1
|
Moss WJ, Griffin DE. Measles: What Goes Around, Comes Around. J Infect Dis 2024; 230:1061-1063. [PMID: 39115343 DOI: 10.1093/infdis/jiae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024] Open
Abstract
Measles cases are increasing globally and in the United States because of low routine measles vaccine coverage and disruptions to immunization services during the coronavirus disease 2019 (COVID-19) pandemic. To achieve and sustain measles elimination requires maintaining high coverage with 2 doses of measles vaccine, addressing vaccine hesitancy and misinformation, strong political commitment, and the necessary financial resources.
Collapse
Affiliation(s)
- William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- US National Academy of Sciences, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Moss WJ, Griffin DE. What's going on with measles? J Virol 2024; 98:e0075824. [PMID: 39041786 PMCID: PMC11334507 DOI: 10.1128/jvi.00758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Measles is a highly transmissible systemic viral infection associated with substantial mortality primarily due to secondary infections. Measles induces lifelong immunity to reinfection but loss of immunity to other pathogens. An attenuated live virus vaccine is highly effective, but lapses in delivery have resulted in increasing cases worldwide. Although the primary cause of failure to control measles is failure to vaccinate, waning vaccine-induced immunity and the possible emergence of more virulent virus strains may also contribute.
Collapse
Affiliation(s)
- William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Quach HQ, Ratishvili T, Haralambieva IH, Ovsyannikova IG, Poland GA, Kennedy RB. Immunogenicity of a peptide-based vaccine for measles: a pilot evaluation in a mouse model. Sci Rep 2024; 14:18776. [PMID: 39138335 PMCID: PMC11322560 DOI: 10.1038/s41598-024-69825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
Although neutralizing antibody is an established correlate of protection for measles, T cell-mediated responses play at least two critical roles in immunity to measles: first, through provision of 'help' enabling robust humoral immune responses; and second, through clearance of measles virus-infected cells. Previously, we identified 13 measles-derived peptides that bound to human leukocyte antigen (HLA) molecules in Priess cells infected with measles virus. In this study, we evaluated the immunogenicity of these peptides in a transgenic mouse model. Our results demonstrated that these peptides induced Th1-biased immune responses at varying levels. Of the 13 peptides, the top four immunogenic peptides were further selected for a viral challenge study in mice. A vaccine based on a combination of these four peptides reduced morbidity and weight loss after viral challenge compared to placebo. Our results emphasize the potential of T cell-mediated, peptide-based vaccines against measles.
Collapse
Affiliation(s)
- Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamar Ratishvili
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Anelone AJN, Clapham HE. Measles Infection Dose Responses: Insights from Mathematical Modeling. Bull Math Biol 2024; 86:85. [PMID: 38853189 PMCID: PMC11162976 DOI: 10.1007/s11538-024-01305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
How viral infections develop can change based on the number of viruses initially entering the body. The understanding of the impacts of infection doses remains incomplete, in part due to challenging constraints, and a lack of research. Gaining more insights is crucial regarding the measles virus (MV). The higher the MV infection dose, the earlier the peak of acute viremia, but the magnitude of the peak viremia remains almost constant. Measles is highly contagious, causes immunosuppression such as lymphopenia, and contributes substantially to childhood morbidity and mortality. This work investigated mechanisms underlying the observed wild-type measles infection dose responses in cynomolgus monkeys. We fitted longitudinal data on viremia using maximum likelihood estimation, and used the Akaike Information Criterion (AIC) to evaluate relevant biological hypotheses and their respective model parameterizations. The lowest AIC indicates a linear relationship between the infection dose, the initial viral load, and the initial number of activated MV-specific T cells. Early peak viremia is associated with high initial number of activated MV-specific T cells. Thus, when MV infection dose increases, the initial viremia and associated immune cell stimulation increase, and reduce the time it takes for T cell killing to be sufficient, thereby allowing dose-independent peaks for viremia, MV-specific T cells, and lymphocyte depletion. Together, these results suggest that the development of measles depends on virus-host interactions at the start and the efficiency of viral control by cellular immunity. These relationships are additional motivations for prevention, vaccination, and early treatment for measles.
Collapse
Affiliation(s)
- Anet J N Anelone
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore.
| | - Hannah E Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore.
| |
Collapse
|
5
|
González Aparicio LJ, López CB. Selection of nonstandard viral genomes during the evolution of RNA viruses: A virus survival strategy or a pesky inconvenience? Adv Virus Res 2024; 119:39-61. [PMID: 38897708 DOI: 10.1016/bs.aivir.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
RNA viruses are some of the most successful biological entities due their ability to adapt and evolve. Despite their small genome and parasitic nature, RNA viruses have evolved many mechanisms to ensure their survival and maintenance in the host population. We propose that one of these mechanisms of survival is the generation of nonstandard viral genomes (nsVGs) that accumulate during viral replication. NsVGs are often considered to be accidental defective byproducts of the RNA virus replication, but their ubiquity and the plethora of roles they have during infection indicate that they are an integral part of the virus life cycle. Here we review the different types of nsVGs and discuss how their multiple roles during infection could be beneficial for RNA viruses to be maintained in nature. By shifting our perspectives on what makes a virus successful, we posit that nsVG generation is a conserved phenomenon that arose during RNA virus evolution as an essential component of a healthy virus community.
Collapse
Affiliation(s)
- Lavinia J González Aparicio
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Carolina B López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
6
|
Ou BS, Saouaf OM, Yan J, Bruun TUJ, Baillet J, Zhou X, King NP, Appel EA. Broad and Durable Humoral Responses Following Single Hydrogel Immunization of SARS-CoV-2 Subunit Vaccine. Adv Healthc Mater 2023; 12:e2301495. [PMID: 37278391 DOI: 10.1002/adhm.202301495] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Most vaccines require several immunizations to induce robust immunity, and indeed, most SARS-CoV-2 vaccines require an initial two-shot regimen followed by several boosters to maintain efficacy. Such a complex series of immunizations unfortunately increases the cost and complexity of populations-scale vaccination and reduces overall compliance and vaccination rate. In a rapidly evolving pandemic affected by the spread of immune-escaping variants, there is an urgent need to develop vaccines capable of providing robust and durable immunity. In this work, a single immunization SARS-CoV-2 subunit vaccine is developed that can rapidly generate potent, broad, and durable humoral immunity. Injectable polymer-nanoparticle (PNP) hydrogels are leveraged as a depot technology for the sustained delivery of a nanoparticle antigen (RND-NP) displaying multiple copies of the SARS-CoV-2 receptor-binding domain (RBD) and potent adjuvants including CpG and 3M-052. Compared to a clinically relevant prime-boost regimen with soluble vaccines formulated with CpG/alum or 3M-052/alum adjuvants, PNP hydrogel vaccines more rapidly generated higher, broader, and more durable antibody responses. Additionally, these single-immunization hydrogel-based vaccines elicit potent and consistent neutralizing responses. Overall, it is shown that PNP hydrogels elicit improved anti-COVID immune responses with only a single administration, demonstrating their potential as critical technologies to enhance overall pandemic readiness.
Collapse
Affiliation(s)
- Ben S Ou
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Olivia M Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jerry Yan
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Theodora U J Bruun
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Julie Baillet
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
- CNRS, Bordeaux INP, LCPO, University of Bordeaux, Pessac, 33600, France
| | - Xueting Zhou
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics-Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Melot L, Bankamp B, Rota PA, Coughlin MM. Characterizing infection of B cells with wild-type and vaccine strains of measles virus. iScience 2023; 26:107721. [PMID: 37736039 PMCID: PMC10510084 DOI: 10.1016/j.isci.2023.107721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/14/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Acute infection with measles virus (MeV) causes transient immunosuppression often leading to secondary infections. MeV infection of B lymphocytes results in changes in the antibody repertoire and memory B cell populations for which the mechanism is unknown. In this study, we characterize the infection of primary B cells with wild-type and vaccine strains of MeV. Vaccine-infected B cells were characterized by a higher percentage of cells positive for viral protein, a higher level of viral transcription and reduced cell death compared to wild-type infected cells, regardless of B cell subtype. Vaccine-infected cells showed more production of TNF-α and IL-10 but less production of IL-8 compared to wild-type infected cells. IL-4 and IL-6 levels detected were increased during both vaccine and wild-type infection. Despite evidence of replication, measles-infected B cells did not produce detectable viral progeny. This study furthers our understanding of the outcomes of MeV infection of human B cells.
Collapse
Affiliation(s)
- Logan Melot
- Viral Vaccine Preventable Diseases Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Emory University, Atlanta, GA 303333, USA
| | - Bettina Bankamp
- Viral Vaccine Preventable Diseases Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Paul A. Rota
- Viral Vaccine Preventable Diseases Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Emory University, Atlanta, GA 303333, USA
| | - Melissa M. Coughlin
- Viral Vaccine Preventable Diseases Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
8
|
Extance A. Where do viruses hide in the human body? BMJ 2023; 382:p1156. [PMID: 37402517 DOI: 10.1136/bmj.p1156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
|
9
|
Peart Akindele NA, Katamoni LD, Brockhurst J, Ghimire S, Suwanmanee S, Pieterse L, Metcalf Pate KA, Bunyan E, Bannister R, Cihlar T, Porter DP, Griffin DE. Effect of remdesivir post-exposure prophylaxis and treatment on pathogenesis of measles in rhesus macaques. Sci Rep 2023; 13:6463. [PMID: 37081035 PMCID: PMC10116456 DOI: 10.1038/s41598-023-33572-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Measles is a systemic disease initiated in the respiratory tract with widespread measles virus (MeV) infection of lymphoid tissue. Mortality can be substantial, but no licensed antiviral therapy is available. We evaluated both post-exposure prophylaxis and treatment with remdesivir, a broad-spectrum antiviral, using a well-characterized rhesus macaque model of measles. Animals were treated with intravenous remdesivir for 12 days beginning either 3 days after intratracheal infection (post-exposure prophylaxis, PEP) or 11 days after infection at the onset of disease (late treatment, LT). As PEP, remdesivir lowered levels of viral RNA in peripheral blood mononuclear cells, but RNA rebounded at the end of the treatment period and infectious virus was continuously recoverable. MeV RNA was cleared more rapidly from lymphoid tissue, was variably detected in the respiratory tract, and not detected in urine. PEP did not improve clinical disease nor lymphopenia and reduced the antibody response to infection. In contrast, LT had little effect on levels of viral RNA or the antibody response but also did not decrease clinical disease. Therefore, remdesivir transiently suppressed expression of viral RNA and limited dissemination when provided as PEP, but virus was not cleared and resumed replication without improvement in the clinical disease parameters evaluated.
Collapse
Affiliation(s)
- Nadine A Peart Akindele
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- United States Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Laharika Dasharath Katamoni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
- BioCheck, Inc., South San Francisco, CA, 94080, USA
| | - Jacqueline Brockhurst
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- Department of Molecular and Comparative Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Shristi Ghimire
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
| | - San Suwanmanee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- Department of Epidemiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | - Tomas Cihlar
- Gilead Sciences Inc., Foster City, CA, 94404, USA
| | | | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Cable J, Sun J, Cheon IS, Vaughan AE, Castro IA, Stein SR, López CB, Gostic KM, Openshaw PJM, Ellebedy AH, Wack A, Hutchinson E, Thomas MM, Langlois RA, Lingwood D, Baker SF, Folkins M, Foxman EF, Ward AB, Schwemmle M, Russell AB, Chiu C, Ganti K, Subbarao K, Sheahan TP, Penaloza-MacMaster P, Eddens T. Respiratory viruses: New frontiers-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1522:60-73. [PMID: 36722473 PMCID: PMC10580159 DOI: 10.1111/nyas.14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.
Collapse
Affiliation(s)
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine; Department of Immunology; and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Carter Immunology Center and Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - In Su Cheon
- Division of Pulmonary and Critical Medicine, Department of Medicine; Department of Immunology; and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Carter Immunology Center and Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Andrew E Vaughan
- University of Pennsylvania School of Veterinary Medicine, Biomedical Sciences, Philadelphia, Pennsylvania, USA
| | - Italo A Castro
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo - USP, São Paulo, Brazil
| | - Sydney R Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center and Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Katelyn M Gostic
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | | | - Ali H Ellebedy
- Department of Pathology and Immunology; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs; and Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, Missouri, USA
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Ryan A Langlois
- Center for Immunology and Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Steven F Baker
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Melanie Folkins
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Ellen F Foxman
- Department of Laboratory Medicine and Department of Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alistair B Russell
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kanta Subbarao
- Department of Microbiology and Immunology, WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Taylor Eddens
- Pediatric Scientist Development Program, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Allen C, Ellis A, Liang R, Lim A, Newbury S. Prolonged persistence of canine distemper virus RNA, and virus isolation in naturally infected shelter dogs. PLoS One 2023; 18:e0280186. [PMID: 36662900 PMCID: PMC9858347 DOI: 10.1371/journal.pone.0280186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023] Open
Abstract
Canine distemper virus remains an important source of morbidity and mortality in animal shelters. RT-PCR is commonly used to aid diagnosis and has been used to monitor dogs testing positive over time to gauge the end of infectious potential. Many dogs excrete viral RNA for prolonged periods which has complicated disease management. The goal of this retrospective study was to describe the duration and characteristics of viral RNA excretion in shelter dogs with naturally occurring CDV and investigate the relationship between that viral RNA excretion and infectious potential using virus isolation data. Records from 98 different humane organizations with suspect CDV were reviewed. A total of 5,920 dogs were tested with 1,393; 4,452; and 75 found to be positive, negative, or suspect on RT-PCR respectively. The median duration of a positive test was 34 days (n = 325), and 25% (82/325) of the dogs still excreting viral RNA after 62 days of monitoring. Virus isolation was performed in six dogs who were RT-PCR positive for > 60 days. Infectious virus was isolated only within the first two weeks of monitoring at or around the peak viral RNA excretion (as detected by the lowest cycle threshold) reported for each dog. Our findings suggest that peak viral RNA excretion and the days surrounding it might be used as a functional marker to gauge the end of infectious risk. Clarifying the earliest point in time when dogs testing positive for canine distemper by RT-PCR can be considered non-contagious will improve welfare and lifesaving potential of shelters by enabling recovered dogs to be cleared more quickly for live release outcomes.
Collapse
Affiliation(s)
- Carolyn Allen
- Department of Medical Sciences, Shelter Medicine Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Alexandre Ellis
- Department of Medical Sciences, Shelter Medicine Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ruibin Liang
- Wisconsin Veterinary Diagnostic Laboratory, Virology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ailam Lim
- Wisconsin Veterinary Diagnostic Laboratory, Virology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sandra Newbury
- Department of Medical Sciences, Shelter Medicine Program, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Tsafarova B, Hodzhev Y, Yordanov G, Tolchkov V, Kalfin R, Panaiotov S. Morphology of blood microbiota in healthy individuals assessed by light and electron microscopy. Front Cell Infect Microbiol 2023; 12:1091341. [PMID: 36741978 PMCID: PMC9889553 DOI: 10.3389/fcimb.2022.1091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction The blood microbiome is still an enigma. The existence of blood microbiota in clinically healthy individuals was proven during the last 50 years. Indirect evidence from radiometric analysis suggested the existence of living microbial forms in erythrocytes. Recently targeted nucleic acid sequencing demonstrated rich microbial biodiversity in the blood of clinically healthy individuals. The morphology and proliferation cycle of blood microbiota in peripheral blood mononuclear cells (PBMC) isolated from freshly drawn and cultured whole blood are obscure. Methods To study the life cycle of blood microbiota we focused on light, and electron microscopy analysis. Peripheral blood mononuclear cells isolated from freshly drawn blood and stress-cultured lysed whole blood at 43°C in presence of vitamin K from healthy individuals were studied. Results Here, we demonstrated that free circulating microbiota in the PMBC fraction possess a well-defined cell wall and proliferate by budding or through a mechanism similar to the extrusion of progeny bodies. By contrast, stress-cultured lysed whole blood microbiota proliferated as cell-wall deficient microbiota by forming electron-dense or electron-transparent bodies. The electron-dense bodies proliferated by fission or produce in chains Gram-negatively stained progeny cells or enlarged and burst to release progeny cells of 180 - 200 nm size. On the other hand, electron-transparent bodies enlarged and emitted progeny cells through the membrane. A novel proliferation mechanism of blood microbiota called by us "a cell within a cell" was observed. It combines proliferation of progeny cells within a progeny cell which is growing within the "mother" cell. Discussion The rich biodiversity of eukaryotic and prokaryotic microbiota identified in blood by next-generation sequencing technologies and our microscopy results suggest different proliferation mechanisms in whole and cultured blood. Our documented evidence and conclusions provide a more comprehensive view of the existence of normal blood microbiota in healthy individuals.
Collapse
Affiliation(s)
- Borislava Tsafarova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Yordan Hodzhev
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Georgi Yordanov
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Vladimir Tolchkov
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Health Care, South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria
| | - Stefan Panaiotov
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
13
|
Suwanmanee S, Ghimire S, Edwards J, Griffin DE. Infection of Pro- and Anti-Inflammatory Macrophages by Wild Type and Vaccine Strains of Measles Virus: NLRP3 Inflammasome Activation Independent of Virus Production. Viruses 2023; 15:v15020260. [PMID: 36851476 PMCID: PMC9961283 DOI: 10.3390/v15020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
In humans and non-human primates, wild type (WT) measles virus (MeV) replicates extensively in lymphoid tissue and induces an innate response characteristic of NF-κB and inflammasome activation without type I interferon. In contrast, the live attenuated MeV vaccine (LAMV) replicates poorly in lymphoid tissue with little detectable in vivo cytokine production. To characterize the innate responses of macrophages to WT MeV and LAMV infection, we analyzed primary human monocyte-derived macrophages and phorbol myristic acid-matured monocytic THP-1 cells (M0) polarized to inflammatory (M1) and anti-inflammatory (M2) phenotypes 24 h after MeV infection. LAMV infected macrophages more efficiently than WT MeV but produced less virus than WT MeV-infected macrophages. Both strains induced production of NF-κB-responsive cytokines IL-6 and TNFα and inflammasome products IL-1β and IL-18 without evidence of pyroptosis. Analysis of THP-1 cells deficient in inflammasome sensors NOD-like receptor pyrin (NLRP)3, IFN-γ-inducible protein 16 (IFI16) or absent in melanoma (AIM)2; adaptor apoptosis-associated speck-like protein containing a CARD (ASC) or effector caspase 1 showed that IL-18 production was dependent on NLRP3, ASC, and caspase 1. However, M1 cells produced IL-1β in the absence of ASC or caspase 1 indicating alternate pathways for MeV-induced pro-IL-1β processing. Therefore, the innate response to in vitro infection of macrophages with both LAMV and WT MeV includes production of IL-6 and TNFα and activation of the NLRP3 inflammasome to release IL-1β and IL-18. LAMV attenuation impairs production of infectious virus but does not reduce ability to infect macrophages or innate responses to infection.
Collapse
|
14
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.16.520799. [PMID: 36561187 PMCID: PMC9774211 DOI: 10.1101/2022.12.16.520799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Imanis Life Sciences, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Ou BS, Saouaf OM, Baillet J, Appel EA. Sustained delivery approaches to improving adaptive immune responses. Adv Drug Deliv Rev 2022; 187:114401. [PMID: 35750115 DOI: 10.1016/j.addr.2022.114401] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
The immune system is one of the most important, complex biological networks regulating and protecting human health. Its precise modulation can prevent deadly infections and fight cancer. Accordingly, prophylactic vaccines and cancer immunotherapies are some of the most powerful technologies to protect against potential dangers through training of the immune system. Upon immunization, activation and maturation of B and T cells of the adaptive immune system are necessary for development of proper humoral and cellular protection. Yet, the exquisite organization of the immune system requires spatiotemporal control over the exposure of immunomodulatory signals. For example, while the human immune system has evolved to develop immunity to natural pathogenic infections that often last for weeks, current prophylactic vaccination technologies only expose the immune system to immunomodulatory signals for hours to days. It has become clear that leveraging sustained release technologies to prolong immunogen and adjuvant exposure can increase the potency, durability, and quality of adaptive immune responses. Over the past several years, tremendous breakthroughs have been made in the design of novel biomaterials such as nanoparticles, microparticles, hydrogels, and microneedles that can precisely control and the presentation of immunomodulatory signals to the immune system. In this review, we discuss relevant sustained release strategies and their corresponding benefits to cellular and humoral responses.
Collapse
Affiliation(s)
- Ben S Ou
- Department of Bioengineering, Stanford University, Stanford 94305, USA
| | - Olivia M Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA
| | - Julie Baillet
- Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA; University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac 33600, France
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford 94305, USA; Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA; Department of Pediatrics (Endocrinology), Stanford University, Stanford 94305, USA; ChEM-H Institute, Stanford University, Stanford CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Abstract
DNA viruses often persist in the body of their host, becoming latent and recurring many months or years later. By contrast, most RNA viruses cause acute infections that are cleared from the host as they lack the mechanisms to persist. However, it is becoming clear that viral RNA can persist after clinical recovery and elimination of detectable infectious virus. This persistence can either be asymptomatic or associated with late progressive disease or nonspecific lingering symptoms, such as may be the case following infection with Ebola or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Why does viral RNA sometimes persist after recovery from an acute infection? Where does the RNA come from? And what are the consequences?
Collapse
|
17
|
Rabaan AA, Mutair AA, Alhumaid S, Garout M, Alsubki RA, Alshahrani FS, Alfouzan WA, Alestad JH, Alsaleh AE, Al-Mozaini MA, Koritala T, Alotaibi S, Temsah MH, Akbar A, Ahmad R, Khalid Z, Muhammad J, Ahmed N. Updates on Measles Incidence and Eradication: Emphasis on the Immunological Aspects of Measles Infection. Medicina (B Aires) 2022; 58:medicina58050680. [PMID: 35630096 PMCID: PMC9147347 DOI: 10.3390/medicina58050680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Measles is an RNA virus infectious disease mainly seen in children. Despite the availability of an effective vaccine against measles, it remains a health issue in children. Although it is a self-limiting disease, it becomes severe in undernourished and immune-compromised individuals. Measles infection is associated with secondary infections by opportunistic bacteria due to the immunosuppressive effects of the measles virus. Recent reports highlight that measles infection erases the already existing immune memory of various pathogens. This review covers the incidence, pathogenesis, measles variants, clinical presentations, secondary infections, elimination of measles virus on a global scale, and especially the immune responses related to measles infection.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence: (A.A.R.); (N.A.)
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia;
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia;
| | - Fatimah S. Alshahrani
- Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia;
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, King Saud University Medical City, Riyadh 11451, Saudi Arabia
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Jeehan H. Alestad
- Immunology and Infectious Microbiology Department, University of Glasgow, Glasgow G1 1XQ, UK;
- Microbiology Department, College of Medicine, Jabriya 46300, Kuwait
| | - Abdullah E. Alsaleh
- Core Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Maha A. Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia;
| | - Thoyaja Koritala
- Division of Hospital Internal Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA;
| | - Sultan Alotaibi
- Molecular Microbiology Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Mohamad-Hani Temsah
- Pediatric Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan;
| | - Rafiq Ahmad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Zainab Khalid
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Javed Muhammad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Naveed Ahmed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
- Correspondence: (A.A.R.); (N.A.)
| |
Collapse
|
18
|
Peart Akindele N. Updates in the Epidemiology, Approaches to Vaccine Coverage and Current Outbreaks of Measles. Infect Dis Clin North Am 2022; 36:39-48. [DOI: 10.1016/j.idc.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Leung AKL, Griffin DE, Bosch J, Fehr AR. The Conserved Macrodomain Is a Potential Therapeutic Target for Coronaviruses and Alphaviruses. Pathogens 2022; 11:pathogens11010094. [PMID: 35056042 PMCID: PMC8780475 DOI: 10.3390/pathogens11010094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging and re-emerging viral diseases pose continuous public health threats, and effective control requires a combination of non-pharmacologic interventions, treatment with antivirals, and prevention with vaccines. The COVID-19 pandemic has demonstrated that the world was least prepared to provide effective treatments. This lack of preparedness has been due, in large part, to a lack of investment in developing a diverse portfolio of antiviral agents, particularly those ready to combat viruses of pandemic potential. Here, we focus on a drug target called macrodomain that is critical for the replication and pathogenesis of alphaviruses and coronaviruses. Some mutations in alphavirus and coronaviral macrodomains are not tolerated for virus replication. In addition, the coronavirus macrodomain suppresses host interferon responses. Therefore, macrodomain inhibitors have the potential to block virus replication and restore the host’s protective interferon response. Viral macrodomains offer an attractive antiviral target for developing direct acting antivirals because they are highly conserved and have a structurally well-defined (druggable) binding pocket. Given that this target is distinct from the existing RNA polymerase and protease targets, a macrodomain inhibitor may complement current approaches, pre-empt the threat of resistance and offer opportunities to develop combination therapies for combating COVID-19 and future viral threats.
Collapse
Affiliation(s)
- Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA;
- InterRayBio, LLC, Cleveland, OH 44106, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| |
Collapse
|
20
|
Khalili-Tanha G, Khazaei M, Soleimanpour S, Ferns GA, Avan A. The chance of COVID-19 infection after vaccination. Infect Disord Drug Targets 2022; 22:e050122199980. [PMID: 34986778 DOI: 10.2174/1871526522666220105113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
The outbreak of COVID-19 that began in Wuhan, China, has constituted a new emerging epidemic that has spread around the world. There are some reports on illustrated the patients getting reinfected after recovering from COVID-19. Here we provide an overview of the biphasic cycle of COVID-19, genetic diversity, immune response and chance of reinfection after recovering from COVID-19. The new generation of COVID-19 is highly contagious and pathogenic infection can lead to acute respiratory distress syndrome. Whilst most patients suffer from a mild form of the disease, there is a rising concern that patients who recover from COVID-19 may be at risk of reinfection. The proportion of the infected population, is increasing worldwide; meanwhile, the rate and concern of reinfection by the recovered population are still high. Moreover, there are a few evidence on the chance of COVID-19 infection even after vaccination, which is around one per cent or less. Although the hypothesis of zero reinfections after vaccination has not been clinically proven, further studies should be performed on the recovered class in clusters to study the progression of the exposed with the re-exposed subpopulations to estimate the possibilities of reinfection and, thereby, advocate the use of these antibodies for vaccine creation.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Gniazdowski V, Paul Morris C, Wohl S, Mehoke T, Ramakrishnan S, Thielen P, Powell H, Smith B, Armstrong DT, Herrera M, Reifsnyder C, Sevdali M, Carroll KC, Pekosz A, Mostafa HH. Repeated Coronavirus Disease 2019 Molecular Testing: Correlation of Severe Acute Respiratory Syndrome Coronavirus 2 Culture With Molecular Assays and Cycle Thresholds. Clin Infect Dis 2021; 73:e860-e869. [PMID: 33104776 PMCID: PMC7665437 DOI: 10.1093/cid/ciaa1616] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Repeated coronavirus disease 2019 (COVID-19) molecular testing can lead to positive test results after negative results and to multiple positive results over time. The association between positive test results and infectious virus is important to quantify. METHODS A 2-month cohort of retrospective data and consecutively collected specimens from patients with COVID-19 or patients under investigation were used to understand the correlation between prolonged viral RNA positive test results, cycle threshold (Ct) values and growth of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cell culture. Whole-genome sequencing was used to confirm virus genotype in patients with prolonged viral RNA detection. Droplet digital polymerase chain reaction was used to assess the rate of false-negative COVID-19 diagnostic test results. RESULTS In 2 months, 29 686 specimens were tested and 2194 patients underwent repeated testing. Virus recovery in cell culture was noted in specimens with a mean Ct value of 18.8 (3.4) for SARS-CoV-2 target genes. Prolonged viral RNA shedding was associated with positive virus growth in culture in specimens collected up to 21 days after the first positive result but mostly in individuals symptomatic at the time of sample collection. Whole-genome sequencing provided evidence the same virus was carried over time. Positive test results following negative results had Ct values >29.5 and were not associated with virus culture. Droplet digital polymerase chain reaction results were positive in 5.6% of negative specimens collected from patients with confirmed or clinically suspected COVID-19. CONCLUSIONS Low Ct values in SARS-CoV-2 diagnostic tests were associated with virus growth in cell culture. Symptomatic patients with prolonged viral RNA shedding can also be infectious.
Collapse
Affiliation(s)
- Victoria Gniazdowski
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C Paul Morris
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- National Institutes of Allergy and Infectious Disease, Bethesda, Maryland, USA
| | - Shirlee Wohl
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Thomas Mehoke
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland,USA
| | | | - Peter Thielen
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland,USA
| | | | | | - Derek T Armstrong
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - Karen C Carroll
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Heba H Mostafa
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Lin WHW, Moran E, Adams RJ, Sievers RE, Hauer D, Godin S, Griffin DE. A durable protective immune response to wild-type measles virus infection of macaques is due to viral replication and spread in lymphoid tissues. Sci Transl Med 2021; 12:12/537/eaax7799. [PMID: 32238577 DOI: 10.1126/scitranslmed.aax7799] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/15/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Infection with wild-type (WT) measles virus (MeV) is an important cause of childhood mortality that leads to lifelong protective immunity in survivors. WT MeV and the live-attenuated MeV used in the measles vaccine (LAMV) are antigenically similar, but the determinants of attenuation are unknown, and protective immunity induced by LAMV is less robust than that induced by WT MeV. To identify factors that contribute to these differences, we compared virologic and immunologic responses after respiratory infection of rhesus macaques with WT MeV or LAMV. In infected macaques, WT MeV replicated efficiently in B and T lymphocytes with spreading throughout lymphoid tissues resulting in prolonged persistence of viral RNA. In contrast, LAMV replicated efficiently in the respiratory tract but displayed limited spread to lymphoid tissue or peripheral blood mononuclear cells. In vitro, WT MeV and LAMV replicated similarly in macaque primary respiratory epithelial cells and human lymphocytes, but LAMV-infected lymphocytes produced little virus. Plasma concentrations of interleukin-1β (IL-1β), IL-12, interferon-γ (IFN-γ), CCL2, CCL11, CXCL9, and CXCL11 increased in macaques after WT MeV but not LAMV infection. WT MeV infection induced more protective neutralizing, hemagglutinin-specific antibodies and bone marrow plasma cells than did LAMV infection, although numbers of MeV-specific IFN-γ- and IL-4-producing T cells were comparable. Therefore, MeV attenuation may involve altered viral replication in lymphoid tissue that limited spread and decreased the host antibody response, suggesting a link between lifelong protective immunity and the ability of WT MeV, but not LAMV, to spread in lymphocytes.
Collapse
Affiliation(s)
- Wen-Hsuan W Lin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Eileen Moran
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Robert J Adams
- Department of Molecular and Comparative Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Robert E Sievers
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Debra Hauer
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Diane E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Anelone AJN, Hancock EJ, Klein N, Kim P, Spurgeon SK. Control theory helps to resolve the measles paradox. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201891. [PMID: 34007460 PMCID: PMC8080004 DOI: 10.1098/rsos.201891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Measles virus (MV) is a highly contagious respiratory morbillivirus that results in many disabilities and deaths. A crucial challenge in studying MV infection is to understand the so-called 'measles paradox'-the progression of the infection to severe immunosuppression before clearance of acute viremia, which is also observed in canine distemper virus (CDV) infection. However, a lack of models that match in vivo data has restricted our understanding of this complex and counter-intuitive phenomenon. Recently, progress was made in the development of a model that fits data from acute measles infection in rhesus macaques. This progress motivates our investigations to gain additional insights from this model into the control mechanisms underlying the paradox. In this paper, we investigated analytical conditions determining the control and robustness of viral clearance for MV and CDV, to untangle complex feedback mechanisms underlying the dynamics of acute infections in their natural hosts. We applied control theory to this model to help resolve the measles paradox. We showed that immunosuppression is important to control and clear the virus. We also showed under which conditions T-cell killing becomes the primary mechanism for immunosuppression and viral clearance. Furthermore, we characterized robustness properties of T-cell immunity to explain similarities and differences in the control of MV and CDV. Together, our results are consistent with experimental data, advance understanding of control mechanisms of viral clearance across morbilliviruses, and will help inform the development of effective treatments. Further the analysis methods and results have the potential to advance understanding of immune system responses to a range of viral infections such as COVID-19.
Collapse
Affiliation(s)
- Anet J. N. Anelone
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Edward J. Hancock
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales 2006, Australia
- The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Nigel Klein
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Peter Kim
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Sarah K. Spurgeon
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
24
|
Vibholm LK, Nielsen SSF, Pahus MH, Frattari GS, Olesen R, Andersen R, Monrad I, Andersen AHF, Thomsen MM, Konrad CV, Andersen SD, Højen JF, Gunst JD, Østergaard L, Søgaard OS, Schleimann MH, Tolstrup M. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine 2021; 64:103230. [PMID: 33530000 PMCID: PMC7847186 DOI: 10.1016/j.ebiom.2021.103230] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Upon SARS-CoV-2 infection, most individuals develop neutralizing antibodies and T-cell immunity. However, some individuals reportedly remain SARS-CoV-2 PCR positive by pharyngeal swabs weeks after recovery. Whether viral RNA in these persistent carriers is contagious and stimulates SARS-CoV-2-specific immune responses is unknown. METHODS This cohort study was conducted between April 3rd-July 9th 2020, recruiting COVID-19 recovered individuals that were symptom-free for at least 14 days. We collected serum for SARS-CoV-2-specific total Ig, IgA and IgM detection by ELISA, pharyngeal swabs (two time points) for ddPCR and PBMCs for anti-SARS-CoV-2 CD8 T-cell dextramer analyses. FINDINGS We enrolled 203 post-symptomatic participants with a previous RT-PCR-verified SARS-CoV-2 infection. At time point 1, a median of 23 days (range 15-44) after recovery, 26 individuals (12⋅8%) were PCR positive. At time point 2, 90 days (median, range 85-105) after recovery, 5 (5⋅3%) were positive. There was no difference in SARS-CoV-2 antibody levels between the PCR negative and positive group. The persistent PCR positive group however, had SARS-CoV-2-specific CD8 T-cell responses of significantly increased breadth and magnitude. Assisted contact tracing among persistent PCR positive individuals revealed zero new COVID-19 diagnoses among 757 close contacts. INTERPRETATION Persistent pharyngeal SARS-CoV-2 PCR positivity in post-symptomatic individuals is associated with elevated cellular immune responses and thus, the viral RNA may represent replicating virus. However, transmission to close contacts was not observed indicating that persistent PCR positive individuals are not contagious at the post-symptomatic stage of the infection.
Collapse
Affiliation(s)
- Line K Vibholm
- Dept. of Infectious Diseases, Aarhus University Hospital, Denmark.
| | | | - Marie H Pahus
- Dept. of Clinical Medicine, Aarhus University, Denmark
| | | | - Rikke Olesen
- Dept. of Infectious Diseases, Aarhus University Hospital, Denmark
| | - Rebecca Andersen
- Dept. of Infectious Diseases, Aarhus University Hospital, Denmark
| | - Ida Monrad
- Dept. of Infectious Diseases, Aarhus University Hospital, Denmark
| | | | | | | | | | - Jesper F Højen
- Dept. of Infectious Diseases, Aarhus University Hospital, Denmark
| | - Jesper D Gunst
- Dept. of Infectious Diseases, Aarhus University Hospital, Denmark; Dept. of Clinical Medicine, Aarhus University, Denmark
| | - Lars Østergaard
- Dept. of Infectious Diseases, Aarhus University Hospital, Denmark; Dept. of Clinical Medicine, Aarhus University, Denmark
| | - Ole S Søgaard
- Dept. of Infectious Diseases, Aarhus University Hospital, Denmark; Dept. of Clinical Medicine, Aarhus University, Denmark
| | | | - Martin Tolstrup
- Dept. of Infectious Diseases, Aarhus University Hospital, Denmark; Dept. of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
25
|
Griffin DE. Measles immunity and immunosuppression. Curr Opin Virol 2021; 46:9-14. [PMID: 32891958 PMCID: PMC7994291 DOI: 10.1016/j.coviro.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Effects of measles on the immune system are only partially understood. Lymphoid tissue is a primary site of measles virus (MeV) replication where CD150 is the receptor for infection of both B and T cells. Lymphocyte depletion occurs during the acute phase of infection, but initiation of the adaptive immune response leads to extensive lymphocyte proliferation, production of MeV-specific antibody and T cells, the rash and clearance of infectious virus. Viral RNA persists in lymphoid tissue accompanied by ongoing germinal center proliferation, production of antibody-secreting cells, functionally distinct populations of T cells and antibody avidity maturation to establish life-long immunity. However, at the same time diversity of pre-existing antibodies and numbers of memory and naive B cells are reduced and susceptibility to other infections is increased.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Jefferson T, Spencer EA, Brassey J, Heneghan C. Viral cultures for COVID-19 infectious potential assessment - a systematic review. Clin Infect Dis 2020; 73:e3884-e3899. [PMID: 33270107 PMCID: PMC7799320 DOI: 10.1093/cid/ciaa1764] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE to review the evidence from studies relating SARS-CoV-2 culture with the results of reverse transcriptase polymerase chain reaction (RT-PCR) and other variables which may influence the interpretation of the test, such as time from symptom onset. METHODS We searched LitCovid, medRxiv, Google Scholar and the WHO Covid-19 database for Covid-19 to 10 September 2020. We included studies attempting to culture or observe SARS-CoV-2 in specimens with RT-PCR positivity. Studies were dual extracted and the data summarised narratively by specimen type. Where necessary we contacted corresponding authors of included papers for additional information. We assessed quality using a modified QUADAS 2 risk of bias tool. RESULTS We included 29 studies reporting attempts at culturing, or observing tissue infection by, SARS-CoV-2 in sputum, nasopharyngeal or oropharyngeal, urine, stool, blood and environmental specimens. The quality of the studies was moderate with lack of standardised reporting. The data suggest a relationship between the time from onset of symptom to the timing of the specimen test, cycle threshold (Ct) and symptom severity. Twelve studies reported that Ct values were significantly lower and log copies higher in specimens producing live virus culture. Two studies reported the odds of live virus culture reduced by approximately 33% for every one unit increase in Ct. Six of eight studies reported detectable RNA for longer than 14 days but infectious potential declined after day 8 even among cases with ongoing high viral loads. Four studies reported viral culture from stool specimens. CONCLUSION Complete live viruses are necessary for transmission, not the fragments identified by PCR. Prospective routine testing of reference and culture specimens and their relationship to symptoms, signs and patient co-factors should be used to define the reliability of PCR for assessing infectious potential. Those with high cycle threshold are unlikely to have infectious potential.
Collapse
Affiliation(s)
- T Jefferson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford
| | - E A Spencer
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford
| | | | - C Heneghan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford
| |
Collapse
|
27
|
Azam M, Sulistiana R, Ratnawati M, Fibriana AI, Bahrudin U, Widyaningrum D, Aljunid SM. Recurrent SARS-CoV-2 RNA positivity after COVID-19: a systematic review and meta-analysis. Sci Rep 2020; 10:20692. [PMID: 33244060 PMCID: PMC7691365 DOI: 10.1038/s41598-020-77739-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
Present study aimed to estimate the incidence of recurrent SARS-CoV-2 RNA positivity after recovery from COVID-19 and to determine the factors associated with recurrent positivity. We searched the PubMed, MedRxiv, BioRxiv, the Cochrane Library, ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry for studies published to June 12, 2020. Studies were reviewed to determine the risk of bias. A random-effects model was used to pool results. Heterogeneity was assessed using I2. Fourteen studies of 2568 individuals were included. The incidence of recurrent SARS-CoV-2 positivity was 14.8% (95% confidence interval [CI] 11.44–18.19%). The pooled estimate of the interval from disease onset to recurrence was 35.4 days (95% CI 32.65–38.24 days), and from the last negative to the recurrent positive result was 9.8 days (95% CI 7.31–12.22 days). Patients with younger age and a longer initial illness were more likely to experience recurrent SARS-CoV-2 positivity, while patients with diabetes, severe disease, and a low lymphocyte count were less likely to experience. Present study concluded that the incidence of recurrent SARS-CoV-2 positivity was 14.8% suggesting further studies must be conducted to elucidate the possibility of infectious individuals with prolonged or recurrent RNA positivity.
Collapse
Affiliation(s)
- Mahalul Azam
- Department of Public Health, Faculty of Sports Science, Universitas Negeri Semarang, Semarang, 50229, Indonesia.
| | - Rina Sulistiana
- Department of Public Health, Faculty of Sports Science, Universitas Negeri Semarang, Semarang, 50229, Indonesia
| | - Martha Ratnawati
- Department of Pulmonology Medicine, SMC Telogorejo Hospital, Semarang, Indonesia
| | - Arulita Ika Fibriana
- Department of Public Health, Faculty of Sports Science, Universitas Negeri Semarang, Semarang, 50229, Indonesia
| | - Udin Bahrudin
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Dian Widyaningrum
- Department of Clinical Pathology, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Syed Mohamed Aljunid
- Department of Health Policy and Management, Faculty of Public Health, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
28
|
de Carvalho OV, Rebouças Santos M, Lopes Rangel Fietto J, Pires Moraes M, de Almeida MR, Costa Bressan G, José Pena L, Silva-Júnior A. Multi-targeted gene silencing strategies inhibit replication of Canine morbillivirus. BMC Vet Res 2020; 16:448. [PMID: 33213424 PMCID: PMC7676405 DOI: 10.1186/s12917-020-02671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canine morbilivirus (canine distemper virus, CDV) is a highly contagious pathogen associated with high morbidity and mortality in susceptible carnivores. Although there are CDV vaccines available, the disease poses a huge threat to dogs and wildlife hosts due to vaccine failures and lack of effective treatment. Thus, the development of therapeutics is an urgent need to achieve rapid outbreak control and reduce mortality in target species. Gene silencing by RNA interference has emerged as a promising therapeutic approach against different human and animal viruses. In this study, plasmid-based short hairpin RNAs (shRNAs) against three different regions in either CDV nucleoprotein (N), or large polymerase (L) genes and recombinant adenovirus-expressing N-specific multi-shRNAs were generated. Viral cytopathic effect, virus titration, plaque-forming unit reduction, and real-time quantitative RT-PCR analysis were used to check the efficiency of constructs against CDV. RESULTS In CDV-infected VerodogSLAM cells, shRNA-expressing plasmids targeting the N gene markedly inhibited the CDV replication in a dose-dependent manner, with viral genomes and titers being decreased by over 99%. Transfection of plasmid-based shRNAs against the L gene displayed weaker inhibition of viral RNA level and virus yield as compared to CDV N shRNAs. A combination of shRNAs targeting three sites in the N gene considerably reduced CDV RNA and viral titers, but their effect was not synergistic. Recombinant adenovirus-expressing multiple shRNAs against CDV N gene achieved a highly efficient knockdown of CDV N mRNAs and successful inhibition of CDV replication. CONCLUSIONS We found that this strategy had strong silencing effects on CDV replication in vitro. Our findings indicate that the delivery of shRNAs using plasmid or adenovirus vectors potently inhibits CDV replication and provides a basis for the development of therapeutic strategies for clinical trials.
Collapse
Affiliation(s)
- Otávio Valério de Carvalho
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Marcus Rebouças Santos
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Juliana Lopes Rangel Fietto
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Mauro Pires Moraes
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Márcia Rogéria de Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Gustavo Costa Bressan
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Lindomar José Pena
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| | - Abelardo Silva-Júnior
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
29
|
Zhou X, Jiang X, Qu M, Aninwene G, Jucaud V, Moon JJ, Gu Z, Sun W, Khademhosseini A. Engineering Antiviral Vaccines. ACS NANO 2020; 14:12370-12389. [PMID: 33001626 PMCID: PMC7534801 DOI: 10.1021/acsnano.0c06109] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/18/2020] [Indexed: 05/11/2023]
Abstract
Despite the vital role of vaccines in fighting viral pathogens, effective vaccines are still unavailable for many infectious diseases. The importance of vaccines cannot be overstated during the outbreak of a pandemic, such as the coronavirus disease 2019 (COVID-19) pandemic. The understanding of genomics, structural biology, and innate/adaptive immunity have expanded the toolkits available for current vaccine development. However, sudden outbreaks and the requirement of population-level immunization still pose great challenges in today's vaccine designs. Well-established vaccine development protocols from previous experiences are in place to guide the pipelines of vaccine development for emerging viral diseases. Nevertheless, vaccine development may follow different paradigms during a pandemic. For example, multiple vaccine candidates must be pushed into clinical trials simultaneously, and manufacturing capability must be scaled up in early stages. Factors from essential features of safety, efficacy, manufacturing, and distributions to administration approaches are taken into consideration based on advances in materials science and engineering technologies. In this review, we present recent advances in vaccine development by focusing on vaccine discovery, formulation, and delivery devices enabled by alternative administration approaches. We hope to shed light on developing better solutions for faster and better vaccine development strategies through the use of biomaterials, biomolecular engineering, nanotechnology, and microfabrication techniques.
Collapse
Affiliation(s)
- Xingwu Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095 USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Moyuan Qu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine. Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology. Hangzhou, 310006, China
| | - George Aninwene
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095 USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Wujin Sun
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095 USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
30
|
Seroconversion in patients with cancer and oncology health care workers infected by SARS-CoV-2. Ann Oncol 2020; 32:113-119. [PMID: 33098994 PMCID: PMC7577226 DOI: 10.1016/j.annonc.2020.10.473] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 01/08/2023] Open
Abstract
Background Patients with cancer have high risk for severe complications and poor outcome to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related disease [coronavirus disease 2019 (COVID-19)]. Almost all subjects with COVID-19 develop anti-SARS-CoV-2 immunoglobulin G (IgG) within 3 weeks after infection. No data are available on the seroconversion rates of cancer patients and COVID-19. Patients and methods We conducted a multicenter, observational, prospective study that enrolled (i) patients and oncology health professionals with SARS-CoV-2 infection confirmed by real-time RT-PCR assays on nasal/pharyngeal swab specimens; (ii) patients and oncology health professionals with clinical or radiological suspicious of infection by SARS-CoV-2; and (iii) patients with cancer who are considered at high risk for infection and eligible for active therapy and/or major surgery. All enrolled subjects were tested with the 2019-nCoV IgG/IgM Rapid Test Cassette, which is a qualitative membrane-based immunoassay for the detection of IgG and IgM antibodies to SARS-CoV-2. The aim of the study was to evaluate anti-SARS-CoV-2 seroconversion rate in patients with cancer and oncology health care professionals with confirmed or clinically suspected COVID-19. Results From 30 March 2020 to 11 May 2020, 166 subjects were enrolled in the study. Among them, cancer patients and health workers were 61 (36.7%) and 105 (63.3%), respectively. Overall, 86 subjects (51.8%) had confirmed SARS-CoV-2 diagnosis by RT-PCR testing on nasopharyngeal swab specimen, and 60 (36.2%) had a clinical suspicious of COVID-19. Median time from symptom onset (for cases not confirmed by RT-PCR) or RT-PCR confirmation to serum antibody test was 17 days (interquartile range 26). In the population with confirmed RT-PCR, 83.8% of cases were IgG positive. No difference in IgG positivity was observed between cancer patients and health workers (87.9% versus 80.5%; P = 0.39). Conclusions Our data indicate that SARS-CoV-2-specific IgG antibody detection do not differ between cancer patients and healthy subjects.
Collapse
|
31
|
Abstract
My great-grandparents were immigrants from Sweden and settled as farmers in Iowa and Illinois. My father, the oldest of six children, was the first in his family to go to college and had careers as a petroleum geologist and an academic. My mother, the youngest of four children, had older siblings in education, and she focused on early childhood education. My childhood in Oklahoma with two younger sisters was happy and comfortable, and public school prepared me well. My career trajectory into virology did not involve much if any advance planning but was characterized by recognizing the fascinating puzzles of virus diseases, being in good places at the right time, taking advantage of opportunities as they presented themselves, and being surrounded by great mentors, colleagues, trainees, and family. Most of my career was spent studying two diseases caused by RNA viruses, alphavirus encephalomyelitis and measles, and was enriched with several leadership opportunities.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| |
Collapse
|
32
|
Humoral response and PCR positivity in patients with COVID-19 in the New York City region, USA: an observational study. LANCET MICROBE 2020; 1:e283-e289. [PMID: 33015652 PMCID: PMC7518831 DOI: 10.1016/s2666-5247(20)30120-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. The proportion of infected individuals who seroconvert is still an open question. In addition, it has been shown in some individuals that viral genome can be detected up to 3 months after symptom resolution. We investigated both seroconversion and PCR positivity in a large cohort of convalescent serum donors in the New York City (NY, USA) region. Methods In this observational study, we ran an outreach programme in the New York City area. We recruited participants via the REDCap (Vanderbilt University, Nashville, TN, USA) online survey response. Individuals with confirmed or suspected SARS-CoV-2 infection were screened via PCR for presence of viral genome and via ELISA for presence of anti-SARS-CoV-2 spike antibodies. One-way ANOVA and Fisher's exact test were used to measure the association of age, gender, symptom duration, and days from symptom onset and resolution with positive antibody results. Findings Between March 26 and April 10, 2020, we measured SARS-CoV-2 antibody titres in 1343 people. Of the 624 participants with confirmed SARS-CoV-2 infection who had serologies done after 4 weeks, all but three seroconverted to the SARS-CoV-2 spike protein, whereas 269 (37%) of 719 participants with suspected SARS-CoV-2 infection seroconverted. PCR positivity was detected up to 28 days from symptom resolution. Interpretation Most patients with confirmed COVID-19 seroconvert, potentially providing immunity to reinfection. We also report that in a large proportion of individuals, viral genome can be detected via PCR in the upper respiratory tract for weeks after symptom resolution, but it is unclear whether this signal represents infectious virus. Analysis of our large cohort suggests that most patients with mild COVID-19 seroconvert 4 weeks after illness, and raises questions about the use of PCR to clear positive individuals. Funding None.
Collapse
|
33
|
Lofano G, Mallett CP, Bertholet S, O’Hagan DT. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. NPJ Vaccines 2020; 5:88. [PMID: 33024579 PMCID: PMC7501859 DOI: 10.1038/s41541-020-00238-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccines represent the most successful medical intervention in history, with billions of lives saved. Although multiple doses of the same vaccine are typically required to reach an adequate level of protection, it would be advantageous to develop vaccines that induce protective immunity with fewer doses, ideally just one. Single-dose vaccines would be ideal to maximize vaccination coverage, help stakeholders to greatly reduce the costs associated with vaccination, and improve patient convenience. Here we describe past attempts to develop potent single dose vaccines and explore the reasons they failed. Then, we review key immunological mechanisms of the vaccine-specific immune responses, and how innovative technologies and approaches are guiding the preclinical and clinical development of potent single-dose vaccines. By modulating the spatio-temporal delivery of the vaccine components, by providing the appropriate stimuli to the innate immunity, and by designing better antigens, the new technologies and approaches leverage our current knowledge of the immune system and may synergize to enable the rational design of next-generation vaccination strategies. This review provides a rational perspective on the possible development of future single-dose vaccines.
Collapse
Affiliation(s)
- Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Corey P. Mallett
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Sylvie Bertholet
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Derek T. O’Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| |
Collapse
|
34
|
Khatamzas E, Rothe C, Kroidl I. [COVID-19: Questions and answers from infectiology]. Dtsch Med Wochenschr 2020; 145:1051-1056. [PMID: 32731278 DOI: 10.1055/a-1164-3960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The control and management of infection with the novel SARS-CoV-2 virus requires multidisciplinary work between specialists on all levels. This article aims to provide an overview of the current knowledge of COVID-19 from the view of infectious diseases physicians including all the uncertainties of our understanding of the pathogenesis and immunity.
Collapse
|
35
|
Waning immunity and re-emergence of measles and mumps in the vaccine era. Curr Opin Virol 2020; 40:48-54. [PMID: 32634672 DOI: 10.1016/j.coviro.2020.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Vaccine-preventable diseases (VPD) including measles and mumps have been re-emerging in countries with sustained high vaccine coverage. For mumps, waning immunity has been recognized as a major contributor to recent outbreaks. Although unvaccinated individuals account for most cases in recent measles outbreaks, the role of immune waning remains unclear. Accumulating serological and epidemiological evidence suggests that natural immunity induced by infection may be more durable compared to vaccine-induced immunity. As the proportion of population immunity via vaccination gradually increases and boosting through natural exposures becomes rare, risk of outbreaks may increase. Mechanistic insights into the coupled immuno-epidemiological dynamics of waning and boosting will be important to understand optimal vaccination strategies to combat VPD re-emergence and achieve eradication.
Collapse
|
36
|
Boisen ML, Uyigue E, Aiyepada J, Siddle KJ, Oestereich L, Nelson DKS, Bush DJ, Rowland MM, Heinrich ML, Eromon P, Kayode AT, Odia I, Adomeh DI, Muoebonam EB, Akhilomen P, Okonofua G, Osiemi B, Omoregie O, Airende M, Agbukor J, Ehikhametalor S, Aire CO, Duraffour S, Pahlmann M, Böhm W, Barnes KG, Mehta S, Momoh M, Sandi JD, Goba A, Folarin OA, Ogbaini-Emovan E, Asogun DA, Tobin EA, Akpede GO, Okogbenin SA, Okokhere PO, Grant DS, Schieffelin JS, Sabeti PC, Günther S, Happi CT, Branco LM, Garry RF. Field evaluation of a Pan-Lassa rapid diagnostic test during the 2018 Nigerian Lassa fever outbreak. Sci Rep 2020; 10:8724. [PMID: 32457420 PMCID: PMC7250850 DOI: 10.1038/s41598-020-65736-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever (LF), an often-fatal hemorrhagic disease. LF is endemic in Nigeria, Sierra Leone and other West African countries. Diagnosis of LASV infection is challenged by the genetic diversity of the virus, which is greatest in Nigeria. The ReLASV Pan-Lassa Antigen Rapid Test (Pan-Lassa RDT) is a point-of-care, in vitro diagnostic test that utilizes a mixture of polyclonal antibodies raised against recombinant nucleoproteins of representative strains from the three most prevalent LASV lineages (II, III and IV). We compared the performance of the Pan-LASV RDT to available quantitative PCR (qPCR) assays during the 2018 LF outbreak in Nigeria. For patients with acute LF (RDT positive, IgG/IgM negative) during initial screening, RDT performance was 83.3% sensitivity and 92.8% specificity when compared to composite results of two qPCR assays. 100% of samples that gave Ct values below 22 on both qPCR assays were positive on the Pan-Lassa RDT. There were significantly elevated case fatality rates and elevated liver transaminase levels in subjects whose samples were RDT positive compared to RDT negative.
Collapse
Affiliation(s)
| | - Eghosa Uyigue
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - John Aiyepada
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Katherine J Siddle
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- The Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | | | | | | | | | - Philomena Eromon
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
| | - Adeyemi T Kayode
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Ikponmwosa Odia
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Donatus I Adomeh
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Ekene B Muoebonam
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Patience Akhilomen
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Grace Okonofua
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Blessing Osiemi
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Omigie Omoregie
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Michael Airende
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Jacqueline Agbukor
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Solomon Ehikhametalor
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Chris Okafi Aire
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Sophie Duraffour
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Meike Pahlmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Wiebke Böhm
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Kayla G Barnes
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Samar Mehta
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center, Division of Infectious Diseases, Boston, MA, USA
| | - Mambu Momoh
- Eastern Polytechnic Institute, Kenema, Sierra Leone
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - John Demby Sandi
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Augustine Goba
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Onikepe A Folarin
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Ephraim Ogbaini-Emovan
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Danny A Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Ekaete A Tobin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - George O Akpede
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Sylvanus A Okogbenin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Peter O Okokhere
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
- The Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
- The Department of Medicine, Faculty of Clinical Sciences, Ambrose Alli University, Ekpoma, Edo State, Nigeria
| | - Donald S Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - John S Schieffelin
- Sections of Infectious Disease, Departments of Pediatrics and Internal Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Pardis C Sabeti
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- The Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Christian T Happi
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria.
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | | | - Robert F Garry
- Zalgen Labs, LLC, Germantown, MD, USA.
- Tulane Health Sciences Center, Tulane University, New Orleans, LA, USA.
- Tulane University, School of Medicine, Department of Microbiology and Immunology, New Orleans, LA, USA.
| |
Collapse
|
37
|
Affiliation(s)
- Barry Atkinson
- National Collection of Pathogenic Viruses, Public Health England, Salisbury, UK
| | - Eskild Petersen
- Directorate General for Disease Surveillance and Control, Ministry of Health, Muscat, Oman; European Society for Clinical Microbiology and Infectious Diseases Task Force for Emerging Infections, Basel, Switzerland; Institute for Clinical Medicine, Faculty of Health Sciences, University of Aarhus, 8200 Aarhus, Denmark.
| |
Collapse
|
38
|
Measles pathogenesis, immune suppression and animal models. Curr Opin Virol 2020; 41:31-37. [PMID: 32339942 DOI: 10.1016/j.coviro.2020.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/09/2023]
Abstract
Measles virus causes a disease with seemingly innocent symptoms, such as fever and rash. However, measles immune suppression causes increased susceptibility to opportunistic infections that are responsible for the majority of over 100000 yearly fatalities. The pathogenesis of measles is complex, because measles virus uses multiple receptors to infect different cell types in different phases of the disease. Experimental morbillivirus infections with wild-type viruses in natural host species have demonstrated that direct infection and depletion of memory immune cells causes immune amnesia. This was confirmed in studies of a measles outbreak in unvaccinated children and provides an explanation for epidemiological observations of long-term increases in morbidity and mortality after measles.
Collapse
|
39
|
Griffin DE. Measles virus persistence and its consequences. Curr Opin Virol 2020; 41:46-51. [PMID: 32387998 PMCID: PMC7492426 DOI: 10.1016/j.coviro.2020.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022]
Abstract
Clearance of measles virus is complex. Infectious virus is cleared by the adaptive immune response manifested by the characteristic maculopapular rash. CD8+ T cells are major effectors of infectious virus clearance, a process that may fail in individuals with compromised cellular immune responses leading to progressive giant cell pneumonia and/or measles inclusion body encephalitis. In contrast to the usual rapid clearance of infectious virus, clearance of viral RNA is slow with persistence in lymphoid tissue for many months. Persistence of MeV RNA may contribute to the late development of the slowly progressive disease subacute sclerosing panencephalitis in children infected at a young age and to measles-associated immune suppression but also to maturation of the immune response and development of life-long immunity.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
40
|
Beneficial and Detrimental Effects of Regulatory T Cells in Neurotropic Virus Infections. Int J Mol Sci 2020; 21:ijms21051705. [PMID: 32131483 PMCID: PMC7084400 DOI: 10.3390/ijms21051705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Neurotropic viruses infect the central nervous system (CNS) and cause acute or chronic neurologic disabilities. Regulatory T cells (Treg) play a critical role for immune homeostasis, but may inhibit pathogen-specific immunity in infectious disorders. The present review summarizes the current knowledge about Treg in human CNS infections and their animal models. Besides dampening pathogen-induced immunopathology, Treg have the ability to facilitate protective responses by supporting effector T cell trafficking to the infection site and the development of resident memory T cells. Moreover, Treg can reduce virus replication by inducing apoptosis of infected macrophages and attenuate neurotoxic astrogliosis and pro-inflammatory microglial responses. By contrast, detrimental effects of Treg are caused by suppression of antiviral immunity, allowing for virus persistence and latency. Opposing disease outcomes following Treg manipulation in different models might be attributed to differences in technique and timing of intervention, infection route, genetic background, and the host’s age. In addition, mouse models of virus-induced demyelination revealed that Treg are able to reduce autoimmunity and immune-mediated CNS damage in a disease phase-dependent manner. Understanding the unique properties of Treg and their complex interplay with effector cells represents a prerequisite for the development of new therapeutic approaches in neurotropic virus infections.
Collapse
|
41
|
Human Tibroviruses: Commensals or Lethal Pathogens? Viruses 2020; 12:v12030252. [PMID: 32106547 PMCID: PMC7150972 DOI: 10.3390/v12030252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Rhabdoviruses are a large and ecologically diverse family of negative-sense RNA viruses (Mononegavirales: Rhabdoviridae). These viruses are capable of infecting an unexpectedly wide variety of plants, vertebrates, and invertebrates distributed over all human-inhabited continents. However, only a few rhabdoviruses are known to infect humans: a ledantevirus (Le Dantec virus), several lyssaviruses (in particular, rabies virus), and several vesiculoviruses (e.g., Chandipura virus, vesicular stomatitis Indiana virus). Recently, several novel rhabdoviruses have been discovered in the blood of both healthy and severely ill individuals living in Central and Western Africa. These viruses—Bas-Congo virus, Ekpoma virus 1, and Ekpoma virus 2—are members of the little-understood rhabdoviral genus Tibrovirus. Other than the basic genomic architecture, tibroviruses bear little resemblance to well-studied rhabdoviruses such as rabies virus and vesicular stomatitis Indiana virus. These three human tibroviruses are quite divergent from each other, and each of them clusters closely with tibroviruses currently known only from biting midges or healthy cattle. Seroprevalence studies suggest that human tibrovirus infections may be common but are almost entirely unrecognized. The pathogenic potential of this diverse group of viruses remains unknown. Although certain tibroviruses may be benign and well-adapted to humans, others could be newly emerging and produce serious disease. Here, we review the current knowledge of tibroviruses and argue that assessing their impact on human health should be an urgent priority.
Collapse
|
42
|
Nelson AN, Lin WHW, Shivakoti R, Putnam NE, Mangus L, Adams RJ, Hauer D, Baxter VK, Griffin DE. Association of persistent wild-type measles virus RNA with long-term humoral immunity in rhesus macaques. JCI Insight 2020; 5:134992. [PMID: 31935196 DOI: 10.1172/jci.insight.134992] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 01/21/2023] Open
Abstract
Recovery from measles results in life-long protective immunity. To understand induction of long-term immunity, rhesus macaques were studied for 6 months after infection with wild-type measles virus (MeV). Infection caused viremia and rash, with clearance of infectious virus by day 14. MeV RNA persisted in PBMCs for 30-90 days and in lymphoid tissue for 6 months most often in B cells but was rarely detected in BM. Antibody with neutralizing activity and binding specificity for MeV nucleocapsid (N), hemagglutinin (H), and fusion proteins appeared with the rash and avidity matured over 3-4 months. Lymph nodes had increasing numbers of MeV-specific antibody-secreting cells (ASCs) and germinal centers with late hyalinization. ASCs appeared in circulation with the rash and continued to appear along with peripheral T follicular helper cells for the study duration. ASCs in lymph nodes and PBMCs produced antibody against both H and N, with more H-specific ASCs in BM. During days 14-21, 20- to 100-fold more total ASCs than MeV-specific ASCs appeared in circulation, suggesting mobilization of preexisting ASCs. Therefore, persistence of MeV RNA in lymphoid tissue was accompanied by continued germinal center formation, ASC production, avidity maturation, and accumulation of H-specific ASCs in BM to sustain neutralizing antibody and protective immunity.
Collapse
Affiliation(s)
- Ashley N Nelson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wen-Hsuan W Lin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rupak Shivakoti
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nicole E Putnam
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lisa Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Debra Hauer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Camelids and Cattle Are Dead-End Hosts for Peste-des-Petits-Ruminants Virus. Viruses 2019; 11:v11121133. [PMID: 31817946 PMCID: PMC6950723 DOI: 10.3390/v11121133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
Peste-des-petits-ruminants virus (PPRV) causes a severe respiratory disease in small ruminants. The possible impact of different atypical host species in the spread and planed worldwide eradication of PPRV remains to be clarified. Recent transmission trials with the virulent PPRV lineage IV (LIV)-strain Kurdistan/2011 revealed that pigs and wild boar are possible sources of PPRV-infection. We therefore investigated the role of cattle, llamas, alpacas, and dromedary camels in transmission trials using the Kurdistan/2011 strain for intranasal infection and integrated a literature review for a proper evaluation of their host traits and role in PPRV-transmission. Cattle and camelids developed no clinical signs, no viremia, shed no or only low PPRV-RNA loads in swab samples and did not transmit any PPRV to the contact animals. The distribution of PPRV-RNA or antigen in lymphoid organs was similar in cattle and camelids although generally lower compared to suids and small ruminants. In the typical small ruminant hosts, the tissue tropism, pathogenesis and disease expression after PPRV-infection is associated with infection of immune and epithelial cells via SLAM and nectin-4 receptors, respectively. We therefore suggest a different pathogenesis in cattle and camelids and both as dead-end hosts for PPRV.
Collapse
|
44
|
McMahon J, Mackay IM, Lambert SB. Measles Vaccine Virus RNA in Children More Than 100 Days after Vaccination. Viruses 2019; 11:E636. [PMID: 31295941 PMCID: PMC6669751 DOI: 10.3390/v11070636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
Measles vaccines have been in use since the 1960s with excellent safety and effectiveness profiles. Limited data are available on detection of measles vaccine virus (MeVV) RNA in human subjects following vaccination. Available evidence suggests MeVV RNA can be identified up to 14 days after vaccination, with detection beyond this rare. In routine diagnostic testing, we used two real-time reverse transcription-polymerase chain reaction (RT-rPCR) assays targeting M and F genes to identify measles virus (MeV) and MeVV RNA. Confirmatory testing was performed with an N gene RT-rPCR, followed by sequence confirmation of RT-rPCR positives by semi-nested conventional RT-PCR assays targeting portions of the N, H, and L genes. We report detection and confirmation of MeVV RNA from the respiratory tract of 11 children between 100 and 800 days after most recent receipt of measles-containing vaccine. These novel findings emphasize the importance of genotyping all MeV detections and highlight the need for further work to assess whether persistent MeVV RNA represents viable virus and if transmission to close contacts can occur.
Collapse
Affiliation(s)
- Jamie McMahon
- Public Health Virology Laboratory, Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, QLD 4108, Australia.
- Child Health Research Centre, The University of Queensland, 62 Graham Street, South Brisbane, QLD 4101, Australia.
| | - Ian M Mackay
- Public Health Virology Laboratory, Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
- Child Health Research Centre, The University of Queensland, 62 Graham Street, South Brisbane, QLD 4101, Australia
| | - Stephen B Lambert
- Child Health Research Centre, The University of Queensland, 62 Graham Street, South Brisbane, QLD 4101, Australia
| |
Collapse
|
45
|
Noori N, Rohani P. Quantifying the consequences of measles-induced immune modulation for whooping cough epidemiology. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180270. [PMID: 31056052 PMCID: PMC6553609 DOI: 10.1098/rstb.2018.0270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
Measles, an acute viral disease, continues to be an important cause of childhood mortality worldwide. Infection with the measles virus is thought to be associated with a transient but profound period of immune suppression. Recently, it has been claimed that measles-induced immune manipulation lasts for about 30 months and results in increased susceptibility to other co-circulating infectious diseases and more severe disease outcomes upon infection. We tested this hypothesis using model-based inference applied to parallel historical records of measles and whooping cough mortality and morbidity. Specifically, we used maximum likelihood to fit a mechanistic transmission model to incidence data from three different eras, spanning mortality records from 1904 to 1912 and 1922 to 1932 and morbidity records from 1946 to 1956. Our aim was to quantify the timing, severity and pathogenesis impacts of measles-induced immune modulation and their consequences for whooping cough epidemiology across a temporal gradient of measles transmission. We identified an increase in susceptibility to whooping cough following recent measles infection by approximately 85-, 10- and 36-fold for the three eras, respectively, although the duration of this effect was variable. Overall, while the immune impacts of measles may be strong and clearly evident at the individual level, their epidemiological signature in these data appears both modest and inconsistent. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Collapse
Affiliation(s)
- Navideh Noori
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Pejman Rohani
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
46
|
Zhang Y, Mao D, Keeler SP, Wang X, Wu K, Gerovac BJ, Shornick LL, Agapov EV, Holtzman MJ. Respiratory Enterovirus (like Parainfluenza Virus) Can Cause Chronic Lung Disease if Protection by Airway Epithelial STAT1 Is Lost. THE JOURNAL OF IMMUNOLOGY 2019; 202:2332-2347. [PMID: 30804041 DOI: 10.4049/jimmunol.1801491] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
Epithelial barrier cells are proposed to be critical for host defense, and airway epithelial cell capacity for IFN signal transduction is presumed to protect against respiratory viral infection. However, it has been difficult to fully test these concepts given the absence of tools to analyze IFN signaling specific to airway epithelial cells in vivo. To address these issues, we generated a new line of transgenic mice with Cre-driver genes (Foxj1 and Scgb1a1) for a floxed-Stat1 allele (designated Foxj1-Scgb1a1-Cre-Stat1f/f mice) to target the master IFN signal regulator STAT1 in airway epithelial cells and tested these mice for control of infection because of mouse parainfluenza (Sendai) virus and human enterovirus D68 (EV-D68). Indeed, both types of infections showed increases in viral titers and severity of acute illness in Foxj1-Scgb1a1-Cre-Stat1f/f mice and conventional Stat1-/- mice compared with wild-type mice. In concert, the chronic lung disease that develops after Sendai virus infection was also increased in Foxj1-Scgb1a1-Cre-Stat1f/f and Stat1-/ - mice, marked by airway and adjacent parenchymal immune cell infiltration and mucus production for at least 7 wk postinfection. Unexpectedly, relatively mild EV-D68 infection also progressed to chronic lung disease in Foxj1-Scgb1a1-Cre-Stat1f/f and Stat1 -/- mice but was limited (like viral replication) to airways. The results thereby provide proof-of-concept for a critical role of barrier epithelial cells in protection from acute illness and chronic disease after viral infection and suggest a specific role for airway epithelial cells given the limitation of EV-D68 replication and acute and chronic manifestations of disease primarily to airway tissue.
Collapse
Affiliation(s)
- Yong Zhang
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xinyu Wang
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin J Gerovac
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Laurie L Shornick
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene V Agapov
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
47
|
Zinkernagel RM. What if protective immunity is antigen-driven and not due to so-called "memory" B and T cells? Immunol Rev 2019; 283:238-246. [PMID: 29664570 DOI: 10.1111/imr.12648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vaccines or early childhood exposure to infection mediate immunity, that is, improved resistance against disease and death caused by a second infection with the same agent. This has been explained by and equaled to immunological memory, that is, an "altered immune system behavior" that is maintained in a presumably antigen-independent fashion. This review summarizes epidemiological and experimental data, that largely falsify this idea and that show that periodic re-exposure to antigen either, artificially as vaccines or naturally as low-level persisting antigens or infections, or immune complexes on follicular dendritic cells or endemic re-exposure is necessary for protection. Both, the huge success of vaccines in controlling childhood infections, the reduction in clinical disease and the chance of endemically re-exposure, have gradually reduced periodical re-exposure to infections and thereby endangered protective herd immunity. In parallel, vaccine deniers have created susceptibility islands even in an otherwise well vaccinated population, thereby creating a very new situation when compared to the later parts of the 20th century. If protective Immunity is-as emphasized here-antigen driven, then increasingly frequent revaccinations will be necessary (even more so with too much attenuated vaccines) to maintain both herd immunity and individual resistance to acute infections. Of course, this rule also applies to tumor vaccines.
Collapse
|
48
|
Morris SE, Yates AJ, de Swart RL, de Vries RD, Mina MJ, Nelson AN, Lin WHW, Kouyos RD, Griffin DE, Grenfell BT. Modeling the measles paradox reveals the importance of cellular immunity in regulating viral clearance. PLoS Pathog 2018; 14:e1007493. [PMID: 30592772 PMCID: PMC6310241 DOI: 10.1371/journal.ppat.1007493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Measles virus (MV) is a highly contagious member of the Morbillivirus genus that remains a major cause of childhood mortality worldwide. Although infection induces a strong MV-specific immune response that clears viral load and confers lifelong immunity, transient immunosuppression can also occur, leaving the host vulnerable to colonization from secondary pathogens. This apparent contradiction of viral clearance in the face of immunosuppression underlies what is often referred to as the 'measles paradox', and remains poorly understood. To explore the mechanistic basis underlying the measles paradox, and identify key factors driving viral clearance, we return to a previously published dataset of MV infection in rhesus macaques. These data include virological and immunological information that enable us to fit a mathematical model describing how the virus interacts with the host immune system. In particular, our model incorporates target cell depletion through infection of host immune cells-a hallmark of MV pathology that has been neglected from previous models. We find the model captures the data well, and that both target cell depletion and immune activation are required to explain the overall dynamics. Furthermore, by simulating conditions of increased target cell availability and suppressed cellular immunity, we show that the latter causes greater increases in viral load and delays to MV clearance. Overall, this signals a more dominant role for cellular immunity in resolving acute MV infection. Interestingly, we find contrasting dynamics dominated by target cell depletion when viral fitness is increased. This may have wider implications for animal morbilliviruses, such as canine distemper virus (CDV), that cause fatal target cell depletion in their natural hosts. To our knowledge this work represents the first fully calibrated within-host model of MV dynamics and, more broadly, provides a new platform from which to explore the complex mechanisms underlying Morbillivirus infection.
Collapse
Affiliation(s)
- Sinead E. Morris
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Andrew J. Yates
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Michael J. Mina
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashley N. Nelson
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wen-Hsuan W. Lin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Roger D. Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Diane E. Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bryan T. Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Abstract
Eradication of small ruminant morbillivirus (PPRV) is targeted for 2030. PPRV lineage IV is found in much of Asia and Africa. We used PPRV lineage IV strain Kurdistan/2011 in transmission trials to investigate the role of pigs, wild boar, and small ruminants as PPRV reservoirs. Suids were a possible source of infection.
Collapse
Affiliation(s)
| | - Christine Fast
- Friedrich-Loeffler-Institut, Greifswald–Insel Riems, Germany
| | - Kore Schlottau
- Friedrich-Loeffler-Institut, Greifswald–Insel Riems, Germany
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Greifswald–Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald–Insel Riems, Germany
| |
Collapse
|
50
|
Mascia C, Pozzetto I, Kertusha B, Marocco R, Del Borgo C, Tieghi T, Vita S, Savinelli S, Iannetta M, Vullo V, Lichtner M, Mastroianni CM. Persistent high plasma levels of sCD163 and sCD14 in adult patients with measles virus infection. PLoS One 2018; 13:e0198174. [PMID: 29795672 PMCID: PMC5967820 DOI: 10.1371/journal.pone.0198174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Measles is an infectious disease that represents a serious public health problem worldwide, being associated with increased susceptibility to secondary infections, especially in the respiratory and gastrointestinal tracts. The aim of this study was to evaluate sCD163 and sCD14 levels in measles virus (MV) infected patients, as markers of immune activation, in order to better understand their role in the pathogenesis of the disease. TNF-α plasma levels were also evaluated. METHODS sCD163, sCD14 and TNF-α were measured by ELISA in plasma samples of 27 MV infected patients and 27 healthy donors (HD) included as controls. RESULTS At the time of hospital admission, sCD163 and sCD14 levels were significantly higher in MV infected patients than in HD, while a decrease in TNF-α levels were found even if without statistical significance. sCD163 and sCD14 levels were significantly decreased after two months from acute infection compared to hospital admission although they remained significantly higher compared to HD. TNF-α levels increased significantly during the follow-up period. Considering clinical parameters, sCD163 levels positively correlated with aspartate aminotransferase, white blood cell count and neutrophils rate, while negatively correlated with the lymphocyte percentage. sCD14 levels positively correlated with the neutrophil and lymphocyte percentages. CONCLUSIONS These results indicate that, despite the resolution of symptoms, an important macrophage/monocyte activation persists in measles patients, even after two months from infection.
Collapse
Affiliation(s)
- Claudia Mascia
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Irene Pozzetto
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
- Infectious Diseases Unit, Sapienza University, S. M. Goretti Hospital, Latina, Italy
| | - Blerta Kertusha
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
- Infectious Diseases Unit, Sapienza University, S. M. Goretti Hospital, Latina, Italy
| | - Raffaella Marocco
- Infectious Diseases Unit, Sapienza University, S. M. Goretti Hospital, Latina, Italy
| | - Cosmo Del Borgo
- Infectious Diseases Unit, Sapienza University, S. M. Goretti Hospital, Latina, Italy
| | - Tiziana Tieghi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
- Infectious Diseases Unit, Sapienza University, S. M. Goretti Hospital, Latina, Italy
| | - Serena Vita
- Infectious Diseases Unit, Sapienza University, S. M. Goretti Hospital, Latina, Italy
| | - Stefano Savinelli
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Marco Iannetta
- National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Miriam Lichtner
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
- Infectious Diseases Unit, Sapienza University, S. M. Goretti Hospital, Latina, Italy
| | | |
Collapse
|