1
|
Rook GAW. Evolution and the critical role of the microbiota in the reduced mental and physical health associated with low socioeconomic status (SES). Neurosci Biobehav Rev 2024; 161:105653. [PMID: 38582194 DOI: 10.1016/j.neubiorev.2024.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The evolution of the gut-microbiota-brain axis in animals reveals that microbial inputs influence metabolism, the regulation of inflammation and the development of organs, including the brain. Inflammatory, neurodegenerative and psychiatric disorders are more prevalent in people of low socioeconomic status (SES). Many aspects of low SES reduce exposure to the microbial inputs on which we are in a state of evolved dependence, whereas the lifestyle of wealthy citizens maintains these exposures. This partially explains the health deficit of low SES, so focussing on our evolutionary history and on environmental and lifestyle factors that distort microbial exposures might help to mitigate that deficit. But the human microbiota is complex and we have poor understanding of its functions at the microbial and mechanistic levels, and in the brain. Perhaps its composition is more flexible than the microbiota of animals that have restricted habitats and less diverse diets? These uncertainties are discussed in relation to the encouraging but frustrating results of attempts to treat psychiatric disorders by modulating the microbiota.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, Department of infection, UCL (University College London), London, UK.
| |
Collapse
|
2
|
Galloway DR, Li J, Nguyen NX, Falkenberg FW, Henning L, Krile R, Chou YL, Herron JN, Hale JS, Williamson ED. Co-formulation of the rF1V plague vaccine with depot-formulated cytokines enhances immunogenicity and efficacy to elicit protective responses against aerosol challenge in mice. Front Immunol 2024; 15:1277526. [PMID: 38605961 PMCID: PMC11007139 DOI: 10.3389/fimmu.2024.1277526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
This study evaluated a depot-formulated cytokine-based adjuvant to improve the efficacy of the recombinant F1V (rF1V) plague vaccine and examined the protective response following aerosol challenge in a murine model. The results of this study showed that co-formulation of the Alhydrogel-adsorbed rF1V plague fusion vaccine with the depot-formulated cytokines recombinant human interleukin 2 (rhuIL-2) and/or recombinant murine granulocyte macrophage colony-stimulating factor (rmGM-CSF) significantly enhances immunogenicity and significant protection at lower antigen doses against a lethal aerosol challenge. These results provide additional support for the co-application of the depot-formulated IL-2 and/or GM-CSF cytokines to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Darrell R. Galloway
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Jiahui Li
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Nguyen X. Nguyen
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | | | - Lisa Henning
- Battelle Biomedical Research Center, Columbus, OH, United States
| | - Robert Krile
- Battelle Biomedical Research Center, Columbus, OH, United States
| | - Ying-Liang Chou
- Battelle Biomedical Research Center, Columbus, OH, United States
| | - James N. Herron
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - J. Scott Hale
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - E. Diane Williamson
- Chemical Biological Radiological Division, Defense Science and Technology Laboratory (DSTL), Porton Down, Salisbury, United Kingdom
| |
Collapse
|
3
|
Rook GAW. The old friends hypothesis: evolution, immunoregulation and essential microbial inputs. FRONTIERS IN ALLERGY 2023; 4:1220481. [PMID: 37772259 PMCID: PMC10524266 DOI: 10.3389/falgy.2023.1220481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
In wealthy urbanised societies there have been striking increases in chronic inflammatory disorders such as allergies, autoimmunity and inflammatory bowel diseases. There has also been an increase in the prevalence of individuals with systemically raised levels of inflammatory biomarkers correlating with increased risk of metabolic, cardiovascular and psychiatric problems. These changing disease patterns indicate a broad failure of the mechanisms that should stop the immune system from attacking harmless allergens, components of self or gut contents, and that should terminate inappropriate inflammation. The Old Friends Hypothesis postulates that this broad failure of immunoregulation is due to inadequate exposures to the microorganisms that drive development of the immune system, and drive the expansion of components such as regulatory T cells (Treg) that mediate immunoregulatory mechanisms. An evolutionary approach helps us to identify the organisms on which we are in a state of evolved dependence for this function (Old Friends). The bottom line is that most of the organisms that drive the regulatory arm of the immune system come from our mothers and family and from the natural environment (including animals) and many of these organisms are symbiotic components of a healthy microbiota. Lifestyle changes that are interrupting our exposure to these organisms can now be identified, and many are closely associated with low socioeconomic status (SES) in wealthy countries. These insights will facilitate the development of education, diets and urban planning that can correct the immunoregulatory deficit, while simultaneously reducing other contributory factors such as epithelial damage.
Collapse
Affiliation(s)
- Graham A. W. Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, United Kingdom
| |
Collapse
|
4
|
Otsuka Saito K, Fujita F, Toriyama M, Utami RA, Guo Z, Murakami M, Kato H, Suzuki Y, Okada F, Tominaga M, Ishii KJ. Roles of TRPM4 in immune responses in keratinocytes and identification of a novel TRPM4-activating agent. Biochem Biophys Res Commun 2023; 654:1-9. [PMID: 36871485 DOI: 10.1016/j.bbrc.2023.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023]
Abstract
The skin is a protective interface between the internal organs and environment and functions not only as a physical barrier but also as an immune organ. However, the immune system in the skin is not fully understood. A member of the thermo-sensitive transient receptor potential (TRP) channel family, TRPM4, which acts as a regulatory receptor in immune cells, was recently reported to be expressed in human skin and keratinocytes. However, the function of TRPM4 in immune responses in keratinocytes has not been investigated. In this study, we found that treatment with BTP2, a known TRPM4 agonist, reduced cytokine production induced by tumor necrosis factor (TNF) α in normal human epidermal keratinocytes and in immortalized human epidermal keratinocytes (HaCaT cells). This cytokine-reducing effect was not observed in TRPM4-deficient HaCaT cells, indicating that TRPM4 contributed to the control of cytokine production in keratinocytes. Furthermore, we identified aluminum potassium sulfate, as a new TRPM4 activating agent. Aluminum potassium sulfate reduced Ca2+ influx by store-operated Ca2+ entry in human TRPM4-expressing HEK293T cells. We further confirmed that aluminum potassium sulfate evoked TRPM4-mediated currents, showing direct evidence for TRPM4 activation. Moreover, treatment with aluminum potassium sulfate reduced cytokine expression induced by TNFα in HaCaT cells. Taken together, our data suggested that TRPM4 may serve as a new target for the treatment of skin inflammatory reactions by suppressing the cytokine production in keratinocytes, and aluminum potassium sulfate is a useful ingredient to prevent undesirable skin inflammation through TRPM4 activation.
Collapse
Affiliation(s)
- Kaori Otsuka Saito
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan; Fundamental Research Institute, Mandom Corp., 5-12, Juniken-Cho, Chuo-ku, Osaka, 540-8530, Japan; Laboratory of Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), 7-6-8, Asagi, Saito, Ibaraki-City, Osaka, 567-0085, Japan.
| | - Fumitaka Fujita
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan; Fundamental Research Institute, Mandom Corp., 5-12, Juniken-Cho, Chuo-ku, Osaka, 540-8530, Japan; Laboratory of Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), 7-6-8, Asagi, Saito, Ibaraki-City, Osaka, 567-0085, Japan
| | - Manami Toriyama
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), 7-6-8, Asagi, Saito, Ibaraki-City, Osaka, 567-0085, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-Cho, Ikoma, Nara, 630-0192, Japan
| | - Ratna Annisa Utami
- School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Zhihan Guo
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masato Murakami
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan; Technical Development Center, Mandom Corp., 5-12, Juniken-Cho, Chuo-ku, Osaka, 540-8530, Japan
| | - Hiroko Kato
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), 7-6-8, Asagi, Saito, Ibaraki-City, Osaka, 567-0085, Japan
| | - Yoshiro Suzuki
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems National Institutes of Natural Sciences, 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Department of Physiology, Iwate Medical University, 1-1-1, Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Fumihiro Okada
- Fundamental Research Institute, Mandom Corp., 5-12, Juniken-Cho, Chuo-ku, Osaka, 540-8530, Japan
| | - Makoto Tominaga
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems National Institutes of Natural Sciences, 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Ken J Ishii
- Laboratory of Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), 7-6-8, Asagi, Saito, Ibaraki-City, Osaka, 567-0085, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
5
|
Advances on the early cellular events occurring upon exposure of human macrophages to aluminum oxyhydroxide adjuvant. Sci Rep 2023; 13:3198. [PMID: 36823452 PMCID: PMC9950428 DOI: 10.1038/s41598-023-30336-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Aluminum compounds are the most widely used adjuvants in veterinary and human vaccines. Despite almost a century of use and substantial advances made in recent decades about their fate and biological effects, the exact mechanism of their action has been continuously debated, from the initial "depot-theory" to the direct immune system stimulation, and remains elusive. Here we investigated the early in vitro response of primary human PBMCs obtained from healthy individuals to aluminum oxyhydroxide (the most commonly used adjuvant) and a whole vaccine, in terms of internalization, conventional and non-conventional autophagy pathways, inflammation, ROS production, and mitochondrial metabolism. During the first four hours of contact, aluminum oxyhydroxide particles, with or without adsorbed vaccine antigen, (1) were quickly recognized and internalized by immune cells; (2) increased and balanced two cellular clearance mechanisms, i.e. canonical autophagy and LC3-associated phagocytosis; (3) induced an inflammatory response with TNF-α production as an early event; (4) and altered mitochondrial metabolism as assessed by both decreased maximal oxygen consumption and reduced mitochondrial reserve, thus potentially limiting further adaptation to other energetic requests. Further studies should consider a multisystemic approach of the cellular adjuvant mechanism involving interconnections between clearance mechanism, inflammatory response and mitochondrial respiration.
Collapse
|
6
|
Carnet F, Perrin-Cocon L, Paillot R, Lotteau V, Pronost S, Vidalain PO. An inventory of adjuvants used for vaccination in horses: the past, the present and the future. Vet Res 2023; 54:18. [PMID: 36864517 PMCID: PMC9983233 DOI: 10.1186/s13567-023-01151-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/27/2023] [Indexed: 03/04/2023] Open
Abstract
Vaccination is one of the most widely used strategies to protect horses against pathogens. However, available equine vaccines often have limitations, as they do not always provide effective, long-term protection and booster injections are often required. In addition, research efforts are needed to develop effective vaccines against emerging equine pathogens. In this review, we provide an inventory of approved adjuvants for equine vaccines worldwide, and discuss their composition and mode of action when available. A wide range of adjuvants are used in marketed vaccines for horses, the main families being aluminium salts, emulsions, polymers, saponins and ISCOMs. We also present veterinary adjuvants that are already used for vaccination in other species and are currently evaluated in horses to improve equine vaccination and to meet the expected level of protection against pathogens in the equine industry. Finally, we discuss new adjuvants such as liposomes, polylactic acid polymers, inulin, poly-ε-caprolactone nanoparticles and co-polymers that are in development. Our objective is to help professionals in the horse industry understand the composition of marketed equine vaccines in a context of mistrust towards vaccines. Besides, this review provides researchers with a list of adjuvants, either approved or at least evaluated in horses, that could be used either alone or in combination to develop new vaccines.
Collapse
Affiliation(s)
- Flora Carnet
- grid.508204.bLABÉO, 14280 Saint-Contest, France ,grid.412043.00000 0001 2186 4076BIOTARGEN, Normandie University, UNICAEN, 14280 Saint-Contest, France
| | - Laure Perrin-Cocon
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Romain Paillot
- grid.451003.30000 0004 0387 5232School of Equine and Veterinary Physiotherapy, Writtle University College, Lordship Road, Writtle, Chelmsford, CM1 3RR UK
| | - Vincent Lotteau
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Stéphane Pronost
- LABÉO, 14280, Saint-Contest, France. .,BIOTARGEN, Normandie University, UNICAEN, 14280, Saint-Contest, France.
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
7
|
Gatt Z, Gunes U, Raponi A, da Rosa LC, Brewer JM. Review: Unravelling the Role of DNA Sensing in Alum Adjuvant Activity. DISCOVERY IMMUNOLOGY 2022; 2:kyac012. [PMID: 38567066 PMCID: PMC10917177 DOI: 10.1093/discim/kyac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 12/28/2022] [Indexed: 04/04/2024]
Abstract
Public interest in vaccines is at an all-time high following the SARS-CoV-2 global pandemic. Currently, over 6 billion doses of various vaccines are administered globally each year. Most of these vaccines contain Aluminium-based adjuvants (alum), which have been known and used for almost 100 years to enhance vaccine immunogenicity. However, despite the historical use and importance of alum, we still do not have a complete understanding of how alum works to drive vaccine immunogenicity. In this article, we critically review studies investigating the mechanisms of action of alum adjuvants, highlighting some of the misconceptions and controversies within the area. Although we have emerged with a clearer understanding of how this ubiquitous adjuvant works, we have also highlighted some of the outstanding questions in the field. While these may seem mainly of academic interest, developing a more complete understanding of these mechanisms has the potential to rationally modify and improve the immune response generated by alum-adjuvanted vaccines.
Collapse
Affiliation(s)
- Zara Gatt
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Utku Gunes
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Arianna Raponi
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Larissa Camargo da Rosa
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland
| | - James M Brewer
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland
| |
Collapse
|
8
|
Comparative tissue proteomics reveals unique action mechanisms of vaccine adjuvants. iScience 2022; 26:105800. [PMID: 36619976 PMCID: PMC9813788 DOI: 10.1016/j.isci.2022.105800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Radiofrequency adjuvant (RFA) was recently developed to boost influenza vaccination without the safety concerns of chemical adjuvants due to their physical nature. Yet, the action mechanisms of RFA remain largely unknown. Omics techniques offer new opportunities to identify molecular mechanisms of RFA. This study utilized comparative tissue proteomics to explore molecular mechanisms of the physical RFA. Comparison of RFA and chemical adjuvant (Alum, AddaVax, MPL, MPL/Alum)-induced tissue proteome changes identified 14 exclusively induced proteins by RFA, among which heat shock protein (HSP) 70 was selected for further analysis due to its known immune-modulating functions. RFA showed much weakened ability to boost ovalbumin and pandemic influenza vaccination in HSP70 knockout than wild-type mice, hinting crucial roles of HSP70 in RFA effects. This study supports comparative tissue proteomics to be an effective tool to study molecular mechanisms of vaccine adjuvants.
Collapse
|
9
|
de Moura Rodrigues D, Lacerda-Queiroz N, Couillin I, Riteau N. STING Targeting in Lung Diseases. Cells 2022; 11:3483. [PMID: 36359882 PMCID: PMC9657237 DOI: 10.3390/cells11213483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 01/30/2024] Open
Abstract
The cGAS-STING pathway displays important functions in the regulation of innate and adaptive immunity following the detection of microbial and host-derived DNA. Here, we briefly summarize biological functions of STING and review recent literature highlighting its important contribution in the context of respiratory diseases. Over the last years, tremendous progress has been made in our understanding of STING activation, which has favored the development of STING agonists or antagonists with potential therapeutic benefits. Antagonists might alleviate STING-associated chronic inflammation and autoimmunity. Furthermore, pharmacological activation of STING displays strong antiviral properties, as recently shown in the context of SARS-CoV-2 infection. STING agonists also elicit potent stimulatory activities when used as an adjuvant promoting antitumor responses and vaccines efficacy.
Collapse
Affiliation(s)
- Dorian de Moura Rodrigues
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| | | | - Isabelle Couillin
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| |
Collapse
|
10
|
Turley JL, Lavelle EC. Resolving adjuvant mode of action to enhance vaccine efficacy. Curr Opin Immunol 2022; 77:102229. [PMID: 35779364 DOI: 10.1016/j.coi.2022.102229] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022]
Abstract
Adjuvants are a miscellaneous range of molecules and materials that can enhance the magnitude, functionality, breadth and durability of immune responses. Despite the multiplicity of compounds with adjuvant properties, less than a dozen are in clinical use in vaccines against infectious diseases. While many factors have contributed to their slow development, among the major challenges are the high safety and efficacy standards set by current adjuvants in human vaccines and our limited understanding of how adjuvants mediate their effects. This review outlines why it is so difficult to elucidate their mechanism of action, highlights areas that require in-depth research and discusses recent advancements that are revitalising adjuvant development. It is hoped that a fuller understanding of adjuvant sensing, signalling and function will facilitate the design of vaccines that promote sustained protective immunity against challenging bacterial and viral pathogens.
Collapse
Affiliation(s)
- Joanna L Turley
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02R590, Ireland.
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02R590, Ireland.
| |
Collapse
|
11
|
Patel PS, Pérez-Baos S, Walters B, Orlen M, Volkova A, Ruggles K, Park CY, Schneider RJ. Translational regulation of TFH cell differentiation and autoimmune pathogenesis. SCIENCE ADVANCES 2022; 8:eabo1782. [PMID: 35749506 PMCID: PMC9232117 DOI: 10.1126/sciadv.abo1782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Little is known regarding T cell translational regulation. We demonstrate that T follicular helper (TFH) cells use a previously unknown mechanism of selective messenger RNA (mRNA) translation for their differentiation, role in B cell maturation, and in autoimmune pathogenesis. We show that TFH cells have much higher levels of translation factor eIF4E than non-TFH CD4+ T cells, which is essential for translation of TFH cell fate-specification mRNAs. Genome-wide translation studies indicate that modest down-regulation of eIF4E activity by a small-molecule inhibitor or short hairpin RN impairs TFH cell development and function. In mice, down-regulation of eIF4E activity specifically reduces TFH cells among T helper subtypes, germinal centers, B cell recruitment, and antibody production. In experimental autoimmune encephalomyelitis, eIF4E activity down-regulation blocks TFH cell participation in disease pathogenesis while promoting rapid remission and spinal cord remyelination. TFH cell development and its role in autoimmune pathogenesis involve selective mRNA translation that is highly druggable.
Collapse
Affiliation(s)
- Preeyam S. Patel
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sandra Pérez-Baos
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Beth Walters
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Margo Orlen
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Angelina Volkova
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Kelly Ruggles
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Christopher Y. Park
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Robert J. Schneider
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
12
|
Garland KM, Sheehy TL, Wilson JT. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chem Rev 2022; 122:5977-6039. [PMID: 35107989 PMCID: PMC8994686 DOI: 10.1021/acs.chemrev.1c00750] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stimulator of interferon genes (STING) cellular signaling pathway is a promising target for cancer immunotherapy. Activation of the intracellular STING protein triggers the production of a multifaceted array of immunostimulatory molecules, which, in the proper context, can drive dendritic cell maturation, antitumor macrophage polarization, T cell priming and activation, natural killer cell activation, vascular reprogramming, and/or cancer cell death, resulting in immune-mediated tumor elimination and generation of antitumor immune memory. Accordingly, there is a significant amount of ongoing preclinical and clinical research toward further understanding the role of the STING pathway in cancer immune surveillance as well as the development of modulators of the pathway as a strategy to stimulate antitumor immunity. Yet, the efficacy of STING pathway agonists is limited by many drug delivery and pharmacological challenges. Depending on the class of STING agonist and the desired administration route, these may include poor drug stability, immunocellular toxicity, immune-related adverse events, limited tumor or lymph node targeting and/or retention, low cellular uptake and intracellular delivery, and a complex dependence on the magnitude and kinetics of STING signaling. This review provides a concise summary of the STING pathway, highlighting recent biological developments, immunological consequences, and implications for drug delivery. This review also offers a critical analysis of an expanding arsenal of chemical strategies that are being employed to enhance the efficacy, safety, and/or clinical utility of STING pathway agonists and lastly draws attention to several opportunities for therapeutic advancements.
Collapse
Affiliation(s)
- Kyle M Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
| | - Taylor L Sheehy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
| |
Collapse
|
13
|
Abstract
Healthy development and function of essentially all physiological systems and organs, including the brain, require exposure to the microbiota of our mothers and of the natural environment, especially in early life. We also know that some infections, if we survive them, modulate the immune system in relevant ways. If we study the evolution of the immune and metabolic systems, we can understand how these requirements developed and the nature of the organisms that we need to encounter. We can then begin to identify the mechanisms of the beneficial effects of these exposures. Against this evolutionary background, we can analyze the ways in which the modern urban lifestyle, particularly for individuals experiencing low socioeconomic status (SES), results in deficient or distorted microbial exposures and microbiomes. Thus, an evolutionary approach facilitates the identification of practical solutions to the growing scandal of health disparities linked to inequality.
Collapse
|
14
|
Lee A, Scott MKD, Wimmers F, Arunachalam PS, Luo W, Fox CB, Tomai M, Khatri P, Pulendran B. A molecular atlas of innate immunity to adjuvanted and live attenuated vaccines, in mice. Nat Commun 2022; 13:549. [PMID: 35087093 PMCID: PMC8795432 DOI: 10.1038/s41467-022-28197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/08/2022] [Indexed: 12/27/2022] Open
Abstract
Adjuvants hold great potential in enhancing vaccine efficacy, making the understanding and improving of adjuvants critical goals in vaccinology. The TLR7/8 agonist, 3M-052, induces long-lived humoral immunity in non-human primates and is currently being evaluated in human clinical trials. However, the innate mechanisms of 3M-052 have not been fully characterized. Here, we perform flow cytometry, single cell RNA-seq and ATAC-seq to profile the kinetics, transcriptomics and epigenomics of innate immune cells in murine draining lymph nodes following 3M-052-Alum/Ovalbumin immunization. We find that 3M-052-Alum/OVA induces a robust antiviral and interferon gene program, similar to the yellow fever vaccine, which is known to confer long-lasting protection. Activation of myeloid cells in dLNs persists through day 28 and single cell analysis reveals putative TF-gene regulatory programs in distinct myeloid cells and heterogeneity of monocytes. This study provides a comprehensive characterization of the transcriptomics and epigenomics of innate populations in the dLNs after vaccination.
Collapse
Affiliation(s)
- Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Madeleine K D Scott
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Wei Luo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Mark Tomai
- 3M Corporate Research and Materials Lab, St. Paul, MN, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Stefanetti G, Borriello F, Richichi B, Zanoni I, Lay L. Immunobiology of Carbohydrates: Implications for Novel Vaccine and Adjuvant Design Against Infectious Diseases. Front Cell Infect Microbiol 2022; 11:808005. [PMID: 35118012 PMCID: PMC8803737 DOI: 10.3389/fcimb.2021.808005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carbohydrates are ubiquitous molecules expressed on the surface of nearly all living cells, and their interaction with carbohydrate-binding proteins is critical to many immunobiological processes. Carbohydrates are utilized as antigens in many licensed vaccines against bacterial pathogens. More recently, they have also been considered as adjuvants. Interestingly, unlike other types of vaccines, adjuvants have improved immune response to carbohydrate-based vaccine in humans only in a few cases. Furthermore, despite the discovery of many new adjuvants in the last years, aluminum salts, when needed, remain the only authorized adjuvant for carbohydrate-based vaccines. In this review, we highlight historical and recent advances on the use of glycans either as vaccine antigens or adjuvants, and we review the use of currently available adjuvants to improve the efficacy of carbohydrate-based vaccines. A better understanding of the mechanism of carbohydrate interaction with innate and adaptive immune cells will benefit the design of a new generation of glycan-based vaccines and of immunomodulators to fight both longstanding and emerging diseases.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Division of Immunology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Ivan Zanoni
- Division of Immunology, Division of Gastroenterology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Luigi Lay
- Department of Chemistry, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Zhu L, Han Z, He Y, Sun H. Caspase-1-Dependent Pyroptosis Mediates Adjuvant Activity of Platycodin D as an Adjuvant for Intramuscular Vaccines. Cells 2022; 11:cells11010134. [PMID: 35011696 PMCID: PMC8750424 DOI: 10.3390/cells11010134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Platycodin D (PD) is a potent adjuvant with dual Th1 and Th2 potentiating activity, but its mechanisms of action remain unclear. Here, the C2C12 myoblast cell line and mice were used as in vitro and in vivo models to identify potential signaling pathways involved in the adjuvant activity of PD. PD induced a transient cytotoxicity and inflammatory response in the C2C12 cells and in mouse quadricep muscles. A comparative analysis of microarray data revealed that PD induced similar gene expression profiles in the C2C12 cells and in the quadricep muscles, and triggered rapid regulation of death, immune, and inflammation-related genes, both in vivo and in vitro. It was further demonstrated that caspase-1-dependent pyroptosis was involved in the PD-induced cytotoxicity and inflammatory response in the C2C12 cells via the Ca2+–c-jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK)–NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway. Consistently, the in vivo analysis revealed that a local blockage of NLRP3 and caspase-1 inhibited PD-induced cytokine production and immune cell recruitment at the injection site, and impaired the adjuvant activity of PD on antigen-specific immune responses to model antigen ovalbumin (OVA) in mice. These findings identified the caspase-1-dependent adjuvanticity of PD and expanded the current knowledge on the mechanisms of action of saponin-based adjuvants.
Collapse
|
17
|
Kooijman S, Vrieling H, Verhagen L, de Ridder J, de Haan A, van Riet E, Heck AJ, Kersten GF, Pennings JL, Metz B, Meiring HD. Aluminum Hydroxide and Aluminum Phosphate Adjuvants Elicit a Different Innate Immune Response. J Pharm Sci 2022; 111:982-990. [DOI: 10.1016/j.xphs.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022]
|
18
|
Rozario C, Martínez-Sobrido L, McSorley HJ, Chauché C. Could Interleukin-33 (IL-33) Govern the Outcome of an Equine Influenza Virus Infection? Learning from Other Species. Viruses 2021; 13:2519. [PMID: 34960788 PMCID: PMC8704309 DOI: 10.3390/v13122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A viruses (IAVs) are important respiratory pathogens of horses and humans. Infected individuals develop typical respiratory disorders associated with the death of airway epithelial cells (AECs) in infected areas. Virulence and risk of secondary bacterial infections vary among IAV strains. The IAV non-structural proteins, NS1, PB1-F2, and PA-X are important virulence factors controlling AEC death and host immune responses to viral and bacterial infection. Polymorphism in these proteins impacts their function. Evidence from human and mouse studies indicates that upon IAV infection, the manner of AEC death impacts disease severity. Indeed, while apoptosis is considered anti-inflammatory, necrosis is thought to cause pulmonary damage with the release of damage-associated molecular patterns (DAMPs), such as interleukin-33 (IL-33). IL-33 is a potent inflammatory mediator released by necrotic cells, playing a crucial role in anti-viral and anti-bacterial immunity. Here, we discuss studies in human and murine models which investigate how viral determinants and host immune responses control AEC death and subsequent lung IL-33 release, impacting IAV disease severity. Confirming such data in horses and improving our understanding of early immunologic responses initiated by AEC death during IAV infection will better inform the development of novel therapeutic or vaccine strategies designed to protect life-long lung health in horses and humans, following a One Health approach.
Collapse
Affiliation(s)
- Christoforos Rozario
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| | | | - Henry J. McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Wellcome Trust Building, Dow Street, Dundee DD1 5EH, UK;
| | - Caroline Chauché
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| |
Collapse
|
19
|
Role of Damage-Associated Molecular Pattern/Cell Death Pathways in Vaccine-Induced Immunity. Viruses 2021; 13:v13122340. [PMID: 34960608 PMCID: PMC8708515 DOI: 10.3390/v13122340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Immune responses induced by natural infection and vaccination are known to be initiated by the recognition of microbial patterns by cognate receptors, since microbes and most vaccine components contain pathogen-associated molecular patterns. Recent discoveries on the roles of damage-associated molecular patterns (DAMPs) and cell death in immunogenicity have improved our understanding of the mechanism underlying vaccine-induced immunity. DAMPs are usually immunologically inert, but can transform into alarming signals to activate the resting immune system in response to pathogenic infection, cellular stress and death, or tissue damage. The activation of DAMPs and cell death pathways can trigger local inflammation, occasionally mediating adaptive immunity, including antibody- and cell-mediated immune responses. Emerging evidence indicates that the components of vaccines and adjuvants induce immunogenicity via the stimulation of DAMP/cell death pathways. Furthermore, strategies for targeting this pathway to enhance immunogenicity are being investigated actively. In this review, we describe various DAMPs and focus on the roles of DAMP/cell death pathways in the context of vaccines for infectious diseases and cancer.
Collapse
|
20
|
Buchner MR, Müller M. Ligand Influence on Structural and Spectroscopic Properties of Beryllium Oxocarboxylates. Inorg Chem 2021; 60:17379-17387. [PMID: 34730335 DOI: 10.1021/acs.inorgchem.1c02939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aluminum-based adjuvants for vaccines and beryllium ions interact with the same immune receptor. The Be4O core, which is also found in beryllium oxocarboxylates, has been proposed to be the binding species in the latter case. However, this is not proven due to a lack of suitable probes for the Be4O moiety. Therefore, a versatile synthetic route to beryllium oxocarboxylates has been developed to investigate the steric and electronic influence of the ligands onto their molecular and spectroscopic properties. The oxocarboxylates exhibit extremely narrow line widths in 9Be NMR spectroscopy, and the chemical shift is only influenced by the sterics of the ligands. The mean variation of the atomic distances in the central Be4O building block is extremely small over all investigated compounds, and even the C-C distances are only little perturbed by the properties of the ligands. Vibrational spectroscopy showed Be-O bands; however, further distinctions could not be drawn.
Collapse
Affiliation(s)
- Magnus R Buchner
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Matthias Müller
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| |
Collapse
|
21
|
Heterologous administration of HPV16 E7 epitope-loaded nanocomplexes inhibits tumor growth in mouse model. Int Immunopharmacol 2021; 101:108298. [PMID: 34739928 DOI: 10.1016/j.intimp.2021.108298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023]
Abstract
The nanostructured complexes can result in enhanced vaccine efficacy by facilitating the distribution and uptake of antigens by antigen-presenting cells (APCs), thereby stimulating immune responses. Here, we hypothesized that either directly coating of nanoadjuvants including aluminum phosphate (AlPO4) and adenovirus (Ad) with a modified HPV16 E7 MHC-I specific epitope, RAHYNIVTF49-57, or mixing the CpG oligodeoxynucleotide (CpG-ODN) with the cationic epitope to form nanocomlexes, and their combinational therapy would enhance their anti-tumor effects in a TC-1 mouse model. The positively-charged HPV16 E7 epitope was attracted to the oppositely-charged adjuvants by electrostatic interaction to generate epitope/adjuvant nanocomplexes. We showed that coating the nanosized adjuvants with the cationic epitope increased the particles' surface charge without significant change in their size. We then tested the cellular immunogenicity and therapeutic efficacy of nanocomplexes by measuring IL-10 and IFN-γ production, the expression of CD107a as a marker of CTL response, and tumor growth inhibition. The nanocomplexes were administered either in homologous or heterologous prime-boost regimens, and heterologous immunizations including Ad/Pep-CpG/Pep, CpG/Pep-Ad/Pep, Ad/Pep-Alum/Pep, and Alum/Pep-Ad/Pep induced significantly higher levels of IL-10, IFN-γ, and CD107a-expressing CD8 T cells compared with homologous administrations. Furthermore, the tumor growth was significantly suppressed in mice receiving nanostructured complexes in the heterologous immunizations. Our study highlights the potential of the heterologous prime-boost administration of the epitope-coated nanostructures as an effective immunization strategy.
Collapse
|
22
|
Lindsay RS, Whitesell JC, Dew KE, Rodriguez E, Sandor AM, Tracy D, Yannacone SF, Basta BN, Jacobelli J, Friedman RS. MERTK on mononuclear phagocytes regulates T cell antigen recognition at autoimmune and tumor sites. J Exp Med 2021; 218:e20200464. [PMID: 34415994 PMCID: PMC8383814 DOI: 10.1084/jem.20200464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding mechanisms of immune regulation is key to developing immunotherapies for autoimmunity and cancer. We examined the role of mononuclear phagocytes during peripheral T cell regulation in type 1 diabetes and melanoma. MERTK expression and activity in mononuclear phagocytes in the pancreatic islets promoted islet T cell regulation, resulting in reduced sensitivity of T cell scanning for cognate antigen in prediabetic islets. MERTK-dependent regulation led to reduced T cell activation and effector function at the disease site in islets and prevented rapid progression of type 1 diabetes. In human islets, MERTK-expressing cells were increased in remaining insulin-containing islets of type 1 diabetic patients, suggesting that MERTK protects islets from autoimmune destruction. MERTK also regulated T cell arrest in melanoma tumors. These data indicate that MERTK signaling in mononuclear phagocytes drives T cell regulation at inflammatory disease sites in peripheral tissues through a mechanism that reduces the sensitivity of scanning for antigen leading to reduced responsiveness to antigen.
Collapse
Affiliation(s)
- Robin S. Lindsay
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Jennifer C. Whitesell
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Research, National Jewish Health, Denver, CO
- Barbara Davis Center for Diabetes, Aurora, CO
| | - Kristen E. Dew
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Erika Rodriguez
- Department of Biomedical Research, National Jewish Health, Denver, CO
- Barbara Davis Center for Diabetes, Aurora, CO
| | - Adam M. Sandor
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Dayna Tracy
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Seth F. Yannacone
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | | | - Jordan Jacobelli
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Research, National Jewish Health, Denver, CO
- Barbara Davis Center for Diabetes, Aurora, CO
| | - Rachel S. Friedman
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Research, National Jewish Health, Denver, CO
- Barbara Davis Center for Diabetes, Aurora, CO
| |
Collapse
|
23
|
Daubeuf F, Schall N, Petit-Demoulière N, Frossard N, Muller S. An Autophagy Modulator Peptide Prevents Lung Function Decrease and Corrects Established Inflammation in Murine Models of Airway Allergy. Cells 2021; 10:cells10092468. [PMID: 34572117 PMCID: PMC8472429 DOI: 10.3390/cells10092468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
The involvement of autophagy and its dysfunction in asthma is still poorly documented. By using a murine model of chronic house dust mite (HDM)-induced airway inflammation, we tested the expression of several autophagy markers in the lung and spleen of asthma-like animals. Compared to control mice, in HDM-sensitized and challenged mice, the expression of sequestosome-1/p62, a multifunctional adaptor protein that plays an important role in the autophagy machinery, was raised in the splenocytes. In contrast, its expression was decreased in the neutrophils recovered from the bronchoalveolar fluid, indicating that autophagy was independently regulated in these two compartments. In a strategy of drug repositioning, we treated allergen-sensitized mice with the therapeutic peptide P140 known to target chaperone-mediated autophagy. A single intravenous administration of P140 in these mice resulted in a significant reduction in airway resistance and elastance, and a reduction in the number of neutrophils and eosinophils present in the bronchoalveolar fluid. It corrected the autophagic alteration without showing any suppressive effect in the production of IgG1 and IgE. Collectively, these findings show that autophagy processes are altered in allergic airway inflammation. This cellular pathway may represent a potential therapeutic target for treating selected patients with asthma.
Collapse
Affiliation(s)
- François Daubeuf
- CNRS-Strasbourg University Laboratoire d’Innovation Thérapeutique/Strasbourg Drug Discovery and Development Institute (IMS), Faculté de Pharmacie, 67400 Illkirch, France; (F.D.); (N.P.-D.); (N.F.)
- CNRS UMS3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg/Strasbourg Drug Discovery and Development Institute (IMS), 67400 Illkirch, France
| | - Nicolas Schall
- CNRS-Strasbourg University Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France;
| | - Nathalie Petit-Demoulière
- CNRS-Strasbourg University Laboratoire d’Innovation Thérapeutique/Strasbourg Drug Discovery and Development Institute (IMS), Faculté de Pharmacie, 67400 Illkirch, France; (F.D.); (N.P.-D.); (N.F.)
- CNRS-Strasbourg University Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France;
| | - Nelly Frossard
- CNRS-Strasbourg University Laboratoire d’Innovation Thérapeutique/Strasbourg Drug Discovery and Development Institute (IMS), Faculté de Pharmacie, 67400 Illkirch, France; (F.D.); (N.P.-D.); (N.F.)
| | - Sylviane Muller
- CNRS-Strasbourg University Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France;
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France
- Correspondence:
| |
Collapse
|
24
|
Sasaki E, Asanuma H, Momose H, Furuhata K, Mizukami T, Hamaguchi I. Nasal alum-adjuvanted vaccine promotes IL-33 release from alveolar epithelial cells that elicits IgA production via type 2 immune responses. PLoS Pathog 2021; 17:e1009890. [PMID: 34460865 PMCID: PMC8432758 DOI: 10.1371/journal.ppat.1009890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/10/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Aluminum hydroxide salts (alum) have been added to inactivated vaccines as safe and effective adjuvants to increase the effectiveness of vaccination. However, the exact cell types and immunological factors that initiate mucosal immune responses to alum adjuvants are unclear. In this study, the mechanism of action of alum adjuvant in nasal vaccination was investigated. Alum has been shown to act as a powerful and unique adjuvant when added to a nasal influenza split vaccine in mice. Alum is cytotoxic in the alveoli and stimulates the release of damage-associated molecular patterns, such as dsDNA, interleukin (IL)-1α, and IL-33. We found that Ag-specific IgA antibody (Ab) production was markedly reduced in IL-33-deficient mice. However, no decrease was observed in Ag-specific IgA Ab production with DNase I treatment, and no decrease was observed in IL-1α/β or IL-6 production in IL-33-deficient mice. From the experimental results of primary cultured cells and immunofluorescence staining, although IL-1α was secreted by alveolar macrophage necroptosis, IL-33 release was observed in alveolar epithelial cell necroptosis but not in alveolar macrophages. Alum- or IL-33-dependent Ag uptake enhancement and elevation of OX40L expression were not observed. By stimulating the release of IL-33, alum induced Th2 immunity via IL-5 and IL-13 production in group 2 innate lymphoid cells (ILC2s) and increased MHC class II expression in antigen-presenting cells (APCs) in the lung. Our results suggest that IL-33 secretion by epithelial cell necroptosis initiates APC- and ILC2-mediated T cell activation, which is important for the enhancement of Ag-specific IgA Ab production by alum. Aluminum salts have been used as adjuvants in many vaccines. Aluminum salts induce Th2 immunity and vaccine antigen-specific antibody production aluminum salts elicit adjuvant action via cytokine production. Currently, the mechanisms underlying aluminum salt function in nasal vaccination are unknown, and elucidation of the mechanism is important for the development of particulate adjuvants. This study focused on the cytokines released from dead cells as induced by aluminum salt. This study found that aluminum adjuvant caused release of the cytokine interleukin (IL)-33 from alveolar epithelial cells by inducing necrosis. IL-33 is also crucial for antigen-specific IgA antibody production by nasal vaccination. Aluminum adjuvant also induces alveolar macrophage necrosis, which is not accompanied by IL-33 release. Aluminum salt-induced IL-33 acts as an activator for group 2 innate lymphoid cells and antigen-presenting cells in the lung. This means that by developing an adjuvant that targets the release of IL-33, it may be possible to develop a highly effective nasal vaccine. IL-33 significantly contributes to the efficacy of nasal vaccines and provides new insights into the mechanisms underlying aluminum adjuvants, showing that lung parenchymal tissue, rather than macrophages and lymphocytes, is the source of IL-33.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
- * E-mail: (ES); (TM)
| | - Hideki Asanuma
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
- * E-mail: (ES); (TM)
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| |
Collapse
|
25
|
Crucial role of stimulator of interferon genes-dependent signaling in house dust mite extract-induced IgE production. Sci Rep 2021; 11:13157. [PMID: 34162937 PMCID: PMC8222396 DOI: 10.1038/s41598-021-92561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Abstract
Stimulator of interferon genes (STING) is a DNA sensor that responds to pathogens and induces type I interferon production. Herein, the role of STING in house dust mite extract (HDM)-induced allergic asthma was investigated. C57BL/6 wild-type (WT) and Sting−/− mice were intratracheally sensitized with HDM, and the bronchoalveolar lavage fluid (BALF), sera, lungs, and mediastinal lymph nodes (MLNs) were analyzed. The total and HDM-specific serum IgE levels were lower in Sting−/− mice than in WT mice. B cell and IgE-positive B cell proportion in BALF and MLNs, respectively, was significantly lower in Sting−/− mice than in WT mice. Additionally, cyclic GMP-AMP, a STING ligand, augmented total and HDM-specific serum IgE levels and B cell proportion in BALF when applied in combination with HDM. To elucidate the role of STING in IgE production, follicular helper T (Tfh) cells, which are involved in B cell maturation, were investigated. Tfh cell proportion in MLNs decreased in Sting−/− mice, and IL-4 and IL-13 production by HDM-restimulated MLN cells from HDM-sensitized mice was decreased in Sting−/− mice compared with WT mice. Thus, STING plays an important role in the maturation and class switching of IgE-producing B cells in allergic inflammation via Tfh cells.
Collapse
|
26
|
Microbial exposures that establish immunoregulation are compatible with targeted hygiene. J Allergy Clin Immunol 2021; 148:33-39. [PMID: 34033844 DOI: 10.1016/j.jaci.2021.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
It is often suggested that hygiene is not compatible with the microbial exposures that are necessary for establishment of the immune system in early life. However, when we analyze the microbial exposures of modern humans in the context of human evolution and history, it becomes evident that whereas children need exposure to the microbiotas of their mothers, other family members, and the natural environment, exposure to the unnatural microbiota of the modern home is less relevant. In addition, any benefits of exposure to the infections of childhood within their household setting are at least partly replaced by the recently revealed nonspecific effects of vaccines. This article shows how targeting hygiene practices at key risk moments and sites can maximize protection against infection while minimizing any impact on essential microbial exposures. Moreover, this targeting must aim to reduce direct exposure of children to cleaning agents because those agents probably exert TH2-adjuvant effects that trigger allergic responses to normally innocuous antigens. Finally, we need to halt the flow of publications in the scientific literature and the media that blame hygiene for the increases in immunoregulatory disorders. Appropriately targeted hygiene behavior is compatible with a healthy lifestyle that promotes exposure to essential microorganisms.
Collapse
|
27
|
Abstract
Adjuvants are vaccine components that enhance the magnitude, breadth and durability of the immune response. Following its introduction in the 1920s, alum remained the only adjuvant licensed for human use for the next 70 years. Since the 1990s, a further five adjuvants have been included in licensed vaccines, but the molecular mechanisms by which these adjuvants work remain only partially understood. However, a revolution in our understanding of the activation of the innate immune system through pattern recognition receptors (PRRs) is improving the mechanistic understanding of adjuvants, and recent conceptual advances highlight the notion that tissue damage, different forms of cell death, and metabolic and nutrient sensors can all modulate the innate immune system to activate adaptive immunity. Furthermore, recent advances in the use of systems biology to probe the molecular networks driving immune response to vaccines ('systems vaccinology') are revealing mechanistic insights and providing a new paradigm for the vaccine discovery and development process. Here, we review the 'known knowns' and 'known unknowns' of adjuvants, discuss these emerging concepts and highlight how our expanding knowledge about innate immunity and systems vaccinology are revitalizing the science and development of novel adjuvants for use in vaccines against COVID-19 and future pandemics.
Collapse
|
28
|
Adjuvants and Vaccines Used in Allergen-Specific Immunotherapy Induce Neutrophil Extracellular Traps. Vaccines (Basel) 2021; 9:vaccines9040321. [PMID: 33915724 PMCID: PMC8066953 DOI: 10.3390/vaccines9040321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Aluminum hydroxide (alum) and monophosphoryl-lipid A (MPLA) are conventional adjuvants in vaccines for allergen-specific immunotherapy (AIT). Alum triggers the release of neutrophil extracellular traps (NETs) by neutrophils. NETs contain expelled decondensed chromatin associated with granular material and may act as danger-associated molecular patterns and activate antigen-presenting cells. We investigated whether adjuvant-induced NETs contribute to innate responses to AIT-vaccines. Human neutrophils were incubated with alum, MPLA and adjuvant-containing AIT-vaccine preparations. NETs were verified by time-lapse and confocal fluorescence microscopy and quantitatively assessed by DNA and elastase release and ROS production. In contrast to MPLA, alum represented a potent trigger for NET release. Vaccine formulations containing alum resulted in less NET release than alum alone, whereas the vaccine containing MPLA induced stronger NET responses than MPLA alone. NETs and alum alone and synergistically increased the expression of molecules involved in antigen presentation, i.e., CD80, CD86 and CD83, by peripheral blood monocytes. Monocyte priming with NETs resulted in individually differing IL-1β- and IL-6-responses. Thus, NETs induced by adjuvants in AIT-vaccines can provide autonomous and cooperative effects on early innate responses. The high diversity of individual innate responses to adjuvants and AIT-vaccines may affect their therapeutic efficacy.
Collapse
|
29
|
Zhu W, Dong C, Wei L, Wang BZ. Promising Adjuvants and Platforms for Influenza Vaccine Development. Pharmaceutics 2021; 13:pharmaceutics13010068. [PMID: 33430259 PMCID: PMC7825707 DOI: 10.3390/pharmaceutics13010068] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Influenza is one of the major threats to public health. Current influenza vaccines cannot provide effective protection against drifted or shifted influenza strains. Researchers have considered two important strategies to develop novel influenza vaccines with improved immunogenicity and broader protective efficacy. One is applying fewer variable viral antigens, such as the haemagglutinin stalk domain. The other is including adjuvants in vaccine formulations. Adjuvants are promising and helpful boosters to promote more rapid and stronger immune responses with a dose-sparing effect. However, few adjuvants are currently licensed for human influenza vaccines, although many potential candidates are in different trials. While many advantages have been observed using adjuvants in influenza vaccine formulations, an improved understanding of the mechanisms underlying viral infection and vaccination-induced immune responses will help to develop new adjuvant candidates. In this review, we summarize the works related to adjuvants in influenza vaccine research that have been used in our studies and other laboratories. The review will provide perspectives for the utilization of adjuvants in developing next-generation and universal influenza vaccines.
Collapse
|
30
|
Wang HP, Wang ZG, Liu SL. Current status and future trends of vaccine development against viral infection and disease. NEW J CHEM 2021. [DOI: 10.1039/d1nj00996f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper focuses on the classification and representative studies of viral vaccines and future directions of vaccine design.
Collapse
Affiliation(s)
- Hong-Peng Wang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- and School of Medicine
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- and School of Medicine
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- and School of Medicine
| |
Collapse
|
31
|
Bryant AJ, Pham A, Gogoi H, Mitchell CR, Pais F, Jin L. The Third Man: DNA sensing as espionage in pulmonary vascular health and disease. Pulm Circ 2021; 11:2045894021996574. [PMID: 33738095 PMCID: PMC7934053 DOI: 10.1177/2045894021996574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
For as long as nucleic acids have been utilized to vertically and horizontally transfer genetic material, living organisms have had to develop methods of recognizing cytosolic DNA as either pathogenic (microbial invasion) or physiologic (mitosis and cellular proliferation). Derangement in key signaling molecules involved in these pathways of DNA sensing result in a family of diseases labeled interferonopathies. An interferonopathy, characterized by constitutive expression of type I interferons, ultimately manifests as severe autoimmune disease at a young age. Afflicted patients present with a constellation of immune-mediated conditions, including primary lung manifestations such as pulmonary fibrosis and pulmonary hypertension. The latter condition is especially interesting in light of the known role that DNA damage plays in a variety of types of inherited and induced pulmonary hypertension, with free DNA detection elevated in the circulation of affected individuals. While little is known regarding the role of cytosolic DNA sensing in development of pulmonary vascular disease, exciting new research in the related fields of immunology and oncology potentially sheds light on future areas of fruitful exploration. As such, the goal of this review is to summarize the state of the field of nucleic acid sensing, extrapolating common shared pathways that parallel our knowledge of pulmonary hypertension, in a molecular and cell-specific manner. Principles of DNA sensing related to known pulmonary injury inducing stimuli are also evaluated, in addition to potential therapeutic targets. Finally, future directions in pulmonary hypertension research and treatments will be briefly discussed.
Collapse
Affiliation(s)
- Andrew J. Bryant
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Ann Pham
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Himanshu Gogoi
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Carly R. Mitchell
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Faye Pais
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Lei Jin
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| |
Collapse
|
32
|
O'Hagan DT, Lodaya RN, Lofano G. The continued advance of vaccine adjuvants - 'we can work it out'. Semin Immunol 2020; 50:101426. [PMID: 33257234 DOI: 10.1016/j.smim.2020.101426] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
In the last decade there have been some significant advances in vaccine adjuvants, particularly in relation to their inclusion in licensed products. This was proceeded by several decades in which such advances were very scarce, or entirely absent, but several novel adjuvants have now been included in licensed products, including in the US. These advances have relied upon several key technological insights that have emerged in this time period, which have finally allowed an in depth understanding of how adjuvants work. These advances include developments in systems biology approaches which allow the hypotheses first advanced in pre-clinical studies to be critically evaluated in human studies. This review highlights these recent advances, both in relation to the adjuvants themselves, but also the technologies that have enabled their successes. Moreover, we critically appraise what will come next, both in terms of new adjuvant molecules, and the technologies needed to allow them to succeed. We confidently predict that additional adjuvants will emerge in the coming years that will reach approval in licensed products, but that the components might differ significantly from those which are currently used. Gradually, the natural products that were originally used to build adjuvants, since they were readily available at the time of initial development, will come to be replaced by synthetic or biosynthetic materials, with more appealing attributes, including more reliable and robust supply, along with reduced heterogeneity. The recent advance in vaccine adjuvants is timely, given the need to create novel vaccines to deal with the COVID-19 pandemic. Although, we must ensure that the rigorous safety evaluations that allowed the current adjuvants to advance are not 'short-changed' in the push for new vaccines to meet the global challenge as quickly as possible, we must not jeopardize what we have achieved, by pushing less established technologies too quickly, if the data does not fully support it.
Collapse
Affiliation(s)
- Derek T O'Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD, 20850, USA
| | - Rushit N Lodaya
- GSK, Slaoui Center for Vaccines Research, Rockville, MD, 20850, USA
| | - Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD, 20850, USA.
| |
Collapse
|
33
|
Chen X, Zhao X, Hu Y, Zhang B, Zhang Y, Wang S. Lactobacillus rhamnosus GG alleviates β-conglycinin-induced allergy by regulating the T cell receptor signaling pathway. Food Funct 2020; 11:10554-10567. [PMID: 33185639 DOI: 10.1039/d0fo02124e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, the need for safe and effective methods for relieving allergies is an important concern. In this study, we evaluated the role of Lactobacillus rhamnosus GG (LGG) in alleviating β-conglycinin (β-CG)-induced allergies and elucidated the related molecular mechanisms. Typical allergy symptoms and inflammatory factors in the serum showed that LGG intervention effectively alleviated β-CG induced allergy in mice, which was better than natural recovery (NR). Intestinal villi were restored and lower levels of CD4+ T cells infiltrated after LGG intervention. We evaluated whether LGG intervention weakened the proliferation ability of the spleen cells of allergic mice, balancing between T/B cells and Th1/Th2 and Th17/Treg cytokines. Transcriptome analysis revealed that 4106 differentially expressed mRNAs were identified by comparing the LGG group and β-CG group, and 546 differentially expressed mRNAs were identified by comparing the LGG group and NR group. KEGG pathway analysis identified that the T cell receptor (TCR) signaling pathway was significantly enriched upon LGG intervention, and the upregulated Ifnar2 and the downregulated Tgfbr2, Il13r2 and Il4ra were further validated by qPCR analysis. Therefore, the above results fully revealed the important role of LGG in alleviating β-CG-induced allergies.
Collapse
Affiliation(s)
- Xiaoxu Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | | | | | | | | | | |
Collapse
|
34
|
Co-Administration of Aluminium Hydroxide Nanoparticles and Protective Antigen Domain 4 Encapsulated Non-Ionic Surfactant Vesicles Show Enhanced Immune Response and Superior Protection against Anthrax. Vaccines (Basel) 2020; 8:vaccines8040571. [PMID: 33019545 PMCID: PMC7711981 DOI: 10.3390/vaccines8040571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Aluminium salts have been the adjuvant of choice in more than 100 licensed vaccines. Here, we have studied the synergistic effect of aluminium hydroxide nanoparticles (AH np) and non-ionic surfactant-based vesicles (NISV) in modulating the immune response against protective antigen domain 4 (D4) of Bacillus anthracis. NISV was prepared from Span 60 and cholesterol, while AH np was prepared from aluminium chloride and sodium hydroxide. AH np was co-administered with NISV encapsulating D4 (NISV-D4) to formulate AHnp/NISV-D4. The antigen-specific immune response of AHnp/NISV-D4 was compared with that of commercial alhydrogel (alhy) co-administered with NISV-D4 (alhydrogel/NISV-D4), NISV-D4, AHnp/D4, and alhydrogel/D4. Co-administration of NISV-D4 with AH np greatly improved the D4-specific antibody titer as compared to the control groups. Based on IgG isotyping and ex vivo cytokine analysis, AHnp/NISV-D4 generated a balanced Th1/Th2 response. Furthermore, AH np/NISV-D4 showed superior protection against anthrax spore challenge in comparison to other groups. Thus, we demonstrate the possibility of developing a novel combinatorial nanoformulation capable of augmenting both humoral and cellular response, paving the way for adjuvant research.
Collapse
|
35
|
Kim EH, Woodruff MC, Grigoryan L, Maier B, Lee SH, Mandal P, Cortese M, Natrajan MS, Ravindran R, Ma H, Merad M, Gitlin AD, Mocarski ES, Jacob J, Pulendran B. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. eLife 2020; 9:52687. [PMID: 32515732 PMCID: PMC7314549 DOI: 10.7554/elife.52687] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
The squalene-based oil-in-water emulsion (SE) vaccine adjuvant MF59 has been administered to more than 100 million people in more than 30 countries, in both seasonal and pandemic influenza vaccines. Despite its wide use and efficacy, its mechanisms of action remain unclear. In this study we demonstrate that immunization of mice with MF59 or its mimetic AddaVax (AV) plus soluble antigen results in robust antigen-specific antibody and CD8 T cell responses in lymph nodes and non-lymphoid tissues. Immunization triggered rapid RIPK3-kinase dependent necroptosis in the lymph node which peaked at 6 hr, followed by a sequential wave of apoptosis. Immunization with alum plus antigen did not induce RIPK3-dependent signaling. RIPK3-dependent signaling induced by MF59 or AV was essential for cross-presentation of antigen to CD8 T cells by Batf3-dependent CD8+ DCs. Consistent with this, RIPK3 deficient or Batf3 deficient mice were impaired in their ability to mount adjuvant-enhanced CD8 T cell responses. However, CD8 T cell responses were unaffected in mice deficient in MLKL, a downstream mediator of necroptosis. Surprisingly, antibody responses were unaffected in RIPK3-kinase or Batf3 deficient mice. In contrast, antibody responses were impaired by in vivo administration of the pan-caspase inhibitor Z-VAD-FMK, but normal in caspase-1 deficient mice, suggesting a contribution from apoptotic caspases, in the induction of antibody responses. These results demonstrate that squalene emulsion-based vaccine adjuvants induce antigen-specific CD8 T cell and antibody responses, through RIPK3-dependent and-independent pathways, respectively.
Collapse
Affiliation(s)
- Eui Ho Kim
- Emory Vaccine Center, Emory University, Atlanta, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, United States.,Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Matthew C Woodruff
- Emory Vaccine Center, Emory University, Atlanta, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, United States
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, United States
| | - Barbara Maier
- Department of Oncological Sciences, Tisch Cancer Institute and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, United States
| | - Song Hee Lee
- Emory Vaccine Center, Emory University, Atlanta, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, United States
| | - Pratyusha Mandal
- Emory Vaccine Center, Emory University, Atlanta, United States.,Department of Microbiology and Immunology, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, United States
| | - Mario Cortese
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, United States
| | | | - Rajesh Ravindran
- Emory Vaccine Center, Emory University, Atlanta, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, United States
| | - Huailiang Ma
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, United States
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, United States
| | - Alexander D Gitlin
- Department of Physiological Chemistry, Genentech, South San Francisco, United States.,Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, United States
| | - Edward S Mocarski
- Emory Vaccine Center, Emory University, Atlanta, United States.,Department of Microbiology and Immunology, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, United States
| | - Joshy Jacob
- Emory Vaccine Center, Emory University, Atlanta, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, United States.,Department of Microbiology and Immunology, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, United States
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, United States.,Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, United States
| |
Collapse
|
36
|
Mechanisms of Mixed Th1/Th2 Responses in Mice Induced by Albizia julibrissin Saponin Active Fraction by i n Silico Analysis. Vaccines (Basel) 2020; 8:vaccines8010048. [PMID: 32012760 PMCID: PMC7158666 DOI: 10.3390/vaccines8010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
The purified active fraction of Albizia julibrissin saponin (AJSAF) is an ideal adjuvant candidate that improves antigen-specific both cellular and humoral immune responses and elicits mixed Th1/Th2 responses, but its mechanisms remain unclear. The key features of action of AJSAF were investigated in mice immunized with Newcastle disease virus-based recombinant influenza vaccine (rL-H5) and AJSAF at the same leg (AJSAF+rL-H5) or different legs (AJSAF/rL-H5). The adjuvant activity of AJSAF on rL-H5 is strictly dependent on their spatial colocalization. Serum H5 antigen (H5Ag)-specific IgG, IgG1, IgG2a, and IgG2b antibody titers in AJSAF+rL-H5 group were significantly higher than those in AJSAF/rL-H5 group. The mechanisms of selectivity of Th1 or Th2 in mice induced by AJSAF was explored by the transcriptomic and proteomic profiles of H5Ag-stimulated splenocytes from the immunized mice using gene microarray and two-dimensional difference gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Compared to rL-H5 alone, AJSAF/rL-H5 induced more differentially expressed genes (DEGs) than AJSAF+rL-H5, whereas AJSAF+rL-H5 upregulated higher mRNA expression of Th1 (T-bet, IFN-γ, TNF-α, IL-12β, and IL-12Rβ1) and Th2 (IL-10 and AICDA) immune response genes. The neutrophil response and its derived S100A8 and S100A9 might be involved in the AJSAF-mediated Th1 response. Meanwhile, AJSAF might induce the adaptive immune responses by improving a local innate immune microenvironment. These findings expanded the current knowledge on the mechanisms of action of saponin-based adjuvants, and provided new insights into how adjuvants shape adaptive immune responses.
Collapse
|
37
|
Müller M, Buchner MR. Understanding the Localization of Berylliosis: Interaction of Be 2+ with Carbohydrates and Related Biomimetic Ligands. Chemistry 2019; 25:16257-16269. [PMID: 31498482 PMCID: PMC6973027 DOI: 10.1002/chem.201903439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Indexed: 01/28/2023]
Abstract
The interplay of metal ions with polysaccharides is important for the immune recognition in the lung. Due to the localization of beryllium associated diseases to the lung, it is likely that beryllium carbohydrate complexes play a vital role for the development of berylliosis. Herein, we present a detailed study on the interaction of Be2+ ions with fructose and glucose as well as simpler biomimetic ligands, which emulate binding motives of saccharides. Through NMR and IR spectroscopy as well as single-crystal X-ray diffraction, complemented by competition reactions we were able to determine a distinctive trend in the binding affinity of these ligands. This suggests that under physiological conditions beryllium ions are only bound irreversibly in glycoproteins or polysaccharides if a quasi ideal tetrahedral environment and κ4 -coordination is provided by the respective biomolecule. Furthermore, Lewis acid induced conversions of the ligands and an extreme increase in the Brønstedt acidity of the present OH-groups imply that upon enclosure of Be2+ , alterations may be induced by the metal ion in glycoproteins or polysaccharides. In addition the frequent formation of Be-O-heterocycles indicates that multinuclear beryllium compounds might be the actual trigger of berylliosis. This investigation on beryllium coordination chemistry was supplemented by binding studies of selected biomimetic ligands with Al3+ , Zn2+ , Mg2+ , and Li+ , which revealed that none of these beryllium related ions was tetrahedrally coordinated under the give conditions. Therefore, studies on the metabolization of beryllium compounds cannot be performed with other hard cations as a substitute for the hazardous Be2+ .
Collapse
Affiliation(s)
- Matthias Müller
- Anorganische Chemie, Nachwuchsgruppe BerylliumchemieFachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| | - Magnus R. Buchner
- Anorganische Chemie, Nachwuchsgruppe BerylliumchemieFachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| |
Collapse
|
38
|
Abstract
Metals are essential components in all forms of life required for the function of nearly half of all enzymes and are critically involved in virtually all fundamental biological processes. Especially, the transition metals iron (Fe), zinc (Zn), manganese (Mn), nickel (Ni), copper (Cu) and cobalt (Co) are crucial micronutrients known to play vital roles in metabolism as well due to their unique redox properties. Metals carry out three major functions within metalloproteins: to provide structural support, to serve as enzymatic cofactors, and to mediate electron transportation. Metal ions are also involved in the immune system from metal allergies to nutritional immunity. Within the past decade, much attention has been drawn to the roles of metal ions in the immune system, since increasing evidence has mounted to suggest that metals are critically implicated in regulating both the innate immune sensing of and the host defense against invading pathogens. The importance of ions in immunity is also evidenced by the identification of various immunodeficiencies in patients with mutations in ion channels and transporters. In addition, cancer immunotherapy has recently been conclusively demonstrated to be effective and important for future tumor treatment, although only a small percentage of cancer patients respond to immunotherapy because of inadequate immune activation. Importantly, metal ion-activated immunotherapy is becoming an effective and potential way in tumor therapy for better clinical application. Nevertheless, we are still in a primary stage of discovering the diverse immunological functions of ions and mechanistically understanding the roles of these ions in immune regulation. This review summarizes recent advances in the understanding of metal-controlled immunity. Particular emphasis is put on the mechanisms of innate immune stimulation and T cell activation by the essential metal ions like calcium (Ca2+), zinc (Zn2+), manganese (Mn2+), iron (Fe2+/Fe3+), and potassium (K+), followed by a few unessential metals, in order to draw a general diagram of metalloimmunology.
Collapse
Affiliation(s)
- Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
39
|
Wang C, Du J, Chen X, Zhu Y, Sun H. Activation of RAW264.7 macrophages by active fraction of Albizia julibrissin saponin via Ca2+–ERK1/2–CREB–lncRNA pathways. Int Immunopharmacol 2019; 77:105955. [DOI: 10.1016/j.intimp.2019.105955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/07/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
|
40
|
Du J, Chen X, Ye Y, Sun H. A comparative study on the mechanisms of innate immune responses in mice induced by Alum and Actinidia eriantha polysaccharide. Int J Biol Macromol 2019; 156:1202-1216. [PMID: 31758993 DOI: 10.1016/j.ijbiomac.2019.11.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
The innate immune mechanisms by which adjuvants enhance the potency and protection of vaccine remain at cellular level, but the molecular mechanisms, especially in vivo, are ill-identified. Actinidia eriantha polysaccharide (AEPS) is a potent adjuvant with dual Th1 and Th2 potentiating activity, while Alum elicits a strict Th2 response. The current experiments were designed to compare the innate immune responses in the peritoneal cavity of mice induced by two adjuvants and explore their molecular mechanisms using gene expression microarray including long noncoding RNAs (lncRNAs). AEPS induced the recruitment of monocytes, neutrophils and dendritic cells. However, Alum recruited neutrophils and eosinophils. AEPS and Alum specifically induced the differential expression of 546 and 922 genes in peritoneal cells, respectively. AEPS induced higher mRNA expression of CCL2, CCL3, CCL4, CCL7, CXCL2, CXCL3, CXCL5, CXCL10, IL-12β, and IL-23α in immune effector process, while Alum tended to Th17 response mRNAs such as IL-7A, IL-17F and IL-17RA. Furthermore, a robust adjuvant-specific expression pattern of lncRNAs was found in above mentioned biological processes, suggesting the involvement of lncRNAs in immune responses induced by AEPS and Alum. This study led to a better understanding of different molecular mechanisms of adjuvants and benefited the rational design of effective vaccines.
Collapse
Affiliation(s)
- Jing Du
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiping Ye
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
41
|
Benmerzoug S, Ryffel B, Togbe D, Quesniaux VF. Self-DNA Sensing in Lung Inflammatory Diseases. Trends Immunol 2019; 40:719-734. [DOI: 10.1016/j.it.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
|
42
|
Georg P, Sander LE. Innate sensors that regulate vaccine responses. Curr Opin Immunol 2019; 59:31-41. [PMID: 30978666 DOI: 10.1016/j.coi.2019.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 02/08/2023]
Abstract
Pattern recognition receptors (PRRs) control elemental functions of antigen presenting cells (APCs) and critically shape adaptive immune responses. Wielding a natural adjuvanticity, live attenuated vaccines elicit exceptionally efficient and durable immunity. Commonly used vaccine adjuvants target individual PRRs or bolster the immunogenicity of vaccines via indirect mechanisms of inflammation. Here, we review the impact of innate sensors on immune responses to live attenuated vaccines and commonly used vaccine adjuvants, with a focus on human vaccine responses. We discuss the unique potential of microbial nucleic acids and their corresponding sensing receptors to mimic live attenuated vaccines and promote protective immunity.
Collapse
Affiliation(s)
- Philipp Georg
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
43
|
Sasaki E, Momose H, Hiradate Y, Mizukami T, Hamaguchi I. Establishment of a novel safety assessment method for vaccine adjuvant development. Vaccine 2018; 36:7112-7118. [PMID: 30318166 DOI: 10.1016/j.vaccine.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/09/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022]
Abstract
Vaccines effectively prevent infectious diseases. Many types of vaccines against various pathogens that threaten humans are currently in widespread use. Recently, adjuvant adaptation has been attempted to activate innate immunity to enhance the effectiveness of vaccines. The effectiveness of adjuvants for vaccinations has been demonstrated in many animal models and clinical trials. Although a highly potent adjuvant tends to have high effectiveness, it also has the potential to increase the risk of side effects such as pain, edema, and fever. Indeed, highly effective adjuvants, such as poly(I:C), have not been clinically applied due to their high risks of toxicity in humans. Therefore, the task in the field of adjuvant development is to clinically apply highly effective and non- or low-toxic adjuvant-containing vaccines. To resolve this issue, it is essential to ensure a low risk of side effects and the high efficacy of an adjuvant in the early developmental phases. This review summarizes the theory and history of the current safety assessment methods for adjuvants, using the inactivated influenza vaccine as a model. Our novel method was developed as a system to judge the safety of a candidate compound using biomarkers identified by genomic technology and statistical tools. A systematic safety assessment tool for adjuvants would be of great use for predicting toxicity during novel adjuvant development, screening, and quality control.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| |
Collapse
|
44
|
HogenEsch H, O'Hagan DT, Fox CB. Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. NPJ Vaccines 2018; 3:51. [PMID: 30323958 PMCID: PMC6180056 DOI: 10.1038/s41541-018-0089-x] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 02/01/2023] Open
Abstract
Aluminum-containing adjuvants have been used for over 90 years to enhance the immune response to vaccines. Recent work has significantly advanced our understanding of the physical, chemical, and biological properties of these adjuvants, offering key insights on underlying mechanisms. Given the long-term success of aluminum adjuvants, we believe that they should continue to represent the “gold standard” against which all new adjuvants should be compared. New vaccine candidates that require adjuvants to induce a protective immune responses should first be evaluated with aluminum adjuvants before other more experimental approaches are considered, since use of established adjuvants would facilitate both clinical development and the regulatory pathway. However, the continued use of aluminum adjuvants requires an appreciation of their complexities, in combination with access to the necessary expertise to optimize vaccine formulations. In this article, we will review the properties of aluminum adjuvants and highlight those elements that are critical to optimize vaccine performance. We will discuss how other components (excipients, TLR ligands, etc.) can affect the interaction between adjuvants and antigens, and impact the potency of vaccines. This review provides a resource and guide, which will ultimately contribute to the successful development of newer, more effective and safer vaccines.
Collapse
Affiliation(s)
- Harm HogenEsch
- 1Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN USA.,2Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN USA
| | | | - Christopher B Fox
- 4IDRI, Seattle, WA USA.,5Department of Global Health, University of Washington, Seattle, WA USA
| |
Collapse
|
45
|
Angosto D, López-Muñoz A, García-Alcazar A, Meseguer J, Sepulcre MP, Mulero V. Aluminum is a powerful adjuvant in teleost fish despite failing to induce interleukin-1β release. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:18-24. [PMID: 29577957 DOI: 10.1016/j.dci.2018.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Although aluminum salts (Alum) have been extensively used in human vaccination for decades, its mechanism of action is controversial. In fish, the use of Alum as a vaccine adjuvant is scarce and there are no studies aimed at identifying its mechanism of action. In the present study we report that Alum is a powerful adjuvant in the gilthead seabream (Sparus aurata L., Sparidae) and the European seabass (Dicentrarchus labrax L. Moronidae). Thus, Alum increased the specific antibody titers to the model antigen keyhole limpet hemocyanin as the commonly used Freund's adjuvant did in both species. In addition, both adjuvants were able to increase the transcript levels of the gene encoding the major pro-inflammatory mediator interleukin-1β (Il1b). Strikingly, however, Alum failed to promote Il1b release by seabream leukocytes and even impaired Il1b induction, processing and release in macrophages. However, it increased NADPH oxidase-dependent reactive oxygen species (ROS) production in gilthead seabream leukocytes and purified granulocytes. In addition, Alum promoted gilthead seabream leukocyte death independently of ROS production and caspases, suggesting that damage-associated molecular patterns release from dying cells mediate Alum adjuvant activity. Our results pave the way for future studies aimed at investigating the relevance of danger signals generated by Alum in vivo on its adjuvant activity in order to increase our understanding of the mechanisms of action of Alum in fish vaccines and to help in the design of new adjuvants for aquaculture.
Collapse
Affiliation(s)
- Diego Angosto
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Azucena López-Muñoz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Alicia García-Alcazar
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - José Meseguer
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - María P Sepulcre
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
46
|
Salyer ACD, David SA. Transcriptomal signatures of vaccine adjuvants and accessory immunostimulation of sentinel cells by toll-like receptor 2/6 agonists. Hum Vaccin Immunother 2018; 14:1686-1696. [PMID: 29852079 PMCID: PMC6067887 DOI: 10.1080/21645515.2018.1480284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
An important component of vaccine development is the identification of safe and effective adjuvants. We sought to identify transcriptomal signatures of innate immune stimulating molecules using next-generation RNA sequencing with the goal of being able to utilize such signatures in identifying novel immunostimulatory compounds with adjuvant activity. The CC family of chemokines, particularly CC chemokines 1, 2, 3, 4, 7, 8, 17, 18, 20, and 23, were broadly upregulated by most Toll-like receptor (TLR) and nucleotide-binding domain and leucine-rich repeat-containing receptors (NLR) stimuli. Extracellular receptors such as TLR2, TLR4 and TLR5 induced the transcription of CXC chemokines including CXCL5, CXCL6 and CXCL8, whereas intracellular receptors such as TLR7 and TLR8 upregulated CXC chemokines 11 and 12. Both TLR1/2 and TLR2/6 agonists induced strong chemokine production in human peripheral blood mononuclear cells. Human skeletal muscle cells and fibroblasts respond with chemokine production only to TLR2/6 agonists, but not TLR1/2 agonists, consistent with strong expression of TLR2 and TLR6, but not of TLR1, in fibroblasts. TLR2/6 stimulated fibroblasts demonstrated functional chemotactic responses to human T cell and natural killer cells subsets. The activation of non-hematopoietic, adventitial cells such as fibroblasts and myocytes may contribute.
Collapse
Affiliation(s)
- Alex C. D. Salyer
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Sunil A. David
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
47
|
Thakkar SG, Xu H, Li X, Cui Z. Uric acid and the vaccine adjuvant activity of aluminium (oxy)hydroxide nanoparticles. J Drug Target 2018; 26:474-480. [PMID: 29334279 PMCID: PMC6114149 DOI: 10.1080/1061186x.2018.1428808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/01/2017] [Accepted: 01/13/2018] [Indexed: 12/29/2022]
Abstract
In an effort to improve the adjuvanticity of insoluble aluminium salts, we discovered that the adjuvant activity of aluminium salt nanoparticles is significantly stronger than aluminium salt microparticles, likely related to nanoparticle's stronger ability to directly activate NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome as the nanoparticles are more efficiently taken up by phagocytic cells. Endogenous signals such as uric acid from cell damage or death caused by the cytotoxicity of aluminium salts are thought to indirectly activate inflammasome, prompting us to hypothesise that the potent adjuvant activity of aluminium salt nanoparticles is also related to their ability to stimulate uric acid production. In the present study, we prepared aluminium (oxy)hydroxide nanoparticles (∼ 30-100 nm) and microparticles (X50, 9.43 μm) and showed that intraperitoneal injection of mice with the nanoparticles, absorbed with ovalbumin, led to a significant increase in uric acid level in the peritoneal lavage, whereas the microparticles did not. The aluminium (oxy)hydroxide nanoparticles' ability to stimulate uric acid production was also confirmed in cell culture. We concluded that the stronger adjuvant activity of insoluble aluminium (oxy)hydroxide nanoparticles, relative to microparticles, may be attributed at least in part to their stronger ability to induce endogenous danger signals such as uric acid.
Collapse
Affiliation(s)
- Sachin G Thakkar
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX
| | - Xu Li
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX
- Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Molecular Biology, Hohhot, Inner Mongolia, China
| |
Collapse
|
48
|
Kooijman S, Brummelman J, van Els CACM, Marino F, Heck AJR, van Riet E, Metz B, Kersten GFA, Pennings JLA, Meiring HD. Vaccine antigens modulate the innate response of monocytes to Al(OH)3. PLoS One 2018; 13:e0197885. [PMID: 29813132 PMCID: PMC5973561 DOI: 10.1371/journal.pone.0197885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Aluminum-based adjuvants have widely been used in human vaccines since 1926. In the absence of antigens, aluminum-based adjuvants can initiate the inflammatory preparedness of innate cells, yet the impact of antigens on this response has not been investigated so far. In this study, we address the modulating effect of vaccine antigens on the monocyte-derived innate response by comparing processes initiated by Al(OH)3 and by Infanrix, an Al(OH)3-adjuvanted trivalent combination vaccine (DTaP), containing diphtheria toxoid (D), tetanus toxoid (T) and acellular pertussis (aP) vaccine antigens. A systems-wide analysis of stimulated monocytes was performed in which full proteome analysis was combined with targeted transcriptome analysis and cytokine analysis. This comprehensive study revealed four major differences in the monocyte response, between plain Al(OH)3 and DTaP stimulation conditions: (I) DTaP increased the anti-inflammatory cytokine IL-10, whereas Al(OH)3 did not; (II) Al(OH)3 increased the gene expression of IFNγ, IL-2 and IL-17a in contrast to the limited induction or even downregulation by DTaP; (III) increased expression of type I interferons-induced proteins was not observed upon DTaP stimulation, but was observed upon Al(OH)3 stimulation; (IV) opposing regulation of protein localization pathways was observed for Al(OH)3 and DTaP stimulation, related to the induction of exocytosis by Al(OH)3 alone. This study highlights that vaccine antigens can antagonize Al(OH)3-induced programming of the innate immune responses at the monocyte level.
Collapse
Affiliation(s)
- Sietske Kooijman
- Intravacc, Bilthoven, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | | | - Gideon F. A. Kersten
- Intravacc, Bilthoven, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeroen L. A. Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | |
Collapse
|
49
|
Shu F, Shi Y. Systematic Overview of Solid Particles and Their Host Responses. Front Immunol 2018; 9:1157. [PMID: 29892295 PMCID: PMC5985299 DOI: 10.3389/fimmu.2018.01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
Crystalline/particulate substances trigger a plethora of signaling events in host cells. The most prominent consequence is the inflammatory reactions that underlie crystal arthropathies, such as gout and pseudogout. However, their impact on our health was underestimated. Recent work on the role of cholesterol crystal in the development of atherosclerosis and the harm of environmental particulates has set up new frontiers in our defense against their detrimental effects. On the other hand, in the last 100 years, crystalline/particulate substances have been used with increasing frequencies in our daily lives as a part of new industrial manufacturing and engineering. Importantly, they have become a tool in modern medicine, used as vaccine adjuvants and drug delivery vehicles. Their biological effects are also being dissected in great detail, particularly with regard to their inflammatory signaling pathways. Solid structure interaction with host cells is far from being uniform, with outcomes dependent on cell types and chemical/physical properties of the particles involved. In this review, we offer a systematic and broad outlook of this landscape and a sage analysis of the complex nature of this topic.
Collapse
Affiliation(s)
- Fei Shu
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Yan Shi
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
50
|
Müller M, Buchner MR. Beryllium Complexes with Bio-Relevant Functional Groups: Coordination Geometries and Binding Affinities. Angew Chem Int Ed Engl 2018; 57:9180-9184. [DOI: 10.1002/anie.201803667] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Matthias Müller
- Anorganische Chemie; Nachwuchsgruppe Berylliumchemie; Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Magnus R. Buchner
- Anorganische Chemie; Nachwuchsgruppe Berylliumchemie; Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|