1
|
Ferraguto C, Piquemal-Lagoueillat M, Lemaire V, Moreau MM, Trazzi S, Uguagliati B, Ciani E, Bertrand SS, Louette E, Bontempi B, Pietropaolo S. Therapeutic efficacy of the BKCa channel opener chlorzoxazone in a mouse model of Fragile X syndrome. Neuropsychopharmacology 2024; 49:2032-2041. [PMID: 39223257 PMCID: PMC11480417 DOI: 10.1038/s41386-024-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by several behavioral abnormalities, including hyperactivity, anxiety, sensory hyper-responsiveness, and autistic-like symptoms such as social deficits. Despite considerable efforts, effective pharmacological treatments are still lacking, prompting the need for exploring the therapeutic value of existing drugs beyond their original approved use. One such repurposed drug is chlorzoxazone which is classified as a large-conductance calcium-dependent potassium (BKCa) channel opener. Reduced BKCa channel functionality has been reported in FXS patients, suggesting that molecules activating these channels could serve as promising treatments for this syndrome. Here, we sought to characterize the therapeutic potential of chlorzoxazone using the Fmr1-KO mouse model of FXS which recapitulates the main phenotypes of FXS, including BKCa channel alterations. Chlorzoxazone, administered either acutely or chronically, rescued hyperactivity and acoustic hyper-responsiveness as well as impaired social interactions exhibited by Fmr1-KO mice. Chlorzoxazone was more efficacious in alleviating these phenotypes than gaboxadol and metformin, two repurposed treatments for FXS that do not target BKCa channels. Systemic administration of chlorzoxazone modulated the neuronal activity-dependent gene c-fos in selected brain areas of Fmr1-KO mice, corrected aberrant hippocampal dendritic spines, and was able to rescue impaired BKCa currents recorded from hippocampal and cortical neurons of these mutants. Collectively, these findings provide further preclinical support for BKCa channels as a valuable therapeutic target for treating FXS and encourage the repurposing of chlorzoxazone for clinical applications in FXS and other related neurodevelopmental diseases.
Collapse
Affiliation(s)
| | | | - Valerie Lemaire
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | - Bruno Bontempi
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
2
|
Fink JJ, Delaney-Busch N, Dawes R, Nanou E, Folts C, Harikrishnan K, Hempel C, Upadhyay H, Nguyen T, Shroff H, Stoppel D, Ryan SJ, Jacques J, Grooms J, Berry-Kravis E, Bear MF, Williams LA, Gerber D, Bunnage M, Furey B, Dempsey GT. Deep functional measurements of Fragile X syndrome human neurons reveal multiparametric electrophysiological disease phenotype. Commun Biol 2024; 7:1447. [PMID: 39506078 PMCID: PMC11541539 DOI: 10.1038/s42003-024-07120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by hypermethylation of expanded CGG repeats (>200) in the FMR1 gene leading to gene silencing and loss of Fragile X Messenger Ribonucleoprotein (FMRP) expression. FMRP plays important roles in neuronal function, and loss of FMRP in mouse and human FXS cell models leads to aberrant synaptic signaling and hyperexcitability. Multiple drug candidates have advanced into clinical trials for FXS, but no efficacious treatment has been identified to date, possibly as a consequence of poor translation from pre-clinical animal models to human. Here, we use a high resolution all-optical electrophysiology platform applied to multiple FXS patient-derived and CRISPR/Cas9-generated isogenic neuronal cell lines to develop a multi-parametric FXS disease phenotype. This neurophysiological phenotype was optimized and validated into a high throughput assay based on the amount of FMRP re-expression and the number of healthy neurons in a mosaic network necessary for functional rescue. The resulting highly sensitive and multiparameter functional assay can now be applied as a discovery platform to explore new therapeutic approaches for the treatment of FXS.
Collapse
Affiliation(s)
- James J Fink
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | - David Stoppel
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven J Ryan
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - Jane Jacques
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - Jennifer Grooms
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | - Mark F Bear
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luis A Williams
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - David Gerber
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | | | - Graham T Dempsey
- Quiver Bioscience, Cambridge, MA, USA.
- Q-State Biosciences, Cambridge, MA, USA.
| |
Collapse
|
3
|
Hall SS, Britton TC. Differential Effects of a Behavioral Treatment Probe on Social Gaze Behavior in Fragile X Syndrome and Non-Syndromic Autism Spectrum Disorder. J Autism Dev Disord 2024; 54:2719-2732. [PMID: 37142899 DOI: 10.1007/s10803-023-05919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 05/06/2023]
Abstract
The purpose of this study was to examine potential differences in social learning between individuals with fragile X syndrome (FXS), the leading known inherited cause of intellectual disability, and individuals with non-syndromic autism spectrum disorder (ASD). Thirty school-aged males with FXS and 26 age and symptom-matched males with non-syndromic ASD, were administered a behavioral treatment probe designed to improve levels of social gaze during interactions with others. The treatment probe was administered by a trained behavior therapist over two days in our laboratory and included reinforcement of social gaze in two alternating training conditions - looking while listening and looking while speaking. Prior to each session, children in each group were taught progressive muscle relaxation and breathing techniques to counteract potential increased hyperarousal. Measures included the rate of learning in each group during treatment, in addition to levels of social gaze and heart rate obtained during administration of a standardized social conversation task administered prior to and following the treatment probe. Results showed that learning rates obtained during administration of the treatment probe were significantly less steep and less variable for males with FXS compared to males with non-syndromic ASD. Significant improvements in social gaze were also observed for males with FXS during the social conversation task. There was no effect of the treatment probe on heart rate in either group. These data reveal important differences in social learning between the two groups and have implications for early interventions in the two conditions.
Collapse
Affiliation(s)
- Scott S Hall
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Tobias C Britton
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Shum C, Hedges EC, Allison J, Lee YB, Arias N, Cocks G, Chandran S, Ruepp MD, Shaw CE, Nishimura AL. Mutations in FUS lead to synaptic dysregulation in ALS-iPSC derived neurons. Stem Cell Reports 2024; 19:187-195. [PMID: 38242131 PMCID: PMC10874860 DOI: 10.1016/j.stemcr.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurodegenerative disorder characterized by progressive muscular weakness due to the selective loss of motor neurons. Mutations in the gene Fused in Sarcoma (FUS) were identified as one cause of ALS. Here, we report that mutations in FUS lead to upregulation of synaptic proteins, increasing synaptic activity and abnormal release of vesicles at the synaptic cleft. Consequently, FUS-ALS neurons showed greater vulnerability to glutamate excitotoxicity, which raised neuronal swellings (varicose neurites) and led to neuronal death. Fragile X mental retardation protein (FMRP) is an RNA-binding protein known to regulate synaptic protein translation, and its expression is reduced in the FUS-ALS lines. Collectively, our data suggest that a reduction of FMRP levels alters the synaptic protein dynamics, leading to synaptic dysfunction and glutamate excitotoxicity. Here, we present a mechanistic hypothesis linking dysregulation of peripheral translation with synaptic vulnerability in the pathogenesis of FUS-ALS.
Collapse
Affiliation(s)
- Carole Shum
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Erin C Hedges
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK
| | - Joseph Allison
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK
| | - Youn-Bok Lee
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK
| | - Natalia Arias
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; Department of Psychology, Faculty of Life and Natural Sciences, Brain and Behavior Group, Nebrija University, Madrid, Spain
| | - Graham Cocks
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK
| | - Siddharthan Chandran
- MRC Centre for Regenerative Medicine, Euan MacDonald Centre for MND Research and Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; Centre for Brain Research, University of Auckland, 85 Park Road, Grafton Auckland 1023, New Zealand.
| | - Agnes L Nishimura
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Institute Paulo Gontijo, São Paulo, Brazil.
| |
Collapse
|
5
|
Chojnacka M, Beroun A, Magnowska M, Stawikowska A, Cysewski D, Milek J, Dziembowska M, Kuzniewska B. Impaired synaptic incorporation of AMPA receptors in a mouse model of fragile X syndrome. Front Mol Neurosci 2023; 16:1258615. [PMID: 38025260 PMCID: PMC10665894 DOI: 10.3389/fnmol.2023.1258615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenetic cause of inherited intellectual disability and autism in humans. One of the well-characterized molecular phenotypes of Fmr1 KO mice, a model of FXS, is increased translation of synaptic proteins. Although this upregulation stabilizes in adulthood, abnormalities during the critical period of plasticity have long-term effects on circuit formation and synaptic properties. Using high-resolution quantitative proteomics of synaptoneurosomes isolated from the adult, developed brains of Fmr1 KO mice, we show a differential abundance of proteins regulating the postsynaptic receptor activity of glutamatergic synapses. We investigated the AMPA receptor composition and shuttling in adult Fmr1 KO and WT mice using a variety of complementary experimental strategies such as surface protein crosslinking, immunostaining of surface receptors, and electrophysiology. We discovered that the activity-dependent synaptic delivery of AMPARs is impaired in adult Fmr1 KO mice. Furthermore, we show that Fmr1 KO synaptic AMPARs contain more GluA2 subunits that can be interpreted as a switch in the synaptic AMPAR subtype toward an increased number of Ca2+-impermeable receptors in adult Fmr1 KO synapses.
Collapse
Affiliation(s)
- Magdalena Chojnacka
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marta Magnowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Aleksandra Stawikowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Milek
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Ferraguto C, Bouleau Y, Peineau T, Dulon D, Pietropaolo S. Hyperacusis in the Adult Fmr1-KO Mouse Model of Fragile X Syndrome: The Therapeutic Relevance of Cochlear Alterations and BKCa Channels. Int J Mol Sci 2023; 24:11863. [PMID: 37511622 PMCID: PMC10380266 DOI: 10.3390/ijms241411863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperacusis, i.e., an increased sensitivity to sounds, is described in several neurodevelopmental disorders (NDDs), including Fragile X Syndrome (FXS). The mechanisms underlying hyperacusis in FXS are still largely unknown and effective therapies are lacking. Big conductance calcium-activated potassium (BKCa) channels were proposed as a therapeutic target to treat several behavioral disturbances in FXS preclinical models, but their role in mediating their auditory alterations was not specifically addressed. Furthermore, studies on the acoustic phenotypes of FXS animal models mostly focused on central rather than peripheral auditory pathways. Here, we provided an extensive characterization of the peripheral auditory phenotype of the Fmr1-knockout (KO) mouse model of FXS at adulthood. We also assessed whether the acute administration of Chlorzoxazone, a BKCa agonist, could rescue the auditory abnormalities of adult mutant mice. Fmr1-KO mice both at 3 and 6 months showed a hyperacusis-like startle phenotype with paradoxically reduced auditory brainstem responses associated with a loss of ribbon synapses in the inner hair cells (IHCs) compared to their wild-type (WT) littermates. BKCa expression was markedly reduced in the IHCs of KOs compared to WT mice, but only at 6 months, when Chlorzoxazone rescued mutant auditory dysfunction. Our findings highlight the age-dependent and progressive contribution of peripheral mechanisms and BKCa channels to adult hyperacusis in FXS, suggesting a novel therapeutic target to treat auditory dysfunction in NDDs.
Collapse
Affiliation(s)
- Celeste Ferraguto
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Yohan Bouleau
- Neurophysiologie de la Synapse Auditive, Université de Bordeaux, INSERM UA06, F-33000 Bordeaux, France
- Institut de l'Audition, Centre Institut Pasteur, Inserm UA06, F-75012 Paris, France
| | - Thibault Peineau
- Neurophysiologie de la Synapse Auditive, Université de Bordeaux, INSERM UA06, F-33000 Bordeaux, France
- Institut de l'Audition, Centre Institut Pasteur, Inserm UA06, F-75012 Paris, France
| | - Didier Dulon
- Neurophysiologie de la Synapse Auditive, Université de Bordeaux, INSERM UA06, F-33000 Bordeaux, France
- Institut de l'Audition, Centre Institut Pasteur, Inserm UA06, F-75012 Paris, France
| | | |
Collapse
|
7
|
Gredell M, Lu J, Zuo Y. The effect of single-cell knockout of Fragile X Messenger Ribonucleoprotein on synaptic structural plasticity. Front Synaptic Neurosci 2023; 15:1135479. [PMID: 37035256 PMCID: PMC10076639 DOI: 10.3389/fnsyn.2023.1135479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Fragile X Syndrome (FXS) is the best-known form of inherited intellectual disability caused by the loss-of-function mutation in a single gene. The FMR1 gene mutation abolishes the expression of Fragile X Messenger Ribonucleoprotein (FMRP), which regulates the expression of many synaptic proteins. Cortical pyramidal neurons in postmortem FXS patient brains show abnormally high density and immature morphology of dendritic spines; this phenotype is replicated in the Fmr1 knockout (KO) mouse. While FMRP is well-positioned in the dendrite to regulate synaptic plasticity, intriguing in vitro and in vivo data show that wild type neurons embedded in a network of Fmr1 KO neurons or glia exhibit spine abnormalities just as neurons in Fmr1 global KO mice. This raises the question: does FMRP regulate synaptic morphology and dynamics in a cell-autonomous manner, or do the synaptic phenotypes arise from abnormal pre-synaptic inputs? To address this question, we combined viral and mouse genetic approaches to delete FMRP from a very sparse subset of cortical layer 5 pyramidal neurons (L5 PyrNs) either during early postnatal development or in adulthood. We then followed the structural dynamics of dendritic spines on these Fmr1 KO neurons by in vivo two-photon microscopy. We found that, while L5 PyrNs in adult Fmr1 global KO mice have abnormally high density of thin spines, single-cell Fmr1 KO in adulthood does not affect spine density, morphology, or dynamics. On the contrary, neurons with neonatal FMRP deletion have normal spine density but elevated spine formation at 1 month of age, replicating the phenotype in Fmr1 global KO mice. Interestingly, these neurons exhibit elevated thin spine density, but normal total spine density, by adulthood. Together, our data reveal cell-autonomous FMRP regulation of cortical synaptic dynamics during adolescence, but spine defects in adulthood also implicate non-cell-autonomous factors.
Collapse
Affiliation(s)
| | | | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
8
|
Anreiter I, Tian YW, Soller M. The cap epitranscriptome: Early directions to a complex life as mRNA. Bioessays 2023; 45:e2200198. [PMID: 36529693 DOI: 10.1002/bies.202200198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Animal, protist and viral messenger RNAs (mRNAs) are most prominently modified at the beginning by methylation of cap-adjacent nucleotides at the 2'-O-position of the ribose (cOMe) by dedicated cap methyltransferases (CMTrs). If the first nucleotide of an mRNA is an adenosine, PCIF1 can methylate at the N6 -position (m6 A), while internally the Mettl3/14 writer complex can methylate. These modifications are introduced co-transcriptionally to affect many aspects of gene expression including localisation to synapses and local translation. Of particular interest, transcription start sites of many genes are heterogeneous leading to sequence diversity at the beginning of mRNAs, which together with cOMe and m6 Am could constitute an extensive novel layer of gene expression control. Given the role of cOMe and m6 A in local gene expression at synapses and higher brain functions including learning and memory, such code could be implemented at the transcriptional level for lasting memories through local gene expression at synapses.
Collapse
Affiliation(s)
- Ina Anreiter
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Yuan W Tian
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Matthias Soller
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Petroni V, Subashi E, Premoli M, Memo M, Lemaire V, Pietropaolo S. Long-term behavioral effects of prenatal stress in the Fmr1-knock-out mouse model for fragile X syndrome. Front Cell Neurosci 2022; 16:917183. [PMID: 36385949 PMCID: PMC9647640 DOI: 10.3389/fncel.2022.917183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome (FXS) is a major neurodevelopmental disorder and the most common monogenic cause of autism spectrum disorder (ASD). FXS is caused by a mutation in the X-linked FMR1 gene leading to the absence of the FMRP protein, inducing several behavioral deficits, including motor, emotional, cognitive, and social abnormalities. Beside its clear genetic origins, FXS can be modulated by environmental factors, e.g., stress exposure: indeed the behavioral phenotype of FXS, as well as of ASD patients can be exacerbated by the repeated experience of stressful events, especially early in life. Here we investigated the long-term effects of prenatal exposure to unpredictable chronic stress on the behavioral phenotype of the Fmr1-knock-out (KO) mouse model for FXS and ASD. Mice were tested for FXS- and ASD-relevant behaviors first at adulthood (3 months) and then at aging (18 months), in order to assess the persistence and the potential time-related progression of the stress effects. Stress induced the selective emergence of behavioral deficits in Fmr1-KO mice that were evident in spatial memory only at aging. Stress also exerted several age-specific behavioral effects in mice of both genotypes: at adulthood it enhanced anxiety levels and reduced social interaction, while at aging it enhanced locomotor activity and reduced the complexity of ultrasonic calls. Our findings underline the relevance of gene-environment interactions in mouse models of neurodevelopmental syndromes and highlight the long-term behavioral impact of prenatal stress in laboratory mice.
Collapse
Affiliation(s)
- Valeria Petroni
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Enejda Subashi
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valerie Lemaire
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Susanna Pietropaolo
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
- *Correspondence: Susanna Pietropaolo,
| |
Collapse
|
10
|
Hall SS, Rodriguez AB, Jo B, Pollard JS. Long-term follow-up of telehealth-enabled behavioral treatment for challenging behaviors in boys with fragile X syndrome. J Neurodev Disord 2022; 14:53. [PMID: 36180840 PMCID: PMC9523179 DOI: 10.1186/s11689-022-09463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background A significant proportion of boys with fragile X syndrome (FXS), the most common known genetic cause of intellectual disability, exhibit challenging behaviors such as aggression and self-injury that can cause significant distress to families. Recent evidence suggests that coaching caregivers to implement functional communication training (FCT) with their child via telehealth can help to ameliorate these behaviors in FXS. In the present study, we followed families who had participated in our previous randomized controlled trial of FCT to evaluate the longer-term effects of FCT on challenging behaviors in this population. Methods In study 1, follow-up emails, phone calls, text messages, and letters were sent to caregivers of 48 boys with FXS who had completed our previous study conducted between 2016 and 2019. The main outcome measures administered at follow-up were the Aberrant Behavior Checklist–Community (ABC-C) and the Parenting Stress Index, 4th Edition (PSI-4). In study 2, families who had received FCT treatment but whose child exhibited challenging behaviors daily at follow-up received a 1-h parent training booster session to determine whether the intervention effect could be recovered. Results Sixteen (66.7%) of 24 families who had received FCT treatment and 18 (75.0%) of 24 families who had received treatment as usual were traced and consented between March and August 2021. The mean follow-up time was 3.1 years (range, 1.4 to 4.2 years). Longitudinal mixed effects analyses indicated that boys who had received FCT were more likely to show improvements on the irritability and lethargy/social withdrawal subscales of the ABC-C over the follow-up interval compared to boys who had continued with treatment as usual. Four of the six boys who had received the booster parent training session via telehealth were reported to exhibit fewer forms of challenging behavior at a 4-week follow-up. Conclusions Empowering parents to implement behavior analytic treatments with their child in their own home can have durable effects on maintaining low levels of challenging behaviors in boys with FXS. These data further support the need to implement parent-mediated interventions for challenging behaviors in this population at an early age. Trial registration ClinicalTrials.gov, NCT03510156. Registered 27 April 2018
Collapse
Affiliation(s)
- Scott S Hall
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5795, USA.
| | - Arlette Bujanda Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5795, USA.,Behavior Change Institute, Oakland, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5795, USA
| | - Joy S Pollard
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5795, USA.,Behavior Change Institute, Oakland, USA
| |
Collapse
|
11
|
Peart NJ, Johnson TA, Lee S, Sears MJ, Yang F, Quesnel-Vallières M, Feng H, Recinos Y, Barash Y, Zhang C, Hermann BP, Wang PJ, Geyer CB, Carstens RP. The germ cell-specific RNA binding protein RBM46 is essential for spermatogonial differentiation in mice. PLoS Genet 2022; 18:e1010416. [PMID: 36129965 PMCID: PMC9529142 DOI: 10.1371/journal.pgen.1010416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/03/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Control over gene expression is exerted, in multiple stages of spermatogenesis, at the post-transcriptional level by RNA binding proteins (RBPs). We identify here an essential role in mammalian spermatogenesis and male fertility for 'RNA binding protein 46' (RBM46). A highly evolutionarily conserved gene, Rbm46 is also essential for fertility in both flies and fish. We found Rbm46 expression was restricted to the mouse germline, detectable in males in the cytoplasm of premeiotic spermatogonia and meiotic spermatocytes. To define its requirement for spermatogenesis, we generated Rbm46 knockout (KO, Rbm46-/-) mice; although male Rbm46-/- mice were viable and appeared grossly normal, they were infertile. Testes from adult Rbm46-/- mice were small, with seminiferous tubules containing only Sertoli cells and few undifferentiated spermatogonia. Using genome-wide unbiased high throughput assays RNA-seq and 'enhanced crosslinking immunoprecipitation' coupled with RNA-seq (eCLIP-seq), we discovered RBM46 could bind, via a U-rich conserved consensus sequence, to a cohort of mRNAs encoding proteins required for completion of differentiation and subsequent meiotic initiation. In summary, our studies support an essential role for RBM46 in regulating target mRNAs during spermatogonia differentiation prior to the commitment to meiosis in mice.
Collapse
Affiliation(s)
- Natoya J. Peart
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Taylor A. Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Sungkyoung Lee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew J. Sears
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Huijuan Feng
- Department of Systems Biology and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Yocelyn Recinos
- Department of Systems Biology and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chaolin Zhang
- Department of Systems Biology and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Brian P. Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher B. Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute at East Carolina University, Greenville, North Carolina, United States of America
| | - Russ P. Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Autistic-like behavioral effects of prenatal stress in juvenile Fmr1 mice: the relevance of sex differences and gene-environment interactions. Sci Rep 2022; 12:7269. [PMID: 35508566 PMCID: PMC9068699 DOI: 10.1038/s41598-022-11083-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common heritable form of mental retardation and monogenic cause of autism spectrum disorder (ASD). FXS is due to a mutation in the X-linked FMR1 gene and is characterized by motor, cognitive and social alterations, mostly overlapping with ASD behavioral phenotypes. The severity of these symptoms and their timing may be exacerbated and/or advanced by environmental adversity interacting with the genetic mutation. We therefore tested the effects of the prenatal exposure to unpredictable chronic stress on the behavioral phenotype of juveniles of both sexes in the Fmr1 knock-out (KO) mouse model of FXS. Mice underwent behavioral tests at 7-8 weeks of age, that is, when most of the relevant behavioral alterations are absent or mild in Fmr1-KOs. Stress induced the early appearance of deficits in spontaneous alternation in KO male mice, without exacerbating the behavioral phenotype of mutant females. In males stress also altered social interaction and communication, but mostly in WT mice, while in females it induced effects on locomotion and communication in mice of both genotypes. Our data therefore highlight the sex-dependent relevance of early environmental stressors to interact with genetic factors to influence the appearance of selected FXS- and ASD-like phenotypes.
Collapse
|
13
|
Dendritic distribution of CDK5 mRNA and p35 mRNA, and a glutamate-responsive increase of CDK5/p25 complex contribute to tau hyperphosphorylation. Biochim Biophys Acta Gen Subj 2022; 1866:130135. [DOI: 10.1016/j.bbagen.2022.130135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
|
14
|
Protic DD, Aishworiya R, Salcedo-Arellano MJ, Tang SJ, Milisavljevic J, Mitrovic F, Hagerman RJ, Budimirovic DB. Fragile X Syndrome: From Molecular Aspect to Clinical Treatment. Int J Mol Sci 2022; 23:1935. [PMID: 35216055 PMCID: PMC8875233 DOI: 10.3390/ijms23041935] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the full mutation as well as highly localized methylation of the fragile X mental retardation 1 (FMR1) gene on the long arm of the X chromosome. Children with FXS are commonly co-diagnosed with Autism Spectrum Disorder, attention and learning problems, anxiety, aggressive behavior and sleep disorder, and early interventions have improved many behavior symptoms associated with FXS. In this review, we performed a literature search of original and review articles data of clinical trials and book chapters using MEDLINE (1990-2021) and ClinicalTrials.gov. While we have reviewed the biological importance of the fragile X mental retardation protein (FMRP), the FXS phenotype, and current diagnosis techniques, the emphasis of this review is on clinical interventions. Early non-pharmacological interventions in combination with pharmacotherapy and targeted treatments aiming to reverse dysregulated brain pathways are the mainstream of treatment in FXS. Overall, early diagnosis and interventions are fundamental to achieve optimal clinical outcomes in FXS.
Collapse
Affiliation(s)
- Dragana D. Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia
| | - Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA; (R.A.); (M.J.S.-A.); (S.J.T.); (R.J.H.)
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Maria Jimena Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA; (R.A.); (M.J.S.-A.); (S.J.T.); (R.J.H.)
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Si Jie Tang
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA; (R.A.); (M.J.S.-A.); (S.J.T.); (R.J.H.)
| | - Jelena Milisavljevic
- Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (J.M.); (F.M.)
| | - Filip Mitrovic
- Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (J.M.); (F.M.)
| | - Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA; (R.A.); (M.J.S.-A.); (S.J.T.); (R.J.H.)
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Hale CR, Sawicka K, Mora K, Fak JJ, Kang JJ, Cutrim P, Cialowicz K, Carroll TS, Darnell RB. FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons. eLife 2021; 10:e71892. [PMID: 34939924 PMCID: PMC8820740 DOI: 10.7554/elife.71892] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here, we develop a strategy combining compartment-specific crosslinking immunoprecipitation (CLIP) and translating ribosome affinity purification (TRAP) in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many that have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type-specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15-20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies suggests a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type.
Collapse
Affiliation(s)
- Caryn R Hale
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kirsty Sawicka
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kevin Mora
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Jin Joo Kang
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Paula Cutrim
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Katarzyna Cialowicz
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
16
|
Bach S, Shovlin S, Moriarty M, Bardoni B, Tropea D. Rett Syndrome and Fragile X Syndrome: Different Etiology With Common Molecular Dysfunctions. Front Cell Neurosci 2021; 15:764761. [PMID: 34867203 PMCID: PMC8640214 DOI: 10.3389/fncel.2021.764761] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
Rett syndrome (RTT) and Fragile X syndrome (FXS) are two monogenetic neurodevelopmental disorders with complex clinical presentations. RTT is caused by mutations in the Methyl-CpG binding protein 2 gene (MECP2) altering the function of its protein product MeCP2. MeCP2 modulates gene expression by binding methylated CpG dinucleotides, and by interacting with transcription factors. FXS is caused by the silencing of the FMR1 gene encoding the Fragile X Mental Retardation Protein (FMRP), a RNA binding protein involved in multiple steps of RNA metabolism, and modulating the translation of thousands of proteins including a large set of synaptic proteins. Despite differences in genetic etiology, there are overlapping features in RTT and FXS, possibly due to interactions between MeCP2 and FMRP, and to the regulation of pathways resulting in dysregulation of common molecular signaling. Furthermore, basic physiological mechanisms are regulated by these proteins and might concur to the pathophysiology of both syndromes. Considering that RTT and FXS are disorders affecting brain development, and that most of the common targets of MeCP2 and FMRP are involved in brain activity, we discuss the mechanisms of synaptic function and plasticity altered in RTT and FXS, and we consider the similarities and the differences between these two disorders.
Collapse
Affiliation(s)
- Snow Bach
- School of Mathematical Sciences, Dublin City University, Dublin, Ireland.,Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Stephen Shovlin
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | | | - Barbara Bardoni
- Inserm, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Université Côte d'Azur, Valbonne, France
| | - Daniela Tropea
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
17
|
Lannom MC, Nielsen J, Nawaz A, Shilikbay T, Ceman S. FMRP and MOV10 regulate Dicer1 expression and dendrite development. PLoS One 2021; 16:e0260005. [PMID: 34847178 PMCID: PMC8631628 DOI: 10.1371/journal.pone.0260005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome results from the loss of expression of the Fragile X Mental Retardation Protein (FMRP). FMRP and RNA helicase Moloney Leukemia virus 10 (MOV10) are important Argonaute (AGO) cofactors for miRNA-mediated translation regulation. We previously showed that MOV10 functionally associates with FMRP. Here we quantify the effect of reduced MOV10 and FMRP expression on dendritic morphology. Murine neurons with reduced MOV10 and FMRP phenocopied Dicer1 KO neurons which exhibit impaired dendritic maturation Hong J (2013), leading us to hypothesize that MOV10 and FMRP regulate DICER expression. In cells and tissues expressing reduced MOV10 or no FMRP, DICER expression was significantly reduced. Moreover, the Dicer1 mRNA is a Cross-Linking Immunoprecipitation (CLIP) target of FMRP Darnell JC (2011), MOV10 Skariah G (2017) and AGO2 Kenny PJ (2020). MOV10 and FMRP modulate expression of DICER1 mRNA through its 3’untranslated region (UTR) and introduction of a DICER1 transgene restores normal neurite outgrowth in the Mov10 KO neuroblastoma Neuro2A cell line and branching in MOV10 heterozygote neurons. Moreover, we observe a global reduction in AGO2-associated microRNAs isolated from Fmr1 KO brain. We conclude that the MOV10-FMRP-AGO2 complex regulates DICER expression, revealing a novel mechanism for regulation of miRNA production required for normal neuronal morphology.
Collapse
Affiliation(s)
- Monica C. Lannom
- Cell and Developmental Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Joshua Nielsen
- Integrative Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Aatiqa Nawaz
- Cell and Developmental Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Temirlan Shilikbay
- Cell and Developmental Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Stephanie Ceman
- Cell and Developmental Biology, University of Illinois, Urbana, Illinois, United States of America
- Neuroscience Program, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Differential Retinoic Acid Signaling in the Hippocampus of Aged Rats with and without Memory Impairment. eNeuro 2021; 8:ENEURO.0120-21.2021. [PMID: 34417282 PMCID: PMC8442538 DOI: 10.1523/eneuro.0120-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA), a metabolite of vitamin A, has many physiological functions, and mounting evidence points to important roles in cognition. In vitro experiments indicate that RA is involved in homeostatic synaptic scaling in the hippocampus, which supports overall network stability during learning. It has been previously determined that disrupted RA signaling in the hippocampus causes deterioration of memory, that RA signaling declines with age in brain, and that application of RA reverses this decline. Here, we explore whether RA signaling is altered in an animal model of neurocognitive aging. We used a Morris water maze protocol to study cognitive decline in aged rats, which assesses hippocampus-dependent spatial memory and reveals substantial interindividual differences in aged animals. Aged unimpaired (AU) rats perform on par with young (Y), while aged impaired (AI) animals exhibit spatial memory deficits. We show that the major substrate for RA, retinol binding protein 4 (RBP4), is decreased in AU rats, and retinol cell surface receptor declines with chronological age. Other affected components of RA signaling include selective increases in AI animals in hippocampal synthesis (RALDH1) and catabolism of RA (CYP26B1), RA receptor α, the RA regulated ionotropic glutamate receptor (GluR1), as well as fragile X mental retardation protein (FMRP). The results support the conclusion that, surprisingly, increased RA signaling in the aged hippocampus is associated with poor cognitive outcome.
Collapse
|
19
|
Park E, Lau AG, Arendt KL, Chen L. FMRP Interacts with RARα in Synaptic Retinoic Acid Signaling and Homeostatic Synaptic Plasticity. Int J Mol Sci 2021; 22:ijms22126579. [PMID: 34205274 PMCID: PMC8235556 DOI: 10.3390/ijms22126579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
The fragile X syndrome (FXS) is an X-chromosome-linked neurodevelopmental disorder with severe intellectual disability caused by inactivation of the fragile X mental retardation 1 (FMR1) gene and subsequent loss of the fragile X mental retardation protein (FMRP). Among the various types of abnormal synaptic function and synaptic plasticity phenotypes reported in FXS animal models, defective synaptic retinoic acid (RA) signaling and subsequent defective homeostatic plasticity have emerged as a major synaptic dysfunction. However, the mechanism underlying the defective synaptic RA signaling in the absence of FMRP is unknown. Here, we show that RARα, the RA receptor critically involved in synaptic RA signaling, directly interacts with FMRP. This interaction is enhanced in the presence of RA. Blocking the interaction between FMRP and RARα with a small peptide corresponding to the critical binding site in RARα abolishes RA-induced increases in excitatory synaptic transmission, recapitulating the phenotype seen in the Fmr1 knockout mouse. Taken together, these data suggest that not only are functional FMRP and RARα necessary for RA-dependent homeostatic synaptic plasticity, but that the interaction between these two proteins is essential for proper transcription-independent RA signaling. Our results may provide further mechanistic understanding into FXS synaptic pathophysiology.
Collapse
|
20
|
Premoli M, Memo M, Bonini SA. Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies. Neural Regen Res 2021; 16:1158-1167. [PMID: 33269765 PMCID: PMC8224126 DOI: 10.4103/1673-5374.300340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mice use ultrasonic vocalizations (USVs) to communicate each other and to convey their emotional state. USVs have been greatly characterized in specific life phases and contexts, such as mother isolation-induced USVs for pups or female-induced USVs for male mice during courtship. USVs can be acquired by means of specific tools and later analyzed on the base of both quantitative and qualitative parameters. Indeed, different ultrasonic call categories exist and have already been defined. The understanding of different calls meaning is still missing, and it will represent an essential step forward in the field of USVs. They have long been studied in the ethological context, but recently they emerged as a precious instrument to study pathologies characterized by deficits in communication, in particular neurodevelopmental disorders (NDDs), such as autism spectrum disorders. This review covers the topics of USVs characteristics in mice, contexts for USVs emission and factors that modulate their expression. A particular focus will be devoted to mouse USVs in the context of NDDs. Indeed, several NDDs murine models exist and an intense study of USVs is currently in progress, with the aim of both performing an early diagnosis and to find a pharmacological/behavioral intervention to improve patients' quality of life.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| |
Collapse
|
21
|
Eshraghi M, Karunadharma PP, Blin J, Shahani N, Ricci EP, Michel A, Urban NT, Galli N, Sharma M, Ramírez-Jarquín UN, Florescu K, Hernandez J, Subramaniam S. Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nat Commun 2021; 12:1461. [PMID: 33674575 PMCID: PMC7935949 DOI: 10.1038/s41467-021-21637-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells. Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal translocation, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5' and 3' end and unique single-codon pauses on selected mRNA targets in HD cells, compared to controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a mechanistic defect that can be exploited for HD therapeutics.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Pabalu P. Karunadharma
- grid.214007.00000000122199231The Scripps Research Institute, Genomic Core, Jupiter, FL USA
| | - Juliana Blin
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | - Neelam Shahani
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Emiliano P. Ricci
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | | | | | - Nicole Galli
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Manish Sharma
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Katie Florescu
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Jennifer Hernandez
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Srinivasa Subramaniam
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| |
Collapse
|
22
|
Shukla T, de la Peña JB, Perish JM, Ploski JE, Stumpf CR, Webster KR, Thorn CA, Campbell ZT. A Highly Selective MNK Inhibitor Rescues Deficits Associated with Fragile X Syndrome in Mice. Neurotherapeutics 2021; 18:624-639. [PMID: 33006091 PMCID: PMC8116363 DOI: 10.1007/s13311-020-00932-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2020] [Indexed: 12/22/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited source of intellectual disability in humans. FXS is caused by mutations that trigger epigenetic silencing of the Fmr1 gene. Loss of Fmr1 results in increased activity of the mitogen-activated protein kinase (MAPK) pathway. An important downstream consequence is activation of the mitogen-activated protein kinase interacting protein kinase (MNK). MNK phosphorylates the mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E). Excessive phosphorylation of eIF4E has been directly implicated in the cognitive and behavioral deficits associated with FXS. Pharmacological reduction of eIF4E phosphorylation is one potential strategy for FXS treatment. We demonstrate that systemic dosing of a highly specific, orally available MNK inhibitor, eFT508, attenuates numerous deficits associated with loss of Fmr1 in mice. eFT508 resolves a range of phenotypic abnormalities associated with FXS including macroorchidism, aberrant spinogenesis, and alterations in synaptic plasticity. Key behavioral deficits related to anxiety, social interaction, obsessive and repetitive activities, and object recognition are ameliorated by eFT508. Collectively, this work establishes eFT508 as a potential means to reverse deficits associated with FXS.
Collapse
Affiliation(s)
- Tarjani Shukla
- Department of Biological Sciences, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - June Bryan de la Peña
- Department of Biological Sciences, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - John M Perish
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | | | - Catherine A Thorn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
23
|
Kennedy T, Rinker D, Broadie K. Genetic background mutations drive neural circuit hyperconnectivity in a fragile X syndrome model. BMC Biol 2020; 18:94. [PMID: 32731855 PMCID: PMC7392683 DOI: 10.1186/s12915-020-00817-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neural circuits are initially assembled during development when neurons synapse with potential partners and later refined as appropriate connections stabilize into mature synapses while inappropriate contacts are eliminated. Disruptions to this synaptogenic process impair connectivity optimization and can cause neurodevelopmental disorders. Intellectual disability (ID) and autism spectrum disorder (ASD) are often characterized by synaptic overgrowth, with the maintenance of immature or inappropriate synapses. Such synaptogenic defects can occur through mutation of a single gene, such as fragile X mental retardation protein (FMRP) loss causing the neurodevelopmental disorder fragile X syndrome (FXS). FXS represents the leading heritable cause of ID and ASD, but many other genes that play roles in ID and ASD have yet to be identified. RESULTS In a Drosophila FXS disease model, one dfmr150M null mutant stock exhibits previously unreported axonal overgrowths at developmental and mature stages in the giant fiber (GF) escape circuit. These excess axon projections contain both chemical and electrical synapse markers, indicating mixed synaptic connections. Extensive analyses show these supernumerary synapses connect known GF circuit neurons, rather than new, inappropriate partners, indicating hyperconnectivity within the circuit. Despite the striking similarities to well-characterized FXS synaptic defects, this new GF circuit hyperconnectivity phenotype is driven by genetic background mutations in this dfmr150M stock. Similar GF circuit synaptic overgrowth is not observed in independent dfmr1 null alleles. Bulked segregant analysis (BSA) was combined with whole genome sequencing (WGS) to identify the quantitative trait loci (QTL) linked to neural circuit hyperconnectivity. The results reveal 8 QTL associated with inappropriate synapse formation and maintenance in the dfmr150M mutant background. CONCLUSIONS Synaptogenesis is a complex, precisely orchestrated neurodevelopmental process with a large cohort of gene products coordinating the connectivity, synaptic strength, and excitatory/inhibitory balance between neuronal partners. This work identifies a number of genetic regions that contain mutations disrupting proper synaptogenesis within a particularly well-mapped neural circuit. These QTL regions contain potential new genes involved in synapse formation and refinement. Given the similarity of the synaptic overgrowth phenotype to known ID and ASD inherited conditions, identifying these genes should increase our understanding of these devastating neurodevelopmental disease states.
Collapse
Affiliation(s)
- Tyler Kennedy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - David Rinker
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
| |
Collapse
|
24
|
Mnatsakanyan N, Jonas EA. ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration. J Mol Cell Cardiol 2020; 144:109-118. [PMID: 32461058 PMCID: PMC7877492 DOI: 10.1016/j.yjmcc.2020.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) or mitochondrial megachannel is arguably one of the most mysterious phenomena in biology today. mPTP has been at the center of ongoing extensive scientific research for the last several decades. In this review we will discuss recent advances in the field that enhance our understanding of the molecular composition of mPTP, its regulatory mechanisms and its pathophysiological role. We will describe our recent findings on the role of ATP synthase c-subunit ring as a central player in mitochondrial permeability transition and as an important metabolic regulator during development and in degenerative diseases.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
25
|
Griffiths KK, Wang A, Wang L, Tracey M, Kleiner G, Quinzii CM, Sun L, Yang G, Perez-Zoghbi JF, Licznerski P, Yang M, Jonas EA, Levy RJ. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J 2020; 34:7404-7426. [PMID: 32307754 DOI: 10.1096/fj.202000283rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome (FXS) is the leading known inherited intellectual disability and the most common genetic cause of autism. The full mutation results in transcriptional silencing of the Fmr1 gene and loss of fragile X mental retardation protein (FMRP) expression. Defects in neuroenergetic capacity are known to cause a variety of neurodevelopmental disorders. Thus, we explored the integrity of forebrain mitochondria in Fmr1 knockout mice during the peak of synaptogenesis. We found inefficient thermogenic respiration due to futile proton leak in Fmr1 KO mitochondria caused by coenzyme Q (CoQ) deficiency and an open cyclosporine-sensitive channel. Repletion of mitochondrial CoQ within the Fmr1 KO forebrain closed the channel, blocked the pathological proton leak, restored rates of protein synthesis during synaptogenesis, and normalized the key phenotypic features later in life. The findings demonstrate that FMRP deficiency results in inefficient oxidative phosphorylation during the neurodevelopment and suggest that dysfunctional mitochondria may contribute to the FXS phenotype.
Collapse
Affiliation(s)
- Keren K Griffiths
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Aili Wang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Lifei Wang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Matthew Tracey
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Linlin Sun
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Licznerski
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mu Yang
- Institute of Genomic Medicine and Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Elizabeth A Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
26
|
Sun L, Zhou H, Cichon J, Yang G. Experience and sleep-dependent synaptic plasticity: from structure to activity. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190234. [PMID: 32248786 DOI: 10.1098/rstb.2019.0234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synaptic plasticity is important for learning and memory. With increasing evidence linking sleep states to changes in synaptic strength, an emerging view is that sleep promotes learning and memory by facilitating experience-induced synaptic plasticity. In this review, we summarize the recent progress on the function of sleep in regulating cortical synaptic plasticity. Specifically, we outline the electroencephalogram signatures of sleep states (e.g. slow-wave sleep, rapid eye movement sleep, spindles), sleep state-dependent changes in gene and synaptic protein expression, synaptic morphology, and neuronal and network activity. We highlight studies showing that post-experience sleep potentiates experience-induced synaptic changes and discuss the potential mechanisms that may link sleep-related brain activity to synaptic structural remodelling. We conclude that both synapse formation or strengthening and elimination or weakening occur across sleep. This sleep-dependent synaptic plasticity plays an important role in neuronal circuit refinement during development and after learning, while sleep disorders may contribute to or exacerbate the development of common neurological diseases. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Hang Zhou
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Joseph Cichon
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Kim Y, Jang YN, Kim JY, Kim N, Noh S, Kim H, Queenan BN, Bellmore R, Mun JY, Park H, Rah JC, Pak DTS, Lee KJ. Microtubule-associated protein 2 mediates induction of long-term potentiation in hippocampal neurons. FASEB J 2020; 34:6965-6983. [PMID: 32237183 DOI: 10.1096/fj.201902122rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Microtubule-associated protein (MAP) 2 has been perceived as a static cytoskeletal protein enriched in neuronal dendritic shafts. Emerging evidence indicates dynamic functions for various MAPs in activity-dependent synaptic plasticity. However, it is unclear how MAP2 is associated with synaptic plasticity mechanisms. Here, we demonstrate that specific silencing of high-molecular-weight MAP2 in vivo abolished induction of long-term potentiation (LTP) in the Schaffer collateral pathway of CA1 pyramidal neurons and in vitro blocked LTP-induced surface delivery of AMPA receptors and spine enlargement. In mature hippocampal neurons, we observed rapid translocation of a subpopulation of MAP2, present in dendritic shafts, to spines following LTP stimulation. Time-lapse confocal imaging showed that spine translocation of MAP2 was coupled with LTP-induced spine enlargement. Consistently, immunogold electron microscopy revealed that LTP stimulation of the Schaffer collateral pathway promoted MAP2 labeling in spine heads of CA1 neurons. This translocation depended on NMDA receptor activation and Ras-MAPK signaling. Furthermore, LTP stimulation led to an increase in surface-expressed AMPA receptors specifically in the neurons with MAP2 spine translocation. Altogether, this study indicates a novel role for MAP2 in LTP mechanisms and suggests that MAP2 participates in activity-dependent synaptic plasticity in mature hippocampal networks.
Collapse
Affiliation(s)
- Yoonju Kim
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - You-Na Jang
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Ji-Young Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Nari Kim
- Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Seulgi Noh
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyeyeon Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Bridget N Queenan
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan Bellmore
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Ji Young Mun
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyungju Park
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Jong Cheol Rah
- Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea.,Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| |
Collapse
|
28
|
Kobayashi S, Tanaka T, Soeda Y, Takashima A. Enhanced Tau Protein Translation by Hyper-Excitation. Front Aging Neurosci 2019; 11:322. [PMID: 31824301 PMCID: PMC6879554 DOI: 10.3389/fnagi.2019.00322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/05/2019] [Indexed: 12/04/2022] Open
Abstract
Tau is a microtubule-associated protein, localizing mainly in the axon of mature neurons. Phenotypic analysis of Tau knockout mice has revealed an impairment of synaptic plasticity but without gross changes in brain morphology. Since we previously described the presence of tau mRNA in the somatodendritic compartment, including the postsynapse, and demonstrated that it could be locally translated in response to glutamate, it appears that the regulated translation of synaptic tau can have a direct impact on synaptic function. Using SH-SY5Y cells, we herein confirm that glutamate dose-dependently regulates the translation of tau protein without altering tau mRNA levels. This is supported by the finding that cycloheximide blocks glutamate-stimulated increases in tau protein levels. Our observation that neural excitation can directly upregulate tau mRNA translation helps explain the pathological accumulation of tau in the somatodendrite.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Department of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Japan
| | - Toru Tanaka
- Department of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Japan
| | - Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
29
|
Multifaceted Changes in Synaptic Composition and Astrocytic Involvement in a Mouse Model of Fragile X Syndrome. Sci Rep 2019; 9:13855. [PMID: 31554841 PMCID: PMC6761194 DOI: 10.1038/s41598-019-50240-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X Syndrome (FXS), a common inheritable form of intellectual disability, is known to alter neocortical circuits. However, its impact on the diverse synapse types comprising these circuits, or on the involvement of astrocytes, is not well known. We used immunofluorescent array tomography to quantify different synaptic populations and their association with astrocytes in layers 1 through 4 of the adult somatosensory cortex of a FXS mouse model, the FMR1 knockout mouse. The collected multi-channel data contained approximately 1.6 million synapses which were analyzed using a probabilistic synapse detector. Our study reveals complex, synapse-type and layer specific changes in the neocortical circuitry of FMR1 knockout mice. We report an increase of small glutamatergic VGluT1 synapses in layer 4 accompanied by a decrease in large VGluT1 synapses in layers 1 and 4. VGluT2 synapses show a rather consistent decrease in density in layers 1 and 2/3. In all layers, we observe the loss of large inhibitory synapses. Lastly, astrocytic association of excitatory synapses decreases. The ability to dissect the circuit deficits by synapse type and astrocytic involvement will be crucial for understanding how these changes affect circuit function, and ultimately defining targets for therapeutic intervention.
Collapse
|
30
|
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that causes intellectual disability. It is a leading known genetic cause of autism. In addition to cognitive, social, and communication deficits, humans with FXS demonstrate abnormal sensory processing including sensory hypersensitivity. Sensory hypersensitivity commonly manifests as auditory, tactile, or visual defensiveness or avoidance. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity, impaired habituation to repeated sounds, and reduced auditory attention in humans with FXS. Children with FXS also exhibit significant visuospatial impairments. Studies in infants and toddlers with FXS have documented impairments in processing texture-defined motion stimuli, temporal flicker, perceiving ordinal numerical sequence, and the ability to maintain the identity of dynamic object information during occlusion. Consistent with the observations in humans with FXS, fragile X mental retardation 1 ( Fmr1) gene knockout (KO) rodent models of FXS also show seizures, abnormal visual-evoked responses, auditory hypersensitivity, and abnormal processing at multiple levels of the auditory system, including altered acoustic startle responses. Among other sensory symptoms, individuals with FXS exhibit tactile defensiveness. Fmr1 KO mice also show impaired encoding of tactile stimulation frequency and larger size of receptive fields in the somatosensory cortex. Since sensory deficits are relatively more tractable from circuit mechanisms and developmental perspectives than more complex social behaviors, the focus of this review is on clinical, functional, and structural studies that outline the auditory, visual, and somatosensory processing deficits in FXS. The similarities in sensory phenotypes between humans with FXS and animal models suggest a likely conservation of basic sensory processing circuits across species and may provide a translational platform to not just develop biomarkers but also to understand underlying mechanisms. We argue that preclinical studies in animal models of FXS can facilitate the ongoing search for new therapeutic approaches in FXS by understanding mechanisms of basic sensory processing circuits and behaviors that are conserved across species.
Collapse
Affiliation(s)
- Maham Rais
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA
| | - Devin K Binder
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA
| | - Khaleel A Razak
- 2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA.,4 Psychology Department, University of California Riverside, CA, USA
| | - Iryna M Ethell
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA
| |
Collapse
|
31
|
Noh W, Pak S, Choi G, Yang S, Yang S. Transient Potassium Channels: Therapeutic Targets for Brain Disorders. Front Cell Neurosci 2019; 13:265. [PMID: 31263403 PMCID: PMC6585177 DOI: 10.3389/fncel.2019.00265] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/28/2019] [Indexed: 01/04/2023] Open
Abstract
Transient potassium current channels (IA channels), which are expressed in most brain areas, have a central role in modulating feedforward and feedback inhibition along the dendroaxonic axis. Loss of the modulatory channels is tightly associated with a number of brain diseases such as Alzheimer’s disease, epilepsy, fragile X syndrome (FXS), Parkinson’s disease, chronic pain, tinnitus, and ataxia. However, the functional significance of IA channels in these diseases has so far been underestimated. In this review, we discuss the distribution and function of IA channels. Particularly, we posit that downregulation of IA channels results in neuronal (mostly dendritic) hyperexcitability accompanied by the imbalanced excitation and inhibition ratio in the brain’s networks, eventually causing the brain diseases. Finally, we propose a potential therapeutic target: the enhanced action of IA channels to counteract Ca2+-permeable channels including NMDA receptors could be harnessed to restore dendritic excitability, leading to a balanced neuronal state.
Collapse
Affiliation(s)
- Wonjun Noh
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Sojeong Pak
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Geunho Choi
- Department of Computer Science and Engineering, Incheon National University, Incheon, South Korea
| | - Sungchil Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| |
Collapse
|
32
|
Bagni C, Zukin RS. A Synaptic Perspective of Fragile X Syndrome and Autism Spectrum Disorders. Neuron 2019; 101:1070-1088. [PMID: 30897358 PMCID: PMC9628679 DOI: 10.1016/j.neuron.2019.02.041] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/28/2022]
Abstract
Altered synaptic structure and function is a major hallmark of fragile X syndrome (FXS), autism spectrum disorders (ASDs), and other intellectual disabilities (IDs), which are therefore classified as synaptopathies. FXS and ASDs, while clinically and genetically distinct, share significant comorbidity, suggesting that there may be a common molecular and/or cellular basis, presumably at the synapse. In this article, we review brain architecture and synaptic pathways that are dysregulated in FXS and ASDs, including spine architecture, signaling in synaptic plasticity, local protein synthesis, (m)RNA modifications, and degradation. mRNA repression is a powerful mechanism for the regulation of synaptic structure and efficacy. We infer that there is no single pathway that explains most of the etiology and discuss new findings and the implications for future work directed at improving our understanding of the pathogenesis of FXS and related ASDs and the design of therapeutic strategies to ameliorate these disorders.
Collapse
Affiliation(s)
- Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York City, NY, USA.
| |
Collapse
|
33
|
Wegiel J, Brown WT, La Fauci G, Adayev T, Kascsak R, Kascsak R, Flory M, Kaczmarski W, Kuchna I, Nowicki K, Martinez-Cerdeno V, Wisniewski T, Wegiel J. The role of reduced expression of fragile X mental retardation protein in neurons and increased expression in astrocytes in idiopathic and syndromic autism (duplications 15q11.2-q13). Autism Res 2018; 11:1316-1331. [PMID: 30107092 DOI: 10.1002/aur.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 01/23/2023]
Abstract
Fragile X syndrome (FXS), caused by lack of fragile X mental retardation protein (FMRP), is associated with a high prevalence of autism. The deficit of FMRP reported in idiopathic autism suggests a mechanistic overlap between FXS and autism. The overall goal of this study is to detect neuropathological commonalities of FMRP deficits in the brains of people with idiopathic autism and with syndromic autism caused by dup15q11.2-q13 (dup15). This study tests the hypothesis based on our preliminary data that both idiopathic and syndromic autism are associated with brain region-specific deficits of neuronal FMRP and structural changes of the affected neurons. This immunocytochemical study revealed neuronal FMRP deficits and shrinkage of deficient neurons in the cerebral cortex, subcortical structures, and cerebellum in subjects with idiopathic and dup(15)/autism. Neuronal FMRP deficit coexists with surprising infiltration of the brains of autistic children and adults with FMRP-positive astrocytes known to be typical only for the fetal and short postnatal periods. In the examined autistic subjects, these astrocytes selectively infiltrate the border between white and gray matter in the cerebral and cerebellar cortex, the molecular layer of the cortex, part of the amygdala and thalamus, central cerebellar white matter, and dentate nucleus. Astrocyte pathology results in an additional local loss of FMRP in neurons and their shrinkage. Neuronal deficit of FMRP and shrinkage of affected neurons in structures free of FMRP-positive astrocytes and regions infiltrated with FMRP-expressing astrocytes appear to reflect mechanistic, neuropathological, and functional commonalities of FMRP abnormalities in FXS and autism spectrum disorder. Autism Res 2018, 11: 1316-1331. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Immunocytochemistry reveals a deficit of fragile X mental retardation protein (FMRP) in neurons of cortical and subcortical brain structures but increased FMRP expression in astrocytes infiltrating gray and white matter. The detected shrinkage of FMRP-deficient neurons may provide a mechanistic explanation of reported neuronal structural and functional changes in autism. This study contributes to growing evidence of mechanistic commonalities between fragile X syndrome and autism spectrum disorder.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - W Ted Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Giuseppe La Fauci
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Tatyana Adayev
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Richard Kascsak
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Regina Kascsak
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Michael Flory
- Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Wojciech Kaczmarski
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Izabela Kuchna
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Krzysztof Nowicki
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Veronica Martinez-Cerdeno
- Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, MIND Institute, University of California, Davis, California
| | - Thomas Wisniewski
- Departments of Neurology, Pathology, and Psychiatry, NYU Langone Medical Center, New York, New York
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| |
Collapse
|
34
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
35
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
36
|
Smidak R, Sialana FJ, Kristofova M, Stojanovic T, Rajcic D, Malikovic J, Feyissa DD, Korz V, Hoeger H, Wackerlig J, Mechtcheriakova D, Lubec G. Reduced Levels of the Synaptic Functional Regulator FMRP in Dentate Gyrus of the Aging Sprague-Dawley Rat. Front Aging Neurosci 2017; 9:384. [PMID: 29218006 PMCID: PMC5703695 DOI: 10.3389/fnagi.2017.00384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/09/2017] [Indexed: 11/15/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) encoded by Fragile X mental retardation 1 (FMR1) gene is a RNA-binding regulator of mRNA translation, transport and stability with multiple targets responsible for proper synaptic function. Epigenetic silencing of FMR1 gene expression leads to the development of Fragile X syndrome (FXS) that is characterized by intellectual disability and other behavioral problems including autism. In the rat FXS model, the lack of FMRP caused a deficit in hippocampal-dependent memory. However, the hippocampal changes of FMRP in aging rats are not fully elucidated. The current study addresses the changes in FMRP levels in dentate gyrus (DG) from young (17 weeks) and aging (22 months) Sprague – Dawley rats. The aging animal group showed significant decline in spatial reference memory. Protein samples from five rats per each group were analyzed by quantitative proteomic analysis resulting in 153 significantly changed proteins. FMRP showed significant reduction in aging animals which was confirmed by immunoblotting and immunofluorescence microscopy. Furthermore, bioinformatic analysis of the differential protein dataset revealed several functionally related protein groups with individual interactions with FMRP. These include high representation of the RNA translation and processing machinery connected to FMRP and other RNA-binding regulators including CAPRIN1, the members of Pumilio (PUM) and CUG-BP, Elav-like (CELF) family, and YTH N(6)-methyladenosine RNA-binding proteins (YTHDF). The results of the current study point to the important role of FMRP and regulation of RNA processing in the rat DG and memory decline during the aging process.
Collapse
Affiliation(s)
- Roman Smidak
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Martina Kristofova
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Tamara Stojanovic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Jovana Malikovic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Daniel D Feyissa
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Volker Korz
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Harald Hoeger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Judit Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| |
Collapse
|
37
|
Pellerin D, Lortie A, Corbin F. Platelets as a surrogate disease model of neurodevelopmental disorders: Insights from Fragile X Syndrome. Platelets 2017; 29:113-124. [PMID: 28660769 DOI: 10.1080/09537104.2017.1317733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism spectrum disorders (ASD). Despite a large number of therapeutics developed in past years, there is currently no targeted treatment approved for FXS. In fact, translation of the positive and very promising preclinical findings from animal models to human subjects has so far fallen short owing in part to the low predictive validity of the Fmr1 ko mouse, an overly simplistic model of the complex human disease. This issue stresses the critical need to identify new surrogate human peripheral cell models of FXS, which may in fact allow for the identification of novel and more efficient therapies. Of all described models, blood platelets appear to be one of the most promising and appropriate disease models of FXS, in part owing to their close biochemical similarities with neurons. Noteworthy, they also recapitulate some of FXS neuron's core molecular dysregulations, such as hyperactivity of the MAPK/ERK and PI3K/Akt/mTOR pathways, elevated enzymatic activity of MMP9 and decreased production of cAMP. Platelets might therefore help furthering our understanding of FXS pathophysiology and might also lead to the identification of disease-specific biomarkers, as was shown in several psychiatric disorders such as schizophrenia and Alzheimer's disease. Moreover, there is additional evidence suggesting that platelet signaling may assist with prediction of cognitive phenotype and could represent a potent readout of drug efficacy in clinical trials. Globally, given the neurobiological overlap between different forms of intellectual disability, platelets may be a valuable window to access the molecular underpinnings of ASD and other neurodevelopmental disorders (NDD) sharing similar synaptic plasticity defects with FXS. Platelets are indeed an attractive model for unraveling pathophysiological mechanisms involved in NDD as well as to search for diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- David Pellerin
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , QC , Canada.,b Department of Neurology and Neurosurgery, Faculty of Medicine , McGill University , Montreal , QC , Canada
| | - Audrey Lortie
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , QC , Canada
| | - François Corbin
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , QC , Canada
| |
Collapse
|
38
|
McDiarmid TA, Bernardos AC, Rankin CH. Habituation is altered in neuropsychiatric disorders-A comprehensive review with recommendations for experimental design and analysis. Neurosci Biobehav Rev 2017; 80:286-305. [PMID: 28579490 DOI: 10.1016/j.neubiorev.2017.05.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/29/2017] [Indexed: 02/03/2023]
Abstract
Abnormalities in the simplest form of learning, habituation, have been reported in a variety of neuropsychiatric disorders as etiologically diverse as Autism Spectrum Disorder, Fragile X syndrome, Schizophrenia, Parkinson's Disease, Huntington's Disease, Attention Deficit Hyperactivity Disorder, Tourette's Syndrome, and Migraine. Here we provide the first comprehensive review of what is known about alterations in this form of non-associative learning in each disorder. Across several disorders, abnormal habituation is predictive of symptom severity, highlighting the clinical significance of habituation and its importance to normal cognitive function. Abnormal habituation is discussed within the greater framework of learning theory and how it may relate to disease phenotype either as a cause, symptom, or therapy. Important considerations for the design and interpretation of habituation experiments are outlined with the hope that these will aid both clinicians and basic researchers investigating how this simple form of learning is altered in disease.
Collapse
Affiliation(s)
- Troy A McDiarmid
- Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada
| | - Aram C Bernardos
- Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada
| | - Catharine H Rankin
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada.
| |
Collapse
|
39
|
Kobayashi S, Tanaka T, Soeda Y, Almeida OFX, Takashima A. Local Somatodendritic Translation and Hyperphosphorylation of Tau Protein Triggered by AMPA and NMDA Receptor Stimulation. EBioMedicine 2017; 20:120-126. [PMID: 28566250 PMCID: PMC5478209 DOI: 10.1016/j.ebiom.2017.05.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 01/19/2023] Open
Abstract
Tau is a major component of the neurofibrillary tangles (NFT) that represent a pathological hallmark of Alzheimer's disease (AD). Although generally considered an axonal protein, Tau is found in the somato-dendritic compartment of degenerating neurons and this redistribution is thought to be a trigger of neurodegeneration in AD. Here, we show the presence of tau mRNA in a dendritic ribonucleoprotein (RNP) complex that includes Ca2+-calmodulin dependent protein kinase (CaMK)IIα mRNA and that is translated locally in response to glutamate stimulation. Further, we show that Tau mRNA is a component of mRNP granules that contain RNA-binding proteins, and that it interacts with Myosin Va, a postsynaptic motor protein; these findings suggest that tau mRNA is transported into dendritic spines. We also report that tau mRNA localized in the somato-dendritic component of primary hippocampal cells and that a sub-toxic concentration of glutamate enhances local translation and hyperphosphorylation of tau, effects that are blocked by the gluatamatergic antagonists MK801 and NBQX. These data thus demonstrate that alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-d-aspartate (NMDA) stimulation redistributes tau to the somato-dendritic region of neurons where it may trigger neurodegeneration.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Department of Biochemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Toru Tanaka
- Department of Biochemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Yoshiyuki Soeda
- Clinical Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295 Fukushima, Japan
| | - Osborne F X Almeida
- Max Planck Institute of Psychiatry, Kraeplinstrasse 2-10, 80804 Munich, Germany
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan.
| |
Collapse
|
40
|
Belardi K, Watson LR, Faldowski RA, Hazlett H, Crais E, Baranek GT, McComish C, Patten E, Oller DK. A Retrospective Video Analysis of Canonical Babbling and Volubility in Infants with Fragile X Syndrome at 9-12 Months of Age. J Autism Dev Disord 2017; 47:1193-1206. [PMID: 28247019 PMCID: PMC5450668 DOI: 10.1007/s10803-017-3033-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An infant's vocal capacity develops significantly during the first year of life. Research suggests early measures of pre-speech development, such as canonical babbling and volubility, can differentiate typical versus disordered development. This study offers a new contribution by comparing early vocal development in 10 infants with Fragile X syndrome and 14 with typical development. Results suggest infants with Fragile X syndrome produce fewer syllables and have significantly lower canonical babbling ratios compared to infants who are typically developing. Furthermore, the particular measures of babbling were strong predictors of group membership, adding evidence regarding the possible utility of these markers in early identification.
Collapse
Affiliation(s)
- Katie Belardi
- The Department of Speech-Language Pathology, Duquesne University, 409 Fisher Hall, 701 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Linda R Watson
- The Department of Allied Health Sciences, The University of North Carolina - Chapel Hill, Bondurant Hall, CB #7190, Chapel Hill, NC, 27599-7190, USA
| | - Richard A Faldowski
- The Department of Allied Health Sciences and The Office of Research, The University of North Carolina - Chapel Hill, Bondurant Hall, CB #7122, Chapel Hill, NC, 27599-7122, USA
| | - Heather Hazlett
- The Carolina Institute for Developmental Disabilities, The University of North Carolina - Chapel Hill, CB #7255, Chapel Hill, NC, 27599-7255, USA
| | - Elizabeth Crais
- The Department of Allied Health Sciences, The University of North Carolina - Chapel Hill, Bondurant Hall, CB #7190, Chapel Hill, NC, 27599-7190, USA
| | - Grace T Baranek
- The Department of Allied Health Sciences and The Office of Research, The University of North Carolina - Chapel Hill, Bondurant Hall, CB #7122, Chapel Hill, NC, 27599-7122, USA
| | - Cara McComish
- The Department of Allied Health Sciences, The University of North Carolina - Chapel Hill, Bondurant Hall, CB #7190, Chapel Hill, NC, 27599-7190, USA
| | - Elena Patten
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, 434 South Stadium Hall, Knoxville, TN, 37996, USA
| | - D Kimbrough Oller
- The University of Memphis, 807 Jefferson Avenue, Memphis, TN, 28105, USA
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
41
|
Behavioral effects of chronic stress in the Fmr1 mouse model for fragile X syndrome. Behav Brain Res 2017; 320:128-135. [PMID: 27939692 DOI: 10.1016/j.bbr.2016.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022]
Abstract
Fragile X Syndrome (FXS) is a pervasive developmental disorder due to a mutation in the FMR1 X-linked gene. Despite its clear genetic cause, the expression of FXS symptoms is known to be modulated by environmental factors, including stress. Furthermore, several studies have shown disturbances in stress regulatory systems in FXS patients and Fmr1 mice. These studies have mostly focused on the hormonal responses to stress, using the acute exposure to a single type of stressor. Hence, little is known about the behavioral effects of stress in FXS, and the importance of the nature of the stressing procedure, especially in the context of a repeated exposure that more closely resembles real life conditions. Here we evaluated the effects of chronic exposure to different types of stress (i.e., either repeated restraint or unpredictable stress) on the behavioral phenotype of adult Fmr1 mice. Our results demonstrated that chronic stress induced deficits in social interaction and working memory only in WT mice and the impact of stress depended on the type of stressors and the specific behavior tested. Our data suggest that the behavioral sensitivity to stress is dramatically reduced in FXS, opening new views on the impact of gene-environment interactions in this pathology.
Collapse
|
42
|
Vose LR, Stanton PK. Synaptic Plasticity, Metaplasticity and Depression. Curr Neuropharmacol 2017; 15:71-86. [PMID: 26830964 PMCID: PMC5327460 DOI: 10.2174/1570159x14666160202121111] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/13/2015] [Accepted: 01/30/2016] [Indexed: 01/30/2023] Open
Abstract
The development of a persistent depressive affective state has for some time been thought to result from persistent alterations in neurotransmitter-mediated synaptic transmission. While the identity of those transmitters has changed over the years, the literature has lacked mechanistic connections between the neurophysiological mechanisms they regulate, and how these mechanisms alter neuronal function, and, hence, affective homeostasis. This review will examine recent work that suggests that both long-term activity-dependent changes in synaptic strength (“plasticity”), and shifting set points for the ease of induction of future long-term changes (“metaplasticity”), may be critical to establishing and reversing a depressive behavioral state. Activity-dependent long-term synaptic plasticity involves both strengthening and weakening of synaptic connections associated with a dizzying array of neurochemical alterations that include synaptic insertion and removal of a number of subtypes of AMPA, NMDA and metabotropic glutamate receptors, changes in presynaptic glutamate release, and structural changes in dendritic spines. Cellular mechanisms of metaplasticity are far less well understood. Here, we will review the growing evidence that long-term synaptic changes in glutamatergic transmission, in brain regions that regulate mood, are key determinants of affective homeostasis and therapeutic targets with immense potential for drug development.
Collapse
Affiliation(s)
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
43
|
Scharkowski F, Frotscher M, Lutz D, Korte M, Michaelsen-Preusse K. Altered Connectivity and Synapse Maturation of the Hippocampal Mossy Fiber Pathway in a Mouse Model of the Fragile X Syndrome. Cereb Cortex 2017; 28:852-867. [DOI: 10.1093/cercor/bhw408] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- F Scharkowski
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
| | - Michael Frotscher
- ZMNH, Institute for Structural Neurobiology, D-20251 Hamburg, Germany
| | - David Lutz
- ZMNH, Institute for Structural Neurobiology, D-20251 Hamburg, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
- Helmholtz Centre for Infection Research, AG NIND, 38124 Braunschweig, Germany
| | | |
Collapse
|
44
|
Bullard L, McDuffie A, Abbeduto L. Distance delivery of a parent-implemented language intervention for young boys with fragile X syndrome. AUTISM & DEVELOPMENTAL LANGUAGE IMPAIRMENTS 2017; 2:10.1177/2396941517728690. [PMID: 30417116 PMCID: PMC6223638 DOI: 10.1177/2396941517728690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND In addition to significant cognitive delays, boys with fragile X syndrome display phenotypic characteristics that include delays in language, inattention, social anxiety, and escape-maintained challenging behaviors. Despite these challenges, families affected by fragile X syndrome often have limited access to center-based intervention programs. METHODS The present study utilized a multiple baseline design across participants to examine the preliminary effectiveness of a 12-week, parent-implemented spoken language intervention for three 5- to 7-year-old boys with fragile X syndrome. The goal of the intervention was to teach the biological mothers of each boy to use a set of verbally responsive language support strategies while participating in shared book reading activities with her child. All aspects of the intervention, including pre- and post-treatment measures, were delivered into the family's home via distance video teleconferencing. RESULTS Results from this study provide preliminary support for the efficacy of this parent-implemented language intervention approach by demonstrating generalized improvements in both targeted maternal strategy use and measures of child spoken language. CONCLUSIONS The present study expands upon prior language intervention research utilizing distance delivery of services for families affected by fragile X syndrome. Additionally, the study provides early support for the feasibility of collecting pre- and post-treatment assessments at a distance.
Collapse
|
45
|
Anatomy and Cell Biology of Autism Spectrum Disorder: Lessons from Human Genetics. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 224:1-25. [PMID: 28551748 DOI: 10.1007/978-3-319-52498-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Until recently autism spectrum disorder (ASD) was regarded as a neurodevelopmental condition with unknown causes and pathogenesis. In the footsteps of the revolution of genome technologies and genetics, and with its high degree of heritability, ASD became the first neuropsychiatric disorder for which clues towards molecular and cellular pathogenesis were uncovered by genetic identification of susceptibility genes. Currently several hundreds of risk genes have been assigned, with a recurrence below 1% in the ASD population. The multitude and diversity of known ASD genes has extended the clinical notion that ASD comprises very heterogeneous conditions ranging from severe intellectual disabilities to mild high-functioning forms. The results of genetics have allowed to pinpoint a limited number of cellular and molecular processes likely involved in ASD including protein synthesis, signal transduction, transcription/chromatin remodelling and synaptic function all playing an essential role in the regulation of synaptic homeostasis during brain development. In this context, we highlight the role of protein synthesis as a key process in ASD pathogenesis as it might be central in synaptic deregulation and a potential target for intervention. These current insights should lead to a rational design of interventions in molecular and cellular pathways of ASD pathogenesis that may be applied to affected individuals in the future.
Collapse
|
46
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
47
|
Constantin L. The Role of MicroRNAs in Cerebellar Development and Autism Spectrum Disorder During Embryogenesis. Mol Neurobiol 2016; 54:6944-6959. [PMID: 27774573 DOI: 10.1007/s12035-016-0220-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/12/2016] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules with wide-ranging and subtle effects on protein production. Their activity during the development of the cerebellum provides a valuable exemplar of how non-coding molecules may assist the development and function of the central nervous system and drive neurodevelopmental disorders. Three distinct aspects of miRNA contribution to early cerebellar development will here be reviewed. Aspects are the establishment of the cerebellar anlage, the generation and maturation of at least two principal cell types of the developing cerebellar microcircuit, and the etiology and early progression of autism spectrum disorder. It will be argued here that the autism spectrum is an adept model to explore miRNA impact on the cognitive and affective processes that descend from the developing cerebellum.
Collapse
Affiliation(s)
- Lena Constantin
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
48
|
Sweatt JD. Neural plasticity and behavior - sixty years of conceptual advances. J Neurochem 2016; 139 Suppl 2:179-199. [PMID: 26875778 DOI: 10.1111/jnc.13580] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
This brief review summarizes 60 years of conceptual advances that have demonstrated a role for active changes in neuronal connectivity as a controller of behavior and behavioral change. Seminal studies in the first phase of the six-decade span of this review firmly established the cellular basis of behavior - a concept that we take for granted now, but which was an open question at the time. Hebbian plasticity, including long-term potentiation and long-term depression, was then discovered as being important for local circuit refinement in the context of memory formation and behavioral change and stabilization in the mammalian central nervous system. Direct demonstration of plasticity of neuronal circuit function in vivo, for example, hippocampal neurons forming place cell firing patterns, extended this concept. However, additional neurophysiologic and computational studies demonstrated that circuit development and stabilization additionally relies on non-Hebbian, homoeostatic, forms of plasticity, such as synaptic scaling and control of membrane intrinsic properties. Activity-dependent neurodevelopment was found to be associated with cell-wide adjustments in post-synaptic receptor density, and found to occur in conjunction with synaptic pruning. Pioneering cellular neurophysiologic studies demonstrated the critical roles of transmembrane signal transduction, NMDA receptor regulation, regulation of neural membrane biophysical properties, and back-propagating action potential in critical time-dependent coincidence detection in behavior-modifying circuits. Concerning the molecular mechanisms underlying these processes, regulation of gene transcription was found to serve as a bridge between experience and behavioral change, closing the 'nature versus nurture' divide. Both active DNA (de)methylation and regulation of chromatin structure have been validated as crucial regulators of gene transcription during learning. The discovery of protein synthesis dependence on the acquisition of behavioral change was an influential discovery in the neurochemistry of behavioral modification. Higher order cognitive functions such as decision making and spatial and language learning were also discovered to hinge on neural plasticity mechanisms. The role of disruption of these processes in intellectual disabilities, memory disorders, and drug addiction has recently been clarified based on modern genetic techniques, including in the human. The area of neural plasticity and behavior has seen tremendous advances over the last six decades, with many of those advances being specifically in the neurochemistry domain. This review provides an overview of the progress in the area of neuroplasticity and behavior over the life-span of the Journal of Neurochemistry. To organize the broad literature base, the review collates progress into fifteen broad categories identified as 'conceptual advances', as viewed by the author. The fifteen areas are delineated in the figure above. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- J David Sweatt
- Department of Neurobiology, Evelyn F. McKnight Brain Institute and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
49
|
Hall SS, Dougherty RF, Reiss AL. Profiles of aberrant white matter microstructure in fragile X syndrome. Neuroimage Clin 2016; 11:133-138. [PMID: 26937381 PMCID: PMC4753809 DOI: 10.1016/j.nicl.2016.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 01/28/2023]
Abstract
Previous studies attempting to quantify white matter (WM) microstructure in individuals with fragile X syndrome (FXS) have produced inconsistent findings, most likely due to the various control groups employed, differing analysis methods, and failure to examine for potential motion artifact. In addition, analyses have heretofore lacked sufficient specificity to provide regional information. In this study, we used Automated Fiber-tract Quantification (AFQ) to identify specific regions of aberrant WM microstructure along WM tracts in patients with FXS that differed from controls who were matched on age, IQ and degree of autistic symptoms. Participants were 20 patients with FXS, aged 10 to 23 years, and 20 matched controls. Using Automated Fiber-tract Quantification (AFQ), we created Tract Profiles of fractional anisotropy and mean diffusivity along 18 major WM fascicles. We found that fractional anisotropy was significantly increased in the left and right inferior longitudinal fasciculus (ILF), right uncinate fasciculus, and left cingulum hippocampus in individuals with FXS compared to controls. Conversely, mean diffusivity was significantly decreased in the right ILF in patients with FXS compared to controls. Age was significantly negatively associated with MD values across both groups in 11 tracts. Taken together, these findings indicate that FXS results in abnormal WM microstructure in specific regions of the ILF and uncinate fasciculus, most likely caused by inefficient synaptic pruning as a result of decreased or absent Fragile X Mental Retardation Protein (FMRP). Longitudinal studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Scott S Hall
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| | - Robert F Dougherty
- Center for Neurobiological Imaging (CNI), Stanford University, Stanford, CA, United States
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
50
|
Hall SS, Frank MC, Pusiol GT, Farzin F, Lightbody AA, Reiss AL. Quantifying naturalistic social gaze in fragile X syndrome using a novel eye tracking paradigm. Am J Med Genet B Neuropsychiatr Genet 2015; 168:564-72. [PMID: 26079280 PMCID: PMC5759950 DOI: 10.1002/ajmg.b.32331] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/22/2015] [Indexed: 02/02/2023]
Abstract
A hallmark behavioral feature of fragile X syndrome (FXS) is the propensity for individuals with the syndrome to exhibit significant impairments in social gaze during interactions with others. However, previous studies employing eye tracking methodology to investigate this phenomenon have been limited to presenting static photographs or videos of social interactions rather than employing a real-life social partner. To improve upon previous studies, we used a customized eye tracking configuration to quantify the social gaze of 51 individuals with FXS and 19 controls, aged 14-28 years, while they engaged in a naturalistic face-to-face social interaction with a female experimenter. Importantly, our control group was matched to the FXS group on age, developmental functioning, and degree of autistic symptomatology. Results showed that participants with FXS spent significantly less time looking at the face and had shorter episodes (and longer inter-episodes) of social gaze than controls. Regression analyses indicated that communication ability predicted higher levels of social gaze in individuals with FXS, but not in controls. Conversely, degree of autistic symptoms predicted lower levels of social gaze in controls, but not in individuals with FXS. Taken together, these data indicate that naturalistic social gaze in FXS can be measured objectively using existing eye tracking technology during face-to-face social interactions. Given that impairments in social gaze were specific to FXS, this paradigm could be employed as an objective and ecologically valid outcome measure in ongoing Phase II/Phase III clinical trials of FXS-specific interventions.
Collapse
Affiliation(s)
- Scott S. Hall
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, California
| | - Michael C. Frank
- Department of Psychology, Stanford University, Stanford, California
| | - Guido T. Pusiol
- Department of Psychology, Stanford University, Stanford, California
| | - Faraz Farzin
- Department of Psychology, Stanford University, Stanford, California
| | - Amy A. Lightbody
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, California
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, California
| |
Collapse
|