1
|
Dousset L, Mahfouf W, Younes H, Fatrouni H, Faucheux C, Muzotte E, Khalife F, Rossignol R, Moisan F, Cario M, Claverol S, Favot-Laforge L, Nieminen AI, Vainio S, Ali N, Rezvani HR. Energy metabolism rewiring following acute UVB irradiation is largely dependent on nuclear DNA damage. Free Radic Biol Med 2024; 227:459-471. [PMID: 39667588 DOI: 10.1016/j.freeradbiomed.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Solar ultraviolet B (UVB) radiation-induced DNA damage is a well-known initiator of skin carcinomas. The UVB-induced DNA damage response (DDR) involves series of signaling cascades that are activated to maintain cell integrity. Among the different biological processes, little is known about the role of energy metabolism in the DDR. We sought to determine whether UVB-induced nuclear and/or mitochondrial cyclobutane pyrimidine dimers (CPDs) alter cellular energy metabolism. To gain insight into this question, we took advantage of keratinocytes expressing nuclear or mitochondrial CPD photolyase. Applying a quantitative proteomic approach and targeted metabolomics, we observed biphasic alterations in multiple metabolic pathways and in the abundance of various metabolites, largely influenced by the presence of genomic CPDs. The heightened oxygen consumption rate post-irradiation, along with mitochondrial structural rearrangements, was found to be dependent on both mitochondrial and nuclear CPDs. Understanding the influence of nuclear and mitochondrial DNA damage on keratinocyte responses to UVB irradiation deepens current knowledge regarding skin cancer prevention, initiation, and therapy.
Collapse
Affiliation(s)
- Léa Dousset
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Dermatology Department, Hôpital Saint-André, Bordeaux, France
| | - Walid Mahfouf
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Hadi Younes
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Hala Fatrouni
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Corinne Faucheux
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Elodie Muzotte
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Ferial Khalife
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Rodrigue Rossignol
- Univ. Bordeaux, Inserm, MRGM, U1211, Bordeaux, France; CELLOMET, Centre de Génomique Fonctionnelle de Bordeaux, Univ. Bordeaux, Bordeaux, France
| | - François Moisan
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Muriel Cario
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France
| | | | | | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, 00014, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, University of Oulu, Oulu, Finland
| | - Nsrein Ali
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, University of Oulu, Oulu, Finland
| | - Hamid-Reza Rezvani
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
2
|
Hsiung KC, Tang HY, Cheng ML, Hung LM, Chin-Ming Tan B, Lo SJ. Mitochondrial Bioenergetics Deficiency in cisd-1 Mutants is Linked to AMPK-Mediated Lipid Metabolism. Biomed J 2024:100806. [PMID: 39521176 DOI: 10.1016/j.bj.2024.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND CISD-1 is a mitochondrial iron-sulfate [2Fe-2S] protein known to be associated with various human diseases, including cancer and diabetes. Previously, we demonstrated that CISD-1 deficiency in worms lowers glucose and ATP levels. In this study, we further explored how worms compensate for lower ATP levels by analyzing changes in cytoplasmic and mitochondrial iron content, AMPK activities, and total lipid profiles. MATERIALS AND METHODS Expression levels of CISD-1 and CISD-1::GFP fusion proteins in wild-type worms (N2), cisd-1-deletion mutants (tm4993 and syb923) and GFP insertion transgenic worms (PHX953 and SJL40) were examined by western blot. Fluorescence microscopy analyzed CISD-1::GFP pattern in PHX953 embryos and adults, and lipid droplet sizes in N2, cisd-1, aak-2 and aak-2;cisd-1 worms. Total and mitochondrial iron content, electron transport complex profiles, and AMPK activity were investigated in tm4993 and syb923 mutants. mRNA levels of mitochondrial β-oxidation genes, acs-2, cpt-5, and ech-1, were quantified by RT-qPCR in various genetic worm strains. Lipidomic analyses were performed in N2 and cisd-1(tm4993) worms. RESULTS Defects in cisd-1 lead to an imbalance in iron transport and cause proton leak, resulting in lower ATP production by interrupting the mitochondrial electron transport chain. We identified a signaling pathway that links ATP deficiency-induced AMPK (AMP activated protein kinase) activation to the expression of genes that facilitate lipolysis via β-oxidation. CONCLUSION Our data provide a functional coordination between CISD-1 and AMPK constitutes a mitochondrial bioenergetics quality control mechanism that provides compensatory energy resources.
Collapse
Affiliation(s)
- Kuei-Ching Hsiung
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan, 333
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, TaoYuan, Taiwan
| | - Mei-Ling Cheng
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan, 333; Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, TaoYuan, Taiwan
| | - Li-Man Hung
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan, 333
| | - Bertrand Chin-Ming Tan
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan, 333; Molecular Medicine Research Center, Chang Gung University, TaoYuan, Taiwan, 333; Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, TaoYuan, Taiwan, 333.
| | - Szecheng J Lo
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan, 333.
| |
Collapse
|
3
|
Ioannis S, Jens VE, Alan G, Michael R, Christopher T, Barbara C. Impact of photobleaching on quantitative, spatio-temporal, super-resolution imaging of mitochondria in live C. elegans larvae. NPJ IMAGING 2024; 2:43. [PMID: 39525282 PMCID: PMC11541191 DOI: 10.1038/s44303-024-00043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Super-resolution (SR) 3D rendering allows superior quantitative analysis of intracellular structures but has largely been limited to fixed or ex vivo samples. Here we developed a method to perform SR live imaging of mitochondria during post-embryonic development of C. elegans larvae. Our workflow includes the drug-free mechanical immobilisation of animals using polystyrene nanobeads, which has previously not been used for in vivo SR imaging. Based on the alignment of moving objects and global threshold-based image segmentation, our method enables an efficient 3D reconstruction of individual mitochondria. We demonstrate for the first time that the frequency distribution of fluorescence intensities is not affected by photobleaching, and that global thresholding alone enables the quantitative comparison of mitochondria along timeseries. Our composite approach significantly improves the study of biological structures and processes in SR during C. elegans post-embryonic development. Furthermore, the discovery that image segmentation does not require any prior correction against photobleaching, a fundamental problem in fluorescence microscopy, will impact experimental strategies aimed at quantitatively studying the dynamics of organelles and other intracellular compartments in any biological system.
Collapse
Affiliation(s)
- Segos Ioannis
- Research Department of Cell and Developmental Biology, Division of Biosciences, The Centre for Cell and Molecular Dynamics, University College London, London, UK
| | - Van Eeckhoven Jens
- Research Department of Cell and Developmental Biology, Division of Biosciences, The Centre for Cell and Molecular Dynamics, University College London, London, UK
| | - Greig Alan
- Research Department of Cell and Developmental Biology, Division of Biosciences, The Centre for Cell and Molecular Dynamics, University College London, London, UK
| | - Redd Michael
- Research Department of Cell and Developmental Biology, Division of Biosciences, The Centre for Cell and Molecular Dynamics, University College London, London, UK
| | - Thrasivoulou Christopher
- Research Department of Cell and Developmental Biology, Division of Biosciences, The Centre for Cell and Molecular Dynamics, University College London, London, UK
| | - Conradt Barbara
- Research Department of Cell and Developmental Biology, Division of Biosciences, The Centre for Cell and Molecular Dynamics, University College London, London, UK
| |
Collapse
|
4
|
Henke M, Prigione A, Schuelke M. Disease models of Leigh syndrome: From yeast to organoids. J Inherit Metab Dis 2024; 47:1292-1321. [PMID: 39385390 PMCID: PMC11586605 DOI: 10.1002/jimd.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Leigh syndrome (LS) is a severe mitochondrial disease that results from mutations in the nuclear or mitochondrial DNA that impairs cellular respiration and ATP production. Mutations in more than 100 genes have been demonstrated to cause LS. The disease most commonly affects brain development and function, resulting in cognitive and motor impairment. The underlying pathogenesis is challenging to ascertain due to the diverse range of symptoms exhibited by affected individuals and the variability in prognosis. To understand the disease mechanisms of different LS-causing mutations and to find a suitable treatment, several different model systems have been developed over the last 30 years. This review summarizes the established disease models of LS and their key findings. Smaller organisms such as yeast have been used to study the biochemical properties of causative mutations. Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been used to dissect the pathophysiology of the neurological and motor symptoms of LS. Mammalian models, including the widely used Ndufs4 knockout mouse model of complex I deficiency, have been used to study the developmental, cognitive, and motor functions associated with the disease. Finally, cellular models of LS range from immortalized cell lines and trans-mitochondrial cybrids to more recent model systems such as patient-derived induced pluripotent stem cells (iPSCs). In particular, iPSCs now allow studying the effects of LS mutations in specialized human cells, including neurons, cardiomyocytes, and even three-dimensional organoids. These latter models open the possibility of developing high-throughput drug screens and personalized treatments based on defined disease characteristics captured in the context of a defined cell type. By analyzing all these different model systems, this review aims to provide an overview of past and present means to elucidate the complex pathology of LS. We conclude that each approach is valid for answering specific research questions regarding LS, and that their complementary use could be instrumental in finding treatment solutions for this severe and currently untreatable disease.
Collapse
Affiliation(s)
- Marie‐Thérèse Henke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical FacultyHeinrich Heine UniversityDuesseldorfGermany
| | - Markus Schuelke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
5
|
Affuso F, Micillo F, Fazio S. Insulin Resistance, a Risk Factor for Alzheimer's Disease: Pathological Mechanisms and a New Proposal for a Preventive Therapeutic Approach. Biomedicines 2024; 12:1888. [PMID: 39200352 PMCID: PMC11351221 DOI: 10.3390/biomedicines12081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Peripheral insulin resistance (IR) is a well-documented, independent risk factor for the development of type 2 diabetes, cardiovascular disease, cancer and cellular senescence. Recently, the brain has also been identified as an insulin-responsive region, where insulin acts as regulator of the brain metabolism. Despite the clear link between IR and the brain, the exact mechanisms underlying this relationship remain unclear. Therapeutic intervention in patients showing symptoms of neurodegenerative diseases has produced little or no results. It has been demonstrated that insulin resistance plays a significant role in the pathogenesis of neurodegenerative diseases, particularly cognitive decline. Peripheral and brain IR may represent a modifiable state that could be used to prevent major brain disorders. In this review, we will analyse the scientific literature supporting IR as a risk factor for Alzheimer's disease and suggest some therapeutic strategies to provide a new proposal for the prevention of brain IR and its consequences.
Collapse
Affiliation(s)
- Flora Affuso
- Independent Researcher, Viale Raffaello, 74, 80129 Napoli, Italy
| | - Filomena Micillo
- UOC of Geriatric Medicine AORN S.G. Moscati, 83100 Avellino, Italy
| | - Serafino Fazio
- Department of Internal Medicine, School of Medicine, Federico II University of Naples, 80138 Naples, Italy;
| |
Collapse
|
6
|
Caggiano EG, Taniguchi CM. UCP2 and pancreatic cancer: conscious uncoupling for therapeutic effect. Cancer Metastasis Rev 2024; 43:777-794. [PMID: 38194152 PMCID: PMC11156755 DOI: 10.1007/s10555-023-10157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Emily G Caggiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Michaeli L, Spector E, Haeussler S, Carvalho CA, Grobe H, Abu-Shach UB, Zinger H, Conradt B, Broday L. ULP-2 SUMO protease regulates UPR mt and mitochondrial homeostasis in Caenorhabditis elegans. Free Radic Biol Med 2024; 214:19-27. [PMID: 38301974 PMCID: PMC10929073 DOI: 10.1016/j.freeradbiomed.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Mitochondria are the powerhouses of cells, responsible for energy production and regulation of cellular homeostasis. When mitochondrial function is impaired, a stress response termed mitochondrial unfolded protein response (UPRmt) is initiated to restore mitochondrial function. Since mitochondria and UPRmt are implicated in many diseases, it is important to understand UPRmt regulation. In this study, we show that the SUMO protease ULP-2 has a key role in regulating mitochondrial function and UPRmt. Specifically, down-regulation of ulp-2 suppresses UPRmt and reduces mitochondrial membrane potential without significantly affecting cellular ROS. Mitochondrial networks are expanded in ulp-2 null mutants with larger mitochondrial area and increased branching. Moreover, the amount of mitochondrial DNA is increased in ulp-2 mutants. Downregulation of ULP-2 also leads to alterations in expression levels of mitochondrial genes involved in protein import and mtDNA replication, however, mitophagy remains unaltered. In summary, this study demonstrates that ULP-2 is required for mitochondrial homeostasis and the UPRmt.
Collapse
Affiliation(s)
- Lirin Michaeli
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eyal Spector
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Cátia A Carvalho
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hanna Grobe
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ulrike Bening Abu-Shach
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hen Zinger
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Limor Broday
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
8
|
MacColl Garfinkel A, Mnatsakanyan N, Patel JH, Wills AE, Shteyman A, Smith PJS, Alavian KN, Jonas EA, Khokha MK. Mitochondrial leak metabolism induces the Spemann-Mangold Organizer via Hif-1α in Xenopus. Dev Cell 2023; 58:2597-2613.e4. [PMID: 37673063 PMCID: PMC10840693 DOI: 10.1016/j.devcel.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
An instructive role for metabolism in embryonic patterning is emerging, although a role for mitochondria is poorly defined. We demonstrate that mitochondrial oxidative metabolism establishes the embryonic patterning center, the Spemann-Mangold Organizer, via hypoxia-inducible factor 1α (Hif-1α) in Xenopus. Hypoxia or decoupling ATP production from oxygen consumption expands the Organizer by activating Hif-1α. In addition, oxygen consumption is 20% higher in the Organizer than in the ventral mesoderm, indicating an elevation in mitochondrial respiration. To reconcile increased mitochondrial respiration with activation of Hif-1α, we discovered that the "free" c-subunit ring of the F1Fo ATP synthase creates an inner mitochondrial membrane leak, which decouples ATP production from respiration at the Organizer, driving Hif-1α activation there. Overexpression of either the c-subunit or Hif-1α is sufficient to induce Organizer cell fates even when β-catenin is inhibited. We propose that mitochondrial leak metabolism could be a general mechanism for activating Hif-1α and Wnt signaling.
Collapse
Affiliation(s)
- Alexandra MacColl Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeet H Patel
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Amy Shteyman
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Peter J S Smith
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
9
|
de Wet S, Theart R, Loos B. Cogs in the autophagic machine-equipped to combat dementia-prone neurodegenerative diseases. Front Mol Neurosci 2023; 16:1225227. [PMID: 37720551 PMCID: PMC10500130 DOI: 10.3389/fnmol.2023.1225227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
Neurodegenerative diseases are often characterized by hydrophobic inclusion bodies, and it may be the case that the aggregate-prone proteins that comprise these inclusion bodies are in fact the cause of neurotoxicity. Indeed, the appearance of protein aggregates leads to a proteostatic imbalance that causes various interruptions in physiological cellular processes, including lysosomal and mitochondrial dysfunction, as well as break down in calcium homeostasis. Oftentimes the approach to counteract proteotoxicity is taken to merely upregulate autophagy, measured by an increase in autophagosomes, without a deeper assessment of contributors toward effective turnover through autophagy. There are various ways in which autophagy is regulated ranging from the mammalian target of rapamycin (mTOR) to acetylation status of proteins. Healthy mitochondria and the intracellular energetic charge they preserve are key for the acidification status of lysosomes and thus ensuring effective clearance of components through the autophagy pathway. Both mitochondria and lysosomes have been shown to bear functional protein complexes that aid in the regulation of autophagy. Indeed, it may be the case that minimizing the proteins associated with the respective neurodegenerative pathology may be of greater importance than addressing molecularly their resulting inclusion bodies. It is in this context that this review will dissect the autophagy signaling pathway, its control and the manner in which it is molecularly and functionally connected with the mitochondrial and lysosomal system, as well as provide a summary of the role of autophagy dysfunction in driving neurodegenerative disease as a means to better position the potential of rapamycin-mediated bioactivities to control autophagy favorably.
Collapse
Affiliation(s)
- Sholto de Wet
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Rensu Theart
- Department of Electric and Electronic Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Wang P, Wang Q, Chen L, Cao Z, Zhao H, Su R, Wang N, Ma X, Shan J, Chen X, Zhang Q, Du B, Yuan Z, Zhao Y, Zhang X, Guo X, Xue Y, Miao L. RNA-binding protein complex AMG-1/SLRP-1 mediates germline development and spermatogenesis by maintaining mitochondrial homeostasis in Caenorhabditis elegans. Sci Bull (Beijing) 2023; 68:1399-1412. [PMID: 37355389 DOI: 10.1016/j.scib.2023.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/26/2023]
Abstract
The mechanisms of RNA-binding proteins (RBPs)-mediated post-transcriptional regulation of pre-existing mRNAs, which is essential for spermatogenesis, remain poorly understood. In this study, we identify that a germline-specific mitochondrial RBP AMG-1(abnormal mitochondria in germline 1), a homolog of mammalian leucine-rich PPR motif-containing protein (LRPPRC), is required for spermatogenesis in Caenorhabditis elegans. The amg-1 mutation hinders germline development without affecting somatic development and leads to the aberrant mitochondrial morphology and structure associated with mitochondrial dysfunctions specifically in the germline. We demonstrate that AMG-1 is most frequently bound to mtDNA-encoded 12S and 16S ribosomal RNA, the essential components of mitochondrial ribosomes, and that 12S rRNA expression mediated by AMG-1 is crucial for germline mitochondrial protein homeostasis. Furthermore, steroid receptor RNA activator (SRA) stem loop interacting RNA binding protein (SLRP-1), a homolog of mammalian SRA stem loop interacting RNA binding protein (SLIRP) in C. elegans, interacts with AMG-1 genetically to regulate germline development and reproductive success in C. elegans. Overall, these findings reveal the novel function of mtRBP, specifically in regulating germline development.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Qiushi Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Lianwan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailian Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Ning Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Xiaojing Ma
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Jin Shan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Xinyan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Qi Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Baochen Du
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Zhiheng Yuan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaorong Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China.
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
Cheramangalam RN, Anand T, Pandey P, Balasubramanian D, Varghese R, Singhal N, Jaiswal SN, Jaiswal M. Bendless is essential for PINK1-Park mediated Mitofusin degradation under mitochondrial stress caused by loss of LRPPRC. PLoS Genet 2023; 19:e1010493. [PMID: 37098042 PMCID: PMC10162545 DOI: 10.1371/journal.pgen.1010493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/05/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Cells under mitochondrial stress often co-opt mechanisms to maintain energy homeostasis, mitochondrial quality control and cell survival. A mechanistic understanding of such responses is crucial for further insight into mitochondrial biology and diseases. Through an unbiased genetic screen in Drosophila, we identify that mutations in lrpprc2, a homolog of the human LRPPRC gene that is linked to the French-Canadian Leigh syndrome, result in PINK1-Park activation. While the PINK1-Park pathway is well known to induce mitophagy, we show that PINK1-Park regulates mitochondrial dynamics by inducing the degradation of the mitochondrial fusion protein Mitofusin/Marf in lrpprc2 mutants. In our genetic screen, we also discover that Bendless, a K63-linked E2 conjugase, is a regulator of Marf, as loss of bendless results in increased Marf levels. We show that Bendless is required for PINK1 stability, and subsequently for PINK1-Park mediated Marf degradation under physiological conditions, and in response to mitochondrial stress as seen in lrpprc2. Additionally, we show that loss of bendless in lrpprc2 mutant eyes results in photoreceptor degeneration, indicating a neuroprotective role for Bendless-PINK1-Park mediated Marf degradation. Based on our observations, we propose that certain forms of mitochondrial stress activate Bendless-PINK1-Park to limit mitochondrial fusion, which is a cell-protective response.
Collapse
Affiliation(s)
| | - Tarana Anand
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Priyanka Pandey
- CSIR–Centre For Cellular and Molecular Biology, Hyderabad, India
| | | | - Reshmi Varghese
- CSIR–Centre For Cellular and Molecular Biology, Hyderabad, India
| | - Neha Singhal
- Tata Institute of Fundamental Research, Hyderabad, India
| | | | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad, India
| |
Collapse
|
12
|
Gonzalez B, Tare A, Ryu S, Johnson SC, Atzmon G, Barzilai N, Kaeberlein M, Suh Y. High-throughput sequencing analysis of nuclear-encoded mitochondrial genes reveals a genetic signature of human longevity. GeroScience 2023; 45:311-330. [PMID: 35948858 PMCID: PMC9886794 DOI: 10.1007/s11357-022-00634-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/28/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction is a well-known contributor to aging and age-related diseases. The precise mechanisms through which mitochondria impact human lifespan, however, remain unclear. We hypothesize that humans with exceptional longevity harbor rare variants in nuclear-encoded mitochondrial genes (mitonuclear genes) that confer resistance against age-related mitochondrial dysfunction. Here we report an integrated functional genomics study to identify rare functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as those in MTOR (Y2396Lfs*29), CPS1 (T1406N), and MFN2 (G548*) as well as LRPPRC (S1378G) that is predicted to affect mitochondrial translation. Taken together, our results suggest a functional role for specific mitonuclear genes and pathways in human longevity.
Collapse
Affiliation(s)
- Brenda Gonzalez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Archana Tare
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Seungjin Ryu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Simon C Johnson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Departments of Obstetrics and Gynecology, and Genetics and Development, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
13
|
Moral-Sanz J, Fernandez-Rojo MA, Colmenarejo G, Kurdyukov S, Brust A, Ragnarsson L, Andersson Å, Vila SF, Cabezas-Sainz P, Wilhelm P, Vela-Sebastian A, Fernández-Carrasco I, Chin YKY, López-Mancheño Y, Smallwood TB, Clark RJ, Fry BG, King GF, Ramm GA, Alewood PF, Lewis RJ, Mulvenna JP, Boyle GM, Sanchez LE, Neely GG, Miles JJ, Ikonomopoulou MP. The structural conformation of the tachykinin domain drives the anti-tumoral activity of an octopus peptide in melanoma BRAF V600E. Br J Pharmacol 2022; 179:4878-4896. [PMID: 35818835 DOI: 10.1111/bph.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Over the past decades, targeted therapies and immunotherapy have vastly improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF- melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In-vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Despite similarities with tachykinin peptides, knock-out or pharmacological blockade of tachykinin receptors suggested that Octpep-1 acts via a tachykinin-independent mechanism. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. Indeed, a truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumors in xenograft melanoma mice and zebrafish, confirming its therapeutic potential in human BRAF-mutated melanoma. CONCLUSION AND IMPLICATIONS We unravel the intrinsic anti-tumoral properties of a tachykinin peptide, possessing a pharmacology independent of tachykinin-receptors. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in-vitro and prevents tumor progression in-vivo, providing the foundation for a potential therapy against melanoma.
Collapse
Affiliation(s)
- Javier Moral-Sanz
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | - Manuel A Fernandez-Rojo
- Hepatic Regenerative Medicine Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Queensland, Australia.,Diamantina Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Gonzalo Colmenarejo
- Biostatistics & Bioinformatics Unit, Madrid Institute for Advances Studies in Food, Madrid, Spain
| | - Sergey Kurdyukov
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Andreas Brust
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Åsa Andersson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sabela F Vila
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - Pablo Cabezas-Sainz
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - Patrick Wilhelm
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Ana Vela-Sebastian
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | | | - Yanni K Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| | - Yaiza López-Mancheño
- Hepatic Regenerative Medicine Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | - Taylor B Smallwood
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Clark
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Bryan G Fry
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, QLD, Australia
| | - Grant A Ramm
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jason P Mulvenna
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Glen M Boyle
- Department of Cell and Molecular Biology, Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Laura E Sanchez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - John J Miles
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,James Cook University, Centre for Biodiscovery and Molecular Development of Therapeutics and Centre for Biosecurity in Tropical Infectious Diseases, Cairns, Australia.,The Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - Maria P Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Department of Cell and Molecular Biology, Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Carter RJ, Milani M, Beckett AJ, Liu S, Prior IA, Cohen GM, Varadarajan S. Novel roles of RTN4 and CLIMP-63 in regulating mitochondrial structure, bioenergetics and apoptosis. Cell Death Dis 2022; 13:436. [PMID: 35508606 PMCID: PMC9068774 DOI: 10.1038/s41419-022-04869-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The recruitment of DRP1 to mitochondrial membranes prior to fission is facilitated by the wrapping of endoplasmic reticulum (ER) membranes around the mitochondria. To investigate the complex interplay between the ER membranes and DRP1 in the context of mitochondrial structure and function, we downregulate two key ER shaping proteins, RTN4 and CLIMP-63, and demonstrate pronounced mitochondrial hyperfusion and reduced ER-mitochondria contacts, despite their differential regulation of ER architecture. Although mitochondrial recruitment of DRP1 is unaltered in cells lacking RTN4 or CLIMP-63, several aspects of mitochondrial function, such as mtDNA-encoded translation, respiratory capacity and apoptosis are significantly hampered. Further mechanistic studies reveal that CLIMP-63 is required for cristae remodeling (OPA1 proteolysis) and DRP1-mediated mitochondrial fission, whereas both RTN4 and CLIMP-63 regulate the recruitment of BAX to ER and mitochondrial membranes to enable cytochrome c release and apoptosis, thereby performing novel and distinct roles in the regulation of mitochondrial structure and function.
Collapse
Affiliation(s)
- Rachel J. Carter
- grid.10025.360000 0004 1936 8470Departments of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE UK
| | - Mateus Milani
- grid.10025.360000 0004 1936 8470Departments of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE UK
| | - Alison J. Beckett
- grid.10025.360000 0004 1936 8470Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE UK
| | - Shiyu Liu
- grid.10025.360000 0004 1936 8470Departments of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE UK
| | - Ian A. Prior
- grid.10025.360000 0004 1936 8470Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE UK
| | - Gerald M. Cohen
- grid.10025.360000 0004 1936 8470Departments of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE UK
| | - Shankar Varadarajan
- grid.10025.360000 0004 1936 8470Departments of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE UK
| |
Collapse
|
15
|
Dosunmu-Ogunbi A, Yuan S, Reynolds M, Giordano L, Sanker S, Sullivan M, Stolz DB, Kaufman BA, Wood KC, Zhang Y, Shiva S, Nouraie SM, Straub AC. SOD2 V16A amplifies vascular dysfunction in sickle cell patients by curtailing mitochondria complex IV activity. Blood 2022; 139:1760-1765. [PMID: 34958669 PMCID: PMC8931509 DOI: 10.1182/blood.2021013350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Superoxide dismutase 2 (SOD2) catalyzes the dismutation of superoxide to hydrogen peroxide in mitochondria, limiting mitochondrial damage. The SOD2 amino acid valine-to-alanine substitution at position 16 (V16A) in the mitochondrial leader sequence is a common genetic variant among patients with sickle cell disease (SCD). However, little is known about the cardiovascular consequences of SOD2V16A in SCD patients or its impact on endothelial cell function. Here, we show SOD2V16A associates with increased tricuspid regurgitant velocity (TRV), systolic blood pressure, right ventricle area at systole, and declined 6-minute walk distance in 410 SCD patients. Plasma lactate dehydrogenase, a marker of oxidative stress and hemolysis, significantly associated with higher TRV. To define the impact of SOD2V16A in the endothelium, we introduced the SOD2V16A variant into endothelial cells. SOD2V16A increases hydrogen peroxide and mitochondrial reactive oxygen species (ROS) production compared with controls. Unexpectedly, the increased ROS was not due to SOD2V16A mislocalization but was associated with mitochondrial complex IV and a concomitant decrease in basal respiration and complex IV activity. In sum, SOD2V16A is a novel clinical biomarker of cardiovascular dysfunction in SCD patients through its ability to decrease mitochondrial complex IV activity and amplify ROS production in the endothelium.
Collapse
Affiliation(s)
- Atinuke Dosunmu-Ogunbi
- Medical Scientist Training Program, University of Pittsburgh School of Medicine-University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine-University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Shuai Yuan
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine-University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Michael Reynolds
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine-University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Luca Giordano
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine-University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Subramaniam Sanker
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine-University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Mara Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA; and
| | - Donna Beer Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA; and
| | - Brett A Kaufman
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine-University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Katherine C Wood
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine-University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine-University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine-University of Pittsburgh Medical Center, Pittsburgh, PA
- Center for Microvascular Research, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
16
|
Dubal D, Moghe P, Verma RK, Uttekar B, Rikhy R. Mitochondrial fusion regulates proliferation and differentiation in the type II neuroblast lineage in Drosophila. PLoS Genet 2022; 18:e1010055. [PMID: 35157701 PMCID: PMC8880953 DOI: 10.1371/journal.pgen.1010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/25/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Optimal mitochondrial function determined by mitochondrial dynamics, morphology and activity is coupled to stem cell differentiation and organism development. However, the mechanisms of interaction of signaling pathways with mitochondrial morphology and activity are not completely understood. We assessed the role of mitochondrial fusion and fission in the differentiation of neural stem cells called neuroblasts (NB) in the Drosophila brain. Depleting mitochondrial inner membrane fusion protein Opa1 and mitochondrial outer membrane fusion protein Marf in the Drosophila type II NB lineage led to mitochondrial fragmentation and loss of activity. Opa1 and Marf depletion did not affect the numbers of type II NBs but led to a decrease in differentiated progeny. Opa1 depletion decreased the mature intermediate precursor cells (INPs), ganglion mother cells (GMCs) and neurons by the decreased proliferation of the type II NBs and mature INPs. Marf depletion led to a decrease in neurons by a depletion of proliferation of GMCs. On the contrary, loss of mitochondrial fission protein Drp1 led to mitochondrial clustering but did not show defects in differentiation. Depletion of Drp1 along with Opa1 or Marf also led to mitochondrial clustering and suppressed the loss of mitochondrial activity and defects in proliferation and differentiation in the type II NB lineage. Opa1 depletion led to decreased Notch signaling in the type II NB lineage. Further, Notch signaling depletion via the canonical pathway showed mitochondrial fragmentation and loss of differentiation similar to Opa1 depletion. An increase in Notch signaling showed mitochondrial clustering similar to Drp1 mutants. Further, Drp1 mutant overexpression combined with Notch depletion showed mitochondrial fusion and drove differentiation in the lineage, suggesting that fused mitochondria can influence differentiation in the type II NB lineage. Our results implicate crosstalk between proliferation, Notch signaling, mitochondrial activity and fusion as an essential step in differentiation in the type II NB lineage. Mitochondrial morphology and function are coupled to stem cell differentiation and organism development. It is of interest to examine the mechanisms of interaction of mitochondrial dynamics with signaling pathways during stem cell differentiation. We have assessed the role of mitochondrial fusion and fission in the differentiation of neural stem cells called neuroblasts (NB) in the Drosophila brain. Depleting mitochondrial fusion proteins Opa1 and Marf led to mitochondrial fragmentation, loss of mitochondrial activity and proliferation, thereby causing a decrease in the numbers of differentiated cells in each type II NB lineage. Mutants in mitochondrial fission protein Drp1 led to mitochondrial fusion but did not cause any differentiation defects. Decreased Notch signaling by the canonical pathway led to mitochondrial fragmentation and a decrease in differentiated cells in each type II NB lineage. Expression of Drp1 mutants in type II NB lineages depleted of Opa1 and Marf suppressed their proliferation and differentiation defects. Expression of Drp1 mutant in type II NB lineages depleted of Notch also led to a rescue of differentiated progeny in each lineage. Our results implicate crosstalk between Notch signaling, mitochondrial activity and fusion as important steps for proliferation and differentiation in the type II NB lineage.
Collapse
Affiliation(s)
- Dnyanesh Dubal
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Prachiti Moghe
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Rahul Kumar Verma
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Bhavin Uttekar
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pune, India
- * E-mail:
| |
Collapse
|
17
|
Meshrkey F, Cabrera Ayuso A, Rao RR, Iyer S. Quantitative analysis of mitochondrial morphologies in human induced pluripotent stem cells for Leigh syndrome. Stem Cell Res 2021; 57:102572. [PMID: 34662843 PMCID: PMC10332439 DOI: 10.1016/j.scr.2021.102572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are dynamic organelles with wide range of morphologies contributing to regulating different signaling pathways and several cellular functions. Leigh syndrome (LS) is a classic pediatric mitochondrial disorder characterized by complex and variable clinical pathologies, and primarily affects the nervous system during early development. It is important to understand the differences between mitochondrial morphologies in healthy and diseased states so that focused therapies can target the disease during its early stages. In this study, we performed a comprehensive analysis of mitochondrial dynamics in five patient-derived human induced pluripotent stem cells (hiPSCs) containing different mutations associated with LS. Our results suggest that subtle alterations in mitochondrial morphologies are specific to the mtDNA variant. Three out of the five LS-hiPSCs exhibited characteristics consistent with fused mitochondria. To our knowledge, this is the first comprehensive study that quantifies mitochondrial dynamics in hiPSCs specific to mitochondrial disorders. In addition, we observed an overall decrease in mitochondrial membrane potential in all five LS-hiPSCs. A more thorough analysis of the correlations between mitochondrial dynamics, membrane potential dysfunction caused by mutations in the mtDNA in hiPSCs and differentiated derivatives will aid in identifying unique morphological signatures of various mitochondrial disorders during early stages of embryonic development.
Collapse
Affiliation(s)
- Fibi Meshrkey
- Department of Biological Sciences, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA; Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Egypt
| | - Ana Cabrera Ayuso
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Raj R Rao
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA; Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Shilpa Iyer
- Department of Biological Sciences, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
18
|
Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ. Mol Metab 2021; 52:101234. [PMID: 33845179 PMCID: PMC8513144 DOI: 10.1016/j.molmet.2021.101234] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The brain was once thought of as an insulin-insensitive organ. We now know that the insulin receptor is present throughout the brain and serves important functions in whole-body metabolism and brain function. Brain insulin signaling is involved not only in brain homeostatic processes but also neuropathological processes such as cognitive decline and Alzheimer's disease. SCOPE OF REVIEW In this review, we provide an overview of insulin signaling within the brain and the metabolic impact of brain insulin resistance and discuss Alzheimer's disease, one of the neurologic diseases most closely associated with brain insulin resistance. MAJOR CONCLUSIONS While brain insulin signaling plays only a small role in central nervous system glucose regulation, it has a significant impact on the brain's metabolic health. Normal insulin signaling is important for mitochondrial functioning and normal food intake. Brain insulin resistance contributes to obesity and may also play an important role in neurodegeneration.
Collapse
Affiliation(s)
- Joshua L Milstein
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Heather A Ferris
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
19
|
Bakare AB, Lesnefsky EJ, Iyer S. Leigh Syndrome: A Tale of Two Genomes. Front Physiol 2021; 12:693734. [PMID: 34456746 PMCID: PMC8385445 DOI: 10.3389/fphys.2021.693734] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Edward J. Lesnefsky
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Physiology/Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
20
|
Quantifying Mitochondrial Dynamics in Patient Fibroblasts with Multiple Developmental Defects and Mitochondrial Disorders. Int J Mol Sci 2021; 22:ijms22126263. [PMID: 34200828 PMCID: PMC8230542 DOI: 10.3390/ijms22126263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo rounds of fission and fusion and exhibit a wide range of morphologies that contribute to the regulation of different signaling pathways and various cellular functions. It is important to understand the differences between mitochondrial structure in health and disease so that therapies can be developed to maintain the homeostatic balance of mitochondrial dynamics. Mitochondrial disorders are multisystemic and characterized by complex and variable clinical pathologies. The dynamics of mitochondria in mitochondrial disorders is thus worthy of investigation. Therefore, in this study, we performed a comprehensive analysis of mitochondrial dynamics in ten patient-derived fibroblasts containing different mutations and deletions associated with various mitochondrial disorders. Our results suggest that the most predominant morphological signature for mitochondria in the diseased state is fragmentation, with eight out of the ten cell lines exhibiting characteristics consistent with fragmented mitochondria. To our knowledge, this is the first comprehensive study that quantifies mitochondrial dynamics in cell lines with a wide array of developmental and mitochondrial disorders. A more thorough analysis of the correlations between mitochondrial dynamics, mitochondrial genome perturbations, and bioenergetic dysfunction will aid in identifying unique morphological signatures of various mitochondrial disorders in the future.
Collapse
|
21
|
Abstract
Many tumors are now understood to be heterogenous cell populations arising from a minority of epithelial-like cancer stem cells (CSCs). CSCs demonstrate distinctive metabolic signatures from the more differentiated surrounding tumor bulk that confer resistance to traditional chemotherapeutic regimens and potential for tumor relapse. Many CSC phenotypes including metabolism, epithelial-to-mesenchymal transition, cellular signaling pathway activity, and others, arise from altered mitochondrial function and turnover, which are regulated by constant cycles of mitochondrial fusion and fission. Further, recycling of mitochondria through mitophagy in CSCs is associated with maintenance of reactive oxygen species levels that dictate gene expression. The protein machinery that drives mitochondrial dynamics is surprisingly simple and may represent attractive new therapeutic avenues to target CSC metabolism and selectively eradicate tumor-generating cells to reduce the risks of metastasis and relapse for a variety of tumor types.
Collapse
Affiliation(s)
- Dane T Sessions
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - David F Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
22
|
Haeussler S, Yeroslaviz A, Rolland SG, Luehr S, Lambie EJ, Conradt B. Genome-wide RNAi screen for regulators of UPRmt in Caenorhabditis elegans mutants with defects in mitochondrial fusion. G3-GENES GENOMES GENETICS 2021; 11:6204483. [PMID: 33784383 PMCID: PMC8495942 DOI: 10.1093/g3journal/jkab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and the response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets 'non-mitochondrial enhancers' and 'mitochondrial suppressors' suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Planegg-Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Sebastian Luehr
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Eric J Lambie
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
| |
Collapse
|
23
|
Fischer CA, Besora-Casals L, Rolland SG, Haeussler S, Singh K, Duchen M, Conradt B, Marr C. MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology. iScience 2020; 23:101601. [PMID: 33083756 PMCID: PMC7554024 DOI: 10.1016/j.isci.2020.101601] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and catp-6 ATP13A2 mutant C. elegans adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis.
Collapse
Affiliation(s)
- Christian A. Fischer
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Centre for Integrated Protein Science, Ludwig-Maximilians-University, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Laura Besora-Casals
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Stéphane G. Rolland
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Simon Haeussler
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Kritarth Singh
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Michael Duchen
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Barbara Conradt
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Centre for Integrated Protein Science, Ludwig-Maximilians-University, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
24
|
Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, Zou D, Jiang X, Wang R, Jin D, Lam EWF, Shao S, Liu Q, Yan J, Wang X, Chen P, Zhang B, Jin B. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer 2020; 19:138. [PMID: 32894144 PMCID: PMC7487905 DOI: 10.1186/s12943-020-01253-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Background Inactivation of the tumor suppressor p53 is critical for pathogenesis of glioma, in particular glioblastoma multiforme (GBM). MDM2, the main negative regulator of p53, binds to and forms a stable complex with p53 to regulate its activity. Hitherto, it is unclear whether the stability of the p53/MDM2 complex is affected by lncRNAs, in particular circular RNAs that are usually abundant and conserved, and frequently implicated in different oncogenic processes. Methods RIP-seq and RIP-qPCR assays were performed to determine the most enriched lncRNAs (including circular RNAs) bound by p53, followed by bioinformatic assays to estimate the relevance of their expression with p53 signaling and gliomagenesis. Subsequently, the clinical significance of CDR1as was evaluated in the largest cohort of Chinese glioma patients from CGGA (n = 325), and its expression in human glioma tissues was further evaluated by RNA FISH and RT-qPCR, respectively. Assays combining RNA FISH with protein immunofluorescence were performed to determine co-localization of CDR1as and p53, followed by CHIRP assays to confirm RNA-protein interaction. Immunoblot assays were carried out to evaluate protein expression, p53/MDM2 interaction and p53 ubiquitination in cells in which CDR1as expression was manipulated. After AGO2 or Dicer was knocked-down to inhibit miRNA biogenesis, effects of CDR1as on p53 expression, stability and activity were determined by immunoblot, RT-qPCR and luciferase reporter assays. Meanwhile, impacts of CDR1as on DNA damage were evaluated by flow cytometric assays and immunohistochemistry. Tumorigenicity assays were performed to determine the effects of CDR1as on colony formation, cell proliferation, the cell cycle and apoptosis (in vitro), and on tumor volume/weight and survival of nude mice xenografted with GBM cells (in vivo). Results CDR1as is found to bind to p53 protein. CDR1as expression decreases with increasing glioma grade and it is a reliable independent predictor of overall survival in glioma, particularly in GBM. Through a mechanism independent of acting as a miRNA sponge, CDR1as stabilizes p53 protein by preventing it from ubiquitination. CDR1as directly interacts with the p53 DBD domain that is essential for MDM2 binding, thus disrupting the p53/MDM2 complex formation. Induced upon DNA damage, CDR1as may preserve p53 function and protect cells from DNA damage. Significantly, CDR1as inhibits tumor growth in vitro and in vivo, but has little impact in cells where p53 is absent or mutated. Conclusions Rather than acting as a miRNA sponge, CDR1as functions as a tumor suppressor through binding directly to p53 at its DBD region to restrict MDM2 interaction. Thus, CDR1as binding disrupts the p53/MDM2 complex to prevent p53 from ubiquitination and degradation. CDR1as may also sense DNA damage signals and form a protective complex with p53 to preserve p53 function. Therefore, CDR1as depletion may play a potent role in promoting tumorigenesis through down-regulating p53 expression in glioma. Our results broaden further our understanding of the roles and mechanism of action of circular RNAs in general and CDR1as in particular, and can potentially open up novel therapeutic avenues for effective glioma treatment.
Collapse
Affiliation(s)
- Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yuchao Hao
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Kefeng Lin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yizhu Lyu
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Meiwei Chen
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Han Wang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Deyu Zou
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xuewen Jiang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Renchun Wang
- The Second Clinical Medicine School, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Di Jin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, W12 0NN, London, UK
| | - Shujuan Shao
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Quentin Liu
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Jinsong Yan
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| | - Xiang Wang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Puxiang Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China. .,Present Address:Department of Neurosurgery, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Bilian Jin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
25
|
Shetty T, Sishtla K, Park B, Repass MJ, Corson TW. Heme Synthesis Inhibition Blocks Angiogenesis via Mitochondrial Dysfunction. iScience 2020; 23:101391. [PMID: 32755804 PMCID: PMC7399258 DOI: 10.1016/j.isci.2020.101391] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/10/2020] [Accepted: 07/17/2020] [Indexed: 01/01/2023] Open
Abstract
The relationship between heme metabolism and angiogenesis is poorly understood. The final synthesis of heme occurs in mitochondria, where ferrochelatase (FECH) inserts Fe2+ into protoporphyrin IX to produce proto-heme IX. We previously showed that FECH inhibition is antiangiogenic in human retinal microvascular endothelial cells (HRECs) and in animal models of ocular neovascularization. In the present study, we sought to understand the mechanism of how FECH and thus heme is involved in endothelial cell function. Mitochondria in endothelial cells had several defects in function after heme inhibition. FECH loss changed the shape and mass of mitochondria and led to significant oxidative stress. Oxidative phosphorylation and mitochondrial Complex IV were decreased in HRECs and in murine retina ex vivo after heme depletion. Supplementation with heme partially rescued phenotypes of FECH blockade. These findings provide an unexpected link between mitochondrial heme metabolism and angiogenesis. Heme synthesis inhibition changes mitochondrial morphology in endothelial cells Loss of heme causes buildup of mitochondrial ROS and depolarized membrane potential Endothelial cells have damaged oxidative phosphorylation and glycolysis on heme loss Damage is due to loss of heme-containing Complex IV, restored by exogenous heme
Collapse
Affiliation(s)
- Trupti Shetty
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bomina Park
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew J Repass
- Angio BioCore, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
26
|
Machiela E, Liontis T, Dues DJ, Rudich PD, Traa A, Wyman L, Kaufman C, Cooper JF, Lew L, Nadarajan S, Senchuk MM, Van Raamsdonk JM. Disruption of mitochondrial dynamics increases stress resistance through activation of multiple stress response pathways. FASEB J 2020; 34:8475-8492. [PMID: 32385951 PMCID: PMC7313680 DOI: 10.1096/fj.201903235r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are dynamic organelles that can change shape and size depending on the needs of the cell through the processes of mitochondrial fission and fusion. In this work, we investigated the role of mitochondrial dynamics in organismal stress response. By using C. elegans as a genetic model, we could visualize mitochondrial morphology in a live organism with well‐established stress assays and well‐characterized stress response pathways. We found that disrupting mitochondrial fission (DRP1/drp‐1) or fusion (OPA1/eat‐3, MFN/fzo‐1) genes caused alterations in mitochondrial morphology that impacted both mitochondrial function and physiologic rates. While both mitochondrial fission and mitochondrial fusion mutants showed increased sensitivity to osmotic stress and anoxia, surprisingly we found that the mitochondrial fusion mutants eat‐3 and fzo‐1 are more resistant to both heat stress and oxidative stress. In exploring the mechanism of increased stress resistance, we found that disruption of mitochondrial fusion genes resulted in the upregulation of multiple stress response pathways. Overall, this work demonstrates that disrupting mitochondrial dynamics can have opposite effects on resistance to different types of stress. Our results suggest that disruption of mitochondrial fusion activates multiple stress response pathways that enhance resistance to specific stresses.
Collapse
Affiliation(s)
- Emily Machiela
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Thomas Liontis
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Dylan J Dues
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Leslie Wyman
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Corah Kaufman
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jason F Cooper
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Leira Lew
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jeremy M Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Haeussler S, Köhler F, Witting M, Premm MF, Rolland SG, Fischer C, Chauve L, Casanueva O, Conradt B. Autophagy compensates for defects in mitochondrial dynamics. PLoS Genet 2020; 16:e1008638. [PMID: 32191694 PMCID: PMC7135339 DOI: 10.1371/journal.pgen.1008638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/06/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Compromising mitochondrial fusion or fission disrupts cellular homeostasis; however, the underlying mechanism(s) are not fully understood. The loss of C. elegans fzo-1MFN results in mitochondrial fragmentation, decreased mitochondrial membrane potential and the induction of the mitochondrial unfolded protein response (UPRmt). We performed a genome-wide RNAi screen for genes that when knocked-down suppress fzo-1MFN(lf)-induced UPRmt. Of the 299 genes identified, 143 encode negative regulators of autophagy, many of which have previously not been implicated in this cellular quality control mechanism. We present evidence that increased autophagic flux suppresses fzo-1MFN(lf)-induced UPRmt by increasing mitochondrial membrane potential rather than restoring mitochondrial morphology. Furthermore, we demonstrate that increased autophagic flux also suppresses UPRmt induction in response to a block in mitochondrial fission, but not in response to the loss of spg-7AFG3L2, which encodes a mitochondrial metalloprotease. Finally, we found that blocking mitochondrial fusion or fission leads to increased levels of certain types of triacylglycerols and that this is at least partially reverted by the induction of autophagy. We propose that the breakdown of these triacylglycerols through autophagy leads to elevated metabolic activity, thereby increasing mitochondrial membrane potential and restoring mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fabian Köhler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany
| | - Madeleine F. Premm
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Christian Fischer
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Laetitia Chauve
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Olivia Casanueva
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
28
|
Hsiung KC, Liu KY, Tsai TF, Yoshina S, Mitani S, Chin-Ming Tan B, Lo SJ. Defects in CISD-1, a mitochondrial iron-sulfur protein, lower glucose level and ATP production in Caenorhabditis elegans. Biomed J 2020; 43:32-43. [PMID: 32200954 PMCID: PMC7090286 DOI: 10.1016/j.bj.2019.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Background CDGSH iron sulfur domain-containing protein 1 (CISD-1) belongs to the CISD protein family that is evolutionary conserved across different species. In mammals, CISD-1 protein has been implicated in diseases such as cancers and diabetes. As a tractable model organism to study disease-associated proteins, we employed Caenorhabditis elegans in this study with an aim to establish a model for interrogating the functional relevance of CISD-1 in human metabolic conditions. Methods We first bioinformatically identified the human Cisd-1 homologue in worms. We then employed N2 wild-type and cisd-1(tm4993) mutant to investigate the consequences of CISD-1 loss-of-function on: 1) the expression pattern of CISD-1, 2) mitochondrial morphology pattern, 3) mitochondrial function and bioenergetics, and 4) the effects of anti-diabetes drugs. Results We first identified C. elegans W02B12.15 gene as the human Cisd-1 homologous gene, and pinpointed the localization of CISD-1 to the outer membrane of mitochondria. As compared with the N2 wild-type worm, cisd-1(tm4993) mutant exhibited a higher proportion of hyperfused form of mitochondria. This structural abnormality was associated with the generation of higher levels of ROS and mitochondrial superoxide but lower ATP. These physiological changes in mutants did not result in discernable effects on animal motility and lifespan. Moreover, the amount of glucose in N2 wild-type worms treated with troglitazone and pioglitazone, derivatives of TZD, was reduced to a comparable level as in the mutant animals. Conclusions By focusing on the Cisd-1 gene, our study established a C. elegans genetic system suitable for modeling human diabetes-related diseases.
Collapse
Affiliation(s)
- Kuei-Ching Hsiung
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yu Liu
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Fen Tsai
- National Yang Ming University, Department of Life Science, Taipei, Taiwan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University, School of Medicine and CREST, Japan Science and Technology, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, School of Medicine and CREST, Japan Science and Technology, Tokyo, Japan
| | - Bertrand Chin-Ming Tan
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Szecheng J Lo
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
29
|
Gautam M, Xie EF, Kocak N, Ozdinler PH. Mitoautophagy: A Unique Self-Destructive Path Mitochondria of Upper Motor Neurons With TDP-43 Pathology Take, Very Early in ALS. Front Cell Neurosci 2019; 13:489. [PMID: 31787882 PMCID: PMC6854036 DOI: 10.3389/fncel.2019.00489] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is one of the converging paths for many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), and TDP-43 pathology is the most common proteinopathy detected in ALS and ALS/Frontotemporal lobar degeneration (ALS/FTLD). We recently identified mitochondrial problems in corticospinal motor neurons (CSMN) and in Betz cells of patients with TDP-43 pathology. However, the timing and the extent of mitochondrial defects, and their mode of degeneration have not been revealed. Because it is important to reveal when problems first begin to emerge and whether they are shared or unique, we investigated the health and integrity of mitochondria in CSMN of prpTDP-43A315T, PFN1G118V, and hSOD1G93A mice at P15 (post-natal day 15)—a very early age in mice without any sign of cellular degeneration.Utilization of immuno-coupled electron microscopy for a detailed surveillance of mitochondria in CSMN and other non-CSMN cells revealed presence of a novel self-destructive path of mitochondrial degeneration, which we named mitoautophagy. Mitoauthopgy is different from mitophagy, as it does not require autophagosome-mediated degradation. In contrast, in this novel path, mitochondria can clear themselves independently. We find that even at this early age, all diseased CSMN begin to display mitochondrial defects, whereas mitochondria in non-CSMN cells are healthy. Our findings not only reveal mitoautophagy as a novel path of mitochondrial clearance that occurs prior to neuronal vulnerability, but it also highlights that it is present mainly in the upper motor neurons of prpTDP-43A315T and PFN1G118V mice, which mimic many aspects of the disease in patients with TDP-43 pathology.
Collapse
Affiliation(s)
- Mukesh Gautam
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Les Turner ALS Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Edward F Xie
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Nuran Kocak
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - P Hande Ozdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Les Turner ALS Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Mesulam Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
30
|
Cui J, Wang L, Ren X, Zhang Y, Zhang H. LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease. Front Physiol 2019; 10:595. [PMID: 31178748 PMCID: PMC6543908 DOI: 10.3389/fphys.2019.00595] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
The pentatricopeptide repeat (PPR) family plays a major role in RNA stability, regulation, processing, splicing, translation, and editing. Leucine-rich PPR-motif-containing protein (LRPPRC), a member of the PPR family, is a known gene mutation that causes Leigh syndrome French-Canadian. Recently, growing evidence has pointed out that LRPPRC dysregulation is related to various diseases ranging from tumors to viral infections. This review presents available published data on the LRPPRC protein function and its role in tumors and other diseases. As a multi-functional protein, LRPPRC regulates a myriad of biological processes, including energy metabolism and maturation and the export of nuclear mRNA. Overexpression of LRPPRC has been observed in various human tumors and is associated with poor prognosis. Downregulation of LRPPRC inhibits growth and invasion, induces apoptosis, and overcomes drug resistance in tumor cells. In addition, LRPPRC plays a potential role in Parkinson's disease, neurofibromatosis 1, viral infections, and venous thromboembolism. Further investigating these new functions of LRPPRC should provide novel opportunities for a better understanding of its pathological role in diseases from tumors to viral infections and as a potential biomarker and molecular target for disease treatment.
Collapse
Affiliation(s)
- Jie Cui
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Li Wang
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Xiaoyue Ren
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Yamin Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Hongyi Zhang
- College of General Practitioners, Xi'an Medical University, Xi'an, China.,Department of Urology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| |
Collapse
|
31
|
A Rise in ATP, ROS, and Mitochondrial Content upon Glucose Withdrawal Correlates with a Dysregulated Mitochondria Turnover Mediated by the Activation of the Protein Deacetylase SIRT1. Cells 2018; 8:cells8010011. [PMID: 30591661 PMCID: PMC6356350 DOI: 10.3390/cells8010011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022] Open
Abstract
Glucose withdrawal has been used as a model for the study of homeostatic defense mechanisms, especially for how cells cope with a shortage of nutrient supply by enhancing catabolism. However, detailed cellular responses to glucose withdrawal have been poorly studied, and are controversial. In this study, we determined how glucose withdrawal affects mitochondrial activity, and the quantity and the role of SIRT1 in these changes. The results of our study indicate a substantial increase in ATP production from mitochondria, through an elevation of mitochondrial biogenesis, mediated by SIRT1 activation that is driven by increased NAD⁺/NADH ratio. Moreover, mitochondria persisted in the cells as elongated forms, and apparently evaded mitophagic removal. This led to a steady increase in mitochondria content and the reactive oxygen species (ROS) generated from them, indicating failure in ATP and ROS homeostasis, due to a misbalance in SIRT1-mediated mitochondria turnover in conditions of glucose withdrawal. Our results suggest that SIRT1 activation alone cannot properly manage energy homeostasis under certain metabolic crisis conditions.
Collapse
|
32
|
Maintenance of Mitochondrial Morphology in Cryptococcus neoformans Is Critical for Stress Resistance and Virulence. mBio 2018; 9:mBio.01375-18. [PMID: 30401774 PMCID: PMC6222134 DOI: 10.1128/mbio.01375-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
C. neoformans is a yeast that causes fatal brain infection in close to 200,000 people worldwide every year, mainly afflicting individuals with AIDS or others who are severely immunocompromised. One feature of this microbe that helps it cause disease is that it is able to withstand toxic molecules it encounters when host cells engulf it in their efforts to control the infection. Mitochondria are important organelles responsible for energy production and other key cellular processes. They typically exist in a complex network that changes morphology by fusing and dividing; these alterations also influence mitochondrial function. Using genetic approaches, we found that changes in mitochondrial morphology dramatically influence cryptococcal virulence. We showed that this occurs because the altered mitochondria are less able to eliminate the harmful molecules that host cells produce to kill invading microbes. These findings are important because they elucidate fundamental biology and virulence and may suggest avenues for therapy. Mitochondria are essential organelles that act in pathways including ATP production, β-oxidation, and clearance of reactive oxygen species. They occur as a complex reticular network that constantly undergoes fusion and fission, mediated by dynamin-related proteins (DRPs). DRPs include Fzo1, which mediates fusion, and Dnm1, Mdv1, and Fis1, which mediate fission. Mitochondrial morphology has been implicated in virulence in multiple fungi, as with the association between virulence and increased mitochondrial fusion in Cryptococcus gattii. This relationship, however, has not been studied in Cryptococcus neoformans, a related opportunistic pathogen. C. neoformans is an environmental yeast that can adapt to the human host environment, overcome the innate immune system, and eventually disseminate and cause lethal meningoencephalitis. We used gene deletion of key DRPs to study their role in mitochondrial morphology and pathogenesis of this yeast. Interestingly, increasing mitochondrial fusion did not increase resistance to oxidative stress, unlike in model yeast. Blocking mitochondrial fusion, however, yielded increased susceptibility to oxidative and nitrosative stresses as well as complete avirulence. This lack of virulence was not mediated by any effects of altered mitochondrial function on two major virulence factors, capsule and melanin. Instead, it was due to decreased survival within macrophages, which in turn was a consequence of increased susceptibility to oxidative and nitrosative stress. Supporting this conclusion, reactive oxygen species (ROS) scavengers rescued the ability of fusion mutants to survive intracellularly. These findings increase our understanding of cryptococcal biology and virulence and shed light on an important group of proteins and cellular processes in this pathogen.
Collapse
|
33
|
Chaudhari SN, Kipreos ET. The Energy Maintenance Theory of Aging: Maintaining Energy Metabolism to Allow Longevity. Bioessays 2018; 40:e1800005. [PMID: 29901833 PMCID: PMC6314662 DOI: 10.1002/bies.201800005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Fused, elongated mitochondria are more efficient in generating ATP than fragmented mitochondria. In diverse C. elegans longevity pathways, increased levels of fused mitochondria are associated with lifespan extension. Blocking mitochondrial fusion in these animals abolishes their extended longevity. The long-lived C. elegans vhl-1 mutant is an exception that does not have increased fused mitochondria, and is not dependent on fusion for longevity. Loss of mammalian VHL upregulates alternate energy generating pathways. This suggests that mitochondrial fusion facilitates longevity in C. elegans by increasing energy metabolism. In diverse animals, ATP levels broadly decreases with age. Substantial evidence supports the theory that increasing or maintaining energy metabolism promotes the survival of older animals. Increased ATP levels in older animals allow energy-intensive repair and homeostatic mechanisms such as proteostasis that act to prevent cellular aging. These observations support the emerging paradigm that maintaining energy metabolism promotes the survival of older animals.
Collapse
Affiliation(s)
- Snehal N. Chaudhari
- Department of Cellular Biology University of Georgia Athens, GA 30602
- Present address: Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, MA 02115
| | - Edward T. Kipreos
- Department of Cellular Biology University of Georgia Athens, GA 30602
| |
Collapse
|
34
|
Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, Yeganeh A, Parks EE, Premkumar P, Farley JA, Owen DB, Humphries KM, Kinter M, Freeman WM, Szweda LI, Van Remmen H, Sonntag WE. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes. Mol Metab 2018; 9:141-155. [PMID: 29398615 PMCID: PMC5870102 DOI: 10.1016/j.molmet.2018.01.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Objective A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS) are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1) that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. Methods Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f). The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. Results Our results indicate that a reduction in IGF-1 receptor (IGFR) expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30–50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aβ uptake, both critical functions of astrocytes in the brain. Conclusions Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal-dependent spatial learning. Age-related astrocytic dysfunction caused by diminished IGF-1 signaling may contribute to the pathogenesis of Alzheimer's disease and other age-associated cognitive pathologies. Altered mitochondrial structure and function with IGFR deficiency in astrocytes is proposed. Increased reactive oxygen species production and susceptibility to peroxide induced cytotoxicity. Decreased Aβ uptake and impairment in spatial working memory.
Collapse
Affiliation(s)
- Sreemathi Logan
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA.
| | - Gavin A Pharaoh
- Department of Physiology, University of Oklahoma Health Sciences Center, USA; Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA
| | - M Caleb Marlin
- Graduate College, University of Oklahoma Health Sciences Center, USA
| | - Dustin R Masser
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Department of Physiology, University of Oklahoma Health Sciences Center, USA
| | - Satoshi Matsuzaki
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, USA
| | - Benjamin Wronowski
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Department of Physiology, University of Oklahoma Health Sciences Center, USA
| | - Alexander Yeganeh
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, USA
| | - Eileen E Parks
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, USA
| | - Pavithra Premkumar
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA
| | - Julie A Farley
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA
| | - Daniel B Owen
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA
| | - Kenneth M Humphries
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, USA
| | - Michael Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA
| | - Willard M Freeman
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Department of Physiology, University of Oklahoma Health Sciences Center, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, USA
| | - Luke I Szweda
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, USA
| | - Holly Van Remmen
- Department of Physiology, University of Oklahoma Health Sciences Center, USA; Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, USA
| | - William E Sonntag
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Department of Physiology, University of Oklahoma Health Sciences Center, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, USA
| |
Collapse
|
35
|
Cooper JF, Machiela E, Dues DJ, Spielbauer KK, Senchuk MM, Van Raamsdonk JM. Activation of the mitochondrial unfolded protein response promotes longevity and dopamine neuron survival in Parkinson's disease models. Sci Rep 2017; 7:16441. [PMID: 29180793 PMCID: PMC5703891 DOI: 10.1038/s41598-017-16637-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
While the pathogenesis of Parkinson's disease (PD) is incompletely understood, mitochondrial dysfunction is thought to play a crucial role in disease pathogenesis. Here, we examined the relationship between mitochondrial function and dopamine neuron dysfunction and death using C. elegans mutants for three mitochondria-related genes implicated in monogenic PD (pdr-1/PRKN, pink-1/PINK1 and djr-1.1/DJ-1). We found that pdr-1 and pink-1 mutants exhibit deficits in dopamine-dependent behaviors, but no loss of dopamine neurons, while djr-1.1 mutants showed an increased sensitivity to oxidative stress. In examining mitochondrial morphology and function, we found that djr-1.1 mutants exhibit increased mitochondrial fragmentation leading to decreased rate of oxidative phosphorylation and ATP levels. pdr-1 and pink-1 mutants show an accumulation of dysfunctional mitochondria with age, which leads to activation of the mitochondrial unfolded protein response (mitoUPR). Preventing the upregulation of the mitoUPR with a deletion in atfs-1 results in decreased lifespan and dopamine neuronal loss in pdr-1 and pink-1 mutants but not in wild-type worms. Overall, our results suggest that mutations in pdr-1 and pink-1 cause the accumulation of dysfunctional mitochondria, which activates the mitoUPR to mitigate the detrimental effect of these mutations on dopamine neuron survival.
Collapse
Affiliation(s)
- Jason F Cooper
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Emily Machiela
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Dylan J Dues
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Katie K Spielbauer
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jeremy M Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Abstract
Mitochondria form dynamic networks which adapt to the environmental requirements of the cell. We investigated the aging process of these networks in human skin cells in vivo by multiphoton microscopy. A study on the age-dependency of the mitochondrial network in young and old volunteers revealed that keratinocytes in old skin establish a significantly more fragmented network with smaller and more compact mitochondrial clusters than keratinocytes in young skin. Furthermore, we investigated the mitochondrial network during differentiation processes of keratinocytes within the epidermis of volunteers. We observe a fragmentation similar to the age-dependent study in almost all parameters. These parallels raise questions about the dynamics of biophysical network structures during aging processes.
Collapse
|
37
|
Kazama M, Ogiwara S, Makiuchi T, Yoshida K, Nakada-Tsukui K, Nozaki T, Tachibana H. Behavior of DNA-lacking mitochondria in Entamoeba histolytica revealed by organelle transplant. Sci Rep 2017; 7:44273. [PMID: 28287148 PMCID: PMC5347163 DOI: 10.1038/srep44273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
The anaerobic protozoan parasite Entamoeba histolytica has mitosomes that are mitochondria lacking some canonical functions and organelle DNA. Mitosomes play an important role in the life cycle of the parasite. The distribution of proteins in mitosomes is not uniform, and how mitosomes are maintained and retained is unknown. To answer these questions, we developed a transplant method for mitosomes with hemagglutinin-tagged protein into recipient cells containing mitosomes with Myc-tagged protein. Immunofluorescence staining showed that the two protein tags colocalized in single mitosomes in some recipient cells. These results suggest that our transplant method can be used in anaerobic protozoa and that donor mitosomes may obtain recipient proteins through fusion with other mitosomes or through de novo synthesis of proteins in recipient cells.
Collapse
Affiliation(s)
- Makoto Kazama
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Sanae Ogiwara
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259-1193, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Kazuhiro Yoshida
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
38
|
Keller CW, Lünemann JD. Autophagy and Autophagy-Related Proteins in CNS Autoimmunity. Front Immunol 2017; 8:165. [PMID: 28289410 PMCID: PMC5326760 DOI: 10.3389/fimmu.2017.00165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy comprises a heterogeneous group of cellular pathways that enables eukaryotic cells to deliver cytoplasmic constituents for lysosomal degradation, to recycle nutrients, and to survive during starvation. In addition to these primordial functions, autophagy has emerged as a key mechanism in orchestrating innate and adaptive immune responses and to shape CD4+ T cell immunity through delivery of peptides to major histocompatibility complex (MHC) class II-containing compartments (MIICs). Individual autophagy proteins additionally modulate expression of MHC class I molecules for CD8+ T cell activation. The emergence and expansion of autoreactive CD4+ and CD8+ T cells are considered to play a key role in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. Expression of the essential autophagy-related protein 5 (Atg5), which supports T lymphocyte survival and proliferation, is increased in T cells isolated from blood or brain tissues from patients with relapsing-remitting MS. Whether Atgs contribute to the activation of autoreactive T cells through autophagy-mediated antigen presentation is incompletely understood. Here, we discuss the complex functions of autophagy proteins and pathways in regulating T cell immunity and its potential role in the development and progression of MS.
Collapse
Affiliation(s)
- Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich , Zürich , Switzerland
| | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland; Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
39
|
Regmi SG, Rolland SG. New Imaging Tools to Analyze Mitochondrial Morphology in Caenorhabditis elegans. Methods Mol Biol 2017; 1567:255-272. [PMID: 28276024 DOI: 10.1007/978-1-4939-6824-4_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondria are highly dynamic organelles that constantly fuse and divide. This process is essential as several neurodegenerative diseases have been associated with defects in mitochondrial fusion or fission. Several tools have been developed over the years to visualize mitochondria in organisms such as Caenorhabditis elegans. Combining these tools with the powerful genetics of C. elegans has led to the discovery of new regulators of mitochondrial morphology. In this chapter, we present additional tools to further characterize mitochondrial morphology as well as regulators of mitochondrial morphology. Specifically, we introduce a photoactivatable mitoGFP (PAmitoGFP) that allows to investigate the connectivity of complex mitochondrial networks. In addition, we describe an immunostaining protocol that enables localization studies of these newly identified regulators of mitochondrial morphology.
Collapse
Affiliation(s)
- Saroj G Regmi
- LMU Biocenter, Department Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstr. 2, Planegg-Martinsried, Munich, 82152, Germany.,Department of Genetics, Geisel School of Medicine at Dartmouth, 7400 Remsen, Hanover, NH, 03755, USA.,National Institute of Child Health and Human Development, NIH, 18 Center Drive, Bethesda, 20892, MD, USA
| | - Stéphane G Rolland
- LMU Biocenter, Department Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstr. 2, Planegg-Martinsried, Munich, 82152, Germany.
| |
Collapse
|
40
|
Du C, Xie H, Zang R, Shen Z, Li H, Chen P, Xu X, Xia Y, Tang W. Apoptotic neuron-secreted HN12 inhibits cell apoptosis in Hirschsprung's disease. Int J Nanomedicine 2016; 11:5871-5881. [PMID: 27853370 PMCID: PMC5106231 DOI: 10.2147/ijn.s114838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Perturbation in apoptosis can lead to Hirschsprung's disease (HSCR), which is a genetic disorder of neural crest development. It is believed that long noncoding RNAs (lncRNAs) play a role in the progression of HSCR. This study shows that apoptotic neurons can suppress apoptosis of nonapoptotic cells by secreting exosomes that contain high levels of HN12 lncRNA. Elevated exogenous HN12 in nonapoptotic cells effectively inhibited cell apoptosis by maintaining the function of mitochondria, including the production of ATP and the release of cytochrome C. These results demonstrate that secreted lncRNAs may serve as signaling molecules mediating intercellular communication in HSCR. In addition, high HN12 levels in the circulation worked as a biomarker for predicting HSCR, providing a potential, novel, noninvasive diagnostic approach for early screening of HSCR.
Collapse
Affiliation(s)
- Chunxia Du
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health
| | - Hua Xie
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health
| | - Rujin Zang
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health
| | - Ziyang Shen
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health
| | - Hongxing Li
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health
| | - Pingfa Chen
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health
| | - Xiaoqun Xu
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health; Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, People's Republic of China
| | - Weibing Tang
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health
| |
Collapse
|
41
|
Köhler F, Müller-Rischart AK, Conradt B, Rolland SG. The loss of LRPPRC function induces the mitochondrial unfolded protein response. Aging (Albany NY) 2016; 7:701-17. [PMID: 26412102 PMCID: PMC4600627 DOI: 10.18632/aging.100812] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The inactivation of the LRPPRC gene, which has previously been associated with the neurodegenerative French Canadian Leigh Syndrome, results in a decrease in the production of mitochondria-encoded subunits of complex IV, thereby causing a reduction in complex IV activity. Previously we have shown that reducing complex IV activity triggers a compensatory and conserved mitochondrial hyperfusion response. We now demonstrate that LRPPRC knock-down in mammalian cells leads to an imbalance between mitochondria-encoded and nuclear-encoded subunits of complex IV and that this imbalance triggers the mitochondrial unfolded protein response (UPR(mt)). The inactivation of the LRPPRC-like gene mma-1 in C. elegans also induces UPR(mt), which demonstrates that this response is conserved. Furthermore, we provide evidence that mitochondrial hyperfusion and UPR(mt) are coordinated but mediated by genetically distinct pathways. We propose that in the context of LRPPRC mma-1 knock-down, mitochondrial hyperfusion helps to transiently maintain mitochondrial ATP production while UPR(mt) participates in the restoration of mitochondrial proteostasis. Mitochondrial proteostasis is not only critical in pathophysiology but also during aging, as proteotoxic stress has been shown to increase with age. Therefore, we speculate that the coordination of these two mitochondrial stress responses plays a more global role in mitochondrial proteostasis.
Collapse
Affiliation(s)
- Fabian Köhler
- Center for Integrated Protein Science, Fakultät für Biologie, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Anne Kathrin Müller-Rischart
- Center for Integrated Protein Science, Fakultät für Biologie, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Center for Integrated Protein Science, Fakultät für Biologie, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stéphane Guy Rolland
- Center for Integrated Protein Science, Fakultät für Biologie, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
42
|
Ko AR, Hyun HW, Min SJ, Kim JE. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci 2016; 10:124. [PMID: 27242436 PMCID: PMC4870264 DOI: 10.3389/fncel.2016.00124] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/29/2016] [Indexed: 11/13/2022] Open
Abstract
The response and susceptibility to astroglial degenerations are relevant to the distinctive properties of astrocytes in a hemodynamic-independent manner following status epilepticus (SE). Since impaired mitochondrial fission plays an important role in mitosis, apoptosis and programmed necrosis, we investigated whether the unique pattern of mitochondrial dynamics is involved in the characteristics of astroglial death induced by SE. In the present study, SE induced astroglial apoptosis in the molecular layer of the dentate gyrus, accompanied by decreased mitochondrial length. In contrast, clasmatodendritic (autophagic) astrocytes in the CA1 region showed mitochondrial elongation induced by SE. Mdivi-1 (an inhibitor of mitochondrial fission) effectively attenuated astroglial apoptosis, but WY14643 (an enhancer of mitochondrial fission) aggravated it. In addition, Mdivi-1 accelerated clasmatodendritic changes in astrocytes. These regional specific mitochondrial dynamics in astrocytes were closely correlated with dynamin-related protein 1 (DRP1; a mitochondrial fission protein) phosphorylation, not optic atrophy 1 (OPA1; a mitochondrial fusion protein) expression. To the best of our knowledge, the present data demonstrate for the first time the novel role of DRP1-mediated mitochondrial fission in astroglial loss. Thus, the present findings suggest that the differential astroglial mitochondrial dynamics may participate in the distinct characteristics of astroglial death induced by SE.
Collapse
Affiliation(s)
- Ah-Reum Ko
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| |
Collapse
|
43
|
Morsci NS, Hall DH, Driscoll M, Sheng ZH. Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons. J Neurosci 2016; 36:1373-85. [PMID: 26818523 PMCID: PMC4728731 DOI: 10.1523/jneurosci.2799-15.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with cognitive decline and increasing risk of neurodegeneration. Perturbation of mitochondrial function, dynamics, and trafficking are implicated in the pathogenesis of several age-associated neurodegenerative diseases. Despite this fundamental importance, the critical understanding of how organismal aging affects lifetime neuronal mitochondrial maintenance remains unknown, particularly in a physiologically relevant context. To address this issue, we performed a comprehensive in vivo analysis of age-associated changes in mitochondrial morphology, density, trafficking, and stress resistance in individual Caenorhabditis elegans neurons throughout adult life. Adult neurons display three distinct stages of increase, maintenance, and decrease in mitochondrial size and density during adulthood. Mitochondrial trafficking in the distal neuronal processes declines progressively with age starting from early adulthood. In contrast, long-lived daf-2 mutants exhibit delayed age-associated changes in mitochondrial morphology, constant mitochondrial density, and maintained trafficking rates during adulthood. Reduced mitochondrial load at late adulthood correlates with decreased mitochondrial resistance to oxidative stress. Revealing aging-associated changes in neuronal mitochondria in vivo is an essential precedent that will allow future elucidation of the mechanistic causes of mitochondrial aging. Thus, our study establishes the critical foundation for the future analysis of cellular pathways and genetic and pharmacological factors regulating mitochondrial maintenance in aging- and disease-relevant conditions. SIGNIFICANCE STATEMENT Using Caenorhabditis elegans as a model, we address long-standing questions: How does aging affect neuronal mitochondrial morphology, density, trafficking, and oxidative stress resistance? Are these age-related changes amenable to genetic manipulations that slow down the aging process? Our study illustrates that mitochondrial trafficking declines progressively from the first day of adulthood, whereas mitochondrial size, density, and resistance to oxidative stress undergo three distinct stages: increase in early adulthood, maintenance at high levels during mid-adulthood, and decline during late adulthood. Thus, our study characterizes mitochondrial aging profile at the level of a single neuron in its native environment and establishes the critical foundation for the future genetic and pharmacological dissection of factors that influence long-term mitochondrial maintenance in neurons.
Collapse
Affiliation(s)
- Natalia S Morsci
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, and
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
44
|
Quality Saving Mechanisms of Mitochondria during Aging in a Fully Time-Dependent Computational Biophysical Model. PLoS One 2016; 11:e0146973. [PMID: 26771181 PMCID: PMC4738421 DOI: 10.1371/journal.pone.0146973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes.
Collapse
|
45
|
Oláhová M, Hardy SA, Hall J, Yarham JW, Haack TB, Wilson WC, Alston CL, He L, Aznauryan E, Brown RM, Brown GK, Morris AAM, Mundy H, Broomfield A, Barbosa IA, Simpson MA, Deshpande C, Moeslinger D, Koch J, Stettner GM, Bonnen PE, Prokisch H, Lightowlers RN, McFarland R, Chrzanowska-Lightowlers ZMA, Taylor RW. LRPPRC mutations cause early-onset multisystem mitochondrial disease outside of the French-Canadian population. Brain 2015; 138:3503-19. [PMID: 26510951 PMCID: PMC4655343 DOI: 10.1093/brain/awv291] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/11/2015] [Indexed: 12/27/2022] Open
Abstract
The French-Canadian variant of COX-deficient Leigh syndrome (LSFC) is unique to Québec and caused by a founder mutation in the LRPPRC gene. Using whole exome sequencing, Oláhová et al. identify mutations in this gene associated with multisystem mitochondrial disease and early-onset neurodevelopmental problems in ten patients from different ethnic backgrounds. Mitochondrial Complex IV [cytochrome c oxidase (COX)] deficiency is one of the most common respiratory chain defects in humans. The clinical phenotypes associated with COX deficiency include liver disease, cardiomyopathy and Leigh syndrome, a neurodegenerative disorder characterized by bilateral high signal lesions in the brainstem and basal ganglia. COX deficiency can result from mutations affecting many different mitochondrial proteins. The French-Canadian variant of COX-deficient Leigh syndrome is unique to the Saguenay-Lac-Saint-Jean region of Québec and is caused by a founder mutation in the LRPPRC gene. This encodes the leucine-rich pentatricopeptide repeat domain protein (LRPPRC), which is involved in post-transcriptional regulation of mitochondrial gene expression. Here, we present the clinical and molecular characterization of novel, recessive LRPPRC gene mutations, identified using whole exome and candidate gene sequencing. The 10 patients come from seven unrelated families of UK-Caucasian, UK-Pakistani, UK-Indian, Turkish and Iraqi origin. They resemble the French-Canadian Leigh syndrome patients in having intermittent severe lactic acidosis and early-onset neurodevelopmental problems with episodes of deterioration. In addition, many of our patients have had neonatal cardiomyopathy or congenital malformations, most commonly affecting the heart and the brain. All patients who were tested had isolated COX deficiency in skeletal muscle. Functional characterization of patients’ fibroblasts and skeletal muscle homogenates showed decreased levels of mutant LRPPRC protein and impaired Complex IV enzyme activity, associated with abnormal COX assembly and reduced steady-state levels of numerous oxidative phosphorylation subunits. We also identified a Complex I assembly defect in skeletal muscle, indicating different roles for LRPPRC in post-transcriptional regulation of mitochondrial mRNAs between tissues. Patient fibroblasts showed decreased steady-state levels of mitochondrial mRNAs, although the length of poly(A) tails of mitochondrial transcripts were unaffected. Our study identifies LRPPRC as an important disease-causing gene in an early-onset, multisystem and neurological mitochondrial disease, which should be considered as a cause of COX deficiency even in patients originating outside of the French-Canadian population.
Collapse
Affiliation(s)
- Monika Oláhová
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Steven A Hardy
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Julie Hall
- 2 Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 3BZ, UK
| | - John W Yarham
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tobias B Haack
- 3 Institute of Human Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany 4 Institut für Humangenetik, Technische Universität München, Arcisstrasse 21, 80333 Munich, Germany
| | - William C Wilson
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Charlotte L Alston
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Langping He
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Erik Aznauryan
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ruth M Brown
- 5 Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Garry K Brown
- 5 Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Andrew A M Morris
- 6 Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Helen Mundy
- 7 Centre for Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Alex Broomfield
- 6 Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Ines A Barbosa
- 8 Division of Genetics and Molecular Medicine, King's College London School of Medicine, London, SE1 9RY, UK
| | - Michael A Simpson
- 8 Division of Genetics and Molecular Medicine, King's College London School of Medicine, London, SE1 9RY, UK
| | - Charu Deshpande
- 9 Department of Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Dorothea Moeslinger
- 10 Department of Paediatrics, University Children's Hospital, A-1090 Vienna, Austria
| | - Johannes Koch
- 11 Department of Paediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Georg M Stettner
- 12 Department of Paediatric Neurology, Georg August University, 37075 Göttingen, Germany
| | - Penelope E Bonnen
- 13 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Holger Prokisch
- 3 Institute of Human Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany 4 Institut für Humangenetik, Technische Universität München, Arcisstrasse 21, 80333 Munich, Germany
| | - Robert N Lightowlers
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Robert W Taylor
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
46
|
Jaiswal M, Haelterman NA, Sandoval H, Xiong B, Donti T, Kalsotra A, Yamamoto S, Cooper TA, Graham BH, Bellen HJ. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress. PLoS Biol 2015; 13:e1002197. [PMID: 26176594 PMCID: PMC4503542 DOI: 10.1371/journal.pbio.1002197] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
Abstract
Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration—defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise. Some mitochondrial disorders cause blindness through increased oxidative stress. This study shows that in other such disorders, light-activated photoreceptors degenerate because the shortfall in mitochondrial energy production impairs rhodopsin trafficking and induces toxicity. Mitochondrial dysfunction is associated with a number of metabolic and neurological diseases such as Leigh syndrome and progressive blindness. Increased oxidative stress, which is often associated with mitochondrial dysfunction, is thought to be a common cause of disease progression. Here, we identified nuclear genes that encode mitochondrial proteins, whose loss causes the demise of photoreceptor neurons. Contrary to the common idea that this degeneration is triggered by elevated levels of oxidative stress, we find no change in the levels of oxidative stress. We show that activating photoreceptor neurons with light significantly increases energy production, and that this process is required to sustain their activity. Mitochondrial dysfunction impairs this capacity and leads to a premature termination of the light response. This in turn impairs the cycling of the light-sensitive receptor Rhodopsin in photoreceptors, and Rhodopsin accumulates in the cell inducing toxicity. This distinct mechanism of degeneration suggests that different mitochondrial diseases may follow different paths of disease progression and would hence respond differently to treatments.
Collapse
Affiliation(s)
- Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Howard Hughes Medical Institute, BCM, Houston, Texas, United States of America
| | - Nele A. Haelterman
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
| | - Bo Xiong
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
| | - Taraka Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
| | - Auinash Kalsotra
- Department of Pathology and Immunology, BCM, Houston, Texas, United States of America
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, Texas, United States of America
| | - Thomas A. Cooper
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Department of Pathology and Immunology, BCM, Houston, Texas, United States of America
| | - Brett H. Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Howard Hughes Medical Institute, BCM, Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, Texas, United States of America
- Department of Neuroscience, BCM, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Hoitzing H, Johnston IG, Jones NS. What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research. Bioessays 2015; 37:687-700. [PMID: 25847815 PMCID: PMC4672710 DOI: 10.1002/bies.201400188] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria can change their shape from discrete isolated organelles to a large continuous reticulum. The cellular advantages underlying these fused networks are still incompletely understood. In this paper, we describe and compare hypotheses regarding the function of mitochondrial networks. We use mathematical and physical tools both to investigate existing hypotheses and to generate new ones, and we suggest experimental and modelling strategies. Among the novel insights we underline from this work are the possibilities that (i) selective mitophagy is not required for quality control because selective fusion is sufficient; (ii) increased connectivity may have non-linear effects on the diffusion rate of proteins; and (iii) fused networks can act to dampen biochemical fluctuations. We hope to convey to the reader that quantitative approaches can drive advances in the understanding of the physiological advantage of these morphological changes.
Collapse
Affiliation(s)
- Hanne Hoitzing
- Department of Mathematics, Imperial College London, London, UK
| | - Iain G Johnston
- Department of Mathematics, Imperial College London, London, UK
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, UK
| |
Collapse
|
48
|
Regmi SG, Rolland SG, Conradt B. Age-dependent changes in mitochondrial morphology and volume are not predictors of lifespan. Aging (Albany NY) 2014; 6:118-30. [PMID: 24642473 PMCID: PMC3969280 DOI: 10.18632/aging.100639] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is a hallmark of skeletal muscle degeneration during aging. One mechanism through which mitochondrial dysfunction can be caused is through changes in mitochondrial morphology. To determine the role of mitochondrial morphology changes in age-dependent mitochondrial dysfunction, we studied mitochondrial morphology in body wall muscles of the nematode C. elegans. We found that in this tissue, animals display a tubular mitochondrial network, which fragments with increasing age. This fragmentation is accompanied by a decrease in mitochondrial volume. Mitochondrial fragmentation and volume loss occur faster under conditions that shorten lifespan and occur slower under conditions that increase lifespan. However, neither mitochondrial morphology nor mitochondrial volume of five- and seven-day old wild-type animals can be used to predict individual lifespan. Our results indicate that while mitochondria in body wall muscles undergo age-dependent fragmentation and a loss in volume, these changes are not the cause of aging but rather a consequence of the aging process.
Collapse
Affiliation(s)
- Saroj G Regmi
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Katherine Labbé
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| | - Andrew Murley
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| |
Collapse
|
50
|
Ackema KB, Hench J, Böckler S, Wang SC, Sauder U, Mergentaler H, Westermann B, Bard F, Frank S, Spang A. The small GTPase Arf1 modulates mitochondrial morphology and function. EMBO J 2014; 33:2659-75. [PMID: 25190516 DOI: 10.15252/embj.201489039] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The small GTPase Arf1 plays critical roles in membrane traffic by initiating the recruitment of coat proteins and by modulating the activity of lipid-modifying enzymes. Here, we report an unexpected but evolutionarily conserved role for Arf1 and the ArfGEF GBF1 at mitochondria. Loss of function of ARF-1 or GBF-1 impaired mitochondrial morphology and activity in Caenorhabditis elegans. Similarly, mitochondrial defects were observed in mammalian and yeast cells. In Saccharomyces cerevisiae, aberrant clusters of the mitofusin Fzo1 accumulated in arf1-11 mutants and were resolved by overexpression of Cdc48, an AAA-ATPase involved in ER and mitochondria-associated degradation processes. Yeast Arf1 co-fractionated with ER and mitochondrial membranes and interacted genetically with the contact site component Gem1. Furthermore, similar mitochondrial abnormalities resulted from knockdown of either GBF-1 or contact site components in worms, suggesting that the role of Arf1 in mitochondrial functioning is linked to ER-mitochondrial contacts. Thus, Arf1 is involved in mitochondrial homeostasis and dynamics, independent of its role in vesicular traffic.
Collapse
Affiliation(s)
- Karin B Ackema
- Growth and Development, Biozentrum University of Basel, Basel, Switzerland
| | - Jürgen Hench
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Shyi Chyi Wang
- Institute for Molecular and Cell Biology, Singapore City, Singapore
| | - Ursula Sauder
- Microscopy Center, Biozentrum University of Basel, Basel, Switzerland
| | - Heidi Mergentaler
- Growth and Development, Biozentrum University of Basel, Basel, Switzerland
| | | | - Frédéric Bard
- Institute for Molecular and Cell Biology, Singapore City, Singapore
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Anne Spang
- Growth and Development, Biozentrum University of Basel, Basel, Switzerland
| |
Collapse
|