1
|
Naake T, D'Auria JC, Fernie AR, Scossa F. Phylogenomic and synteny analysis of BAHD and SCP/SCPL gene families reveal their evolutionary histories in plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230349. [PMID: 39343028 PMCID: PMC11449225 DOI: 10.1098/rstb.2023.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/12/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024] Open
Abstract
Plant chemical diversity is largely owing to a number of enzymes which catalyse reactions involved in the assembly, and in the subsequent chemical modifications, of the core structures of major classes of plant specialized metabolites. One such reaction is acylation. With this in mind, to study the deep evolutionary history of BAHD and the serine-carboxypeptidase-like (SCPL) acyltransferase genes, we assembled phylogenomic synteny networks based on a large-scale inference analysis of orthologues across whole-genome sequences of 126 species spanning Stramenopiles and Archaeplastida, including Arabidopsis thaliana, tomato (Solanum lycopersicum) and maize (Zea mays). As such, this study combined the study of genomic location with changes in gene sequences. Our analyses revealed that serine-carboxypeptidase (SCP)/serine-carboxypeptidase-like (SCPL) genes had a deeper evolutionary origin than BAHD genes, which expanded massively on the transition to land and with the development of the vascular system. The two gene families additionally display quite distinct patterns of copy number variation across phylogenies as well as differences in cross-phylogenetic syntenic network components. In unlocking the above observations, our analyses demonstrate the possibilities afforded by modern phylogenomic (syntenic) networks, but also highlight their current limitations, as demonstrated by the inability of phylogenetic methods to separate authentic SCPL acyltransferases from standard SCP peptide hydrolases.This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Thomas Naake
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - John C D'Auria
- Leibniz Institute of Crop Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics, Rome, Italy
| |
Collapse
|
2
|
Carr SC, Rehman F, Hagel JM, Chen X, Ng KKS, Facchini PJ. Two ubiquitous aldo-keto reductases in the genus Papaver support a patchwork model for morphine pathway evolution. Commun Biol 2024; 7:1410. [PMID: 39472466 PMCID: PMC11522673 DOI: 10.1038/s42003-024-07100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The evolution of morphinan alkaloid biosynthesis in plants of the genus Papaver includes permutation of several processes including gene duplication, fusion, neofunctionalization, and deletion resulting in the present chemotaxonomy. A critical gene fusion event resulting in the key bifunctional enzyme reticuline epimerase (REPI), which catalyzes the stereochemical inversion of (S)-reticuline, was suggested to precede neofunctionalization of downstream enzymes leading to morphine biosynthesis in opium poppy (Papaver somniferum). The ancestrally related aldo-keto reductases 1,2-dehydroreticuline reductase (DRR), which occurs in some species as a component of REPI, and codeinone reductase (COR) catalyze the second and penultimate steps, respectively, in the pathway converting (S)-reticuline to morphine. Orthologs for each enzyme isolated from the transcriptomes of 12 Papaver species were shown to catalyze their respective reactions in species that capture states of the metabolic pathway prior to key evolutionary events, including the gene fusion event leading to REPI, thus suggesting a patchwork model for pathway evolution. Analysis of the structure and substrate preferences of DRR orthologs in comparison with COR orthologs revealed structure-function relationships underpinning the functional latency of DRR and COR orthologs in the genus Papaver, thus providing insights into the molecular events leading to the evolution of the pathway.
Collapse
Affiliation(s)
- Samuel C Carr
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Fasih Rehman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Enveric Biosciences Inc., Calgary, AB, Canada
| | - Xue Chen
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Kenneth K S Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Negin B, Wang F, Fischer HD, Jander G. Acylsugars, Nicotine and a Protease Inhibitor Provide Variable Protection for Nicotiana benthamiana in a Natural Setting. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39400373 DOI: 10.1111/pce.15195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Plants produce an immense diversity of defensive specialized metabolites. However, despite extensive functional characterization, the relative importance of different defensive compounds is rarely examined in natural settings. Here, we compare the efficacy of three Nicotiana benthamiana defensive compounds, nicotine, acylsugars and a serine protease inhibitor, by growing plants with combinations of knockout mutations in a natural setting, quantifying invertebrate interactions and comparing relative plant performance. Among the three tested compounds, acylsugars had the greatest defensive capacity, affecting aphids, leafhoppers, spiders and flies. Nicotine mutants displayed increased leafhopper feeding and aphid colonization. Plants lacking both nicotine and acylsugars were more susceptible to flea beetles and thrips. By contrast, knockout of the serine protease inhibitor did not affect insect herbivory in the field. Complementary experiments under controlled laboratory conditions with caterpillars, grasshoppers and aphids confirmed results obtained in a natural setting. We conclude that the three metabolite groups collectively provide broad-spectrum protection to N. benthamiana. However, there is a gradient in their effects on the interacting invertebrates present in the field. Furthermore, we demonstrate that, even if individual metabolites do not have a measurable defensive benefit on their own, they can have an additive effect when combined with other defensive compounds.
Collapse
Affiliation(s)
- Boaz Negin
- Boyce Thompson Institute, Ithaca, New York, USA
| | - Fumin Wang
- Boyce Thompson Institute, Ithaca, New York, USA
| | | | | |
Collapse
|
4
|
Fiesel PD, Kerwin RE, Jones AD, Last RL. Trading acyls and swapping sugars: metabolic innovations in Solanum trichomes. PLANT PHYSIOLOGY 2024; 196:1231-1253. [PMID: 38748602 PMCID: PMC11444299 DOI: 10.1093/plphys/kiae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024]
Abstract
Solanaceae (nightshade family) species synthesize a remarkable array of clade- and tissue-specific specialized metabolites. Protective acylsugars, one such class of structurally diverse metabolites, are produced by ACYLSUGAR ACYLTRANSFERASE (ASAT) enzymes from sugars and acyl-coenzyme A esters. Published research has revealed trichome acylsugars composed of glucose and sucrose cores in species across the family. In addition, acylsugars have been analyzed across a small fraction of the >1,200 species in the phenotypically megadiverse Solanum genus, with a handful containing inositol and glycosylated inositol cores. The current study sampled several dozen species across subclades of Solanum to get a more detailed view of acylsugar chemodiversity. In depth characterization of acylsugars from the clade II species brinjal eggplant (Solanum melongena) led to the identification of eight unusual structures with inositol or inositol glycoside cores and hydroxyacyl chains. Liquid chromatography-mass spectrometry analysis of 31 additional species in the Solanum genus revealed striking acylsugar diversity, with some traits restricted to specific clades and species. Acylinositols and inositol-based acyldisaccharides were detected throughout much of the genus. In contrast, acylglucoses and acylsucroses were more restricted in distribution. Analysis of tissue-specific transcriptomes and interspecific acylsugar acetylation differences led to the identification of the brinjal eggplant ASAT 3-LIKE 1 (SmASAT3-L1; SMEL4.1_12g015780) enzyme. This enzyme is distinct from previously characterized acylsugar acetyltransferases, which are in the ASAT4 clade, and appears to be a functionally divergent ASAT3. This study provides a foundation for investigating the evolution and function of diverse Solanum acylsugar structures and harnessing this diversity in breeding and synthetic biology.
Collapse
Affiliation(s)
- Paul D Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
| | - Rachel E Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48823, USA
| |
Collapse
|
5
|
Pereira L. A tale of sugars' tails-diverse acyl chains decorate sugars in Solanum species' trichomes. PLANT PHYSIOLOGY 2024; 196:686-688. [PMID: 38876086 PMCID: PMC11444274 DOI: 10.1093/plphys/kiae345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Affiliation(s)
- Lara Pereira
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
6
|
Vendemiatti E, Hernández-De Lira IO, Snijders R, Torne-Srivastava T, Therezan R, Simioni Prants G, Lopez-Ortiz C, Reddy UK, Bleeker P, Schenck CA, Peres LEP, Benedito VA. Woolly mutation with the Get02 locus overcomes the polygenic nature of trichome-based pest resistance in tomato. PLANT PHYSIOLOGY 2024; 195:911-923. [PMID: 38466177 DOI: 10.1093/plphys/kiae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Type-IV glandular trichomes, which only occur in the juvenile developmental phase of the cultivated tomato (Solanum lycopersicum), produce acylsugars that broadly protect against arthropod herbivory. Previously, we introgressed the capacity to retain type-IV trichomes in the adult phase from the wild tomato, Solanum galapagense, into the cultivated species cv. Micro-Tom (MT). The resulting MT-Galapagos enhanced trichome (MT-Get) introgression line contained 5 loci associated with enhancing the density of type-IV trichomes in adult plants. We genetically dissected MT-Get and obtained a subline containing only the locus on Chromosome 2 (MT-Get02). This genotype displayed about half the density of type-IV trichomes compared to the wild progenitor. However, when we stacked the gain-of-function allele of WOOLLY, which encodes a homeodomain leucine zipper IV transcription factor, Get02/Wo exhibited double the number of type-IV trichomes compared to S. galapagense. This discovery corroborates previous reports positioning WOOLLY as a master regulator of trichome development. Acylsugar levels in Get02/Wo were comparable to the wild progenitor, although the composition of acylsugar types differed, especially regarding fewer types with medium-length acyl chains. Agronomical parameters of Get02/Wo, including yield, were comparable to MT. Pest resistance assays showed enhanced protection against silverleaf whitefly (Bemisia tabaci), tobacco hornworm (Manduca sexta), and the fungus Septoria lycopersici. However, resistance levels did not reach those of the wild progenitor, suggesting the specificity of acylsugar types in the pest resistance mechanism. Our findings in trichome-mediated resistance advance the development of robust, naturally resistant tomato varieties, harnessing the potential of natural genetic variation. Moreover, by manipulating only 2 loci, we achieved exceptional results for a highly complex, polygenic trait, such as herbivory resistance in tomato.
Collapse
Affiliation(s)
- Eloisa Vendemiatti
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, WV 26506-6108, USA
| | - Inty Omar Hernández-De Lira
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, WV 26506-6108, USA
| | - Roxane Snijders
- Swammerdam Institute for Life Sciences, Green Life Sciences Research Cluster, The University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Tanmayee Torne-Srivastava
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Rodrigo Therezan
- Swammerdam Institute for Life Sciences, Green Life Sciences Research Cluster, The University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Gabriela Simioni Prants
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Carlos Lopez-Ortiz
- Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Umesh K Reddy
- Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Petra Bleeker
- Swammerdam Institute for Life Sciences, Green Life Sciences Research Cluster, The University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Craig A Schenck
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Lázaro Eustáquio Pereira Peres
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Vagner Augusto Benedito
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, WV 26506-6108, USA
| |
Collapse
|
7
|
Kerwin RE, Hart JE, Fiesel PD, Lou YR, Fan P, Jones AD, Last RL. Tomato root specialized metabolites evolved through gene duplication and regulatory divergence within a biosynthetic gene cluster. SCIENCE ADVANCES 2024; 10:eadn3991. [PMID: 38657073 PMCID: PMC11094762 DOI: 10.1126/sciadv.adn3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Tremendous plant metabolic diversity arises from phylogenetically restricted specialized metabolic pathways. Specialized metabolites are synthesized in dedicated cells or tissues, with pathway genes sometimes colocalizing in biosynthetic gene clusters (BGCs). However, the mechanisms by which spatial expression patterns arise and the role of BGCs in pathway evolution remain underappreciated. In this study, we investigated the mechanisms driving acylsugar evolution in the Solanaceae. Previously thought to be restricted to glandular trichomes, acylsugars were recently found in cultivated tomato roots. We demonstrated that acylsugars in cultivated tomato roots and trichomes have different sugar cores, identified root-enriched paralogs of trichome acylsugar pathway genes, and characterized a key paralog required for root acylsugar biosynthesis, SlASAT1-LIKE (SlASAT1-L), which is nested within a previously reported trichome acylsugar BGC. Last, we provided evidence that ASAT1-L arose through duplication of its paralog, ASAT1, and was trichome-expressed before acquiring root-specific expression in the Solanum genus. Our results illuminate the genomic context and molecular mechanisms underpinning metabolic diversity in plants.
Collapse
Affiliation(s)
- Rachel E. Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jaynee E. Hart
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Fiesel PD, Kerwin RE, Daniel Jones A, Last RL. Trading acyls and swapping sugars: metabolic innovations in Solanum trichomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.05.542877. [PMID: 37333341 PMCID: PMC10274652 DOI: 10.1101/2023.06.05.542877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Solanaceae (nightshade family) species synthesize a remarkable array of clade- and tissue-specific specialized metabolites. Protective acylsugars, one such class of structurally diverse metabolites, are produced by AcylSugar AcylTransferases from sugars and acyl-coenzyme A esters. Published research revealed trichome acylsugars composed of glucose and sucrose cores in species across the family. In addition, acylsugars were analyzed across a small fraction of the >1200 species in the phenotypically megadiverse Solanum genus, with a handful containing inositol and glycosylated inositol cores. The current study sampled several dozen species across subclades of the Solanum to get a more detailed view of acylsugar chemodiversity. In depth characterization of acylsugars from the Clade II species Solanum melongena (brinjal eggplant) led to the identification of eight unusual structures with inositol or inositol glycoside cores, and hydroxyacyl chains. Liquid chromatography-mass spectrometry analysis of 31 additional species in the Solanum genus revealed striking acylsugar diversity with some traits restricted to specific clades and species. Acylinositols and inositol-based acyldisaccharides were detected throughout much of the genus. In contrast, acylglucoses and acylsucroses were more restricted in distribution. Analysis of tissue-specific transcriptomes and interspecific acylsugar acetylation differences led to the identification of the S. melongena AcylSugar AcylTransferase 3-Like 1 (SmASAT3-L1; SMEL4.1_12g015780) enzyme. This enzyme is distinct from previously characterized acylsugar acetyltransferases, which are in the ASAT4 clade, and appears to be a functionally divergent ASAT3. This study provides a foundation for investigating the evolution and function of diverse Solanum acylsugar structures and harnessing this diversity in breeding and synthetic biology.
Collapse
Affiliation(s)
- Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
| | - Rachel E. Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823 USA
| |
Collapse
|
9
|
Sonawane PD, Gharat SA, Jozwiak A, Barbole R, Heinicke S, Almekias-Siegl E, Meir S, Rogachev I, Connor SEO, Giri AP, Aharoni A. A BAHD-type acyltransferase concludes the biosynthetic pathway of non-bitter glycoalkaloids in ripe tomato fruit. Nat Commun 2023; 14:4540. [PMID: 37500644 PMCID: PMC10374582 DOI: 10.1038/s41467-023-40092-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Tomato is the highest value fruit and vegetable crop worldwide, yet produces α-tomatine, a renowned toxic and bitter-tasting anti-nutritional steroidal glycoalkaloid (SGA) involved in plant defense. A suite of modifications during tomato fruit maturation and ripening converts α-tomatine to the non-bitter and less toxic Esculeoside A. This important metabolic shift prevents bitterness and toxicity in ripe tomato fruit. While the enzymes catalyzing glycosylation and hydroxylation reactions in the Esculeoside A pathway have been resolved, the proposed acetylating step remains, to date, elusive. Here, we discovered that GAME36 (GLYCOALKALOID METABOLISM36), a BAHD-type acyltransferase catalyzes SGA-acetylation in cultivated and wild tomatoes. This finding completes the elucidation of the core Esculeoside A biosynthetic pathway in ripe tomato, allowing reconstitution of Esculeoside A production in heterologous microbial and plant hosts. The involvement of GAME36 in bitter SGA detoxification pathway points to a key role in the evolution of sweet-tasting tomato as well as in the domestication and breeding of modern cultivated tomato fruit.
Collapse
Affiliation(s)
- Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany.
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Efrat Almekias-Siegl
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarah E O' Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Ashok P Giri
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
10
|
Teng Y, Lan P, White LV, Banwell MG. The useful biological properties of sucrose esters: Opportunities for the development of new functional foods. Crit Rev Food Sci Nutr 2023; 64:8018-8035. [PMID: 37068001 DOI: 10.1080/10408398.2023.2194438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Sucrose esters have been deployed as surfactants in many food products since the 1950s. In addition to their useful physical characteristics, sucrose esters also have interesting biological properties that enhance their utility. This review critically examines the broad suite of biological activities that has been attributed to both synthetically-derived and naturally-occurring sucrose esters. These include insecticidal, molluscicidal, plant growth-regulating, anti-microbial, anti-tumor, anti-oxidant, anti-depressive, neuro-protective, anti-inflammatory and anti-plasmodial effects. In addition to providing a summary of the structure-activity profiles of sucrose esters, the various known mechanisms-of action of these compounds are also discussed. Furthermore, since sucrose esters are well-known surfactants, the potential to advantageously apply their industrially desirable physical characteristics in combination with their biological properties is considered. Recent advances in synthetic chemistry that have facilitated the deployment of biologically active sucrose esters as food additives are also described.
Collapse
Affiliation(s)
- Yinglai Teng
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Martin G Banwell
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Mutschler MA, Kennedy GG, Ullman DE. Acylsugar-mediated resistance as part of a multilayered defense against thrips, orthotospoviruses, and beyond. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101021. [PMID: 36925103 DOI: 10.1016/j.cois.2023.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 05/03/2023]
Abstract
Resistant varieties are critical tools for crop production, and single-resistance genes providing strong protection against pests or pathogens are deployed in agriculture. Durability of these traits is threatened by emergence of resistance-breaking pests and pathogens. This review focuses on acylsugar-mediated resistance in tomato. Wild tomatoes have type-IV trichomes that exude chemically complex mixtures of acylsugars altering behavior and suppressing multiple pest species, and with thrips and whiteflies (WF), suppressing virus transmission, for example, Tomato spotted wilt orthotospovirus and Tomato yellow leaf curl virus, respectively. Marker-assisted selection and bioassays led to development of advanced cultivated tomato breeding lines rich in acylsugar variations, allowing acylsugar-mediated resistance to be combined with other resistance traits providing a layered defense system that reduces pest populations and virus disease prevalence. This strategy also holds promise for enhancing durability of virus resistance genes by reducing the intensity of selection for resistance-breaking variants.
Collapse
|
12
|
Ji W, Mandal S, Rezenom YH, McKnight TD. Specialized metabolism by trichome-enriched Rubisco and fatty acid synthase components. PLANT PHYSIOLOGY 2023; 191:1199-1213. [PMID: 36264116 PMCID: PMC9922422 DOI: 10.1093/plphys/kiac487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Acylsugars, specialized metabolites with defense activities, are secreted by trichomes of many solanaceous plants. Several acylsugar metabolic genes (AMGs) remain unknown. We previously reported multiple candidate AMGs. Here, using multiple approaches, we characterized additional AMGs. First, we identified differentially expressed genes between high- and low-acylsugar-producing F2 plants derived from a cross between cultivated tomato (Solanum lycopersicum) and a wild relative (Solanum pennellii), which produce acylsugars that are ∼1% and ∼20% of leaf dry weight, respectively. Expression levels of many known and candidate AMGs positively correlated with acylsugar amounts in F2 individuals. Next, we identified lycopersicum-pennellii putative orthologs with higher nonsynonymous to synonymous substitutions. These analyses identified four candidate genes, three of which showed enriched expression in stem trichomes compared to underlying tissues (shaved stems). Virus-induced gene silencing confirmed two candidates, Sopen05g009610 [beta-ketoacyl-(acyl-carrier-protein) reductase; fatty acid synthase component] and Sopen07g006810 (Rubisco small subunit), as AMGs. Phylogenetic analysis indicated that Sopen05g009610 is distinct from specialized metabolic cytosolic reductases but closely related to two capsaicinoid biosynthetic reductases, suggesting evolutionary relationship between acylsugar and capsaicinoid biosynthesis. Analysis of publicly available datasets revealed enriched expression of Sopen05g009610 orthologs in trichomes of several acylsugar-producing species. Similarly, orthologs of Sopen07g006810 were identified as solanaceous trichome-enriched members, which form a phylogenetic clade distinct from those of mesophyll-expressed "regular" Rubisco small subunits. Furthermore, δ13C analyses indicated recycling of metabolic CO2 into acylsugars by Sopen07g006810 and showed how trichomes support high levels of specialized metabolite production. These findings have implications for genetic manipulation of trichome-specialized metabolism in solanaceous crops.
Collapse
Affiliation(s)
| | | | - Yohannes H Rezenom
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
13
|
Kruse LH, Fehr B, Chobirko JD, Moghe GD. Phylogenomic analyses across land plants reveals motifs and coexpression patterns useful for functional prediction in the BAHD acyltransferase family. FRONTIERS IN PLANT SCIENCE 2023; 14:1067613. [PMID: 36844084 PMCID: PMC9950517 DOI: 10.3389/fpls.2023.1067613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The BAHD acyltransferase family is one of the largest enzyme families in flowering plants, containing dozens to hundreds of genes in individual genomes. Highly prevalent in angiosperm genomes, members of this family contribute to several pathways in primary and specialized metabolism. In this study, we performed a phylogenomic analysis of the family using 52 genomes across the plant kingdom to gain deeper insights into its functional evolution and enable function prediction. We found that BAHD expansion in land plants was associated with significant changes in various gene features. Using pre-defined BAHD clades, we identified clade expansions in different plant groups. In some groups, these expansions coincided with the prominence of metabolite classes such as anthocyanins (flowering plants) and hydroxycinnamic acid amides (monocots). Clade-wise motif-enrichment analysis revealed that some clades have novel motifs fixed on either the acceptor or the donor side, potentially reflecting historical routes of functional evolution. Co-expression analysis in rice and Arabidopsis further identified BAHDs with similar expression patterns, however, most co-expressed BAHDs belonged to different clades. Comparing BAHD paralogs, we found that gene expression diverges rapidly after duplication, suggesting that sub/neo-functionalization of duplicate genes occurs quickly via expression diversification. Analyzing co-expression patterns in Arabidopsis in conjunction with orthology-based substrate class predictions and metabolic pathway models led to the recovery of metabolic processes of most of the already-characterized BAHDs as well as definition of novel functional predictions for some uncharacterized BAHDs. Overall, this study provides new insights into the evolution of BAHD acyltransferases and sets up a foundation for their functional characterization.
Collapse
Affiliation(s)
- Lars H. Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Fehr
- Computational Biology Department, Cornell University, Ithaca, NY, United States
| | - Jason D. Chobirko
- Molecular Biology and Genetics Department, Cornell University, Ithaca, NY, United States
| | - Gaurav D. Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
D’Esposito D, Guadagno A, Amoroso CG, Cascone P, Cencetti G, Michelozzi M, Guerrieri E, Ercolano MR. Genomic and metabolic profiling of two tomato contrasting cultivars for tolerance to Tuta absoluta. PLANTA 2023; 257:47. [PMID: 36708391 PMCID: PMC9884263 DOI: 10.1007/s00425-023-04073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Dissimilar patterns of variants affecting genes involved in response to herbivory, including those leading to difference in VOC production, were identified in tomato lines with contrasting response to Tuta absoluta. Tuta absoluta is one of the most destructive insect pest affecting tomato production, causing important yield losses both in open field and greenhouse. The selection of tolerant varieties to T. absoluta is one of the sustainable approaches to control this invasive leafminer. In this study, the genomic diversity of two tomato varieties, one tolerant and the other susceptible to T. absoluta infestation was explored, allowing us to identify chromosome regions with highly dissimilar pattern. Genes affected by potential functional variants were involved in several processes, including response to herbivory and secondary metabolism. A metabolic analysis for volatile organic compounds (VOCs) was also performed, highlighting a difference in several classes of chemicals in the two genotypes. Taken together, these findings can aid tomato breeding programs aiming to develop tolerant plants to T. absoluta.
Collapse
Affiliation(s)
- Daniela D’Esposito
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Anna Guadagno
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Ciro Gianmaria Amoroso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Pasquale Cascone
- Institute for Sustainable Plant Protection, National Research Council of Italy, 80055 Portici, NA Italy
| | - Gabriele Cencetti
- Institute of Biosciences and Bioresources, National Research Council of Italy, 50019 Sesto Fiorentino, FI Italy
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council of Italy, 50019 Sesto Fiorentino, FI Italy
| | - Emilio Guerrieri
- Institute for Sustainable Plant Protection, National Research Council of Italy, 80055 Portici, NA Italy
| | | |
Collapse
|
15
|
Schenck CA, Anthony TM, Jacobs M, Jones AD, Last RL. Natural variation meets synthetic biology: Promiscuous trichome-expressed acyltransferases from Nicotiana. PLANT PHYSIOLOGY 2022; 190:146-164. [PMID: 35477794 PMCID: PMC9434288 DOI: 10.1093/plphys/kiac192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Acylsugars are defensive, trichome-synthesized sugar esters produced in plants across the Solanaceae (nightshade) family. Although assembled from simple metabolites and synthesized by a relatively short core biosynthetic pathway, tremendous within- and across-species acylsugar structural variation is documented across the family. To advance our understanding of the diversity and the synthesis of acylsugars within the Nicotiana genus, trichome extracts were profiled across the genus coupled with transcriptomics-guided enzyme discovery and in vivo and in vitro analysis. Differences in the types of sugar cores, numbers of acylations, and acyl chain structures contributed to over 300 unique annotated acylsugars throughout Nicotiana. Placement of acyl chain length into a phylogenetic context revealed that an unsaturated acyl chain type was detected in a few closely related species. A comparative transcriptomics approach identified trichome-enriched Nicotiana acuminata acylsugar biosynthetic candidate enzymes. More than 25 acylsugar variants could be produced in a single enzyme assay with four N. acuminata acylsugar acyltransferases (NacASAT1-4) together with structurally diverse acyl-CoAs and sucrose. Liquid chromatography coupled with mass spectrometry screening of in vitro products revealed the ability of these enzymes to make acylsugars not present in Nicotiana plant extracts. In vitro acylsugar production also provided insights into acyltransferase acyl donor promiscuity and acyl acceptor specificity as well as regiospecificity of some ASATs. This study suggests that promiscuous Nicotiana acyltransferases can be used as synthetic biology tools to produce novel and potentially useful metabolites.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Thilani M Anthony
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - MacKenzie Jacobs
- Department of Physical Sciences and Mathematics, West Liberty University, West Liberty, West Virginia 26074, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
16
|
Chun JI, Kim SM, Jeong NR, Kim SH, Jung C, Kang JH. Tomato ARPC1 regulates trichome morphology and density and terpene biosynthesis. PLANTA 2022; 256:38. [PMID: 35821288 DOI: 10.1007/s00425-022-03955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Based on transcriptomic analysis of wild-type and mutant tomato plants, ARPC1 was found to be important for trichome formation and development and it plays a key role in terpene synthesis. Trichomes are protruding epidermal cells in plant species. They function as the first defense layer against biotic and abiotic stresses. Despite the essential role of tomato trichomes in defense against herbivores, the understanding of their development is still incomplete. Therefore, the aim of this study was to identify genes involved in trichome formation and morphology and terpene synthesis, using transcriptomic techniques. To achieve this, we examined leaf morphology and compared the expression levels of some putative genes involved in trichome formation between wild-type (WT) and hairless-3 (hl-3) tomato mutant. The hl-3 plants displayed swollen and distorted trichomes and reduced trichome density (type I and IV) and terpene synthesis compared with that of the WT plants. Gene expression analysis showed that Actin-Related Protein Component1 (ARPC1) was expressed more highly in the WT than in the hl-3 mutant, indicating its critical role in trichome morphology and density. Additionally, the expression of MYC1 and several terpene synthase genes (TPS9, 12, 20), which are involved in type VI trichome initiation and terpene synthesis, was lower in the hl-3 mutant than in the WT plants. Moreover, transformation of the hl-3 mutant with WT ARPC1 restored normal trichome structure and density, and terpene synthesis. Structural and amino acid sequence analysis showed that there was a missplicing mutation in the hl-3 mutant, which was responsible for the abnormal trichome structure and density, and impaired terpene synthesis. Overall, the findings of this study demonstrated that ARPC1 is involved in regulating trichome structure and terpene synthesis in tomato.
Collapse
Affiliation(s)
- Jae-In Chun
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institutes of Green-Bio Science and Technology, Seoul National University, Seoul, PyeongChang, 25354, Republic of Korea
| | - Seong-Min Kim
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institutes of Green-Bio Science and Technology, Seoul National University, Seoul, PyeongChang, 25354, Republic of Korea
| | - Na-Rae Jeong
- Department of International Agricultural Technology, Seoul National University, Seoul, PyeongChang, 25354, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Choonkyun Jung
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institutes of Green-Bio Science and Technology, Seoul National University, Seoul, PyeongChang, 25354, Republic of Korea
- Department of International Agricultural Technology, Seoul National University, Seoul, PyeongChang, 25354, Republic of Korea
| | - Jin-Ho Kang
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Institutes of Green-Bio Science and Technology, Seoul National University, Seoul, PyeongChang, 25354, Republic of Korea.
- Department of International Agricultural Technology, Seoul National University, Seoul, PyeongChang, 25354, Republic of Korea.
| |
Collapse
|
17
|
Schenck CA, Busta L. Using interdisciplinary, phylogeny-guided approaches to understand the evolution of plant metabolism. PLANT MOLECULAR BIOLOGY 2022; 109:355-367. [PMID: 34816350 DOI: 10.1007/s11103-021-01220-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
To cope with relentless environmental pressures, plants produce an arsenal of structurally diverse chemicals, often called specialized metabolites. These lineage-specific compounds are derived from the simple building blocks made by ubiquitous core metabolic pathways. Although the structures of many specialized metabolites are known, the underlying metabolic pathways and the evolutionary events that have shaped the plant chemical diversity landscape are only beginning to be understood. However, with the advent of multi-omics data sets and the relative ease of studying pathways in previously intractable non-model species, plant specialized metabolic pathways are now being systematically identified. These large datasets also provide a foundation for comparative, phylogeny-guided studies of plant metabolism. Comparisons of metabolic traits and features like chemical abundances, enzyme activities, or gene sequences from phylogenetically diverse plants provide insights into how metabolic pathways evolved. This review highlights the power of studying evolution through the lens of comparative biochemistry, particularly how placing metabolism into a phylogenetic context can help a researcher identify the metabolic innovations enabling the evolution of structurally diverse plant metabolites.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, USA
| |
Collapse
|
18
|
Feng H, Acosta-Gamboa L, Kruse LH, Tracy JD, Chung SH, Nava Fereira AR, Shakir S, Xu H, Sunter G, Gore MA, Casteel CL, Moghe GD, Jander G. Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation. PLANT MOLECULAR BIOLOGY 2022; 109:505-522. [PMID: 34586580 DOI: 10.1007/s11103-021-01191-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression.
Collapse
Affiliation(s)
- Honglin Feng
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Lucia Acosta-Gamboa
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Lars H Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jake D Tracy
- Plant-Microbe Biology and Plant Pathology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | | | - Alba Ruth Nava Fereira
- Department of Biology, University of Texas San Antonio, San Antonio, TX, 78249, USA
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Sara Shakir
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Gembloux Agro-Bio Tech Institute, The University of Liege, Gembloux, Belgium
| | - Hongxing Xu
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- College of Life Science, The Shaanxi Normal University, Xi'an, China
| | - Garry Sunter
- Department of Biology, University of Texas San Antonio, San Antonio, TX, 78249, USA
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Clare L Casteel
- Plant-Microbe Biology and Plant Pathology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.
| |
Collapse
|
19
|
Chang A, Hu Z, Chen B, Vanderschuren H, Chen M, Qu Y, Yu W, Li Y, Sun H, Cao J, Vasudevan K, Li C, Cao Y, Zhang J, Shen Y, Yang A, Wang Y. Characterization of trichome-specific BAHD acyltransferases involved in acylsugar biosynthesis in Nicotiana tabacum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3913-3928. [PMID: 35262703 DOI: 10.1093/jxb/erac095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Glandular trichomes of tobacco (Nicotiana tabacum) produce blends of acylsucroses that contribute to defence against pathogens and herbivorous insects, but the mechanism of assembly of these acylsugars has not yet been determined. In this study, we isolated and characterized two trichome-specific acylsugar acyltransferases that are localized in the endoplasmic reticulum, NtASAT1 and NtASAT2. They sequentially catalyse two additive steps of acyl donors to sucrose to produce di-acylsucrose. Knocking out of NtASAT1 or NtASAT2 resulted in deficiency of acylsucrose; however, there was no effect on acylsugar accumulation in plants overexpressing NtASAT1 or NtASAT2. Genomic analysis and profiling revealed that NtASATs originated from the T subgenome, which is derived from the acylsugar-producing diploid ancestor N. tomentosiformis. Our identification of NtASAT1 and NtASAT2 as enzymes involved in acylsugar assembly in tobacco potentially provides a new approach and target genes for improving crop resistance against pathogens and insects.
Collapse
Affiliation(s)
- Aixia Chang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Plant Genetics Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Zhongyi Hu
- Jiangxi Food Inspection and Testing Research Institute, Nanchang, 330001, China
| | - Biao Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Herve Vanderschuren
- Plant Genetics Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Tropical Crop Improvement Lab, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Ming Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yafang Qu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Weisong Yu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, 410004, China
| | - Huiqing Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jianmin Cao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Kumar Vasudevan
- Plant Genetics Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Chenying Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yanan Cao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jianye Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yeming Shen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yuanying Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| |
Collapse
|
20
|
Leong BJ, Hurney S, Fiesel P, Anthony TM, Moghe G, Jones AD, Last RL. Identification of BAHD acyltransferases associated with acylinositol biosynthesis in Solanum quitoense (naranjilla). PLANT DIRECT 2022; 6:e415. [PMID: 35774622 PMCID: PMC9219006 DOI: 10.1002/pld3.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Plants make a variety of specialized metabolites that can mediate interactions with animals, microbes, and competitor plants. Understanding how plants synthesize these compounds enables studies of their biological roles by manipulating their synthesis in vivo as well as producing them in vitro. Acylsugars are a group of protective metabolites that accumulate in the trichomes of many Solanaceae family plants. Acylinositol biosynthesis is of interest because it appears to be restricted to a subgroup of species within the Solanum genus. Previous work characterized a triacylinositol acetyltransferase involved in acylinositol biosynthesis in the Andean fruit plant Solanum quitoense (lulo or naranjilla). We characterized three additional S. quitoense trichome expressed enzymes and found that virus-induced gene silencing of each caused changes in acylinositol accumulation. pH was shown to influence the stability and rearrangement of the product of ASAT1H and could potentially play a role in acylinositol biosynthesis. Surprisingly, the in vitro triacylinositol products of these enzymes are distinct from those that accumulate in planta. This suggests that additional enzymes are required in acylinositol biosynthesis. These characterized S. quitoense enzymes, nonetheless, provide opportunities to test the biological impact and properties of these triacylinositols in vitro.
Collapse
Affiliation(s)
- Bryan J. Leong
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Present address:
Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Steven Hurney
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
- Present address:
Michigan Department of Health and Human ServicesLansingMichiganUSA
| | - Paul Fiesel
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Thilani M. Anthony
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Gaurav Moghe
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Present address:
Plant Biology Section, School of Integrative Plant SciencesCornell UniversityIthacaNew YorkUSA
| | - Arthur Daniel Jones
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Robert L. Last
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
21
|
Wang S, Li Y, He L, Yang J, Fernie AR, Luo J. Natural variance at the interface of plant primary and specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102201. [PMID: 35349968 DOI: 10.1016/j.pbi.2022.102201] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Plants produce a large number of diverse metabolites when they grow and develop as well as when they respond to the changing external environment. These are an important source of human nutrition and medicine. In this review we emphasized the major issues of the primary-specialized metabolic interface in plant metabolism, described the metabolic flow from primary to specialized metabolism, and the conservation and diversity of primary and specialized metabolites. At the same time, we summarized the regulatory mechanisms underpinning the dynamic balance primary and specialized metabolism based on multi-omics integration analysis, as well as the natural variation of primary and specialized metabolic pathways and genes during the plant evolution. Moreover, the discovery and optimization of the synthesis and regulation elements of various primary to specialized metabolic flows provide the possibility for precise modification and personalized customization of metabolic pathways, which will greatly promote the development of synthetic biology.
Collapse
Affiliation(s)
| | - Yan Li
- College of Tropical Crops, Hainan University, Haikou, China
| | - Liqiang He
- College of Tropical Crops, Hainan University, Haikou, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
22
|
The Genetic Complexity of Type-IV Trichome Development Reveals the Steps towards an Insect-Resistant Tomato. PLANTS 2022; 11:plants11101309. [PMID: 35631734 PMCID: PMC9148003 DOI: 10.3390/plants11101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
The leaves of the wild tomato Solanum galapagense harbor type-IV glandular trichomes (GT) that produce high levels of acylsugars (AS), conferring insect resistance. Conversely, domesticated tomatoes (S. lycopersicum) lack type-IV trichomes on the leaves of mature plants, preventing high AS production, thus rendering the plants more vulnerable to insect predation. We hypothesized that cultivated tomatoes engineered to harbor type-IV trichomes on the leaves of adult plants could be insect-resistant. We introgressed the genetic determinants controlling type-IV trichome development from S. galapagense into cv. Micro-Tom (MT) and created a line named “Galapagos-enhanced trichomes” (MT-Get). Mapping-by-sequencing revealed that five chromosomal regions of S. galapagense were present in MT-Get. Further genetic mapping showed that S. galapagense alleles in chromosomes 1, 2, and 3 were sufficient for the presence of type-IV trichomes on adult organs but at lower densities. Metabolic and gene expression analyses demonstrated that type-IV trichome density was not accompanied by the AS production and exudation in MT-Get. Although the plants produce a significant amount of acylsugars, those are still not enough to make them resistant to whiteflies. We demonstrate that type-IV glandular trichome development is insufficient for high AS accumulation. The results from our study provided additional insights into the steps necessary for breeding an insect-resistant tomato.
Collapse
|
23
|
Sucrose esters from the calyxes of Physalis chenopodifolia. Carbohydr Res 2022; 512:108518. [DOI: 10.1016/j.carres.2022.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/17/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022]
|
24
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
25
|
Lou YR, Anthony TM, Fiesel PD, Arking RE, Christensen EM, Jones AD, Last RL. It happened again: Convergent evolution of acylglucose specialized metabolism in black nightshade and wild tomato. SCIENCE ADVANCES 2021; 7:eabj8726. [PMID: 34757799 PMCID: PMC8580325 DOI: 10.1126/sciadv.abj8726] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 05/09/2023]
Abstract
Plants synthesize myriad phylogenetically restricted specialized (aka “secondary”) metabolites with diverse structures. Metabolism of acylated sugar esters in epidermal glandular secreting trichomes across the Solanaceae (nightshade) family is ideal for investigating the mechanisms of evolutionary metabolic diversification. We developed methods to structurally analyze acylhexose mixtures by 2D NMR, which led to the insight that the Old World species black nightshade (Solanum nigrum) accumulates acylglucoses and acylinositols in the same tissue. Detailed in vitro biochemistry, cross-validated by in vivo virus-induced gene silencing, revealed two unique features of the four-step acylglucose biosynthetic pathway: A trichome-expressed, neofunctionalized invertase-like enzyme, SnASFF1, converts BAHD-produced acylsucroses to acylglucoses, which, in turn, are substrates for the acylglucose acyltransferase, SnAGAT1. This biosynthetic pathway evolved independently from that recently described in the wild tomato Solanum pennellii, reinforcing that acylsugar biosynthesis is evolutionarily dynamic with independent examples of primary metabolic enzyme cooption and additional variation in BAHD acyltransferases.
Collapse
Affiliation(s)
- Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Thilani M. Anthony
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Wang L, Chen K, Zhang M, Ye M, Qiao X. Catalytic function, mechanism, and application of plant acyltransferases. Crit Rev Biotechnol 2021; 42:125-144. [PMID: 34151663 DOI: 10.1080/07388551.2021.1931015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acyltransferases (ATs) are important tailoring enzymes that contribute to the diversity of natural products. They catalyze the transfer of acyl groups to the skeleton, which improves the lipid solubility, stability, and pharmacological activity of natural compounds. In recent years, a number of ATs have been isolated from plants. In this review, we have summarized 141 biochemically characterized ATs during the period July 1997 to October 2020, including their function, heterologous expression systems, and catalytic mechanisms. Their catalytic performance and application potential has been further discussed.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
27
|
Landis JB, Miller CM, Broz AK, Bennett AA, Carrasquilla-Garcia N, Cook DR, Last RL, Bedinger PA, Moghe GD. Migration through a Major Andean Ecogeographic Disruption as a Driver of Genetic and Phenotypic Diversity in a Wild Tomato Species. Mol Biol Evol 2021; 38:3202-3219. [PMID: 33822137 PMCID: PMC8321546 DOI: 10.1093/molbev/msab092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites—a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4–6 ancestral populations. Detailed characterization of mating systems of these clusters revealed emergence of multiple self-compatible (SC) groups from progenitor self-incompatible populations in the northern part of the species range. Emergence of these SC groups was also associated with fixation of deleterious alleles inactivating acylsugar acetylation. The Amotape-Huancabamba Zone—a geographical landmark in the Andes with high endemism and isolated microhabitats—was identified as a major driver of differentiation in the northern species range, whereas large geographical distances contributed to population structure and evolution of a novel SC group in the central and southern parts of the range, where the species was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating population differentiation, and enhance our understanding of the microevolutionary processes that create biological diversity.
Collapse
Affiliation(s)
- Jacob B Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.,Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alexandra A Bennett
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Douglas R Cook
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | | | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Zabel S, Brandt W, Porzel A, Athmer B, Bennewitz S, Schäfer P, Kortbeek R, Bleeker P, Tissier A. A single cytochrome P450 oxidase from Solanum habrochaites sequentially oxidizes 7-epi-zingiberene to derivatives toxic to whiteflies and various microorganisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1309-1325. [PMID: 33617106 DOI: 10.1111/tpj.15113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 05/26/2023]
Abstract
Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we report the identification and characterisation of 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxyzingiberene (9H10epoZ), two derivatives of 7-epi-zingiberene produced in glandular trichomes of S. habrochaites LA2167. Using a combination of transcriptomics and genetics, we identified a gene coding for a cytochrome P450 oxygenase, ShCYP71D184, that is highly expressed in trichomes and co-segregates with the presence of the zingiberene derivatives. Transient expression assays in Nicotiana benthamiana showed that ShCYP71D184 carries out two successive oxidations to generate 9HZ and 9H10epoZ. Bioactivity assays showed that 9-hydroxy-10,11-epoxyzingiberene in particular exhibits substantial toxicity against B. tabaci and various microorganisms including Phytophthora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.
Collapse
Affiliation(s)
- Sebastian Zabel
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, Halle, 06120, Germany
- IDT Biologika Deutschland, Am Pharmapark, Dessau-Rosslau, 06861, Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, Halle, 06120, Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, Halle, 06120, Germany
| | - Benedikt Athmer
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, Halle, 06120, Germany
| | - Stefan Bennewitz
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, Halle, 06120, Germany
| | - Petra Schäfer
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, Halle, 06120, Germany
| | - Ruy Kortbeek
- Swammerdam Institute for Life Sciences, Green Life Sciences Research Cluster, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Petra Bleeker
- Swammerdam Institute for Life Sciences, Green Life Sciences Research Cluster, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, Halle, 06120, Germany
- VERROVACCiNES GmbH, Blücherstraße 26, Halle (Saale), 06120, Germany
| |
Collapse
|
29
|
An Integrated Analytical Approach Reveals Trichome Acylsugar Metabolite Diversity in the Wild Tomato Solanum pennellii. Metabolites 2020; 10:metabo10100401. [PMID: 33050231 PMCID: PMC7599763 DOI: 10.3390/metabo10100401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
Acylsugars constitute an abundant class of pest- and pathogen-protective Solanaceae family plant-specialized metabolites produced in secretory glandular trichomes. Solanum pennellii produces copious triacylated sucrose and glucose esters, and the core biosynthetic pathway producing these compounds was previously characterized. We performed untargeted metabolomic analysis of S. pennellii surface metabolites from accessions spanning the species range, which indicated geographic trends in the acylsugar profile and revealed two compound classes previously undescribed from this species, tetraacylglucoses and flavonoid aglycones. A combination of ultrahigh-performance liquid chromatography–high resolution mass spectrometry (UHPLC–HR-MS) and NMR spectroscopy identified variations in the number, length, and branching pattern of acyl chains, and the proportion of sugar cores in acylsugars among accessions. The new dimensions of acylsugar variation revealed by this analysis further indicate variation in the biosynthetic and degradative pathways responsible for acylsugar accumulation. These findings provide a starting point for deeper investigation of acylsugar biosynthesis, an understanding of which can be exploited through crop breeding or metabolic engineering strategies to improve the endogenous defenses of crop plants.
Collapse
|
30
|
Oshikiri H, Watanabe B, Yamamoto H, Yazaki K, Takanashi K. Two BAHD Acyltransferases Catalyze the Last Step in the Shikonin/Alkannin Biosynthetic Pathway. PLANT PHYSIOLOGY 2020; 184:753-761. [PMID: 32727911 PMCID: PMC7536692 DOI: 10.1104/pp.20.00207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/24/2020] [Indexed: 05/28/2023]
Abstract
Several Boraginaceae plants produce biologically active red naphthoquinone pigments, derivatives of the enantiomers shikonin and alkannin, which vary in acyl groups on their side chains. Compositions of shikonin/alkannin derivatives vary in plant species, but the mechanisms generating the diversity of shikonin/alkannin derivatives are largely unknown. This study describes the identification and characterization of two BAHD acyltransferases, shikonin O-acyltransferase (LeSAT1) and alkannin O-acyltransferase (LeAAT1), from Lithospermum erythrorhizon, a medicinal plant in the family Boraginaceae that primarily produces the shikonin/alkannin derivatives acetylshikonin and β-hydroxyisovalerylshikonin. Enzyme assays using Escherichia coli showed that the acylation activity of LeSAT1 was specific to shikonin, whereas the acylation activity of LeAAT1 was specific to alkannin. Both enzymes recognized acetyl-CoA, isobutyryl-CoA, and isovaleryl-CoA as acyl donors to produce their corresponding shikonin/alkannin derivatives, with both enzymes showing the highest activity for acetyl-CoA. These findings were consistent with the composition of shikonin/alkannin derivatives in intact L erythrorhizon plants and cell cultures. Genes encoding both enzymes were preferentially expressed in the roots and cell cultures in the dark in pigment production medium M9, conditions associated with shikonin/alkannin production. These results indicated that LeSAT1 and LeAAT1 are enantiomer-specific acyltransferases that generate various shikonin/alkannin derivatives.
Collapse
Affiliation(s)
- Haruka Oshikiri
- Department of Biology, Faculty of Science, Shinshu University, Nagano 390-8621, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Hirobumi Yamamoto
- Department of Applied Biology, Faculty of Life Sciences, Toyo University, Gunma 374-0193, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Kojiro Takanashi
- Department of Biology, Faculty of Science, Shinshu University, Nagano 390-8621, Japan
| |
Collapse
|
31
|
Xiao F, Dong S, Liu Y, Feng Y, Li H, Yun CH, Cui Q, Li W. Structural Basis of Specificity for Carboxyl-Terminated Acyl Donors in a Bacterial Acyltransferase. J Am Chem Soc 2020; 142:16031-16038. [PMID: 32803979 DOI: 10.1021/jacs.0c07331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrolactins (MLNs) are a class of important antimacular degeneration and antitumor agents. Malonylated/succinylated MLNs are even more important due to their efficacy in overcoming multi-drug-resistant bacteria. However, which enzyme catalyzes this reaction remains enigmatic. Herein, we deciphered a β-lactamase homologue BmmI to be responsible for this step. BmmI could specifically attach C3-C5 alkyl acid thioesters onto 7-OH of MLN A and also exhibits substrate promiscuity toward acyl acceptors with different scaffolds. The crystal structure of BmmI covalently linked to the succinyl group and systematic mutagenesis highlighted the role of oxyanion holelike geometry in the recognition of carboxyl-terminated acyl donors. The engineering of this geometry expanded its substrate scope, with the R166A/G/Q variants recognizing up to C12 alkyl acid thioester. The structure of BmmI with acyl acceptor MLN A revealed the importance of Arg292 in the recognition of macrolide substrates. Moreover, the mechanism of the BmmI-catalyzed acyltransfer reaction was established, unmasking the deft role of Lys76 in governing acyl donors as well as catalysis. Our studies uncover the delicate mechanism underlying the substrate selectivity of acyltransferases, which would guide rational enzyme engineering for drug development.
Collapse
Affiliation(s)
- Fei Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | | | - Yang Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | | | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China
| | - Cai-Hong Yun
- Department of Biochemistry and Biophysics & Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, 100191 Beijing, China
| | | | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China
| |
Collapse
|
32
|
Alseekh S, Ofner I, Liu Z, Osorio S, Vallarino J, Last RL, Zamir D, Tohge T, Fernie AR. Quantitative trait loci analysis of seed-specialized metabolites reveals seed-specific flavonols and differential regulation of glycoalkaloid content in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2007-2024. [PMID: 32538521 DOI: 10.1111/tpj.14879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 05/07/2023]
Abstract
Given the potential health benefits (and adverse effects), of polyphenolic and steroidal glycoalkaloids in the diet there is a growing interest in fully elucidating the genetic control of their levels in foodstuffs. Here we carried out profiling of the specialized metabolites in the seeds of the Solanum pennellii introgression lines identifying 338 putative metabolite quantitative trait loci (mQTL) for flavonoids, steroidal glycoalkaloids and further specialized metabolites. Two putative mQTL for flavonols and one for steroidal glycoalkaloids were cross-validated by evaluation of the metabolite content of recombinants harboring smaller introgression in the corresponding QTL interval or by analysis of lines from an independently derived backcross inbred line population. The steroidal glycoalkaloid mQTL was localized to a chromosomal region spanning 14 genes, including a previously defined steroidal glycoalkaloid gene cluster. The flavonoid mQTL was further validated via the use of transient and stable overexpression of the Solyc12g098600 and Solyc12g096870 genes, which encode seed-specific uridine 5'-diphosphate-glycosyltransferases. The results are discussed in the context of our understanding of the accumulation of polyphenols and steroidal glycoalkaloids, and how this knowledge may be incorporated into breeding strategies aimed at improving nutritional aspects of plants as well as in fortifying them against abiotic stress.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Itai Ofner
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Zhongyuan Liu
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, 32611, USA
| | - Sonia Osorio
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruiticultura Subtropical y Mediterranea "La Major" - University of Malaga - Consejo Superior de Investigaciones Cientificas (IHSM-UMA-CSIC), Campus de Teatinos, Malaga, 29071, Spain
| | - Jose Vallarino
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Dani Zamir
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|
33
|
Tohge T, Scossa F, Wendenburg R, Frasse P, Balbo I, Watanabe M, Alseekh S, Jadhav SS, Delfin JC, Lohse M, Giavalisco P, Usadel B, Zhang Y, Luo J, Bouzayen M, Fernie AR. Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex. MOLECULAR PLANT 2020; 13:1027-1046. [PMID: 32305499 DOI: 10.1016/j.molp.2020.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/01/2020] [Accepted: 04/11/2020] [Indexed: 05/10/2023]
Abstract
While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species, those defining specialized metabolism are less well characterized and more highly variable across species. In this study, we investigated polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic and decorative reactions that constitute the metabolic network of polyphenols across eight different species of tomato. For this purpose, GC-MS- and LC-MS-based metabolomics of different tissues of Solanum lycopersicum and wild tomato species were carried out, in concert with the evaluation of cross-hybridized microarray data for MapMan-based transcriptomic analysis, and publicly available RNA-sequencing data for annotation of biosynthetic genes. The combined data were used to compile species-specific metabolic networks of polyphenolic metabolism, allowing the establishment of an entire pan-species biosynthetic framework as well as annotation of the functions of decoration enzymes involved in the formation of metabolic diversity of the flavonoid pathway. The combined results are discussed in the context of the current understanding of tomato flavonol biosynthesis as well as a global view of metabolic shifts during fruit ripening. Our results provide an example as to how large-scale biology approaches can be used for the definition and refinement of large specialized metabolism pathways.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, via Ardeatina 546 00178 Rome, Italy
| | - Regina Wendenburg
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Pierre Frasse
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan 31326, France
| | - Ilse Balbo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Sagar Sudam Jadhav
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jay C Delfin
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Marc Lohse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany
| | - Bjoern Usadel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52056 Aachen, Germany
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Mondher Bouzayen
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan 31326, France
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
34
|
Chang AX, Chen B, Yang AG, Hu RS, Feng QF, Chen M, Yang XN, Luo CG, Li YY, Wang YY. The trichome-specific acetolactate synthase NtALS1 gene, is involved in acylsugar biosynthesis in tobacco (Nicotiana tabacum L.). PLANTA 2020; 252:13. [PMID: 32621079 DOI: 10.1007/s00425-020-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION NtALS1 is specifically expressed in glandular trichomes, and can improve the content of acylsugars in tobacco. ABTRACT The glandular trichomes of many species in the Solanaceae family play an important role in plant defense. These epidermal outgrowths exhibit specialized secondary metabolism, including the production of structurally diverse acylsugars that function in defense against insects and have substantial developmental potential for commercial uses. However, our current understanding of genes involved in acyl chain biosynthesis of acylsugars remains poor in tobacco. In this study, we identified three acetolactate synthase (ALS) genes in tobacco through homology-based gene prediction using Arabidopsis ALS. Quantitative real-time PCR (qRT-PCR) and tissue distribution analyses suggested that NtALS1 was highly expressed in the tips of glandular trichomes. Subcellular localization analysis showed that the NtALS1 localized to the chloroplast. Moreover, in the wild-type K326 variety background, we generated two ntals1 loss-of-function mutants using the CRISPR-Cas9 system. Acylsugars contents in the two ntals1 mutants were significantly lower than those in the wild type. Through phylogenetic tree analysis, we also identified NtALS1 orthologs that may be involved in acylsugar biosynthesis in other Solanaceae species. Taken together, these findings indicate a functional role for NtALS1 in acylsugar biosynthesis in tobacco.
Collapse
Affiliation(s)
- Ai-Xia Chang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Biao Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ai-Guo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ri-Sheng Hu
- Hunan Tobacco Research Institute, Changsha, China
| | - Quan-Fu Feng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ming Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao-Ning Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Cheng-Gang Luo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yang-Yang Li
- Hunan Tobacco Research Institute, Changsha, China.
| | - Yuan-Ying Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
35
|
Fan P, Wang P, Lou YR, Leong BJ, Moore BM, Schenck CA, Combs R, Cao P, Brandizzi F, Shiu SH, Last RL. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. eLife 2020; 9:e56717. [PMID: 32613943 PMCID: PMC7386920 DOI: 10.7554/elife.56717] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive acylsugars, with sidechains that vary in length across the family. We describe a tomato gene cluster on chromosome 7 involved in medium chain acylsugar accumulation due to trichome specific acyl-CoA synthetase and enoyl-CoA hydratase genes. This cluster co-localizes with a tomato steroidal alkaloid gene cluster and is syntenic to a chromosome 12 region containing another acylsugar pathway gene. We reconstructed the evolutionary events leading to this gene cluster and found that its phylogenetic distribution correlates with medium chain acylsugar accumulation across the Solanaceae. This work reveals insights into the dynamics behind gene cluster evolution and cell-type specific metabolite diversity.
Collapse
Affiliation(s)
- Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Peipei Wang
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Bryan J Leong
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| | - Bethany M Moore
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- University of WisconsinMadisonUnited States
| | - Craig A Schenck
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Rachel Combs
- Division of Biological Sciences, University of MissouriColumbusUnited States
| | - Pengfei Cao
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast LansingUnited States
| | - Federica Brandizzi
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast LansingUnited States
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- Department of Computational Mathematics, Science, and Engineering, Michigan State UniversityEast LansingUnited States
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
36
|
Mihaylova-Kroumova AB, Artiouchine I, Korenkov VD, Wagner GJ. Patterns of inheritance of acylsugar acyl groups in selected interspecific hybrids of genus Nicotiana. JOURNAL OF PLANT RESEARCH 2020; 133:509-523. [PMID: 32277383 DOI: 10.1007/s10265-020-01188-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/02/2020] [Indexed: 05/26/2023]
Abstract
Glandular trichomes on the surface of Solanaceae species produce acyl sugars that are species-, and cultivar-specific. Acyl sugars are known to possess insecticidal, antibiotic, and hormone-like properties, and as such have great potential as a class of naturally occurring pesticides and antibiotics. The objective of this work was to analyze the acyl composition of acyl sugars in the leaf trichome exudate from selected Nicotiana species and to follow the inheritance of acyl content in their hybrids. Trichome exudates were collected, and the acyl profiles of acyl sugars were identified via GC-MS. The variations in acyl group inheritance in the hybrids (a single parent resemblance, missing, complementary, and novel groups) matched the patterns described in the literature for a variety of secondary metabolites. However, we did not find a complementation of major parental acyl groups. Instead, in some hybrids we observed a dynamic change in the proportions of acyl groups, distinguishing the acyl group profiles as novel. We observed paternal (i.e. N. tabacum cv. Turkish Samsun × N. benthamiana hybrids) and maternal (i.e. N. tabacum cv. Samsun-nn × N. otophora) inheritance patterns, novel acyl profiles (N. excelsior hybrids), and missing acyl groups (N. excelsiana). Selective inheritance of some acyl groups in the hybrids of N. benthamiana (4- and 5-methylheptanoic isomers) or N. alata (octanoate) was found. Suggestions are given to explain certain patterns of inheritance. The data presented here contribute to the body of knowledge about the effect of interspecific hybridization on the secondary metabolites by including acylsugar acyl groups that have not been studied previously.
Collapse
Affiliation(s)
- Antoaneta B Mihaylova-Kroumova
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA.
| | - Ivan Artiouchine
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA
| | - Victor D Korenkov
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA
| | - George J Wagner
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA
| |
Collapse
|
37
|
Leong BJ, Hurney SM, Fiesel PD, Moghe GD, Jones AD, Last RL. Specialized Metabolism in a Nonmodel Nightshade: Trichome Acylinositol Biosynthesis. PLANT PHYSIOLOGY 2020; 183:915-924. [PMID: 32354879 PMCID: PMC7333698 DOI: 10.1104/pp.20.00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 05/13/2023]
Abstract
Plants make many biologically active, specialized metabolites, which vary in structure, biosynthesis, and the processes they influence. An increasing number of these compounds are documented to protect plants from insects, pathogens, or herbivores or to mediate interactions with beneficial organisms, including pollinators and nitrogen-fixing microbes. Acylsugars, one class of protective compounds, are made in glandular trichomes of plants across the Solanaceae family. While most described acylsugars are acylsucroses, published examples also include acylsugars with hexose cores. The South American fruit crop naranjilla (lulo; Solanum quitoense) produces acylsugars containing a myoinositol core. We identified an enzyme that acetylates triacylinositols, a function homologous to the last step in the acylsucrose biosynthetic pathway of tomato (Solanum lycopersicum). Our analysis reveals parallels between S. lycopersicum acylsucrose and S. quitoense acylinositol biosynthesis, suggesting a common evolutionary origin.
Collapse
Affiliation(s)
- Bryan J Leong
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Steven M Hurney
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Paul D Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Gaurav D Moghe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - A Daniel Jones
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Robert L Last
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
38
|
Nakabayashi R, Saito K. Higher dimensional metabolomics using stable isotope labeling for identifying the missing specialized metabolism in plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:84-92. [PMID: 32388402 DOI: 10.1016/j.pbi.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 05/08/2023]
Abstract
The exact mechanics of specialized metabolism and its importance throughout plant evolution remain mysterious. Specialized metabolites and their corresponding biosynthetic genes are crucial to understand the reason for the prevalence of certain metabolism. Even though mass spectrometry-based metabolomics has enabled us to acquire data about the structural properties of unknown specialized metabolites as well as known metabolites and their corresponding isomers/analogs, extensive analytical approaches are still required. Herein, we review the most advanced analytical approaches using stable isotope labeling that can be used to identify the unknown specialized metabolites.
Collapse
Affiliation(s)
- Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
39
|
Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc Natl Acad Sci U S A 2020; 117:3874-3883. [PMID: 32015118 DOI: 10.1073/pnas.1912130117] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial communities associated with roots confer specific functions to their hosts, thereby modulating plant growth, health, and productivity. Yet, seminal questions remain largely unaddressed including whether and how the rhizosphere microbiome modulates root metabolism and exudation and, consequently, how plants fine tune this complex belowground web of interactions. Here we show that, through a process termed systemically induced root exudation of metabolites (SIREM), different microbial communities induce specific systemic changes in tomato root exudation. For instance, systemic exudation of acylsugars secondary metabolites is triggered by local colonization of bacteria affiliated with the genus Bacillus Moreover, both leaf and systemic root metabolomes and transcriptomes change according to the rhizosphere microbial community structure. Analysis of the systemic root metabolome points to glycosylated azelaic acid as a potential microbiome-induced signaling molecule that is subsequently exuded as free azelaic acid. Our results demonstrate that rhizosphere microbiome assembly drives the SIREM process at the molecular and chemical levels. It highlights a thus-far unexplored long-distance signaling phenomenon that may regulate soil conditioning.
Collapse
|
40
|
Mandal S, Ji W, McKnight TD. Candidate Gene Networks for Acylsugar Metabolism and Plant Defense in Wild Tomato Solanum pennellii. THE PLANT CELL 2020; 32:81-99. [PMID: 31628166 PMCID: PMC6961621 DOI: 10.1105/tpc.19.00552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/30/2019] [Accepted: 10/16/2019] [Indexed: 05/13/2023]
Abstract
Many solanaceous plants secrete acylsugars, which are branched-chain and straight-chain fatty acids esterified to Glu or Suc. These compounds have important roles in plant defense and potential commercial applications. However, several acylsugar metabolic genes remain unidentified, and little is known about regulation of this pathway. Comparative transcriptomics between low- and high-acylsugar-producing accessions of Solanum pennellii revealed that expression levels of known and novel candidate genes (putatively encoding beta-ketoacyl-(acyl-carrier-protein) synthases, peroxisomal acyl-activating enzymes, ATP binding cassette (ABC) transporters, and central carbon metabolic proteins) were positively correlated with acylsugar accumulation, except two genes previously reported to be involved in acylglucose biosynthesis. Genes putatively encoding oxylipin metabolic proteins, subtilisin-like proteases, and other antimicrobial defense proteins were upregulated in low-acylsugar-producing accessions. Transcriptome analysis after biochemical inhibition of biosynthesis of branched-chain amino acids (precursors to branched-chain fatty acids) by imazapyr showed concentration-dependent downregulation of known and most acylsugar candidate genes, but not defense genes. Weighted gene correlation network analysis identified separate coexpressed gene networks for acylsugar metabolism (including six transcription factor genes and flavonoid metabolic genes) and plant defense (including genes putatively encoding NB-ARC and leucine-rich repeat sequences, protein kinases and defense signaling proteins, and previously mentioned defense proteins). Additionally, virus-induced gene silencing of two trichomes preferentially expressed candidate genes for straight-chain fatty acid biosynthesis confirmed their role in acylsugar metabolism.
Collapse
Affiliation(s)
- Sabyasachi Mandal
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Wangming Ji
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Thomas D McKnight
- Department of Biology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
41
|
Maeda HA. Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. J Biol Chem 2019; 294:16549-16566. [PMID: 31558606 DOI: 10.1074/jbc.rev119.006132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plants produce numerous natural products that are essential to both plant and human physiology. Recent identification of genes and enzymes involved in their biosynthesis now provides exciting opportunities to reconstruct plant natural product pathways in heterologous systems through synthetic biology. The use of plant chassis, although still in infancy, can take advantage of plant cells' inherent capacity to synthesize and store various phytochemicals. Also, large-scale plant biomass production systems, driven by photosynthetic energy production and carbon fixation, could be harnessed for industrial-scale production of natural products. However, little is known about which plants could serve as ideal hosts and how to optimize plant primary metabolism to efficiently provide precursors for the synthesis of desirable downstream natural products or specialized (secondary) metabolites. Although primary metabolism is generally assumed to be conserved, unlike the highly-diversified specialized metabolism, primary metabolic pathways and enzymes can differ between microbes and plants and also among different plants, especially at the interface between primary and specialized metabolisms. This review highlights examples of the diversity in plant primary metabolism and discusses how we can utilize these variations in plant synthetic biology. I propose that understanding the evolutionary, biochemical, genetic, and molecular bases of primary metabolic diversity could provide rational strategies for identifying suitable plant hosts and for further optimizing primary metabolism for sizable production of natural and bio-based products in plants.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
42
|
Fan P, Leong BJ, Last RL. Tip of the trichome: evolution of acylsugar metabolic diversity in Solanaceae. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:8-16. [PMID: 31009840 PMCID: PMC6688940 DOI: 10.1016/j.pbi.2019.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 05/11/2023]
Abstract
Acylsugars are insecticidal plant specialized metabolites produced in the Solanaceae (nightshade family). Despite having simple constituents, these compounds are unusually structurally diverse. Their structural variations in phylogenetically closely related species enable comparative biochemical approaches to understand acylsugar biosynthesis and pathway diversification. Thus far, varied enzyme classes contributing to their synthesis were characterized in cultivated and wild tomatoes, including from core metabolism - isopropylmalate synthase (Leu) and invertase (carbon) - and a group of evolutionarily related BAHD acyltransferases known as acylsucrose acyltransferases. Gene duplication and neofunctionalization of these enzymes drove acylsugar diversification both within and beyond tomato. The broad set of evolutionary mechanisms underlying acylsugar diversity in Solanaceae make this metabolic network an exemplar for detailed understanding of the evolution of metabolic form and function.
Collapse
Affiliation(s)
- Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Bryan J Leong
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
43
|
Leong BJ, Lybrand DB, Lou YR, Fan P, Schilmiller AL, Last RL. Evolution of metabolic novelty: A trichome-expressed invertase creates specialized metabolic diversity in wild tomato. SCIENCE ADVANCES 2019; 5:eaaw3754. [PMID: 31032420 PMCID: PMC6482016 DOI: 10.1126/sciadv.aaw3754] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/06/2019] [Indexed: 05/19/2023]
Abstract
Plants produce a myriad of taxonomically restricted specialized metabolites. This diversity-and our ability to correlate genotype with phenotype-makes the evolution of these ecologically and medicinally important compounds interesting and experimentally tractable. Trichomes of tomato and other nightshade family plants produce structurally diverse protective compounds termed acylsugars. While cultivated tomato (Solanum lycopersicum) strictly accumulates acylsucroses, the South American wild relative Solanum pennellii produces copious amounts of acylglucoses. Genetic, transgenic, and biochemical dissection of the S. pennellii acylglucose biosynthetic pathway identified a trichome gland cell-expressed invertase-like enzyme that hydrolyzes acylsucroses (Sopen03g040490). This enzyme acts on the pyranose ring-acylated acylsucroses found in the wild tomato but not on the furanose ring-decorated acylsucroses of cultivated tomato. These results show that modification of the core acylsucrose biosynthetic pathway leading to loss of furanose ring acylation set the stage for co-option of a general metabolic enzyme to produce a new class of protective compounds.
Collapse
Affiliation(s)
- Bryan J. Leong
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Daniel B. Lybrand
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Anthony L. Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, USA
| | - Robert L. Last
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Corresponding author.
| |
Collapse
|
44
|
Vosman B, Kashaninia A, Van't Westende W, Meijer-Dekens F, van Eekelen H, Visser RGF, de Vos RCH, Voorrips RE. QTL mapping of insect resistance components of Solanum galapagense. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:531-541. [PMID: 30470858 PMCID: PMC6349790 DOI: 10.1007/s00122-018-3239-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 05/07/2023]
Abstract
QTLs for insect resistance parameters, trichome type IV development, and more than 200 non-volatile metabolites, including 76 acyl sugars, all co-locate at the end of Chromosome 2 of Solanum galapagense. Host plant resistance is gaining importance as more and more insecticides are being banned due to environmental concerns. In tomato, resistance towards insects is found in wild relatives and has been attributed to the presence of glandular trichomes and their specific phytochemical composition. In this paper, we describe the results from a large-scale QTL mapping of data from whitefly resistance tests, trichome phenotyping and a comprehensive metabolomics analysis in a recombinant inbred line population derived from a cross between the cultivated Solanum lycopersicum and the wild relative S. galapagense, which is resistant to a range of pest insects. One major QTL (Wf-1) was found to govern the resistance against two different whitefly species. This QTL co-localizes with QTLs for the presence of trichomes type IV and V, as well as all 76 acyl sugars detected and about 150 other non-volatile phytochemicals, including methyl esters of the flavonols myricetin and quercetin. Based on these results, we hypothesize that Wf-1 is regulating the formation of glandular trichome type IV on the leaf epidermis, enabling the production and accumulation of bioactive metabolites in this type of trichomes.
Collapse
Affiliation(s)
- Ben Vosman
- Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands.
| | - Atiyeh Kashaninia
- Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Wendy Van't Westende
- Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Fien Meijer-Dekens
- Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Henriëtte van Eekelen
- Bioscience, Wageningen University and Research, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Ric C H de Vos
- Bioscience, Wageningen University and Research, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| |
Collapse
|
45
|
Liu Y, Jing SX, Luo SH, Li SH. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Nat Prod Rep 2019; 36:626-665. [PMID: 30468448 DOI: 10.1039/c8np00077h] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The investigation methods, chemistry, bioactivities, and biosynthesis of non-volatile natural products involving 489 compounds in plant glandular trichomes are reviewed.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology
- Shenyang Agricultural University
- Shenyang
- P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| |
Collapse
|
46
|
Fang C, Fernie AR, Luo J. Exploring the Diversity of Plant Metabolism. TRENDS IN PLANT SCIENCE 2019; 24:83-98. [PMID: 30297176 DOI: 10.1016/j.tplants.2018.09.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 05/23/2023]
Abstract
Plants produce a huge array of metabolites, far more than those produced by most other organisms. Unraveling this diversity and its underlying genetic variation has attracted increasing research attention. Post-genomic profiling platforms have enabled the marriage and mining of the enormous amount of phenotypic and genetic diversity. We review here achievements to date and challenges remaining that are associated with plant metabolic research using multi-omic strategies. We focus mainly on strategies adopted in investigating the diversity of plant metabolism and its underlying features. Recent advances in linking metabotypes with phenotypic and genotypic traits are also discussed. Taken together, we conclude that exploring the diversity of metabolism could provide new insights into plant evolution and domestication.
Collapse
Affiliation(s)
- Chuanying Fang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany; Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
47
|
Brog YM, Osorio S, Yichie Y, Alseekh S, Bensal E, Kochevenko A, Zamir D, Fernie AR. A Solanum neorickii introgression population providing a powerful complement to the extensively characterized Solanum pennellii population. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:391-403. [PMID: 30230636 PMCID: PMC7379295 DOI: 10.1111/tpj.14095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 05/31/2023]
Abstract
We present a complementary resource for trait fine-mapping in tomato to those based on the intra-specific cross between cultivated tomato and the wild tomato species Solanum pennellii, which have been extensively used for quantitative genetics in tomato over the last 20 years. The current population of backcross inbred lines (BILs) is composed of 107 lines derived after three backcrosses of progeny of the wild species Solanum neorickii (LA2133) and cultivated tomato (cultivar TA209) and is freely available to the scientific community. These S. neorickii BILs were genotyped using the 10K SolCAP single nucleotide polymorphism chip, and 3111 polymorphic markers were used to map recombination break points relative to the physical map of Solanum lycopersicum. The BILs harbor on average 4.3 introgressions per line, with a mean introgression length of 34.7 Mbp, allowing partitioning of the genome into 340 bins and thereby facilitating rapid trait mapping. We demonstrate the power of using this resource in comparison with archival data from the S. pennellii resources by carrying out metabolic quantitative trait locus analysis following gas chromatography-mass spectrometry on fruits harvested from the S. neorickii BILs. The metabolic candidate genes phenylalanine ammonia-lyase and cystathionine gamma-lyase were then tested and validated in F2 populations and via agroinfiltration-based overexpression in order to exemplify the fidelity of this method in identifying the genes that drive tomato metabolic phenotypes.
Collapse
Affiliation(s)
- Yaacov Micha Brog
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Sonia Osorio
- Department of Molecular Biology and BiochemistryInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ – University of Malaga – Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Campus de Teatinos29071MálagaSpain
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Yoav Yichie
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
- Center of Plant Systems Biology and Biotechnology4000PlovdivBulgaria
| | - Elad Bensal
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Andriy Kochevenko
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Dani Zamir
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
- Center of Plant Systems Biology and Biotechnology4000PlovdivBulgaria
| |
Collapse
|
48
|
Niinemets Ü. Storage of defense metabolites in the leaves of Myrtaceae: news of the eggs in different baskets. TREE PHYSIOLOGY 2018; 38:1445-1450. [PMID: 30307578 DOI: 10.1093/treephys/tpy115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, Estonia
| |
Collapse
|
49
|
Wang P, Moore BM, Panchy NL, Meng F, Lehti-Shiu MD, Shiu SH. Factors Influencing Gene Family Size Variation Among Related Species in a Plant Family, Solanaceae. Genome Biol Evol 2018; 10:2596-2613. [PMID: 30239695 PMCID: PMC6171734 DOI: 10.1093/gbe/evy193] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Gene duplication and loss contribute to gene content differences as well as phenotypic divergence across species. However, the extent to which gene content varies among closely related plant species and the factors responsible for such variation remain unclear. Here, using the Solanaceae family as a model and Pfam domain families as a proxy for gene families, we investigated variation in gene family sizes across species and the likely factors contributing to the variation. We found that genes in highly variable families have high turnover rates and tend to be involved in processes that have diverged between Solanaceae species, whereas genes in low-variability families tend to have housekeeping roles. In addition, genes in high- and low-variability gene families tend to be duplicated by tandem and whole genome duplication, respectively. This finding together with the observation that genes duplicated by different mechanisms experience different selection pressures suggest that duplication mechanism impacts gene family turnover. We explored using pseudogene number as a proxy for gene loss but discovered that a substantial number of pseudogenes are actually products of pseudogene duplication, contrary to the expectation that most plant pseudogenes are remnants of once-functional duplicates. Our findings reveal complex relationships between variation in gene family size, gene functions, duplication mechanism, and evolutionary rate. The patterns of lineage-specific gene family expansion within the Solanaceae provide the foundation for a better understanding of the genetic basis underlying phenotypic diversity in this economically important family.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Plant Biology, Michigan State University
| | - Bethany M Moore
- Department of Plant Biology, Michigan State University.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University
| | - Nicholas L Panchy
- National Institute for Mathematical and Biological Synthesis, University of Tennessee
| | - Fanrui Meng
- Department of Plant Biology, Michigan State University
| | | | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University.,Department of Computational Mathematics, Science, and Engineering, Michigan State University
| |
Collapse
|
50
|
Garbowicz K, Liu Z, Alseekh S, Tieman D, Taylor M, Kuhalskaya A, Ofner I, Zamir D, Klee HJ, Fernie AR, Brotman Y. Quantitative Trait Loci Analysis Identifies a Prominent Gene Involved in the Production of Fatty Acid-Derived Flavor Volatiles in Tomato. MOLECULAR PLANT 2018; 11:1147-1165. [PMID: 29960108 DOI: 10.1016/j.molp.2018.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
To gain insight into the genetic regulation of lipid metabolism in tomato, we conducted metabolic trait loci (mQTL) analysis following the lipidomic profiling of fruit pericarp and leaf tissue of the Solanum pennellii introgression lines (IL). To enhance mapping resolution for selected fruit-specific mQTL, we profiled the lipids in a subset of independently derived S. pennellii backcross inbred lines, as well as in a near-isogenic sub-IL population. We identified a putative lecithin:cholesterol acyltransferase that controls the levels of several lipids, and two members of the class III lipase family, LIP1 and LIP2, that were associated with decreased levels of diacylglycerols (DAGs) and triacylglycerols (TAGs). Lipases of this class cleave fatty acids from the glycerol backbone of acylglycerols. The released fatty acids serve as precursors of flavor volatiles. We show that LIP1 expression correlates with fatty acid-derived volatile levels. We further confirm the function of LIP1 in TAG and DAG breakdown and volatile synthesis using transgenic plants. Taken together, our study extensively characterized the genetic architecture of lipophilic compounds in tomato and demonstrated at molecular level that release of free fatty acids from the glycerol backbone can have a major impact on downstream volatile synthesis.
Collapse
Affiliation(s)
- Karolina Garbowicz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Zhongyuan Liu
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Denise Tieman
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Mark Taylor
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | | | - Itai Ofner
- Robert H. Smith Institute of Plant Sciences and Genetics, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and Genetics, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Harry J Klee
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.
| |
Collapse
|