainly in the oligodendrocytes of the lateral columns and anterior horns. The reduction in the ErbB4 immunoreactivity was significantly correlated with the cytoplasmic mislocalization of transactivation response DNA‐binding protein 43 kDa (TDP‐43) in the motor neurons. No alteration in immunoreactivity was observed in the motor neurons of mice carrying atransgene for mutant form of the superoxide dismutase 1 gene (SOD1). This study provided compelling evidence that ErbB4 is also involved in the pathophysiology of SALS, and that the disruption of the NRG–ErbB4 pathway may underlie the TDP‐43‐dependent motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Akiko Uchino
- Department of Neurology and Neuropathology and Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Ayako Shioya
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Terunori Sano
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Chihiro Matsumoto
- Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan.,Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yurika Numata-Uematsu
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Seiichi Nagano
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology and Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
49
|
Cheng L, Zhu M. Compositional epistasis detection using a few prototype disease models. PLoS One 2019; 14:e0213236. [PMID: 30917131 PMCID: PMC6436689 DOI: 10.1371/journal.pone.0213236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
We study computational approaches for detecting SNP-SNP interactions that are characterized by a set of "two-locus, two-allele, two-phenotype and complete-penetrance" disease models. We argue that existing methods, which use data to determine a best-fitting disease model for each pair of SNPs prior to screening, may be too greedy. We present a less greedy strategy which, for each given pair of SNPs, limits the number of candidate disease models to a set of prototypes determined a priori.
Collapse
Affiliation(s)
- Lu Cheng
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Mu Zhu
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
50
|
Wang Q, Wang C, Ji B, Zhou J, Yang C, Chen J. Hapln2 in Neurological Diseases and Its Potential as Therapeutic Target. Front Aging Neurosci 2019; 11:60. [PMID: 30949044 PMCID: PMC6437066 DOI: 10.3389/fnagi.2019.00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
Hyaluronan and proteoglycan link protein 2 (Hapln2) is important for the binding of chondroitin sulfate proteoglycans to hyaluronan. Hapln2 deficiency leads to the abnormal expression of extracellular matrix (ECM) proteins and dysfunctional neuronal conductivity, demonstrating the vital role of Hapln2 in these processes. Studies have revealed that Hapln2 promotes the aggregation of α-synuclein, thereby contributing to neurodegeneration in Parkinson’s disease (PD), and it was recently suggested to be in intracellular neurofibrillary tangles (NFTs). Additionally, the expression levels of Hapln2 showed lower in the anterior temporal lobes of individuals with schizophrenia than those of healthy subjects. Together, these studies implicate the involvement of Hapln2 in the pathological processes of neurological diseases. A better understanding of the function of Hapln2 in the central nervous system (CNS) will provide new insights into the molecular mechanisms of these diseases and help to establish promising therapeutic strategies. Herein, we review the recent progress in defining the role of Hapln2 in brain physiology and pathology.
Collapse
Affiliation(s)
- Qinqin Wang
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Chunmei Wang
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Jiawei Zhou
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chunqing Yang
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Key Laboratory, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|