1
|
Ming S, Chen Z, Yang J, Liu J, Liu X, Yang L, Tan Z, Zhou H, Wu Y, Huang X. Inflammatory CD11c+ B Cells Induced by the TREM2 Signal Accelerate Sepsis Development. J Infect Dis 2025:jiaf112. [PMID: 40207848 DOI: 10.1093/infdis/jiaf112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 04/11/2025] Open
Abstract
CD11c+ B cells are an age-associated subset emerging in infections and autoimmune diseases. However, their role in sepsis is poorly clarified. This study identified a class of CD11c+ B cells with a proinflammatory phenotype that is expended in septic patients and mice. Notably, the transfer of these cells accelerates sepsis-induced lung injury and death in mice. Furthermore, the CD11c+ B cells were induced by the triggering receptor expressed on myeloid cells 2 (TREM2) signal, which promotes their generation via the interferon regulatory factor 4 (IRF4) pathway. Moreover, TREM2 directly participates in sepsis regulation mediated by CD11c+ B cells. This study reveals the proinflammatory role of CD11c+ B cells in sepsis and identifies TREM2 as a contributing factor in CD11c+ B-cell-mediated inflammatory injury during sepsis.
Collapse
Affiliation(s)
- Siqi Ming
- Department of Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, Guangdong, China
| | - Zhenxing Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jingwen Yang
- Department of Critical Care Medicine, Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, Guangdong, China
| | - Jiao Liu
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xi Liu
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, Guangdong, China
| | - Lunhao Yang
- Department of Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhaofeng Tan
- Department of Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Haibo Zhou
- Department of Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xi Huang
- Department of Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
2
|
Pérez-Pérez L, Laidlaw BJ. Polarization of the memory B-cell response. J Leukoc Biol 2025; 117:qiae228. [PMID: 39401326 PMCID: PMC11953070 DOI: 10.1093/jleuko/qiae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 03/30/2025] Open
Abstract
Memory B cells are long-lived cells that are induced following infection or vaccination. Upon antigen re-encounter, memory B cells rapidly differentiate into antibody-secreting or germinal center B cells. While memory B cells are an important component of long-term protective immunity following vaccination, they also contribute to the progression of diseases such as autoimmunity and allergy. Numerous subsets of memory B cells have been identified in mice and humans that possess important phenotypic and functional differences. Here, we review the transcriptional circuitry governing memory B-cell differentiation and function. We then summarize emerging evidence that the inflammatory environment in which memory B cells develop has an important role in shaping their phenotype and examine the pathways regulating the development of memory B cells during a type 1-skewed and type 2-skewed immune response.
Collapse
Affiliation(s)
- Lizzette Pérez-Pérez
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, 425 S Euclid Ave, St. Louis, MO 63110, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, 425 S Euclid Ave, St. Louis, MO 63110, United States
| |
Collapse
|
3
|
Staniek J, Rizzi M. Signaling Activation and Modulation in Extrafollicular B Cell Responses. Immunol Rev 2025; 330:e70004. [PMID: 39917832 PMCID: PMC11803499 DOI: 10.1111/imr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The differentiation of naive follicular B cells into either the germinal center (GC) or extrafollicular (EF) pathway plays a critical role in shaping the type, affinity, and longevity of effector B cells. This choice also governs the selection and survival of autoreactive B cells, influencing their potential to enter the memory compartment. During the first 2-3 days following antigen encounter, initially activated B cells integrate activating signals from T cells, Toll-like receptors (TLRs), and cytokines, alongside inhibitory signals mediated by inhibitory receptors. This integration modulates the intensity of signaling, particularly of the PI3K/AKT/mTOR pathway, which plays a central role in guiding developmental decisions. These early signaling events determine whether B cells undergo GC maturation or differentiate rapidly into antibody-secreting cells (ASCs) via the EF pathway. Dysregulation of these signaling pathways-whether through excessive activation or defective regulatory mechanisms-can disrupt the balance between GC and EF fates, predisposing individuals to autoimmunity. Accordingly, aberrant PI3K/AKT/mTOR signaling has been implicated in the defective selection of autoreactive B cells, increasing the risk of autoimmune disease. This review focuses on the signaling events in newly activated B cells, with an emphasis on the induction and regulation of the PI3K/AKT/mTOR pathway. It also highlights gaps in our understanding of how alternative B cell fates are regulated. Both the physiological context and the implications of inborn errors of immunity (IEIs) and complex autoimmune conditions will be discussed in this regard.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- CIBSS—Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| |
Collapse
|
4
|
Knox JJ, Karolyi K, Monslow J, Cromley D, Rader DJ, Puré E, Cancro MP. T-bet-expressing B cells promote atherosclerosis in apolipoprotein E-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae027. [PMID: 40073097 PMCID: PMC11952879 DOI: 10.1093/jimmun/vkae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/18/2024] [Indexed: 03/14/2025]
Abstract
The humoral immune system influences the development of atherosclerosis, but the contributions of specific memory B cell subsets and IgG isotypes are poorly understood. We assessed the relationship between atherosclerosis and age-associated B cells (ABCs), a T-bet-expressing memory B cell subset that is enriched for IgG2c production and implicated in humoral autoimmunity. We found increased numbers of splenic CD11c+ ABCs in 6-mo-old, chow-fed Apoe-/- mice versus C57BL/6 control mice, which were exacerbated by high-fat diet. Deletion of T-bet in the B lineage in high-fat diet-fed Apoe-/- mice reduced aortic lesion area, and this correlated with decreased splenic CD11c+ B cells and reduced serum oxidized low-density lipoprotein-specific IgG2c. Our findings suggest that T-bet-expressing B cells are atherogenic agents in the Apoe-/- model and indicate that interventions to inhibit a T-bet-driven humoral response may improve atherosclerotic disease.
Collapse
Affiliation(s)
- James J Knox
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katalin Karolyi
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James Monslow
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Debra Cromley
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael P Cancro
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Liao F, Zhou D, Cano M, Liu Z, Scozzi D, Tague LK, Byers DE, Li W, Sivapackiam J, Sharma V, Krupnick AS, Frank DW, Kreisel D, Kulkarni HS, Hachem RR, Gelman AE. Pseudomonas aeruginosa infection induces intragraft lymphocytotoxicity that triggers lung transplant antibody-mediated rejection. Sci Transl Med 2025; 17:eadp1349. [PMID: 39908350 DOI: 10.1126/scitranslmed.adp1349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
How pathogens inhibit transplant tolerance remains unclear. Here, we found that Pseudomonas aeruginosa infection, but not other common bacterial respiratory infections, increases antibody-mediated rejection (AMR) risk in recipients of lung transplants. To explore this relationship, we performed orthotopic lung transplants in mice, infected recipients with P. aeruginosa, and observed for the development of AMR. Intravital two-photon microscopy showed that P. aeruginosa rapidly invaded bronchial-associated lymphoid tissues, which resulted in acute lymphocytotoxicity, including the death of forkhead box P3 (Foxp3)+CD4+ T cells that are required to suppress AMR. P. aeruginosa-mediated AMR required expression of the type III secretion system (T3SS), which injects exotoxins into the cell cytoplasm. Through a combination of mutagenesis and epitope tagging experiments, we revealed that T3SS exotoxin T ADP ribosyl-transferase activity was sufficient for graft-resident Foxp3+CD4+ T cell apoptosis, leading to myeloid differentiation primary response 88 (Myd88)-dependent generation of T-box expressed in T cells (T-bet)- and C-X-C motif chemokine receptor 3 (CXCR3)-positive germinal center and memory B cells with high donor antigen avidity. We also found that T-bet+ and CXCR3+ B cells were elevated in biopsies from recipients of lung transplants who were diagnosed with AMR. In mice, CXCR3 deficiency restricted to B cells or CXCR3 blockade prevented AMR despite P. aeruginosa infection. Our work has identified a previously unrecognized role of bacterial virulence in lung allograft rejection and suggests potential strategies to prevent AMR for those at high risk of P. aeruginosa infection after transplant.
Collapse
Affiliation(s)
- Fuyi Liao
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dequan Zhou
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marlene Cano
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhiyi Liu
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laneshia K Tague
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Derek E Byers
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wenjun Li
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander S Krupnick
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dara W Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel Kreisel
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramsey R Hachem
- Department of Internal Medicine, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT 84108, USA
| | - Andrew E Gelman
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Wang T, Giltiay NV, Lood C, Wang N, Han BK. Evaluation of B cell related markers and autoantibodies in rheumatoid arthritis patients treated with abatacept. Front Immunol 2025; 16:1504454. [PMID: 39925810 PMCID: PMC11803405 DOI: 10.3389/fimmu.2025.1504454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Objectives To investigate whether biomarkers related to B cell activation and autoantibody production are associated with the response to abatacept in rheumatoid arthritis (RA) patients. Methods Twenty-five patients with RA were enrolled in this study. Responders (n=10) to abatacept were subjects who achieved ACR50 response at week 24. Serum levels of soluble biomarkers were measured with ProcartaPlex by Luminex or ELISA. Peripheral blood mononuclear cells were isolated and analysed for T cell and B cell subsets by flow cytometry. Patients were genotyped for human leukocyte antigen (HLA)-DRB1 shared epitope (SE) alleles. Baseline levels and longitudinal changes of markers were assessed between responders and nonresponders. Results Baseline levels of anti-cyclic citrullinated peptide (anti-CCP) antibodies (p=0.01), IgM rheumatoid factor (RF) (p=0.02), CXC chemokine ligand 13 (CXCL13, p=0.02), sCD23 (p<0.05), as well as frequencies of CD19+CD11c+IgD-CD27- B cells (p=0.04), were higher in responders than nonresponders. Among them, anti-CCP and frequencies of CD19+CD11c+IgD-CD27- B cells were independently associated with response to abatacept. The presence of two alleles of SE was associated with responders (p=0.04). Patients with 2 alleles of SE had higher levels of anti-CCP (p=0.02) and IgM RF (p=0.04) compared to patients with 0 or 1 allele. Further, IgM RF and CXCL13 levels decreased only in responders (p=0.02 and 0.004 respectively, at week 24), while anti-CCP levels did not decrease significantly in either responders or nonresponders. Conclusion Markers of B cell activation including anti-CCP and frequencies of CD19+CD11c+IgD-CD27- B cells in RA were associated with response to abatacept. IgM RF and CXCL13 decreased only in responders and could be potentially used as pharmacodynamic markers.
Collapse
Affiliation(s)
| | | | | | | | - Bobby Kwanghoon Han
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Geng Z, Cao Y, Zhao L, Wang L, Dong Y, Bi Y, Liu G. Function and Regulation of Age-Associated B Cells in Diseases. J Cell Physiol 2025; 240:e31522. [PMID: 39749652 DOI: 10.1002/jcp.31522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
The aging process often leads to immune-related diseases, including infections, tumors, and autoimmune disorders. Recently, researchers identified a special subpopulation of B cells in elderly female mice that increases with age and accumulates prematurely in mouse models of autoimmune diseases or viral infections; these B cells are known as age-related B cells (ABCs). These cells possess distinctive cell surface phenotypes and transcriptional characteristics, and the cell population is widely recognized as CD11c+CD11b+T-bet+CD21-CD23- cells. Research has shown that ABCs are a heterogeneous group of B cells that originate independently of the germinal center and are insensitive to B-cell receptor (BCR) and CD40 stimulation, differentiating and proliferating in response to toll-like receptor 7 (TLR7) and IL-21 stimulation. Additionally, they secrete self-antibodies and cytokines to regulate the immune response. These issues have aroused widespread interest among researchers in this field. This review summarizes recent research progress on ABCs, including the functions and regulation of ABCs in aging, viral infection, autoimmune diseases, and organ transplantation.
Collapse
Affiliation(s)
- Zi Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Sanchez GM, Hirsch ES, VanValkenburg A, Mayer DP, Gbedande K, Francis RL, Song W, Antao OQ, Brimmer KE, Lemenze A, Stephens R, Johnson WE, Weinstein JS. Aberrant zonal recycling of germinal center B cells impairs appropriate selection in lupus. Cell Rep 2024; 43:114978. [PMID: 39527476 PMCID: PMC11682828 DOI: 10.1016/j.celrep.2024.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Autoimmune diseases such as lupus are characterized by polyclonal B cell activation, leading to the production of autoantibodies. The mechanism leading to B cell dysregulation is unclear; however, the defect may lie in selection within germinal centers (GCs). GC B cells cycle between proliferation and mutation in the dark zone and selection in the light zone (LZ). Temporal assessment of GCs from mice with either persistent infection or lupus showed an accumulation of LZ B cells. Yet, only in lupus, GC B cells exhibited reduced proliferation and progressive loss of MYC and FOXO1, which regulate zonal recycling and differentiation. As lupus progressed, decreased mutational frequency and repertoire diversity were associated with reduced responsiveness to CD40 signaling, despite accumulation of plasma cells. Collectively, these findings suggest that lupus disease progression coincides with an intrinsic defect in LZ B cell signaling, altering the zonal recycling, selection, and differentiation of autoreactive B cells.
Collapse
Affiliation(s)
- Gina M Sanchez
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Eden S Hirsch
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Arthur VanValkenburg
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Daniel P Mayer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Komi Gbedande
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Rebecca L Francis
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Olivia Q Antao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kyleigh E Brimmer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Robin Stephens
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - W Evan Johnson
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jason S Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
10
|
Frasca D, Romero M, Blomberg BB. Similarities in B Cell Defects between Aging and Obesity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1407-1413. [PMID: 39495900 DOI: 10.4049/jimmunol.2300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
The aging population is increasing worldwide, and there is also an increase in the aging population living with overweight and obesity, due to changes in lifestyle and in dietary patterns that elderly individuals experience later in life. Both aging and obesity are conditions of accelerated metabolic dysfunction and dysregulated immune responses. In this review, we summarize published findings showing that obesity induces changes in humoral immunity similar to those induced by aging and that the age-associated B cell defects are mainly due to metabolic changes. We discuss the role of the obese adipose tissue in inducing dysfunctional humoral responses and autoimmune Ab secretion.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
11
|
Johansen ER, Schmalzriedt DL, Avila D, Sylvester PA, Rahlf CR, Bobek JM, Sahoo D, Dittel BN, Tarakanova VL. Combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression defines parameters of chronic gammaherpesvirus infection. mBio 2024; 15:e0159824. [PMID: 39440973 PMCID: PMC11559066 DOI: 10.1128/mbio.01598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Gammaherpesviruses are species-specific, ubiquitous pathogens that establish lifelong infection in their hosts and are associated with cancers, including B cell lymphomas. Type I and II interferons (IFNs) are critical for the control of acute and chronic gammaherpesvirus infection. However, the cell type-specific role of IFN signaling during natural infection is poorly defined and is masked by the altered viral pathogenesis observed in hosts with global IFN deficiencies. STAT1 is a constitutively expressed transcription factor that is critical for the effector function of type I and II IFNs. In this study, we defined the impact of B cell-specific STAT1 expression on gammaherpesvirus infection using murine gammaherpesvirus 68 (MHV68). While the acute stage of MHV68 infection was not affected, we found opposite, anatomic site-dependent effects of B cell-intrinsic STAT1 expression during chronic infection. Consistent with the antiviral role of STAT1, B cell-specific STAT1 expression attenuated the latent viral reservoir in peritoneal B cells of chronically infected mice. In contrast, STAT1 expression in splenic B cells supported the establishment of the latent MHV68 reservoir in germinal center B cells, revealing an unexpected proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection. These STAT1-dependent MHV68 chronic infection phenotypes were fully recapitulated in the peritoneal cavity but not the spleen of mice with B cell-specific deficiency of type I IFN receptor. In summary, our study uncovers the intriguing combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.IMPORTANCEInterferons (IFNs) execute broadly antiviral roles during acute and chronic viral infections. The constitutively expressed transcription factor STAT1 is a critical downstream effector of IFN signaling. Our studies demonstrate that B cell-intrinsic STAT1 expression has opposing and anatomic site-dependent roles during chronic gammaherpesvirus infection. Specifically, B cell-intrinsic STAT1 expression restricted gammaherpesvirus latent reservoir in the peritoneal cavity, consistent with the classical antiviral role of STAT1. In contrast, decreased STAT1 expression in splenic B cells led to the attenuated establishment of gammaherpesvirus latency and decreased latent infection of germinal center B cells, highlighting a novel proviral role of B cell-intrinsic STAT1 expression during chronic infection with a B cell-tropic gammaherpesvirus. Interestingly, B cell-specific type I IFN receptor deficiency primarily recapitulated the antiviral role of B cell-intrinsic STAT1 expression, suggesting the compensatory function of B cell-intrinsic type II IFN signaling or an IFN-independent proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- Erika R. Johansen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Damon L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Danilela Avila
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paul A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cade R. Rahlf
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Vera L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Cho SH, Jones MA, Meyer K, Anderson DM, Chetyrkin S, Calcutt MW, Caprioli RM, Semenkovich CF, Boothby MR. B cell expression of the enzyme PexRAP, an intermediary in ether lipid biosynthesis, promotes antibody responses and germinal center size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618760. [PMID: 39464149 PMCID: PMC11507954 DOI: 10.1101/2024.10.17.618760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The qualities of antibody (Ab) responses provided by B lymphocytes and their plasma cell (PC) descendants are crucial facets of responses to vaccines and microbes. Metabolic processes and products regulate aspects of B cell proliferation and differentiation into germinal center (GC) and PC states as well as Ab diversification. However, there is little information about lymphoid cell-intrinsic functions of enzymes that mediate ether lipid biosynthesis, including a major class of membrane phospholipids. Imaging mass spectrometry (IMS) results had indicated that concentrations of a number of these phospholipids were substantially enhanced in GC compared to the background average in spleens. However, it was not clear if biosynthesis in B cells was a basis for this finding, or whether such cell-intrinsic biosynthesis contributes to B cell physiology or Ab responses. Ether lipid biosynthesis can involve the enzyme PexRAP, the product of the Dhrs7b gene. Using combinations of IMS and immunization experiments in mouse models with inducible Dhrs7b loss-of-function, we now show that B lineage-intrinsic expression of PexRAP promotes the magnitude and affinity maturation of a serological response. Moreover, the data revealed a Dhrs7b -dependent increase in ether phospholipids in primary follicles with a more prominent increase in GC. Mechanistically, PexRAP impacted B cell proliferation via enhanced survival associated with controlling levels of ROS and membrane peroxidation. These findings reveal a vital role of this peroxisomal enzyme in B cell homeostasis and the physiology of humoral immunity.
Collapse
|
13
|
Castro JP, Shindyapina AV, Barbieri A, Ying K, Strelkova OS, Paulo JA, Tyshkovskiy A, Meinl R, Kerepesi C, Petrashen AP, Mariotti M, Meer MV, Hu Y, Karamyshev A, Losyev G, Galhardo M, Logarinho E, Indzhykulian AA, Gygi SP, Sedivy JM, Manis JP, Gladyshev VN. Age-associated clonal B cells drive B cell lymphoma in mice. NATURE AGING 2024; 4:1403-1417. [PMID: 39117982 DOI: 10.1038/s43587-024-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/19/2024] [Indexed: 08/10/2024]
Abstract
Although cancer is an age-related disease, how the processes of aging contribute to cancer progression is not well understood. In this study, we uncovered how mouse B cell lymphoma develops as a consequence of a naturally aged system. We show here that this malignancy is associated with an age-associated clonal B cell (ACBC) population that likely originates from age-associated B cells. Driven by c-Myc activation, promoter hypermethylation and somatic mutations, IgM+ ACBCs clonally expand independently of germinal centers and show increased biological age. ACBCs become self-sufficient and support malignancy when transferred into young recipients. Inhibition of mTOR or c-Myc in old mice attenuates pre-malignant changes in B cells during aging. Although the etiology of mouse and human B cell lymphomas is considered distinct, epigenetic changes in transformed mouse B cells are enriched for changes observed in human B cell lymphomas. Together, our findings characterize the spontaneous progression of cancer during aging through both cell-intrinsic and microenvironmental changes and suggest interventions for its prevention.
Collapse
Affiliation(s)
- José P Castro
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | - Kejun Ying
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga S Strelkova
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - João A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Rico Meinl
- Retro Biosciences, Redwood City, CA, USA
| | - Csaba Kerepesi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Loránd Eötvös Research Network, Budapest, Hungary
| | - Anna P Petrashen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Marco Mariotti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Margarita V Meer
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- San Diego Institute of Sciences, Altos Labs, San Diego, CA, USA
| | - Yan Hu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Grigoriy Losyev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mafalda Galhardo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elsa Logarinho
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Artur A Indzhykulian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John P Manis
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Deffenbaugh JL, Jung KJ, Murphy SP, Liu Y, Rau CN, Petersen-Cherubini CL, Collins PL, Chung D, Lovett-Racke AE. Novel model of multiple sclerosis induced by EBV-like virus generates a unique B cell population. J Neuroimmunol 2024; 394:578408. [PMID: 39098102 DOI: 10.1016/j.jneuroim.2024.578408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Epstein-Barr virus (EBV) is deemed a necessary, yet insufficient factor in the development of multiple sclerosis (MS). In this study, myelin basic protein-specific transgenic T cell receptor mice were infected with murid gammaherpesvirus 68 virus (MHV68), an EBV-like virus that infects mice, resulting in the onset neurological deficits at a significantly higher frequency than influenza or mock-infected mice. MHV68 infected mice exhibited signs including optic neuritis and ataxia which are frequently observed in MS patients but not in experimental autoimmune encephalomyelitis mice. MHV68-infected mice exhibited increased focal immune cell infiltration in the central nervous system. Single cell RNA sequencing identified the emergence of a population of B cells that express genes associated with antigen presentation and costimulation, indicating that gammaherpesvirus infection drives a distinct, pro-inflammatory transcriptional program in B cells that may promote autoreactive T cell responses in MS.
Collapse
Affiliation(s)
- Joshua L Deffenbaugh
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Kyeong-Joo Jung
- Department of Computer Science and Engineering, The Ohio State University, USA.
| | - Shawn P Murphy
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Yue Liu
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Christina N Rau
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Cora L Petersen-Cherubini
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA; Neuroscience Graduate Program, The Ohio State University, USA
| | - Patrick L Collins
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, USA.
| | - Amy E Lovett-Racke
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
15
|
Romero M, Miller K, Gelsomini A, Garcia D, Li K, Suresh D, Frasca D. Immunometabolic effects of lactate on humoral immunity in healthy individuals of different ages. Nat Commun 2024; 15:7515. [PMID: 39209820 PMCID: PMC11362567 DOI: 10.1038/s41467-024-51207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Aging is characterized by chronic systemic inflammation and metabolic changes. We compare the metabolic status of B cells from young and elderly donors and found that aging is associated with higher oxygen consumption rates, and especially higher extracellular acidification rates, measures of oxidative phosphorylation and of anaerobic glycolysis, respectively. Importantly, this higher metabolic status, which reflects age-associated expansion of pro-inflammatory B cells, is found associated with higher secretion of lactate and autoimmune antibodies after in vitro stimulation. B cells from elderly individuals induce in vitro polarization of CD4+ T cells from young individuals into pro-inflammatory CD4+ T cells through metabolic pathways mediated by lactate, which can be inhibited by targeting lactate enzymes and transporters, as well as signaling pathways supporting anaerobic glycolysis. Lactate also induces immunosenescent B cells that are glycolytic, express transcripts for multiple pro-inflammatory molecules, and are characterized by a higher metabolic status. These results altogether may have relevant clinical implications and suggest alternative targets for therapeutic interventions in the elderly and patients with inflammatory conditions and diseases.
Collapse
Affiliation(s)
- Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kate Miller
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Gelsomini
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin Li
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dhananjay Suresh
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
16
|
Gómez Hernández G, Domínguez T, Galicia G, Morell M, Alarcón-Riquelme ME. Bank1 modulates the differentiation and molecular profile of key B cell populations in autoimmunity. JCI Insight 2024; 9:e179417. [PMID: 39163122 PMCID: PMC11466193 DOI: 10.1172/jci.insight.179417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
This study aimed at defining the role of the B cell adaptor protein BANK1 in the appearance of age-associated B cells (ABCs) in 2 SLE mouse models (TLR7.tg6 and imiquimod-induced mice), crossed with Bank1-/- mice. The absence of Bank1 led to a significant reduction in ABC levels, also affecting other B cell populations. To gain deeper insights into their differentiation pathway and the effect of Bank1 on B cell populations, a single-cell transcriptome assay was performed. In the TLR7.tg6 model, we identified 10 clusters within B cells, including an ABC-specific cluster that was decreased in Bank1-deficient mice. In its absence, ABCs exhibited an antiinflammatory gene expression profile, while being proinflammatory in Bank1-sufficient lupus-prone mice. Trajectory analyses revealed that ABCs originated from marginal zone and memory-like B cells, ultimately acquiring transcriptional characteristics associated with atypical memory cells and long-lived plasma cells. Also, Bank1 deficiency normalized the presence of naive B cells, which were nearly absent in lupus-prone mice. Interestingly, Bank1 deficiency significantly reduced a distinct cluster containing IFN-responsive genes. These findings underscore the critical role of Bank1 in ABC development, affecting early B cell stages toward ABC differentiation, and the presence of IFN-stimulated gene-containing B cells, both populations determinant for autoimmunity.
Collapse
Affiliation(s)
- Gonzalo Gómez Hernández
- Department of Functional Genomics, GENyO, Center for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, Parque Tecnológico de la Salud, Granada, Spain
| | - Toro Domínguez
- Department of Functional Genomics, GENyO, Center for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, Parque Tecnológico de la Salud, Granada, Spain
| | - Georgina Galicia
- Department of Functional Genomics, GENyO, Center for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, Parque Tecnológico de la Salud, Granada, Spain
| | - María Morell
- Department of Functional Genomics, GENyO, Center for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, Parque Tecnológico de la Salud, Granada, Spain
- Department of Physiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja, Granada, Spain
| | - Marta E. Alarcón-Riquelme
- Department of Functional Genomics, GENyO, Center for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, Parque Tecnológico de la Salud, Granada, Spain
- Institute for Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Kleberg L, Courey-Ghaouzi AD, Lautenbach MJ, Färnert A, Sundling C. Regulation of B-cell function and expression of CD11c, T-bet, and FcRL5 in response to different activation signals. Eur J Immunol 2024; 54:e2350736. [PMID: 38700378 DOI: 10.1002/eji.202350736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
CD11c, FcRL5, or T-bet are commonly expressed by B cells expanding during inflammation, where they can make up >30% of mature B cells. However, the association between the proteins and differentiation and function in the host response remains largely unclear. We have assessed the co-expression of CD11c, T-bet, and FcRL5 in an in vitro B-cell culture system to determine how stimulation via the BCR, toll-like receptor 9 (TLR9), and different cytokines influence CD11c, T-bet, and FcRL5 expression. We observed different expression dynamics for all markers, but a largely overlapping regulation of CD11c and FcRL5 in response to BCR and TLR9 activation, while T-bet was strongly dependent on IFN-γ signaling. Investigating plasma cell differentiation and APC functions, there was no association between marker expression and antibody secretion or T-cell help. Rather the functions were associated with TLR9-signalling and B-cell-derived IL-6 production, respectively. These results suggest that the expression of CD11c, FcRL5, and T-bet and plasma cell differentiation and improved APC functions occur in parallel and are regulated by similar activation signals, but they are not interdependent.
Collapse
Affiliation(s)
- Linn Kleberg
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Alan-Dine Courey-Ghaouzi
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Roessner PM, Seufert I, Chapaprieta V, Jayabalan R, Briesch H, Massoni-Badosa R, Boskovic P, Benckendorff J, Roider T, Arseni L, Coelho M, Chakraborty S, Vaca AM, Sivina M, Muckenhuber M, Rodriguez-Rodriguez S, Bonato A, Herbst SA, Zapatka M, Sun C, Kretzmer H, Naake T, Bruch PM, Czernilofsky F, ten Hacken E, Schneider M, Helm D, Yosifov DY, Kauer J, Danilov AV, Bewarder M, Heyne K, Schneider C, Stilgenbauer S, Wiestner A, Mallm JP, Burger JA, Efremov DG, Lichter P, Dietrich S, Martin-Subero JI, Rippe K, Seiffert M. T-bet suppresses proliferation of malignant B cells in chronic lymphocytic leukemia. Blood 2024; 144:510-524. [PMID: 38684038 PMCID: PMC11307267 DOI: 10.1182/blood.2023021990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
ABSTRACT The T-box transcription factor T-bet is known as a master regulator of the T-cell response but its role in malignant B cells has not been sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with a genetic knockout of Tbx21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate. NF-κB activity, induced by inflammatory signals provided by the microenvironment, triggered T-bet expression, which affected promoter-proximal and distal chromatin coaccessibility and controlled a specific gene signature by mainly suppressing transcription. Gene set enrichment analysis identified a positive regulation of interferon signaling and negative control of proliferation by T-bet. In line, we showed that T-bet represses cell cycling and is associated with longer overall survival of patients with CLL. Our study uncovered a novel tumor suppressive role of T-bet in malignant B cells via its regulation of inflammatory processes and cell cycling, which has implications for the stratification and therapy of patients with CLL. Linking T-bet activity to inflammation explains the good prognostic role of genetic alterations in the inflammatory signaling pathways in CLL.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- Animals
- Humans
- Cell Proliferation
- Mice
- B-Lymphocytes/pathology
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Mice, Knockout
- Gene Expression Regulation, Leukemic
- NF-kappa B/metabolism
Collapse
Affiliation(s)
- Philipp M. Roessner
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Isabelle Seufert
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | | | - Ruparoshni Jayabalan
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Hannah Briesch
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ramon Massoni-Badosa
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Single Cell Genomics, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pavle Boskovic
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | | | - Tobias Roider
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Mariana Coelho
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Supriya Chakraborty
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alicia M. Vaca
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mariela Sivina
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Markus Muckenhuber
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | | | - Alice Bonato
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Sophie A. Herbst
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Clare Sun
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas Naake
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peter-Martin Bruch
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Felix Czernilofsky
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | | | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Deyan Y. Yosifov
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University, Ulm, Germany
- Cooperation Unit Mechanisms of Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Joseph Kauer
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Alexey V. Danilov
- Department of Hematology, City of Hope National Medical Center, Duarte, CA
| | - Moritz Bewarder
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Kristina Heyne
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Christof Schneider
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Stephan Stilgenbauer
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Adrian Wiestner
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Jan A. Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dimitar G. Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Sascha Dietrich
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - José I. Martin-Subero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
19
|
Gordon RA, Cosgrove HA, Marinov A, Gingras S, Tilstra JS, Campbell AM, Bastacky SI, Kashgarian M, Perl A, Nickerson KM, Shlomchik MJ. NADPH oxidase in B cells and macrophages protects against murine lupus by regulation of TLR7. JCI Insight 2024; 9:e178563. [PMID: 39042716 PMCID: PMC11343599 DOI: 10.1172/jci.insight.178563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Loss of NADPH oxidase (NOX2) exacerbates systemic lupus erythematosus (SLE) in mice and humans, but the mechanisms underlying this effect remain unclear. To identify the cell lineages in which NOX2 deficiency drives SLE, we employed conditional KO and chimeric approaches to delete Cybb in several hematopoietic cell lineages of MRL.Faslpr SLE-prone mice. Deletion of Cybb in macrophages/monocytes exacerbated SLE nephritis, though not to the degree observed in the Cybb global KOs. Unexpectedly, the absence of Cybb in B cells resulted in profound glomerulonephritis and interstitial nephritis, rivaling that seen with global deletion. Furthermore, we identified that NOX2 is a key regulator of TLR7, a driver of SLE pathology, both globally and specifically in B cells. This is mediated in part through suppression of TLR7-mediated NF-κB signaling in B cells. Thus, NOX2's immunomodulatory effect in SLE is orchestrated not only by its function in the myeloid compartment, but through a pivotal role in B cells by selectively inhibiting TLR7 signaling.
Collapse
Affiliation(s)
- Rachael A. Gordon
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haylee A. Cosgrove
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Jeremy S. Tilstra
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allison M. Campbell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sheldon I. Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | | | |
Collapse
|
20
|
Qi W, Tian J, Wang G, Yan Y, Wang T, Wei Y, Wang Z, Zhang G, Zhang Y, Wang J. Advances in cellular and molecular pathways of salivary gland damage in Sjögren's syndrome. Front Immunol 2024; 15:1405126. [PMID: 39050857 PMCID: PMC11266040 DOI: 10.3389/fimmu.2024.1405126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disorder characterized by dysfunction of exocrine glands. Primarily affected are the salivary glands, which exhibit the most frequent pathological changes. The pathogenesis involves susceptibility genes, non-genetic factors such as infections, immune cells-including T and B cells, macrophage, dendritic cells, and salivary gland epithelial cells. Inflammatory mediators such as autoantibodies, cytokines, and chemokines also play a critical role. Key signaling pathways activated include IFN, TLR, BAFF/BAFF-R, PI3K/Akt/mTOR, among others. Comprehensive understanding of these mechanisms is crucial for developing targeted therapeutic interventions. Thus, this study explores the cellular and molecular mechanisms underlying SS-related salivary gland damage, aiming to propose novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Wenxia Qi
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Gang Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yanfeng Yan
- Fourth Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Respiratory and Critical Care Medicine, Lanzhou, China
| | - Tao Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yong Wei
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Zhandong Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Guohua Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Yuanyuan Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Jia Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| |
Collapse
|
21
|
Cyster JG, Wilson PC. Antibody modulation of B cell responses-Incorporating positive and negative feedback. Immunity 2024; 57:1466-1481. [PMID: 38986442 PMCID: PMC11257158 DOI: 10.1016/j.immuni.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Antibodies are powerful modulators of ongoing and future B cell responses. While the concept of antibody feedback has been appreciated for over a century, the topic has seen a surge in interest due to the evidence that the broadening of antibody responses to SARS-CoV-2 after a third mRNA vaccination is a consequence of antibody feedback. Moreover, the discovery that slow antigen delivery can lead to more robust humoral immunity has put a spotlight on the capacity for early antibodies to augment B cell responses. Here, we review the mechanisms whereby antibody feedback shapes B cell responses, integrating findings in humans and in mouse models. We consider the major influence of epitope masking and the diverse actions of complement and Fc receptors and provide a framework for conceptualizing the ways antigen-specific antibodies may influence B cell responses to any form of antigen, in conditions as diverse as infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Cooper L, Xu H, Polmear J, Kealy L, Szeto C, Pang ES, Gupta M, Kirn A, Taylor JJ, Jackson KJL, Broomfield BJ, Nguyen A, Gago da Graça C, La Gruta N, Utzschneider DT, Groom JR, Martelotto L, Parish IA, O'Keeffe M, Scharer CD, Gras S, Good-Jacobson KL. Type I interferons induce an epigenetically distinct memory B cell subset in chronic viral infection. Immunity 2024; 57:1037-1055.e6. [PMID: 38593796 PMCID: PMC11096045 DOI: 10.1016/j.immuni.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.
Collapse
Affiliation(s)
- Lucy Cooper
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jack Polmear
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Ee Shan Pang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mansi Gupta
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alana Kirn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Benjamin J Broomfield
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia; Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Angela Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Catarina Gago da Graça
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole La Gruta
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Ian A Parish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia
| | - Meredith O'Keeffe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
23
|
Manion K, Muñoz-Grajales C, Kim M, Atenafu E, Faheem Z, Gladman DD, Urowitz M, Touma Z, Wither JE. Different Immunologic Profiles Are Associated With Distinct Clinical Phenotypes in Longitudinally Observed Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:726-738. [PMID: 38073017 DOI: 10.1002/art.42776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVE The aim of this study was to determine the immunologic profile associated with disease flares in patients with systemic lupus erythematosus (SLE) and to investigate the clinical significance of any differences observed between patients during and following a flare. METHODS Multiparameter flow cytometry was used to examine 47 immune populations within the peripheral blood of 16 healthy controls, 25 patients with clinically quiescent SLE, and 46 patients with SLE experiencing a flare at baseline and at 6- and 12-month follow-up visits. Unsupervised clustering was used to identify patients with similar immune profiles and to track changes over time. Parametric or nonparametric statistics were used when appropriate to assess the association of cellular phenotypes with clinical and laboratory parameters. RESULTS Five clusters of patients were identified that variably contained patients with active and quiescent SLE, and that had distinct clinical phenotypes. Patients characterized by increased T peripheral helper, activated B, and age-associated B cells were the most likely to be flaring at baseline, as well as the most likely to remain active or flare over the subsequent year if they acquired or retained this phenotype at follow-up. In contrast, patients who had increased T helper (Th) cells in the absence of B cell changes, or who had increased Th1 cells and innate immune populations, mostly developed quiescent SLE on follow-up. A significant proportion of patients with SLE had depletion of many immune populations at flare and only showed increases in these populations post-flare. CONCLUSION Cellular phenotyping of patients with SLE reveals several distinct immunologic profiles that may help to stratify patients with regard to prognosis and treatment.
Collapse
Affiliation(s)
- Kieran Manion
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Carolina Muñoz-Grajales
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Kim
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Eshetu Atenafu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zoha Faheem
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Dafna D Gladman
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Murray Urowitz
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Zahi Touma
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Joan E Wither
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
van Olst L, Kamermans A, Halters S, van der Pol SMA, Rodriguez E, Verberk IMW, Verberk SGS, Wessels DWR, Rodriguez-Mogeda C, Verhoeff J, Wouters D, Van den Bossche J, Garcia-Vallejo JJ, Lemstra AW, Witte ME, van der Flier WM, Teunissen CE, de Vries HE. Adaptive immune changes associate with clinical progression of Alzheimer's disease. Mol Neurodegener 2024; 19:38. [PMID: 38658964 PMCID: PMC11044380 DOI: 10.1186/s13024-024-00726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent cause of dementia. Recent evidence suggests the involvement of peripheral immune cells in the disease, but the underlying mechanisms remain unclear. METHODS We comprehensively mapped peripheral immune changes in AD patients with mild cognitive impairment (MCI) or dementia compared to controls, using cytometry by time-of-flight (CyTOF). RESULTS We found an adaptive immune signature in AD, and specifically highlight the accumulation of PD1+ CD57+ CD8+ T effector memory cells re-expressing CD45RA in the MCI stage of AD. In addition, several innate and adaptive immune cell subsets correlated to cerebrospinal fluid (CSF) biomarkers of AD neuropathology and measures for cognitive decline. Intriguingly, subsets of memory T and B cells were negatively associated with CSF biomarkers for tau pathology, neurodegeneration and neuroinflammation in AD patients. Lastly, we established the influence of the APOE ε4 allele on peripheral immunity. CONCLUSIONS Our findings illustrate significant peripheral immune alterations associated with both early and late clinical stages of AD, emphasizing the necessity for further investigation into how these changes influence underlying brain pathology.
Collapse
Affiliation(s)
- Lynn van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands.
- Present address: The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Sem Halters
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Ernesto Rodriguez
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Inge M W Verberk
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Danielle W R Wessels
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Dorine Wouters
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Afina W Lemstra
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Epidemiology & Data Science, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurovascular Disorders, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Zhu X, Hong S, Bu J, Liu Y, Liu C, Li R, Zhang T, Zhang Z, Li L, Zhou X, Hua Z, Zhu B, Hou B. Antiviral memory B cells exhibit enhanced innate immune response facilitated by epigenetic memory. SCIENCE ADVANCES 2024; 10:eadk0858. [PMID: 38552009 PMCID: PMC10980274 DOI: 10.1126/sciadv.adk0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The long-lasting humoral immunity induced by viral infections or vaccinations depends on memory B cells with greatly increased affinity to viral antigens, which are evolved from germinal center (GC) responses. However, it is unclear whether antiviral memory B cells represent a distinct subset among the highly heterogeneous memory B cell population. Here, we examined memory B cells induced by a virus-mimicking antigen at both transcriptome and epigenetic levels and found unexpectedly that antiviral memory B cells exhibit an enhanced innate immune response, which appeared to be facilitated by the epigenetic memory that is established through the memory B cell development. In addition, T-bet is associated with the altered chromatin architecture and is required for the formation of the antiviral memory B cells. Thus, antiviral memory B cells are distinct from other GC-derived memory B cells in both physiological functions and epigenetic landmarks.
Collapse
Affiliation(s)
- Xiping Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Hong
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiachen Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingping Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuqiang Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Hua
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baidong Hou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Li J, Xu Y, Zhang J, Zhang Z, Guo H, Wei D, Wu C, Hai T, Sun HX, Zhao Y. Single-cell transcriptomic analysis reveals transcriptional and cell subpopulation differences between human and pig immune cells. Genes Genomics 2024; 46:303-322. [PMID: 37979077 DOI: 10.1007/s13258-023-01456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The pig is a promising donor candidate for xenotransplantation. Understanding the differences between human and swine immune systems is critical for addressing xenotransplant rejection and hematopoietic reconstitution. The gene transcriptional profile differences between human and pig immune cell subpopulations have not been studied. To assess the similarities and differences between pigs and humans at the levels of gene transcriptional profiles or cell subpopulations are important for better understanding the cross-species similarity of humans and pigs, and it would help establish the fundamental principles necessary to genetically engineer donor pigs and improve xenotransplantation. OBJECTIVE To assess the gene transcriptional similarities and differences between pigs and humans. METHODS Two pigs and two healthy humans' PBMCs were sorted for 10 × genomics single-cell sequence. We generated integrated human-pig scRNA-seq data from human and pig PBMCs and defined the overall gene expression landscape of pig peripheral blood immune cell subpopulations by updating the set of human-porcine homologous genes. The subsets of immune cells were detected by flow cytometry. RESULTS There were significantly less T cells, NK cells and monocytes but more B cells in pig peripheral blood than those in human peripheral blood. High oxidative phosphorylation, HIF-1, glycolysis, and lysosome-related gene expressions in pig CD14+ monocytes were observed, whereas pig CD14+ monocytes exhibited lower levels of cytokine receptors and JAK-STAT-related genes. Pig activated CD4+T cells decreased cell adhesion and inflammation, while enriched for migration and activation processes. Porcine GNLY+CD8+T cells reduced cytotoxicity and increased proliferation compared with human GNLY+CD8+T cells. Pig CD2+CD8+γδT cells were functionally homologous to human CD2+CD4+ γδT cells. Pig CD2-CD8-γδT cells expressed genes with quiescent and precursor characteristics, while CD2-CD8+γδT cells expressed migration and memory-related molecules. Pig CD24+ and CD5+B cells are associated with inflammatory responses. CONCLUSION Our research with integrated scRNA-seq assays identified the different distribution of pig immune cell subpopulations and the different transcriptional profiles of human and pig immune cells. This study enables a deeper understanding of the development and function of porcine immune cells.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- BGI-Beijing, Beijing, 102601, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Immunology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhong Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Tang Hai
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hai-Xi Sun
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- BGI-Beijing, Beijing, 102601, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
| |
Collapse
|
27
|
Punnanitinont A, Kasperek EM, Zhu C, Yu G, Miecznikowski JC, Kramer JM. TLR7 activation of age-associated B cells mediates disease in a mouse model of primary Sjögren's disease. J Leukoc Biol 2024; 115:497-510. [PMID: 37930711 PMCID: PMC10990110 DOI: 10.1093/jleuko/qiad135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Primary Sjögren's disease (pSD) (also referred to as Sjögren's syndrome) is an autoimmune disease that primarily occurs in women. In addition to exocrine gland dysfunction, pSD patients exhibit B cell hyperactivity. B cell-intrinsic TLR7 activation is integral to the pathogenesis of systemic lupus erythematosus, a disease that shares similarities with pSD. The role of TLR7-mediated B cell activation in pSD, however, remains poorly understood. We hypothesized that age-associated B cells (ABCs) were expanded in pSD and that TLR7-stimulated ABCs exhibited pathogenic features characteristic of disease. Our data revealed that ABC expansion and TLR7 expression were enhanced in a pSD mouse model in a Myd88-dependent manner. Splenocytes from pSD mice showed enhanced sensitivity to TLR7 agonism as compared with those derived from control animals. Sort-purified marginal zone B cells and ABCs from pSD mice showed enhanced inflammatory cytokine secretion and were enriched for antinuclear autoantibodies following TLR7 agonism. Finally, IgG from pSD patient sera showed elevated antinuclear autoantibodies, many of which were secreted preferentially by TLR7-stimulated murine marginal zone B cells and ABCs. These data indicate that pSD B cells are hyperresponsive to TLR7 agonism and that TLR7-activated B cells contribute to pSD through cytokine and autoantibody production. Thus, therapeutics that target TLR7 signaling cascades in B cells may have utility in pSD patients.
Collapse
Affiliation(s)
- Achamaporn Punnanitinont
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY USA
| | - Eileen M. Kasperek
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY USA
| | - Chengsong Zhu
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY USA
| | - Jeffrey C. Miecznikowski
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY USA
| | - Jill M. Kramer
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY USA
| |
Collapse
|
28
|
Yu Y, Lu C, Yu W, Lei Y, Sun S, Liu P, Bai F, Chen Y, Chen J. B Cells Dynamic in Aging and the Implications of Nutritional Regulation. Nutrients 2024; 16:487. [PMID: 38398810 PMCID: PMC10893126 DOI: 10.3390/nu16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Aging negatively affects B cell production, resulting in a decrease in B-1 and B-2 cells and impaired antibody responses. Age-related B cell subsets contribute to inflammation. Investigating age-related alterations in the B-cell pool and developing targeted therapies are crucial for combating autoimmune diseases in the elderly. Additionally, optimal nutrition, including carbohydrates, amino acids, vitamins, and especially lipids, play a vital role in supporting immune function and mitigating the age-related decline in B cell activity. Research on the influence of lipids on B cells shows promise for improving autoimmune diseases. Understanding the aging B-cell pool and considering nutritional interventions can inform strategies for promoting healthy aging and reducing the age-related disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (Y.Y.)
| |
Collapse
|
29
|
Solomou EE, Kattamis A, Symeonidis A, Sirinian C, Salamaliki C, Tzanoudaki M, Diamantopoulos P, Plakoula E, Palasopoulou M, Giannakoulas N, Kontandreopoulou CN, Kollia P, Viniou NA, Galanopoulos A, Liossis SN, Vassilopoulos G. Increased age-associated B cells in patients with acquired aplastic anemia correlate with IFN-γ. Blood Adv 2024; 8:399-402. [PMID: 38011610 PMCID: PMC10820307 DOI: 10.1182/bloodadvances.2023010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Affiliation(s)
- Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Antonis Kattamis
- Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Argyris Symeonidis
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Chaido Sirinian
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Christina Salamaliki
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Marianna Tzanoudaki
- Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Eva Plakoula
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Maria Palasopoulou
- Department of Hematology, University of Thessaly Medical School, Larissa, Greece
| | | | | | - Panagoula Kollia
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | | | - George Vassilopoulos
- Department of Hematology, University of Thessaly Medical School, Larissa, Greece
| |
Collapse
|
30
|
Olivieri G, Cotugno N, Palma P. Emerging insights into atypical B cells in pediatric chronic infectious diseases and immune system disorders: T(o)-bet on control of B-cell immune activation. J Allergy Clin Immunol 2024; 153:12-27. [PMID: 37890706 PMCID: PMC10842362 DOI: 10.1016/j.jaci.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Repetitive or persistent cellular stimulation in vivo has been associated with the development of a heterogeneous B-cell population that exhibits a distinctive phenotype and, in addition to classical B-cell markers, often expresses the transcription factor T-bet and myeloid marker CD11c. Research suggests that this atypical population consists of B cells with distinct B-cell receptor specificities capable of binding the antigens responsible for their development. The expansion of this population occurs in the presence of chronic inflammatory conditions and autoimmune diseases where different nomenclatures have been used to describe them. However, as a result of the diverse contexts in which they have been investigated, these cells have remained largely enigmatic, with much ambiguity remaining regarding their phenotype and function in humoral immune response as well as their role in autoimmunity. Atypical B cells have garnered considerable interest because of their ability to produce specific antibodies and/or autoantibodies and because of their association with key disease manifestations. Although they have been widely described in the context of adults, little information is present for children. Therefore, the aim of this narrative review is to describe the characteristics of this population, suggest their function in pediatric immune-related diseases and chronic infections, and explore their potential therapeutic avenues.
Collapse
Affiliation(s)
- Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
31
|
Zimmermann J, van Haren SD, Diray-Arce J, Adriawan IR, Wørzner K, Krog RT, Guleed S, Hu T, Mortensen R, Dietrich J, Solbak SMØ, Levy O, Christensen D, Pedersen GK. Co-adjuvanting DDA/TDB liposomes with a TLR7 agonist allows for IgG2a/c class-switching in the absence of Th1 cells. NPJ Vaccines 2023; 8:189. [PMID: 38135685 PMCID: PMC10746746 DOI: 10.1038/s41541-023-00781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Class-switching to IgG2a/c in mice is a hallmark response to intracellular pathogens. T cells can promote class-switching and the predominant pathway for induction of IgG2a/c antibody responses has been suggested to be via stimulation from Th1 cells. We previously formulated CAF®01 (cationic liposomes containing dimethyldioctadecylammonium bromide (DDA) and Trehalose-6,6-dibehenate (TDB)) with the lipidated TLR7/8 agonist 3M-052 (DDA/TDB/3M-052), which promoted robust Th1 immunity in newborn mice. When testing this adjuvant in adult mice using the recombinant Chlamydia trachomatis (C.t.) vaccine antigen CTH522, it similarly enhanced IgG2a/c responses compared to DDA/TDB, but surprisingly reduced the magnitude of the IFN-γ+Th1 response in a TLR7 agonist dose-dependent manner. Single-cell RNA-sequencing revealed that DDA/TDB/3M-052 liposomes initiated early transcription of class-switch regulating genes directly in pre-germinal center B cells. Mixed bone marrow chimeras further demonstrated that this adjuvant did not require Th1 cells for IgG2a/c switching, but rather facilitated TLR7-dependent T-bet programming directly in B cells. This study underlines that adjuvant-directed IgG2a/c class-switching in vivo can occur in the absence of T-cell help, via direct activation of TLR7 on B cells and positions DDA/TDB/3M-052 as a powerful adjuvant capable of eliciting type I-like immunity in B cells without strong induction of Th1 responses.
Collapse
Affiliation(s)
- Julie Zimmermann
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Simon D van Haren
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Katharina Wørzner
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ricki T Krog
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Safia Guleed
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Tu Hu
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Rasmus Mortensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Sara M Ø Solbak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Tzeng TT, Chai KM, Chen IH, Chang RY, Chiang JR, Liu SJ. A TLR9 agonist synergistically enhances protective immunity induced by an Alum-adjuvanted H7N9 inactivated whole-virion vaccine. Emerg Microbes Infect 2023; 12:2249130. [PMID: 37585273 PMCID: PMC10467522 DOI: 10.1080/22221751.2023.2249130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Antigen sparing is an important strategy for pandemic vaccine development because of the limitation of worldwide vaccine production during disease outbreaks. However, several clinical studies have demonstrated that the current aluminum (Alum)-adjuvanted influenza vaccines fail to sufficiently enhance immune responses to meet licensing criteria. Here, we used pandemic H7N9 as a model virus to demonstrate that a 10-fold lower amount of vaccine antigen combined with Alum and TLR9 agonist can provide stronger protective effects than using Alum as the sole adjuvant. We found that the Alum/CpG 1018 combination adjuvant could induce more robust virus-specific humoral immune responses, including higher total IgG production, hemagglutination-inhibiting antibody activity, and neutralizing antibody titres, than the Alum-adjuvanted formulation. Moreover, this combination adjuvant shifted the immune response toward a Th1-biased immune response. Importantly, the Alum/CpG 1018-formulated vaccine could confer better protective immunity against H7N9 challenge than that adjuvanted with Alum alone. Notably, the addition of CpG 1018 to the Alum-adjuvanted H7N9 whole-virion vaccine exhibited an antigen-sparing effect without compromising vaccine efficacy. These findings have significant implications for improving Alum-adjuvanted influenza vaccines using the approved adjuvant CpG 1018 for pandemic preparedness.
Collapse
Affiliation(s)
- Tsai-Teng Tzeng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - I-Hua Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Ray-Yuan Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Jen-Ron Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
33
|
McCaw TR, Lofftus SY, Crompton JG. Clonal redemption of B cells in cancer. Front Immunol 2023; 14:1277597. [PMID: 37965337 PMCID: PMC10640973 DOI: 10.3389/fimmu.2023.1277597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Potentially self-reactive B cells constitute a large portion of the peripheral B cell repertoire in both mice and humans. Maintenance of autoreactive B cell populations could conceivably be detrimental to the host but their conservation throughout evolution suggests performance of a critical and beneficial immune function. We discuss herein how the process of clonal redemption may provide insight to preservation of an autoreactive B cell pool in the context of infection and autoimmunity. Clonal redemption refers to additional recombination or hypermutation events decreasing affinity for self-antigen, while increasing affinity for foreign antigens. We then review findings in murine models and human patients to consider whether clonal redemption may be able to provide tumor antigen-specific B cells and how this may or may not predispose patients to autoimmunity.
Collapse
Affiliation(s)
| | | | - Joseph G. Crompton
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, CA, United States
| |
Collapse
|
34
|
Ramirez De Oleo I, Kim V, Atisha-Fregoso Y, Shih AJ, Lee K, Diamond B, Kim SJ. Phenotypic and functional characteristics of murine CD11c+ B cells which is suppressed by metformin. Front Immunol 2023; 14:1241531. [PMID: 37744368 PMCID: PMC10512061 DOI: 10.3389/fimmu.2023.1241531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Since the description of age-associated or autoimmune-associated B cells (ABCs), there has been a growing interest in the role of these cells in autoimmunity. ABCs are differently defined depending on the research group and are heterogenous subsets. Here, we sought to characterize ABCs in Sle1/2/3 triple congenic (TC) mice, which is a well accepted mouse model of lupus. Compared to follicular (FO) B cells, ABCs have many distinct functional properties, including antigen presentation. They express key costimulatory molecules for T cell activation and a distinct profile of cytokines. Moreover, they exhibit an increased capacity for antigen uptake. ABCs were also compared with germinal center (GC) B cells, which are antigen activated B cell population. There are several phenotypic similarities between ABCs and GC B cells, but GC B cells do not produce proinflammatory cytokines or take up antigen. While T cell proliferation and activation is induced by both FO B and ABCs in an antigen-dependent manner, ABCs induce stronger T cell receptor signaling in naïve CD4+ T cells and preferentially induce differentiation of T follicular helper (Tfh) cells. We found that ABCs exhibit a distinct transcriptomic profile which is focused on metabolism, cytokine signaling and antigen uptake and processing. ABCs exhibit an increase in both glycolysis and oxidative phosphorylation compared to FO B cells. Treatment of ABCs with metformin suppresses antigen presentation by decreasing antigen uptake, resulting in decreased Tfh differentiation. Taken together, these findings define a fundamental connection between metabolism and function within ABCs.
Collapse
Affiliation(s)
- Ivan Ramirez De Oleo
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Vera Kim
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Yemil Atisha-Fregoso
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Andrew J. Shih
- Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Kyungwoo Lee
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Biology at Hofstra University, Hempstead, NY, United States
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell, Hempstead, NY, United States
| | - Sun Jung Kim
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell, Hempstead, NY, United States
| |
Collapse
|
35
|
Sadighi Akha AA, Csomós K, Ujházi B, Walter JE, Kumánovics A. Evolving Approach to Clinical Cytometry for Immunodeficiencies and Other Immune Disorders. Clin Lab Med 2023; 43:467-483. [PMID: 37481324 DOI: 10.1016/j.cll.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Primary immunodeficiencies were initially identified on the basis of recurrent, severe or unusual infections. Subsequently, it was noted that these diseases can also manifest with autoimmunity, autoinflammation, allergy, lymphoproliferation and malignancy, hence a conceptual change and their renaming as inborn errors of immunity. Ongoing advances in flow cytometry provide the opportunity to expand or modify the utility and scope of existing laboratory tests in this field to mirror this conceptual change. Here we have used the B cell subset, variably known as CD21low B cells, age-associated B cells and T-bet+ B cells, as an example to demonstrate this possibility.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Krisztián Csomós
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Boglárka Ujházi
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jolán E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
36
|
Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat Rev Nephrol 2023; 19:558-572. [PMID: 37438615 DOI: 10.1038/s41581-023-00732-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/14/2023]
Abstract
The past few years have provided important insights into the genetic architecture of systemic autoimmunity through aggregation of findings from genome-wide association studies (GWAS) and whole-exome or whole-genome sequencing studies. In the prototypic systemic autoimmune disease systemic lupus erythematosus (SLE), monogenic disease accounts for a small fraction of cases but has been instrumental in the elucidation of disease mechanisms. Defects in the clearance or digestion of extracellular or intracellular DNA or RNA lead to increased sensing of nucleic acids, which can break B cell tolerance and induce the production of type I interferons leading to tissue damage. Current data suggest that multiple GWAS SLE risk alleles act in concert with rare functional variants to promote SLE development. Moreover, introduction of orthologous variant alleles into mice has revealed that pathogenic X-linked dominant and recessive SLE can be caused by novel variants in TLR7 and SAT1, respectively. Such bespoke models of disease help to unravel pathogenic pathways and can be used to test targeted therapies. Cell type-specific expression data revealed that most GWAS SLE risk genes are highly expressed in age-associated B cells (ABCs), which supports the view that ABCs produce lupus autoantibodies and contribute to end-organ damage by persisting in inflamed tissues, including the kidneys. ABCs have thus emerged as key targets of promising precision therapeutics.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK.
- University College London, London, UK.
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Aetiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Thuvaraka Ware
- The Francis Crick Institute, London, UK
- University College London, London, UK
| |
Collapse
|
37
|
Ottens K, Schneider J, Satterthwaite AB. T-bet-expressing B cells contribute to the autoreactive plasma cell pool in Lyn -/- mice. Eur J Immunol 2023; 53:e2250300. [PMID: 37134326 PMCID: PMC10524956 DOI: 10.1002/eji.202250300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is characterized by pathogenic autoantibodies against nucleic acid-containing antigens. Understanding which B-cell subsets give rise to these autoantibodies may reveal therapeutic approaches for SLE that spare protective responses. Mice lacking the tyrosine kinase Lyn, which limits B and myeloid cell activation, develop lupus-like autoimmune diseases characterized by increased autoreactive plasma cells (PCs). We used a fate-mapping strategy to determine the contribution of T-bet+ B cells, a subset thought to be pathogenic in lupus, to the accumulation of PCs and autoantibodies in Lyn-/- mice. Approximately, 50% of splenic PCs in Lyn-/- mice originated from T-bet+ cells, a significant increase compared to WT mice. In vitro, splenic PCs derived from T-bet+ B cells secreted both IgM and IgG anti-dsDNA antibodies. To determine the role of these cells in autoantibody production in vivo, we prevented T-bet+ B cells from differentiating into PCs or class switching in Lyn-/- mice. This resulted in a partial reduction in splenic PCs and anti-dsDNA IgM and complete abrogation of anti-dsDNA IgG. Thus, T-bet+ B cells make an important contribution to the autoreactive PC pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390
| |
Collapse
|
38
|
Pinto TNC, da Silva CCBM, Pinto RMC, Duarte AJDS, Benard G, Fernandes JR. Human peripheral blood age-associated (CD11c+Tbet+) B cells: No association with age. Cytometry A 2023; 103:619-623. [PMID: 37353962 DOI: 10.1002/cyto.a.24773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Affiliation(s)
- Thalyta Nery Carvalho Pinto
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| | | | | | - Alberto José da Silva Duarte
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| | - Gil Benard
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| | - Juliana Ruiz Fernandes
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| |
Collapse
|
39
|
Min Q, Csomos K, Li Y, Dong L, Hu Z, Meng X, Yu M, Walter JE, Wang JY. B cell abnormalities and autoantibody production in patients with partial RAG deficiency. Front Immunol 2023; 14:1155380. [PMID: 37475856 PMCID: PMC10354446 DOI: 10.3389/fimmu.2023.1155380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Mutations in the recombination activating gene 1 (RAG1) and RAG2 in humans are associated with a broad spectrum of clinical phenotypes, from severe combined immunodeficiency to immune dysregulation. Partial (hypomorphic) RAG deficiency (pRD) in particular, frequently leads to hyperinflammation and autoimmunity, with several underlying intrinsic and extrinsic mechanisms causing a break in tolerance centrally and peripherally during T and B cell development. However, the relative contributions of these processes to immune dysregulation remain unclear. In this review, we specifically focus on the recently described tolerance break and B cell abnormalities, as well as consequent molecular and cellular mechanisms of autoantibody production in patients with pRD.
Collapse
Affiliation(s)
- Qing Min
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Yaxuan Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lulu Dong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziying Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Ji-Yang Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
40
|
Song W, Sanchez GM, Mayer DP, Blackburn HN, Chernova I, Flavell RA, Weinstein JS, Craft J. Cutting Edge: IL-21 and Tissue-Specific Signals Instruct Tbet+CD11c+ B Cell Development following Viral Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1861-1865. [PMID: 37133336 PMCID: PMC10247523 DOI: 10.4049/jimmunol.2300027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Tbet+CD11c+ B cells, also known as age-associated B cells (ABCs), are pivotal contributors to humoral immunity following infection and in autoimmunity, yet their in vivo generation is incompletely understood. We used a mouse model of systemic acute lymphocytic choriomeningitis virus infection to examine the developmental requirements of ABCs that emerged in the spleen and liver. IL-21 signaling through STAT3 was indispensable for ABC development. In contrast, IFN-γ signaling through STAT1 was required for B cell activation and proliferation. Mice that underwent splenectomy or were deficient in lymphotoxin α generated hepatic ABCs despite the lack of secondary lymphoid organ contributions, suggesting that the liver supported de novo generation of these cells separately from their development in lymphoid organs. Thus, IFN-γ and IL-21 signaling have distinct, stage-specific roles in ABC differentiation, while the tissue microenvironment provides additional cues necessary for their development.
Collapse
Affiliation(s)
- Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT
| | - Gina M. Sanchez
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ
| | - Daniel P. Mayer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ
| | - Holly N. Blackburn
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT
| | - Irene Chernova
- Department of Internal Medicine, Yale University School of Medicine; New Haven, CT
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Jason S. Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT
- Department of Internal Medicine, Yale University School of Medicine; New Haven, CT
| |
Collapse
|
41
|
Quiros-Roldan E, Sottini A, Signorini SG, Serana F, Tiecco G, Imberti L. Autoantibodies to Interferons in Infectious Diseases. Viruses 2023; 15:v15051215. [PMID: 37243300 DOI: 10.3390/v15051215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-cytokine autoantibodies and, in particular, anti-type I interferons are increasingly described in association with immunodeficient, autoimmune, and immune-dysregulated conditions. Their presence in otherwise healthy individuals may result in a phenotype characterized by a predisposition to infections with several agents. For instance, anti-type I interferon autoantibodies are implicated in Coronavirus Disease 19 (COVID-19) pathogenesis and found preferentially in patients with critical disease. However, autoantibodies were also described in the serum of patients with viral, bacterial, and fungal infections not associated with COVID-19. In this review, we provide an overview of anti-cytokine autoantibodies identified to date and their clinical associations; we also discuss whether they can act as enemies or friends, i.e., are capable of acting in a beneficial or harmful way, and if they may be linked to gender or immunosenescence. Understanding the mechanisms underlying the production of autoantibodies could improve the approach to treating some infections, focusing not only on pathogens, but also on the possibility of a low degree of autoimmunity in patients.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | | | - Federico Serana
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giorgio Tiecco
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
42
|
Nickerson KM, Smita S, Hoehn KB, Marinov AD, Thomas KB, Kos JT, Yang Y, Bastacky SI, Watson CT, Kleinstein SH, Shlomchik MJ. Age-associated B cells are heterogeneous and dynamic drivers of autoimmunity in mice. J Exp Med 2023; 220:e20221346. [PMID: 36828389 PMCID: PMC9997508 DOI: 10.1084/jem.20221346] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Age-associated B cells (ABCs) are formed under inflammatory conditions and are considered a type of memory B cell (MBC) expressing the transcription factor T-bet. In SLE, ABC frequency is correlated with disease, and they are thought to be the source of autoantibody-secreting cells. However, in inflammatory conditions, whether autoreactive B cells can become resting MBCs is uncertain. Further, the phenotypic identity of ABCs and their relationship to other B cell subsets, such as plasmablasts, is unclear. Whether ABCs directly promote disease is untested. Here we report, in the MRL/lpr SLE model, unexpected heterogeneity among ABC-like cells for expression of the integrins CD11b and CD11c, T-bet, and memory or plasmablast markers. Transfer and labeling studies demonstrated that ABCs are dynamic, rapidly turning over. scRNA-seq identified B cell clones present in multiple subsets, revealing that ABCs can be plasmablast precursors or undergo cycles of reactivation. Deletion of CD11c-expressing B cells revealed a direct role for ABC-like B cells in lupus pathogenesis.
Collapse
Affiliation(s)
- Kevin M. Nickerson
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shuchi Smita
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Anthony D. Marinov
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kayla B. Thomas
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin T. Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Yi Yang
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sheldon I. Bastacky
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Mark J. Shlomchik
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Miquel CH, Faz-Lopez B, Guéry JC. Influence of X chromosome in sex-biased autoimmune diseases. J Autoimmun 2023; 137:102992. [PMID: 36641351 DOI: 10.1016/j.jaut.2023.102992] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Females have better ability to resolve infections, compared to males, but also, a greater susceptibility to develop autoimmunity. Besides the initial interest on the contribution of sex-steroid hormone signaling, the role of genetic factors linked to X chromosome has recently focused much attention. In human and mouse, the number of X chromosomes, rather than sex-steroid hormones, have been found associated with higher risk or susceptibility to develop autoimmunity, particularly rheumatic diseases, such as SLE, Sjögren's syndrome or Scleroderma. For all of these diseases, the Toll-like receptor TLR7 and TLR8, encoded on the same locus in the human Xp, have been demonstrated to be causal in disease development through gene dosage effect or gain of function mutations. During embryonic development in female mammals, one X chromosome is stochastically inactivated to balance X-linked gene expression between males and females, a process known as X chromosome inactivation (XCI). Nevertheless, some genes including immune related genes can escape XCI to variable degree and penetrance, resulting in a bi-allelic expression in some immune cells, such as TLR7. Because tight regulation of TLR expression is necessary for a healthy, self-tolerant immune environment, XCI escape has been proposed as a mechanism contributing to this sexual dimorphism. In this review, we will summarize general mechanisms of XCI, and describe the known escapee's genes in immune cells, the cellular diversity created by such mechanisms and its potential implication in autoimmune diseases, with a particular focus on the X-linked genes and immune cell populations involved in SLE. Whether dysregulated expression of X-linked genes could contribute to the enhanced susceptibility of females to develop such diseases remains to be proven. Shedding lights onto the X-linked genetic mechanisms contributing to modulation of immune cell functions will undoubtedly provide new insights into the intricate mechanisms underlying sex differences in immunity and autoimmunity.
Collapse
Affiliation(s)
- Charles-Henry Miquel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, France; Arthritis R&D, Neuilly-Sur-Seine, France
| | - Berenice Faz-Lopez
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, France.
| |
Collapse
|
44
|
Frasca D, Garcia D, Diaz A, Romero M, Thaller S, Blomberg BB. Phenotypic and functional features of B cells from two different human subcutaneous adipose depots. PLoS One 2023; 18:e0285025. [PMID: 37104286 PMCID: PMC10138852 DOI: 10.1371/journal.pone.0285025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
In this study, we have compared frequencies, phenotype, function and metabolic requirements of B cells isolated from the breast and abdominal subcutaneous adipose tissue (AT) of women with obesity who underwent weight reduction surgeries. Results show that B cells from the abdominal AT are more inflammatory than those from the breast, characterized by higher frequencies of inflammatory B cell subsets and higher expression of RNA for inflammatory markers associated with senescence. Secretion of autoimmune antibodies is also higher in the abdominal AT as compared to the breast, and is associated with higher frequencies of autoimmune B cells with the membrane phenotype CD21lowCD95+ B cells expressing the transcription factor T-bet. Moreover, glucose uptake is higher in B cells from the abdominal AT as compared to the breast, thereby suggesting a better capacity to perform glycolysis, needed to support intrinsic B cell inflammation and autoimmune antibody secretion.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Seth Thaller
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Bonnie B. Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
45
|
T-bet highCD21 low B cells: the need to unify our understanding of a distinct B cell population in health and disease. Curr Opin Immunol 2023; 82:102300. [PMID: 36931129 DOI: 10.1016/j.coi.2023.102300] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
After many years of a niche research in a few laboratories of the world, T-bethighCD21low B cells have entered the limelight during the last years after the discovery of T-bet as common transcription factor of this unconventional B cell population and the increasing awareness of the expansion of these cells in autoimmune and infectious diseases. This population consists of different subsets which share large parts of their transcriptome, essential phenotypic markers, and reduced B cell receptor (BCR) signaling capacity. Inborn errors of immunity have helped to delineate essential signals for their differentiation. While our comprehension of their origin has improved, future research will hopefully profit from a common definition of the different T-bethighCD21low subpopulations in order to better define their specific roles during normal and aberrant immune responses.
Collapse
|
46
|
Tandel N, Negi S, Dalai SK, Tyagi RK. Role of natural killer and B cell interaction in inducing pathogen specific immune responses. Int Rev Immunol 2023:1-19. [PMID: 36731424 DOI: 10.1080/08830185.2023.2172406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The innate lymphoid cell (ILC) system comprising of the circulating and tissue-resident cells is known to clear infectious pathogens, establish immune homeostasis as well as confer antitumor immunity. Human natural killer cells (hNKs) and other ILCs carry out mopping of the infectious pathogens and perform cytolytic activity regulated by the non-adaptive immune system. The NK cells generate immunological memory and rapid recall response tightly regulated by the adaptive immunity. The interaction of NK and B cell, and its role to induce the pathogen specific immunity is not fully understood. Hence, present article sheds light on the interaction between NK and B cells and resulting immune responses in the infectious diseases. The immune responses elicited by the NK-B cell interaction is of particular importance for developing therapeutic vaccines against the infectious pathogens. Further, experimental evidences suggest the immune-response driven by NK cell population elicits the host-specific antibodies and memory B cells. Also, recently developed humanized immune system (HIS) mice and their importance in to understanding the NK-B cell interaction and resulting pathogen specific immunity has been discussed.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
47
|
Li ZY, Cai ML, Qin Y, Chen Z. Age/autoimmunity-associated B cells in inflammatory arthritis: An emerging therapeutic target. Front Immunol 2023; 14:1103307. [PMID: 36817481 PMCID: PMC9933781 DOI: 10.3389/fimmu.2023.1103307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Age/autoimmunity-associated B cells (ABCs) are a novel B cell subpopulation with a unique transcriptional signature and cell surface phenotype. They are not sensitive to BCR but rely on TLR7 or TLR9 in the context of T cell-derived cytokines for the differentiation. It has been established that aberrant expansion of ABCs is linked to the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus. Recently, we and other groups have shown that increased ABCs is associated with rheumatoid arthritis (RA) disease activity and have demonstrated their pathogenic role in RA, indicating that targeting specific B cell subsets is a promising strategy for the treatment of inflammatory arthritis. In this review, we summarize the current knowledge of ABCs, focusing on their emerging role in the pathogenesis of inflammatory arthritis. A deep understanding of the biology of ABCs in the context of inflammatory settings in vivo will ultimately contribute to the development of novel targeted therapies for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Zhen-Yu Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming-Long Cai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Qin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhu Chen
- Department of Rheumatology and Immunology, the First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
48
|
Gjertsson I, McGrath S, Grimstad K, Jonsson CA, Camponeschi A, Thorarinsdottir K, Mårtensson IL. A close-up on the expanding landscape of CD21-/low B cells in humans. Clin Exp Immunol 2022; 210:217-229. [PMID: 36380692 PMCID: PMC9985162 DOI: 10.1093/cei/uxac103] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Memory B cells (MBCs) are an essential part of our immunological memory. They respond fast upon re-encountering pathogens and can differentiate into plasma cells that secrete protective antibodies. The focus of this review is on MBCs that lack, or express low levels of, CD21, hereafter referred to as CD21-/low. These cells are expanded in peripheral blood with age and during chronic inflammatory conditions such as viral infections, malaria, common variable immunodeficiency, and autoimmune diseases. CD21-/low MBCs have gained significant attention; they produce disease-specific antibodies/autoantibodies and associate with key disease manifestations in some conditions. These cells can be divided into subsets based on classical B-cell and other markers, e.g. CD11c, FcRL4, and Tbet which, over the years, have become hallmarks to identify these cells. This has resulted in different names including age-associated, autoimmune-associated, atypical, tissue-like, tissue-resident, tissue-restricted, exhausted, or simply CD21-/low B cells. It is however unclear whether the expanded 'CD21-/low' cells in one condition are equivalent to those in another, whether they express an identical gene signature and whether they have a similar function. Here, we will discuss these issues with the goal to understand whether the CD21-/low B cells are comparable in different conditions.
Collapse
Affiliation(s)
- Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Sarah McGrath
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kristoffer Grimstad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
- School of Bioscience, University of Skövde, Skövde 54128, Sweden
| | - Charlotte A Jonsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Katrin Thorarinsdottir
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
49
|
Age-associated B cells are long-lasting effectors that impede latent γHV68 reactivation. Sci Rep 2022; 12:21189. [PMID: 36477199 PMCID: PMC9729602 DOI: 10.1038/s41598-022-25543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Age-associated B cells (ABCs; CD19+CD11c+T-bet+) are a unique population that are increased in an array of viral infections, though their role during latent infection is largely unexplored. Here, we use murine gammaherpesvirus 68 (γHV68) to demonstrate that ABCs remain elevated long-term during latent infection and express IFNγ and TNF. Using a recombinant γHV68 that is cleared following acute infection, we show that ABCs persist in the absence of latent virus, though their expression of IFNγ and TNF is decreased. With a fluorescent reporter gene-expressing γHV68 we demonstrate that ABCs are infected with γHV68 at similar rates to other previously activated B cells. We find that mice without ABCs display defects in anti-viral IgG2a/c antibodies and are more susceptible to reactivation of γHV68 following virus challenges that typically do not break latency. Together, these results indicate that ABCs are a persistent effector subset during latent viral infection that impedes γHV68 reactivation.
Collapse
|
50
|
Mouat IC, Shanina I, Horwitz MS. Age-associated B cells are long-lasting effectors that impede latent γHV68 reactivation. Sci Rep 2022; 12:21189. [PMID: 36477199 DOI: 10.1101/2021.12.29.474434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 05/28/2023] Open
Abstract
Age-associated B cells (ABCs; CD19+CD11c+T-bet+) are a unique population that are increased in an array of viral infections, though their role during latent infection is largely unexplored. Here, we use murine gammaherpesvirus 68 (γHV68) to demonstrate that ABCs remain elevated long-term during latent infection and express IFNγ and TNF. Using a recombinant γHV68 that is cleared following acute infection, we show that ABCs persist in the absence of latent virus, though their expression of IFNγ and TNF is decreased. With a fluorescent reporter gene-expressing γHV68 we demonstrate that ABCs are infected with γHV68 at similar rates to other previously activated B cells. We find that mice without ABCs display defects in anti-viral IgG2a/c antibodies and are more susceptible to reactivation of γHV68 following virus challenges that typically do not break latency. Together, these results indicate that ABCs are a persistent effector subset during latent viral infection that impedes γHV68 reactivation.
Collapse
Affiliation(s)
- Isobel C Mouat
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada.
- Life Sciences Centre, University of British Columbia, Room 3551, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|