1
|
Strand NH, Whitney M, Johnson B, Dunn T, Attanti S, Maloney J, Misra L, Gomez D, Viswanath O, Emami E, Leathem J. Pain and Perception: Exploring Psychedelics as Novel Therapeutic Agents in Chronic Pain Management. Curr Pain Headache Rep 2025; 29:15. [PMID: 39775134 DOI: 10.1007/s11916-024-01353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Chronic pain affects approximately 1.5 billion people worldwide, representing the leading cause of disability and a significant financial burden on healthcare systems. Conventional treatments, such as opioids and non-steroidal anti-inflammatory drugs, are frequently linked to adverse effects, including dependency and gastrointestinal issues, and often offer limited long-term relief. This review explores the potential of psychedelics, including psilocybin, LSD, and ketamine, as alternative therapeutic agents in chronic pain management. RECENT FINDINGS These substances modulate pain perception through actions on serotonergic and glutamatergic systems and may promote neuroplasticity, offering novel pathways for pain relief. Specifically, the review details the pharmacologic actions of psychedelics, their effects on chronic pain syndromes such as cancer pain, migraines, and neuropathic pain, and their clinical implications. The safety profiles, patient responses, and analgesic properties of these compounds are examined, highlighting the need for further research to validate their efficacy and optimize their therapeutic use in pain management.
Collapse
Affiliation(s)
- Natalie H Strand
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA.
| | - Madeline Whitney
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Brooks Johnson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Tyler Dunn
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Sumedha Attanti
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Jillian Maloney
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Lopa Misra
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Diego Gomez
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Omar Viswanath
- Department of Anesthesiology, Creighton University School of Medicine, Mountain View Headache and Spine Institute, Phoenix, AZ, USA
- Mountain View Headache and Spine Institute, Phoenix, AZ, USA
| | - Eric Emami
- California Polytechnic State University, San Luis Obispo, CA, USA
| | | |
Collapse
|
2
|
Schmitz N, Hodzic S, Riedemann T. Common and contrasting effects of 5-HTergic signaling in pyramidal cells and SOM interneurons of the mouse cortex. Neuropsychopharmacology 2024:10.1038/s41386-024-02022-x. [PMID: 39511335 DOI: 10.1038/s41386-024-02022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a powerful modulator of neuronal activity within the central nervous system and dysfunctions of the serotonergic system have been linked to several neuropsychiatric disorders such as major depressive disorders or schizophrenia. The anterior cingulate cortex (aCC) plays an important role in cognitive capture of stimuli and valence processing and it is densely innervated by serotonergic fibers from the nucleus raphe. In order to understand how pathophysiological 5-HT signalling can lead to neuropsychiatric diseases, it is important to understand the physiological actions of 5-HT on cortical circuits. Therefore, we combined electrophysiological recordings with pharmacology and immunocytochemistry to investigate the effects of 5-HT on Somatostatin-positive interneurons (SOM-INs) and compared these to supragranular pyramidal cells (PCs). This comparison allowed us to identify common and contrasting effects of 5-HT on SOM-INs and PCs of the aCC resulting in a specific modulation of the excitation-to-inhibition balance in PCs but not in SOM-INs.
Collapse
Affiliation(s)
- Nathalie Schmitz
- Department of Physiological Genomics, Institute of Physiology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Sadat Hodzic
- Department of Physiological Genomics, Institute of Physiology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Therese Riedemann
- Department of Physiological Genomics, Institute of Physiology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 22, 5020, Salzburg, Austria.
| |
Collapse
|
3
|
Olson RJ, Bartlett L, Sonneborn A, Milton R, Bretton-Granatoor Z, Firdous A, Harris AZ, Abbas AI. Decoupling of cortical activity from behavioral state following administration of the classic psychedelic DOI. Neuropharmacology 2024; 257:110030. [PMID: 38851531 PMCID: PMC11260522 DOI: 10.1016/j.neuropharm.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Administration or consumption of classic psychedelics (CPs) leads to profound changes in experience which are often described as highly novel and meaningful. They have shown substantial promise in treating depressive symptoms and may be therapeutic in other situations. Although research suggests that the therapeutic response is correlated with the intensity of the experience, the neural circuit basis for the alterations in experience caused by CPs requires further study. The medial prefrontal cortex (mPFC), where CPs have been shown to induce rapid, 5-HT2A receptor-dependent structural and neurophysiological changes, is believed to be a key site of action. To investigate the acute neural circuit changes induced by CPs, we recorded single neurons and local field potentials in the mPFC of freely behaving male mice after administration of the 5-HT2A/2C receptor-selective CP, 2,5-Dimethoxy-4-iodoamphetamine (DOI). We segregated recordings into active and rest periods in order to examine cortical activity during desynchronized (active) and synchronized (rest) states. We found that DOI induced a robust decrease in low frequency power when animals were at rest, attenuating the usual synchronization that occurs during less active behavioral states. DOI also increased broadband gamma power and suppressed activity in fast-spiking neurons in both active and rest periods. Together, these results suggest that the CP DOI induces persistent desynchronization in mPFC, including during rest when mPFC typically exhibits more synchronized activity. This shift in cortical dynamics may in part underlie the longer-lasting effects of CPs on plasticity, and may be critical to their therapeutic properties.
Collapse
Affiliation(s)
- Randall J Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | - Lowell Bartlett
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | - Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | - Russell Milton
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | | | - Ayesha Firdous
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10034, USA
| | - Alexander Z Harris
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10034, USA; Department of Psychiatry, Columbia University, New York, NY, 10034, USA
| | - Atheir I Abbas
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA; Department of Psychiatry, Oregon Health and Science University, Portland OR 97239, USA; VA Portland Health Care System, Portland OR, 97239, USA.
| |
Collapse
|
4
|
Zahid Z, Sultan ZW, Krause BM, Wenthur CJ, Pearce RA, Banks MI. Divergent Effects of Ketamine and the Serotoninergic Psychedelic 2,5-Dimethoxy-4-Iodoamphetamine on Hippocampal Plasticity and Metaplasticity. PSYCHEDELIC MEDICINE (NEW ROCHELLE, N.Y.) 2024; 2:166-177. [PMID: 39669671 PMCID: PMC11633440 DOI: 10.1089/psymed.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Introduction Serotonergic psychedelics and ketamine produce rapid and long-lasting symptomatic relief in multiple psychiatric disorders. Evidence suggests that despite having distinct molecular targets, both drugs may exert therapeutic benefit via their pro-neuroplastic effects. Following treatment with ketamine or serotonergic psychedelics, patients are reported to be more open to behavioral change, which is leveraged for psychotherapy-assisted reframing of narratives of the self. This period of enhanced behavioral change is postulated to be supported by a post-treatment window of enhanced neural plasticity, but evidence for such 'metaplastic' effects is limited. In this study, we tested for neural plasticity and metaplasticity in murine hippocampus. Methods Brain slices were obtained from C57BL/6J mice 24 hours after treatment (intraperitoneal injection) with saline, ketamine, or the serotonergic psychedelic 2,5-Dimethoxy-4-iodoamphetamine (DOI). Extracellular fiber volleys (FVs) and field excitatory postsynaptic potentials (fEPSPs) were recorded in stratum radiatum of CA1 in response to stimulation of Schaffer collateral fibers before and after induction of short-term and long-term potentiation (STP, LTP). Results Before LTP induction, responses differed across treatment groups (F1,2 = 5.407, p = 0.00665), with fEPSPs enhanced in slices from DOI-treated animals (p = 0.0182), but not ketamine-treated animals (p = 0.9786), compared to saline. There were no treatment effects on LT (F1,2 = 0.6, p = 0.516), but there were on STP (F1,2 =, p = 0.0167), with enhanced STP in DOI-treated (p = 0.0352) but not ketamine-treated (p = 0.9999) animals compared to saline. A presynaptic component to the mechanism for the DOI effects was suggested by (1) significantly enhanced FV amplitudes (F1,2 = 3.17, p = 0.049) in DOI-treated (p = 0.0457) but not ketamine-treated animals compared to saline (p = 0.8677); and (2) enhanced paired pulse ratios (F1,2 = 3.581, p = 0.0339) in slices from DOI-treated (p= 0.0257) but not ketamine-treated animals (p = 0.4845) compared to saline. Conclusions DOI, but not ketamine, induced significant neuroplastic and metaplastic effects at hippocampal CA1 synapses 24 hours after treatment, likely in part via a presynaptic mechanism.
Collapse
Affiliation(s)
- Zarmeen Zahid
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Ziyad W. Sultan
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Bryan M. Krause
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Cody J. Wenthur
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Robert A. Pearce
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| |
Collapse
|
5
|
Barra ME, Solt K, Yu X, Edlow BL. Restoring consciousness with pharmacologic therapy: Mechanisms, targets, and future directions. Neurotherapeutics 2024; 21:e00374. [PMID: 39019729 PMCID: PMC11452330 DOI: 10.1016/j.neurot.2024.e00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 07/19/2024] Open
Abstract
Severe brain injury impairs consciousness by disrupting a broad spectrum of neurotransmitter systems. Emerging evidence suggests that pharmacologic modulation of specific neurotransmitter systems, such as dopamine, promotes recovery of consciousness. Clinical guidelines now endorse the use of amantadine in individuals with traumatic disorders of consciousness (DoC) based on level 1 evidence, and multiple neurostimulants are used off-label in clinical practice, including methylphenidate, modafinil, bromocriptine, levodopa, and zolpidem. However, the relative contributions of monoaminergic, glutamatergic, cholinergic, GABAergic, and orexinergic neurotransmitter systems to recovery of consciousness after severe brain injury are unknown, and personalized approaches to targeted therapy have yet to be developed. This review summarizes the state-of-the-science in the neurochemistry and neurobiology of neurotransmitter systems involved in conscious behaviors, followed by a discussion of how pharmacologic therapies may be used to modulate these neurotransmitter systems and promote recovery of consciousness. We consider pharmacologic modulation of consciousness at the synapse, circuit, and network levels, with a focus on the mesocircuit model that has been proposed to explain the consciousness-promoting effects of various monoaminergic, glutamatergic, and paradoxically, GABAergic therapies. Though fundamental questions remain about neurotransmitter mechanisms, target engagement and optimal therapy selection for individual patients, we propose that pharmacologic therapies hold great promise to promote recovery and improve quality of life for patients with severe brain injuries.
Collapse
Affiliation(s)
- Megan E Barra
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xin Yu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Soto NN, Gaspar P, Bacci A. Not Just a Mood Disorder─Is Depression a Neurodevelopmental, Cognitive Disorder? Focus on Prefronto-Thalamic Circuits. ACS Chem Neurosci 2024; 15:1611-1618. [PMID: 38580316 PMCID: PMC11027097 DOI: 10.1021/acschemneuro.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
Depression is one of the most burdensome psychiatric disorders, affecting hundreds of millions of people worldwide. The disease is characterized not only by severe emotional and affective impairments, but also by disturbed vegetative and cognitive functions. Although many candidate mechanisms have been proposed to cause the disease, the pathophysiology of cognitive impairments in depression remains unclear. In this article, we aim to assess the link between cognitive alterations in depression and possible developmental changes in neuronal circuit wiring during critical periods of susceptibility. We review the existing literature and propose a role of serotonin signaling during development in shaping the functional states of prefrontal neuronal circuits and prefronto-thalamic loops. We discuss how early life insults affecting the serotonergic system could be important in the alterations of these local and long-range circuits, thus favoring the emergence of neurodevelopmental disorders, such as depression.
Collapse
Affiliation(s)
- Nina Nitzan Soto
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| | - Patricia Gaspar
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| | - Alberto Bacci
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| |
Collapse
|
7
|
Sekssaoui M, Bockaert J, Marin P, Bécamel C. Antidepressant-like effects of psychedelics in a chronic despair mouse model: is the 5-HT 2A receptor the unique player? Neuropsychopharmacology 2024; 49:747-756. [PMID: 38212441 PMCID: PMC10876623 DOI: 10.1038/s41386-024-01794-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024]
Abstract
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders in the world. First-line treatments such as selective serotonin reuptake inhibitors (SSRIs) still have many limitations, including a resistance to treatment in 30% of patients and a delayed clinical benefit that is observed only after several weeks of treatment. Increasing clinical evidence indicates that the acute administration of psychedelic agonists of the serotonin 5-HT2A receptor (5-HT2AR), such as psilocybin, to patients with MDD induce fast antidepressant effects, which persist up to five weeks after the treatment. However, the involvement of the 5-HT2AR in these antidepressant effects remains controversial. Furthermore, whether the hallucinogenic properties of 5-HT2AR agonists are mandatory to their antidepressant activity is still an open question. Here, we addressed these issues by investigating the effect of two psychedelics of different chemical families, DOI and psilocybin, and a non-hallucinogenic 5-HT2AR agonist, lisuride, in a chronic despair mouse model exhibiting a robust depressive-like phenotype. We show that a single injection of each drug to wild type mice induces anxiolytic- and antidepressant-like effects in the novelty-suppressed feeding, sucrose preference and forced swim tests, which last up to 15 days. DOI and lisuride administration did not produce antidepressant-like effects in 5-HT2A-/- mice, whereas psilocybin was still effective. Moreover, neither 5-HT1AR blockade nor dopamine D1 or D2 receptor blockade affected the antidepressant-like effects of psilocybin in 5-HT2A-/- mice. Collectively, these findings indicate that 5-HT2AR agonists can produce antidepressant-like effects independently of hallucinogenic properties through mechanisms involving or not involving the receptor.
Collapse
Affiliation(s)
- Mehdi Sekssaoui
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France
| | - Joël Bockaert
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France
| | - Carine Bécamel
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France.
| |
Collapse
|
8
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
9
|
Luo Q, Kanen JW, Bari A, Skandali N, Langley C, Knudsen GM, Alsiö J, Phillips BU, Sahakian BJ, Cardinal RN, Robbins TW. Comparable roles for serotonin in rats and humans for computations underlying flexible decision-making. Neuropsychopharmacology 2024; 49:600-608. [PMID: 37914893 PMCID: PMC10789782 DOI: 10.1038/s41386-023-01762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Serotonin is critical for adapting behavior flexibly to meet changing environmental demands. Cognitive flexibility is important for successful attainment of goals, as well as for social interactions, and is frequently impaired in neuropsychiatric disorders, including obsessive-compulsive disorder. However, a unifying mechanistic framework accounting for the role of serotonin in behavioral flexibility has remained elusive. Here, we demonstrate common effects of manipulating serotonin function across two species (rats and humans) on latent processes supporting choice behavior during probabilistic reversal learning, using computational modelling. The findings support a role of serotonin in behavioral flexibility and plasticity, indicated, respectively, by increases or decreases in choice repetition ('stickiness') or reinforcement learning rates following manipulations intended to increase or decrease serotonin function. More specifically, the rate at which expected value increased following reward and decreased following punishment (reward and punishment 'learning rates') was greatest after sub-chronic administration of the selective serotonin reuptake inhibitor (SSRI) citalopram (5 mg/kg for 7 days followed by 10 mg/kg twice a day for 5 days) in rats. Conversely, humans given a single dose of an SSRI (20 mg escitalopram), which can decrease post-synaptic serotonin signalling, and rats that received the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), which destroys forebrain serotonergic neurons, exhibited decreased reward learning rates. A basic perseverative tendency ('stickiness'), or choice repetition irrespective of the outcome produced, was likewise increased in rats after the 12-day SSRI regimen and decreased after single dose SSRI in humans and 5,7-DHT in rats. These common effects of serotonergic manipulations on rats and humans-identified via computational modelling-suggest an evolutionarily conserved role for serotonin in plasticity and behavioral flexibility and have clinical relevance transdiagnostically for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China.
- Center for Computational Psychiatry, Ministry of Education Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - Jonathan W Kanen
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | | | - Nikolina Skandali
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
- NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christelle Langley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Benjamin U Phillips
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Barbara J Sahakian
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Rudolf N Cardinal
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
| | - Trevor W Robbins
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China.
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| |
Collapse
|
10
|
Villalba S, González B, Junge S, Bernardi A, González J, Fagúndez C, Torterolo P, Carrera I, Urbano FJ, Bisagno V. 5-HT 2A Receptor Knockout Mice Show Sex-Dependent Differences following Acute Noribogaine Administration. Int J Mol Sci 2024; 25:687. [PMID: 38255760 PMCID: PMC10815577 DOI: 10.3390/ijms25020687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Noribogaine (noribo) is the primary metabolite from ibogaine, an atypical psychedelic alkaloid isolated from the root bark of the African shrub Tabernanthe iboga. The main objective of this study was to test the hypothesis that molecular, electrophysiological, and behavioral responses of noribo are mediated by the 5-HT2A receptor (5-HT2AR) in mice. In that regard, we used male and female, 5-HT2AR knockout (KO) and wild type (WT) mice injected with a single noribo dose (10 or 40 mg/kg; i.p.). After 30 min., locomotor activity was recorded followed by mRNA measurements by qPCR (immediate early genes; IEG, glutamate receptors, and 5-HT2AR levels) and electrophysiology recordings of layer V pyramidal neurons from the medial prefrontal cortex. Noribo 40 decreased locomotion in male, but not female WT. Sex and genotype differences were observed for IEG and glutamate receptor expression. Expression of 5-HT2AR mRNA increased in the mPFC of WT mice following Noribo 10 (males) or Noribo 40 (females). Patch-clamp recordings showed that Noribo 40 reduced the NMDA-mediated postsynaptic current density in mPFC pyramidal neurons only in male WT mice, but no effects were found for either KO males or females. Our results highlight that noribo produces sexually dimorphic effects while the genetic removal of 5HT2AR blunted noribo-mediated responses to NMDA synaptic transmission.
Collapse
Affiliation(s)
- Sofía Villalba
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Bruno González
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Avenida General Flores 2124, Montevideo 11800, Uruguay; (B.G.); (C.F.); (I.C.)
| | - Stephanie Junge
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Alejandra Bernardi
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Joaquín González
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo 11800, Uruguay; (J.G.); (P.T.)
| | - Catherine Fagúndez
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Avenida General Flores 2124, Montevideo 11800, Uruguay; (B.G.); (C.F.); (I.C.)
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo 11800, Uruguay; (J.G.); (P.T.)
| | - Ignacio Carrera
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Avenida General Flores 2124, Montevideo 11800, Uruguay; (B.G.); (C.F.); (I.C.)
| | - Francisco J. Urbano
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Verónica Bisagno
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
| |
Collapse
|
11
|
Meynier M, Daugey V, Mallaret G, Gervason S, Meleine M, Barbier J, Aissouni Y, Lolignier S, Bonnet M, Ardid D, De Vos WM, Van Hul M, Suenaert P, Brochot A, Cani PD, Carvalho FA. Pasteurized akkermansia muciniphila improves irritable bowel syndrome-like symptoms and related behavioral disorders in mice. Gut Microbes 2024; 16:2298026. [PMID: 38170633 PMCID: PMC10766393 DOI: 10.1080/19490976.2023.2298026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Gut - brain communications disorders in irritable bowel syndrome (IBS) are associated with intestinal microbiota composition, increased gut permeability, and psychosocial disturbances. Symptoms of IBS are difficult to medicate, and hence much research is being made into alternative approaches. This study assesses the potential of a treatment with pasteurized Akkermansia muciniphila for alleviating IBS-like symptoms in two mouse models of IBS with different etiologies. Two clinically relevant animal models were used to mimic IBS-like symptoms in C57BL6/J mice: the neonatal maternal separation (NMS) paradigm and the Citrobacter rodentium infection model. In both models, gut permeability, colonic sensitivity, fecal microbiota composition and colonic IL-22 expression were evaluated. The cognitive performance and emotional state of the animals were also assessed by several tests in the C. rodentium infection model. The neuromodulation ability of pasteurized A. muciniphila was assessed on primary neuronal cells from mice dorsal root ganglia using a ratiometric calcium imaging approach. The administration of pasteurized A. muciniphila significantly reduced colonic hypersensitivity in both IBS mouse models, accompanied by a reinforcement of the intestinal barrier function. Beneficial effects of pasteurized A. muciniphila treatment have also been observed on anxiety-like behavior and memory defects in the C. rodentium infection model. Finally, a neuroinhibitory effect exerted by pasteurized A. muciniphila was observed on neuronal cells stimulated with two algogenic substances such as capsaicin and inflammatory soup. Our findings demonstrate novel anti-hyperalgesic and neuroinhibitory properties of pasteurized A. muciniphila, which therefore may have beneficial effects in relieving pain and anxiety in subjects with IBS.
Collapse
Affiliation(s)
- Maëva Meynier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
- M2iSH, UMR 1071 INSERM, UMR1382 INRAé, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Valentine Daugey
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Geoffroy Mallaret
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Sandie Gervason
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Mathieu Meleine
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Julie Barbier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Youssef Aissouni
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Stéphane Lolignier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Mathilde Bonnet
- M2iSH, UMR 1071 INSERM, UMR1382 INRAé, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Denis Ardid
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Willem M. De Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- The Akkermansia Company™, Mont-Saint-Guibert, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | | | - Patrice D. Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Frédéric A. Carvalho
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
12
|
Pouyan N, Younesi Sisi F, Kargar A, Scheidegger M, McIntyre RS, Morrow JD. The effects of Lysergic Acid Diethylamide (LSD) on the Positive Valence Systems: A Research Domain Criteria (RDoC)-Informed Systematic Review. CNS Drugs 2023; 37:1027-1063. [PMID: 37999867 PMCID: PMC10703966 DOI: 10.1007/s40263-023-01044-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND AND OBJECTIVES The renewed interest in psychedelic research provides growing evidence of potentially unique effects on various aspects of reward processing systems. Using the Research Domain Criteria (RDoC) framework, as proposed by the National Institute of Mental Health, we aim to synthesize the existing literature concerning the impact of lysergic acid diethylamide (LSD) on the RDoC's Positive Valence Systems (PVS) domain, and to identify potential avenues for further research. METHODS Two LSD-related terms (lysergic acid diethylamide and LSD) and 13 PVS-related terms (reward, happiness, bliss, motivation, reinforcement learning, operant, conditioning, satisfaction, decision making, habit, valence, affect, mood) were used to search electronic databases such as PubMed, Scopus, PsychINFO, and Web of Science for relevant articles. A manual search of the reference list resulted in nine additional articles. After screening, articles and data were evaluated and included based on their relevance to the objective of investigating the effects of LSD on the PVS. Articles and data were excluded if they did not provide information about the PVS, were observational in nature, lacked comparators or reference groups, or were duplicates. A risk of bias assessment was performed using the National Toxicology Program's Office of Health Assessment and Translation (NTP OHAT) risk of bias (RoB) tool. Data from the included articles were collected and structured based on the RDoC bio-behavioral matrix, specifically focusing on the PVS domain and its three constituent constructs: reward responsiveness, reward learning, and reward valuation. RESULTS We reviewed 28 clinical studies with 477 participants. Lysergic acid diethylamide, assessed at self-report (23 studies), molecular (5 studies), circuit (4 studies), and paradigm (3 studies) levels, exhibited dose-dependent mood improvement (20 short-term and 3 long-term studies). The subjective and neural effects of LSD were linked to the 5-HT2A receptor (molecular). Animal studies (14 studies) suggested LSD could mildly reinforce conditioned place preference without aversion and reduce responsiveness to other rewards. Findings on reward learning were inconsistent but hinted at potential associative learning enhancements. Reward valuation measures indicated potential reductions in effort expenditure for other reinforcers. CONCLUSION Our findings are consistent with our previous work, which indicated classical psychedelics, primarily serotonin 2A receptor agonists, enhanced reward responsiveness in healthy individuals and patient populations. Lysergic acid diethylamide exhibits a unique profile in the reward learning and valuation constructs. Using the RDoC-based framework, we identified areas for future research, enhancing our understanding of the impact of LSD on reward processing. However, applying RDoC to psychedelic research faces limitations due to diverse study designs that were not initially RDoC-oriented. Limitations include subjective outcome measure selection aligned with RDoC constructs and potential bias in synthesizing varied studies. Additionally, some human studies were open-label, introducing potential bias compared to randomized, blinded studies.
Collapse
Affiliation(s)
- Niloufar Pouyan
- Michigan Psychedelic Center (M-PsyC), and Chronic Pain and Fatigue Research Center (CPFRC), University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, and Program in Biomedical Sciences (PIBS), University of Michigan Medical School, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, USA.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Aracell Zist Darou pharmaceutical, Tehran, Iran.
| | - Farnaz Younesi Sisi
- Yaadmaan Institute for Brain, Cognition and Memory Studies, Tehran, Iran
- Cognitive Neurology and Neuropsychiatry Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Kargar
- Cognitive Neurology and Neuropsychiatry Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Clinical Pharmacy, School of pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jonathan D Morrow
- Neuroscience Graduate Program, and Program in Biomedical Sciences (PIBS), University of Michigan Medical School, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Payet JM, Stevens L, Russo AM, Jaehne EJ, van den Buuse M, Kent S, Lowry CA, Baratta MV, Hale MW. The Role of Dorsal Raphe Nucleus Serotonergic Systems in Emotional Learning and Memory in Male BALB/c Mice. Neuroscience 2023; 534:1-15. [PMID: 37852412 DOI: 10.1016/j.neuroscience.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line pharmacological treatment for a variety of anxiety-, trauma- and stressor-related disorders. Although they are efficacious, therapeutic improvements require several weeks of treatment and are often associated with an initial exacerbation of symptoms. The dorsal raphe nucleus (DR) has been proposed as an important target for the modulation of emotional responses and the therapeutic effects of SSRIs. Using a fear-conditioning paradigm we aimed to understand how SSRIs affect emotional learning and memory, and their effects on serotonergic circuitry. Adult male BALB/c mice were treated with vehicle (n = 16) or the SSRI fluoxetine (18 mg/kg/d) acutely (n = 16), or chronically (21d, n = 16), prior to fear conditioning. Treatment was stopped, and half of the mice (n = 8/treatment group) were exposed to cued fear memory recall 72 h later. Activation of DR serotonergic neurons during fear conditioning (Experiment 1) or fear memory recall (Experiment 2), was measured using dual-label immunohistochemistry for Tph2 and c-Fos. Acute and chronic fluoxetine treatment reduced associative fear learning without affecting memory recall and had opposite effects on anxiety-like behaviour. Acute fluoxetine decreased serotonergic activity in the DR, while chronic treatment led to serotonergic activity that was indistinguishable from that of control levels in DRD and DRV subpopulations. Chronic fluoxetine facilitated fear extinction, which was associated with rostral DRD inhibition. These findings provide further evidence that SSRIs can alter aspects of learning and memory processes and are consistent with a role for discrete populations of DR serotonergic neurons in regulating fear- and anxiety-related behaviours.
Collapse
Affiliation(s)
- Jennyfer M Payet
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Laura Stevens
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Adrian M Russo
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Stephen Kent
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Christopher A Lowry
- Department of Integrative Physiology and Centre for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Matthew W Hale
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Banushi B, Polito V. A Comprehensive Review of the Current Status of the Cellular Neurobiology of Psychedelics. BIOLOGY 2023; 12:1380. [PMID: 37997979 PMCID: PMC10669348 DOI: 10.3390/biology12111380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Psychedelic substances have gained significant attention in recent years for their potential therapeutic effects on various psychiatric disorders. This review delves into the intricate cellular neurobiology of psychedelics, emphasizing their potential therapeutic applications in addressing the global burden of mental illness. It focuses on contemporary research into the pharmacological and molecular mechanisms underlying these substances, particularly the role of 5-HT2A receptor signaling and the promotion of plasticity through the TrkB-BDNF pathway. The review also discusses how psychedelics affect various receptors and pathways and explores their potential as anti-inflammatory agents. Overall, this research represents a significant development in biomedical sciences with the potential to transform mental health treatments.
Collapse
Affiliation(s)
- Blerida Banushi
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Vince Polito
- School of Psychological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
15
|
González-Arias C, Sánchez-Ruiz A, Esparza J, Sánchez-Puelles C, Arancibia L, Ramírez-Franco J, Gobbo D, Kirchhoff F, Perea G. Dysfunctional serotonergic neuron-astrocyte signaling in depressive-like states. Mol Psychiatry 2023; 28:3856-3873. [PMID: 37773446 PMCID: PMC10730416 DOI: 10.1038/s41380-023-02269-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Astrocytes play crucial roles in brain homeostasis and are regulatory elements of neuronal and synaptic physiology. Astrocytic alterations have been found in Major Depressive Disorder (MDD) patients; however, the consequences of astrocyte Ca2+ signaling in MDD are poorly understood. Here, we found that corticosterone-treated juvenile mice (Cort-mice) showed altered astrocytic Ca2+ dynamics in mPFC both in resting conditions and during social interactions, in line with altered mice behavior. Additionally, Cort-mice displayed reduced serotonin (5-HT)-mediated Ca2+ signaling in mPFC astrocytes, and aberrant 5-HT-driven synaptic plasticity in layer 2/3 mPFC neurons. Downregulation of astrocyte Ca2+ signaling in naïve animals mimicked the synaptic deficits found in Cort-mice. Remarkably, boosting astrocyte Ca2+ signaling with Gq-DREADDS restored to the control levels mood and cognitive abilities in Cort-mice. This study highlights the important role of astrocyte Ca2+ signaling for homeostatic control of brain circuits and behavior, but also reveals its potential therapeutic value for depressive-like states.
Collapse
Affiliation(s)
- Candela González-Arias
- Cajal Institute, CSIC, 28002, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, 28029, Spain
| | - Andrea Sánchez-Ruiz
- Cajal Institute, CSIC, 28002, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, 28029, Spain
| | | | | | | | - Jorge Ramírez-Franco
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, 13005, Marseille, France
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | | |
Collapse
|
16
|
Saha S, González-Maeso J. The crosstalk between 5-HT 2AR and mGluR2 in schizophrenia. Neuropharmacology 2023; 230:109489. [PMID: 36889432 PMCID: PMC10103009 DOI: 10.1016/j.neuropharm.2023.109489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Schizophrenia is a severe brain disorder that usually produces a lifetime of disability. First generation or typical antipsychotics such as haloperidol and second generation or atypical antipsychotics such as clozapine and risperidone remain the current standard for schizophrenia treatment. In some patients with schizophrenia, antipsychotics produce complete remission of positive symptoms, such as hallucinations and delusions. However, antipsychotic drugs are ineffective against cognitive deficits and indeed treated schizophrenia patients have small improvements or even deterioration in several cognitive domains. This underlines the need for novel and more efficient therapeutic targets for schizophrenia treatment. Serotonin and glutamate have been identified as key parts of two neurotransmitter systems involved in fundamental brain processes. Serotonin (or 5-hydroxytryptamine) 5-HT2A receptor (5-HT2AR) and metabotropic glutamate 2 receptor (mGluR2) are G protein-coupled receptors (GPCRs) that interact at epigenetic and functional levels. These two receptors can form GPCR heteromeric complexes through which their pharmacology, function and trafficking becomes affected. Here we review past and current research on the 5-HT2AR-mGluR2 heterocomplex and its potential implication in schizophrenia and antipsychotic drug action. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Somdatta Saha
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
17
|
Hao S, Shi W, Liu W, Chen QY, Zhuo M. Multiple modulatory roles of serotonin in chronic pain and injury-related anxiety. Front Synaptic Neurosci 2023; 15:1122381. [PMID: 37143481 PMCID: PMC10151796 DOI: 10.3389/fnsyn.2023.1122381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Chronic pain is long-lasting pain that often persists during chronic diseases or after recovery from disease or injury. It often causes serious side effects, such as insomnia, anxiety, or depression which negatively impacts the patient's overall quality of life. Serotonin (5-HT) in the central nervous system (CNS) has been recognized as an important neurotransmitter and neuromodulator which regulates various physiological functions, such as pain sensation, cognition, and emotions-especially anxiety and depression. Its widespread and diverse receptors underlie the functional complexity of 5-HT in the CNS. Recent studies found that both chronic pain and anxiety are associated with synaptic plasticity in the anterior cingulate cortex (ACC), the insular cortex (IC), and the spinal cord. 5-HT exerts multiple modulations of synaptic transmission and plasticity in the ACC and the spinal cord, including activation, inhibition, and biphasic actions. In this review, we will discuss the multiple actions of the 5-HT system in both chronic pain and injury-related anxiety, and the synaptic mechanisms behind them. It is likely that the specific 5-HT receptors would be new promising therapeutic targets for the effective treatment of chronic pain and injury-related anxiety in the future.
Collapse
Affiliation(s)
- Shun Hao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- International Institute of Brain Research, Forevercheer Medicine Pharmac Inc., Qingdao, Shandong, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weiqi Liu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qi-Yu Chen
- International Institute of Brain Research, Forevercheer Medicine Pharmac Inc., Qingdao, Shandong, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Min Zhuo
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- International Institute of Brain Research, Forevercheer Medicine Pharmac Inc., Qingdao, Shandong, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Tang ZH, Yu ZP, Li Q, Zhang XQ, Muhetaer K, Wang ZC, Xu P, Shen HW. The effects of serotonergic psychedelics in synaptic and intrinsic properties of neurons in layer II/III of the orbitofrontal cortex. Psychopharmacology (Berl) 2023; 240:1275-1285. [PMID: 37071130 DOI: 10.1007/s00213-023-06366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
RATIONALE Serotonergic psychedelics show promise in the treatment of psychiatric disorders, including obsessive-compulsive disorder. Dysfunction of the orbitofrontal cortex (OFc) has been implicated in the pathophysiology of compulsive behavior, which might be a key region for the efficacy of psychedelics. However, the effects of psychedelics on the neural activities and local excitation/inhibition (E/I) balance in the OFc are unclear. OBJECTIVES This study aimed to investigate how 25C-NBOMe, a substituted phenethylamine psychedelic, regulated the synaptic and intrinsic properties of neurons in layer II/III of the OFc. METHODS Acute brain slices containing the OFc of adult male Sprague Dawley rats were used for ex vivo whole-cell recording. The synaptic and intrinsic properties of neurons were monitored using voltage and current clamps, respectively. Electrically evoked action potential (eAP) was used to measure synaptic-driven pyramidal activity. RESULTS 25C-NBOMe enhanced spontaneous neurotransmission at glutamatergic synapses but diminished that in GABAergic synapses through the 5-HT2A receptor. 25C-NBOMe also increased both evoked excitatory currents and evoked action potentials. Moreover, 25C-NBOMe promoted the excitability of pyramidal neurons but not fast-spiking neurons. Either inhibiting G protein-gated inwardly rectifying potassium channels or activating protein kinase C significantly obstructed the facilitative effect of 25C-NBOMe on the intrinsic excitability of pyramidal neurons. CONCLUSIONS This work reveals the multiple roles of 25C-NBOMe in modulating synaptic and neuronal function in the OFc, which collectively promotes local E/I ratios.
Collapse
Affiliation(s)
- Zi-Hang Tang
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Zhi-Peng Yu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, People's Republic of China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Qiong Li
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Xiao-Qin Zhang
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Kadeliya Muhetaer
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Zheng-Chun Wang
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Peng Xu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, 100093, People's Republic of China
| | - Hao-Wei Shen
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, People's Republic of China.
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, 315010, People's Republic of China.
| |
Collapse
|
19
|
Domanegg K, Sommer WH, Meinhardt MW. Psychedelic Targeting of Metabotropic Glutamate Receptor 2 and Its Implications for the Treatment of Alcoholism. Cells 2023; 12:963. [PMID: 36980303 PMCID: PMC10047550 DOI: 10.3390/cells12060963] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Alcohol abuse is a leading risk factor for the public health burden worldwide. Approved pharmacotherapies have demonstrated limited effectiveness over the last few decades in treating alcohol use disorders (AUD). New therapeutic approaches are therefore urgently needed. Historical and recent clinical trials using psychedelics in conjunction with psychotherapy demonstrated encouraging results in reducing heavy drinking in AUD patients, with psilocybin being the most promising candidate. While psychedelics are known to induce changes in gene expression and neuroplasticity, we still lack crucial information about how this specifically counteracts the alterations that occur in neuronal circuits throughout the course of addiction. This review synthesizes well-established knowledge from addiction research about pathophysiological mechanisms related to the metabotropic glutamate receptor 2 (mGlu2), with findings and theories on how mGlu2 connects to the major signaling pathways induced by psychedelics via serotonin 2A receptors (2AR). We provide literature evidence that mGlu2 and 2AR are able to regulate each other's downstream signaling pathways, either through monovalent crosstalk or through the formation of a 2AR-mGlu2 heteromer, and highlight epigenetic mechanisms by which 2ARs can modulate mGlu2 expression. Lastly, we discuss how these pathways might be targeted therapeutically to restore mGlu2 function in AUD patients, thereby reducing the propensity to relapse.
Collapse
Affiliation(s)
- Kevin Domanegg
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
- Bethanien Hospital for Psychiatry, Psychosomatics, and Psychotherapy Greifswald, 17489 Greifswald, Germany
| | - Marcus W. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
| |
Collapse
|
20
|
Glazer J, Murray CH, Nusslock R, Lee R, de Wit H. Low doses of lysergic acid diethylamide (LSD) increase reward-related brain activity. Neuropsychopharmacology 2023; 48:418-426. [PMID: 36284231 PMCID: PMC9751270 DOI: 10.1038/s41386-022-01479-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/26/2022]
Abstract
Renewed interest in classic psychedelics as treatments for psychiatric disorders warrants a deeper understanding of their neural mechanisms. Single, high doses of psychedelic drugs have shown promise in treating depressive disorders, perhaps by reversing deficits in reward processing in the brain. In addition, there are anecdotal reports that repeated ingestion of low doses of LSD, or "microdosing", improve mood, cognition, and feelings of wellbeing. However, the effects of low doses of classic psychedelics on reward processing have not been studied. The current study examined the effects of two single, low doses of LSD compared to placebo on measures of reward processing. Eighteen healthy adults completed three sessions in which they received placebo (LSD-0), 13 μg LSD (LSD-13) and 26 μg LSD (LSD-26) in a within-subject, double-blind design. Neural activity was recorded while participants completed the electrophysiological monetary incentive delay task. Event-related potentials were measured during feedback processing (Reward-Positivity: RewP, Feedback-P3: FB-P3, and Late-Positive Potential: LPP). Compared to placebo, LSD-13 increased RewP and LPP amplitudes for reward (vs. neutral) feedback, and LSD-13 and LSD-26 increased FB-P3 amplitudes for positive (vs. negative) feedback. These effects were unassociated with most subjective measures of drug effects. Thus, single, low doses of LSD (vs. placebo) increased three reward-related ERP components reflecting increased hedonic (RewP), motivational (FB-P3), and affective processing of feedback (LPP). These results constitute the first evidence that low doses of LSD increase reward-related brain activity in humans. These findings may have important implications for the treatment of depressive disorders.
Collapse
Affiliation(s)
- James Glazer
- Department of Psychology, Northwestern University, 2029 Sheridan Road Evanston, Chicago, IL, 60208, USA
| | - Conor H Murray
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, 2029 Sheridan Road Evanston, Chicago, IL, 60208, USA
| | - Royce Lee
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
21
|
Pędzich BD, Medrano M, Buckinx A, Smolders I, De Bundel D. Psychedelic-Induced Serotonin 2A Receptor Downregulation Does Not Predict Swim Stress Coping in Mice. Int J Mol Sci 2022; 23:ijms232315284. [PMID: 36499610 PMCID: PMC9736085 DOI: 10.3390/ijms232315284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Serotoninergic psychedelics such as psilocybin have been reported to elicit a long-lasting reduction in depressive symptoms. Although the main target for serotoninergic psychedelics, serotonin type 2A receptor (5-HT2A), has been established, the possible mechanism of the antidepressant action of psychedelics remains unknown. Using the mouse forced swim test model, we examined whether the administration of the synthetic serotoninergic psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI) would modulate 5-HT2A receptor levels in the medial prefrontal cortex (mPFC) and revert stress-induced changes in behavior. Mice subjected to swim stress developed a passive stress-coping strategy when tested in the forced swim test 6 days later. This change in behavior was not associated with the hypothesized increase in 5-HT2A receptor-dependent head twitch behaviors or consistent changes in 5-HT2A receptor levels in the mPFC. When DOI was administered 1 day before the forced swim test, a low dose (0.2 mg/kg i.p.) unexpectedly increased immobility while a high dose (2 mg/kg i.p.) had no significant effect on immobility. Nevertheless, DOI evoked a dose-dependent decrease in 5-HT2A levels in the mPFC of mice previously exposed to swim stress. Our findings do not support the hypothesis that the downregulation of 5-HT2A receptors in the mPFC contributes to the antidepressant-like properties of serotoninergic psychedelics.
Collapse
|
22
|
Molecular Pathways of the Therapeutic Effects of Ayahuasca, a Botanical Psychedelic and Potential Rapid-Acting Antidepressant. Biomolecules 2022; 12:biom12111618. [DOI: 10.3390/biom12111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Ayahuasca is a psychoactive brew traditionally used in indigenous and religious rituals and ceremonies in South America for its therapeutic, psychedelic, and entheogenic effects. It is usually prepared by lengthy boiling of the leaves of the bush Psychotria viridis and the mashed stalks of the vine Banisteriopsis caapi in water. The former contains the classical psychedelic N,N-dimethyltryptamine (DMT), which is thought to be the main psychoactive alkaloid present in the brew. The latter serves as a source for β-carbolines, known for their monoamine oxidase-inhibiting (MAOI) properties. Recent preliminary research has provided encouraging results investigating ayahuasca’s therapeutic potential, especially regarding its antidepressant effects. On a molecular level, pre-clinical and clinical evidence points to a complex pharmacological profile conveyed by the brew, including modulation of serotoninergic, glutamatergic, dopaminergic, and endocannabinoid systems. Its substances also interact with the vesicular monoamine transporter (VMAT), trace amine-associated receptor 1 (TAAR1), and sigma-1 receptors. Furthermore, ayahuasca’s components also seem to modulate levels of inflammatory and neurotrophic factors beneficially. On a biological level, this translates into neuroprotective and neuroplastic effects. Here we review the current knowledge regarding these molecular interactions and how they relate to the possible antidepressant effects ayahuasca seems to produce.
Collapse
|
23
|
Gaddis A, Lidstone DE, Nebel MB, Griffiths RR, Mostofsky SH, Mejia AF, Barrett FS. Psilocybin induces spatially constrained alterations in thalamic functional organizaton and connectivity. Neuroimage 2022; 260:119434. [PMID: 35792293 DOI: 10.1016/j.neuroimage.2022.119434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Classic psychedelics, such as psilocybin and LSD, and other serotonin 2A receptor (5-HT2AR) agonists evoke acute alterations in perception and cognition. Altered thalamocortical connectivity has been hypothesized to underlie these effects, which is supported by some functional MRI (fMRI) studies. These studies have treated the thalamus as a unitary structure, despite known differential 5-HT2AR expression and functional specificity of different intrathalamic nuclei. Independent Component Analysis (ICA) has been previously used to identify reliable group-level functional subdivisions of the thalamus from resting-state fMRI (rsfMRI) data. We build on these efforts with a novel data-maximizing ICA-based approach to examine psilocybin-induced changes in intrathalamic functional organization and thalamocortical connectivity in individual participants. METHODS Baseline rsfMRI data (n=38) from healthy individuals with a long-term meditation practice was utilized to generate a statistical template of thalamic functional subdivisions. This template was then applied in a novel ICA-based analysis of the acute effects of psilocybin on intra- and extra-thalamic functional organization and connectivity in follow-up scans from a subset of the same individuals (n=18). We examined correlations with subjective reports of drug effect and compared with a previously reported analytic approach (treating the thalamus as a single functional unit). RESULTS Several intrathalamic components showed significant psilocybin-induced alterations in spatial organization, with effects of psilocybin largely localized to the mediodorsal and pulvinar nuclei. The magnitude of changes in individual participants correlated with reported subjective effects. These components demonstrated predominant decreases in thalamocortical connectivity, largely with visual and default mode networks. Analysis in which the thalamus is treated as a singular unitary structure showed an overall numerical increase in thalamocortical connectivity, consistent with previous literature using this approach, but this increase did not reach statistical significance. CONCLUSIONS We utilized a novel analytic approach to discover psilocybin-induced changes in intra- and extra-thalamic functional organization and connectivity of intrathalamic nuclei and cortical networks known to express the 5-HT2AR. These changes were not observed using whole-thalamus analyses, suggesting that psilocybin may cause widespread but modest increases in thalamocortical connectivity that are offset by strong focal decreases in functionally relevant intrathalamic nuclei.
Collapse
Affiliation(s)
- Andrew Gaddis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Daniel E Lidstone
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland R Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stewart H Mostofsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda F Mejia
- Department of Statistics, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
24
|
Presynaptic 5-HT2A-mGlu2/3 Receptor–Receptor Crosstalk in the Prefrontal Cortex: Metamodulation of Glutamate Exocytosis. Cells 2022; 11:cells11193035. [PMID: 36230998 PMCID: PMC9562019 DOI: 10.3390/cells11193035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
The glutamatergic nerve endings of a rat prefrontal cortex (PFc) possess presynaptic 5-HT2A heteroreceptors and mGlu2/3 autoreceptors, whose activation inhibits glutamate exocytosis, and is measured as 15 mM KCl-evoked [3H]D-aspartate ([3H]D-asp) release (which mimics glutamate exocytosis). The concomitant activation of the two receptors nulls their inhibitory activities, whereas blockade of the 5-HT2A heteroreceptors with MDL11,939 (1 μM) strengthens the inhibitory effect elicited by the mGlu2/3 receptor agonist LY329268 (1 μM). 5-HT2A receptor antagonists (MDL11,939; ketanserin; trazodone) amplify the impact of low (3 nM) LY379268. Clozapine (0.1–10 μM) mimics the 5-HT2A agonist (±) DOI and inhibits the KCl-evoked [3H]D-asp overflow in a MDL11,939-dependent fashion, but does not modify the (±) DOI-induced effect. mGlu2 and 5-HT2A proteins do not co-immunoprecipitate from synaptosomal lysates, nor does the incubation of PFc synaptosomes with MDL11,939 (1 μM) or clozapine (10 µM) modify the insertion of mGlu2 subunits in synaptosomal plasma membranes. In conclusion, 5-HT2A and mGlu2/3 receptors colocalize, but do not physically associate, in PFc glutamatergic terminals, where they functionally interact in an antagonist-like fashion to control glutamate exocytosis. The mGlu2/3-5-HT2A metamodulation could be relevant to therapy for central neuropsychiatric disorders, including schizophrenia, but also unveil cellular events accounting for their development, which also influence the responsiveness to drugs regimens.
Collapse
|
25
|
Smausz R, Neill J, Gigg J. Neural mechanisms underlying psilocybin's therapeutic potential - the need for preclinical in vivo electrophysiology. J Psychopharmacol 2022; 36:781-793. [PMID: 35638159 PMCID: PMC9247433 DOI: 10.1177/02698811221092508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psilocybin is a naturally occurring psychedelic compound with profound perception-, emotion- and cognition-altering properties and great potential for treating brain disorders. However, the neural mechanisms mediating its effects require in-depth investigation as there is still much to learn about how psychedelic drugs produce their profound and long-lasting effects. In this review, we outline the current understanding of the neurophysiology of psilocybin's psychoactive properties, highlighting the need for additional preclinical studies to determine its effect on neural network dynamics. We first describe how psilocybin's effect on brain regions associated with the default-mode network (DMN), particularly the prefrontal cortex and hippocampus, likely plays a key role in mediating its consciousness-altering properties. We then outline the specific receptor and cell types involved and discuss contradictory evidence from neuroimaging studies regarding psilocybin's net effect on activity within these regions. We go on to argue that in vivo electrophysiology is ideally suited to provide a more holistic, neural network analysis approach to understand psilocybin's mode of action. Thus, we integrate information about the neural bases for oscillatory activity generation with the accumulating evidence about psychedelic drug effects on neural synchrony within DMN-associated areas. This approach will help to generate important questions for future preclinical and clinical studies. Answers to these questions are vital for determining the neural mechanisms mediating psilocybin's psychotherapeutic potential, which promises to improve outcomes for patients with severe depression and other difficulty to treat conditions.
Collapse
Affiliation(s)
- Rebecca Smausz
- Division of Neuroscience and
Experimental Psychology, Faculty of Biology, Medicine and Health, The
University of Manchester, Manchester, UK
| | - Joanna Neill
- Division of Pharmacy and
Optometry, Faculty of Biology, Medicine and Health, The University of
Manchester, Manchester, UK,Medical Psychedelics Working
Group, Drug Science, UK
| | - John Gigg
- Division of Neuroscience and
Experimental Psychology, Faculty of Biology, Medicine and Health, The
University of Manchester, Manchester, UK,John Gigg, Division of Neuroscience
and Experimental Psychology, Faculty of Biology, Medicine and Health,
The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
26
|
Effect of Psilocybin and Ketamine on Brain Neurotransmitters, Glutamate Receptors, DNA and Rat Behavior. Int J Mol Sci 2022; 23:ijms23126713. [PMID: 35743159 PMCID: PMC9224489 DOI: 10.3390/ijms23126713] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/28/2022] Open
Abstract
Clinical studies provide evidence that ketamine and psilocybin could be used as fast-acting antidepressants, though their mechanisms and toxicity are still not fully understood. To address this issue, we have examined the effect of a single administration of ketamine and psilocybin on the extracellular levels of neurotransmitters in the rat frontal cortex and reticular nucleus of the thalamus using microdialysis. The genotoxic effect and density of glutamate receptor proteins was measured with comet assay and Western blot, respectively. An open field test, light–dark box test and forced swim test were conducted to examine rat behavior 24 h after drug administration. Ketamine (10 mg/kg) and psilocybin (2 and 10 mg/kg) increased dopamine, serotonin, glutamate and GABA extracellular levels in the frontal cortex, while psilocybin also increased GABA in the reticular nucleus of the thalamus. Oxidative DNA damage due to psilocybin was observed in the frontal cortex and from both drugs in the hippocampus. NR2A subunit levels were increased after psilocybin (10 mg/kg). Behavioral tests showed no antidepressant or anxiolytic effects, and only ketamine suppressed rat locomotor activity. The observed changes in neurotransmission might lead to genotoxicity and increased NR2A levels, while not markedly affecting animal behavior.
Collapse
|
27
|
Coray R, Quednow BB. The role of serotonin in declarative memory: A systematic review of animal and human research. Neurosci Biobehav Rev 2022; 139:104729. [PMID: 35691469 DOI: 10.1016/j.neubiorev.2022.104729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The serotonergic system is involved in diverse cognitive functions including memory. Of particular importance to daily life are declarative memories that contain information about personal experiences, general facts, and events. Several psychiatric or neurological diseases, such as depression, attention-deficit-hyperactivity disorder (ADHD), and dementia, show alterations in serotonergic signalling and attendant memory disorders. Nevertheless, understanding serotonergic neurotransmission and its influence on memory remained a challenge until today. In this systematic review, we summarize recent psychopharmacological studies in animals and humans from a psychological memory perspective, in consideration of task-specific requirements. This approach has the advantage that comparisons between serotonin (5-HT)-related neurochemical mechanisms and manipulations are each addressing specific mnemonic circuits. We conclude that applications of the same 5-HT-related treatments can differentially affect unrelated tasks of declarative memories. Moreover, the analysis of specific mnemonic phases (e.g., encoding vs. consolidation) reveals opposing impacts of increased or decreased 5-HT tones, with low 5-HT supporting spatial encoding but impairing the consolidation of objects and verbal memories. Promising targets for protein synthesis-dependent consolidation enhancements include 5-HT4 receptor agonists and 5-HT6 receptor antagonists, with the latter being of special interest for the treatment of age-related decline. Further implications are pointed out as base for the development of novel therapeutic targets for memory impairment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland.
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| |
Collapse
|
28
|
Doss MK, Madden MB, Gaddis A, Nebel MB, Griffiths RR, Mathur BN, Barrett FS. Models of psychedelic drug action: modulation of cortical-subcortical circuits. Brain 2022; 145:441-456. [PMID: 34897383 PMCID: PMC9014750 DOI: 10.1093/brain/awab406] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Classic psychedelic drugs such as psilocybin and lysergic acid diethylamide (LSD) have recaptured the imagination of both science and popular culture, and may have efficacy in treating a wide range of psychiatric disorders. Human and animal studies of psychedelic drug action in the brain have demonstrated the involvement of the serotonin 2A (5-HT2A) receptor and the cerebral cortex in acute psychedelic drug action, but different models have evolved to try to explain the impact of 5-HT2A activation on neural systems. Two prominent models of psychedelic drug action (the cortico-striatal thalamo-cortical, or CSTC, model and relaxed beliefs under psychedelics, or REBUS, model) have emphasized the role of different subcortical structures as crucial in mediating psychedelic drug effects. We describe these models and discuss gaps in knowledge, inconsistencies in the literature and extensions of both models. We then introduce a third circuit-level model involving the claustrum, a thin strip of grey matter between the insula and the external capsule that densely expresses 5-HT2A receptors (the cortico-claustro-cortical, or CCC, model). In this model, we propose that the claustrum entrains canonical cortical network states, and that psychedelic drugs disrupt 5-HT2A-mediated network coupling between the claustrum and the cortex, leading to attenuation of canonical cortical networks during psychedelic drug effects. Together, these three models may explain many phenomena of the psychedelic experience, and using this framework, future research may help to delineate the functional specificity of each circuit to the action of both serotonergic and non-serotonergic hallucinogens.
Collapse
Affiliation(s)
- Manoj K Doss
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Maxwell B Madden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Andrew Gaddis
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Roland R Griffiths
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Frederick S Barrett
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
29
|
Thomas CW, Blanco-Duque C, Bréant BJ, Goodwin GM, Sharp T, Bannerman DM, Vyazovskiy VV. Psilocin acutely alters sleep-wake architecture and cortical brain activity in laboratory mice. Transl Psychiatry 2022; 12:77. [PMID: 35197453 PMCID: PMC8866416 DOI: 10.1038/s41398-022-01846-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
Serotonergic psychedelic drugs, such as psilocin (4-hydroxy-N,N-dimethyltryptamine), profoundly alter the quality of consciousness through mechanisms which are incompletely understood. Growing evidence suggests that a single psychedelic experience can positively impact long-term psychological well-being, with relevance for the treatment of psychiatric disorders, including depression. A prominent factor associated with psychiatric disorders is disturbed sleep, and the sleep-wake cycle is implicated in the homeostatic regulation of neuronal activity and synaptic plasticity. However, it remains largely unknown to what extent psychedelic agents directly affect sleep, in terms of both acute arousal and homeostatic sleep regulation. Here, chronic electrophysiological recordings were obtained in mice to track sleep-wake architecture and cortical activity after psilocin injection. Administration of psilocin led to delayed REM sleep onset and reduced NREM sleep maintenance for up to approximately 3 h after dosing, and the acute EEG response was associated primarily with an enhanced oscillation around 4 Hz. No long-term changes in sleep-wake quantity were found. When combined with sleep deprivation, psilocin did not alter the dynamics of homeostatic sleep rebound during the subsequent recovery period, as reflected in both sleep amount and EEG slow-wave activity. However, psilocin decreased the recovery rate of sleep slow-wave activity following sleep deprivation in the local field potentials of electrodes targeting the medial prefrontal and surrounding cortex. It is concluded that psilocin affects both global vigilance state control and local sleep homeostasis, an effect which may be relevant for its antidepressant efficacy.
Collapse
Affiliation(s)
- Christopher W. Thomas
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Cristina Blanco-Duque
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Benjamin J. Bréant
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Guy M. Goodwin
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Trevor Sharp
- grid.4991.50000 0004 1936 8948Department of Pharmacology, University of Oxford, Oxford, UK
| | - David M. Bannerman
- grid.4991.50000 0004 1936 8948Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Vladyslav V. Vyazovskiy
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Markopoulos A, Inserra A, De Gregorio D, Gobbi G. Evaluating the Potential Use of Serotonergic Psychedelics in Autism Spectrum Disorder. Front Pharmacol 2022; 12:749068. [PMID: 35177979 PMCID: PMC8846292 DOI: 10.3389/fphar.2021.749068] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 01/29/2023] Open
Abstract
Recent clinical and preclinical evidence points towards empathogenic and prosocial effects elicited by psychedelic compounds, notably the serotonin 5-HT2A agonists lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), and their derivatives. These findings suggest a therapeutic potential of psychedelic compounds for some of the behavioural traits associated with autism spectrum disorder (ASD), a neurodevelopmental condition characterized by atypical social behaviour. In this review, we highlight evidence suggesting that psychedelics may potentially ameliorate some of the behavioural atypicalities of ASD, including reduced social behaviour and highly co-occurring anxiety and depression. Next, we discuss dysregulated neurobiological systems in ASD and how they may underlie or potentially limit the therapeutic effects of psychedelics. These phenomena include: 1) synaptic function, 2) serotonergic signaling, 3) prefrontal cortex activity, and 4) thalamocortical signaling. Lastly, we discuss clinical studies from the 1960s and 70s that assessed the use of psychedelics in the treatment of children with ASD. We highlight the positive behavioural outcomes of these studies, including enhanced mood and social behaviour, as well as the adverse effects of these trials, including increases in aggressive behaviour and dissociative and psychotic states. Despite preliminary evidence, further studies are needed to determine whether the benefits of psychedelic treatment in ASD outweigh the risks associated with the use of these compounds in this population, and if the 5-HT2A receptor may represent a target for social-behavioural disorders.
Collapse
Affiliation(s)
- Athanasios Markopoulos
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada.,McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Vollenweider FX, Smallridge JW. Classic Psychedelic Drugs: Update on Biological
Mechanisms. PHARMACOPSYCHIATRY 2022; 55:121-138. [PMID: 35079988 PMCID: PMC9110100 DOI: 10.1055/a-1721-2914] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Renewed interest in the effects of psychedelics in the treatment of psychiatric
disorders warrants a better understanding of the neurobiological mechanisms
underlying the effects of these substances. During the past two decades,
state-of-the-art studies of animals and humans have yielded new important
insights into the molecular, cellular, and systems-level actions of psychedelic
drugs. These efforts have revealed that psychedelics affect primarily
serotonergic receptor subtypes located in cortico-thalamic and cortico-cortical
feedback circuits of information processing. Psychedelic drugs modulate
excitatory-inhibitory balance in these circuits and can participate in
neuroplasticity within brain structures critical for the integration of
information relevant to sensation, cognition, emotions, and the narrative of
self. Neuroimaging studies showed that characteristic dimensions of the
psychedelic experience obtained through subjective questionnaires as well as
alterations in self-referential processing and emotion regulation obtained
through neuropsychological tasks are associated with distinct changes in brain
activity and connectivity patterns at multiple-system levels. These recent
results suggest that changes in self-experience, emotional processing, and
social cognition may contribute to the potential therapeutic effects of
psychedelics.
Collapse
Affiliation(s)
- Franz X. Vollenweider
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry,
Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich,
Zurich, Switzerland
| | - John W. Smallridge
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry,
Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich,
Zurich, Switzerland
| |
Collapse
|
32
|
Meynier M, Baudu E, Rolhion N, Defaye M, Straube M, Daugey V, Modoux M, Wawrzyniak I, Delbac F, Villéger R, Méleine M, Borras Nogues E, Godfraind C, Barnich N, Ardid D, Poirier P, Sokol H, Chatel JM, Langella P, Livrelli V, Bonnet M, Carvalho FA. AhR/IL-22 pathway as new target for the treatment of post-infectious irritable bowel syndrome symptoms. Gut Microbes 2022; 14:2022997. [PMID: 35090380 PMCID: PMC8803069 DOI: 10.1080/19490976.2021.2022997] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Alterations in brain/gut/microbiota axis are linked to Irritable Bowel Syndrome (IBS) physiopathology. Upon gastrointestinal infection, chronic abdominal pain and anxio-depressive comorbidities may persist despite pathogen clearance leading to Post-Infectious IBS (PI-IBS). This study assesses the influence of tryptophan metabolism, and particularly the microbiota-induced AhR expression, on intestinal homeostasis disturbance following gastroenteritis resolution, and evaluates the efficacy of IL-22 cytokine vectorization on PI-IBS symptoms. The Citrobacter rodentium infection model in C57BL6/J mice was used to mimic Enterobacteria gastroenteritis. Intestinal homeostasis was evaluated as low-grade inflammation, permeability, mucosa-associated microbiota composition, and colonic sensitivity. Cognitive performances and emotional state of animals were assessed using several tests. Tryptophan metabolism was analyzed by targeted metabolomics. AhR activity was evaluated using a luciferase reporter assay method. One Lactococcus lactis strain carrying an eukaryotic expression plasmid for murine IL-22 (L. lactisIL-22) was used to induce IL-22 production in mouse colonic mucosa. C. rodentium-infected mice exhibited persistent colonic hypersensitivity and cognitive impairments and anxiety-like behaviors after pathogen clearance. These post-infectious disorders were associated with low-grade inflammation, increased intestinal permeability, decrease of Lactobacillaceae abundance associated with the colonic layer, and increase of short-chain fatty acids (SCFAs). During post-infection period, the indole pathway and AhR activity were decreased due to a reduction of tryptophol production. Treatment with L. lactisIL-22 restored gut permeability and normalized colonic sensitivity, restored cognitive performances and decreased anxiety-like behaviors. Data from the video-tracking system suggested an upgrade of welfare for mice receiving the L.lactisIL-22 strain. Our findings revealed that AhR/IL-22 signaling pathway is altered in a preclinical PI-IBS model. IL-22 delivering alleviate PI-IBS symptoms as colonic hypersensitivity, cognitive impairments, and anxiety-like behaviors by acting on intestinal mucosa integrity. Thus, therapeutic strategies targeting this pathway could be developed to treat IBS patients suffering from chronic abdominal pain and associated well-being disorders.
Collapse
Affiliation(s)
- Maëva Meynier
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Elodie Baudu
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Nathalie Rolhion
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
- Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Manon Defaye
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
- Department of Physiology and Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- LMGE, CNRS 6023, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Marjolène Straube
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
| | - Valentine Daugey
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Morgane Modoux
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
| | - Ivan Wawrzyniak
- LMGE, CNRS 6023, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Frédéric Delbac
- LMGE, CNRS 6023, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Romain Villéger
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
| | - Mathieu Méleine
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Esther Borras Nogues
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Catherine Godfraind
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- CHU Clermont-Ferrand, Neuropathology Unit, Clermont-Ferrand, France
| | - Nicolas Barnich
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
| | - Denis Ardid
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Philippe Poirier
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- CHU Clermont-Ferrand, Laboratoire de Parasitologie et de Mycologie, Clermont-Ferrand, France
| | - Harry Sokol
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
- Paris Centre for Microbiome Medicine FHU, Paris, France
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Jean-Marc Chatel
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Philippe Langella
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Valérie Livrelli
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- CHU Clermont-Ferrand, Laboratoire de Parasitologie et de Mycologie, Clermont-Ferrand, France
| | - Mathilde Bonnet
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
| | | |
Collapse
|
33
|
Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry 2022; 27:445-465. [PMID: 33875802 PMCID: PMC8523584 DOI: 10.1038/s41380-021-01092-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The prefrontal cortex (PFC) serves as the chief executive officer of the brain, controlling the highest level cognitive and emotional processes. Its local circuits among glutamatergic principal neurons and GABAergic interneurons, as well as its long-range connections with other brain regions, have been functionally linked to specific behaviors, ranging from working memory to reward seeking. The efficacy of synaptic signaling in the PFC network is profundedly influenced by monoaminergic inputs via the activation of dopamine, adrenergic, or serotonin receptors. Stress hormones and neuropeptides also exert complex effects on the synaptic structure and function of PFC neurons. Dysregulation of PFC synaptic transmission is strongly linked to social deficits, affective disturbance, and memory loss in brain disorders, including autism, schizophrenia, depression, and Alzheimer's disease. Critical neural circuits, biological pathways, and molecular players that go awry in these mental illnesses have been revealed by integrated electrophysiological, optogenetic, biochemical, and transcriptomic studies of PFC. Novel epigenetic mechanism-based strategies are proposed as potential avenues of therapeutic intervention for PFC-involved diseases. This review provides an overview of PFC network organization and synaptic modulation, as well as the mechanisms linking PFC dysfunction to the pathophysiology of neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Insights from the preclinical studies offer the potential for discovering new medical treatments for human patients with these brain disorders.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | | |
Collapse
|
34
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Gu J, Hou Z, Zhou X, Wang Q, Chen Y, Zhang J. Activation of 5-HT 1 receptor in Lateral Habenula impaired contextual fear memory and hippocampal LTP in rat. Neurosci Lett 2021; 770:136305. [PMID: 34699942 DOI: 10.1016/j.neulet.2021.136305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023]
Abstract
Serotonin (5-hydroxytraptamine, 5-HT) is a neurotransmitter plays important roles in emotion and motivation. The action of 5-HT varies across nucleus and the receptor sub-types. Lateral habenula (LHb) in a brain area reciprocally connects with raphe nucleus and plays important roles in emotion and depression. In this study, we aimed to study the role of 5-HT1 receptor in LHb on fear learning. 15 minutes before or immediate after the fear conditioning, 5-Carboxyamidotrypamine maleate salt (5-CT), an agonist of 5-HT1 receptor, was bilaterally delivered into LHb (1μg/μl, 1μl/side) in rats. We found that activation of 5-HT1 receptor in LHb impaired the acquisition but not consolidation of fear memory in rats, which was accompanied by impaired long-term potentiation (LTP) and decreased phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit 1 (GluA1) at the Ser845 site in hippocampus. In addition, 5-CT decreased the time spent in center area of the open field and time spent in open arm in elevated plus maze. These results suggest that activation of 5-HT1 receptor in LHb impaired acquisition of hippocampal dependent fear memory and increased anxiety- like behavior in rats.
Collapse
Affiliation(s)
- Jingsheng Gu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China
| | - Zhijie Hou
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China
| | - Xiaotao Zhou
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China
| | - Qinglei Wang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China
| | - Yanmei Chen
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China.
| | - Jichuan Zhang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China.
| |
Collapse
|
36
|
Khan M, Carter GT, Aggarwal SK, Holland J. Psychedelics for Brain Injury: A Mini-Review. Front Neurol 2021; 12:685085. [PMID: 34393973 PMCID: PMC8357986 DOI: 10.3389/fneur.2021.685085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Stroke and traumatic brain injury (TBI) are among the leading causes of disability. Even after engaging in rehabilitation, nearly half of patients with severe TBI requiring hospitalization are left with major disability. Despite decades of investigation, pharmacologic treatment of brain injury is still a field in its infancy. Recent clinical trials have begun into the use of psychedelic therapeutics for treatment of brain injury. This brief review aims to summarize the current state of the science's relevance to neurorehabilitation, and may act as a resource for those seeking to understand the precedence for these ongoing clinical trials. Methods: Narrative mini-review of studies published related to psychedelic therapeutics and brain injury. Results: Recent in vitro, in vivo, and case report studies suggest psychedelic pharmacotherapies may influence the future of brain injury treatment through modulation of neuroinflammation, hippocampal neurogenesis, neuroplasticity, and brain complexity. Conclusions: Historical data on the safety of some of these substances could serve in effect as phase 0 and phase I studies. Further phase II trials will illuminate how these drugs may treat brain injury, particularly TBI and reperfusion injury from stroke.
Collapse
Affiliation(s)
- Mia Khan
- Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Gregory T. Carter
- Department of Physical Medicine & Rehabilitation, St. Luke's Rehabilitation Institute, Spokane, WA, United States
| | - Sunil K. Aggarwal
- Advanced Integrative Medical Sciences Institute, Seattle, WA, United States
| | | |
Collapse
|
37
|
Hagsäter SM, Pettersson R, Pettersson C, Atanasovski D, Näslund J, Eriksson E. A Complex Impact of Systemically Administered 5-HT2A Receptor Ligands on Conditioned Fear. Int J Neuropsychopharmacol 2021; 24:749-757. [PMID: 34228806 PMCID: PMC8453278 DOI: 10.1093/ijnp/pyab040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/26/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Though drugs binding to serotonergic 5-HT2A receptors have long been claimed to influence human anxiety, it remains unclear if this receptor subtype is best described as anxiety promoting or anxiety dampening. Whereas conditioned fear expressed as freezing in rats is modified by application of 5-HT2A-acting drugs locally into different brain regions, reports on the effect of systemic administration of 5-HT2A receptor agonists and 5-HT2A antagonists or inverse agonists on this behavior remain sparse. METHODS We assessed the possible impact of systemic administration of 5-HT2A receptor agonists, 5-HT2A receptor inverse agonists, and a selective serotonin reuptake inhibitor (SSRI)-per se or in combination-on the freezing displayed by male rats when re-exposed to a conditioning chamber in which they received foot shocks 7 days earlier. RESULTS The 5-HT2A receptor agonists psilocybin and 25CN-NBOH induced a reduction in conditioned fear that was countered by pretreatment with 5-HT2A receptor inverse agonist MDL 100907. While both MDL 100907 and another 5-HT2A receptor inverse agonist, pimavanserin, failed to impact freezing per se, both compounds unmasked a robust fear-reducing effect of an SSRI, escitalopram, which by itself exerted no such effect. CONCLUSIONS The results indicate that 5-HT2A receptor activation is not a prerequisite for normal conditioned freezing in rats but that this receptor subtype, when selectively over-activated prior to expression, exerts a marked fear-reducing influence. However, in the presence of an SSRI, the 5-HT2A receptor, on the contrary, appears to counter an anti-freezing effect of the enhanced extracellular serotonin levels following reuptake inhibition.
Collapse
Affiliation(s)
- Sven Melker Hagsäter
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Robert Pettersson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Christopher Pettersson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Daniela Atanasovski
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Jakob Näslund
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Elias Eriksson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden,Correspondence: Elias Eriksson, PhD, Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, SE 405 30 Sweden ()
| |
Collapse
|
38
|
Banks MI, Zahid Z, Jones NT, Sultan ZW, Wenthur CJ. Catalysts for change: the cellular neurobiology of psychedelics. Mol Biol Cell 2021; 32:1135-1144. [PMID: 34043427 PMCID: PMC8351556 DOI: 10.1091/mbc.e20-05-0340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
The resurgence of interest in the therapeutic potential of psychedelics for treating psychiatric disorders has rekindled efforts to elucidate their mechanism of action. In this Perspective, we focus on the ability of psychedelics to promote neural plasticity, postulated to be central to their therapeutic activity. We begin with a brief overview of the history and behavioral effects of the classical psychedelics. We then summarize our current understanding of the cellular and subcellular mechanisms underlying these drugs' behavioral effects, their effects on neural plasticity, and the roles of stress and inflammation in the acute and long-term effects of psychedelics. The signaling pathways activated by psychedelics couple to numerous potential mechanisms for producing long-term structural changes in the brain, a complexity that has barely begun to be disentangled. This complexity is mirrored by that of the neural mechanisms underlying psychiatric disorders and the transformations of consciousness, mood, and behavior that psychedelics promote in health and disease. Thus, beyond changes in the brain, psychedelics catalyze changes in our understanding of the neural basis of psychiatric disorders, as well as consciousness and human behavior.
Collapse
Affiliation(s)
- Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Zarmeen Zahid
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Nathan T. Jones
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Ziyad W. Sultan
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Cody J. Wenthur
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin–Madison, Madison, WI 53706
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
39
|
Magaraggia I, Kuiperes Z, Schreiber R. Improving cognitive functioning in major depressive disorder with psychedelics: A dimensional approach. Neurobiol Learn Mem 2021; 183:107467. [PMID: 34048913 DOI: 10.1016/j.nlm.2021.107467] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 12/28/2022]
Abstract
The high symptomatic and biological heterogeneity of major depressive disorder (MDD) makes it very difficult to find broadly efficacious treatments that work against all symptoms. Concentrating on single core symptoms that are biologically well understood might consist of a more viable approach. The Research Domain Criteria (RDoC) framework is a trans-diagnostic dimensional approach that focuses on symptoms and their underlying neurobiology. Evidence is accumulating that psychedelics may possess antidepressant activity, and this can potentially be explained through a multi-level (psychobiological, circuitry, (sub)cellular and molecular) analysis of the cognitive systems RDoC domain. Cognitive deficits, such as negative emotional processing and negativity bias, often lead to depressive rumination. Psychedelics can increase long-term cognitive flexibility, leading to normalization of negativity bias and reduction in rumination. We propose a theoretical model that explains how psychedelics can reduce the negativity bias in depressed patients. At the psychobiological level, we hypothesize that the negativity bias in MDD is due to impaired pattern separation and that psychedelics such as psilocybin help in depression because they enhance pattern separation and hence reduce negativity bias. Pattern separation is a mnemonic process that relies on adult hippocampal neurogenesis, where similar inputs are made more distinct, which is essential for optimal encoding of contextual information. Impairment in this process may underlie the negative cognitive bias in MDD by, for example, increased pattern separation of cues with a negative valence that can lead to excessive deliberation on aversive outcomes. On the (sub) cellular level, psychedelics stimulate hippocampal neurogenesis as well as synaptogenesis, spinogenesis and dendritogenesis in the prefrontal cortex. Together, these effects help restoring resilience to chronic stress and lead to modulation of the major connectivity hubs of the prefrontal cortex, hippocampus, and amygdala. Based on these observations, we propose a new translational framework to guide the development of a novel generation of therapeutics to treat the cognitive symptoms in MDD.
Collapse
Affiliation(s)
- Igor Magaraggia
- Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| | - Zilla Kuiperes
- Faculty of Health, Medicine and Life Sciences (FHML), the Netherlands
| | - Rudy Schreiber
- Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
40
|
Hamieh AM, Mallaret G, Meleine M, Lashermes A, Roumeau S, Boudieu L, Barbier J, Aissouni Y, Ardid D, Gewirtz AT, Carvalho FA, Marchand F. Toll-like receptor 5 knock-out mice exhibit a specific low level of anxiety. Brain Behav Immun 2021; 93:226-237. [PMID: 33516921 DOI: 10.1016/j.bbi.2021.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
While toll-like receptors (TLRs), which mediate innate immunity, are known to play an important role in host defense, recent work suggest their involvement in some integrated behaviors, including anxiety, depressive and cognitive functions. Here, we investigated the potential involvement of the flagellin receptor, TLR5, in anxiety, depression and cognitive behaviors using male TLR5 knock-out (KO) mice. We aobserved a specific low level of basal anxiety in TLR5 KO mice with an alteration of the hypothalamo-pituitary axis (HPA) response to acute restraint stress, illustrated by a decrease of both plasma corticosterone level and c-fos expression in the hypothalamic paraventricular nucleus where TLR5 was expressed, compared to WT littermates. However, depression and cognitive-related behaviors were not different between TLR5 KO and WT mice. Nor there were significant changes in the expression of some cytokines (IL-6, IL-10 and TNF-α) and other TLRs (TLR2, TLR3 and TLR4) in the prefrontal cortex, amygdala and hippocampus of TLR5 KO mice compared to WT mice. Moreover, mRNA expression of BDNF and glucocorticoid receptors in the hippocampus and amygdala, respectively, was not different. Finally, acute intracerebroventricular administration of flagellin, a specific TLR5 agonist, or chronic neomycin treatment did not exhibit a significant main effect, only a significant main effect of genotype was observed between TLR5 KO and WT mice. Together, those findings suggest a previously undescribed and specific role of TLR5 in anxiety and open original prospects in our understanding of the brain-gut axis function.
Collapse
Affiliation(s)
- A M Hamieh
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France; Porsolt SAS, Glatigné, 53940 Le Genest-Saint-Isle, France
| | - G Mallaret
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - M Meleine
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - A Lashermes
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - S Roumeau
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - L Boudieu
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - J Barbier
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - Y Aissouni
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - D Ardid
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - A T Gewirtz
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States
| | - F A Carvalho
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - F Marchand
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
41
|
Lages YVM, Rossi AD, Krahe TE, Landeira-Fernandez J. Effect of chronic unpredictable mild stress on the expression profile of serotonin receptors in rats and mice: a meta-analysis. Neurosci Biobehav Rev 2021; 124:78-88. [PMID: 33524415 DOI: 10.1016/j.neubiorev.2021.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Chronic-stress-induced depression is recognized as a widespread public health concern. Selective serotonin reuptake inhibitors (SSRIs) have been the most common treatment for this illness. However, the role of 5-hydroxytryptamine (5-HT) receptor subtypes in stress-induced depression remains unclear. Evidence from Animal studies has reported a variety of results regarding the effects of chronic unpredictable mild stress (CUMS) on serotonin signaling pathways and 5-HT receptor subtypes. This divergence may rely on differences in protocols, methods, and studied pathways. Thus, the aim of this systematic review was to weigh the currently available findings regarding serotonin receptor changes in animal models of CUMS. Overall, our meta-analysis results showed the association of altered expression of 5-HT1A receptors in the frontal cortex and 5-HT2A receptors both in the whole cortex and the hypothalamus of rats following CUMS. Moreover, by using a qualitative-structured analysis and the application of risk-of-bias tools, we identified possible sources of data variation between the studied literature, which should be taken into account in future animal studies of chronic-stress induced depression.
Collapse
Affiliation(s)
- Y V M Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A D Rossi
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
42
|
Cortical influences of serotonin and glutamate on layer V pyramidal neurons. PROGRESS IN BRAIN RESEARCH 2021; 261:341-378. [PMID: 33785135 DOI: 10.1016/bs.pbr.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Layer V pyramidal neurons constitute principle output neurons of the medial prefrontal cortex (mPFC)/neocortex to subcortical regions including the intralaminar/midline thalamic nuclei, amygdala, basal ganglia, brainstem nuclei and the spinal cord. The effects of 5-hydroxytryptamine (5-HT) on layer V pyramidal cells primarily reflect a range of excitatory influences through 5-HT2A receptors and inhibitory influences through non-5-HT2A receptors, including 5-HT1A receptors. While the 5-HT2A receptor is primarily a postsynaptic receptor on throughout the apical dendritic field of 5-HT2A receptors, activation of a minority of 5-HT2A receptors also appears to increase spontaneous excitatory postsynaptic currents/potentials (EPSCs/EPSPs) via a presynaptic effect on thalamocortical terminals arising from the midline and intralaminar thalamic nuclei. Activation of 5-HT2A receptors by the phenethylamine hallucinogen also appears to increase asynchronous release of glutamate upon the layer V pyramidal dendritic field, an effect that is suppressed by 5-HT itself through non-5-HT2A receptors. Serotonergic hallucinogens acting on 5-HT2A receptors also appears to increase gene expression of immediate early genes (iEG) and other receptors appearing to induce an iEG-like response like BDNF. Psychedelic hallucinogens acting on 5-HT2A receptors also induce head twitches in rodents that appear related to induction of glutamate release. These electrophysiological, biochemical and behavioral effects of serotonergic hallucinogens appear to be related to modulating glutamatergic thalamocortical neurotransmission and/or shifting the balance toward 5-HT2A receptor activation and away from non-5-HT2A receptor activation. These 5-HT2A receptor induced responses are modulated by feedback homeostatic mechanisms through mGlu2, mGlu4, and mGlu8 presynaptic receptors on thalamocortical terminals. These 5-HT2A receptor and glutamatergic interactions also appear to play a role on higher cortical functions of the mPFC such as motoric impulsivity and antidepressant-like behavioral responses on the differential-reinforcement-of low rate 72-s (DRL 72-s schedule). These mutually opposing effects between 5-HT2A receptor and mGlu autoreceptor activation (e.g., blocking 5-HT2A receptors and enhancing activity at mGlu2 receptors) may play a clinical role with respect to currently prescribed or novel antidepressant drugs. Thus, there is an important balance between 5-HT2A receptor activation and activation of mGlu autoreceptors on prefrontal cortical layer V pyramidal cells with respect to the electrophysiological, biochemical and behavioral effects serotonergic hallucinogenic drugs.
Collapse
|
43
|
Cosi C, Martel JC, Auclair AL, Collo G, Cavalleri L, Heusler P, Leriche L, Gaudoux F, Sokoloff P, Moser PC, Gatti-McArthur S. Pharmacology profile of F17464, a dopamine D 3 receptor preferential antagonist. Eur J Pharmacol 2021; 890:173635. [PMID: 33065094 DOI: 10.1016/j.ejphar.2020.173635] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
F17464 (N-(3-{4-[4-(8-Oxo-8H-[1,3]-dioxolo-[4,5-g]-chromen-7-yl)-butyl]-piperazin-1-yl}-phenyl)-methanesulfonamide, hydrochloride) is a new potential antipsychotic with a unique profile. The compound exhibits high affinity for the human dopamine receptor subtype 3 (hD3) (Ki = 0.17 nM) and the serotonin receptor subtype 1a (5-HT1a) (Ki = 0.16 nM) and a >50 fold lower affinity for the human dopamine receptor subtype 2 short and long form (hD2s/l) (Ki = 8.9 and 12.1 nM, respectively). [14C]F17464 dynamic studies show a slower dissociation rate from hD3 receptor (t1/2 = 110 min) than from hD2s receptor (t1/2 = 1.4 min) and functional studies demonstrate that F17464 is a D3 receptor antagonist, 5-HT1a receptor partial agonist. In human dopaminergic neurons F17464 blocks ketamine induced morphological changes, an effect D3 receptor mediated. In vivo F17464 target engagement of both D2 and 5-HT1a receptors is demonstrated in displacement studies in the mouse brain. F17464 increases dopamine release in the rat prefrontal cortex and mouse lateral forebrain - dorsal striatum and seems to reduce the effect of MK801 on % c-fos mRNA medium expressing neurons in cortical and subcortical regions. F17464 also rescues valproate induced impairment in a rat social interaction model of autism. All the neurochemistry and behavioural effects of F17464 are observed in the dose range 0.32-2.5 mg/kg i.p. in both rats and mice. The in vitro - in vivo pharmacology profile of F17464 in preclinical models is discussed in support of a therapeutic use of the compound in schizophrenia and autism.
Collapse
Affiliation(s)
- Cristina Cosi
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Jean-Claude Martel
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Agnès L Auclair
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Ginetta Collo
- Dept of Molecular and Translational Medicine University of Brescia, Viale Europa 11, Brescia, Italy
| | - Laura Cavalleri
- Dept of Molecular and Translational Medicine University of Brescia, Viale Europa 11, Brescia, Italy
| | - Peter Heusler
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Ludovic Leriche
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Florence Gaudoux
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Pierre Sokoloff
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Paul C Moser
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Silvia Gatti-McArthur
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France.
| |
Collapse
|
44
|
Savalia NK, Shao LX, Kwan AC. A Dendrite-Focused Framework for Understanding the Actions of Ketamine and Psychedelics. Trends Neurosci 2020; 44:260-275. [PMID: 33358035 DOI: 10.1016/j.tins.2020.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 02/09/2023]
Abstract
Pilot studies have hinted that serotonergic psychedelics such as psilocybin may relieve depression, and could possibly do so by promoting neural plasticity. Intriguingly, another psychotomimetic compound, ketamine, is a fast-acting antidepressant and induces synapse formation. The similarities in behavioral and neural effects have been puzzling because the compounds target distinct molecular receptors in the brain. In this opinion article, we develop a conceptual framework that suggests the actions of ketamine and serotonergic psychedelics may converge at the dendrites, to both enhance and suppress membrane excitability. We speculate that mismatches in the opposing actions on dendritic excitability may relate to these compounds' cell-type and region selectivity, their moderate range of effects and toxicity, and their plasticity-promoting capacities.
Collapse
Affiliation(s)
- Neil K Savalia
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ling-Xiao Shao
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Alex C Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
45
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Kolla NJ, Bortolato M. The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: A tale of mice and men. Prog Neurobiol 2020; 194:101875. [PMID: 32574581 PMCID: PMC7609507 DOI: 10.1016/j.pneurobio.2020.101875] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Over the past two decades, research has revealed that genetic factors shape the propensity for aggressive, antisocial, and violent behavior. The best-documented gene implicated in aggression is MAOA (Monoamine oxidase A), which encodes the key enzyme for the degradation of serotonin and catecholamines. Congenital MAOA deficiency, as well as low-activity MAOA variants, has been associated with a higher risk for antisocial behavior (ASB) and violence, particularly in males with a history of child maltreatment. Indeed, the interplay between low MAOA genetic variants and early-life adversity is the best-documented gene × environment (G × E) interaction in the pathophysiology of aggression and ASB. Additional evidence indicates that low MAOA activity in the brain is strongly associated with a higher propensity for aggression; furthermore, MAOA inhibition may be one of the primary mechanisms whereby prenatal smoke exposure increases the risk of ASB. Complementary to these lines of evidence, mouse models of Maoa deficiency and G × E interactions exhibit striking similarities with clinical phenotypes, proving to be valuable tools to investigate the neurobiological mechanisms underlying antisocial and aggressive behavior. Here, we provide a comprehensive overview of the current state of the knowledge on the involvement of MAOA in aggression, as defined by preclinical and clinical evidence. In particular, we show how the convergence of human and animal research is proving helpful to our understanding of how MAOA influences antisocial and violent behavior and how it may assist in the development of preventative and therapeutic strategies for aggressive manifestations.
Collapse
Affiliation(s)
- Nathan J Kolla
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH) Research Imaging Centre, Toronto, ON, Canada; Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| |
Collapse
|
47
|
Shin D, Cho KH, Joo K, Rhie DJ. Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:517-527. [PMID: 33093273 PMCID: PMC7585589 DOI: 10.4196/kjpp.2020.24.6.517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/15/2022]
Abstract
Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs. Here, we studied layer-specific serotonergic and cholinergic induction of long-term synaptic plasticity in L2/3 PyNs of the agranular insular cortex, a lateral component of the orbitofrontal cortex. Using FM1-43 dye unloading, we verified that local electrical stimulation to layers 1 (L1) and 3 (L3) activated axon terminals mostly located in L1 and perisomatic area (L2/3). Independent and AMPA receptor-mediated excitatory postsynaptic potential was evoked by local electrical stimulation of either L1 or L3. Application of serotonin (5-HT, 10 μM) induced activity-dependent long-term depression (LTD) in L2/3 but not in L1 inputs. LTD induced by 5-HT was blocked by the 5-HT2 receptor antagonist ketanserin, an NMDA receptor antagonist and by intracellular Ca2+ chelation. The 5-HT2 receptor agonist α-me-5-HT mimicked the LTD induced by 5-HT. However, the application of carbachol induced muscarinic receptor-dependent LTD in both inputs. The differential layer-specific induction of LTD by neuromodulators might play an important role in information processing mechanism of the prefrontal cortex.
Collapse
Affiliation(s)
- Dongchul Shin
- Department of Physiology, The Catholic University of Korea, Seoul 06591, Korea
| | - Kwang-Hyun Cho
- Department of Physiology, The Catholic University of Korea, Seoul 06591, Korea
| | - Kayoung Joo
- Department of Physiology, The Catholic University of Korea, Seoul 06591, Korea
| | - Duck-Joo Rhie
- Department of Physiology, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
48
|
Rissardo JP, Caprara ALF. Mirtazapine-associated movement disorders: A literature review. Tzu Chi Med J 2020; 32:318-330. [PMID: 33163376 PMCID: PMC7605300 DOI: 10.4103/tcmj.tcmj_13_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022] Open
Abstract
Mirtazapine (MTZ) is an atypical antidepressant approved by the FDA, which mechanism of action involves the antagonism of alpha-2, H1, 5-HT2A, 5-HT2C, and 5-HT3 receptors. In this context, the aim of this literature review is to evaluate the clinical epidemiological profile, pathological mechanisms, and management of MTZ-associated movement disorders (MDs). Relevant reports of six databases were identified and assessed by two reviewers without language restriction. Fifty-two reports containing 179 cases from 20 countries were assessed. The mean age was 57 year (range, 17-85). The majority of the individuals were female (60%) and of European origin. The mean time from MTZ start to symptom onset was 7.54 days; the time from management to MD improvement was within one week in 82.60% of the individuals. The MDs associated with MTZ were 69 restless legs syndrome (RLS), 35 tremors, 10 akathisia (AKT), 9 periodic limb MD, 6 dystonia, 4 rapid eye movement sleep behavior disorders, 3 dyskinesia, 2 parkinsonism, and 1 tic, and in the group not clearly identified, 18 restlessness, 15 hyperkinesis, and 1 extrapyramidal symptom. In the literature, the majority of the reports lack important information about the neurological examination. The management should be the MTZ withdrawal, except in RLS that other options are possible. In AKT, the MTZ should not be rechallenge, and if available, the prescription of a benzodiazepine may reduce recovery time.
Collapse
|
49
|
Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat Rev Neurosci 2020; 21:611-624. [PMID: 32929261 DOI: 10.1038/s41583-020-0367-2] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Renewed interest in the use of psychedelics in the treatment of psychiatric disorders warrants a better understanding of the neurobiological mechanisms underlying the effects of these substances. After a hiatus of about 50 years, state-of-the art studies have recently begun to close important knowledge gaps by elucidating the mechanisms of action of psychedelics with regard to their effects on receptor subsystems, systems-level brain activity and connectivity, and cognitive and emotional processing. In addition, functional studies have shown that changes in self-experience, emotional processing and social cognition may contribute to the potential therapeutic effects of psychedelics. These discoveries provide a scientific road map for the investigation and application of psychedelic substances in psychiatry.
Collapse
|
50
|
Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, Liu C, Kolk SM, Homberg JR. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int J Mol Sci 2020; 21:E5850. [PMID: 32824000 PMCID: PMC7461571 DOI: 10.3390/ijms21165850] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands;
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Otto G. Muilwijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Sharon M. Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| |
Collapse
|