1
|
Lucas SE, Yang T, Wimberly CE, Parmar KV, Hansen HM, de Smith AJ, Morimoto LM, Metayer C, Ostrom QT, Eward WC, Graves LA, Wagner LM, Wiemels JL, Spector LG, Walsh KM. Genetic variation near GRB10 associated with bone growth and osteosarcoma risk in canine and human populations. Cancer Epidemiol 2024; 92:102599. [PMID: 38871555 PMCID: PMC11402579 DOI: 10.1016/j.canep.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Canine and human osteosarcoma are similar in clinical presentation and tumor genomics. Giant breed dogs experience elevated osteosarcoma incidence, and taller stature remains a consistent risk factor for human osteosarcoma. Whether evolutionarily conserved genes contribute to both human and canine osteosarcoma predisposition merits evaluation. METHODS A multi-center sample of childhood osteosarcoma patients and controls underwent genome-wide genotyping and imputation. Ancestry-adjusted SNP associations were calculated within each dataset using logistic regression, then meta-analyzed across the three datasets, totaling 1091 patients and 3026 controls. Ten regions previously associated with canine osteosarcoma risk were mapped to the human genome, spanning ∼6 Mb. We prioritized association testing of 5985 human SNPs mapping to candidate osteosarcoma risk regions detected in Irish wolfhounds, the largest dog breed studied. Secondary analyses explored 6289 additional human SNPs mapping to candidate osteosarcoma risk regions identified in Rottweilers and greyhounds. RESULTS Fourteen SNPs were associated with human osteosarcoma risk after adjustment for multiple comparisons, all within a 42 kb region of human Chromosome 7p12.1. The lead variant was rs17454681 (OR=1.25, 95 %CI: 1.12-1.39; P=4.1×10-5), and independent risk variants were not observed in conditional analyses. While the associated region spanned 2.1 Mb and contained eight genes in Irish wolfhounds, associations were localized to a 50-fold smaller region of the human genome and strongly implicate GRB10 (growth factor receptor-bound protein 10) in canine and human osteosarcoma predisposition. PheWAS analysis in UK Biobank data identified noteworthy associations of the rs17454681 risk allele with varied measures of height and pubertal timing. CONCLUSIONS Our comparative oncology analysis identified a novel human osteosarcoma risk allele near GRB10, a growth inhibitor that suppresses activated receptor tyrosine kinases including IGF1R, PDGFRB, and EGFR. Epidemiologists may benefit from leveraging cross-species comparisons to identify haplotypes in highly susceptible but genetically homogenous populations of domesticated animals, then fine-mapping these associations in diverse human populations.
Collapse
Affiliation(s)
- Sydney E Lucas
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University, Durham, NC, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Tianzhong Yang
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA; Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Courtney E Wimberly
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University, Durham, NC, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Kajal V Parmar
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University, Durham, NC, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Libby M Morimoto
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Quinn T Ostrom
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University, Durham, NC, USA; Duke Cancer Institute, Duke University, Durham, NC, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - William C Eward
- Duke Cancer Institute, Duke University, Durham, NC, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Laurie A Graves
- Department of Pediatrics, Duke University, Durham, NC, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Lars M Wagner
- Duke Cancer Institute, Duke University, Durham, NC, USA; Department of Pediatrics, Duke University, Durham, NC, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA
| | - Kyle M Walsh
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University, Durham, NC, USA; Duke Cancer Institute, Duke University, Durham, NC, USA; Department of Pediatrics, Duke University, Durham, NC, USA; Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Moorwood K, Smith FM, Garfield AS, Cowley M, Holt LJ, Daly RJ, Ward A. Grb7, Grb10 and Grb14, encoding the growth factor receptor-bound 7 family of signalling adaptor proteins have overlapping functions in the regulation of fetal growth and post-natal glucose metabolism. BMC Biol 2024; 22:221. [PMID: 39343875 PMCID: PMC11441139 DOI: 10.1186/s12915-024-02018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The growth factor receptor bound protein 7 (Grb7) family of signalling adaptor proteins comprises Grb7, Grb10 and Grb14. Each can interact with the insulin receptor and other receptor tyrosine kinases, where Grb10 and Grb14 inhibit insulin receptor activity. In cell culture studies they mediate functions including cell survival, proliferation, and migration. Mouse knockout (KO) studies have revealed physiological roles for Grb10 and Grb14 in glucose-regulated energy homeostasis. Both Grb10 KO and Grb14 KO mice exhibit increased insulin signalling in peripheral tissues, with increased glucose and insulin sensitivity and a modestly increased ability to clear a glucose load. In addition, Grb10 strongly inhibits fetal growth such that at birth Grb10 KO mice are 30% larger by weight than wild type littermates. RESULTS Here, we generate a Grb7 KO mouse model. We show that during fetal development the expression patterns of Grb7 and Grb14 each overlap with that of Grb10. Despite this, Grb7 and Grb14 did not have a major role in influencing fetal growth, either alone or in combination with Grb10. At birth, in most respects both Grb7 KO and Grb14 KO single mutants were indistinguishable from wild type, while Grb7:Grb10 double knockout (DKO) were near identical to Grb10 KO single mutants and Grb10:Grb14 DKO mutants were slightly smaller than Grb10 KO single mutants. In the developing kidney Grb7 had a subtle positive influence on growth. An initial characterisation of Grb7 KO adult mice revealed sexually dimorphic effects on energy homeostasis, with females having a significantly smaller renal white adipose tissue depot and an enhanced ability to clear glucose from the circulation, compared to wild type littermates. Males had elevated fasted glucose levels with a trend towards smaller white adipose depots, without improved glucose clearance. CONCLUSIONS Grb7 and Grb14 do not have significant roles as inhibitors of fetal growth, unlike Grb10, and instead Grb7 may promote growth of the developing kidney. In adulthood, Grb7 contributes subtly to glucose mediated energy homeostasis, raising the possibility of redundancy between all three adaptors in physiological regulation of insulin signalling and glucose handling.
Collapse
Affiliation(s)
- Kim Moorwood
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Florentia M Smith
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Alastair S Garfield
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Michael Cowley
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Present Address: Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Campus, Box 7633, Raleigh, NC, 27695, USA
| | - Lowenna J Holt
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew Ward
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
3
|
Moorwood K, Smith FM, Garfield AS, Ward A. Imprinted Grb10, encoding growth factor receptor bound protein 10, regulates fetal growth independently of the insulin-like growth factor type 1 receptor (Igf1r) and insulin receptor (Insr) genes. BMC Biol 2024; 22:127. [PMID: 38816743 PMCID: PMC11140863 DOI: 10.1186/s12915-024-01926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Optimal size at birth dictates perinatal survival and long-term risk of developing common disorders such as obesity, type 2 diabetes and cardiovascular disease. The imprinted Grb10 gene encodes a signalling adaptor protein capable of inhibiting receptor tyrosine kinases, including the insulin receptor (Insr) and insulin-like growth factor type 1 receptor (Igf1r). Grb10 restricts fetal growth such that Grb10 knockout (KO) mice are at birth some 25-35% larger than wild type. Using a mouse genetic approach, we test the widely held assumption that Grb10 influences growth through interaction with Igf1r, which has a highly conserved growth promoting role. RESULTS Should Grb10 interact with Igf1r to regulate growth Grb10:Igf1r double mutant mice should be indistinguishable from Igf1r KO single mutants, which are around half normal size at birth. Instead, Grb10:Igf1r double mutants were intermediate in size between Grb10 KO and Igf1r KO single mutants, indicating additive effects of the two signalling proteins having opposite actions in separate pathways. Some organs examined followed a similar pattern, though Grb10 KO neonates exhibited sparing of the brain and kidneys, whereas the influence of Igf1r extended to all organs. An interaction between Grb10 and Insr was similarly investigated. While there was no general evidence for a major interaction for fetal growth regulation, the liver was an exception. The liver in Grb10 KO mutants was disproportionately overgrown with evidence of excess lipid storage in hepatocytes, whereas Grb10:Insr double mutants were indistinguishable from Insr single mutants or wild types. CONCLUSIONS Grb10 acts largely independently of Igf1r or Insr to control fetal growth and has a more variable influence on individual organs. Only the disproportionate overgrowth and excess lipid storage seen in the Grb10 KO neonatal liver can be explained through an interaction between Grb10 and the Insr. Our findings are important for understanding how positive and negative influences on fetal growth dictate size and tissue proportions at birth.
Collapse
Affiliation(s)
- Kim Moorwood
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Florentia M Smith
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Alastair S Garfield
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Andrew Ward
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
4
|
Bonnet A, Bluy L, Gress L, Canario L, Ravon L, Sécula A, Billon Y, Liaubet L. Sex and fetal genome influence gene expression in pig endometrium at the end of gestation. BMC Genomics 2024; 25:303. [PMID: 38515025 PMCID: PMC10958934 DOI: 10.1186/s12864-024-10144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND A fine balance of feto-maternal resource allocation is required to support pregnancy, which depends on interactions between maternal and fetal genetic potential, maternal nutrition and environment, endometrial and placental functions. In particular, some imprinted genes have a role in regulating maternal-fetal nutrient exchange, but few have been documented in the endometrium. The aim of this study is to describe the expression of 42 genes, with parental expression, in the endometrium comparing two extreme breeds: Large White (LW); Meishan (MS) with contrasting neonatal mortality and maturity at two days of gestation (D90-D110). We investigated their potential contribution to fetal maturation exploring genes-fetal phenotypes relationships. Last, we hypothesized that the fetal genome and sex influence their endometrial expression. For this purpose, pure and reciprocally crossbred fetuses were produced using LW and MS breeds. Thus, in the same uterus, endometrial samples were associated with its purebred or crossbred fetuses. RESULTS Among the 22 differentially expressed genes (DEGs), 14 DEGs were differentially regulated between the two days of gestation. More gestational changes were described in LW (11 DEGs) than in MS (2 DEGs). Nine DEGs were differentially regulated between the two extreme breeds, highlighting differences in the regulation of endometrial angiogenesis, nutrient transport and energy metabolism. We identified DEGs that showed high correlations with indicators of fetal maturation, such as ponderal index at D90 and fetal blood fructose level and placental weight at D110. We pointed out for the first time the influence of fetal sex and genome on endometrial expression at D90, highlighting AMPD3, CITED1 and H19 genes. We demonstrated that fetal sex affects the expression of five imprinted genes in LW endometrium. Fetal genome influenced the expression of four genes in LW endometrium but not in MS endometrium. Interestingly, both fetal sex and fetal genome interact to influence endometrial gene expression. CONCLUSIONS These data provide evidence for some sexual dimorphism in the pregnant endometrium and for the contribution of the fetal genome to feto-maternal interactions at the end of gestation. They suggest that the paternal genome may contribute significantly to piglet survival, especially in crossbreeding production systems.
Collapse
Affiliation(s)
- Agnes Bonnet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France.
| | - Lisa Bluy
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laure Gress
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laurianne Canario
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laure Ravon
- GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Aurelie Sécula
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
- Present Address: IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Yvon Billon
- GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| |
Collapse
|
5
|
Karami K, Zerehdaran S, Javadmanesh A. Differential Expression of RNAseq Imprinted Genes from Bovine Females Before and After Puberty. Biochem Genet 2023; 61:2633-2649. [PMID: 37225913 DOI: 10.1007/s10528-023-10395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
The productivity of beef cows depends on early reproduction traits such as puberty and has an economic impact on the efficiency of production system. Imprinted genes modulate many important endocrine processes such as growth, the onset of puberty and maternal reproductive and behavior. The role of imprinted genes in puberty is a challenging subject since they show the reciprocal role of maternal and paternal genomes in progeny. Although, there are evidences of the involvement of imprint genes in puberty in human, the role of this type of genes in the onset of puberty in cattle has not been studied yet. Here we examined the expression of 27 imprinted genes in pre and post puberty in a bovine model to find differentially expressed imprinted genes in maternal-paternal purebreds and reciprocal crosses across eight tissues and discussed the task of these genes in this crucial process of development and in onset of puberty. DLK1 and MKRN3 that previously described as cause of the central precocious puberty (CPP) in human were differentially expressed in this study. Functional annotation analysis of differentially imprinted genes in different tissues showed significant biological processes of cellular response to growth factor stimulus, response to growth factor, response to parathyroid hormone, developmental growth and the importance of alternative splicing. The results of this study have implications in understanding the role of imprinted genes in the onset of puberty in cattle.
Collapse
Affiliation(s)
- Keyvan Karami
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Zerehdaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
6
|
Rosing-Asvid A, Löytynoja A, Momigliano P, Hansen RG, Scharff-Olsen CH, Valtonen M, Kammonen J, Dietz R, Rigét FF, Ferguson SH, Lydersen C, Kovacs KM, Holland DM, Jernvall J, Auvinen P, Tange Olsen M. An evolutionarily distinct ringed seal in the Ilulissat Icefjord. Mol Ecol 2023; 32:5932-5943. [PMID: 37855154 DOI: 10.1111/mec.17163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
The Earth's polar regions are low rates of inter- and intraspecific diversification. An extreme mammalian example is the Arctic ringed seal (Pusa hispida hispida), which is assumed to be panmictic across its circumpolar Arctic range. Yet, local Inuit communities in Greenland and Canada recognize several regional variants; a finding supported by scientific studies of body size variation. It is however unclear whether this phenotypic variation reflects plasticity, morphs or distinct ecotypes. Here, we combine genomic, biologging and survey data, to document the existence of a unique ringed seal ecotype in the Ilulissat Icefjord (locally 'Kangia'), Greenland; a UNESCO World Heritage site, which is home to the most productive marine-terminating glacier in the Arctic. Genomic analyses reveal a divergence of Kangia ringed seals from other Arctic ringed seals about 240 kya, followed by secondary contact since the Last Glacial Maximum. Despite ongoing gene flow, multiple genomic regions appear under strong selection in Kangia ringed seals, including candidate genes associated with pelage coloration, growth and osmoregulation, potentially explaining the Kangia seal's phenotypic and behavioural uniqueness. The description of 'hidden' diversity and adaptations in yet another Arctic species merits a reassessment of the evolutionary processes that have shaped Arctic diversity and the traditional view of this region as an evolutionary freezer. Our study highlights the value of indigenous knowledge in guiding science and calls for efforts to identify distinct populations or ecotypes to understand how these might respond differently to environmental change.
Collapse
Affiliation(s)
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Paolo Momigliano
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, Spain
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | | | - Mia Valtonen
- Wildlife Ecology Group, Natural Resources Institute Finland, Helsinki, Finland
| | - Juhana Kammonen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | | | | | | | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - David M Holland
- Mathematics and Atmosphere/Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York City, New York, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Morten Tange Olsen
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Sainty R, Silver MJ, Prentice AM, Monk D. The influence of early environment and micronutrient availability on developmental epigenetic programming: lessons from the placenta. Front Cell Dev Biol 2023; 11:1212199. [PMID: 37484911 PMCID: PMC10358779 DOI: 10.3389/fcell.2023.1212199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
DNA methylation is the most commonly studied epigenetic mark in humans, as it is well recognised as a stable, heritable mark that can affect genome function and influence gene expression. Somatic DNA methylation patterns that can persist throughout life are established shortly after fertilisation when the majority of epigenetic marks, including DNA methylation, are erased from the pre-implantation embryo. Therefore, the period around conception is potentially critical for influencing DNA methylation, including methylation at imprinted alleles and metastable epialleles (MEs), loci where methylation varies between individuals but is correlated across tissues. Exposures before and during conception can affect pregnancy outcomes and health throughout life. Retrospective studies of the survivors of famines, such as those exposed to the Dutch Hunger Winter of 1944-45, have linked exposures around conception to later disease outcomes, some of which correlate with DNA methylation changes at certain genes. Animal models have shown more directly that DNA methylation can be affected by dietary supplements that act as cofactors in one-carbon metabolism, and in humans, methylation at birth has been associated with peri-conceptional micronutrient supplementation. However, directly showing a role of micronutrients in shaping the epigenome has proven difficult. Recently, the placenta, a tissue with a unique hypomethylated methylome, has been shown to possess great inter-individual variability, which we highlight as a promising target tissue for studying MEs and mixed environmental exposures. The placenta has a critical role shaping the health of the fetus. Placenta-associated pregnancy complications, such as preeclampsia and intrauterine growth restriction, are all associated with aberrant patterns of DNA methylation and expression which are only now being linked to disease risk later in life.
Collapse
Affiliation(s)
- Rebecca Sainty
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Matt J. Silver
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
8
|
Muroya S, Otomaru K, Oshima K, Oshima I, Ojima K, Gotoh T. DNA Methylation of Genes Participating in Hepatic Metabolisms and Function in Fetal Calf Liver Is Altered by Maternal Undernutrition during Gestation. Int J Mol Sci 2023; 24:10682. [PMID: 37445858 DOI: 10.3390/ijms241310682] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to elucidate the effects of maternal undernutrition (MUN) on epigenetic modification of hepatic genes in Japanese Black fetal calves during gestation. Using a previously established experimental design feeding the dams with 60% (LN) or 120% (HN) of their global nutritional requirements during the 8.5-month gestational period, DNA methylation in the fetal liver was analyzed with reduced representation bisulfite sequencing (RRBS). The promoters and gene bodies in the LN fetuses were hypomethylated compared to HN fetuses. Pathway analysis showed that the genes with DMR in the exon/intron in the LN group were associated with pathways involved in Cushing syndrome, gastric acid secretion, and aldosterone synthesis and secretion. Promoter hypomethylation in the LN group was frequently observed in genes participating in various signaling pathways (thyroid hormone, Ras/Rap1, PIK3-Akt, cAMP), fatty acid metabolism, and cholesterol metabolism. The promoter hypomethylated genes ALPL and GNAS were upregulated in the LN group, whereas the promoter hypermethylated genes GRB10 and POR were downregulated. The intron/exon hypomethylated genes IGF2, IGF2R, ACAD8, TAT, RARB, PINK1, and SOAT2 were downregulated, whereas the hypermethylated genes IGF2BP2, NOS3, and NR2F1 were upregulated. Collectively, MUN alters the promoter and gene body methylation of genes associated with hepatic metabolisms (energy, cholesterol, mitochondria) and function, suggesting an impact of altered gene methylation on the dysregulation of gene expression in the fetal liver.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan
| | - Ichiro Oshima
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
| | - Takafumi Gotoh
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| |
Collapse
|
9
|
Ren LL, Wang ZW, Sen R, Dai ZT, Liao XH, Shen LJ. GRB10 is a novel factor associated with gastric cancer proliferation and prognosis. Aging (Albany NY) 2023; 15:3394-3409. [PMID: 37179120 PMCID: PMC10449302 DOI: 10.18632/aging.204603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 05/15/2023]
Abstract
GRB10 and its family members GRB7 and GRB14 were important adaptor proteins. They regulated many cellular functions by interacting with various tyrosine kinase receptors and other phosphorus-containing amino acid proteins. More and more studies have shown that the abnormal expression of GRB10 is closely related to the occurrence and development of cancer. In our current research, expression data for 33 cancers from the TCGA database was downloaded for analysis. It was found that GRB10 was up-regulated in cholangiocarcinoma, colon adenocarcinoma, head and neck squamous carcinoma, renal chromophobe, clear renal carcinoma, hepatocellular carcinoma, lung adenocarcinoma, lung squamous carcinoma, gastric adenocarcinoma and thyroid carcinoma. Especially in gastric cancer, the high GRB10 expression was closely associated with poorer overall survival. Further research showed that the knockdown of GRB10 inhibited proliferation and migration ability in gastric cancer. Also, there was a potential binding site for miR-379-5p on the 3'UTR of GRB10. Overexpression of miR-379-5p in gastric cancer cells reduced GRB10-regulated gastric cancer proliferation and migration capacity. In addition, we found that tumor growth was slower in a mice xenograft model with knock down of GRB10 expression. These findings suggested that miR-379-5p suppresses gastric cancer development by downregulating GRB10 expression. Therefore, miR-379-5p and GRB10 were expected to be potential targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Food and Drug, Shenzhen Polytechnic, Guangdong 518055, China
| | - Zhi-Wen Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Ren Sen
- Clinical Academy, Changsha Health Vocational College, Hunan 410100, China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Li-Juan Shen
- Longgang District People's Hospital of Shenzhen, Guangdong 518172, China
| |
Collapse
|
10
|
Greeson KW, Crow KMS, Edenfield RC, Easley CA. Inheritance of paternal lifestyles and exposures through sperm DNA methylation. Nat Rev Urol 2023:10.1038/s41585-022-00708-9. [PMID: 36653672 DOI: 10.1038/s41585-022-00708-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Many different lifestyle factors and chemicals present in the environment are a threat to the reproductive tracts of humans. The potential for parental preconception exposure to alter gametes and for these alterations to be passed on to offspring and negatively affect embryo growth and development is of concern. The connection between maternal exposures and offspring health is a frequent focus in epidemiological studies, but paternal preconception exposures are much less frequently considered and are also very important determinants of offspring health. Several environmental and lifestyle factors in men have been found to alter sperm epigenetics, which can regulate gene expression during early embryonic development. Epigenetic information is thought to be a mechanism that evolved for organisms to pass on information about their lived experiences to offspring. DNA methylation is a well-studied epigenetic regulator that is sensitive to environmental exposures in somatic cells and sperm. The continuous production of sperm from spermatogonial stem cells throughout a man's adult life and the presence of spermatogonial stem cells outside of the blood-testis barrier makes them susceptible to environmental insults. Furthermore, altered sperm DNA methylation patterns can be maintained throughout development and ultimately result in impairments, which could predispose offspring to disease. Innovations in human stem cell-based spermatogenic models can be used to elucidate the paternal origins of health and disease.
Collapse
Affiliation(s)
- Katherine W Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Krista M S Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Schrott R, Greeson KW, King D, Crow KMS, Easley CA, Murphy SK. Cannabis alters DNA methylation at maternally imprinted and autism candidate genes in spermatogenic cells. Syst Biol Reprod Med 2022; 68:357-369. [PMID: 35687495 PMCID: PMC10032331 DOI: 10.1080/19396368.2022.2073292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Cannabis use in the United States is increasing, with highest consumption among men at their peak reproductive years. We previously demonstrated widespread changes in sperm DNA methylation with cannabis exposure in humans and rats, including genes important in neurodevelopment. Here, we use an in vitro human spermatogenesis model to recapitulate chronic cannabis use and assess DNA methylation at imprinted and autism spectrum disorder (ASD) candidate genes in spermatogonial stem cell (SSC)- and spermatid-like cells. Methylation at maternally imprinted genes SGCE and GRB10 was significantly altered in SSC- and spermatid-like cells, respectively, while PEG3 was significantly differentially methylated in spermatid-like cells. Two of ten randomly selected ASD candidate genes, HCN1 and NR4A2, had significantly altered methylation with cannabis exposure in SSC-like cells. These results support our findings in human cohorts and provide a new tool with which to gain mechanistic insights into the association between paternal cannabis use and risk of ASD in offspring.
Collapse
Affiliation(s)
- Rose Schrott
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| | - Katherine W. Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Dillon King
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| | - Krista M. Symosko Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Charles A. Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Susan K. Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| |
Collapse
|
12
|
Conflict and the evolution of viviparity in vertebrates. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Identification of PDXDC1 as a novel pleiotropic susceptibility locus shared between lumbar spine bone mineral density and birth weight. J Mol Med (Berl) 2022; 100:723-734. [PMID: 35314877 PMCID: PMC9110509 DOI: 10.1007/s00109-021-02165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 02/04/2023]
Abstract
An increasing number of epidemiological studies have suggested that birth weight (BW) may be a determinant of bone health later in life, although the underlying genetic mechanism remains unclear. Here, we applied a pleiotropic conditional false discovery rate (cFDR) approach to the genome-wide association study (GWAS) summary statistics for lumbar spine bone mineral density (LS BMD) and BW, aiming to identify novel susceptibility variants shared between these two traits. We detected 5 novel potential pleiotropic loci which are located at or near 7 different genes (NTAN1, PDXDC1, CACNA1G, JAG1, FAT1P1, CCDC170, ESR1), among which PDXDC1 and FAT1P1 have not previously been linked to these phenotypes. To partially validate the findings, we demonstrated that the expression of PDXDC1 was dramatically reduced in ovariectomized (OVX) mice in comparison with sham-operated (SHAM) mice in both the growth plate and trabecula bone. Furthermore, immunohistochemistry assay with serial sections showed that both osteoclasts and osteoblasts express PDXDC1, supporting its potential role in bone metabolism. In conclusion, our study provides insights into some shared genetic mechanisms for BMD and BW as well as a novel potential therapeutic target for the prevention of OP in the early stages of the disease development. KEY MESSAGES : We investigated pleiotropy-informed enrichment between LS BMD and BW. We identified genetic variants related to both LS BMD and BW by utilizing a cFDR approach. PDXDC1 is a novel pleiotropic gene which may be related to both LS BMD and BW. Elevated expression of PDXDC1 is related to higher BMD and lower ratio n-6/n-3 PUFA indicating a bone protective effect of PDXDC1.
Collapse
|
14
|
Gutherz OR, Deyssenroth M, Li Q, Hao K, Jacobson JL, Chen J, Jacobson SW, Carter RC. Potential roles of imprinted genes in the teratogenic effects of alcohol on the placenta, somatic growth, and the developing brain. Exp Neurol 2021; 347:113919. [PMID: 34752786 DOI: 10.1016/j.expneurol.2021.113919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
Despite several decades of research and prevention efforts, fetal alcohol spectrum disorders (FASD) remain the most common preventable cause of neurodevelopmental disabilities worldwide. Animal and human studies have implicated fetal alcohol-induced alterations in epigenetic programming as a chief mechanism in FASD. Several studies have demonstrated fetal alcohol-related alterations in methylation and expression of imprinted genes in placental, brain, and embryonic tissue. Imprinted genes are epigenetically regulated in a parent-of-origin-specific manner, in which only the maternal or paternal allele is expressed, and the other allele is silenced. The chief functions of imprinted genes are in placental development, somatic growth, and neurobehavior-three domains characteristically affected in FASD. In this review, we summarize the growing body of literature characterizing prenatal alcohol-related alterations in imprinted gene methylation and/or expression and discuss potential mechanistic roles for these alterations in the teratogenic effects of prenatal alcohol exposure. Future research is needed to examine potential physiologic mechanisms by which alterations in imprinted genes disrupt development in FASD, which may, in turn, elucidate novel targets for intervention. Furthermore, mechanistic alterations in imprinted gene expression and/or methylation in FASD may inform screening assays that identify individuals with FASD neurobehavioral deficits who may benefit from early interventions.
Collapse
Affiliation(s)
- Olivia R Gutherz
- Institute of Human Nutrition, Columbia University Medical Center, United States of America
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, United States of America
| | - Qian Li
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Ke Hao
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - Jia Chen
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - R Colin Carter
- Institute of Human Nutrition, Columbia University Medical Center, United States of America; Departments of Emergency Medicine and Pediatrics, Columbia University Medical Center, United States of America.
| |
Collapse
|
15
|
D’ Fonseca NMM, Gibson CME, van Doorn DA, Roelfsema E, de Ruijter-Villani M, Stout TAE. Effect of Overfeeding Shetland Pony Mares on Embryonic Glucose and Lipid Accumulation, and Expression of Imprinted Genes. Animals (Basel) 2021; 11:ani11092504. [PMID: 34573470 PMCID: PMC8470267 DOI: 10.3390/ani11092504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary In pregnant individuals, maternal overnutrition is associated with disturbances in the expression of specific genes and nutrient transporters in the early embryo, which can affect both fetal and placental development and have lasting effects on the health of resulting offspring. To examine how maternal overfeeding affects the equine embryo, Shetland pony mares were fed either a high-energy (HE: 200% of net energy requirements) or maintenance (control) diet. Mares from both groups were inseminated, and day-seven embryos were recovered and transferred to recipients from the same or the alternate group. The expression of several genes, nutrient transporters and DNA methyltransferases (DNMTs; play an important role in regulating gene expression) were determined in extra-embryonic membranes after recovery on day 28 of gestation. The expression of nutrient transporters was also assessed in endometrium recovered from recipient mares immediately after embryo removal. In addition, glucose uptake by day-28 extra-embryonic membranes, and lipid droplet accumulation in day-seven embryos were assessed. Maternal overfeeding resulted in elevated expression of several genes, DNMTs and nutrient transporters following embryo transfer from an HE to a control mare. The expression of two amino acid transporters was also elevated in the endometrium after embryo transfer from HE to control. Maternal overfeeding did not affect lipid droplet accumulation in day-seven embryos, or glucose uptake by membranes of day-28 embryos. It remains to be seen whether the alterations in gene expression are maintained throughout gestation and into postnatal life. Abstract Maternal overfeeding is associated with disturbances in early embryonic epigenetic reprogramming, leading to altered expression of imprinted genes and nutrient transporters, which can affect both fetal and placental development and have lasting effects on the health of resulting offspring. To examine how maternal overfeeding affects the equine embryo, Shetland pony mares were fed either a high-energy (HE: 200% of net energy requirements) or maintenance (control) diet. Mares from both groups were inseminated, and day-seven embryos were recovered and transferred to recipients from the same or the alternate group. The expression of a panel of imprinted genes, glucose and amino acid transporters, and DNA methyltransferases (DNMTs) were determined in conceptus membranes after recovery on day 28 of gestation (late pre-implantation phase). The expression of nutrient transporters was also assessed in endometrium recovered from recipient mares immediately after conceptus removal. In addition, glucose uptake by day-28 extra-embryonic membranes, and lipid droplet accumulation in day-seven blastocysts were assessed. Maternal overfeeding resulted in elevated expression of imprinted genes (IGF2, IGF2R, H19, GRB10, PEG10 and SNRPN), DNMTs (DNMT1 and DNMT3B), glucose (SLC2A1), fructose (SLC2A5) and amino acid (SLC7A2) transporters following ET from an HE to a control mare. Expression of amino acid transporters (SLC1A5 and SLC7A1) was also elevated in the endometrium after ET from HE to control. Maternal overfeeding did not affect lipid droplet accumulation in blastocysts, or glucose uptake by day-28 membranes. It remains to be seen whether the alterations in gene expression are maintained throughout gestation and into postnatal life.
Collapse
Affiliation(s)
- Nicky M. M. D’ Fonseca
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
- Correspondence:
| | - Charlotte M. E. Gibson
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| | - David A. van Doorn
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Ellen Roelfsema
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| | - Tom A. E. Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| |
Collapse
|
16
|
Prickett AR, Montibus B, Barkas N, Amante SM, Franco MM, Cowley M, Puszyk W, Shannon MF, Irving MD, Madon-Simon M, Ward A, Schulz R, Baldwin HS, Oakey RJ. Imprinted Gene Expression and Function of the Dopa Decarboxylase Gene in the Developing Heart. Front Cell Dev Biol 2021; 9:676543. [PMID: 34239874 PMCID: PMC8258389 DOI: 10.3389/fcell.2021.676543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Dopa decarboxylase (DDC) synthesizes serotonin in the developing mouse heart where it is encoded by Ddc_exon1a, a tissue-specific paternally expressed imprinted gene. Ddc_exon1a shares an imprinting control region (ICR) with the imprinted, maternally expressed (outside of the central nervous system) Grb10 gene on mouse chromosome 11, but little else is known about the tissue-specific imprinted expression of Ddc_exon1a. Fluorescent immunostaining localizes DDC to the developing myocardium in the pre-natal mouse heart, in a region susceptible to abnormal development and implicated in congenital heart defects in human. Ddc_exon1a and Grb10 are not co-expressed in heart nor in brain where Grb10 is also paternally expressed, despite sharing an ICR, indicating they are mechanistically linked by their shared ICR but not by Grb10 gene expression. Evidence from a Ddc_exon1a gene knockout mouse model suggests that it mediates the growth of the developing myocardium and a thinning of the myocardium is observed in a small number of mutant mice examined, with changes in gene expression detected by microarray analysis. Comparative studies in the human developing heart reveal a paternal expression bias with polymorphic imprinting patterns between individual human hearts at DDC_EXON1a, a finding consistent with other imprinted genes in human.
Collapse
Affiliation(s)
- Adam R. Prickett
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Bertille Montibus
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Nikolaos Barkas
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Samuele M. Amante
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Maurício M. Franco
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Michael Cowley
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - William Puszyk
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Matthew F. Shannon
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Melita D. Irving
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Marta Madon-Simon
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Andrew Ward
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - H. Scott Baldwin
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca J. Oakey
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Scagliotti V, Esse R, Willis TL, Howard M, Carrus I, Lodge E, Andoniadou CL, Charalambous M. Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland. Genes (Basel) 2021; 12:genes12040509. [PMID: 33808370 PMCID: PMC8066104 DOI: 10.3390/genes12040509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, imprinted genes regulate many critical endocrine processes such as growth, the onset of puberty and maternal reproductive behaviour. Human imprinting disorders (IDs) are caused by genetic and epigenetic mechanisms that alter the expression dosage of imprinted genes. Due to improvements in diagnosis, increasing numbers of patients with IDs are now identified and monitored across their lifetimes. Seminal work has revealed that IDs have a strong endocrine component, yet the contribution of imprinted gene products in the development and function of the hypothalamo-pituitary axis are not well defined. Postnatal endocrine processes are dependent upon the production of hormones from the pituitary gland. While the actions of a few imprinted genes in pituitary development and function have been described, to date there has been no attempt to link the expression of these genes as a class to the formation and function of this essential organ. This is important because IDs show considerable overlap, and imprinted genes are known to define a transcriptional network related to organ growth. This knowledge deficit is partly due to technical difficulties in obtaining useful transcriptomic data from the pituitary gland, namely, its small size during development and cellular complexity in maturity. Here we utilise high-sensitivity RNA sequencing at the embryonic stages, and single-cell RNA sequencing data to describe the imprinted transcriptome of the pituitary gland. In concert, we provide a comprehensive literature review of the current knowledge of the role of imprinted genes in pituitary hormonal pathways and how these relate to IDs. We present new data that implicate imprinted gene networks in the development of the gland and in the stem cell compartment. Furthermore, we suggest novel roles for individual imprinted genes in the aetiology of IDs. Finally, we describe the dynamic regulation of imprinted genes in the pituitary gland of the pregnant mother, with implications for the regulation of maternal metabolic adaptations to pregnancy.
Collapse
Affiliation(s)
- Valeria Scagliotti
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Ruben Esse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Thea L. Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Mark Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE19RT, UK;
| | - Isabella Carrus
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Emily Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
- Correspondence:
| |
Collapse
|
18
|
Chang S, Wang Y, Xin Y, Wang S, Luo Y, Wang L, Zhang H, Li J. DNA methylation abnormalities of imprinted genes in congenital heart disease: a pilot study. BMC Med Genomics 2021; 14:4. [PMID: 33407475 PMCID: PMC7789576 DOI: 10.1186/s12920-020-00848-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is resulted from the interaction of genetic aberration and environmental factors. Imprinted genes, which are regulated by epigenetic modifications, are essential for the normal embryonic development. However, the role of imprinted genes in the etiology of CHD remains unclear. METHODS After the samples were treated with bisulfate salt, imprinted genes methylation were measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. T test and One-way ANOVA were performed to evaluate the differences among groups. Odds ratios (ORs) were performed to evaluate the incidence risk of CHD in relation to methylation levels. RESULTS We investigated the alterations of imprinted gene germline differential methylation regions (gDMRs) methylation in patients with CHD. Eighteen imprinted genes that are known to affect early embryonic development were selected and the methylation modification genes were detected by massarray in 27 CHD children and 28 healthy children. Altered gDMR methylation level of 8 imprinted genes was found, including 2 imprinted genes with hypermethylation of GRB10 and MEST and 6 genes with hypomethylation of PEG10, NAP1L5, INPP5F, PLAGL1, NESP and MEG3. Stratified analysis showed that the methylation degree of imprinted genes was different in different types of CHD. Risk analysis showed that 6 imprinted genes, except MEST and NAP1L5, within a specific methylation level range were the risk factors for CHD CONCLUSION: Altered methylation of imprinted genes is associated with CHD and varies in different types of CHD. Further experiments are warranted to identify the methylation characteristics of imprinted genes in different types of CHD and clarify the etiologies of imprinted genes in CHD.
Collapse
Affiliation(s)
- Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yubo Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yu Xin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shuangxing Wang
- Department of Cardiac Surgery, Children's Hospital Affiliated to Capital Institute of Pediatrics, No. 2 Yabao Road, Chao Yang District, Beijing, 100020, China
| | - Yi Luo
- Department of Cardiac Surgery, Children's Hospital Affiliated to Capital Institute of Pediatrics, No. 2 Yabao Road, Chao Yang District, Beijing, 100020, China
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hui Zhang
- Department of Cardiac Surgery, Children's Hospital Affiliated to Capital Institute of Pediatrics, No. 2 Yabao Road, Chao Yang District, Beijing, 100020, China.
| | - Jia Li
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou City, 510000, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong Province, China.
| |
Collapse
|
19
|
Villanueva-Hayes C, Millership SJ. Imprinted Genes Impact Upon Beta Cell Function in the Current (and Potentially Next) Generation. Front Endocrinol (Lausanne) 2021; 12:660532. [PMID: 33986727 PMCID: PMC8112240 DOI: 10.3389/fendo.2021.660532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Beta cell failure lies at the centre of the aetiology and pathogenesis of type 2 diabetes and the epigenetic control of the expression of critical beta cell genes appears to play a major role in this decline. One such group of epigenetically-controlled genes, termed 'imprinted' genes, are characterised by transgenerational monoallelic expression due to differential allelic DNA methylation and play key functional roles within beta cells. Here, we review the evidence for this functional importance of imprinted genes in beta cells as well as their nutritional regulation by the diet and their altered methylation and/or expression in rodent models of diabetes and in type 2 diabetic islets. We also discuss imprinted genes in the context of the next generation, where dietary overnutrition in the parents can lead to their deregulation in the offspring, alongside beta cell dysfunction and defective glucose handling. Both the modulation of imprinted gene expression and the likelihood of developing type 2 diabetes in adulthood are susceptible to the impact of nutritional status in early life. Imprinted loci, therefore, represent an excellent opportunity with which to assess epigenomic changes in beta cells due to the diet in both the current and next generation.
Collapse
|
20
|
Yang L, Xing F, He Q, Tahir ul Qamar M, Chen LL, Xing Y. Conserved Imprinted Genes between Intra-Subspecies and Inter-Subspecies Are Involved in Energy Metabolism and Seed Development in Rice. Int J Mol Sci 2020; 21:ijms21249618. [PMID: 33348666 PMCID: PMC7765902 DOI: 10.3390/ijms21249618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 01/28/2023] Open
Abstract
Genomic imprinting is an epigenetic phenomenon in which a subset of genes express dependent on the origin of their parents. In plants, it is unclear whether imprinted genes are conserved between subspecies in rice. Here we identified imprinted genes from embryo and endosperm 5-7 days after pollination from three pairs of reciprocal hybrids, including inter-subspecies, japonica intra-subspecies, and indica intra-subspecies reciprocal hybrids. A total of 914 imprinted genes, including 546 in inter-subspecies hybrids, 211 in japonica intra-subspecies hybrids, and 286 in indica intra-subspecies hybrids. In general, the number of maternally expressed genes (MEGs) is more than paternally expressed genes (PEGs). Moreover, imprinted genes tend to be in mini clusters. The number of shared genes by R9N (reciprocal crosses between 9311 and Nipponbare) and R9Z (reciprocal crosses between 9311 and Zhenshan 97), R9N and RZN (reciprocal crosses between Zhonghua11 and Nipponbare), R9Z and RZN was 72, 46, and 16. These genes frequently involved in energy metabolism and seed development. Five imprinted genes (Os01g0151700, Os07g0103100, Os10g0340600, Os11g0679700, and Os12g0632800) are commonly detected in all three pairs of reciprocal hybrids and were validated by RT-PCR sequencing. Gene editing of two imprinted genes revealed that both genes conferred grain filling. Moreover, 15 and 27 imprinted genes with diverse functions in rice were shared with Arabidopsis and maize, respectively. This study provided valuable resources for identification of imprinting genes in rice or even in cereals.
Collapse
Affiliation(s)
- Lin Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
| | - Feng Xing
- College of Life Science, Xinyang Normal University, Xinyang 464000, China;
| | - Qin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
| | - Muhammad Tahir ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
- Correspondence: (L.-L.C.); (Y.X.)
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
- Correspondence: (L.-L.C.); (Y.X.)
| |
Collapse
|
21
|
Gurner KH, Truong TT, Harvey AJ, Gardner DK. A combination of growth factors and cytokines alter preimplantation mouse embryo development, foetal development and gene expression profiles. Mol Hum Reprod 2020; 26:953-970. [DOI: 10.1093/molehr/gaaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
Within the maternal tract, the preimplantation embryo is exposed to an array of growth factors (GFs) and cytokines, most of which are absent from culture media used in clinical IVF. Whilst the addition of individual GFs and cytokines to embryo culture media can improve preimplantation mouse embryo development, there is a lack of evidence on the combined synergistic effects of GFs and cytokines on embryo development and further foetal growth. Therefore, in this study, the effect of a combined group of GFs and cytokines on mouse preimplantation embryo development and subsequent foetal development and gene expression profiles was investigated. Supplementation of embryo culture media with an optimised combination of GFs and cytokines (0.05 ng/ml vascular endothelial GF, 1 ng/ml platelet-derived GF, 0.13 ng/ml insulin-like GF 1, 0.026 ng/ml insulin-like GF 2 and 1 ng/ml granulocyte colony-stimulating factor) had no effect on embryo morphokinetics but significantly increased trophectoderm cell number (P = 0.0002) and total cell number (P = 0.024). Treatment with this combination of GFs and cytokines also significantly increased blastocyst outgrowth area (P < 0.05) and, following embryo transfer, increased foetal weight (P = 0.027), crown-rump length (P = 0.017) and overall morphological development (P = 0.027). RNA-seq analysis of in vitro derived foetuses identified concurrent alterations to the transcriptional profiles of liver and placental tissues compared with those developed in vivo, with greater changes observed in the GF and cytokine treated group. Together these data highlight the importance of balancing the actions of such factors for the regulation of normal development and emphasise the need for further studies investigating this prior to clinical implementation.
Collapse
Affiliation(s)
- Kathryn H Gurner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne IVF, East Melbourne, VIC 3002, Australia
| |
Collapse
|
22
|
Millership SJ, Van de Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Cell Mol Life Sci 2019; 76:4009-4021. [PMID: 31270580 PMCID: PMC6785587 DOI: 10.1007/s00018-019-03197-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Imprinted genes display parent-of-origin-specific expression with this epigenetic system of regulation found exclusively in therian mammals. Historically, defined imprinted gene functions were almost solely focused on pregnancy and the influence on the growth parameters of the developing embryo and placenta. More recently, a number of postnatal functions have been identified which converge on resource allocation, both for animals in the nest and in adults. While many of the prenatal functions of imprinted genes that have so far been described adhere to the "parental conflict" hypothesis, no clear picture has yet emerged on the functional role of imprints on postnatal metabolism. As these roles are uncovered, interest in the potential for these genes to influence postnatal metabolism and associated adult-onset disease outcomes when dysregulated has gathered pace. Here, we review the published data on imprinted genes and their influence on postnatal metabolism, starting in the nest, and then progressing through to adulthood. When observing the functional effects of these genes on adult metabolism, we must always be careful to acknowledge the influence both of direct expression in the relevant metabolic tissue, but also indirect metabolic programming effects caused by their modulation of both in utero and postnatal growth trajectories.
Collapse
Affiliation(s)
- Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Mathew Van de Pette
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
23
|
Yang M, Perisse I, Fan Z, Regouski M, Meyer-Ficca M, Polejaeva IA. Increased pregnancy losses following serial somatic cell nuclear transfer in goats. Reprod Fertil Dev 2019; 30:1443-1453. [PMID: 29769162 DOI: 10.1071/rd17323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Serial cloning by somatic cell nuclear transfer (SCNT) is a critical tool for the expansion of precious transgenic lines or resetting the lifespan of primary transgenic cells for multiple genetic modifications. We successfully produced second-generation cloned goats using donor neonatal fibroblasts from first-generation clones. However, our attempts to produce any third-generation clones failed. SCNT efficiency decreased progressively with the clonal generations. The rate of pregnancy loss was significantly greater in recloning groups (P<0.05). While no pregnancy loss was observed during the first round of SCNT, 14 out of 21 pregnancies aborted in the second round of SCNT and all pregnancies aborted in the third round of SCNT. In this retrospective study, we also investigated the expression of 21 developmentally important genes in muscle tissue of cloned (G1) and recloned (G2) offspring. The expression of most of these genes in live clones was found to be largely comparable to naturally reproduced control goats, but fibroblast growth factor 10 (FGF10), methyl CpG binding protein 2 (MECP2) and growth factor receptor bound protein 10 (GRB10) were differentially expressed (P<0.05) in G2 goats compared with G1 and controls. To study the effects of serial cloning on DNA methylation, the methylation pattern of differentially methylated regions in imprinted genes H19 and insulin like growth factor 2 receptor (IGF2R) were also analysed. Aberrant H19 DNA methylation patterns were detected in G1 and G2 clones.
Collapse
Affiliation(s)
- Min Yang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Iuri Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Mirella Meyer-Ficca
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| |
Collapse
|
24
|
Klf14 is an imprinted transcription factor that regulates placental growth. Placenta 2019; 88:61-67. [PMID: 31675530 DOI: 10.1016/j.placenta.2019.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Imprinted genes are preferentially expressed from one parentally inherited allele, and many are crucial to the regulation of placental function and fetal growth. Murine Krüppel-like factor 14 (Klf14) is a maternally expressed imprinted transcription factor that is a component of the Mest imprinted gene cluster on mouse chromosome 6. We sought to determine if loss of Klf14 expression alters the course of normal mouse extraembryonic development. We also used high-throughput RNA sequencing (RNAseq) to identify a set of differentially expressed genes (DEGs) in placentas with loss of Klf14. METHODS We generated a Klf14 knockout (Klf14null) mouse using recombineering and transgenic approaches. To identify DEGs in the mouse placenta we compared mRNA transcriptomes derived from 17.5dpc Klf14matKO and wild-type littermate placentas by RNAseq. Candidate DEGs were confirmed with quantitative reverse transcription PCR (qPCR) on an independent cohort of male and female gestational age matched Klf14matKO placentas. RESULTS We found that 17.5dpc placentas inheriting a maternal null allele (Klf14matKO) had a modest overgrowth phenotype and a near complete ablation of Klf14 expression. However, there was no effect on fetal growth. We identified 20 DEGs differentially expressed in Klf14matKO placentas by RNAseq, and subsequently validated five that are highly upregulated (Begain, Col26a1, Fbln5, Gdf10, and Nell1) by qPCR. The most enriched functional gene-networks included those classified as regulating cellular development and metabolism. CONCLUSION These results suggest that loss of the maternal Klf14 locus in the mouse placenta acts results in changes in gene expression patterns that modulate placental growth.
Collapse
|
25
|
Kondo S, Kato H, Suzuki Y, Takada T, Eitoku M, Shiroishi T, Suganuma N, Sugano S, Kiyosawa H. Monoallelic, antisense and total RNA transcription in an in vitro neural differentiation system based on F1 hybrid mice. J Cell Sci 2019; 132:jcs.228973. [PMID: 31409693 DOI: 10.1242/jcs.228973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/04/2019] [Indexed: 11/20/2022] Open
Abstract
We developed an in vitro system to differentiate embryonic stem cells (ESCs) derived from reciprocally crossed F1 hybrid mice into neurons, and used it to investigate poly(A)+ and total RNA transcription at different stages of cell differentiation. By comparing expression profiles of transcripts assembled from 20 RNA sequencing datasets [2 alleles×(2 cell lines×4 time-points+2 mouse brains)], the relative influence of strain, cell and parent specificities to overall expression could be assessed. Divergent expression profiles of ESCs converged tightly at neural progenitor stage. Patterns of temporal variation of monoallelically expressed transcripts and antisense transcripts were quantified. Comparison of sense and antisense transcript pairs within the poly(A)+ sample, within the total RNA sample, and across poly(A)+ and total RNA samples revealed distinct rates of pairs showing anti-correlated expression variation. Unique patterns of sharing of poly(A)+ and poly(A)- transcription were identified in distinct RNA species. Regulation and functionality of monoallelic expression, antisense transcripts and poly(A)- transcription remain elusive. We demonstrated the effectiveness of our approach to capture these transcriptional activities, and provided new resources to elucidate the mammalian developmental transcriptome.
Collapse
Affiliation(s)
- Shinji Kondo
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan
| | - Hidemasa Kato
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Toyoyuki Takada
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan.,Mammalian Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Toshihiko Shiroishi
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan.,Mammalian Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Hidenori Kiyosawa
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan .,Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| |
Collapse
|
26
|
Sun Y, Liu Y, Sun X, Lin Y, Yin D, Xu S, Yang G. Insights into body size variation in cetaceans from the evolution of body-size-related genes. BMC Evol Biol 2019; 19:157. [PMID: 31351448 PMCID: PMC6660953 DOI: 10.1186/s12862-019-1461-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 06/14/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cetaceans exhibit an exceptionally wide range of body size, yet in this regard, their genetic basis remains poorly explored. In this study, 20 body-size-related genes for which duplication, mutation, or deficiency can cause body size change in mammals were chosen to preliminarily investigate the evolutionary mechanisms underlying the dramatic body size variation in cetaceans. RESULTS We successfully sequenced 20 body-size-related genes in six representative species of cetaceans. A total of 46 codons from 10 genes were detected and determined to be under strong positive selection, 32 (69.6%) of which were further found to be under radical physiochemical changes; moreover, some of these sites were localized in or near important functional regions. Interestingly, positively selected genes were well matched with body size evolution: for small cetaceans, strong evidence of positive selection was detected at ACAN, OBSL1, and GRB10, within which mutations or duplications could cause short stature; positive selection was found in large cetaceans at CBS and EIF2AK3, which could promote growth, and at the PLOD1 gene, within which mutations could cause tall stature. Importantly, relationship analyses revealed that the evolutionary rate of CBS was positively related to body length and body mass with statistical significance. Additionally, we identified 32 cetacean-specific amino acid changes in 10 genes. CONCLUSIONS This is the first study to investigate the molecular basis of dramatic body size variation in cetaceans. Our results provide evidence of the positive selection of several body-size-related genes in cetaceans, as well as divergent selection between large or small cetaceans, which suggest cetacean body size variation possibly associated with these genes. In addition, cetacean-specific amino acid changes might have played key roles in body size evolution after the divergence of cetaceans from their terrestrial relatives. Overall, the evolutionary pattern of these body-size-related genes could provide new insights into genetic mechanisms for the body size variation in cetaceans.
Collapse
Affiliation(s)
- Yingying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Yanzhi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xiaohui Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Yurui Lin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Daiqing Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
27
|
Eggermann T, Begemann M, Kurth I, Elbracht M. Contribution of GRB10 to the prenatal phenotype in Silver-Russell syndrome? Lessons from 7p12 copy number variations. Eur J Med Genet 2019; 62:103671. [PMID: 31100449 DOI: 10.1016/j.ejmg.2019.103671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 11/19/2022]
Abstract
The growth factor binding protein 10 (GRB10) has been suggested as a candidate gene for Silver-Russell syndrome because of its localization in 7p12, its imprinting status, data from mice models and its putative role in growth. Based on a new patient with normal growth carrying a GRB10 deletion affecting the paternal allele and data from the literature, we conclude that the heterogeneous clinical findings in patients with copy number variations (CNVs) of GRB10 gene depend on the size and the gene content of the CNV. However, evidence from mouse and human cases indicate a growth suppressing role of GRB10 in prenatal development. As a result, an increase of active maternal GRB10 copies, e.g. by maternal uniparental disomy of chromosome 7 or duplications of the region results in intrauterine growth retardation. In contrast, a defective GRB10 copy might result in prenatal overgrowth, whereas the paternal GRB10 allele is not required for proper prenatal growth.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), Aachen, Germany.
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), Aachen, Germany
| |
Collapse
|
28
|
Rienecker KDA, Chavasse AT, Moorwood K, Ward A, Isles AR. Detailed analysis of paternal knockout Grb10 mice suggests effects on stability of social behavior, rather than social dominance. GENES BRAIN AND BEHAVIOR 2019; 19:e12571. [PMID: 30932322 PMCID: PMC7050506 DOI: 10.1111/gbb.12571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022]
Abstract
Imprinted genes are highly expressed in monoaminergic regions of the midbrain and their functions in this area are thought to have an impact on mammalian social behaviors. One such imprinted gene is Grb10, of which the paternal allele is generally recognized as mediating social dominance behavior. However, there has been no detailed study of social dominance in Grb10+/p mice. Moreover, the original study examined tube‐test behavior in isolated mice 10 months of age. Isolation testing favors more territorial and aggressive behaviors, and does not address social dominance strategies employed in group housing contexts. Furthermore, isolation stress impacts midbrain function and dominance related behavior, often through alterations in monoaminergic signaling. Thus, we undertook a systematic study of Grb10+/p social rank and dominance behavior within the cage group, using a number of convergent behavioral tests. We examined both male and female mice to account for sex differences and tested cohorts aged 2, 6 and 10 months to examine any developments related to age. We found group‐housed Grb10+/p mice do not show evidence of enhanced social dominance, but cages containing Grb10+/p and wild‐type mice lacked the normal correlation between three different measures of social rank. Moreover, a separate study indicated isolation stress induced inconsistent changes in tube test behavior. Taken together, these data suggest future research on Grb10+/p mice should focus on the stability of social behaviors, rather than dominance per se.
Collapse
Affiliation(s)
- Kira D A Rienecker
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Alexander T Chavasse
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Kim Moorwood
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Andrew Ward
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
29
|
Monteagudo-Sánchez A, Sánchez-Delgado M, Mora JRH, Santamaría NT, Gratacós E, Esteller M, de Heredia ML, Nunes V, Choux C, Fauque P, de Nanclares GP, Anton L, Elovitz MA, Iglesias-Platas I, Monk D. Differences in expression rather than methylation at placenta-specific imprinted loci is associated with intrauterine growth restriction. Clin Epigenetics 2019; 11:35. [PMID: 30808399 PMCID: PMC6390544 DOI: 10.1186/s13148-019-0630-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genome-wide studies have begun to link subtle variations in both allelic DNA methylation and parent-of-origin genetic effects with early development. Numerous reports have highlighted that the placenta plays a critical role in coordinating fetal growth, with many key functions regulated by genomic imprinting. With the recent description of wide-spread polymorphic placenta-specific imprinting, the molecular mechanisms leading to this curious polymorphic epigenetic phenomenon is unknown, as is their involvement in pregnancies complications. RESULTS Profiling of 35 ubiquitous and 112 placenta-specific imprinted differentially methylated regions (DMRs) using high-density methylation arrays and pyrosequencing revealed isolated aberrant methylation at ubiquitous DMRs as well as abundant hypomethylation at placenta-specific DMRs. Analysis of the underlying chromatin state revealed that the polymorphic nature is not only evident at the level of allelic methylation, but DMRs can also adopt an unusual epigenetic signature where the underlying histones are biallelically enrichment of H3K4 methylation, a modification normally mutually exclusive with DNA methylation. Quantitative expression analysis in placenta identified two genes, GPR1-AS1 and ZDBF2, that were differentially expressed between IUGRs and control samples after adjusting for clinical factors, revealing coordinated deregulation at the chromosome 2q33 imprinted locus. CONCLUSIONS DNA methylation is less stable at placenta-specific imprinted DMRs compared to ubiquitous DMRs and contributes to privileged state of the placenta epigenome. IUGR-associated expression differences were identified for several imprinted transcripts independent of allelic methylation. Further work is required to determine if these differences are the cause IUGR or reflect unique adaption by the placenta to developmental stresses.
Collapse
Affiliation(s)
- Ana Monteagudo-Sánchez
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marta Sánchez-Delgado
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Ramon Hernandez Mora
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Nuria Tubío Santamaría
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.,Leibniz Institute on Aging, Jena, Germany
| | - Eduard Gratacós
- Fetal I+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Déu, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Gran via, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Miguel López de Heredia
- Human Molecular Genetics group, Genes, disease and Therapy Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospitalet 199-203, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Virgina Nunes
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Human Molecular Genetics group, Genes, disease and Therapy Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospitalet 199-203, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigaciòn Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cecile Choux
- Université Bourgogne Franche-Comté - INSERM UMR1231, F-21000, Dijon, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté - INSERM UMR1231, F-21000, Dijon, France
| | - Guiomar Perez de Nanclares
- (Epi) Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | - Lauren Anton
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, USA
| | - Isabel Iglesias-Platas
- GReN (Grup de Reçerca en Neonatologia), BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Institut de Reçerca Sant Joan de Déu, Barcelona, Spain
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
30
|
Millership SJ, Tunster SJ, Van de Pette M, Choudhury AI, Irvine EE, Christian M, Fisher AG, John RM, Scott J, Withers DJ. Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice. Mol Metab 2018; 18:97-106. [PMID: 30279096 PMCID: PMC6308027 DOI: 10.1016/j.molmet.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Imprinted genes are crucial for the growth and development of fetal and juvenile mammals. Altered imprinted gene dosage causes a variety of human disorders, with growth and development during these crucial early stages strongly linked with future metabolic health in adulthood. Neuronatin (Nnat) is a paternally expressed imprinted gene found in neuroendocrine systems and white adipose tissue and is regulated by the diet and leptin. Neuronatin expression is downregulated in obese children and has been associated with stochastic obesity in C57BL/6 mice. However, our recent studies of Nnat null mice on this genetic background failed to display any body weight or feeding phenotypes but revealed a defect in glucose-stimulated insulin secretion due to the ability of neuronatin to potentiate signal peptidase cleavage of preproinsulin. Nnat deficiency in beta cells therefore caused a lack of appropriate storage and secretion of mature insulin. METHODS To further explore the potential role of Nnat in the regulation of body weight and adiposity, we studied classical imprinting-related phenotypes such as placental, fetal, and postnatal growth trajectory patterns that may impact upon subsequent adult metabolic phenotypes. RESULTS Here we find that, in contrast to the lack of any body weight or feeding phenotypes on the C57BL/6J background, deletion of Nnat in mice on 129S2/Sv background causes a postnatal growth restriction with reduced adipose tissue accumulation, followed by catch up growth after weaning. This was in the absence of any effect on fetal growth or placental development. In adult 129S2/Sv mice, Nnat deletion was associated with hyperphagia, reduced energy expenditure, and partial leptin resistance. Lack of neuronatin also potentiated obesity caused by either aging or high fat diet feeding. CONCLUSIONS The imprinted gene Nnat plays a key role in postnatal growth, adult energy homeostasis, and the pathogenesis of obesity via catch up growth effects, but this role is dependent upon genetic background.
Collapse
Affiliation(s)
- Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Simon J Tunster
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | | | | | - Elaine E Irvine
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Mark Christian
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Rosalind M John
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - James Scott
- National Heart and Lung Institute, Department of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
31
|
Järviaho T, Zachariadis V, Tesi B, Chiang S, Bryceson YT, Möttönen M, Niinimäki R, Bang B, Rahikkala E, Taylan F, Uusimaa J, Harila-Saari A, Nordgren A. Microdeletion of 7p12.1p13, including IKZF1, causes intellectual impairment, overgrowth, and susceptibility to leukaemia. Br J Haematol 2018; 185:354-357. [PMID: 30004112 DOI: 10.1111/bjh.15494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tekla Järviaho
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Samuel Chiang
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Merja Möttönen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Riitta Niinimäki
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Benedicte Bang
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Rahikkala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Arja Harila-Saari
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Salilew-Wondim D, Saeed-Zidane M, Hoelker M, Gebremedhn S, Poirier M, Pandey HO, Tholen E, Neuhoff C, Held E, Besenfelder U, Havlicek V, Rings F, Fournier E, Gagné D, Sirard MA, Robert C, Gad A, Schellander K, Tesfaye D. Genome-wide DNA methylation patterns of bovine blastocysts derived from in vivo embryos subjected to in vitro culture before, during or after embryonic genome activation. BMC Genomics 2018; 19:424. [PMID: 29859035 PMCID: PMC5984773 DOI: 10.1186/s12864-018-4826-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/25/2018] [Indexed: 11/10/2022] Open
Abstract
Background Aberrant DNA methylation patterns of genes required for development are common in in vitro produced embryos. In this regard, we previously identified altered DNA methylation patterns of in vivo developed blastocysts from embryos which spent different stages of development in vitro, indicating carryover effects of suboptimal culture conditions on epigenetic signatures of preimplantation embryos. However, epigenetic responses of in vivo originated embryos to suboptimal culture conditions are not fully understood. Therefore, here we investigated DNA methylation patterns of in vivo derived bovine embryos subjected to in vitro culture condition before, during or after major embryonic genome activation (EGA). For this, in vivo produced 2-, 8- and 16-cell stage embryos were cultured in vitro until the blastocyst stage and blastocysts were used for genome-wide DNA methylation analysis. Results The 2- and 8-cell flushed embryo groups showed lower blastocyst rates compared to the 16-cell flush group. This was further accompanied by increased numbers of differentially methylated genomic regions (DMRs) in blastocysts of the 2- and 8-cell flush groups compared to the complete in vivo control ones. Moreover, 1623 genomic loci including imprinted genes were hypermethylated in blastocyst of 2-, 8- and 16-cell flushed groups, indicating the presence of genomic regions which are sensitive to the in vitro culture at any stage of embryonic development. Furthermore, hypermethylated genomic loci outnumbered hypomethylated ones in blastocysts of 2- and 16-cell flushed embryo groups, but the opposite occurred in the 8-cell group. Moreover, DMRs which were unique to blastocysts of the 2-cell flushed group and inversely correlated with corresponding mRNA expression levels were involved in plasma membrane lactate transport, amino acid transport and phosphorus metabolic processes, whereas DMRs which were specific to the 8-cell group and inversely correlated with corresponding mRNA expression levels were involved in several biological processes including regulation of fatty acids and steroid biosynthesis processes. Conclusion In vivo embryos subjected to in vitro culture before and during major embryonic genome activation (EGA) are prone to changes in DNA methylation marks and exposure of in vivo embryos to in vitro culture during the time of EGA increased hypomethylated genomic loci in blastocysts. Electronic supplementary material The online version of this article (10.1186/s12864-018-4826-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany.
| | - Mohammed Saeed-Zidane
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Samuel Gebremedhn
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Mikhaël Poirier
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Hari Om Pandey
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Eva Held
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Urban Besenfelder
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210, Vienna, Austria
| | - Vita Havlicek
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210, Vienna, Austria
| | - Franca Rings
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Eric Fournier
- Centre de recherche en biologie de la reproduction, Faculté des sciences de l'agriculture et de l'alimentation, INAF, Pavillon des services, Université Laval, Québec, G1V 0A6, Canada
| | - Dominic Gagné
- Centre de recherche en biologie de la reproduction, Faculté des sciences de l'agriculture et de l'alimentation, INAF, Pavillon des services, Université Laval, Québec, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de recherche en biologie de la reproduction, Faculté des sciences de l'agriculture et de l'alimentation, INAF, Pavillon des services, Université Laval, Québec, G1V 0A6, Canada
| | - Claude Robert
- Centre de recherche en biologie de la reproduction, Faculté des sciences de l'agriculture et de l'alimentation, INAF, Pavillon des services, Université Laval, Québec, G1V 0A6, Canada
| | - Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
33
|
Yao J, Geng L, Huang R, Peng W, Chen X, Jiang X, Yu M, Li M, Huang Y, Yang X. Effect of vitrification on in vitro development and imprinted gene Grb10 in mouse embryos. Reproduction 2018; 154:97-105. [PMID: 28696244 DOI: 10.1530/rep-16-0480] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/21/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
Abstract
Vitrification of embryos is a routine procedure in IVF (in vitro fertilization) laboratories. In the present study, we aimed to investigate the effect of vitrification on mouse preimplantation embryo development in vitro, and effect on the epigenetic status of imprinted gene Grb10 in mouse embryos. The blastocyst formation rate for vitrified 8-cell embryos was similar to the non-vitrified 8-cell embryos, whereas the blastocyst hatching rate was lower than that of the non-vitrified group. The expression level of Grb10 major-type transcript decreased significantly in vitrified blastocysts compared with non-vitrified and in vivo blastocysts. Moreover, the global DNA methylation level in 8-cell embryos and blastocysts, and the DNA methylation at CpG island 1 (CGI1) of Grb10 in blastocysts were also significantly decreased after vitrification. In vitro culture condition had no adverse effect, except for on the DNA methylation in Grb10 CGI1. These results suggest that vitrification may reduce the in vitro development of mouse 8-cell embryos and affect the expression and DNA methylation of imprinted gene Grb10.
Collapse
Affiliation(s)
- Jianfeng Yao
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Lixia Geng
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Rongfu Huang
- The Second Affiliated HospitalFujian Medical University, Quanzhou, People's Republic of China
| | - Weilin Peng
- Quanzhou Maternity and Child Health Care HospitalQuanZhou, People's Republic of China
| | - Xuan Chen
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaohong Jiang
- Fuzhou Center for Disease Control and PreventionFuzhou, People's Republic of China
| | - Miao Yu
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ming Li
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yanfang Huang
- The First Affiliated HospitalFujian Medical University, Fuzhou, People's Republic of China
| | - Xiaoyu Yang
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China.,The Affiliated Fuzhou First HospitalFujian Medical University, Fuzhou, People's Republic of China.,Fuzhou Maternity and Child Health Care HospitalFuzhou, People's Republic of China
| |
Collapse
|
34
|
Impulsive Choice in Mice Lacking Paternal Expression of Grb10 Suggests Intragenomic Conflict in Behavior. Genetics 2018; 209:233-239. [PMID: 29563147 PMCID: PMC5937175 DOI: 10.1534/genetics.118.300898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
The imprinted gene Grb10 is expressed in the brain from the paternal copy only. Here, Dent et al. show that paternal Grb10 regulates impulsive choices, i.e. whether an animal chooses a smaller food reward... Imprinted genes are expressed from one parental allele only as a consequence of epigenetic events that take place in the mammalian germ line and are thought to have evolved through intragenomic conflict between parental alleles. We demonstrate, for the first time, oppositional effects of imprinted genes on brain and behavior. Specifically, we show that mice lacking paternal Grb10 make fewer impulsive choices, with no dissociable effects on a separate measure of impulsive action. Taken together with previous work showing that mice lacking maternal Nesp55 make more impulsive choices, this suggests that impulsive choice behavior is a substrate for the action of genomic imprinting. Moreover, the contrasting effect of these two genes suggests that impulsive choices are subject to intragenomic conflict and that maternal and paternal interests pull this behavior in opposite directions. Finally, these data may also indicate that an imbalance in expression of imprinted genes contributes to pathological conditions such as gambling and drug addiction, where impulsive behavior becomes maladaptive.
Collapse
|
35
|
Tang L, He G, Liu X, Xu W. Progress in the understanding of the etiology and predictability of fetal growth restriction. Reproduction 2018; 153:R227-R240. [PMID: 28476912 DOI: 10.1530/rep-16-0287] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
Fetal growth restriction (FGR) is defined as the failure of fetus to reach its growth potential for various reasons, leading to multiple perinatal complications and adult diseases of fetal origins. Shallow extravillous trophoblast (EVT) invasion-induced placental insufficiency and placental dysfunction are considered the main reasons for idiopathic FGR. In this review, first we discuss the major characteristics of anti-angiogenic state and the pro-inflammatory bias in FGR. We then elaborate major abnormalities in placental insufficiency at molecular levels, including the interaction between decidual leukocytes and EVT, alteration of miRNA expression and imprinted gene expression pattern in FGR. Finally, we review current animal models used in FGR, an experimental intervention based on animal models and the progress of predictive biomarker studies in FGR.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/R215/suppl/DC1.
Collapse
Affiliation(s)
- Li Tang
- Joint Laboratory of Reproductive MedicineSCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education.,Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Guolin He
- Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinghui Liu
- Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wenming Xu
- Joint Laboratory of Reproductive MedicineSCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education .,Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
36
|
Cowley M, Skaar DA, Jima DD, Maguire RL, Hudson KM, Park SS, Sorrow P, Hoyo C. Effects of Cadmium Exposure on DNA Methylation at Imprinting Control Regions and Genome-Wide in Mothers and Newborn Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:037003. [PMID: 29529597 PMCID: PMC6071808 DOI: 10.1289/ehp2085] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Imprinted genes are defined by their preferential expression from one of the two parental alleles. This unique mode of gene expression is dependent on allele-specific DNA methylation profiles established at regulatory sequences called imprinting control regions (ICRs). These loci have been used as biosensors to study how environmental exposures affect methylation and transcription. However, a critical unanswered question is whether they are more, less, or equally sensitive to environmental stressors as the rest of the genome. OBJECTIVES Using cadmium exposure in humans as a model, we aimed to determine the relative sensitivity of ICRs to perturbation of methylation compared to similar, nonimprinted loci in the genome. METHODS We assayed DNA methylation genome-wide using bisulfite sequencing of 19 newborn cord blood and 20 maternal blood samples selected on the basis of maternal blood cadmium levels. Differentially methylated regions (DMRs) associated with cadmium exposure were identified. RESULTS In newborn cord blood and maternal blood, 641 and 1,945 cadmium-associated DMRs were identified, respectively. DMRs were more common at the 15 maternally methylated ICRs than at similar nonimprinted loci in newborn cord blood (p=5.64×10-8) and maternal blood (p=6.22×10-14), suggesting a higher sensitivity for ICRs to cadmium. Genome-wide, Enrichr analysis indicated that the top three functional categories for genes that overlapped DMRs in maternal blood were body mass index (BMI) (p=2.0×10-5), blood pressure (p=3.8×10-5), and body weight (p=0.0014). In newborn cord blood, the top three functional categories were BMI, atrial fibrillation, and hypertension, although associations were not significant after correction for multiple testing (p=0.098). These findings suggest that epigenetic changes may contribute to the etiology of cadmium-associated diseases. CONCLUSIONS We analyzed cord blood and maternal blood DNA methylation profiles genome-wide at nucleotide resolution in individuals selected for high and low blood cadmium levels in the first trimester. Our findings suggest that ICRs may be hot spots for perturbation by cadmium, motivating further study of these loci to investigate potential mechanisms of cadmium action. https://doi.org/10.1289/EHP2085.
Collapse
Affiliation(s)
- Michael Cowley
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
- W.M. Keck Center for Behavioral Biology , North Carolina State University , Raleigh, North Carolina, USA
| | - David A Skaar
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Dereje D Jima
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University , Raleigh, North Carolina, USA
| | - Rachel L Maguire
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Kathleen M Hudson
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Sarah S Park
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Patricia Sorrow
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| |
Collapse
|
37
|
Abstract
ABSTRACT
In the 1980s, mouse nuclear transplantation experiments revealed that both male and female parental genomes are required for successful development to term (McGrath and Solter, 1983; Surani and Barton, 1983). This non-equivalence of parental genomes is because imprinted genes are predominantly expressed from only one parental chromosome. Uniparental inheritance of these genomic regions causes paediatric growth disorders such as Beckwith–Wiedemann and Silver–Russell syndromes (reviewed in Peters, 2014). More than 100 imprinted genes have now been discovered and the functions of many of these genes have been assessed in murine models. The first such genes described were the fetal growth factor insulin-like growth factor 2 (Igf2) and its inhibitor Igf2 receptor (Igf2r) (DeChiara et al., 1991; Lau et al., 1994; Wang et al., 1994). Since then, it has emerged that most imprinted genes modulate fetal growth and resource acquisition in a variety of ways. First, imprinted genes are required for the development of a functional placenta, the organ that mediates the exchange of nutrients between mother and fetus. Second, these genes act in an embryo-autonomous manner to affect the growth rate and organogenesis. Finally, imprinted genes can signal the nutritional status between mother and fetus, and can modulate levels of maternal care. Importantly, many imprinted genes have been shown to affect postnatal growth and energy homeostasis. Given that abnormal birthweight correlates with adverse adult metabolic health, including obesity and cardiovascular disease, it is crucial to understand how the modulation of this dosage-sensitive, epigenetically regulated class of genes can contribute to fetal and postnatal growth, with implications for lifelong health and disease.
Collapse
Affiliation(s)
- Féaron C. Cassidy
- Queen Mary University of London, Charterhouse Square, LondonEC1M 6BQ, UK
| | | |
Collapse
|
38
|
Holt LJ, Brandon AE, Small L, Suryana E, Preston E, Wilks D, Mokbel N, Coles CA, White JD, Turner N, Daly RJ, Cooney GJ. Ablation of Grb10 Specifically in Muscle Impacts Muscle Size and Glucose Metabolism in Mice. Endocrinology 2018; 159:1339-1351. [PMID: 29370381 DOI: 10.1210/en.2017-00851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
Grb10 is an adaptor-type signaling protein most highly expressed in tissues involved in insulin action and glucose metabolism, such as muscle, pancreas, and adipose. Germline deletion of Grb10 in mice creates a phenotype with larger muscles and improved glucose homeostasis. However, it has not been determined whether Grb10 ablation specifically in muscle is sufficient to induce hypermuscularity or affect whole body glucose metabolism. In this study we generated muscle-specific Grb10-deficient mice (Grb10-mKO) by crossing Grb10flox/flox mice with mice expressing Cre recombinase under control of the human α-skeletal actin promoter. One-year-old Grb10-mKO mice had enlarged muscles, with greater cross-sectional area of fibers compared with wild-type (WT) mice. This degree of hypermuscularity did not affect whole body glucose homeostasis under basal conditions. However, hyperinsulinemic/euglycemic clamp studies revealed that Grb10-mKO mice had greater glucose uptake into muscles compared with WT mice. Insulin signaling was increased at the level of phospho-Akt in muscle of Grb10-mKO mice compared with WT mice, consistent with a role of Grb10 as a modulator of proximal insulin receptor signaling. We conclude that ablation of Grb10 in muscle is sufficient to affect muscle size and metabolism, supporting an important role for this protein in growth and metabolic pathways.
Collapse
Affiliation(s)
- Lowenna J Holt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Amanda E Brandon
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Lewin Small
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Eurwin Suryana
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Elaine Preston
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Donna Wilks
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Nancy Mokbel
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Chantal A Coles
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jason D White
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia
| | - Nigel Turner
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Pharmacology, University of New South Wales, Sydney, New South Wales, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gregory J Cooney
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
40
|
Yan X, Himburg HA, Pohl K, Quarmyne M, Tran E, Zhang Y, Fang T, Kan J, Chao NJ, Zhao L, Doan PL, Chute JP. Deletion of the Imprinted Gene Grb10 Promotes Hematopoietic Stem Cell Self-Renewal and Regeneration. Cell Rep 2017; 17:1584-1594. [PMID: 27806297 DOI: 10.1016/j.celrep.2016.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/06/2016] [Accepted: 10/07/2016] [Indexed: 01/30/2023] Open
Abstract
Imprinted genes are differentially expressed by adult stem cells, but their functions in regulating adult stem cell fate are incompletely understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an imprinted gene, regulates hematopoietic stem cell (HSC) self-renewal and regeneration. Deletion of the maternal allele of Grb10 in mice (Grb10m/+ mice) substantially increased HSC long-term repopulating capacity, as compared to that of Grb10+/+ mice. After total body irradiation (TBI), Grb10m/+ mice demonstrated accelerated HSC regeneration and hematopoietic reconstitution, as compared to Grb10+/+ mice. Grb10-deficient HSCs displayed increased proliferation after competitive transplantation or TBI, commensurate with upregulation of CDK4 and Cyclin E. Furthermore, the enhanced HSC regeneration observed in Grb10-deficient mice was dependent on activation of the Akt/mTORC1 pathway. This study reveals a function for the imprinted gene Grb10 in regulating HSC self-renewal and regeneration and suggests that the inhibition of Grb10 can promote hematopoietic regeneration in vivo.
Collapse
Affiliation(s)
- Xiao Yan
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Heather A Himburg
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Katherine Pohl
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Mamle Quarmyne
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Evelyn Tran
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Yurun Zhang
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Tiancheng Fang
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Phuong L Doan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - John P Chute
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
41
|
Maternal GRB10 microdeletion is a novel cause of cystic placenta: Spectrum of genomic changes in the etiology of enlarged cystic placenta. Placenta 2017; 57:33-41. [DOI: 10.1016/j.placenta.2017.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/30/2023]
|
42
|
Paternal low protein diet programs preimplantation embryo gene expression, fetal growth and skeletal development in mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1371-1381. [DOI: 10.1016/j.bbadis.2017.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022]
|
43
|
Chatzinikolaou G, Apostolou Z, Aid-Pavlidis T, Ioannidou A, Karakasilioti I, Papadopoulos GL, Aivaliotis M, Tsekrekou M, Strouboulis J, Kosteas T, Garinis GA. ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes. Nat Cell Biol 2017; 19:421-432. [PMID: 28368372 DOI: 10.1038/ncb3499] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 02/24/2017] [Indexed: 12/15/2022]
Abstract
Inborn defects in DNA repair are associated with complex developmental disorders whose causal mechanisms are poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the nucleotide excision repair (NER) structure-specific endonuclease ERCC1-XPF complex interacts with the insulator binding protein CTCF, the cohesin subunits SMC1A and SMC3 and with MBD2; the factors co-localize with ATRX at the promoters and control regions (ICRs) of imprinted genes during postnatal hepatic development. Loss of Ercc1 or exposure to MMC triggers the localization of CTCF to heterochromatin, the dissociation of the CTCF-cohesin complex and ATRX from promoters and ICRs, altered histone marks and the aberrant developmental expression of imprinted genes without altering DNA methylation. We propose that ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes and that persistent DNA damage triggers chromatin changes that affect gene expression programs associated with NER disorders.
Collapse
Affiliation(s)
- Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Zivkos Apostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - Tamara Aid-Pavlidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Anna Ioannidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - Ismene Karakasilioti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Giorgio L Papadopoulos
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
- Division of Molecular Oncology, Biomedical Sciences Research Center 'Alexander Fleming', GR 16672 Vari, Greece
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Maria Tsekrekou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Division of Molecular Oncology, Biomedical Sciences Research Center 'Alexander Fleming', GR 16672 Vari, Greece
| | - Theodore Kosteas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| |
Collapse
|
44
|
Liu Y, Tang Y, Ye D, Ma W, Feng S, Li X, Zhou X, Chen X, Chen S. Impact of Abnormal DNA Methylation of Imprinted Loci on Human Spontaneous Abortion. Reprod Sci 2017; 25:131-139. [PMID: 28443481 DOI: 10.1177/1933719117704906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Currently, there is a growing concern regarding the safety of assisted reproductive technology (ART) due to increased risk of spontaneous abortion (SA) and imprinting disorders in ART-conceived offspring. Early investigations suggested that aberrant genetic imprinting may be related to pregnancy loss; however, few studies have used human tissue specimens. Here the DNA methylation patterns of 3 imprinted genes, including maternally inherited GRB10 and the paternally inherited IGF2 and PEG3 genes, were evaluated in human chorionic villus samples by pyrosequencing and bisulfite sequencing polymerase chain reaction. The samples were divided into 4 groups: (1) SA of natural conception (NC; n = 84), (2) induced abortion of NC (n = 94), (3) SA after ART (n = 73), and (4) fetal reduction after ART (n = 86). The methylation levels and the percentages of abnormal methylation of the IGF2, GRB10, and PEG3 genes between the ART group and the NC group showed no significant difference. Both IGF2 and GRB10 genes showed higher methylation levels in the SA group compared to the non-SA group. Additionally, determining the single-nucleotide polymorphisms of 4 loci, including IGF2 rs3741205, rs3741206, rs3741211, and GRB10 rs2237457, showed that the TC+CC genotype of IGF2 rs3741211 had a 1.91-fold increased risk of SA after ART. However, there was no association between the mutant genotype of IGF2 rs3741211 and the methylation levels of IGF2 and H19, and ART might not affect the distribution of the abovementioned genotypes. It provides support for the opinion that genetic imprinting defects may be associated with SA, which might not be due to ART treatments.
Collapse
Affiliation(s)
- Yudong Liu
- 1 Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yan Tang
- 1 Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.,2 Center of Reproductive Medicine, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Desheng Ye
- 1 Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Weixu Ma
- 1 Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shuxian Feng
- 1 Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xuelan Li
- 1 Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xingyu Zhou
- 1 Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xin Chen
- 1 Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shiling Chen
- 1 Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
45
|
Soubry A, Hoyo C, Butt CM, Fieuws S, Price TM, Murphy SK, Stapleton HM. Human exposure to flame-retardants is associated with aberrant DNA methylation at imprinted genes in sperm. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx003. [PMID: 29492305 PMCID: PMC5804543 DOI: 10.1093/eep/dvx003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 05/18/2023]
Abstract
Emerging evidence suggests that early exposure to endocrine disrupting chemicals has long-term consequences that can influence disease risk in offspring. During gametogenesis, imprinted genes are reasonable epigenetic targets with the ability to retain and transfer environmental messages. We hypothesized that exposures to organophosphate (OP) flame-retardants can alter DNA methylation in human sperm cells affecting offspring's health. Sperm and urine samples were collected from 67 men in North Carolina, USA. Urinary metabolites of a chlorinated OP, tris(1,3-dichloro-2-propyl) phosphate, and two non-chlorinated OPs, triphenyl phosphate and mono-isopropylphenyl diphenyl phosphate, were measured using liquid-chromatography tandem mass-spectrometry. Sperm DNA methylation at multiple CpG sites of the regulatory differentially methylated regions (DMRs) of imprinted genes GRB10, H19, IGF2, MEG3, NDN, NNAT, PEG1/MEST, PEG3, PLAGL1, SNRPN, and SGCE/PEG10 was quantified using bisulfite pyrosequencing. Regression models were used to determine potential associations between OP concentrations and DNA methylation. We found that men with higher concentrations of urinary OP metabolites, known to originate from flame-retardants, have a slightly higher fraction of sperm cells that are aberrantly methylated. After adjusting for age, obesity-status and multiple testing, exposure to mono-isopropylphenyl diphenyl phosphate was significantly related to hypermethylation at the MEG3, NDN, SNRPN DMRs. Exposure to triphenyl phosphate was associated with hypermethylation at the GRB10 DMR; and tris(1,3-dichloro-2-propyl) phosphate exposure was associated with altered methylation at the MEG3 and H19 DMRs. Although measured methylation differences were small, implications for public health can be substantial. Interestingly, our data indicated that a multiplicity of OPs in the human body is associated with increased DNA methylation aberrancies in sperm, compared to exposure to few OPs. Further research is required in larger study populations to determine if our findings can be generalized.
Collapse
Affiliation(s)
- Adelheid Soubry
- Epidemiology Research Unit, Faculty of Medicine, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, Blok D, Box 7001, University of Leuven, Leuven, Belgium
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Campus Box 7633, Raleigh, NC 27633, USA
| | - Craig M. Butt
- Nicholas School of the Environment, Duke University, Box 90328, 450 Research Drive, Durham, NC 27708, USA
| | - Steffen Fieuws
- L-Biostat, Faculty of Medicine, Department of Public Health and Primary Care, KU Leuven - University of Leuven, Kapucijnenvoer 35, Leuven, Belgium
| | - Thomas M. Price
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Box 3143, Durham, NC 27713, USA
| | - Susan K. Murphy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Box 91012, B223 LSRC, 450 Research Drive, Durham, NC 27708, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Box 90328, 450 Research Drive, Durham, NC 27708, USA
| |
Collapse
|
46
|
Sheets TP, Park CH, Park KE, Powell A, Donovan DM, Telugu BP. Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs. Int J Mol Sci 2016; 17:E2031. [PMID: 27918485 PMCID: PMC5187831 DOI: 10.3390/ijms17122031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 01/04/2023] Open
Abstract
The domestic pig is an ideal "dual purpose" animal model for agricultural and biomedical research. With the availability of genome editing tools such as clustered regularly interspaced short palindromic repeat (CRISPR) and associated nuclease Cas9 (CRISPR/Cas9), it is now possible to perform site-specific alterations with relative ease, and will likely help realize the potential of this valuable model. In this article, we investigated for the first time a combination of somatic cell nuclear transfer (SCNT) and direct injection of CRISPR/Cas ribonucleoprotein complex targeting GRB10 into the reconstituted oocytes to generate GRB10 ablated Ossabaw fetuses. This strategy resulted in highly efficient (100%) generation of biallelic modifications in cloned fetuses. By combining SCNT with CRISPR/Cas9 microinjection, genome edited animals can now be produced without the need to manage a founder herd, while simultaneously eliminating the need for laborious in vitro culture and screening. Our approach utilizes standard cloning techniques while simultaneously performing genome editing in the cloned zygotes of a large animal model for agriculture and biomedical applications.
Collapse
Affiliation(s)
- Timothy P Sheets
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
- Animal Bioscience and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | - Chi-Hun Park
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
- Animal Bioscience and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | - Ki-Eun Park
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
- Animal Bioscience and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
- Renovate Biosciences Inc., Reisterstown, MD 21136, USA.
| | - Anne Powell
- Animal Bioscience and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | - David M Donovan
- Animal Bioscience and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | - Bhanu P Telugu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
- Animal Bioscience and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
- Renovate Biosciences Inc., Reisterstown, MD 21136, USA.
| |
Collapse
|
47
|
Wojciechowicz B, Kotwica G, Kołakowska J, Zglejc K, Martyniak M, Franczak A. The alterations in endometrial and myometrial transcriptome at the time of maternal recognition of pregnancy in pigs. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Xue J, Schoenrock SA, Valdar W, Tarantino LM, Ideraabdullah FY. Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations. Clin Epigenetics 2016; 8:107. [PMID: 27777636 PMCID: PMC5062906 DOI: 10.1186/s13148-016-0276-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/07/2016] [Indexed: 01/07/2023] Open
Abstract
Background Environmental perturbation of epigenetic mechanisms is linked to a growing number of diseases. Characterizing the role environmental factors play in modifying the epigenome is important for disease etiology. Vitamin D is an essential nutrient affecting brain, bone, heart, immune and reproductive health. Vitamin D insufficiency is a global issue, and the role in maternal and child health remains under investigation. Methods We used Collaborative Cross (CC) inbred mice to characterize the effect of maternal vitamin D depletion on offspring phenotypic and epigenetic outcomes at imprinted domains (H19/Igf2, Snrpn, Dlk1/Gtl2, and Grb10) in the soma (liver) and germline (sperm). We assessed outcomes in two generations of offspring to determine heritability. We used reciprocal crosses between lines CC001/Unc and CC011/Unc to investigate parent of origin effects. Results Maternal vitamin D deficiency led to altered body weight and DNA methylation in two generations of offspring. Loci assayed in adult liver and sperm were mostly hypomethylated, but changes were few and small in effect size (<7 % difference on average). There was no change in total expression of genes adjacent to methylation changes in neonatal liver. Methylation changes were cell type specific such that changes at IG-DMR were present in sperm but not in liver. Some methylation changes were distinct between generations such that methylation changes at the H19ICR in second-generation liver were not present in first-generation sperm or liver. Interestingly, some diet-dependent changes in body weight and methylation were seemingly influenced by parent of origin such that reciprocal crosses exhibited inverse effects. Conclusions These findings demonstrate that maternal vitamin D status plays a role in determining DNA methylation state in the germline and soma. Detection of methylation changes in the unexposed second-generation demonstrates that maternal vitamin D depletion can have long-term effects on the epigenome of subsequent generations. Differences in vitamin D-dependent epigenetic state between cell types and generations indicate perturbation of the epigenetic landscape rather than a targeted, locus-specific effect. While the biological importance of these subtle changes remains unclear, they warrant an investigation of epigenome-wide effects of maternal vitamin D depletion. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0276-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Xue
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC 28081 USA
| | - Sarah A Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA ; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599 USA
| | - William Valdar
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA ; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Lisa M Tarantino
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA ; Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Folami Y Ideraabdullah
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC 28081 USA ; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA ; Department of Nutrition, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
49
|
Yang M, Hall J, Fan Z, Regouski M, Meng Q, Rutigliano HM, Stott R, Rood KA, Panter KE, Polejaeva IA. Oocytes from small and large follicles exhibit similar development competence following goat cloning despite their differences in meiotic and cytoplasmic maturation. Theriogenology 2016; 86:2302-2311. [PMID: 27650944 DOI: 10.1016/j.theriogenology.2016.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 11/26/2022]
Abstract
Reduced developmental competence after IVF has been reported using oocyte derived from small follicles in several species including cattle, sheep, and goats. No information is currently available about the effect of follicle size of the cytoplast donor on in vivo development after somatic cell nuclear transfer (SCNT) in goats. Oocytes collected from large (≥3 mm) and small follicles (<3 mm) were examined for maturation and in vivo developmental competence after SCNT. Significantly greater maturation rate was observed in oocytes derived from large follicles compared with that of small follicles (51.6% and 33.7%, P < 0.05). Greater percent of large follicle oocytes exhibited a low glucose-6-phosphate dehydrogenase activity at germinal vesicle stage compared with small follicle oocytes (54.9% and 38.7%, P < 0.05). Relative mRNA expression analysis of 48 genes associated with embryonic and fetal development revealed that three genes (MATER, IGF2R, and GRB10) had higher level of expression in metaphase II oocytes from large follicles compared with oocytes from small follicles. Nevertheless, no difference was observed in pregnancy rates (33.3% vs. 47.1%) and birth rates (22.2% vs. 16.7%) after SCNT between the large and small follicle groups). These results indicate that metaphase II cytoplasts from small and large follicles have similar developmental competence when used in goat SCNT.
Collapse
Affiliation(s)
- Min Yang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Justin Hall
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Zhiqiang Fan
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Misha Regouski
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Qinggang Meng
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA; School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Rusty Stott
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA; School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Kerry A Rood
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA; School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Kip E Panter
- USDA ARS Poisonous Plant Research Laboratory, Logan, Utah, USA
| | - Irina A Polejaeva
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA.
| |
Collapse
|
50
|
Li Y, Buckhaults P, Cui X, Tollefsbol TO. Combinatorial epigenetic mechanisms and efficacy of early breast cancer inhibition by nutritive botanicals. Epigenomics 2016; 8:1019-37. [PMID: 27478970 PMCID: PMC5066124 DOI: 10.2217/epi-2016-0024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim: Aberrant epigenetic events are important contributors to the pathogenesis of different types of cancers and dietary botanicals with epigenetic properties can influence early cancer development leading to cancer prevention effects. We sought to investigate potential combinatorial effects of bioactive dietary components including green tea polyphenols (GTPs) and broccoli sprouts (BSp) on neutralizing epigenetic aberrations during breast tumorigenesis. Materials & methods: The combinatorial effects were evaluated in a breast cancer transformation cellular system and breast cancer mouse xenografts. Results & conclusion: Combined treatment with epigallocatechin-3-gallate in GTPs and sulforaphane in BSp resulted in a synergistic inhibition of breast cancer cellular growth. Further studies revealed this combination led to genome-wide epigenetic alterations. Combinatorial diets significantly inhibited tumor growth in breast cancer mouse xenografts. Collectively, these studies indicate that combined GTPs and BSp are highly effective in inhibiting early breast cancer development by, at least in part, regulating epigenetic mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Phillip Buckhaults
- Department of Drug Discovery & Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Xiangqin Cui
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|