1
|
Lu H, Yang Y. Leveraging large-scale brain networks in rats to understand neurological and psychiatric disorders in humans. Neuropsychopharmacology 2024; 50:337-338. [PMID: 39117899 PMCID: PMC11526002 DOI: 10.1038/s41386-024-01952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Affiliation(s)
- Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
2
|
Terstege DJ, Galea LAM, Epp JR. Retrosplenial hypometabolism precedes the conversion from mild cognitive impairment to Alzheimer's disease. Alzheimers Dement 2024. [PMID: 39470016 DOI: 10.1002/alz.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Not all individuals who experience mild cognitive impairment (MCI) transition through progressive stages of cognitive decline at the same rate, if at all. Previous observational studies have identified the retrosplenial cortex (RSC) as an early site of hypometabolism in MCI which seems to be predictive of later transition to Alzheimer's disease (AD). METHODS We examined N = 399 MCI subjects with baseline 18F-fluorodeoxyglucose positron emission tomography. Subjects were classified based on whether their diagnosis converted from MCI to AD. RESULTS Whole-brain metabolism was decreased in converters (MCI-AD). This effect was more prominent at the RSC, where MCI-AD subjects showed even greater hypometabolism. Observations of RSC hypometabolism and its utility in predicting transition from MCI-AD withstood statistical analyses in a large retrospective study. DISCUSSION These results point to the utility of incorporating RSC hypometabolism into predictive models of AD progression risk and call for further examination of mechanisms underlying this relationship. HIGHLIGHTS Not all individuals who develop MCI will progress to AD. Individuals with MCI who progress to AD show early whole-brain hypometabolism. Early hypometabolism is particularly prominent at the RSC.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Liisa A M Galea
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Bak C, Boutin A, Gauzin S, Lejards C, Rampon C, Florian C. Age-associated alteration of innate defensive response to a looming stimulus and brain functional connectivity pattern in mice. Sci Rep 2024; 14:25323. [PMID: 39455881 PMCID: PMC11511918 DOI: 10.1038/s41598-024-76884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Innate defensive behaviors are essential for species survival. While these behaviors start to develop early in an individual's life, there is still much to be understood about how they evolve with advancing age. Considering that aging is often accompanied by various cognitive and physical declines, we tested the hypothesis that innate fear behaviors and underlying cerebral mechanisms are modified by aging. In our study we investigated this hypothesis by examining how aged mice respond to a looming visual threat compared to their younger counterparts. Our findings indicate that aged mice exhibit a different fear response than young mice when facing this imminent threat. Specifically, unlike young mice, aged mice tend to predominantly display freezing behavior without seeking shelter. Interestingly, this altered behavioral response in aged mice is linked to a distinct pattern of functional brain connectivity compared to young mice. Notably, our data highlights a lack of a consistent brain activation following the fear response in aged mice, suggesting that innate defensive behaviors undergo changes with aging.
Collapse
Affiliation(s)
- Célia Bak
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Aroha Boutin
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Sébastien Gauzin
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Camille Lejards
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Claire Rampon
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Cédrick Florian
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France.
| |
Collapse
|
4
|
Amiri S, van den Berg M, Nazem-Zadeh MR, Verhoye M, Amiri M, Keliris GA. Nodal degree centrality in the default mode-like network of the TgF344-AD Alzheimer's disease rat model as a measure of early network alterations. NPJ AGING 2024; 10:29. [PMID: 38902224 PMCID: PMC11190202 DOI: 10.1038/s41514-024-00151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/19/2024] [Indexed: 06/22/2024]
Abstract
This study investigates brain network alterations in the default mode-like network (DMLN) at early stages of disease progression in a rat model of Alzheimer's disease (AD) with application in the development of early diagnostic biomarkers of AD in translational studies. Thirteen male TgF344-AD (TG) rats, and eleven male wild-types (WT) littermates underwent longitudinal resting-state fMRI at the age of 4 and 6 months (pre and early-plaque stages of AD). Alterations in connectivity within DMLN were characterized by calculating the nodal degree (ND), a graph theoretical measure of centrality. The ND values of the left CA2 subregion of the hippocampus was found to be significantly lower in the 4-month-old TG cohort compared to the age-matched WT littermates. Moreover, a lower ND value (hypo-connectivity) was observed in the right prelimbic cortex (prL) and basal forebrain in the 6-month-old TG cohort, compared to the same age WT cohort. Indeed, the ND pattern in the DMLN in both TG and WT cohorts showed significant differences across the two time points that represent pre-plaque and early plaque stages of disease progression. Our findings indicate that lower nodal degree (hypo-connectivity) in the left CA2 in the pre-plaque stage of AD and hypo-connectivity between the basal forebrain and the DMLN regions in the early-plaque stage demonstrated differences in comparison to healthy controls. These results suggest that a graph-theoretical measure such as the nodal degree, can characterize brain networks and improve our insights into the mechanisms underlying Alzheimer's disease.
Collapse
Affiliation(s)
- Saba Amiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mohammad-Reza Nazem-Zadeh
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Department of neuroscience, Monash university, Melbourne, Vic, Australia
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
- Institute of Computer Science, Hellas Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
5
|
Robinson PK, Met Hoxha E, Williams D, Kinzig KP, Trask S. Fear extinction is impaired in aged rats. GeroScience 2024; 46:2815-2825. [PMID: 38349449 PMCID: PMC11009175 DOI: 10.1007/s11357-024-01084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024] Open
Abstract
Normal aging is accompanied by broad loss of cognitive function in humans and rodents, including declines in cognitive flexibility. In extinction, a conditional stimulus (CS) that was previously paired with a footshock is presented alone. This procedure reliably reduces conditional freezing behavior in young adult rats. Here, we aimed to investigate how normal aging affects extinction learning. Using young (3 months) and aged (20 months) male and female Long Evans rats, we compared extinction (using 20 CS-alone presentations) to a no extinction control (equal exposure to the conditioning chamber without CS presentations) following delay fear conditioning. We found that young animals in the extinction group showed a decrease in freezing following extinction; aged animals did not. We next examined changes in neural activity using expression of the immediate early gene zif268. In young animals, extinction corresponded with decreased expression of zif268 in the basolateral amygdala and anterior retrosplenial cortex; this was not observed in aged animals. Further, aged animals showed increased zif268 expression in each region examined, suggesting that dysfunction in neural activity precedes cognitive deficits. These results demonstrate that aging impacts both extinction learning and neural activity.
Collapse
Affiliation(s)
- Payton K Robinson
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Erisa Met Hoxha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Destine Williams
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kimberly P Kinzig
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
- Center On Aging and the Life Course, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Gray DT, Zempare M, Carey N, Khattab S, Sinakevitch I, De Biase LM, Barnes CA. Extracellular matrix proteoglycans support aged hippocampus networks: a potential cellular-level mechanism of brain reserve. Neurobiol Aging 2023; 131:52-58. [PMID: 37572527 PMCID: PMC10529564 DOI: 10.1016/j.neurobiolaging.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
One hallmark of normative brain aging is vast heterogeneity in whether older people succumb to or resist cognitive decline. Resilience describes a brain's capacity to maintain cognition in the face of aging and disease. One factor influencing resilience is brain reserve-the status of neurobiological resources available to support neuronal circuits as dysfunction accumulates. This study uses a cohort of behaviorally characterized adult, middle-aged, and aged rats to test whether neurobiological factors that protect inhibitory neurotransmission and synapse function represent key components of brain reserve. Histochemical analysis of extracellular matrix proteoglycans, which play critical roles in stabilizing synapses and modulating inhibitory neuron excitability, was conducted alongside analyses of lipofuscin-associated autofluorescence. The findings indicate that aging results in lower proteoglycan density and more lipofuscin in CA3. Aged rats with higher proteoglycan density exhibited better performance on the Morris watermaze, whereas lipofuscin abundance was not related to spatial memory. These data suggest that the local environment around neurons may protect against synapse dysfunction or hyperexcitability and could contribute to brain reserve mechanisms.
Collapse
Affiliation(s)
- Daniel T Gray
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Marc Zempare
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Natalie Carey
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Salma Khattab
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Irina Sinakevitch
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Lindsay M De Biase
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA; Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
7
|
Hack LM, Zhang X, Heifets BD, Suppes T, van Roessel PJ, Yesavage JA, Gray NJ, Hilton R, Bertrand C, Rodriguez CI, Deisseroth K, Knutson B, Williams LM. Ketamine's acute effects on negative brain states are mediated through distinct altered states of consciousness in humans. Nat Commun 2023; 14:6631. [PMID: 37857620 PMCID: PMC10587184 DOI: 10.1038/s41467-023-42141-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Ketamine commonly and rapidly induces dissociative and other altered states of consciousness (ASCs) in humans. However, the neural mechanisms that contribute to these experiences remain unknown. We used functional neuroimaging to engage key regions of the brain's affective circuits during acute ketamine-induced ASCs within a randomized, multi-modal, placebo-controlled design examining placebo, 0.05 mg/kg ketamine, and 0.5 mg/kg ketamine in nonclinical adult participants (NCT03475277). Licensed clinicians monitored infusions for safety. Linear mixed effects models, analysis of variance, t-tests, and mediation models were used for statistical analyses. Our design enabled us to test our pre-specified primary and secondary endpoints, which were met: effects of ketamine across dose conditions on (1) emotional task-evoked brain activity, and (2) sub-components of dissociation and other ASCs. With this design, we also could disentangle which ketamine-induced affective brain states are dependent upon specific aspects of ASCs. Differently valenced ketamine-induced ASCs mediated opposing effects on right anterior insula activity. Participants experiencing relatively higher depersonalization induced by 0.5 mg/kg of ketamine showed relief from negative brain states (reduced task-evoked right anterior insula activity, 0.39 SD). In contrast, participants experiencing dissociative amnesia showed an exacerbation of insula activity (0.32 SD). These results in nonclinical participants may shed light on the mechanisms by which specific dissociative states predict response to ketamine in depressed individuals.
Collapse
Affiliation(s)
- Laura M Hack
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Xue Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Boris D Heifets
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Trisha Suppes
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Peter J van Roessel
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jerome A Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nancy J Gray
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Hilton
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Bertrand
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolyn I Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
8
|
Berendzen KM, Bales KL, Manoli DS. Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging. Neurosci Biobehav Rev 2023; 153:105339. [PMID: 37536581 PMCID: PMC11073483 DOI: 10.1016/j.neubiorev.2023.105339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis; Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis; Davis, CA 95616, USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA 95158, USA
| |
Collapse
|
9
|
Hari E, Kizilates-Evin G, Kurt E, Bayram A, Ulasoglu-Yildiz C, Gurvit H, Demiralp T. Functional and structural connectivity in the Papez circuit in different stages of Alzheimer's disease. Clin Neurophysiol 2023; 153:33-45. [PMID: 37451080 DOI: 10.1016/j.clinph.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a progressive neurodegenerative continuum with memory impairment. We aimed to examine the detailed functional (FC) and structural connectivity (SC) pattern of the Papez circuit, known as the memory circuit, along the AD. METHODS MRI data of 15 patients diagnosed with AD dementia (ADD), 15 patients with the amnestic mild cognitive impairment (MCI), and 15 patients with subjective cognitive impairment were analyzed. The FC analyses were performed between main nodes of the Papez circuit, and the SC was quantified as fractional anisotropy (FA) of the main white matter pathways of the Papez circuit. RESULTS The FC between the retrosplenial (RSC) and parahippocampal cortices (PHC) was the earliest affected FC, while a manifest SC change in the ventral cingulum and fornix was observed in the later ADD stage. The RSC-PHC FC and the ventral cingulum FA efficiently predicted the memory performance of the non-demented participants. CONCLUSIONS Our findings revealed the importance of the Papez circuit as target regions along the AD. SIGNIFICANCE The ventral cingulum connecting the RSC and PHC, a critical overlap area between the Papez circuit and the default mode network, seems to be a target region associated with the earliest objective memory findings in AD.
Collapse
Affiliation(s)
- Emre Hari
- Graduate School of Health Sciences, Istanbul University, 34216 Istanbul, Turkey; Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Gozde Kizilates-Evin
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Elif Kurt
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Cigdem Ulasoglu-Yildiz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Hakan Gurvit
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey; Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey.
| | - Tamer Demiralp
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey.
| |
Collapse
|
10
|
Gray DT, Khattab S, Meltzer J, McDermott K, Schwyhart R, Sinakevitch I, Härtig W, Barnes CA. Retrosplenial cortex microglia and perineuronal net densities are associated with memory impairment in aged rhesus macaques. Cereb Cortex 2023; 33:4626-4644. [PMID: 36169578 PMCID: PMC10110451 DOI: 10.1093/cercor/bhac366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Synapse loss and altered plasticity are significant contributors to memory loss in aged individuals. Microglia, the innate immune cells of the brain, play critical roles in maintaining synapse function, including through a recently identified role in regulating the brain extracellular matrix. This study sought to determine the relationship between age, microglia, and extracellular matrix structure densities in the macaque retrosplenial cortex. Twenty-nine macaques ranging in age from young adult to aged were behaviorally characterized on 3 distinct memory tasks. Microglia, parvalbumin (PV)-expressing interneurons and extracellular matrix structures, known as perineuronal nets (PNNs), were immuno- and histochemically labeled. Our results indicate that microglia densities increase in the retrosplenial cortex of aged monkeys, while the proportion of PV neurons surrounded by PNNs decreases. Aged monkeys with more microglia had fewer PNN-associated PV neurons and displayed slower learning and poorer performance on an object recognition task. Stepwise regression models using age and the total density of aggrecan, a chondroitin sulfate proteoglycan of PNNs, better predicted memory performance than did age alone. Together, these findings indicate that elevated microglial activity in aged brains negatively impacts cognition in part through mechanisms that alter PNN assembly in memory-associated brain regions.
Collapse
Affiliation(s)
- Daniel T Gray
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Salma Khattab
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Jeri Meltzer
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Kelsey McDermott
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Rachel Schwyhart
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Irina Sinakevitch
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
- Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
11
|
Gaynor LS, Ravi M, Zequeira S, Hampton AM, Pyon WS, Smith S, Colon-Perez LM, Pompilus M, Bizon JL, Maurer AP, Febo M, Burke SN. Touchscreen-Based Cognitive Training Alters Functional Connectivity Patterns in Aged But Not Young Male Rats. eNeuro 2023; 10:ENEURO.0329-22.2023. [PMID: 36754628 PMCID: PMC9961373 DOI: 10.1523/eneuro.0329-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/31/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Age-related cognitive decline is related to cellular and systems-level disruptions across multiple brain regions. Because age-related cellular changes within different structures do not show the same patterns of dysfunction, interventions aimed at optimizing function of large-scale brain networks may show greater efficacy at improving cognitive outcomes in older adults than traditional pharmacotherapies. The current study aimed to leverage a preclinical rat model of aging to determine whether cognitive training in young and aged male rats with a computerized paired-associates learning (PAL) task resulted in changes in global resting-state functional connectivity. Moreover, seed-based functional connectivity was used to examine resting state connectivity of cortical areas involved in object-location associative memory and vulnerable in old age, namely the medial temporal lobe (MTL; hippocampal cortex and perirhinal cortex), retrosplenial cortex (RSC), and frontal cortical areas (prelimbic and infralimbic cortices). There was an age-related increase in global functional connectivity between baseline and post-training resting state scans in aged, cognitively trained rats. This change in connectivity following cognitive training was not observed in young animals, or rats that traversed a track for a reward between scan sessions. Relatedly, an increase in connectivity between perirhinal and prelimbic cortices, as well as reduced reciprocal connectivity within the RSC, was found in aged rats that underwent cognitive training, but not the other groups. Subnetwork activation was associated with task performance across age groups. Greater global functional connectivity and connectivity between task-relevant brain regions may elucidate compensatory mechanisms that can be engaged by cognitive training.
Collapse
Affiliation(s)
- Leslie S Gaynor
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158
| | - Meena Ravi
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Sabrina Zequeira
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Andreina M Hampton
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Wonn S Pyon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Samantha Smith
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Luis M Colon-Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
12
|
Brain Macro-Structural Alterations in Aging Rats: A Longitudinal Lifetime Approach. Cells 2023; 12:cells12030432. [PMID: 36766774 PMCID: PMC9914014 DOI: 10.3390/cells12030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Aging is accompanied by macro-structural alterations in the brain that may relate to age-associated cognitive decline. Animal studies could allow us to study this relationship, but so far it remains unclear whether their structural aging patterns correspond to those in humans. Therefore, by applying magnetic resonance imaging (MRI) and deformation-based morphometry (DBM), we longitudinally screened the brains of male RccHan:WIST rats for structural changes across their average lifespan. By combining dedicated region of interest (ROI) and voxel-wise approaches, we observed an increase in their global brain volume that was superimposed by divergent local morphologic alterations, with the largest aging effects in early and middle life. We detected a modality-dependent vulnerability to shrinkage across the visual, auditory, and somato-sensory cortical areas, whereas the piriform cortex showed partial resistance. Furthermore, shrinkage emerged in the amygdala, subiculum, and flocculus as well as in frontal, parietal, and motor cortical areas. Strikingly, we noticed the preservation of ectorhinal, entorhinal, retrosplenial, and cingulate cortical regions, which all represent higher-order brain areas and extraordinarily grew with increasing age. We think that the findings of this study will further advance aging research and may contribute to the establishment of interventional approaches to preserve cognitive health in advanced age.
Collapse
|
13
|
Engel MG, Smith J, Mao K, Quipildor GF, Cui MH, Gulinello M, Branch CA, Gandy SE, Huffman DM. Evidence for preserved insulin responsiveness in the aging rat brain. GeroScience 2022; 44:2491-2508. [PMID: 35798912 PMCID: PMC9768080 DOI: 10.1007/s11357-022-00618-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023] Open
Abstract
Insulin appears to exert salutary effects in the central nervous system (CNS). Thus, brain insulin resistance has been proposed to play a role in brain aging and dementia but is conceptually complex and unlikely to fit classic definitions established in peripheral tissues. Thus, we sought to characterize brain insulin responsiveness in young (4-5 months) and old (24 months) FBN male rats using a diverse set of assays to determine the extent to which insulin effects in the CNS are impaired with age. When performing hyperinsulinemic-euglycemic clamps in rats, intracerebroventricular (ICV) infusion of insulin in old animals improved peripheral insulin sensitivity by nearly two-fold over old controls and comparable to young rats, suggesting preservation of this insulin-triggered response in aging per se (p < 0.05). We next used an imaging-based approach by comparing ICV vehicle versus insulin and performed resting state functional magnetic resonance imaging (rs-fMRI) to evaluate age- and insulin-related changes in network connectivity within the default mode network. In aging, lower connectivity between the mesial temporal (MT) region and other areas, as well as reduced MT signal complexity, was observed in old rats, which correlated with greater cognitive deficits in old. Despite these stark differences, ICV insulin failed to elicit any significant alteration to the BOLD signal in young rats, while a significant deviation of the BOLD signal was observed in older animals, characterized by augmentation in regions of the septal nucleus and hypothalamus, and reduction in thalamus and nucleus accumbens. In contrast, ex vivo stimulation of hippocampus with 10 nM insulin revealed increased Akt activation in young (p < 0.05), but not old rats. Despite similar circulating levels of insulin and IGF-1, cerebrospinal fluid concentrations of these ligands were reduced with age. Thus, these data highlight the complexity of capturing brain insulin action and demonstrate preserved or heightened brain responses to insulin with age, despite dampened canonical signaling, thereby suggesting impaired CNS input of these ligands may be a feature of reduced brain insulin action, providing further rationale for CNS replacement strategies.
Collapse
Affiliation(s)
- Matthew G Engel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA
| | - Jeremy Smith
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gabriela Farias Quipildor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maria Gulinello
- Dominick S. Purpura Department of Neuroscience, Behavioral Core Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Samuel E Gandy
- Department of Neurology and the Mount Sinai Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry and the Mount Sinai Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
14
|
Lin RL, Frazier HN, Anderson KL, Case SL, Ghoweri AO, Thibault O. Sensitivity of the S1 neuronal calcium network to insulin and Bay-K 8644 in vivo: Relationship to gait, motivation, and aging processes. Aging Cell 2022; 21:e13661. [PMID: 35717599 PMCID: PMC9282843 DOI: 10.1111/acel.13661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
Neuronal hippocampal Ca2+ dysregulation is a critical component of cognitive decline in brain aging and Alzheimer's disease and is suggested to impact communication and excitability through the activation of a larger after hyperpolarization. However, few studies have tested for the presence of Ca2+ dysregulation in vivo, how it manifests, and whether it impacts network function across hundreds of neurons. Here, we tested for neuronal Ca2+ network dysregulation in vivo in the primary somatosensory cortex (S1) of anesthetized young and aged male Fisher 344 rats using single‐cell resolution techniques. Because S1 is involved in sensory discrimination and proprioception, we tested for alterations in ambulatory performance in the aged animal and investigated two potential pathways underlying these central aging‐ and Ca2+‐dependent changes. Compared to young, aged animals displayed increased overall activity and connectivity of the network as well as decreased ambulatory speed. In aged animals, intranasal insulin (INI) increased network synchronicity and ambulatory speed. Importantly, in young animals, delivery of the L‐type voltage‐gated Ca2+ channel modifier Bay‐K 8644 altered network properties, replicating some of the changes seen in the older animal. These results suggest that hippocampal Ca2+ dysregulation may be generalizable to other areas, such as S1, and might engage modalities that are associated with locomotor stability and motivation to ambulate. Further, given the safety profile of INI in the clinic and the evidence presented here showing that this central dysregulation is sensitive to insulin, we suggest that these processes can be targeted to potentially increase motivation and coordination while also reducing fall frequency with age.
Collapse
Affiliation(s)
- Ruei-Lung Lin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hilaree N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Sami L Case
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Adam O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
15
|
Yao Y, Lu C, Chen J, Sun J, Zhou C, Tan C, Xian X, Tong J, Yao H. Increased Resting-State Functional Connectivity of the Hippocampus in Rats With Sepsis-Associated Encephalopathy. Front Neurosci 2022; 16:894720. [PMID: 35720716 PMCID: PMC9201098 DOI: 10.3389/fnins.2022.894720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSepsis-associated encephalopathy (SAE) has been identified as a frequent complication of sepsis, featured by an aberrant level of cognitive and affective functions. The present study is designed to explore the changes in functional connectivity (FC) of the hippocampus in rats with SAE utilizing resting-state functional magnetic resonance imaging (rs-fMRI).MethodsSprague-Dawley rats were randomly assigned to the SAE and control groups. We acquired rs-fMRI data using a 7T MRI to evaluate hippocampal network functional differences between the two groups with a seed-based approach. Behavioral performance was assessed using the open field test and forced swimming test. Statistical analysis was undertaken to evaluate the correlation between the hippocampal FC and behavioral findings.ResultsCompared with the control group, the SAE group showed increased FC between the bilateral hippocampus and thalamus, septum, bed nuclei stria terminalis (BNST), left primary forelimb somatosensory cortex (S1FL), primary motor cortex (M1), and inferior colliculus. Increased FC between the left hippocampus and thalamus, septum, BNST, left S1FL, and inferior colliculus was observed. While with the right hippocampus, FC in thalamus, septum, left S1FL and inferior colliculus was enhanced. Additionally, positive correlations were found between the hippocampal FC and the immobility time in the forced swimming test.ConclusionHippocampus-related brain networks have significant alterations in rats with SAE, and the elevated hippocampal resting-state FC was positively related to affective deficits. Changes in FC between the hippocampus and other brain regions could be a potential neuroimaging biomarker of cognitive or mental disorders triggered by SAE.
Collapse
Affiliation(s)
- Yue Yao
- Cardiovascular Surgery Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunqiang Lu
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Cuihua Zhou
- Cardiovascular Surgery Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Tan
- Cardiovascular Surgery Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Xian
- Cardiovascular Surgery Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianhua Tong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jianhua Tong,
| | - Hao Yao
- Cardiovascular Surgery Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Hao Yao,
| |
Collapse
|
16
|
Xu XM, Zhang YQ, Zang FC, Lu CQ, Liu LJ, Wang J, Salvi R, Chen YC, Teng GJ. Alterations to cognitive abilities and functional networks in rats post broad-band intense noise exposure. Brain Imaging Behav 2022; 16:1884-1892. [PMID: 35543862 DOI: 10.1007/s11682-022-00643-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the alterations of cognition and functional connectivity post noise, and find the progress and neural substrates of noise induced hearing loss (NIHL)-associated cognitive impairment. We exposed rats to 122 dB broad-band noise for 2 h to induce hearing loss and the auditory function was assessed by measuring auditory brainstem response thresholds. Morris water maze test and resting state MRI were computed at 0 day, 1, 3, 6 months post noise to reveal cognitive ability and neural substrate. The interregional connections in the auditory network and default mode network, as well as the connections using the auditory cortex and cingulate cortex as seeds were also examined addtionally. The deficit in spatial learning/memory was only observed at 6 months after noise exposure. The internal connections in the auditory network and default mode network were enhanced at 0 day and decreased at 6 months post noise. The connectivity using the auditory cortex and cingulate cortex as seeds generally followed the rule of "enhancement-normal-decrease-widely decrease". A new model accounting for arousal, dementia, motor control of NIHL in is proposed. Our study highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders.
Collapse
Affiliation(s)
- Xiao-Min Xu
- Department of Radiology, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, China
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yu-Qun Zhang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng-Chao Zang
- Department of Radiology, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Chun-Qiang Lu
- Department of Radiology, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Li-Jie Liu
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Jian Wang
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Gao-Jun Teng
- Department of Radiology, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
17
|
Trask S, Fournier DI. Examining a role for the retrosplenial cortex in age-related memory impairment. Neurobiol Learn Mem 2022; 189:107601. [PMID: 35202816 DOI: 10.1016/j.nlm.2022.107601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Aging is often characterized by changes in the ability to form and accurately recall episodic memories, and this is especially evident in neuropsychiatric conditions including Alzheimer's disease and dementia. Memory impairments and cognitive decline associated with aging mirror the impairments observed following damage to the retrosplenial cortex, suggesting that this region might be important for continued cognitive function throughout the lifespan. Here, we review lines of evidence demonstrating that degeneration of the retrosplenial cortex is critically involved in age-related memory impairment and suggest that preservation of function in this region as part of a larger circuit that supports memory maintenance will decrease the deleterious effects of aging on memory processing.
Collapse
Affiliation(s)
- Sydney Trask
- Department of Psychological Sciences, Purdue University, United States.
| | | |
Collapse
|
18
|
Stacho M, Manahan-Vaughan D. Mechanistic flexibility of the retrosplenial cortex enables its contribution to spatial cognition. Trends Neurosci 2022; 45:284-296. [DOI: 10.1016/j.tins.2022.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
|
19
|
Smith SM, Zequeira S, Ravi M, Johnson SA, Hampton AM, Ross AM, Pyon W, Maurer AP, Bizon JL, Burke SN. Age-related impairments on the touchscreen paired associates learning (PAL) task in male rats. Neurobiol Aging 2022; 109:176-191. [PMID: 34749169 PMCID: PMC9351724 DOI: 10.1016/j.neurobiolaging.2021.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Discovery research in rodent models of cognitive aging is instrumental for identifying mechanisms of behavioral decline in old age that can be therapeutically targeted. Clinically relevant behavioral paradigms, however, have not been widely employed in aged rats. The current study aimed to bridge this translational gap by testing cognition in a cross-species touchscreen-based platform known as paired-associates learning (PAL) and then utilizing a trial-by-trial behavioral analysis approach. This study found age-related deficits in PAL task acquisition in male rats. Furthermore, trial-by-trial analyses and testing rats on a novel interference version of PAL suggested that age-related impairments were not due to differences in vulnerability to an irrelevant distractor, motivation, or to forgetting. Rather, impairment appeared to arise from vulnerability to accumulating, proactive interference, with aged animals performing worse than younger rats in later trial blocks within a single testing session. The detailed behavioral analysis employed in this study provides new insights into the etiology of age-associated cognitive deficits.
Collapse
Affiliation(s)
- Samantha M Smith
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sabrina Zequeira
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Meena Ravi
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sarah A Johnson
- Department of Neuroscience and Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Andriena M Hampton
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aleyna M Ross
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Wonn Pyon
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sara N Burke
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Xu HZ, Peng XR, Liu YR, Lei X, Yu J. Sleep Quality Modulates the Association between Dynamic Functional Network Connectivity and Cognitive Function in Healthy Older Adults. Neuroscience 2022; 480:131-142. [PMID: 34785273 DOI: 10.1016/j.neuroscience.2021.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Aging is associated with changes in sleep, brain activity, and cognitive function, as well as the association among these factors; however, the precise nature of these changes has not been elucidated. This study systematically investigated the modulatory effect of sleep on the relationship between brain functional network connectivity (FNC) and cognitive function in older adults. In total, 107 community-dwelling healthy older adults were recruited and assigned into poor sleep and good sleep groups based on the Pittsburgh Sleep Quality Index. The static functional network connectivity (sFNC), the temporal variability of dynamic FNC (dFNC) from variance (dFNC-var), and the dFNC from clustering state (dFNC-state) were calculated. Corresponding cognition-predictive models were constructed for each sleep group. dFNC but not sFNC, was able to significantly predict the cognitive function in older adults. Specifically, sleep played a modulatory role in the association between dFNC and cognitive function, with sleep-specific variations at both microscopic (i.e., specific edges) and macroscopic levels (i.e., specific states) of dFNC.
Collapse
Affiliation(s)
- Hong-Zhou Xu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xue-Rui Peng
- Faculty of Psychology, Southwest University, Chongqing, China; Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Yun-Rui Liu
- Faculty of Psychology, Southwest University, Chongqing, China; Center for Cognitive and Decision Sciences, Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Xu Lei
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Jing Yu
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Altered dorsal functional connectivity after post-weaning social isolation and resocialization in mice. Neuroimage 2021; 245:118740. [PMID: 34808365 DOI: 10.1016/j.neuroimage.2021.118740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Social isolation (SI) leads to various mental health disorders. Despite abundant studies on behavioral and neurobiological changes induced by post-weaning SI, the characterization of its imaging correlates, such as resting-state functional connectivity (RSFC), is critically lacking. In addition, the effects of resocialization after isolation remain unclear. Therefore, this study aimed to explore the effects of 1) SI on cortical functional connectivity and 2) subsequent resocialization on behavior and functional connectivity. METHODS Behavioral tests were conducted to validate the post-weaning SI mouse model, which is isolated during the juvenile period. Wide-field optical mapping was performed to observe both neuronal and hemodynamic signals in the cortex under anesthesia. Using seed-based and graph theoretical analyses, RSFC was analyzed. SI mice were then resocialized and the array of behavior and imaging tests was conducted. RESULTS Behaviorally, SI mice showed elevated anxiety, social preference, and aggression. RSFC analyses using the seed-based approach revealed decreased cortical functional connectivity in SI mice, especially in the frontal region. Graph network analyses demonstrated significant reduction in network segregation measures. After resocialization, mice exhibited recovered anxiogenic and aggressive behavior, but RSFC data did not show significant changes. CONCLUSIONS We observed an overall decrease in functional connectivity in SI mice. Moreover, resocialization restored the disruptions in behavioral patterns but functional connectivity was not recovered. To our knowledge, this is the first study to report that, despite the recovering tendencies of behavior in resocialized mice, similar changes in RSFC were not observed. This suggests that disruptions in functional connectivity caused by social isolation remain as long-term sequelae.
Collapse
|
22
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|
23
|
Yuan C, Gao A, Xu Q, Zhang B, Xue R, Dou Y, Yu C. A multi-dosing regimen to enhance the spatial memory of normal rats with α5-containing GABA A receptor negative allosteric modulator L-655,708. Psychopharmacology (Berl) 2021; 238:3375-3389. [PMID: 34389882 DOI: 10.1007/s00213-021-05951-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 08/03/2021] [Indexed: 01/20/2023]
Abstract
RATIONALE AND OBJECTIVES The reported inconsistent effects of negative allosteric modulators of α5-containing GABAA receptors on learning and memory may be attributed to receptor selectivity, effective plasma concentration maintenance, and administration time. This study aimed to compare the effects of L-655,708 administered by single-dosing regimen versus multi-dosing regimen on spatial memory, signaling molecules, and brain functional connectivity. METHODS After comparing the maintenance time of the effective plasma concentration of L-655,708 between multi-dosing and single-dosing regimens, we further compared the effects of the administration of the two regimens at different phases (before-learning, during-learning, and before-probe) of the Morris water maze (MWM) test on the performance of learning and memory and the levels of signaling molecules related to learning and memory in hippocampal tissues. Functional connectivity analyses between hippocampal and cortical regions were performed to further clarify the effects of the multi-dosing regimen. RESULTS The multi-dosing regimen could maintain the effective plasma concentration of L-655,708 much longer than the single-dosing regimen. Only the multi-dosing regimen for L-655,708 administration during the learning period led to significant improvement in spatial memory in the MWM test and increases in levels of glutamate receptors and phosphorylated signaling molecules (p-PKAα, p-CaMKII, and p-CREB-1). Compared with the vehicle control, the multi-dosing regimen increased the functional connectivity of the left hippocampal CA1 with cingulate and motor cortices. CONCLUSIONS A multi-dosing regimen for L-655,708 administered during the learning period is an effective strategy to improve spatial memory, increase signaling molecule levels, and enhance the functional connectivity of the hippocampus.
Collapse
Affiliation(s)
- Congcong Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - An Gao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Beibei Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Rui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
24
|
Jabès A, Klencklen G, Ruggeri P, Antonietti JP, Banta Lavenex P, Lavenex P. Age-Related Differences in Resting-State EEG and Allocentric Spatial Working Memory Performance. Front Aging Neurosci 2021; 13:704362. [PMID: 34803651 PMCID: PMC8600362 DOI: 10.3389/fnagi.2021.704362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022] Open
Abstract
During normal aging resting-state brain activity changes and working memory performance declines as compared to young adulthood. Interestingly, previous studies reported that different electroencephalographic (EEG) measures of resting-state brain activity may correlate with working memory performance at different ages. Here, we recorded resting-state EEG activity and tested allocentric spatial working memory in healthy young (20-30 years) and older (65-75 years) adults. We adapted standard EEG methods to record brain activity in mobile participants in a non-shielded environment, in both eyes closed and eyes open conditions. Our study revealed some age-group differences in resting-state brain activity that were consistent with previous results obtained in different recording conditions. We confirmed that age-group differences in resting-state EEG activity depend on the recording conditions and the specific parameters considered. Nevertheless, lower theta-band and alpha-band frequencies and absolute powers, and higher beta-band and gamma-band relative powers were overall observed in healthy older adults, as compared to healthy young adults. In addition, using principal component and regression analyses, we found that the first extracted EEG component, which represented mainly theta, alpha and beta powers, correlated with spatial working memory performance in older adults, but not in young adults. These findings are consistent with the theory that the neurobiological bases of working memory performance may differ between young and older adults. However, individual measures of resting-state EEG activity could not be used as reliable biomarkers to predict individual allocentric spatial working memory performance in young or older adults.
Collapse
Affiliation(s)
- Adeline Jabès
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Giuliana Klencklen
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland.,Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Paolo Ruggeri
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | | | - Pamela Banta Lavenex
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland.,Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Pierre Lavenex
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Cooper CP, Shafer AT, Armstrong NM, Rossi SL, Young J, Herold C, Gu H, Yang Y, Stein EA, Resnick SM, Rapp PR. Recognition Memory is Associated with Distinct Patterns of Regional Gray Matter Volumes in Young and Aged Monkeys. Cereb Cortex 2021; 32:933-948. [PMID: 34448810 DOI: 10.1093/cercor/bhab257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive aging varies tremendously across individuals and is often accompanied by regionally specific reductions in gray matter (GM) volume, even in the absence of disease. Rhesus monkeys provide a primate model unconfounded by advanced neurodegenerative disease, and the current study used a recognition memory test (delayed non-matching to sample; DNMS) in conjunction with structural imaging and voxel-based morphometry (VBM) to characterize age-related differences in GM volume and brain-behavior relationships. Consistent with expectations from a long history of neuropsychological research, DNMS performance in young animals prominently correlated with the volume of multiple structures in the medial temporal lobe memory system. Less anticipated correlations were also observed in the cingulate and cerebellum. In aged monkeys, significant volumetric correlations with DNMS performance were largely restricted to the prefrontal cortex and striatum. Importantly, interaction effects in an omnibus analysis directly confirmed that the associations between volume and task performance in the MTL and prefrontal cortex are age-dependent. These results demonstrate that the regional distribution of GM volumes coupled with DNMS performance changes across the lifespan, consistent with the perspective that the aged primate brain retains a substantial capacity for structural reorganization.
Collapse
Affiliation(s)
- C'iana P Cooper
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, United States
| | - Andrea T Shafer
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 02903, United States
| | - Nicole M Armstrong
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Sharyn L Rossi
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, United States
| | - Jennifer Young
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, United States
| | - Christa Herold
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, United States
| | - Hong Gu
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Yihong Yang
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Elliot A Stein
- Cognitive and Affective Neuroscience of Addiction Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 02903, United States
| | - Peter R Rapp
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, United States
| |
Collapse
|
26
|
Impact of anesthesia on static and dynamic functional connectivity in mice. Neuroimage 2021; 241:118413. [PMID: 34293463 DOI: 10.1016/j.neuroimage.2021.118413] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
A few studies have compared the static functional connectivity between awake and lightly anesthetized states in rodents by resting-state fMRI. However, impact of light anesthesia on static and dynamic fluctuations in functional connectivity has not been fully understood. Here, we developed a resting-state fMRI protocol to perform awake and anesthetized functional MRI in the same mice. Static functional connectivity showed a widespread decrease under light anesthesia, such as when under isoflurane or a mixture of isoflurane and medetomidine. Several interhemispheric and subcortical connections were key connections for anesthetized condition from awake state. Dynamic functional connectivity demonstrates the shift from frequent broad connections across the cortex, the hypothalamus, and the auditory-visual cortex to frequent local connections within the cortex only under light anesthesia compared with awake state. Fractional amplitude of low frequency fluctuation in the thalamic nuclei decreased under both anesthesia. These results indicate that typical anesthetics for functional MRI alters the spatiotemporal profile of the dynamic brain network in subcortical regions, including the thalamic nuclei and limbic system.
Collapse
|
27
|
Llano DA, Ma C, Di Fabrizio U, Taheri A, Stebbings KA, Yudintsev G, Xiao G, Kenyon RV, Berger-Wolf TY. A novel dynamic network imaging analysis method reveals aging-related fragmentation of cortical networks in mouse. Netw Neurosci 2021; 5:569-590. [PMID: 34189378 PMCID: PMC8233117 DOI: 10.1162/netn_a_00191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Network analysis of large-scale neuroimaging data is a particularly challenging computational problem. Here, we adapt a novel analytical tool, the community dynamic inference method (CommDy), for brain imaging data from young and aged mice. CommDy, which was inspired by social network theory, has been successfully used in other domains in biology; this report represents its first use in neuroscience. We used CommDy to investigate aging-related changes in network metrics in the auditory and motor cortices by using flavoprotein autofluorescence imaging in brain slices and in vivo. We observed that auditory cortical networks in slices taken from aged brains were highly fragmented compared to networks observed in young animals. CommDy network metrics were then used to build a random-forests classifier based on NMDA receptor blockade data, which successfully reproduced the aging findings, suggesting that the excitatory cortical connections may be altered during aging. A similar aging-related decline in network connectivity was also observed in spontaneous activity in the awake motor cortex, suggesting that the findings in the auditory cortex reflect general mechanisms during aging. These data suggest that CommDy provides a new dynamic network analytical tool to study the brain and that aging is associated with fragmentation of intracortical networks.
Collapse
Affiliation(s)
- Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Chihua Ma
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Umberto Di Fabrizio
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Aynaz Taheri
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Kevin A. Stebbings
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Georgiy Yudintsev
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Gang Xiao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Robert V. Kenyon
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Tanya Y. Berger-Wolf
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
- Current affiliation: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Resting-State EEG Microstates Parallel Age-Related Differences in Allocentric Spatial Working Memory Performance. Brain Topogr 2021; 34:442-460. [PMID: 33871737 PMCID: PMC8195770 DOI: 10.1007/s10548-021-00835-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022]
Abstract
Alterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.
Collapse
|
29
|
Liu Y, Fu H, Wu Y, Nie B, Liu F, Wang T, Xiao W, Yang S, Kan M, Fan L. Elamipretide (SS-31) Improves Functional Connectivity in Hippocampus and Other Related Regions Following Prolonged Neuroinflammation Induced by Lipopolysaccharide in Aged Rats. Front Aging Neurosci 2021; 13:600484. [PMID: 33732135 PMCID: PMC7956963 DOI: 10.3389/fnagi.2021.600484] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation has been recognized as a major cause for neurocognitive diseases. Although the hippocampus has been considered an important region for cognitive dysfunction, the influence of hippocampal neuroinflammation on brain functional connectivity (FC) has been rarely studied. In this study, lipopolysaccharide (LPS) was used to induce systemic inflammation and neuroinflammation in the aged rat brain, while elamipretide (SS-31) was used for treatment. Systemic and hippocampal inflammation were determined using ELISA, while astrocyte responses during hippocampal neuroinflammation were determined by interleukin 1 beta (IL-1β)/tumor necrosis factor alpha (TNFα) double staining immunofluorescence. Oxidative stress was determined by reactive oxidative species (ROS), electron transport chain (ETC) complex, and superoxide dismutase (SOD). Short- (<7 days) and long-term (>30 days) learning and spatial working memory were tested by the Morris water maze (MWM). Resting-state functional magnetic resonance imaging (rs-fMRI) was used to analyze the brain FC by placing seed voxels on the left and right hippocampus. Compared with the vehicle group, rats with the LPS exposure showed an impaired MWM performance, higher oxidative stress, higher levels of inflammatory cytokines, and astrocyte activation in the hippocampus. The neuroimaging examination showed decreased FC on the right orbital cortex, right olfactory bulb, and left hippocampus on day 3, 7, and 31, respectively, after treatment. In contrast, rats with SS-31 treatment showed lower levels of inflammatory cytokines, less astrocyte activation in the hippocampus, and improved MWM performance. Neuroimaging examination showed increased FC on the left-parietal association cortex (L-PAC), left sensory cortex, and left motor cortex on day 7 with the right flocculonodular lobe on day 31 as compared with those without SS-31 treatment. Our study demonstrated that inhibiting neuroinflammation in the hippocampus not only reduces inflammatory responses in the hippocampus but also improves the brain FC in regions related to the hippocampus. Furthermore, early anti-inflammatory treatment with SS-31 has a long-lasting effect on reducing the impact of LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huiqun Fu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Capital Medical University, Beijing, China
| | - Binbin Nie
- Institue of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Fangyan Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Xiao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuyi Yang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Minhui Kan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Long Fan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Rohan ML, Lowen SB, Rock A, Andersen SL. Novelty preferences and cocaine-associated cues influence regions associated with the salience network in juvenile female rats. Pharmacol Biochem Behav 2021; 203:173117. [PMID: 33561479 DOI: 10.1016/j.pbb.2021.173117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Preferences for novel environments (novelty-seeking) is a risk factor for addiction, with little known about its underlying circuitry. Exposure to drug cues facilitates addiction maintenance, leading us to hypothesize that exposure to a novel environment activates a shared neural circuitry. Stimulation of the D1 receptor in the prelimbic cortex increases responsivity to drug-associated environments. Here, we use D1 receptor overexpression in the prelimbic cortex to probe brain responses to novelty-preferences (in a free-choice paradigm) and cocaine-associated odors following place conditioning. These same cocaine-conditioned odors were used to study neural circuitry with Blood Oxygen Level Dependent (BOLD) activity. D1 overexpressing females had deactivated BOLD signals related to novelty-preferences within the insula cortex and amygdala and activation in the frontal cortex and dopamine cell bodies. BOLD responses to cocaine cues were also sensitive to D1. Control females demonstrated a place preference for cocaine environments with no significant BOLD response, while D1 overexpressing females demonstrated a place aversion and weak BOLD responses to cocaine-conditioned odor cues within the insula cortex. For comparison, we provide data from an earlier study with juvenile males overexpressing D1 that show a strong preference for cocaine and elevated BOLD responses. The results support the use of a pharmacological manipulation (e.g., D1 overexpression) to probe the neural circuitry downstream from the prelimbic cortex.
Collapse
Affiliation(s)
- Michael L Rohan
- McLean Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, United States of America
| | - Steven B Lowen
- McLean Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, United States of America
| | - Anna Rock
- McLean Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, United States of America
| | - Susan L Andersen
- McLean Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, United States of America.
| |
Collapse
|
31
|
McQuail JA, Dunn AR, Stern Y, Barnes CA, Kempermann G, Rapp PR, Kaczorowski CC, Foster TC. Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies. Front Aging Neurosci 2021; 12:607685. [PMID: 33551788 PMCID: PMC7859530 DOI: 10.3389/fnagi.2020.607685] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review article is to provide a resource for longitudinal studies, using animal models, directed at understanding and modifying the relationship between cognition and brain structure and function throughout life. We propose that forthcoming longitudinal studies will build upon a wealth of knowledge gleaned from prior cross-sectional designs to identify early predictors of variability in cognitive function during aging, and characterize fundamental neurobiological mechanisms that underlie the vulnerability to, and the trajectory of, cognitive decline. Finally, we present examples of biological measures that may differentiate mechanisms of the cognitive reserve at the molecular, cellular, and network level.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Carol A. Barnes
- Departments of Psychology and Neuroscience, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Gerd Kempermann
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers (HZ), Dresden, Germany
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, MD, United States
| | | | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
32
|
Whitesell JD, Liska A, Coletta L, Hirokawa KE, Bohn P, Williford A, Groblewski PA, Graddis N, Kuan L, Knox JE, Ho A, Wakeman W, Nicovich PR, Nguyen TN, van Velthoven CTJ, Garren E, Fong O, Naeemi M, Henry AM, Dee N, Smith KA, Levi B, Feng D, Ng L, Tasic B, Zeng H, Mihalas S, Gozzi A, Harris JA. Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network. Neuron 2020; 109:545-559.e8. [PMID: 33290731 PMCID: PMC8150331 DOI: 10.1016/j.neuron.2020.11.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/08/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN. Mouse resting-state default mode network anatomy described at high resolution in 3D Systematic axon tracing shows cortical DMN regions are preferentially interconnected Layer 2/3 DMN neurons project mostly in the DMN; layer 5 neurons project in and out Retrosplenial cortex contains distinct types of in- and out-DMN projection neurons
Collapse
Affiliation(s)
| | - Adam Liska
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UniTn, 38068 Rovereto, Italy; DeepMind, London EC4A 3TW, UK
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UniTn, 38068 Rovereto, Italy; Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy
| | | | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ali Williford
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Nile Graddis
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Leonard Kuan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Joseph E Knox
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Anh Ho
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Wayne Wakeman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Emma Garren
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Maitham Naeemi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Alex M Henry
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Feng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Stefan Mihalas
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UniTn, 38068 Rovereto, Italy
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
33
|
Bergmann E, Gofman X, Kavushansky A, Kahn I. Individual variability in functional connectivity architecture of the mouse brain. Commun Biol 2020; 3:738. [PMID: 33277621 PMCID: PMC7718219 DOI: 10.1038/s42003-020-01472-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years precision fMRI has emerged in human brain research, demonstrating characterization of individual differences in brain organization. However, mechanistic investigations to the sources of individual variability are limited in humans and thus require animal models. Here, we used resting-state fMRI in awake mice to quantify the contribution of individual variation to the functional architecture of the mouse cortex. We found that the mouse connectome is also characterized by stable individual features that support connectivity-based identification. Unlike in humans, we found that individual variation is homogeneously distributed in sensory and association networks. Finally, connectome-based predictive modeling of motor behavior in the rotarod task revealed that individual variation in functional connectivity explained behavioral variability. Collectively, these results establish the feasibility of precision fMRI in mice and lay the foundation for future mechanistic investigations of individual brain organization and pre-clinical studies of brain disorders in the context of personalized medicine.
Collapse
Affiliation(s)
- Eyal Bergmann
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xenia Gofman
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexandra Kavushansky
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itamar Kahn
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
34
|
Contextual experience modifies functional connectome indices of topological strength and efficiency. Sci Rep 2020; 10:19843. [PMID: 33199790 PMCID: PMC7670469 DOI: 10.1038/s41598-020-76935-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
Stimuli presented at short temporal delays before functional magnetic resonance imaging (fMRI) can have a robust impact on the organization of synchronous activity in resting state networks. This presents an opportunity to investigate how sensory, affective and cognitive stimuli alter functional connectivity in rodent models. In the present study we assessed the effect on functional connectivity of a familiar contextual stimulus presented 10 min prior to sedation for imaging. A subset of animals were co-presented with an unfamiliar social stimulus in the same environment to further investigate the effect of familiarity on network topology. Rats were imaged at 11.1 T and graph theory analysis was applied to matrices generated from seed-based functional connectivity data sets with 144 brain regions (nodes) and 10,152 pairwise correlations (after excluding 144 diagonal edges). Our results show substantial changes in network topology in response to the familiar (context). Presentation of the familiar context, both in the absence and presence of the social stimulus, strongly reduced network strength, global efficiency, and altered the location of the highest eigenvector centrality nodes from cortex to the hypothalamus. We did not observe changes in modular organization, nodal cartographic assignments, assortative mixing, rich club organization, and network resilience. We propose that experiential factors, perhaps involving associative or episodic memory, can exert a dramatic effect on functional network strength and efficiency when presented at a short temporal delay before imaging.
Collapse
|
35
|
Influence of three different anesthesia protocols on aged rat brain: a resting-state functional magnetic resonance imaging study. Chin Med J (Engl) 2020; 134:344-352. [PMID: 33074843 PMCID: PMC7846452 DOI: 10.1097/cm9.0000000000001126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Resting-state functional magnetic resonance imaging (rs-fMRI) is a promising method for the study of brain function. Typically, rs-fMRI is performed on anesthetized animals. Although different functional connectivity (FC) in various anesthetics on whole brain have been studied, few studies have focused on different FC in the aged brain. Here, we measured FC under three commonly used anesthesia methods and analyzed data to determine if the FC in whole brain analysis were similar among groups. Methods Twenty-four male aged Wistar rats were randomly divided into three groups (n = 8 in each group). Anesthesia was performed under either isoflurane (ISO), combined ISO + dexmedetomidine (DEX) or α-chloralose (AC) according to the groups. Data of rs-fMRI was analyzed by FC in a voxel-wise way. Differences in the FC maps between the groups were analyzed by one-way analysis of variance and post hoc two-sample t tests. Results Compared with ISO + DEX anesthesia, ISO anesthesia caused increased FC in posterior brain and decreased FC in the middle brain of the aged rat. AC anesthesia caused global suppression as no increase in FC was observed. Conclusion ISO could be used as a substitute for ISO + DEX in rat default mode network studies if the left temporal association cortex is not considered important.
Collapse
|
36
|
Trask S, Dulka BN, Helmstetter FJ. Age-Related Memory Impairment Is Associated with Increased zif268 Protein Accumulation and Decreased Rpt6 Phosphorylation. Int J Mol Sci 2020; 21:E5352. [PMID: 32731408 PMCID: PMC7432048 DOI: 10.3390/ijms21155352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/26/2023] Open
Abstract
Aging is associated with cognitive decline, including impairments in the ability to accurately form and recall memories. Some behavioral and brain changes associated with aging are evident as early as middle age, making the understanding of associated neurobiological mechanisms essential to aid in efforts aimed at slowing cognitive decline throughout the lifespan. Here, we found that both 15-month-old and 22-month-old rats showed impaired memory recall following trace fear conditioning. This behavioral deficit was accompanied by increased zif268 protein accumulation relative to 3-month-old animals in the medial prefrontal cortex, the dorsal and ventral hippocampi, the anterior and posterior retrosplenial cortices, the lateral amygdala, and the ventrolateral periaqueductal gray. Elevated zif268 protein levels corresponded with decreases in phosphorylation of the Rpt6 proteasome regulatory subunit, which is indicative of decreased engagement of activity-driven protein degradation. Together, these results identify several brain regions differentially impacted by aging and suggest that the accumulation of proteins associated with memory retrieval, through reduced proteolytic activity, is associated with age-related impairments in memory retention.
Collapse
Affiliation(s)
| | | | - Fred J. Helmstetter
- Department of Psychology, The University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA; (S.T.); (B.N.D.)
| |
Collapse
|
37
|
Holschneider DP, Wang Z, Chang H, Zhang R, Gao Y, Guo Y, Mao J, Rodriguez LV. Ceftriaxone inhibits stress-induced bladder hyperalgesia and alters cerebral micturition and nociceptive circuits in the rat: A multidisciplinary approach to the study of urologic chronic pelvic pain syndrome research network study. Neurourol Urodyn 2020; 39:1628-1643. [PMID: 32578247 DOI: 10.1002/nau.24424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022]
Abstract
AIMS Emotional stress plays a role in the exacerbation and development of interstitial cystitis/bladder pain syndrome (IC/BPS). Given the significant overlap of brain circuits involved in stress, anxiety, and micturition, and the documented role of glutamate in their regulation, we examined the effects of an increase in glutamate transport on central amplification of stress-induced bladder hyperalgesia, a core feature of IC/BPS. METHODS Wistar-Kyoto rats were exposed to water avoidance stress (WAS, 1 hour/day x 10 days) or sham stress, with subgroups receiving daily administration of ceftriaxone (CTX), an activator of glutamate transport. Thereafter, cystometrograms were obtained during bladder infusion with visceromotor responses (VMR) recorded simultaneously. Cerebral blood flow (CBF) mapping was performed by intravenous injection of [14 C]-iodoantipyrine during passive bladder distension. Regional CBF was quantified in autoradiographs of brain slices and analyzed in three dimensional reconstructed brains with statistical parametric mapping. RESULTS WAS elicited visceral hypersensitivity during bladder filling as demonstrated by a decreased pressure threshold and VMR threshold triggering the voiding phase. Brain maps revealed stress effects in regions noted to be responsive to bladder filling. CTX diminished visceral hypersensitivity and attenuated many stress-related cerebral activations within the supraspinal micturition circuit and in overlapping limbic and nociceptive regions, including the posterior midline cortex (posterior cingulate/anterior retrosplenium), somatosensory cortex, and anterior thalamus. CONCLUSIONS CTX diminished bladder hyspersensitivity and attenuated regions of the brain that contribute to nociceptive and micturition circuits, show stress effects, and have been reported to demonstrated altered functionality in patients with IC/BPS. Glutamatergic pharmacologic strategies modulating stress-related bladder dysfunction may be a novel approach to the treatment of IC/BPS.
Collapse
Affiliation(s)
| | - Zhuo Wang
- Departments of Psychiatry and Behavioral Sciences, Los Angeles, California
| | - Huiyi Chang
- Department of Urology, University of Southern California, Los Angeles, California.,Reeve-Irvine Research Center, University of California, Irvine, California
| | - Rong Zhang
- Department of Urology, University of Southern California, Los Angeles, California
| | - Yunliang Gao
- Department of Urology, University of Southern California, Los Angeles, California.,Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumei Guo
- Departments of Psychiatry and Behavioral Sciences, Los Angeles, California
| | - Jackie Mao
- Department of Urology, University of Southern California, Los Angeles, California
| | - Larissa V Rodriguez
- Department of Urology, University of Southern California, Los Angeles, California
| |
Collapse
|
38
|
Abnormal brain activity in rats with sustained hypobaric hypoxia exposure: a resting-state functional magnetic resonance imaging study. Chin Med J (Engl) 2020; 132:2621-2627. [PMID: 31651519 PMCID: PMC6846249 DOI: 10.1097/cm9.0000000000000495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Hypobaric hypoxia (HH) exposure at high altitudes can result in a decline in cognitive function, which may have a serious impact on the daily life of people who migrate to high altitudes. However, the specific HH-induced changes in brain function remain unclear. This study explored changes in brain activity in rats exposed to a sustained HH environment using functional magnetic resonance imaging (fMRI). Methods: Healthy male rats (8 weeks old) were randomly divided into a model group and a control group. A rat model of cognitive impairment induced by sustained HH exposure was established. The control and model groups completed training and testing in the Morris water maze (MWM). A two-sample t-test for between-group difference comparisons was performed. Repeated measures analyses of variance for within-group comparisons were performed and post-hoc comparisons were made using the Tukey test. Between-group differences in spontaneous brain activity were assessed using a voxel-wise analysis of resting-state fMRI (rs-fMRI), combined with analyses of the fractional amplitude of low frequency fluctuations (fALFF) in statistical parametric mapping. Results: In the MWM test, the escape latencies of the model group were significantly longer compared with those of the control group (control group vs. model group, day 1: 21.6 ± 3.3 s vs. 40.5 ± 3.4 s, t = –11.282; day 2: 13.5 ± 2.2 s vs. 28.7 ± 5.3 s, t = –7.492; day 3: 10.5 ± 2.8 s vs. 22.6 ± 6.1 s, t = –5.099; day 4: 9.7 ± 2.5 s vs. 18.6 ± 5.2 s, t = –4.363; day 5: 8.8 ± 2.7 s vs. 16.7 ± 5.0 s, t = –3.932; all P < 0.001). Within both groups, the escape latency at day 5 was significantly shorter than those at other time points (control group: F = 57.317, P < 0.001; model group: F = 50.718, P < 0.001). There was no within-group difference in average swimming speed (control group, F = 1.162, P = 0.956; model group, F = 0.091, P = 0.880). Within the model group, the time spent within the original platform quadrant was significantly shorter (control group vs. model group: 36.1 ± 5.7 s vs. 17.8 ± 4.3 s, t = 7.249, P < 0.001) and the frequency of crossing the original platform quadrant was significantly reduced (control group vs. model group: 6.4 ± 1.9 s vs. 2.0 ± 0.8 s, t = 6.037, P < 0.001) compared with the control group. In the rs-fMRI study, compared with the control group, rats in the model group showed widespread reductions in fALFF values throughout the brain. Conclusions: The abnormalities in spontaneous brain activity indicated by the fALFF measurements may reflect changes in brain function after HH exposure. This widespread abnormal brain activity may help to explain and to provide new insights into the mechanism underlying the impairment of brain function under sustained exposure to high altitudes.
Collapse
|
39
|
Liang X, Hsu LM, Lu H, Ash JA, Rapp PR, Yang Y. Functional Connectivity of Hippocampal CA3 Predicts Neurocognitive Aging via CA1-Frontal Circuit. Cereb Cortex 2020; 30:4297-4305. [PMID: 32239141 DOI: 10.1093/cercor/bhaa008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/08/2019] [Accepted: 01/08/2020] [Indexed: 01/06/2023] Open
Abstract
The CA3 and CA1 principal cell fields of the hippocampus are vulnerable to aging, and age-related dysfunction in CA3 may be an early seed event closely linked to individual differences in memory decline. However, whether the differential vulnerability of CA3 and CA1 is associated with broader disruption in network-level functional interactions in relation to age-related memory impairment, and more specifically, whether CA3 dysconnectivity contributes to the effects of aging via CA1 network connectivity, has been difficult to test. Here, using resting-state fMRI in a group of aged rats uncontaminated by neurodegenerative disease, aged rats displayed widespread reductions in functional connectivity of CA3 and CA1 fields. Age-related memory deficits were predicted by connectivity between left CA3 and hippocampal circuitry along with connectivity between left CA1 and infralimbic prefrontal cortex. Notably, the effects of CA3 connectivity on memory performance were mediated by CA1 connectivity with prefrontal cortex. We additionally found that spatial learning and memory were associated with functional connectivity changes lateralized to the left CA3 and CA1 divisions. These results provide novel evidence that network-level dysfunction involving interactions of CA3 with CA1 is an early marker of poor cognitive outcome in aging.
Collapse
Affiliation(s)
- Xia Liang
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China.,Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Li-Ming Hsu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA.,Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Jessica A Ash
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Biomedical Research Center, NIH, Baltimore, MD 21224, USA
| | - Peter R Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Biomedical Research Center, NIH, Baltimore, MD 21224, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA
| |
Collapse
|
40
|
Febo M, Rani A, Yegla B, Barter J, Kumar A, Wolff CA, Esser K, Foster TC. Longitudinal Characterization and Biomarkers of Age and Sex Differences in the Decline of Spatial Memory. Front Aging Neurosci 2020; 12:34. [PMID: 32153384 PMCID: PMC7044155 DOI: 10.3389/fnagi.2020.00034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/04/2020] [Indexed: 01/10/2023] Open
Abstract
The current longitudinal study examined factors (sex, physical function, response to novelty, ability to adapt to a shift in light/dark cycle, brain connectivity), which might predict the emergence of impaired memory during aging. Male and female Fisher 344 rats were tested at 6, 12, and 18 months of age. Impaired spatial memory developed in middle-age (12 months), particularly in males, and the propensity for impairment increased with advanced age. A reduced response to novelty was observed over the course of aging, which is inconsistent with cross-sectional studies. This divergence likely resulted from differences in the history of environmental enrichment/impoverishment for cross-sectional and longitudinal studies. Animals that exhibited lower level exploration of the inner region on the open field test exhibited better memory at 12 months. Furthermore, males that exhibited a longer latency to enter a novel environment at 6 months, exhibited better memory at 12 months. For females, memory at 12 months was correlated with the ability to behaviorally adapt to a shift in light/dark cycle. Functional magnetic resonance imaging of the brain, conducted at 12 months, indicated that the decline in memory was associated with altered functional connectivity within different memory systems, most notably between the hippocampus and multiple regions such as the retrosplenial cortex, thalamus, striatum, and amygdala. Overall, some factors, specifically response to novelty at an early age and the capacity to adapt to shifts in light cycle, predicted spatial memory in middle-age, and spatial memory is associated with corresponding changes in brain connectivity. We discuss similarities and differences related to previous longitudinal and cross-sectional studies, as well as the role of sex differences in providing a theoretical framework to guide future longitudinal research on the trajectory of cognitive decline. In addition to demonstrating the power of longitudinal studies, these data highlight the importance of middle-age for identifying potential predictive indicators of sexual dimorphism in the trajectory in brain and cognitive aging.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jolie Barter
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Christopher A Wolff
- Department of Physiology and Functional Genomics, Myology Institute, University of Florida, Gainesville, FL, United States
| | - Karyn Esser
- Department of Physiology and Functional Genomics, Myology Institute, University of Florida, Gainesville, FL, United States
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Hernandez AR, Burke SN. Age-related changes in 'hub' neurons. Aging (Albany NY) 2020; 10:2551-2552. [PMID: 30348907 PMCID: PMC6224237 DOI: 10.18632/aging.101606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Abbi R Hernandez
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Sara N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA.,Institute on Aging, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
42
|
Colon-Perez LM, Turner SM, Lubke KN, Pompilus M, Febo M, Burke SN. Multiscale Imaging Reveals Aberrant Functional Connectome Organization and Elevated Dorsal Striatal Arc Expression in Advanced Age. eNeuro 2019; 6:ENEURO.0047-19.2019. [PMID: 31826916 PMCID: PMC6978920 DOI: 10.1523/eneuro.0047-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
The functional connectome reflects a network architecture enabling adaptive behavior that becomes vulnerable in advanced age. The cellular mechanisms that contribute to altered functional connectivity in old age, however, are not known. Here we used a multiscale imaging approach to link age-related changes in the functional connectome to altered expression of the activity-dependent immediate-early gene Arc as a function of training to multitask on a working memory (WM)/biconditional association task (BAT). Resting-state fMRI data were collected from young and aged rats longitudinally at three different timepoints during cognitive training. After imaging, rats performed the WM/BAT and were immediately sacrificed to examine expression levels of Arc during task performance. Aged behaviorally impaired, but not young, rats had a subnetwork of increased connectivity between the anterior cingulate cortex (ACC) and dorsal striatum (DS) that was correlated with the use of a suboptimal response-based strategy during cognitive testing. Moreover, while young rats had stable rich-club organization across three scanning sessions, the rich-club organization of old rats increased with cognitive training. In a control group of young and aged rats that were longitudinally scanned at similar time intervals, but without cognitive training, ACC-DS connectivity and rich-club organization did not change between scans in either age group. These findings suggest that aberrant large-scale functional connectivity in aged animals is associated with altered cellular activity patterns within individual brain regions.
Collapse
Affiliation(s)
- Luis M Colon-Perez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Sean M Turner
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Katelyn N Lubke
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Marjory Pompilus
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Marcelo Febo
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
43
|
Li M, Gui S, Huang Q, Shi L, Lu J, Li P. Density center-based fast clustering of widefield fluorescence imaging of cortical mesoscale functional connectivity and relation to structural connectivity. NEUROPHOTONICS 2019; 6:045014. [PMID: 31853460 PMCID: PMC6917047 DOI: 10.1117/1.nph.6.4.045014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/20/2019] [Indexed: 05/09/2023]
Abstract
Spontaneous resting-state neural activity or hemodynamics has been used to reveal functional connectivity in the brain. However, most of the commonly used clustering algorithms for functional parcellation are time-consuming, especially for high-resolution imaging data. We propose a density center-based fast clustering (DCBFC) method that can rapidly perform the functional parcellation of isocortex. DCBFC was validated using both simulation data and the spontaneous calcium signals from widefield fluorescence imaging of excitatory neuron-expressing transgenic mice (Vglut2-GCaMP6s). Compared to commonly used clustering methods such as k-means, hierarchical, and spectral, DCBFC showed a higher adjusted Rand index when the signal-to-noise ratio was greater than - 8 dB for simulated data and higher silhouette coefficient for in vivo mouse data. The resting-state functional connectivity (RSFC) patterns obtained by DCBFC were compared with the anatomic axonal projection density (PDs) maps derived from the voxel-scale model. The results showed a high spatial correlation between RSFC patterns and PDs.
Collapse
Affiliation(s)
- Miaowen Li
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, MOE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Shen Gui
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, MOE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Qin Huang
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, MOE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Liang Shi
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, MOE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Jinling Lu
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, MOE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Pengcheng Li
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, MOE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
- HUST-Suzhou Institute for Brainsmatics, Suzhou, China
- Address all correspondence to Pengcheng Li, E-mail:
| |
Collapse
|
44
|
Cole RC, Hazeltine E, Weng TB, Wharff C, DuBose LE, Schmid P, Sigurdsson G, Magnotta VA, Pierce GL, Voss MW. Cardiorespiratory fitness and hippocampal volume predict faster episodic associative learning in older adults. Hippocampus 2019; 30:143-155. [PMID: 31461198 DOI: 10.1002/hipo.23151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Declining episodic memory is common among otherwise healthy older adults, in part due to negative effects of aging on hippocampal circuits. However, there is significant variability between individuals in severity of aging effects on the hippocampus and subsequent memory decline. Importantly, variability may be influenced by modifiable protective physiological factors such as cardiorespiratory fitness (CRF). More research is needed to better understand which aspects of cognition that decline with aging benefit most from CRF. The current study evaluated the relation of CRF with learning rate on the episodic associative learning (EAL) task, a task designed specifically to target hippocampal-dependent relational binding and to evaluate learning with repeated occurrences. Results show higher CRF was associated with faster learning rate. Larger hippocampal volume was also associated with faster learning rate, though hippocampal volume did not mediate the relationship between CRF and learning rate. Furthermore, to support the distinction between learning item relations and learning higher-order sequences, which declines with aging but is largely reliant on extra-hippocampal learning systems, we found learning rate on the EAL task was not related to motor sequence learning on the alternating serial reaction time task. Motor sequence learning was also not correlated with hippocampal volume. Thus, for the first time, we show that both higher CRF and larger hippocampal volume in healthy older adults are related to enhanced rate of relational memory acquisition.
Collapse
Affiliation(s)
- Rachel C Cole
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - Eliot Hazeltine
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa.,Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Timothy B Weng
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Conner Wharff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Lyndsey E DuBose
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - Phillip Schmid
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Gardar Sigurdsson
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Vincent A Magnotta
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa.,Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - Michelle W Voss
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa.,Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| |
Collapse
|
45
|
Haberman RP, Monasterio A, Branch A, Gallagher M. Aged rats with intact memory show distinctive recruitment in cortical regions relative to young adults in a cue mismatch task. Behav Neurosci 2019; 133:537-544. [PMID: 31246080 DOI: 10.1037/bne0000332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Similar to elderly humans, aged Long-Evans rats exhibit individual differences in performance on tasks that critically depend on the medial temporal lobe memory system. Although reduced memory performance is common, close to half of aged rats in this outbred rodent population perform within the range of young subjects, exhibiting a stable behavioral phenotype that may signal a resilience to memory decline. Increasing evidence from research on aging in the Long-Evans study population supports the existence of adaptive neural change rather than avoidance of detrimental effects of aging on the brain, indicating a malleability of brain function over the life span that may preserve optimal function. Augmenting prior work that centered on hippocampal function, the current study extends investigation to cortical regions functionally interconnected with the hippocampal formation, including medial temporal lobe cortices and posterior components of the default mode network. In response to an environmental manipulation that creates a mismatch in the expected cue orientation, aged rats with preserved memory show greater activation across an extended network of cortical regions as measured by immediate early gene expression. In contrast, young subjects, behaviorally similar to the aged rats in this study, show a more limited cortical response. This distinctive cortical recruitment in aged unimpaired rats, set against a background of comparable activation across hippocampal subregions, may represent adaptive cortical recruitment consistent with evidence in human studies of neurocognitive aging. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
46
|
Hsu LM, Keeley RJ, Liang X, Brynildsen JK, Lu H, Yang Y, Stein EA. Intrinsic Insular-Frontal Networks Predict Future Nicotine Dependence Severity. J Neurosci 2019; 39:5028-5037. [PMID: 30992371 PMCID: PMC6670258 DOI: 10.1523/jneurosci.0140-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/27/2019] [Accepted: 04/06/2019] [Indexed: 01/01/2023] Open
Abstract
Although 60% of the US population have tried smoking cigarettes, only 16% smoke regularly. Identifying this susceptible subset of the population before the onset of nicotine dependence may encourage targeted early interventions to prevent regular smoking and/or minimize severity. While prospective neuroimaging in human populations can be challenging, preclinical neuroimaging models before chronic nicotine administration can help to develop translational biomarkers of disease risk. Chronic, intermittent nicotine (0, 1.2, or 4.8 mg/kg/d; N = 10-11/group) was administered to male Sprague Dawley rats for 14 d; dependence severity was quantified using precipitated withdrawal behaviors collected before, during, and following forced nicotine abstinence. Resting-state fMRI functional connectivity (FC) before drug administration was subjected to a graph theory analytical framework to form a predictive model of subsequent individual differences in nicotine dependence. Whole-brain modularity analysis identified five modules in the rat brain. A metric of intermodule connectivity, participation coefficient, of an identified insular-frontal cortical module predicted subsequent dependence severity, independent of nicotine dose. To better spatially isolate this effect, this module was subjected to a secondary exploratory modularity analysis, which segregated it into three submodules (frontal-motor, insular, and sensory). Higher FC among these three submodules and three of the five originally identified modules (striatal, frontal-executive, and sensory association) also predicted dependence severity. These data suggest that predispositional, intrinsic differences in circuit strength between insular-frontal-based brain networks before drug exposure may identify those at highest risk for the development of nicotine dependence.SIGNIFICANCE STATEMENT Developing biomarkers of individuals at high risk for addiction before the onset of this brain-based disease is essential for prevention, early intervention, and/or subsequent treatment decisions. Using a rodent model of nicotine dependence and a novel data-driven, network-based analysis of resting-state fMRI data collected before drug exposure, functional connections centered on an intrinsic insular-frontal module predicted the severity of nicotine dependence after drug exposure. The predictive capacity of baseline network measures was specific to inter-regional but not within-region connectivity. While insular and frontal regions have consistently been implicated in nicotine dependence, this is the first study to reveal that innate, individual differences in their circuit strength have the predictive capacity to identify those at greatest risk for and resilience to drug dependence.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Robin J Keeley
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Xia Liang
- Research Center of Basic Space Science, Harbin Institute of Technology, Nangang Qu, Haerbin Shi 150001, Heilongjiang Sheng, People's Republic of China
| | - Julia K Brynildsen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| |
Collapse
|
47
|
Physiological Considerations of Functional Magnetic Resonance Imaging in Animal Models. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:522-532. [DOI: 10.1016/j.bpsc.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
48
|
Systemic Inflammation Impairs Mood Function by Disrupting the Resting-State Functional Network in a Rat Animal Model Induced by Lipopolysaccharide Challenge. Mediators Inflamm 2019; 2019:6212934. [PMID: 31210750 PMCID: PMC6532295 DOI: 10.1155/2019/6212934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/15/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Background Systemic inflammation impairs cognitive performance, yet the brain networks mediating this process remain to be elucidated. The purpose of the current study was to use resting-state functional magnetic resonance imaging (fMRI) to explore changes in the functional connectivity in a lipopolysaccharide- (LPS-) induced systemic inflammation animal model. Materials and Methods We used the regional homogeneity (ReHo) method to examine abnormal brain regions between the control and LPS groups and then considered them as seeds of functional connectivity analysis. Results Compared with the control group, our study showed that (1) LPS impaired mood function, as reflected by a depression-like behavior in the forced swim test; (2) LPS induced significantly increased ReHo values in the anterior cingulate cortex (ACC) and caudate putamen (CPu); (3) the ACC seed showed increased functional connectivity with the retrosplenial cortex, superior colliculus, and inferior colliculus; and (4) the right CPu seed showed increased functional connectivity with the left CPu. Linear regression analysis showed a LPS-induced depression-like behavior which was associated with increased ReHo values in the ACC and right CPu. Moreover, the LPS-induced depression-like behavior was related to increased functional connectivity between the right CPu and left CPu. Conclusion This is the first study to show that systemic inflammation impairs mood function that is associated with an altered resting-state functional network based on ReHo analysis, providing evidence of the abnormal regional brain spontaneous activity which might be involved in inflammation-related neurobehavioral abnormalities.
Collapse
|
49
|
HDAC3-Mediated Repression of the Nr4a Family Contributes to Age-Related Impairments in Long-Term Memory. J Neurosci 2019; 39:4999-5009. [PMID: 31000586 DOI: 10.1523/jneurosci.2799-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/27/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is accompanied by cognitive deficits, including impairments in long-term memory formation. Understanding the molecular mechanisms that support preserved cognitive function in aged animals is a critical step toward identifying novel therapeutic targets that could improve memory in aging individuals. One potential mechanism is the Nr4a family of genes, a group of CREB-dependent nuclear orphan receptors that have previously been shown to be important for hippocampal memory formation. Here, using a cross-species approach, we tested the role of Nr4a1 and Nr4a2 in age-related memory impairments. Using a rat model designed to identify individual differences in age-related memory impairments, we first identified Nr4a2 as a key gene that fails to be induced by learning in cognitively impaired male aged rats. Next, using a mouse model that allows for genetic manipulations, we determined that histone deacetylase 3 (HDAC3) negatively regulates Nr4a2 in the aged male and female hippocampus. Finally, we show that overexpression of Nr4a1, Nr4a2, or both transcripts in the male mouse dorsal hippocampus can ameliorate age-related impairments in object location memory. Together, our results suggest that Nr4a2 may be a key mechanism that promotes preserved cognitive function in old age, with HDAC3-mediated repression of Nr4a2 contributing to age-related cognitive decline. More broadly, these results indicate that therapeutic strategies to promote Nr4a gene expression or function may be an effective strategy to improve cognitive function in old age.SIGNIFICANCE STATEMENT Aging is accompanied by memory impairments, although there is a great deal of variability in the severity of these impairments. Identifying molecular mechanisms that promote preserved memory or participate in cognitive reserve in old age is important to develop strategies that promote healthy cognitive aging. Here, we show that learning-induced expression of the CREB-regulated nuclear receptor gene Nr4a2 is selectively impaired in aged rats with memory impairments. Further, we show that Nr4a2 is regulated by histone deacetylase HDAC3 in the aged mouse hippocampus. Finally, we demonstrate that hippocampal overexpression of either Nr4a2 or its family member, Nr4a1, can ameliorate age-related memory impairments. This suggests that promoting Nr4a expression may be a novel strategy to improve memory in aging individuals.
Collapse
|
50
|
The impact of fasting on resting state brain networks in mice. Sci Rep 2019; 9:2976. [PMID: 30814613 PMCID: PMC6393589 DOI: 10.1038/s41598-019-39851-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/04/2019] [Indexed: 11/18/2022] Open
Abstract
Fasting is known to influence learning and memory in mice and alter the neural networks that subserve these cognitive functions. We used high-resolution functional MRI to study the impact of fasting on resting-state functional connectivity in mice following 12 h of fasting. The cortex and subcortex were parcellated into 52 subregions and functional connectivity was measured between each pair of subregions in groups of fasted and non-fasted mice. Functional connectivity was globally increased in the fasted group compared to the non-fasted group, with the most significant increases evident between the hippocampus (bilateral), retrosplenial cortex (left), visual cortex (left) and auditory cortex (left). Functional brain networks in the non-fasted group comprised five segregated modules of strongly interconnected subregions, whereas the fasted group comprised only three modules. The amplitude of low frequency fluctuations (ALFF) was decreased in the ventromedial hypothalamus in the fasted group. Correlation in gamma oscillations derived from local field potentials was increased between the left visual and retrosplenial cortices in the fasted group and the power of gamma oscillations was reduced in the ventromedial hypothalamus. These results indicate that fasting induces profound changes in functional connectivity, most likely resulting from altered coupling of neuronal gamma oscillations.
Collapse
|