1
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024; 328:221-242. [PMID: 39268652 PMCID: PMC11659939 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E. Edgar
- The London School of Hygiene and Tropical MedicineLondonUK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
2
|
Bigotti MG, Klein K, Gan ES, Anastasina M, Andersson S, Vapalahti O, Katajisto P, Erdmann M, Davidson AD, Butcher SJ, Collinson I, Ooi EE, Balistreri G, Brancaccio A, Yamauchi Y. The α-dystroglycan N-terminus is a broad-spectrum antiviral agent against SARS-CoV-2 and enveloped viruses. Antiviral Res 2024; 224:105837. [PMID: 38387750 PMCID: PMC7616797 DOI: 10.1016/j.antiviral.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/20/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The COVID-19 pandemic has shown the need to develop effective therapeutics in preparedness for further epidemics of virus infections that pose a significant threat to human health. As a natural compound antiviral candidate, we focused on α-dystroglycan, a highly glycosylated basement membrane protein that links the extracellular matrix to the intracellular cytoskeleton. Here we show that the N-terminal fragment of α-dystroglycan (α-DGN), as produced in E. coli in the absence of post-translational modifications, blocks infection of SARS-CoV-2 in cell culture, human primary gut organoids and the lungs of transgenic mice expressing the human receptor angiotensin I-converting enzyme 2 (hACE2). Prophylactic and therapeutic administration of α-DGN reduced SARS-CoV-2 lung titres and protected the mice from respiratory symptoms and death. Recombinant α-DGN also blocked infection of a wide range of enveloped viruses including the four Dengue virus serotypes, influenza A virus, respiratory syncytial virus, tick-borne encephalitis virus, but not human adenovirus, a non-enveloped virus in vitro. This study establishes soluble recombinant α-DGN as a broad-band, natural compound candidate therapeutic against enveloped viruses.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK; School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | - Katja Klein
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | - Esther S Gan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Maria Anastasina
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Simon Andersson
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pekka Katajisto
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Solna, Sweden
| | - Maximilian Erdmann
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ian Collinson
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, 20 College Road, Singapore, 169856, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #10-01, Singapore, 117549, Singapore
| | - Giuseppe Balistreri
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Andrea Brancaccio
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK; Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Rome, Italy.
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK; Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, 8093, Zurich, Switzerland; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
3
|
Yang X. Passive antibody therapy in emerging infectious diseases. Front Med 2023; 17:1117-1134. [PMID: 38040914 DOI: 10.1007/s11684-023-1021-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 12/03/2023]
Abstract
The epidemic of corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome Coronavirus 2 and its variants of concern (VOCs) has been ongoing for over 3 years. Antibody therapies encompassing convalescent plasma, hyperimmunoglobulin, and neutralizing monoclonal antibodies (mAbs) applied in passive immunotherapy have yielded positive outcomes and played a crucial role in the early COVID-19 treatment. In this review, the development path, action mechanism, clinical research results, challenges, and safety profile associated with the use of COVID-19 convalescent plasma, hyperimmunoglobulin, and mAbs were summarized. In addition, the prospects of applying antibody therapy against VOCs was assessed, offering insights into the coping strategies for facing new infectious disease outbreaks.
Collapse
Affiliation(s)
- Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China.
- China National Biotec Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
4
|
Anantharaj A, Agrawal T, Shashi PK, Tripathi A, Kumar P, Khan I, Pareek M, Singh B, Pattabiraman C, Kumar S, Pandey R, Chandele A, Lodha R, Whitehead SS, Medigeshi GR. Neutralizing antibodies from prior exposure to dengue virus negatively correlate with viremia on re-infection. COMMUNICATIONS MEDICINE 2023; 3:148. [PMID: 37857747 PMCID: PMC10587183 DOI: 10.1038/s43856-023-00378-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND India is hyperendemic to dengue and over 50% of adults are seropositive. There is limited information on the association between neutralizing antibody profiles from prior exposure and viral RNA levels during subsequent infection. METHODS Samples collected from patients with febrile illness was used to assess seropositivity by indirect ELISA. Dengue virus (DENV) RNA copy numbers were estimated by quantitative RT-PCR and serotype of the infecting DENV was determined by nested PCR. Focus reduction neutralizing antibody titer (FRNT) assay was established using Indian isolates to measure the levels of neutralizing antibodies and also to assess the cross-reactivity to related flaviviruses namely Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV). RESULTS In this cross-sectional study, we show that dengue seropositivity increased from 52% in the 0-15 years group to 89% in >45 years group. Antibody levels negatively correlate with dengue RNAemia on the day of sample collection and higher RNAemia is observed in primary dengue as compared to secondary dengue. The geometric mean FRNT50 titers for DENV-2 is significantly higher as compared to the other three DENV serotypes. We observe cross-reactivity with ZIKV and significantly lower or no neutralizing antibodies against JEV and WNV. The FRNT50 values for international isolates of DENV-1, DENV-3 and DENV-4 is significantly lower as compared to Indian isolates. CONCLUSIONS Majority of the adult population in India have neutralizing antibodies to all the four DENV serotypes which correlates with reduced RNAemia during subsequent infection suggesting that antibodies can be considered as a good correlate of protection.
Collapse
Affiliation(s)
- Anbalagan Anantharaj
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tanvi Agrawal
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Pooja Kumari Shashi
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Alok Tripathi
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Parveen Kumar
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Imran Khan
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Madhu Pareek
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Balwant Singh
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | | | - Saurabh Kumar
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guruprasad R Medigeshi
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| |
Collapse
|
5
|
Yamin R, Kao KS, MacDonald MR, Cantaert T, Rice CM, Ravetch JV, Bournazos S. Human FcγRIIIa activation on splenic macrophages drives dengue pathogenesis in mice. Nat Microbiol 2023; 8:1468-1479. [PMID: 37429907 PMCID: PMC10753935 DOI: 10.1038/s41564-023-01421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/01/2023] [Indexed: 07/12/2023]
Abstract
Although dengue virus (DENV) infection typically causes asymptomatic disease, DENV-infected patients can experience severe complications. A risk factor for symptomatic disease is pre-existing anti-DENV IgG antibodies. Cellular assays suggested that these antibodies can enhance viral infection of Fcγ receptor (FcγR)-expressing myeloid cells. Recent studies, however, revealed more complex interactions between anti-DENV antibodies and specific FcγRs by demonstrating that modulation of the IgG Fc glycan correlates with disease severity. To investigate the in vivo mechanisms of antibody-mediated dengue pathogenesis, we developed a mouse model for dengue disease that recapitulates the unique complexity of human FcγRs. In in vivo mouse models of dengue disease, we discovered that the pathogenic activity of anti-DENV antibodies is exclusively mediated through engagement of FcγRIIIa on splenic macrophages, resulting in inflammatory sequelae and mortality. These findings highlight the importance of IgG-FcγRIIIa interactions in dengue, with important implications for the design of safer vaccination approaches and effective therapeutic strategies.
Collapse
Affiliation(s)
- Rachel Yamin
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Kevin S Kao
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Ooi EE, Kalimuddin S. Insights into dengue immunity from vaccine trials. Sci Transl Med 2023; 15:eadh3067. [PMID: 37437017 DOI: 10.1126/scitranslmed.adh3067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The quest for an effective dengue vaccine has culminated in two approved vaccines and another that has completed phase 3 clinical trials. However, shortcomings exist in each, suggesting that the knowledge on dengue immunity used to develop these vaccines was incomplete. Vaccine trial findings could refine our understanding of dengue immunity, because these are experimentally derived, placebo-controlled data. Results from these trials suggest that neutralizing antibody titers alone are insufficient to inform protection against symptomatic infection, implicating a role for cellular immunity in protection. These findings have relevance for both future dengue vaccine development and application of current vaccines for maximal public health benefit.
Collapse
Affiliation(s)
- Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Shirin Kalimuddin
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore 169856, Singapore
| |
Collapse
|
7
|
Sun H, Yang M, Lai H, Neupane B, Teh AYH, Jugler C, Ma JKC, Steinkellner H, Bai F, Chen Q. A Dual-Approach Strategy to Optimize the Safety and Efficacy of Anti-Zika Virus Monoclonal Antibody Therapeutics. Viruses 2023; 15:1156. [PMID: 37243242 PMCID: PMC10221487 DOI: 10.3390/v15051156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Antibody-dependent enhancement of infection (ADE) is clinically relevant to Dengue virus (DENV) infection and poses a major risk to the application of monoclonal antibody (mAb)-based therapeutics against related flaviviruses such as the Zika virus (ZIKV). Here, we tested a two-tier approach for selecting non-cross-reactive mAbs combined with modulating Fc glycosylation as a strategy to doubly secure the elimination of ADE while preserving Fc effector functions. To this end, we selected a ZIKV-specific mAb (ZV54) and generated three ZV54 variants using Chinese hamster ovary cells and wild-type (WT) and glycoengineered ΔXF Nicotiana benthamiana plants as production hosts (ZV54CHO, ZV54WT, and ZV54ΔXF). The three ZV54 variants shared an identical polypeptide backbone, but each exhibited a distinct Fc N-glycosylation profile. All three ZV54 variants showed similar neutralization potency against ZIKV but no ADE activity for DENV infection, validating the importance of selecting the virus/serotype-specific mAbs for avoiding ADE by related flaviviruses. For ZIKV infection, however, ZV54CHO and ZV54ΔXF showed significant ADE activity while ZV54WT completely forwent ADE, suggesting that Fc glycan modulation may yield mAb glycoforms that abrogate ADE even for homologous viruses. In contrast to the current strategies for Fc mutations that abrogate all effector functions along with ADE, our approach allowed the preservation of effector functions as all ZV54 glycovariants retained antibody-dependent cellular cytotoxicity (ADCC) against the ZIKV-infected cells. Furthermore, the ADE-free ZV54WT demonstrated in vivo efficacy in a ZIKV-infection mouse model. Collectively, our study provides further support for the hypothesis that antibody-viral surface antigen and Fc-mediated host cell interactions are both prerequisites for ADE, and that a dual-approach strategy, as shown herein, contributes to the development of highly safe and efficacious anti-ZIKV mAb therapeutics. Our findings may be impactful to other ADE-prone viruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Haiyan Sun
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Ming Yang
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Huafang Lai
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Biswas Neupane
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Audrey Y.-H. Teh
- Institute for Infection and Immunity, St. George’s, University of London, London SW17 0RE, UK
| | - Collin Jugler
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Julian K.-C. Ma
- Institute for Infection and Immunity, St. George’s, University of London, London SW17 0RE, UK
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Fengwei Bai
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
8
|
Yang M, Sun H, Lai H, Neupane B, Bai F, Steinkellner H, Chen Q. Plant-Produced Anti-Zika Virus Monoclonal Antibody Glycovariant Exhibits Abrogated Antibody-Dependent Enhancement of Infection. Vaccines (Basel) 2023; 11:755. [PMID: 37112665 PMCID: PMC10144123 DOI: 10.3390/vaccines11040755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Monoclonal antibodies (mAb) against the envelope (E) protein of Zika virus (ZIKV) have shown great potential as therapeutics against the Zika epidemics. However, their use as a therapy may predispose treated individuals to severe infection by the related dengue virus (DENV) via antibody-dependent enhancement of infection (ADE). Here, we generated a broadly neutralizing flavivirus mAb, ZV1, with an identical protein backbone but different Fc glycosylation profiles. The three glycovariants, produced in wild-type (WT) and glycoengineered ΔXF Nicotiana benthamiana plants and in Chinese hamster ovary cells (ZV1WT, ZV1ΔXF, and ZV1CHO), respectively, showed equivalent neutralization potency against both ZIKV and DENV. By contrast, the three mAb glycoforms demonstrated drastically different ADE activity for DENV and ZIKV infection. While ZV1CHO and ZV1ΔXF showed ADE activity upon DENV and ZIKV infection, ZV1WT totally forwent its ADE. Importantly, all three glycovariants exhibited antibody-dependent cellular cytotoxicity (ADCC) against virus-infected cells, with increased potency by the fucose-free ZV1ΔXF glycoform. Moreover, the in vivo efficacy of the ADE-free ZV1WT was demonstrated in a murine model. Collectively, we demonstrated the feasibility of modulating ADE by Fc glycosylation, thereby establishing a novel approach for improving the safety of flavivirus therapeutics. Our study also underscores the versatile use of plants for the rapid expression of complex human proteins to reveal novel insight into antibody function and viral pathogenesis.
Collapse
Affiliation(s)
- Ming Yang
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85225, USA
| | - Haiyan Sun
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85225, USA
| | - Huafang Lai
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85225, USA
| | - Biswas Neupane
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85225, USA
| |
Collapse
|
9
|
Teo A, Tan HD, Loy T, Chia PY, Chua CLL. Understanding antibody-dependent enhancement in dengue: Are afucosylated IgG1s a concern? PLoS Pathog 2023; 19:e1011223. [PMID: 36996026 PMCID: PMC10062565 DOI: 10.1371/journal.ppat.1011223] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Affiliation(s)
- Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Hao Dong Tan
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Thomas Loy
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Po Ying Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|
10
|
Dengue virus infection - a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res 2023; 324:199018. [PMID: 36493993 DOI: 10.1016/j.virusres.2022.199018] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/19/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
The transmission of dengue virus (DENV) from an infected Aedes mosquito to a human, causes illness ranging from mild dengue fever to fatal dengue shock syndrome. The similar conserved structure and sequence among distinct DENV serotypes or different flaviviruses has resulted in the occurrence of cross reaction followed by antibody-dependent enhancement (ADE). Thus far, the vaccine which can provide effective protection against infection by different DENV serotypes remains the biggest hurdle to overcome. Therefore, deep investigation is crucial for the potent and effective therapeutic drugs development. In addition, the cross-reactivity of flaviviruses that leads to false diagnosis in clinical settings could result to delay proper intervention management. Thus, the accurate diagnostic with high specificity and sensitivity is highly required to provide prompt diagnosis in respect to render early treatment for DENV infected individuals. In this review, the recent development of neutralizing antibodies, antiviral agents, and vaccine candidates in therapeutic platform for DENV infection will be discussed. Moreover, the discovery of antigenic cryptic epitopes, principle of molecular mimicry, and application of single-chain or single-domain antibodies towards DENV will also be presented.
Collapse
|
11
|
Gil Gonzalez L, Fernandez-Marrero Y, Norris PAA, Tawhidi Z, Shan Y, Cruz-Leal Y, Won KD, Frias-Boligan K, Branch DR, Lazarus AH. THP-1 cells transduced with CD16A utilize Fcγ receptor I and III in the phagocytosis of IgG-sensitized human erythrocytes and platelets. PLoS One 2022; 17:e0278365. [PMID: 36516219 PMCID: PMC9749970 DOI: 10.1371/journal.pone.0278365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Fc gamma receptors (FcγRs) are critical effector receptors for immunoglobulin G (IgG) antibodies. On macrophages, FcγRs mediate multiple effector functions, including phagocytosis, but the individual contribution of specific FcγRs to phagocytosis has not been fully characterized. Primary human macrophage populations, such as splenic macrophages, can express FcγRI, FcγRIIA, and FcγRIIIA. However, there is currently no widely available monocyte or macrophage cell line expressing all these receptors. Common sources of monocytes for differentiation into macrophages, such as human peripheral blood monocytes and the monocytic leukemia cell line THP-1, generally lack the expression of FcγRIIIA (CD16A). Here, we utilized a lentiviral system to generate THP-1 cells stably expressing human FcγRIIIA (CD16F158). THP-1-CD16A cells treated with phorbol 12-myristate 13-acetate for 24 hours phagocytosed anti-D-opsonized human red blood cells primarily utilizing FcγRI with a lesser but significant contribution of IIIA while phagocytosis of antibody-opsonized human platelets equally utilized FcγRI and Fcγ IIIA. Despite the well-known ability of FcγRIIA to bind IgG in cell free systems, this receptor did not appear to be involved in either RBC or platelet phagocytosis. These transgenic cells may constitute a valuable tool for studying macrophage FcγR utilization and function.
Collapse
Affiliation(s)
- Lazaro Gil Gonzalez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
| | | | - Peter Alan Albert Norris
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Zoya Tawhidi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yuexin Shan
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
| | - Yoelys Cruz-Leal
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
| | - Kevin Doyoon Won
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kayluz Frias-Boligan
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
| | - Donald R. Branch
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alan H. Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
12
|
Singh T, Hwang KK, Miller AS, Jones RL, Lopez CA, Dulson SJ, Giuberti C, Gladden MA, Miller I, Webster HS, Eudailey JA, Luo K, Von Holle T, Edwards RJ, Valencia S, Burgomaster KE, Zhang S, Mangold JF, Tu JJ, Dennis M, Alam SM, Premkumar L, Dietze R, Pierson TC, Eong Ooi E, Lazear HM, Kuhn RJ, Permar SR, Bonsignori M. A Zika virus-specific IgM elicited in pregnancy exhibits ultrapotent neutralization. Cell 2022; 185:4826-4840.e17. [PMID: 36402135 PMCID: PMC9742325 DOI: 10.1016/j.cell.2022.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.
Collapse
Affiliation(s)
- Tulika Singh
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew S. Miller
- Department of Biological Sciences, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Rebecca L. Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cesar A. Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah J. Dulson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camila Giuberti
- Núcleo de Doenças Infecciosas—Universidade Federal do Espírito Santo, Vitoria, Espírito Santo 29075-910, Brazil
| | - Morgan A. Gladden
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Itzayana Miller
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Helen S. Webster
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua A. Eudailey
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Kan Luo
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sarah Valencia
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katherine E. Burgomaster
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Summer Zhang
- Duke-National University of Singapore Medical School, 169857, Singapore
| | - Jesse F. Mangold
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria Dennis
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas—Universidade Federal do Espírito Santo, Vitoria, Espírito Santo 29075-910, Brazil,Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Eng Eong Ooi
- Duke-National University of Singapore Medical School, 169857, Singapore
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA,Senior author. These authors contributed equally,Correspondence: (S.R.P.), (M.B.)
| | - Mattia Bonsignori
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Ng WC, Kwek SS, Sun B, Yousefi M, Ong EZ, Tan HC, Puschnik AS, Chan KR, Ooi YS, Ooi EE. A fast-growing dengue virus mutant reveals a dual role of STING in response to infection. Open Biol 2022; 12:220227. [PMID: 36514984 PMCID: PMC9748785 DOI: 10.1098/rsob.220227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The four dengue viruses (DENVs) have evolved multiple mechanisms to ensure its survival. Among these mechanisms is the ability to regulate its replication rate, which may contribute to avoiding premature immune activation that limit infection dissemination: DENVs associated with dengue epidemics have shown slower replication rate than pre-epidemic strains. Correspondingly, wild-type DENVs replicate more slowly than their clinically attenuated derivatives. To understand how DENVs 'make haste slowly', we generated and screened for DENV2 mutants with accelerated replication that also induced high type-I interferon (IFN) expression in infected cells. We chanced upon a single NS2B-I114T amino acid substitution, in an otherwise highly conserved amino acid residue. Accelerated DENV2 replication damaged host DNA as mutant infection was dependent on host DNA damage repair factors, namely RAD21, EID3 and NEK5. DNA damage induced cGAS/STING signalling and activated early type-I IFN response that inhibited infection dissemination. Unexpectedly, STING activation also supported mutant DENV replication in infected cells through STING-induced autophagy. Our findings thus show that DENV NS2B has multi-faceted role in controlling DENV replication rate and immune evasion and suggest that the dual role of STING in supporting virus replication within infected cells but inhibiting infection dissemination could be particularly advantageous for live attenuated vaccine development.
Collapse
Affiliation(s)
- Wy Ching Ng
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Swee Sen Kwek
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Bo Sun
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Meisam Yousefi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Eugenia Z. Ong
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore,Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Center, Singapore 169856, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | | | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Yaw Shin Ooi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore,Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Center, Singapore 169856, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
14
|
Farouq MAH, Acevedo R, Ferro VA, Mulheran PA, Al Qaraghuli MM. The Role of Antibodies in the Treatment of SARS-CoV-2 Virus Infection, and Evaluating Their Contribution to Antibody-Dependent Enhancement of Infection. Int J Mol Sci 2022; 23:6078. [PMID: 35682757 PMCID: PMC9181534 DOI: 10.3390/ijms23116078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Antibodies play a crucial role in the immune response, in fighting off pathogens as well as helping create strong immunological memory. Antibody-dependent enhancement (ADE) occurs when non-neutralising antibodies recognise and bind to a pathogen, but are unable to prevent infection, and is widely known and is reported as occurring in infection caused by several viruses. This narrative review explores the ADE phenomenon, its occurrence in viral infections and evaluates its role in infection by SARS-CoV-2 virus, which causes coronavirus disease 2019 (COVID-19). As of yet, there is no clear evidence of ADE in SARS-CoV-2, though this area is still subject to further study.
Collapse
Affiliation(s)
- Mohammed A. H. Farouq
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK; (P.A.M.); (M.M.A.Q.)
| | - Reinaldo Acevedo
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Paul A. Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK; (P.A.M.); (M.M.A.Q.)
| | - Mohammed M. Al Qaraghuli
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK; (P.A.M.); (M.M.A.Q.)
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| |
Collapse
|
15
|
Taraphdar D, Singh B, Pattanayak S, Kiran A, Kokavalla P, Alam MF, Syed GH. Comodulation of Dengue and Chikungunya Virus Infection During a Coinfection Scenario in Human Cell Lines. Front Cell Infect Microbiol 2022; 12:821061. [PMID: 35573775 PMCID: PMC9097606 DOI: 10.3389/fcimb.2022.821061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Dengue virus (DENV) and Chikungunya virus (CHIKV) are the arboviruses that pose a threat to global public health. Coinfection and antibody-dependent enhancement are major areas of concern during DENV and CHIKV infections, which can alter the clinical severity. Acute hepatic illness is a common manifestation and major sign of disease severity upon infection with either dengue or chikungunya. Hence, in this study, we characterized the coexistence and interaction between both the viruses in human hepatic (Huh7) cells during the coinfection/superinfection scenario. We observed that prior presence of or subsequent superinfection with DENV enhanced CHIKV replication. However, prior CHIKV infection negatively affected DENV. In comparison to monoinfection, coinfection with both DENV and CHIKV resulted in lower infectivity as compared to monoinfections with modest suppression of CHIKV but dramatic suppression of DENV replication. Subsequent investigations revealed that subneutralizing levels of DENV or CHIKV anti-sera can respectively promote the ADE of CHIKV or DENV infection in FcγRII bearing human myelogenous leukemia cell line K562. Our observations suggest that CHIKV has a fitness advantage over DENV in hepatic cells and prior DENV infection may enhance CHIKV disease severity if the patient subsequently contracts CHIKV. This study highlights the natural possibility of dengue-chikungunya coinfection and their subsequent modulation in human hepatic cells. These observations have important implications in regions where both viruses are prevalent and calls for proper management of DENV-CHIKV coinfected patients.
Collapse
Affiliation(s)
- Debjani Taraphdar
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Bharati Singh
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Sabyasachi Pattanayak
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Avula Kiran
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Poornima Kokavalla
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd. Faraz Alam
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Gulam Hussain Syed
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
16
|
Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research? Pathogens 2021; 10:pathogens10101233. [PMID: 34684182 PMCID: PMC8537471 DOI: 10.3390/pathogens10101233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
In order to prevent new pathogen outbreaks and avoid possible new global health threats, it is important to study the mechanisms of microbial pathogenesis, screen new antiviral agents and test new vaccines using the best methods. In the last decade, organoids have provided a groundbreaking opportunity for modeling pathogen infections in human brains, including Zika virus (ZIKV) infection. ZIKV is a member of the Flavivirus genus, and it is recognized as an emerging infectious agent and a serious threat to global health. Organoids are 3D complex cellular models that offer an in-scale organ that is physiologically alike to the original one, useful for exploring the mechanisms behind pathogens infection; additionally, organoids integrate data generated in vitro with traditional tools and often support those obtained in vivo with animal model. In this mini-review the value of organoids for ZIKV research is examined and sustained by the most recent literature. Within a 3D viewpoint, tissue engineered models are proposed as future biological systems to help in deciphering pathogenic processes and evaluate preventive and therapeutic strategies against ZIKV. The next steps in this field constitute a challenge that may protect people and future generations from severe brain defects.
Collapse
|
17
|
Fay PC, Mohd Jaafar F, Batten C, Attoui H, Saunders K, Lomonossoff GP, Reid E, Horton D, Maan S, Haig D, Daly JM, Mertens PPC. Serological Cross-Reactions between Expressed VP2 Proteins from Different Bluetongue Virus Serotypes. Viruses 2021; 13:1455. [PMID: 34452321 PMCID: PMC8402635 DOI: 10.3390/v13081455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/26/2023] Open
Abstract
Bluetongue (BT) is a severe and economically important disease of ruminants that is widely distributed around the world, caused by the bluetongue virus (BTV). More than 28 different BTV serotypes have been identified in serum neutralisation tests (SNT), which, along with geographic variants (topotypes) within each serotype, reflect differences in BTV outer-capsid protein VP2. VP2 is the primary target for neutralising antibodies, although the basis for cross-reactions and serological variations between and within BTV serotypes is poorly understood. Recombinant BTV VP2 proteins (rVP2) were expressed in Nicotiana benthamiana, based on sequence data for isolates of thirteen BTV serotypes (primarily from Europe), including three 'novel' serotypes (BTV-25, -26 and -27) and alternative topotypes of four serotypes. Cross-reactions within and between these viruses were explored using rabbit anti-rVP2 sera and post BTV-infection sheep reference-antisera, in I-ELISA (with rVP2 target antigens) and SNT (with reference strains of BTV-1 to -24, -26 and -27). Strong reactions were generally detected with homologous rVP2 proteins or virus strains/serotypes. The sheep antisera were largely serotype-specific in SNT, but more cross-reactive by ELISA. Rabbit antisera were more cross-reactive in SNT, and showed widespread, high titre cross-reactions against homologous and heterologous rVP2 proteins in ELISA. Results were analysed and visualised by antigenic cartography, showing closer relationships in some, but not all cases, between VP2 topotypes within the same serotype, and between serotypes belonging to the same 'VP2 nucleotype'.
Collapse
Affiliation(s)
- Petra C. Fay
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
- The Pirbright Institute, Surrey, Woking GU24 ONF, UK;
| | - Fauziah Mohd Jaafar
- UMR VIROLOGIE 1161, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (F.M.J.); (H.A.)
| | - Carrie Batten
- The Pirbright Institute, Surrey, Woking GU24 ONF, UK;
| | - Houssam Attoui
- UMR VIROLOGIE 1161, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (F.M.J.); (H.A.)
| | - Keith Saunders
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (K.S.); (G.P.L.)
| | - George P. Lomonossoff
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (K.S.); (G.P.L.)
| | - Elizabeth Reid
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| | - Daniel Horton
- Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK;
| | - Sushila Maan
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar 125004, India;
| | - David Haig
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| | - Peter P. C. Mertens
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| |
Collapse
|
18
|
Li B, Cui Y, Wang X, Tang R. Novel nanomaterial-organism hybrids with biomedical potential. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1706. [PMID: 33644977 DOI: 10.1002/wnan.1706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/29/2022]
Abstract
Instinctive hierarchically biomineralized structures of various organisms, such as eggs, algae, and magnetotactic bacteria, afford extra protection and distinct performance, which endow fragile organisms with a tenacious ability to adapt and survive. However, spontaneous formation of hybrid materials is difficult for most organisms in nature. Rapid development of chemistry and materials science successfully obtained the combinations of organisms with nanomaterials by biomimetic mineralization thus demonstrating the reproduction of the structures and functions and generation of novel functions that organisms do not possess. The rational design of biomaterial-organism hybridization can control biological recognition, interactions, and metabolism of the organisms. Thus, nanomaterial-organism hybrids represent a next generation of organism engineering with great potential biomedical applications. This review summarizes recent advances in material-directed organism engineering and is mainly focused on biomimetic mineralization technologies and their outstanding biomedical applications. Three representative types of biomimetic mineralization are systematically introduced, including external mineralization, internal mineralization, and genetic engineering mineralization. The methods involving hybridization of nanomaterials and organisms based on biomimetic mineralization strategies are described. These strategies resulted in applications of various nanomaterial-organism hybrids with multiplex functions in cell engineering, cancer treatment, and vaccine improvement. Unlike classical biological approaches, this material-based bioregulation is universal, effective, and inexpensive. In particular, instead of traditional medical solutions, the integration of nanomaterials and organisms may exploit novel strategies to solve current biomedical problems. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Benke Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China.,Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Gan ES, Tan HC, Le DHT, Huynh TT, Wills B, Seidah NG, Ooi EE, Yacoub S. Dengue virus induces PCSK9 expression to alter antiviral responses and disease outcomes. J Clin Invest 2021; 130:5223-5234. [PMID: 32644974 PMCID: PMC7524462 DOI: 10.1172/jci137536] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Dengue virus (DENV) infection requires cholesterol as a proviral factor, although statin treatment did not show antiviral efficacy in patients with dengue. Here, we show that DENV infection manipulated cholesterol metabolism in cells residing in low-oxygen microenvironments (hypoxia) such as in the liver, spleen, and lymph nodes. DENV infection induced expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), which reduces low-density lipoprotein receptor (LDLR) recycling and hence cholesterol uptake. We found that, whereas LDLR uptake would have distributed cholesterol throughout the various cell compartments, de novo cholesterol synthesis enriched this lipid in the endoplasmic reticulum (ER). With cholesterol enrichment in the ER, ER-resident STING and type I IFN (IFN) activation was repressed during DENV infection. Our in vitro findings were further supported by the detection of elevated plasma PCSK9 levels in patients with dengue with high viremia and increased severity of plasma leakage. Our findings therefore suggest that PCSK9 plays a hitherto unrecognized role in dengue pathogenesis and that PCSK9 inhibitors could be a suitable host-directed treatment for patients with dengue.
Collapse
Affiliation(s)
| | - Hwee Cheng Tan
- Duke-National University of Singapore Medical School, Singapore
| | - Duyen Huynh Thi Le
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Trieu Trung Huynh
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Bridget Wills
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Université de Montréal, Montréal, Québec, Canada
| | - Eng Eong Ooi
- Duke-National University of Singapore Medical School, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,SingHealth Duke-National University of Singapore Global Health Institute, Singapore.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore MIT Alliance in Research and Technology, Singapore
| | - Sophie Yacoub
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore MIT Alliance in Research and Technology, Singapore
| |
Collapse
|
20
|
The Influence of Immune Immaturity on Outcome After Virus Infections. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:641-650. [PMID: 33551039 PMCID: PMC8042246 DOI: 10.1016/j.jaip.2020.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Maturation of the adaptive immune response is typically thought to improve outcome to virus infections. However, long-standing observations of natural infections with old viruses such as Epstein-Barr virus and newer observations of emerging viruses such as severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 suggest that immune immaturity may be beneficial for outcome. Mechanistic studies and studies of patients with inborn errors of immunity have revealed that immune dysregulation reflecting inappropriate antibody and T-cell responses plays a crucial role in causing bystander inflammation and more severe disease. Further evidence supports a role for innate immunity in normally regulating adaptive immune responses. Thus, changes in immune responses that normally occur with age may help explain an apparent protective role of immune immaturity during virus infections.
Collapse
|
21
|
Upasani V, Vo HTM, Auerswald H, Laurent D, Heng S, Duong V, Rodenhuis-Zybert IA, Dussart P, Cantaert T. Direct Infection of B Cells by Dengue Virus Modulates B Cell Responses in a Cambodian Pediatric Cohort. Front Immunol 2021; 11:594813. [PMID: 33643283 PMCID: PMC7907177 DOI: 10.3389/fimmu.2020.594813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Dengue is an acute viral disease caused by dengue virus (DENV), which is transmitted by Aedes mosquitoes. Symptoms of DENV infection range from inapparent to severe and can be life-threatening. DENV replicates in primary immune cells such as dendritic cells and macrophages, which contribute to the dissemination of the virus. Susceptibility of other immune cells such as B cells to direct infection by DENV and their subsequent response to infection is not well defined. In a cohort of 60 Cambodian children, we showed that B cells are susceptible to DENV infection. Moreover, we show that B cells can support viral replication of laboratory adapted and patient-derived DENV strains. B cells were permissive to DENV infection albeit low titers of infectious virions were released in cell supernatants CD300a, a phosphatidylserine receptor, was identified as a potential attachment factor or receptor for entry of DENV into B cells. In spite of expressing Fcγ-receptors, antibody-mediated enhancement of DENV infection was not observed in B cells in an in vitro model. Direct infection by DENV induced proliferation of B cells in dengue patients in vivo and plasmablast/plasma cell formation in vitro. To summarize, our results show that B cells are susceptible to direct infection by DENV via CD300a and the subsequent B cell responses could contribute to dengue pathogenesis.
Collapse
Affiliation(s)
- Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia.,Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Denis Laurent
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Sothy Heng
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Izabela A Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| |
Collapse
|
22
|
Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nat Commun 2021; 12:264. [PMID: 33431876 PMCID: PMC7801428 DOI: 10.1038/s41467-020-20465-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 01/10/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Neutralizing antibodies against SARS-CoV-2 are an option for drug development for treating COVID-19. Here, we report the identification and characterization of two groups of mouse neutralizing monoclonal antibodies (MAbs) targeting the receptor-binding domain (RBD) on the SARS-CoV-2 spike (S) protein. MAbs 2H2 and 3C1, representing the two antibody groups, respectively, bind distinct epitopes and are compatible in formulating a noncompeting antibody cocktail. A humanized version of the 2H2/3C1 cocktail is found to potently neutralize authentic SARS-CoV-2 infection in vitro with half inhibitory concentration (IC50) of 12 ng/mL and effectively treat SARS-CoV-2-infected mice even when administered at as late as 24 h post-infection. We determine an ensemble of cryo-EM structures of 2H2 or 3C1 Fab in complex with the S trimer up to 3.8 Å resolution, revealing the conformational space of the antigen–antibody complexes and MAb-triggered stepwise allosteric rearrangements of the S trimer, delineating a previously uncharacterized dynamic process of coordinated binding of neutralizing antibodies to the trimeric S protein. Our findings provide important information for the development of MAb-based drugs for preventing and treating SARS-CoV-2 infections. Here, the authors identify and characterize two mouse-derived monoclonal antibodies against SARS-CoV-2 spike protein that target different epitopes in RBD and block the interaction S/ACE2 and show that a formulated humanized version cocktail exhibits prophylaxis and therapeutic antiviral effects in an hACE2-adenovector expressed mouse model.
Collapse
|
23
|
Xu L, Ma Z, Li Y, Pang Z, Xiao S. Antibody dependent enhancement: Unavoidable problems in vaccine development. Adv Immunol 2021; 151:99-133. [PMID: 34656289 PMCID: PMC8438590 DOI: 10.1016/bs.ai.2021.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In some cases, antibodies can enhance virus entry and replication in cells. This phenomenon is called antibody-dependent infection enhancement (ADE). ADE not only promotes the virus to be recognized by the target cell and enters the target cell, but also affects the signal transmission in the target cell. Early formalin-inactivated virus vaccines such as aluminum adjuvants (RSV and measles) have been shown to induce ADE. Although there is no direct evidence that there is ADE in COVID-19, this potential risk is a huge challenge for prevention and vaccine development. This article focuses on the virus-induced ADE phenomenon and its molecular mechanism. It also summarizes various attempts in vaccine research and development to eliminate the ADE phenomenon, and proposes to avoid ADE in vaccine development from the perspective of antigens and adjuvants.
Collapse
|
24
|
Byrne AB, Talarico LB. Role of the complement system in antibody-dependent enhancement of flavivirus infections. Int J Infect Dis 2020; 103:404-411. [PMID: 33352325 DOI: 10.1016/j.ijid.2020.12.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/26/2022] Open
Abstract
Flavivirus infections have increased dramatically in the last decades in tropical and subtropical regions of the world. Antibody-dependent enhancement of dengue virus infections has been one of the main hypotheses to explain severity of disease and one of the major challenges to safe and effective vaccine development. In the presence of cross-reactive sub-neutralizing concentrations of anti-dengue antibodies, immune complexes can amplify viral infection in mononuclear phagocytic cells, triggering a cytokine cascade and activating the complement system that leads to severe disease. The complement system comprises a family of plasma and cellular surface proteins that recognize pathogen associated molecular patterns, modified ligands and immune complexes, interacting in a regulated manner and forming an enzymatic cascade. Pathogenic as well as protective effects of complement have been reported in flavivirus infections. This review provides updated knowledge on complement activation during flavivirus infection, including antiviral effects of complement and its regulation, as well as mechanisms of complement evasion and dysregulation of complement activity during viral infection leading to pathogenesis. Particularly, insights into classical pathway activation and its protective role on antibody-dependent enhancement of flavivirus infections are highlighted.
Collapse
Affiliation(s)
- Alana B Byrne
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Unidad de Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires 1425, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| | - Laura B Talarico
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Unidad de Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires 1425, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| |
Collapse
|
25
|
Shukla R, Ramasamy V, Shanmugam RK, Ahuja R, Khanna N. Antibody-Dependent Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Front Cell Infect Microbiol 2020; 10:572681. [PMID: 33194810 PMCID: PMC7642463 DOI: 10.3389/fcimb.2020.572681] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 01/05/2023] Open
Abstract
In 2019, the United States Food and Drug Administration accorded restricted approval to Sanofi Pasteur's Dengvaxia, a live attenuated vaccine (LAV) for dengue fever, a mosquito-borne viral disease, caused by four antigenically distinct dengue virus serotypes (DENV 1-4). The reason for this limited approval is the concern that this vaccine sensitized some of the dengue-naïve recipients to severe dengue fever. Recent knowledge about the nature of the immune response elicited by DENV viruses suggests that all LAVs have inherent capacity to predominantly elicit antibodies (Abs) against the pre-membrane (prM) and fusion loop epitope (FLE) of DENV. These antibodies are generally cross-reactive among DENV serotypes carrying a higher risk of promoting Antibody-Dependent Enhancement (ADE). ADE is a phenomenon in which suboptimal neutralizing or non-neutralizing cross-reactive antibodies bind to virus and facilitate Fcγ receptor mediated enhanced entry into host cells, followed by its replication, and thus increasing the cellular viral load. On the other hand, antibody responses directed against the host-cell receptor binding domain of DENV envelope domain-III (EDIII), exhibit a higher degree of type-specificity with lower potential of ADE. The challenges associated with whole DENV-based vaccine strategies necessitate re-focusing our attention toward the designed dengue vaccine candidates, capable of inducing predominantly type-specific immune responses. If the designed vaccines elicited predominantly EDIII-directed serotype specific antibodies in the absence of prM and FLE antibodies, this could avoid the ADE phenomenon largely associated with the prM and FLE antibodies. The generation of type-specific antibodies to each of the four DENV serotypes by the designed vaccines could avoid the immune evasion mechanisms of DENVs. For the enhanced vaccine safety, all dengue vaccine candidates should be assessed for the extent of type-specific (minimal ADE) vs. cross-reactive (ADE promoting) neutralizing antibodies. The type-specific EDIII antibodies may be more directly related to protection from disease in the absence of ADE promoted by the cross-reactive antibodies.
Collapse
Affiliation(s)
- Rahul Shukla
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Viswanathan Ramasamy
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rajgokul K Shanmugam
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Richa Ahuja
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Navin Khanna
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
26
|
Yau C, Gan ES, Kwek SS, Tan HC, Ong EZ, Hamis NZ, Rivino L, Chan KR, Watanabe S, Vasudevan SG, Ooi EE. Live vaccine infection burden elicits adaptive humoral and cellular immunity required to prevent Zika virus infection. EBioMedicine 2020; 61:103028. [PMID: 33045466 PMCID: PMC7553235 DOI: 10.1016/j.ebiom.2020.103028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The emergence of Zika virus (ZIKV) as an important cause of congenital and childhood developmental disorders presents another challenge to global health. Efforts to develop a Zika vaccine have begun although vaccine development against flaviviruses, of which ZIKV belongs to, has proven to be time-consuming and challenging. Defining the vaccine attributes that elicit adaptive immune response necessary for preventing ZIKV infection could provide an evidence-based guide to Zika vaccine development. METHODS We used a previously described attenuated ZIKV DN-2 strain in a type-I interferon receptor deficient mouse model and tested the hypothesis that duration of vaccine burden rather than peak level of infection, is a determinant of immunogenicity. We quantified both humoral and cellular responses against ZIKV using plaque reduction neutralisation test and flow cytometry with ELISPOT assays, respectively. Vaccinated mice were challenged with wild-type ZIKV (H/PF/2013 strain) to determine the level of protection against infection. FINDINGS We found that the overall vaccine burden is directly correlated with neutralising antibody titres. Reduced duration of vaccine burden lowered neutralising antibody titres that resulted in subclinical infection, despite unchanged peak vaccine viraemia levels. We also found that sterilising immunity is dependant on both neutralising antibody and CD8+T cell responses; depletion of CD8+T cells in vaccinated animals led to wild-type ZIKV infection, especially in the male reproductive tract. INTERPRETATION Our findings indicate that duration of attenuated virus vaccine burden is a determinant of humoral and cellular immunity and also suggest that vaccines that elicit both arms of the adaptive immune response are needed to fully prevent ZIKV transmission. FUNDING This study was supported by the National Medical Research Council through the Clinician-Scientist Award (Senior Investigator) to E.E.O. Salary support for S.W. was from a Competitive Research Programme grant awarded by the National Research Foundation of Singapore.
Collapse
Affiliation(s)
- Clement Yau
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Esther Shuyi Gan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Swee Sen Kwek
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Eugenia Z Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore
| | - Noor Zayanah Hamis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Satoru Watanabe
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore; Saw Swee Hock School of Public health, National University of Singapore, Singapore 117549, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| |
Collapse
|
27
|
Beeraka NM, Sadhu SP, Madhunapantula SV, Rao Pragada R, Svistunov AA, Nikolenko VN, Mikhaleva LM, Aliev G. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status. Front Immunol 2020; 11:552925. [PMID: 33072093 PMCID: PMC7531039 DOI: 10.3389/fimmu.2020.552925] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable vaccine is a challenging task due to antibody-dependent enhancement (ADE) and Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns compared to other coronavirus strains, making the development of a suitable vaccine even more difficult. Therefore, the identification of novel small molecule inhibitors (NSMIs) that can interfere with viral entry or viral propagation is of special interest and is vital in managing already infected cases. SARS-CoV-2 infection is mediated by the binding of viral Spike proteins (S-protein) to human cells through a 2-step process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections. However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires additional studies as there are conflicting findings and severe health complications reported for these inhibitors in patients. Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | | | - Andrey A. Svistunov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Vladimir N. Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Gjumrakch Aliev
- Research Institute of Human Morphology, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia
- GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
28
|
Wen J, Cheng Y, Ling R, Dai Y, Huang B, Huang W, Zhang S, Jiang Y. Antibody-dependent enhancement of coronavirus. Int J Infect Dis 2020; 100:483-489. [PMID: 32920233 PMCID: PMC7483033 DOI: 10.1016/j.ijid.2020.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/28/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antibody-dependent enhancement (ADE) exists in several kinds of virus. It has a negative influence on antibody therapy for viral infection. This effect was first identified in dengue virus and has since also been described for coronavirus. To date, the rapid spread of the newly emerged coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has affected over 3.8 million people across the globe. The novel coronavirus poses a great challenge and has caused a wave of panic. In this review, antibody-dependent enhancements in dengue virus and two kinds of coronavirus are summarized. Possible solutions for the effects are reported. We also speculate that ADE may exist in SARS-CoV-2.
Collapse
Affiliation(s)
- Jieqi Wen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Yifan Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Yarong Dai
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Boxuan Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Wenjie Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Siyan Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| |
Collapse
|
29
|
Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol 2020; 20:633-643. [PMID: 32782358 PMCID: PMC7418887 DOI: 10.1038/s41577-020-00410-0] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Antibody-dependent enhancement (ADE) is a mechanism by which the pathogenesis of certain viral infections is enhanced in the presence of sub-neutralizing or cross-reactive non-neutralizing antiviral antibodies. In vitro modelling of ADE has attributed enhanced pathogenesis to Fcγ receptor (FcγR)-mediated viral entry, rather than canonical viral receptor-mediated entry. However, the putative FcγR-dependent mechanisms of ADE overlap with the role of these receptors in mediating antiviral protection in various viral infections, necessitating a detailed understanding of how this diverse family of receptors functions in protection and pathogenesis. Here, we discuss the diversity of immune responses mediated upon FcγR engagement and review the available experimental evidence supporting the role of FcγRs in antiviral protection and pathogenesis through ADE. We explore FcγR engagement in the context of a range of different viral infections, including dengue virus and SARS-CoV, and consider ADE in the context of the ongoing SARS-CoV-2 pandemic. Antibody-dependent enhancement (ADE) has been described as a mechanism that contributes to the pathogenesis of dengue virus infection. Limited evidence also suggests that it can also occur in other viral infections. Here, the authors explore the history of the ADE phenomenon, discuss the diversity of Fc effector functions and consider its potential relevance in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Aaron Gupta
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
30
|
Zhang L, Xia Y, Li W, Sun Y, Kong L, Xu P, Xia P, Yue J. Activation of Fc gamma receptor IIb up-regulates the production of interferon-alpha and interferon-gamma in porcine alveolar macrophages during PRRSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103696. [PMID: 32278861 DOI: 10.1016/j.dci.2020.103696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Porcine Fc gamma receptor IIb (FcγRIIb) has been cloned and characterized for many years. However, the role of FcγRIIb in innate antiviral response to porcine reproductive and respiratory syndrome virus (PRRSV) infection has not yet been well investigated. In current study, our results showed that specific activation of FcγRIIb in porcine alveolar macrophages (PAMs) significantly enhanced the production of interferon-alpha (IFN-α) and interferon-gamma (IFN-γ), and significantly repressed the production of transforming growth factor beta 1 (TGF-β1). In addition, our results showed that specific activation of FcγRIIb in PAMs cells in PRRSV infection not only significantly increased the production of IFN-α and IFN-γ, but also significantly decreased the production of TGF-β1, and significantly inhibited PRRSV replication level. In summary, our studies indicated that FcγRIIb signaling up-regulated the production of IFN-α and IFN-γ in PAMs cells in vitro, in response to PRRSV infection.
Collapse
Affiliation(s)
- Liujun Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuhao Xia
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wen Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yangyang Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Linghao Kong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengli Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pingan Xia
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
31
|
Chan Y, Jazayeri SD, Ramanathan B, Poh CL. Enhancement of Tetravalent Immune Responses to Highly Conserved Epitopes of a Dengue Peptide Vaccine Conjugated to Polystyrene Nanoparticles. Vaccines (Basel) 2020; 8:vaccines8030417. [PMID: 32722368 PMCID: PMC7563452 DOI: 10.3390/vaccines8030417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccination remains the major approach to the prevention of dengue. Since the only licensed live attenuated vaccine (LAV) lacked efficacy against all four serotypes, other vaccine platforms, such as synthetic peptide vaccines, should be explored. In this study, four multi-epitope peptides (P1-P4) were designed by linking a universal T-helper epitope (PADRE or TpD) to the highly conserved CD8 T cell epitope and B cell epitope (B1 or B2) against all four DENV serotypes. The multi-epitope peptides were conjugated to polystyrene nanoparticles (PSNPs) and four nanovaccines (NP1-NP4) were constructed. Mice immunized with NP1-NP4 elicited significantly higher titers of IgG and neutralizing antibodies when compared to immunization with naked P1-P4. The immune responses in mice immunized with peptide vaccines were compared with nanovaccines using ELISA, ELISPOT, and a neutralization test based on FRNT50. Among the four conjugated peptide nanovaccines, NP3 comprising the TpD T-helper epitope linked to the highly conserved B1 epitope derived from the E protein was able to elicit significant levels of IFN-γ and neutralizing antibodies to all four dengue serotypes. NP3 is a promising tetravalent synthetic peptide vaccine, but the selection of a more effective CD8+ T cell epitope and adjuvants to further improve the immunogenicity is warranted.
Collapse
Affiliation(s)
- Yanqi Chan
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia; (Y.C.); (S.D.J.)
| | - Seyed Davoud Jazayeri
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia; (Y.C.); (S.D.J.)
| | - Babu Ramanathan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia;
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia; (Y.C.); (S.D.J.)
- Correspondence: ; Tel.: +60-3-74918622
| |
Collapse
|
32
|
Sequential immunization induces strong and broad immunity against all four dengue virus serotypes. NPJ Vaccines 2020; 5:68. [PMID: 32728482 PMCID: PMC7382454 DOI: 10.1038/s41541-020-00216-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
A major challenge in dengue vaccine development is the need to induce immunity against four dengue (DENV) serotypes. Dengvaxia®, the only licensed dengue vaccine, consists of four variant dengue antigens, one for each serotype. Three doses of immunization with the tetravalent vaccine induced only suboptimal protection against DENV1 and DENV2. Furthermore, vaccination paradoxically and adversely primes dengue naïve subjects to more severe dengue. Here, we have tested whether sequential immunization induces stronger and broader immunity against four DENV serotypes than tetravalent-formulated immunization. Mice were immunized with four DNA plasmids, each encoding the pre-membrane and envelope from one DENV serotype, either sequentially or simultaneously. The sequential immunization induced significantly higher levels of interferon (IFN)γ- or tumor necrosis factor (TNF)α-expressing CD4+ and CD8+ T cells to both serotype-specific and conserved epitopes than tetravalent immunization. Moreover, sequential immunization induced higher levels of neutralizing antibodies to all four DENV serotypes than tetravalent vaccination. Consistently, sequential immunization resulted in more diversified immunoglobulin repertoire, including increased complementarity determining region 3 (CDR3) length and more robust germinal center reactions. These results show that sequential immunization offers a simple approach to potentially overcome the current challenges encountered with tetravalent-formulated dengue vaccines.
Collapse
|
33
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
34
|
Syenina A, Vijaykrishna D, Gan ES, Tan HC, Choy MM, Siriphanitchakorn T, Cheng C, Vasudevan SG, Ooi EE. Positive epistasis between viral polymerase and the 3' untranslated region of its genome reveals the epidemiologic fitness of dengue virus. Proc Natl Acad Sci U S A 2020; 117:11038-11047. [PMID: 32366663 PMCID: PMC7245076 DOI: 10.1073/pnas.1919287117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is a global health threat, causing repeated epidemics throughout the tropical world. While low herd immunity levels to any one of the four antigenic types of DENV predispose populations to outbreaks, viral genetic determinants that confer greater fitness for epidemic spread is an important but poorly understood contributor of dengue outbreaks. Here we report that positive epistasis between the coding and noncoding regions of the viral genome combined to elicit an epidemiologic fitness phenotype associated with the 1994 DENV2 outbreak in Puerto Rico. We found that five amino acid substitutions in the NS5 protein reduced viral genomic RNA (gRNA) replication rate to achieve a more favorable and relatively more abundant subgenomic flavivirus RNA (sfRNA), a byproduct of host 5'-3' exoribonuclease activity. The resulting increase in sfRNA relative to gRNA levels not only inhibited type I interferon (IFN) expression in infected cells through a previously described mechanism, but also enabled sfRNA to compete with gRNA for packaging into infectious particles. We suggest that delivery of sfRNA to new susceptible cells to inhibit type I IFN induction before gRNA replication and without the need for further de novo sfRNA synthesis could form a "preemptive strike" strategy against DENV.
Collapse
Affiliation(s)
- Ayesa Syenina
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, 117549 Singapore
| | - Dhanasekaran Vijaykrishna
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Esther Shuyi Gan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Milly M Choy
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Tanamas Siriphanitchakorn
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
- Department of Biological Sciences, National University of Singapore, 117558 Singapore
| | - Colin Cheng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore;
- Saw Swee Hock School of Public Health, National University of Singapore, 117549 Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
- SingHealth Duke-National University of Singapore Global Health Institute, 169857 Singapore
| |
Collapse
|
35
|
The Effects of Pre-Existing Antibodies on Live-Attenuated Viral Vaccines. Viruses 2020; 12:v12050520. [PMID: 32397218 PMCID: PMC7290594 DOI: 10.3390/v12050520] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Live-attenuated vaccines (LAVs) have achieved remarkable successes in controlling virus spread, as well as for other applications such as cancer immunotherapy. However, with rapid increases in international travel, globalization, geographic spread of viral vectors, and widespread use of vaccines, there is an increasing need to consider how pre-exposure to viruses which share similar antigenic regions can impact vaccine efficacy. Pre-existing antibodies, derived from either from maternal–fetal transmission, or by previous infection or vaccination, have been demonstrated to interfere with vaccine immunogenicity of measles, adenovirus, and influenza LAVs. Immune interference of LAVs can be caused by the formation of virus–antibody complexes that neutralize virus infection in antigen-presenting cells, or by the cross-linking of the B-cell receptor with the inhibitory receptor, FcγRIIB. On the other hand, pre-existing antibodies can augment flaviviral LAV efficacy such as that of dengue and yellow fever virus, especially when pre-existing antibodies are present at sub-neutralizing levels. The increased vaccine immunogenicity can be facilitated by antibody-dependent enhancement of virus infection, enhancing virus uptake in antigen-presenting cells, and robust induction of innate immune responses that promote vaccine immunogenicity. This review examines the literature on this topic and examines the circumstances where pre-existing antibodies can inhibit or enhance LAV efficacy. A better knowledge of the underlying mechanisms involved could allow us to better manage immunization in seropositive individuals and even identify possibilities that could allow us to exploit pre-existing antibodies to boost vaccine-induced responses for improved vaccine efficacy.
Collapse
|
36
|
de Alwis R, Chen S, Gan ES, Ooi EE. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development. EBioMedicine 2020; 55:102768. [PMID: 32344202 PMCID: PMC7161485 DOI: 10.1016/j.ebiom.2020.102768] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
The pandemic spread of a novel coronavirus - SARS coronavirus-2 (SARS-CoV-2) as a cause of acute respiratory illness, named Covid-19, is placing the healthcare systems of many countries under unprecedented stress. Global economies are also spiraling towards a recession in fear of this new life-threatening disease. Vaccines that prevent SARS-CoV-2 infection and therapeutics that reduces the risk of severe Covid-19 are thus urgently needed. A rapid method to derive antiviral treatment for Covid-19 is the use of convalescent plasma derived hyperimmune globulin. However, both hyperimmune globulin and vaccine development face a common hurdle - the risk of antibody-mediated disease enhancement. The goal of this review is to examine the body of evidence supporting the hypothesis of immune enhancement that could be pertinent to Covid-19. We also discuss how this risk could be mitigated so that both hyperimmune globulin and vaccines could be rapidly translated to overcome the current global health crisis.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/adverse effects
- Antibodies, Viral/immunology
- COVID-19
- COVID-19 Vaccines
- Clinical Trials, Phase I as Topic
- Convalescence
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Dendritic Cells/virology
- Global Health
- Host Microbial Interactions/immunology
- Humans
- Immunization, Passive
- Macrophages/virology
- Models, Animal
- Monocytes/virology
- Pandemics/prevention & control
- Plasma
- Plasmapheresis
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/therapy
- Receptors, Fc/immunology
- Translational Research, Biomedical
- Viral Vaccines/immunology
- Virus Internalization
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Ruklanthi de Alwis
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Shiwei Chen
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Esther S Gan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
37
|
Li SS, Gilbert PB, Carpp LN, Pyo CW, Janes H, Fong Y, Shen X, Neidich SD, Goodman D, deCamp A, Cohen KW, Ferrari G, Hammer SM, Sobieszczyk ME, Mulligan MJ, Buchbinder SP, Keefer MC, DeJesus E, Novak RM, Frank I, McElrath MJ, Tomaras GD, Geraghty DE, Peng X. Fc Gamma Receptor Polymorphisms Modulated the Vaccine Effect on HIV-1 Risk in the HVTN 505 HIV Vaccine Trial. J Virol 2019; 93:e02041-18. [PMID: 31434737 PMCID: PMC6803257 DOI: 10.1128/jvi.02041-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
HIV Vaccine Trials Network (HVTN) 505 was a phase 2b efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) HIV vaccine regimen. Although the trial was stopped early for lack of overall efficacy, later correlates of risk and sieve analyses generated the hypothesis that the DNA/rAd5 vaccine regimen protected some vaccinees from HIV infection yet enhanced HIV infection risk for others. Here, we assessed whether and how host Fc gamma receptor (FcγR) genetic variations influenced the DNA/rAd5 vaccine regimen's effect on HIV infection risk. We found that vaccine receipt significantly increased HIV acquisition compared with placebo receipt among participants carrying the FCGR2C-TATA haplotype (comprising minor alleles of four FCGR2C single-nucleotide polymorphism [SNP] sites) (hazard ratio [HR] = 9.79, P = 0.035) but not among participants without the haplotype (HR = 0.86, P = 0.67); the interaction of vaccine and haplotype effect was significant (P = 0.034). Similarly, vaccine receipt increased HIV acquisition compared with placebo receipt among participants carrying the FCGR3B-AGA haplotype (comprising minor alleles of the 3 FCGR3B SNPs) (HR = 2.78, P = 0.058) but not among participants without the haplotype (HR = 0.73, P = 0.44); again, the interaction of vaccine and haplotype was significant (P = 0.047). The FCGR3B-AGA haplotype also influenced whether a combined Env-specific CD8+ T-cell polyfunctionality score and IgG response correlated significantly with HIV risk; an FCGR2A SNP and two FCGR2B SNPs influenced whether anti-gp140 antibody-dependent cellular phagocytosis correlated significantly with HIV risk. These results provide further evidence that Fc gamma receptor genetic variations may modulate HIV vaccine effects and immune function after HIV vaccination.IMPORTANCE By analyzing data from the HVTN 505 efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) vaccine regimen, we found that host genetics, specifically Fc gamma receptor genetic variations, influenced whether receiving the DNA/rAd5 regimen was beneficial, neutral, or detrimental to an individual with respect to HIV-1 acquisition risk. Moreover, Fc gamma receptor genetic variations influenced immune responses to the DNA/rAd5 vaccine regimen. Thus, Fc gamma receptor genetic variations should be considered in the analysis of future HIV vaccine trials and the development of HIV vaccines.
Collapse
Affiliation(s)
- Shuying S Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Scott D Neidich
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Scott M Hammer
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Mark J Mulligan
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Susan P Buchbinder
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Michael C Keefer
- Division of Infectious Diseases, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University, Durham, North Carolina, USA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
38
|
Upasani V, Vo HTM, Ung S, Heng S, Laurent D, Choeung R, Duong V, Sorn S, Ly S, Rodenhuis-Zybert IA, Dussart P, Cantaert T. Impaired Antibody-Independent Immune Response of B Cells in Patients With Acute Dengue Infection. Front Immunol 2019; 10:2500. [PMID: 31736948 PMCID: PMC6834554 DOI: 10.3389/fimmu.2019.02500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
Dengue is a mosquito-borne viral disease caused by dengue virus (DENV). The disease is endemic to more than 100 countries with 390 million dengue infections per year. Humoral immune responses during primary and secondary DENV infections are well-investigated. However, the impact of DENV infection on B cell subsets and their antibody-independent functions are not well-documented. Through this study, we aimed to define the distribution of B cell subsets in the acute phase of DENV infection and characterize the effect of DENV infection on B cell functions such as differentiation into memory and plasma cells and cytokine production. In our cohort of Cambodian children, we observed decreased percentages of CD24hiCD38hi B cells and CD27− naïve B cells within the CD19 population and increased percentages of CD27+CD38hiCD138+ plasma cells as early as 4 days post appearance of fever in patients with severe dengue compared to patients with mild disease. Lower percentages of CD19+CD24hiCD38hi B cells in DENV-infected patients were associated with decreased concentrations of soluble CD40L in patient plasma and decreased platelet counts in these patients. In addition, CD19+CD24hiCD38hi and CD19+CD27− B cells from DENV-infected patients did not produce IL-10 or TNF-α upon stimulation in vitro, suggesting their contribution to an altered immune response during DENV infection. In addition, CD19+CD27− naïve B cells isolated from dengue patients were refractory to TLR/anti-IgM stimulation in vitro, which correlated to the increased expression of inhibitory Fcγ receptors (FcγR) CD32 and LILRB1 on CD19+CD27− naïve B cells from DENV-infected patients. Collectively, our results indicate that a defective B cell response in dengue patients may contribute to the pathogenesis of dengue during the early phase of infection.
Collapse
Affiliation(s)
- Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia.,Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sivlin Ung
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sothy Heng
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Denis Laurent
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Rithy Choeung
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Izabela A Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| |
Collapse
|
39
|
Abstract
Dengue is caused by infection with any one of four dengue viruses (DENV); the risk of severe disease appears to be enhanced by the cross-reactive or subneutralizing levels of antibody from a prior DENV infection. These antibodies opsonize DENV entry through the activating Fc gamma receptors (FcγR), instead of infection through canonical receptor-mediated endocytosis, to result in higher levels of DENV replication. However, whether the enhanced replication is solely due to more efficient FcγR-mediated DENV entry or is also through FcγR-mediated alteration of the host transcriptome response to favor DENV infection remains unclear. Indeed, more efficient viral entry through activation of the FcγR can result in an increased viral antigenic load within target cells and confound direct comparisons of the host transcriptome response under antibody-dependent and antibody-independent conditions. Herein, we show that, despite controlling for the viral antigenic load in primary monocytes, the antibody-dependent and non-antibody-dependent routes of DENV entry induce transcriptome responses that are remarkably different. Notably, antibody-dependent DENV entry upregulated DENV host dependency factors associated with RNA splicing, mitochondrial respiratory chain complexes, and vesicle trafficking. Additionally, supporting findings from other studies, antibody-dependent DENV entry impeded the downregulation of ribosomal genes caused by canonical receptor-mediated endocytosis to increase viral translation. Collectively, our findings support the notion that antibody-dependent DENV entry alters host responses that support the viral life cycle and that host responses to DENV need to be defined in the context of its entry pathway.IMPORTANCE Dengue virus is the most prevalent mosquito-borne viral infection globally, resulting in variable manifestations ranging from asymptomatic viremia to life-threatening shock and multiorgan failure. Previous studies have indicated that the risk of severe dengue in humans can be increased by a specific range of preexisting anti-dengue virus antibody titers, a phenomenon termed antibody-dependent enhancement. There is hence a need to understand how antibodies augment dengue virus infection compared to the alternative canonical receptor-mediated viral entry route. Herein, we show that, besides facilitating viral uptake, antibody-mediated entry increases the expression of early host dependency factors to promote viral infection; these factors include RNA splicing, mitochondrial respiratory chain complexes, vesicle trafficking, and ribosomal genes. These findings will enhance our understanding of how differences in entry pathways can affect host responses and offer opportunities to design therapeutics that can specifically inhibit antibody-dependent enhancement of dengue virus infection.
Collapse
|
40
|
Jasso-Miranda C, Herrera-Camacho I, Flores-Mendoza LK, Dominguez F, Vallejo-Ruiz V, Sanchez-Burgos GG, Pando-Robles V, Santos-Lopez G, Reyes-Leyva J. Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies. Infect Drug Resist 2019; 12:1833-1852. [PMID: 31303775 PMCID: PMC6611719 DOI: 10.2147/idr.s210890] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/26/2019] [Indexed: 12/30/2022] Open
Abstract
Background: There is a lack of specific antiviral therapy against dengue virus (DENV) in current use. Therefore, a great proportion of dengue cases progress to severe clinical forms due to a complex interplay between virus and host immune response. It has been hypothesized that heterotypic non-neutralizing antibodies enhance DENV infection in phagocytic cells, and this induces an inflammatory response that is involved in the pathogenesis of severe dengue. Purpose: To identify the antiviral and immunomodulatory effects of polyphenols on dengue virus infection. Methods: Human U937-DC-SIGN macrophages were infected with DENV serotypes 2 or 3 in the presence or not of enhancing antibody 4G2. Viral titers and the secretion of tumor necrosis factor-alpha, IL-6, IL-10 and interferon-alpha were analyzed timely. Results: DENV infection alone induced high production of IL-6 and TNF-α, but in the presence of 4G2 antibody, viral titers and TNF-α secretion were potentiated. Based on anti-inflammatory antecedents, the polyphenols curcumin, fisetin, resveratrol, apigenin, quercetin and rutin were tested for antiviral and immunomodulatory properties. Only quercetin and fisetin inhibited DENV-2 and DENV-3 infection in the absence or presence of enhancing antibody (>90%, p<0.001); they also inhibited TNF-α and IL-6 secretion (p<0.001). Conclusion: Quercetin and fisetin down-regulate the production of proinflammatory cytokines induced by DENV infection enhanced by antibodies a mechanism involved in severe dengue.
Collapse
Affiliation(s)
- Carolina Jasso-Miranda
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México.,Laboratory of Biochemistry and Molecular Biology, Center of Chemistry, Institute of Sciences, Meritorious Autonomous University of Puebla, CP 72570 San Manuel, Puebla, Mexico
| | - Irma Herrera-Camacho
- Laboratory of Biochemistry and Molecular Biology, Center of Chemistry, Institute of Sciences, Meritorious Autonomous University of Puebla, CP 72570 San Manuel, Puebla, Mexico
| | - Lilian Karem Flores-Mendoza
- Department of Chemical, Biologic and Agricultural Sciences, Science and Enginery Division, University of Sonora, CP 85880 Navojoa, Sonora, Mexico
| | - Fabiola Dominguez
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| | - Veronica Vallejo-Ruiz
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| | | | - Victoria Pando-Robles
- Infectious Disease Research Center, National Institute of Public Health, CP 62100 Cuernavaca, Morelos, Mexico
| | - Gerardo Santos-Lopez
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| | - Julio Reyes-Leyva
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| |
Collapse
|
41
|
Hou J, Shrivastava S, Fraser CC, Loo HL, Wong LH, Ho V, Fink K, Ooi EE, Chen J. Dengue Mosaic Vaccines Enhance Cellular Immunity and Expand the Breadth of Neutralizing Antibody Against All Four Serotypes of Dengue Viruses in Mice. Front Immunol 2019; 10:1429. [PMID: 31281322 PMCID: PMC6596366 DOI: 10.3389/fimmu.2019.01429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
An estimated 400 million people in the world are infected with any of the four types of dengue virus (DENV) annually. The only licensed dengue vaccine cannot effectively prevent infection with all of the four DENVs, especially in those immunologically naïve at baseline. In this study, we explored a mosaic vaccine approach, which utilizes an artificial recombinant sequence for each serotype to achieve maximum coverage of variant epitopes in the four DENVs. We determined the immunogenicity and cross-reactivity of DNA plasmids encoding individual mosaic sequences or the natural sequences in mice. We show that the mosaic vaccines, particularly those targeting DENV serotype 1 and 2, improved vaccine immunogenicity by increasing the percentage of antigen-specific IFNγ- or TNFα-secreting CD4 and CD8 T cells, and titers of neutralizing antibodies. The mosaic vaccine diversified and broadened anti-dengue T cell responses and cross-reactive neutralizing antibodies against all four serotypes. The mosaic vaccines also induced higher level of antigen-specific B cell responses. These results suggest that mosaic vaccines comprising of DENV serotype 1 and 2 variant epitopes could stimulate strong and broad immune responses against all four serotypes.
Collapse
Affiliation(s)
- Jue Hou
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Shubham Shrivastava
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Christopher C Fraser
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Hooi Linn Loo
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Lan Hiong Wong
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Victor Ho
- Singapore Immunology Network, AStar, Singapore, Singapore
| | - Katja Fink
- Singapore Immunology Network, AStar, Singapore, Singapore
| | - Eng Eong Ooi
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Koch Institute for Integrative Cancer Research and Departments of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
42
|
Cipitelli MDC, Amâncio Paiva I, Badolato-Corrêa J, de-Oliveira-Pinto LM. Influence of chemokines on the endothelial permeability and cellular transmigration during dengue. Immunol Lett 2019; 212:88-97. [PMID: 31181280 DOI: 10.1016/j.imlet.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 01/31/2023]
Abstract
During a pathogenic infection, an inflammatory process is triggered in which several inflammatory mediators, such as cytokines, chemokines, growth factors, complement system components, nitric oxide, and others induce integrity alteration on the endothelial barrier. Chemokines are responsible for regulating leukocyte trafficking under homeostatic conditions as well as activating immune system cells under inflammatory conditions. They are crucial molecules in the early stages of infection, leading to the recruitment of immune cells, namely neutrophils, monocytes, natural killer (NK) cells, natural killer T cells (NKT), dendritic cells (DC), T lymphocytes and all cells expressing chemokine receptors for inflammatory sites. Other functions, such as collagen production, tissue repair, a proliferation of hematopoietic precursors and angiogenesis, are also performed by these molecules. Chemokines, amongst inflammatory mediators, play a key role in dengue immunopathogenesis. Dengue fever is a disease caused by the dengue virus (DENV). It is characterized by a broad spectrum of clinical manifestations ranging from asymptomatic cases to mild and severe symptomatic ones. As for the latter, the appearance of hemorrhagic manifestations and changes in vascular permeability may lead the patient to develop cavitary effusions, organ involvement, and even death. As chemokines exert an influence on various homeostatic and inflammatory processes, acting vigorously on vascular endothelial activation and cell migration, the main purpose of this chapter is to discuss the influence of chemokines on the alteration of endothelial permeability and migration of T lymphocytes in DENV infection.
Collapse
Affiliation(s)
- Márcio da Costa Cipitelli
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | - Iury Amâncio Paiva
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | - Jéssica Badolato-Corrêa
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
43
|
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Front Immunol 2019; 10:464. [PMID: 30941127 PMCID: PMC6433993 DOI: 10.3389/fimmu.2019.00464] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Jessica C Anania
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alicia M Chenoweth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Tay MZ, Wiehe K, Pollara J. Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses. Front Immunol 2019; 10:332. [PMID: 30873178 PMCID: PMC6404786 DOI: 10.3389/fimmu.2019.00332] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Antiviral activities of antibodies may either be dependent only on interactions between the antibody and cognate antigen, as in binding and neutralization of an infectious virion, or instead may require interactions between antibody-antigen immune complexes and immunoproteins or Fc receptor expressing immune effector cells. These Fc receptor-dependent antibody functions provide a direct link between the innate and adaptive immune systems by combining the potent antiviral activity of innate effector cells with the diversity and specificity of the adaptive humoral response. The Fc receptor-dependent function of antibody-dependent cellular phagocytosis (ADCP) provides mechanisms for clearance of virus and virus-infected cells, as well as for stimulation of downstream adaptive immune responses by facilitating antigen presentation, or by stimulating the secretion of inflammatory mediators. In this review, we discuss the properties of Fc receptors, antibodies, and effector cells that influence ADCP. We also provide and interpret evidence from studies that support a potential role for ADCP in either inhibiting or enhancing viral infection. Finally, we describe current approaches used to measure antiviral ADCP and discuss considerations for the translation of studies performed in animal models. We propose that additional investigation into the role of ADCP in protective viral responses, the specific virus epitopes targeted by ADCP antibodies, and the types of phagocytes and Fc receptors involved in ADCP at sites of virus infection will provide insight into strategies to successfully leverage this important immune response for improved antiviral immunity through rational vaccine design.
Collapse
Affiliation(s)
- Matthew Zirui Tay
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Justin Pollara
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
45
|
Patel KR, Roberts JT, Barb AW. Multiple Variables at the Leukocyte Cell Surface Impact Fc γ Receptor-Dependent Mechanisms. Front Immunol 2019; 10:223. [PMID: 30837990 PMCID: PMC6382684 DOI: 10.3389/fimmu.2019.00223] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Fc γ receptors (FcγR) expressed on the surface of human leukocytes bind clusters of immunoglobulin G (IgG) to induce a variety of responses. Many therapeutic antibodies and vaccine-elicited antibodies prevent or treat infectious diseases, cancers and autoimmune disorders by binding FcγRs, thus there is a need to fully define the variables that impact antibody-induced mechanisms to properly evaluate candidate therapies and design new intervention strategies. A multitude of factors influence the IgG-FcγR interaction; one well-described factor is the differential affinity of the six distinct FcγRs for the four human IgG subclasses. However, there are several other recently described factors that may prove more relevant for disease treatment. This review covers recent reports of several aspects found at the leukocyte membrane or outside the cell that contribute to the cell-based response to antibody-coated targets. One major focus is recent reports covering post-translational modification of the FcγRs, including asparagine-linked glycosylation. This review also covers the organization of FcγRs at the cell surface, and properties of the immune complex. Recent technical advances provide high-resolution measurements of these often-overlooked variables in leukocyte function and immune system activation.
Collapse
Affiliation(s)
- Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
46
|
Abstract
Mortality from severe dengue is low, but the economic and resource burden on health services remains substantial in endemic settings. Unfortunately, progress towards development of effective therapeutics has been slow, despite notable advances in the understanding of disease pathogenesis and considerable investment in antiviral drug discovery. For decades antibody-dependent enhancement has been the prevalent model to explain dengue pathogenesis, but it was only recently demonstrated in vivo and in clinical studies. At present, the current mainstay of management for most symptomatic dengue patients remains careful observation and prompt but judicious use of intravenous hydration therapy for those with substantial vascular leakage. Various new promising technologies for diagnosis of dengue are currently in the pipeline. New sample-in, answer-out nucleic acid amplification technologies for point-of-care use are being developed to improve performance over current technologies, with the potential to test for multiple pathogens using a single specimen. The search for biomarkers that reliably predict development of severe dengue among symptomatic individuals is also a major focus of current research efforts. The first dengue vaccine was licensed in 2015 but its performance depends on serostatus. There is an urgent need to identify correlates of both vaccine protection and disease enhancement. A crucial assessment of vector control tools should guide a research agenda for determining the most effective interventions, and how to best combine state-of-the-art vector control with vaccination.
Collapse
Affiliation(s)
- Annelies Wilder-Smith
- London School of Hygiene & Tropical Medicine, London, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany.
| | - Eng-Eong Ooi
- Duke-National University of Singapore Medical School, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Olaf Horstick
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Bridget Wills
- Oxford University Clinical Research Unit, Wellcome Trust Asia Programme, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Tharakaraman K, Watanabe S, Chan KR, Huan J, Subramanian V, Chionh YH, Raguram A, Quinlan D, McBee M, Ong EZ, Gan ES, Tan HC, Tyagi A, Bhushan S, Lescar J, Vasudevan SG, Ooi EE, Sasisekharan R. Rational Engineering and Characterization of an mAb that Neutralizes Zika Virus by Targeting a Mutationally Constrained Quaternary Epitope. Cell Host Microbe 2018; 23:618-627.e6. [PMID: 29746833 DOI: 10.1016/j.chom.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/01/2018] [Accepted: 04/10/2018] [Indexed: 11/25/2022]
Abstract
Following the recent emergence of Zika virus (ZIKV), many murine and human neutralizing anti-ZIKV antibodies have been reported. Given the risk of virus escape mutants, engineering antibodies that target mutationally constrained epitopes with therapeutically relevant potencies can be valuable for combating future outbreaks. Here, we applied computational methods to engineer an antibody, ZAb_FLEP, that targets a highly networked and therefore mutationally constrained surface formed by the envelope protein dimer. ZAb_FLEP neutralized a breadth of ZIKV strains and protected mice in distinct in vivo models, including resolving vertical transmission and fetal mortality in infected pregnant mice. Serial passaging of ZIKV in the presence of ZAb_FLEP failed to generate viral escape mutants, suggesting that its epitope is indeed mutationally constrained. A single-particle cryo-EM reconstruction of the Fab-ZIKV complex validated the structural model and revealed insights into ZAb_FLEP's neutralization mechanism. ZAb_FLEP has potential as a therapeutic in future outbreaks.
Collapse
Affiliation(s)
- Kannan Tharakaraman
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jia Huan
- School of Biological Sciences and Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Vidya Subramanian
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yok Hian Chionh
- Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Singapore, Singapore
| | - Aditya Raguram
- Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Devin Quinlan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Megan McBee
- Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Singapore, Singapore
| | - Eugenia Z Ong
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Esther S Gan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anu Tyagi
- School of Biological Sciences and Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Shashi Bhushan
- School of Biological Sciences and Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences and Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Singapore, Singapore.
| | - Ram Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Singapore, Singapore.
| |
Collapse
|
48
|
Saron WAA, Rathore APS, Ting L, Ooi EE, Low J, Abraham SN, St. John AL. Flavivirus serocomplex cross-reactive immunity is protective by activating heterologous memory CD4 T cells. SCIENCE ADVANCES 2018; 4:eaar4297. [PMID: 29978039 PMCID: PMC6031378 DOI: 10.1126/sciadv.aar4297] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/22/2018] [Indexed: 05/07/2023]
Abstract
How previous immunity influences immune memory recall and protection against related flaviviruses is largely unknown, yet encounter with multiple flaviviruses in a lifetime is increasingly likely. Using sequential challenges with dengue virus (DENV), yellow fever virus (YFV), and Japanese encephalitis virus (JEV), we induced cross-reactive cellular and humoral immunity among flaviviruses from differing serocomplexes. Antibodies against JEV enhanced DENV replication; however, JEV immunity was protective in vivo during secondary DENV1 infection, promoting rapid gains in antibody avidity. Mechanistically, JEV immunity activated dendritic cells and effector memory T cells, which developed a T follicular helper cell phenotype in draining lymph nodes upon secondary DENV1 infection. We identified cross-reactive epitopes that promote recall from a pool of flavivirus serocomplex cross-reactive memory CD4 T cells and confirmed that a similar serocomplex cross-reactive immunity occurs in humans. These results show that sequential immunizations for flaviviruses sharing CD4 epitopes should promote protection during a subsequent heterologous infection.
Collapse
Affiliation(s)
- Wilfried A. A. Saron
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
| | - Abhay P. S. Rathore
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Lim Ting
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jenny Low
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Soman N. Abraham
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Ashley L. St. John
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
49
|
Abstract
Zika virus (ZIKV) is a flavivirus that can cause congenital disease and requires development of an effective long-term preventative strategy. A replicative ZIKV vaccine with properties similar to the yellow fever 17D (YF17D) live-attenuated vaccine (LAV) would be advantageous, as a single dose of YF17D produces lifelong immunity. However, a replicative ZIKV vaccine must also be safe from causing persistent organ infections. Here we report an approach to ZIKV LAV development. We identify a ZIKV variant that produces small plaques due to interferon (IFN)-restricted viral propagation and displays attenuated infection of endothelial cells. We show that these properties collectively reduce the risk of organ infections and vertical transmission in a mouse model but remain sufficiently immunogenic to prevent wild-type ZIKV infection. Our findings suggest a strategy for the development of a safe but efficacious ZIKV LAV.
Collapse
|
50
|
Budigi Y, Ong EZ, Robinson LN, Ong LC, Rowley KJ, Winnett A, Tan HC, Hobbie S, Shriver Z, Babcock GJ, Alonso S, Ooi EE. Neutralization of antibody-enhanced dengue infection by VIS513, a pan serotype reactive monoclonal antibody targeting domain III of the dengue E protein. PLoS Negl Trop Dis 2018; 12:e0006209. [PMID: 29425203 PMCID: PMC5823465 DOI: 10.1371/journal.pntd.0006209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/22/2018] [Accepted: 01/04/2018] [Indexed: 01/13/2023] Open
Abstract
Dengue virus (DENV) infection imposes enormous health and economic burden worldwide with no approved treatment. Several small molecules, including lovastatin, celgosivir, balapiravir and chloroquine have been tested for potential anti-dengue activity in clinical trials; none of these have demonstrated a protective effect. Recently, based on identification and characterization of cross-serotype neutralizing antibodies, there is increasing attention on the potential for dengue immunotherapy. Here, we tested the ability of VIS513, an engineered cross-neutralizing humanized antibody targeting the DENV E protein domain III, to overcome antibody-enhanced infection and high but brief viremia, which are commonly encountered in dengue patients, in various in vitro and in vivo models. We observed that VIS513 efficiently neutralizes DENV at clinically relevant viral loads or in the presence of enhancing levels of DENV immune sera. Single therapeutic administration of VIS513 in mouse models of primary infection or lethal secondary antibody-enhanced infection, reduces DENV titers and protects from lethal infection. Finally, VIS513 administration does not readily lead to resistance, either in cell culture systems or in animal models of dengue infection. The findings suggest that rapid viral reduction during acute DENV infection with a monoclonal antibody is feasible.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Cell Line
- Chlorocebus aethiops
- Cross Reactions/immunology
- Dengue/immunology
- Dengue Virus/genetics
- Dengue Virus/immunology
- Dengue Virus/pathogenicity
- Disease Models, Animal
- Epitopes
- Female
- Humans
- Immune Sera
- Immunotherapy
- In Vitro Techniques
- Mice
- Models, Structural
- Mutation
- Neutralization Tests
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Serogroup
- THP-1 Cells
- Vero Cells
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Plaque Assay
Collapse
Affiliation(s)
- Yadunanda Budigi
- Visterra Singapore International Pte Ltd, Singapore, Singapore
- Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- * E-mail: (YB); (EZO)
| | - Eugenia Z. Ong
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, Singapore, Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- * E-mail: (YB); (EZO)
| | - Luke N. Robinson
- Visterra Inc, Cambridge, Massachusetts, United States of America
| | - Li Ching Ong
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kirk J. Rowley
- Visterra Inc, Cambridge, Massachusetts, United States of America
| | | | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Sven Hobbie
- Visterra Singapore International Pte Ltd, Singapore, Singapore
| | - Zachary Shriver
- Visterra Inc, Cambridge, Massachusetts, United States of America
| | | | - Sylvie Alonso
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng Eong Ooi
- Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|