1
|
Martins CSC, Delgado-Baquerizo M, Jayaramaiah RH, Tao D, Wang JT, Sáez-Sandino T, Liu H, Maestre FT, Reich PB, Singh BK. Aboveground and belowground biodiversity have complementary effects on ecosystem functions across global grasslands. PLoS Biol 2024; 22:e3002736. [PMID: 39141639 PMCID: PMC11324184 DOI: 10.1371/journal.pbio.3002736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2024] [Indexed: 08/16/2024] Open
Abstract
Grasslands are integral to maintaining biodiversity and key ecosystem services and are under threat from climate change. Plant and soil microbial diversity, and their interactions, support the provision of multiple ecosystem functions (multifunctionality). However, it remains virtually unknown whether plant and soil microbial diversity explain a unique portion of total variation or shared contributions to supporting multifunctionality across global grasslands. Here, we combine results from a global survey of 101 grasslands with a novel microcosm study, controlling for both plant and soil microbial diversity to identify their individual and interactive contribution to support multifunctionality under aridity and experimental drought. We found that plant and soil microbial diversity independently predict a unique portion of total variation in above- and belowground functioning, suggesting that both types of biodiversity complement each other. Interactions between plant and soil microbial diversity positively impacted multifunctionality including primary production and nutrient storage. Our findings were also climate context dependent, since soil fungal diversity was positively associated with multifunctionality in less arid regions, while plant diversity was strongly and positively linked to multifunctionality in more arid regions. Our results highlight the need to conserve both above- and belowground diversity to sustain grassland multifunctionality in a drier world and indicate climate change may shift the relative contribution of plant and soil biodiversity to multifunctionality across global grasslands.
Collapse
Affiliation(s)
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | | | - Dongxue Tao
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Jun-Tao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Tadeo Sáez-Sandino
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Fernando T. Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain
| | - Peter B. Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
- Department of Forest Resources, University of Minnesota, Saint Paul, Minnesota, United States of America
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| |
Collapse
|
2
|
Li S, Zhang L, Fang W, Shen Z. Variations in bacterial community succession and assembly mechanisms with mine age across various habitats in coal mining subsidence water areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174822. [PMID: 39029748 DOI: 10.1016/j.scitotenv.2024.174822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Microorganisms play a pivotal role as catalysts in the biogeochemical cycles of aquatic ecosystems within coal mining subsidence areas. Despite their importance, the succession of microbial communities with increasing mine age, particularly across different habitats, and variations in phylogenetically-based community assembly mechanisms are not well understood. To address this knowledge gap, we collected 72 samples from lake sediments, water, and surrounding topsoil (0-20 cm) at various mining stages (early: 16 years, middle: 31 years, late: 40 years). We analyzed these samples using 16S rRNA gene sequencing and multivariate statistical methods to explore the dynamics and assembly mechanisms of bacterial communities. Our findings reveal that increases in phosphorus and organic matter in sediments, correlating with mining age, significantly enhance bacterial alpha diversity while reducing species richness (P < 0.001). Homogenizing selection (49.9 %) promotes species asynchrony-complementarity, augmenting the bacterial community's ability to metabolize sulfur, phosphorus, and organic matter, resulting in more complex-stable co-occurrence networks. In soil, elevated nitrogen and organic carbon levels markedly influence bacterial community composition (Adonis R2 = 0.761), yet do not significantly alter richness or diversity (P > 0.05). The lake's high connectivity with surrounding soil leads to substantial species drift and organic matter accumulation, thereby increasing bacterial richness in later stages (P < 0.05) and enhancing the ability to metabolize dissolved organic matter, including humic-like substances, fulvic acids, and protein-like materials. The assembly of soil bacterial communities is largely governed by stochastic processes (79.0 %) with species drift (35.8 %) significantly shaping these communities over a broad spatial scale, also affecting water bacterial communities. However, water bacterial community assembly is primarily driven by stochastic processes (51.2 %), with a substantial influence from habitat quality (47.6 %). This study offers comprehensive insights into the evolution of microbial community diversity within coal mining subsidence water areas, with significant implications for enhancing environmental management and protection strategies for these ecosystems.
Collapse
Affiliation(s)
- Shuo Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Lei Zhang
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou, 239000, China.
| | - Wangkai Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zhen Shen
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
3
|
Liu D, Wu H. The joint effects of local, climatic, and spatial variables determine soil oribatid mite community assembly along a temperate forest elevational gradient. Ecol Evol 2024; 14:e11590. [PMID: 38966244 PMCID: PMC11222168 DOI: 10.1002/ece3.11590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Numerous factors influence mountain biodiversity variation across elevational gradients and recognizing the relative importance is vital for understanding species distribution mechanisms. We examined oribatid mites at nine elevations (from 600 to 2200 m a.s.l) and four vegetation types from mixed coniferous and broad-leaved forests to alpine tundra on Changbai Mountain. We assessed the contribution of environmental factors (climatic and local factors) and spatial processes (geographic or elevation distances) to oribatid mite community assembly and identified 59 oribatid mite species from 38 families and 51 genera. With increasing elevation, species richness and the Shannon index declined significantly, whereas abundance followed a hump-shaped trend. Soil TP, NH4 +-N, MAT, MAP, and elevation were the critical variables shaping oribatid mite communities based on random forest analysis. Moreover, environmental and spatial factors, and oribatid mite communities were significantly correlated based on Mantel and partial Mantel tests. Local characteristics (3.9%), climatic factors (1.9%), and spatial filtering (8.8%) played crucial roles in determining oribatid mite communities across nine elevational bands (based on variation partitioning analyses of abundance data). Within the same vegetation types, spatial processes had relatively little effects, with local characteristics the dominant drivers of oribatid mite community variation. Environmental and spatial filters together shape oribatid mite community assembly and their relative roles varied with elevation and vegetation type. These findings are crucial for the conservation, restoration, and management of Changbai mountain ecosystems in the context of climate change, along with the prediction of future vertical biotic gradient pattern evolution.
Collapse
Affiliation(s)
- Dandan Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunJilinChina
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunJilinChina
| |
Collapse
|
4
|
Kulakov SS, Tatarintsev AI, Demidko DA, Khizhniak NP. Fauna and Ecology of Macromycetes (Basidiomycota) in the Arctic Tree and Shrub Ecosystems of Central Siberia. J Fungi (Basel) 2024; 10:435. [PMID: 38921421 PMCID: PMC11205076 DOI: 10.3390/jof10060435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The research was aimed at studying the taxonomic diversity, habitat specialization, and trophic characteristics of mycobiota, including Basidiomycota, in the northern ecosystems of the Krasnoyarsk Krai (Central Siberia) near Norilsk. Larch forests and woodlands in the Siberian permafrost zone are distinctive and Basidiomycota, as a component of these ecosystems, plays an essential role in their functioning. Currently, there is a paucity of information about this group in Arctic ecosystems, both in terms of floristic and ecological aspects. Seventy species of macromycetes belonging to different trophic groups were discovered and identified. Only 15% of species occur regularly, while most species are found rarely or only once. The identified species belong to 44 genera, 25 families, and 8 orders, which are included in the class Agaricomycetes. The leading families in terms of the number of species are Russulaceae, Polyporaceae, Tricholomataceae, Suillaceae, Strophariaceae, and Cortinariaceae. Mycorrhizal fungi and wood decay fungi dominate the structure of mycobiota of the study area (the total share is 71%). The rest of the species (29%) are fungal decomposers inhabiting plant litter, the forest floor, and humus. The largest number of species occur in forest ecosystems, which are dominated by mycorrhizal and wood decay fungi (up to 70%), which are trophically associated with woody plants and debris. The fungal decomposers inhabiting plant litter, the forest floor, and humus dominate (about 80%) in the species composition of tundra, where, in the absence of woody substrate, wood decay fungi have not been found at all. The species richness of tree and shrub Arctic ecosystems is low, yet the taxonomical and ecological structure of Basidiomycota is similar to that observed in taiga and temperate forests. These data permit a more comprehensive description of the biodiversity of the Arctic and may prove useful in studying biological processes in these ecosystems.
Collapse
Affiliation(s)
- Sergey Sergeevich Kulakov
- Institute of Forest Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia; (A.I.T.); (D.A.D.); (N.P.K.)
- Division of the Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Sukachev Institute of Forest Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50/28, 660036 Krasnoyarsk, Russia
| | - Andrey Ivanovich Tatarintsev
- Institute of Forest Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia; (A.I.T.); (D.A.D.); (N.P.K.)
| | - Denis Aleksandrovich Demidko
- Institute of Forest Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia; (A.I.T.); (D.A.D.); (N.P.K.)
- Division of the Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Sukachev Institute of Forest Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50/28, 660036 Krasnoyarsk, Russia
| | - Natalia Pavlovna Khizhniak
- Institute of Forest Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia; (A.I.T.); (D.A.D.); (N.P.K.)
- Division of the Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Sukachev Institute of Forest Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50/28, 660036 Krasnoyarsk, Russia
| |
Collapse
|
5
|
Feng J, Liu YR, Eldridge D, Huang Q, Tan W, Delgado-Baquerizo M. Geologically younger ecosystems are more dependent on soil biodiversity for supporting function. Nat Commun 2024; 15:4141. [PMID: 38755127 PMCID: PMC11099028 DOI: 10.1038/s41467-024-48289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Soil biodiversity contains the metabolic toolbox supporting organic matter decomposition and nutrient cycling in the soil. However, as soil develops over millions of years, the buildup of plant cover, soil carbon and microbial biomass may relax the dependence of soil functions on soil biodiversity. To test this hypothesis, we evaluate the within-site soil biodiversity and function relationships across 87 globally distributed ecosystems ranging in soil age from centuries to millennia. We found that within-site soil biodiversity and function relationship is negatively correlated with soil age, suggesting a stronger dependence of ecosystem functioning on soil biodiversity in geologically younger than older ecosystems. We further show that increases in plant cover, soil carbon and microbial biomass as ecosystems develop, particularly in wetter conditions, lessen the critical need of soil biodiversity to sustain function. Our work highlights the importance of soil biodiversity for supporting function in drier and geologically younger ecosystems with low microbial biomass.
Collapse
Affiliation(s)
- Jiao Feng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| | - David Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain.
| |
Collapse
|
6
|
Zhao X, Cui H, Song H, Chen J, Wang J, Liu Z, Ali I, Yang Z, Hou X, Zhou X, Xiao S, Chen S. Contrasting responses of α- and β-multifunctionality to aboveground plant community in the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170464. [PMID: 38290671 DOI: 10.1016/j.scitotenv.2024.170464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The aboveground plant communities are crucial in driving ecosystem functioning, particularly being the primary producers in terrestrial ecosystems. Numerous studies have investigated the impacts of aboveground plant communities on multiple ecosystem functions at α-scale. However, such critical effects have been unexplored at β-scale and the comparative assessment of the effects and underlying mechanisms of aboveground plant communities on α- and β-multifunctionality has been lacking. In this study, we examined the effects of aboveground plant communities on soil multifunctionality both at α- and β-scale in the alpine meadow of the Tibetan Plateau. Additionally, we quantified the direct effects of aboveground plant communities, as well as the indirect effects mediated by changes in biotic and abiotic factors, on soil multifunctionality at both scales. Our findings revealed that: 1) Aboveground plant communities had significantly positive effects on α-multifunctionality whereas, β-multifunctionality was not affected significantly. 2) Aboveground plant communities directly influence α- and β-multifunctionality in contrasting ways, with positive and negative effects, respectively. Apart from the direct effects of plant community, we found that soil water content and bacterial β-diversity serving as the primary predictors for the responses of α- and β-multifunctionality to the presence of aboveground plant communities, respectively. And β-soil biodiversity appeared to be a stronger predictor of multifunctionality relative to α-soil biodiversity. Our findings provide novel insights into the drivers of ecosystem multifunctionality at different scales, highlight the importance of maintaining biodiversity at multiple scales and offer valuable knowledge for the maintenance of ecosystem functioning and the restoration of alpine meadow ecosystems.
Collapse
Affiliation(s)
- Xia Zhao
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Hanwen Cui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Hongxian Song
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Jingwei Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Jiajia Wang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Ziyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Izhar Ali
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Zi Yang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiao Hou
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Xianhui Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Sa Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Shuyan Chen
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
7
|
Wei J, Zhou H, Shao X, Sun J, Ma L, Zhang Z, Qin R, Su H, Hu X, Chang T, Shi Z, Ade H, Wang H. Effects of short- and long-term plant functional group loss on alpine meadow community structure and soil nutrients. Ecol Evol 2024; 14:e10919. [PMID: 38476707 PMCID: PMC10928257 DOI: 10.1002/ece3.10919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 03/14/2024] Open
Abstract
The rapid loss of global biodiversity can greatly affect the normal functioning of ecosystems. However, how biodiversity losses affect plant community structure and soil nutrients is unclear. We conducted a field experiment to examine the short- and long-term effects of removing plant functional groups (Gramineae, Cyperaceae, legumes, and forbs) on the interrelationships among the species diversity, productivity, community structure, and soil nutrients in an alpine meadow ecosystem at Menyuan County, Qinghai Province. The variations in the species richness, above- and belowground biomass of the community gradually decreased over time. Species richness and productivity were positively correlated, and this correlation tended to be increasingly significant over time. Removal of the Cyperaceae, legumes, and other forbs resulted in fewer Gramineae species in the community. Soil total nitrogen, phosphorus, organic matter, and moisture contents increased significantly in the legume removal treatment. The removal of other forbs led to the lowest negative cohesion values, suggesting that this community may have difficulty recovering its previous equilibrium state within a short time. The effects of species removal on the ecosystem were likely influenced by the species structure and composition within the community. Changes in the number of Gramineae species indicated that they were more sensitive and less resistant to plant functional group removal. Legume removal may also indirectly cause distinct community responses through starvation and compensation effects. In summary, species loss at the community level led to extensive species niche shifts, which caused community resource redistribution and significant changes in community structure.
Collapse
Affiliation(s)
- Jingjing Wei
- College of Geographical ScienceQinghai Normal UniversityXiningChina
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
| | | | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
| | - Li Ma
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | - Zhonghua Zhang
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | - Ruimin Qin
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hongye Su
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xue Hu
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tao Chang
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhengchen Shi
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Haze Ade
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huichun Wang
- College of Geographical ScienceQinghai Normal UniversityXiningChina
| |
Collapse
|
8
|
Li N, Wang B, Zhou Y, Li H, Zhu Z, Dou Y, Huang Y, Jiao F, An S. Response of the C-fixing bacteria community to precipitation changes and its impact on bacterial necromass accumulation in semiarid grassland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120289. [PMID: 38367498 DOI: 10.1016/j.jenvman.2024.120289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Climate change-induced warming has the potential to intensify drought conditions in certain regions, resulting in uneven precipitation patterns. However, the impact of precipitation-induced changes on soil C-fixing bacterial community composition to changes and their subsequent effect on the accumulation of microbial necromass in the soil remains unclear. To address this knowledge gap, we conducted an in-situ simulated precipitation control experiment in semi-arid grasslands, encompassing five primary precipitation gradients: ambient precipitation as a control (contr), decreased precipitation by 80% and 40% (DP80, DP40), and increased precipitation by 40% and 80% (IP80, IP40). Our findings indicate that while an increase in precipitation promotes greater total bacterial diversity, it reduces the diversity of cbbM-harboring bacteria. The dominance of drought-tolerant Proteobacteria within the cbbM-harboring bacterial community was responsible for the observed increase in their relative abundance, ranging from 8.9% to 15.6%, under conditions of decreased precipitation. In arid environments characterized by limited soil moisture and nutrient availability, certain dominant genera such as Thiobacillus, Sulfuritalea, and Halothiobacillus, which possess cbbM genes, exhibit strong synergistic effects with other bacteria, thereby leading to a high nutrient use efficiency. Linear regression analysis shows that bacterial necromass C was significantly negatively correlated with cbbM-harboring bacterial diversity but positively correlated with cbbM-harboring bacterial community composition. Consequently, in the extreme drought environment of DP80, the contribution of bacterial necromass C to SOC was dramatically reduced by 75% relative to the control. Although bacterial necromass C was preferentially consumed as nutrients and energy for microorganisms, C-fixing microorganisms supplemented the soil C pool by assimilating atmospheric CO2. Bacterial necromass was primarily controlled by accessible C and N rather than by the total bacterial community composition and relative abundance. Our results provide compelling evidence for the critical role of the composition of the bacterial community and its necromass in the accumulation of SOC in semiarid grassland ecosystems.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Baorong Wang
- College of Grassland Agriculture, Northwest A &F University, Yangling, 712100, China
| | - Yue Zhou
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huijun Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolong Zhu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Yanxing Dou
- College of Forestry, Northwest A &F University, Yangling, 712100, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feng Jiao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Li L, He XZ, Wang M, Huang L, Wang Z, Zhang X, Hu J, Hou F. Grazing-driven shifts in soil bacterial community structure and function in a typical steppe are mediated by additional N inputs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169488. [PMID: 38142006 DOI: 10.1016/j.scitotenv.2023.169488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Herbivore grazing and nitrogen (N) fertilization affect soil microbial diversity and community composition both in direct and indirect pathways (e.g., via alterations in soil microenvironment and plant communities); however, their combination effects are still largely unexplored. We carried out a field study to investigate how soil abiotic properties, plant community composition and functional traits altered soil bacterial community structure and function in response to a long-term herbivore grazing (17-year sheep grazing with four stocking rates) and anthropogenic N inputs (6-year N addition with four levels) experiment. We show that a high stocking rate of 8.7 sheep ha-1 (SR8.7) decreased soil bacterial α- and β-diversity, while α- and β-diversity showed hump-shaped and saddle-shaped responses, respectively, with increasing N addition rate, reaching tipping points at the N application rate of 10 g N m-2 year-1 (N10). The synergistic effects of grazing and N addition induced the highest soil bacterial α-diversity at SR2.7 with N10. The contrasting effects of grazing and N addition induced higher soil bacterial β-diversity at SR8.7 with N20. Plant factors (e.g., aboveground biomass of Stipa bungeana and community-weighted mean carbon [CWM_C]), edaphic factors (e.g., soil moisture, pH, NO3--N, and C:nutrients ratios) and their interactions were the most significant factors affecting the diversity and community composition of bacteria. Our structure equation model (SEM) shows that grazing-induced negative effects on soil pH and plant community composition indirectly increased the β-diversity of soil bacteria, while grazing-induced decreased CWM_C had positive effects on bacterial α-diversity and community structure. However, N addition indirectly increased β-diversity of soil bacteria via changes in soil NO3--N and plant community composition, while N addition had negative impacts on bacterial α-diversity and community structure via variations in CWM_C. The interaction of grazing and N addition increased the complexity and stability of the bacterial network. Based on the KEGG database, grazing and N addition could accelerate the soil functional potential of C and N cycling. Our findings suggest that N application at a rate of <10 g N m-2 year-1 with a stocking rate of <5.3 sheep ha-1 could maintain the development of soil bacteria in supporting the most important ecosystem functions and services. Complex responses of soil microbes to grazing and N addition indicate the need for deeper investigations of the impacts of global change on microbial involvement in biogeochemical cycles.
Collapse
Affiliation(s)
- Lan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiong Zhao He
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Mengyuan Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ling Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhen Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiumin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Junqi Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
10
|
Liu X, Chu H, Godoy O, Fan K, Gao GF, Yang T, Ma Y, Delgado-Baquerizo M. Positive associations fuel soil biodiversity and ecological networks worldwide. Proc Natl Acad Sci U S A 2024; 121:e2308769121. [PMID: 38285947 PMCID: PMC10861899 DOI: 10.1073/pnas.2308769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Microbial interactions are key to maintaining soil biodiversity. However, whether negative or positive associations govern the soil microbial system at a global scale remains virtually unknown, limiting our understanding of how microbes interact to support soil biodiversity and functions. Here, we explored ecological networks among multitrophic soil organisms involving bacteria, protists, fungi, and invertebrates in a global soil survey across 20 regions of the planet and found that positive associations among both pairs and triads of soil taxa governed global soil microbial networks. We further revealed that soil networks with greater levels of positive associations supported larger soil biodiversity and resulted in lower network fragility to withstand potential perturbations of species losses. Our study provides unique evidence of the widespread positive associations between soil organisms and their crucial role in maintaining the multitrophic structure of soil biodiversity worldwide.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Ciencias del Mar, Universidad de Cádiz, Puerto RealE-11510, Spain
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yuying Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, SevillaE-41012, Spain
| |
Collapse
|
11
|
Zhu L, Luan L, Chen Y, Wang X, Zhou S, Zou W, Han X, Duan Y, Zhu B, Li Y, Liu W, Zhou J, Zhang J, Jiang Y, Sun B. Community assembly of organisms regulates soil microbial functional potential through dual mechanisms. GLOBAL CHANGE BIOLOGY 2024; 30:e17160. [PMID: 38379454 DOI: 10.1111/gcb.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
Unraveling the influence of community assembly processes on soil ecosystem functioning presents a major challenge in the field of theoretical ecology, as it has received limited attention. Here, we used a series of long-term experiments spanning over 25 years to explore the assembly processes of bacterial, fungal, protist, and nematode communities using high-throughput sequencing. We characterized the soil microbial functional potential by the abundance of microbial genes associated with carbon, nitrogen, phosphorus, and sulfur cycling using GeoChip-based functional gene profiling, and determined how the assembly processes of organism groups regulate soil microbial functional potential through community diversity and network stability. Our results indicated that balanced fertilization (NPK) treatment improved the stochastic assembly of bacterial, fungal, and protist communities compared to phosphorus-deficient fertilization (NK) treatment. However, there was a nonsignificant increase in the normalized stochasticity ratio of the nematode community in response to fertilization across sites. Our findings emphasized that soil environmental factors influenced the assembly processes of the biotic community, which regulated soil microbial functional potential through dual mechanisms. One mechanism indicated that the high phosphorus levels and low soil nutrient stoichiometry may increase the stochasticity of bacterial, fungal, and protist communities and the determinism of the nematode community under NPK treatment, ultimately enhancing soil microbial functional potential by reinforcing the network stability of the biotic community. The other mechanism indicated that the low phosphorus levels and high soil nutrient stoichiometry may increase the stochastic process of the bacterial community and the determinism of the fungal, protist, and nematode communities under NK treatment, thereby enhancing soil microbial functional potential by improving the β-diversity of the biotic community. Taken together, these results provide valuable insights into the mechanisms underlying the assembly processes of the biotic community that regulate ecosystem functioning.
Collapse
Affiliation(s)
- Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiu Zou
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, Shengyang, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Yan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wenzhao Liu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
12
|
Zhang X, Dai H, Huang Y, Liu K, Li X, Zhang S, Fu S, Jiao S, Chen C, Dong B, Yang Z, Cui Y, Li H, Liu S. Species pool, local assembly processes: Disentangling the mechanisms determining bacterial α- and β-diversity during forest secondary succession. Mol Ecol 2024; 33:e17241. [PMID: 38078555 DOI: 10.1111/mec.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
Across ecology, and particularly within microbial ecology, there is limited understanding how the generation and maintenance of diversity. Although recent work has shown that both local assembly processes and species pools are important in structuring microbial communities, the relative contributions of these mechanisms remain an important question. Moreover, the roles of local assembly processes and species pools are drastically different when explicitly considering the potential for saturation or unsaturation, yet this issue is rarely addressed. Thus, we established a conceptual model that incorporated saturation theory into the microbiological domain to advance the understanding of mechanisms controlling soil bacterial diversity during forest secondary succession. Conceptual model hypotheses were tested by coupling soil bacterial diversity, local assembly processes and species pools using six different forest successional chronosequences distributed across multiple climate zones. Consistent with the unsaturated case proposed in our conceptual framework, we found that species pool consistently affected α-diversity, even while local assembly processes on local richness operate. In contrast, the effects of species pool on β-diversity disappeared once local assembly processes were taken into account, and changes in environmental conditions during secondary succession led to shifts in β-diversity through mediation of the strength of heterogeneous selection. Overall, this study represents one of the first to demonstrate that most local bacterial communities might be unsaturated, where the effect of species pool on α-diversity is robust to the consideration of multiple environmental influences, but β-diversity is constrained by environmental selection.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Forestry, Northwest A&F University, Yangling, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, The College of Geography and Environmental Science, Henan University, Kaifeng, China
- Qinling National Forest Research Station, Ningshan, China
| | - Handan Dai
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, The College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Yongtao Huang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, The College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Kuan Liu
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, China
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, China
- Qinling National Forest Research Station, Ningshan, China
| | - Shenglei Fu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, The College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chunbo Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences, Urumqi, China
| | - Biao Dong
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, The College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Zhu Yang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, The College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Yang Cui
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, The College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
13
|
Cantera I, Carteron A, Guerrieri A, Marta S, Bonin A, Ambrosini R, Anthelme F, Azzoni RS, Almond P, Alviz Gazitúa P, Cauvy-Fraunié S, Ceballos Lievano JL, Chand P, Chand Sharma M, Clague J, Cochachín Rapre JA, Compostella C, Cruz Encarnación R, Dangles O, Eger A, Erokhin S, Franzetti A, Gielly L, Gili F, Gobbi M, Hågvar S, Khedim N, Meneses RI, Peyre G, Pittino F, Rabatel A, Urseitova N, Yang Y, Zaginaev V, Zerboni A, Zimmer A, Taberlet P, Diolaiuti GA, Poulenard J, Thuiller W, Caccianiga M, Ficetola GF. The importance of species addition 'versus' replacement varies over succession in plant communities after glacier retreat. NATURE PLANTS 2024; 10:256-267. [PMID: 38233559 DOI: 10.1038/s41477-023-01609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
The mechanisms underlying plant succession remain highly debated. Due to the local scope of most studies, we lack a global quantification of the relative importance of species addition 'versus' replacement. We assessed the role of these processes in the variation (β-diversity) of plant communities colonizing the forelands of 46 retreating glaciers worldwide, using both environmental DNA and traditional surveys. Our findings indicate that addition and replacement concur in determining community changes in deglaciated sites, but their relative importance varied over time. Taxa addition dominated immediately after glacier retreat, as expected in harsh environments, while replacement became more important for late-successional communities. These changes were aligned with total β-diversity changes, which were more pronounced between early-successional communities than between late-successional communities (>50 yr since glacier retreat). Despite the complexity of community assembly during plant succession, the observed global pattern suggests a generalized shift from the dominance of facilitation and/or stochastic processes in early-successional communities to a predominance of competition later on.
Collapse
Affiliation(s)
- Isabel Cantera
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
| | - Alexis Carteron
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Université de Toulouse, Ecole d'Ingénieurs de Purpan, UMR INRAE-INPT DYNAFOR, Toulouse, France
| | - Alessia Guerrieri
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Argaly, Bâtiment CleanSpace, Sainte-Hélène-du-Lac, France
| | - Silvio Marta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Institute of Geosciences and Earth Resources, CNR, Pisa, Italy
| | - Aurélie Bonin
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Argaly, Bâtiment CleanSpace, Sainte-Hélène-du-Lac, France
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Fabien Anthelme
- Laboratory AMAP, IRD, University of Montpellier, CIRAD, CNRS, INRA, Montpellier, France
| | - Roberto Sergio Azzoni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Scienze della Terra 'Ardito Desio', Milano, Italy
| | - Peter Almond
- Department of Soil and Physical Sciences, Lincoln University, Lincoln, New Zealand
| | - Pablo Alviz Gazitúa
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| | | | | | - Pritam Chand
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, Punjab, India
| | - Milap Chand Sharma
- Centre for the Study of Regional Development - School of Social Sciences, Jawaharlal Nehru University, New Delhi, India
| | - John Clague
- Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | - Olivier Dangles
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Andre Eger
- Mannaki Whenua - Landcare Research, Soils and Landscapes, Lincoln, New Zealand
| | - Sergey Erokhin
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), - University of Milano-Bicocca, Milano, Italy
| | - Ludovic Gielly
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Fabrizio Gili
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum, Trento, Italy
| | - Sigmund Hågvar
- Faculty of Environmental Sciences and Natural Resource Management (INA), Norwegian University of Life Sciences, Ås, Norway
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| | - Norine Khedim
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, EDYTEM, Chambéry, France
| | - Rosa Isela Meneses
- Herbario Nacional de Bolivia: La Paz, La Paz, Bolivia
- Universidad Católica del Norte, Antofagasta, Chile
| | - Gwendolyn Peyre
- Department of Civil and Environmental Engineering, University of the Andes, Bogotá, Colombia
| | - Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT), - University of Milano-Bicocca, Milano, Italy
| | - Antoine Rabatel
- Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Géosciences de l'Environnement (IGE, UMR 5001), Grenoble, France
| | - Nurai Urseitova
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Yan Yang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Vitalii Zaginaev
- Mountain Societies Research Institute, University of Central Asia, Bishkek, Kyrgyzstan
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra 'Ardito Desio', Milano, Italy
| | - Anaïs Zimmer
- Department of Geography and the Environment, University of Texas at Austin, Austin, TX, USA
| | - Pierre Taberlet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| | | | - Jerome Poulenard
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Gentile Francesco Ficetola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
14
|
Soltani S, Ghatrami ER, Nabavi SMB, Khorasani N, Naderi M. The correlation between echinoderms diversity and physicochemical parameters in marine pollution: A case study of the Persian Gulf coastline. MARINE POLLUTION BULLETIN 2024; 199:115989. [PMID: 38171165 DOI: 10.1016/j.marpolbul.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
This study was conducted with the aim of investigating the correlation between echinoderms diversity and physicochemical parameters in the Persian Gulf coastline in Bushehr province in 4 seasons from March to December 2017. The physicochemical parameters including water temperature, dissolved oxygen (DO), electrical conductivity (EC), salinity, pH and turbidity were measured at each sampling location. The results showed a significant correlation between echinoderms diversity and physicochemical parameters. The correlation coefficient of the Astropecten polyacanthus species with the parameters of temperature, DO, EC, salinity and turbidity was reported as -0.41, 0.64, -0.25, -0.44 and 0.60 respectively. This coefficient for the Ophiothrix fragilis species was reported as -0.68, 0.70, -0.21, -0.36 and -0.55 respectively. The results demonstrated that the most sensitive species were Astropecten polyacanthus and Ophiothrix fragilis respectively. The different species of echinoderms can be used as biological indicators of pollution in evaluating the physicochemical quality of marine environments.
Collapse
Affiliation(s)
- Shiva Soltani
- Department of Environmental Science and Forestry, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rajabzadeh Ghatrami
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramashahr, Iran.
| | - Seyed Mohammad Bagher Nabavi
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Nematollah Khorasani
- Department of Environmental Science and Forestry, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maziar Naderi
- Department of Environmental Health Engineering, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
He X, Xiao X, Wei W, Li L, Zhao Y, Zhang N, Wang M. Soil rare microorganisms mediated the plant cadmium uptake: The central role of protists. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168505. [PMID: 37967623 DOI: 10.1016/j.scitotenv.2023.168505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Plants and microorganisms symbiotically mediate and/or catalyse the turnover of elements in rhizosphere soils, thus directly influencing the effectiveness of phytoremediation in addressing heavy metal contamination. Soil rare microbial communities are diverse but not well understood in terms of their importance for phytoremediation. In this study, we simulated the loss of rare microorganisms through dilution-to-extinction approach, and investigated the effects on integrated rhizosphere microbiome with soil microcosm experiments, including bacteria, fungi, protists, and microfauna. Additionally, we explored the implications for ryegrass (Lolium multiflorum Lam.) growth and its uptake of Cd (cadmium). Compared with the undiluted group, ryegrass exhibited a significant decrease in Cd uptake ranging from 52.34 % to 73.71 % in the rare species-loss soils, indicating a lack of functional redundancy in rhizosphere soil microbial community following rare species loss. Interestingly, these soils displayed a remarkable 1.79-fold increase in plant biomass and a 41.02 % increase in plant height. By sequencing the 16S, 18S, and ITS rRNA gene amplicons of rhizosphere microbes, we found that soil rare species loss decreased the rhizosphere microbial α-diversity, changed the community structures, and shifted the functional potential. Protists were particularly affected. Through the analysis of species co-occurrence networks, along with the partial least squares path modeling, we found that the diversity of protists and bacteria and the co-occurring network connectivity of protists and fungi contributed most to plant Cd uptake and growth. These results highlighted the potential significance of rare microorganisms, particularly protists, in phytoextraction of Cd-contaminated soils, owing to their central role in the microbial food web.
Collapse
Affiliation(s)
- Xingguo He
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xian Xiao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Weiwei Wei
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Liangzhong Li
- Chongqing Huanyue Ecological Environment Technology Co., Ltd., Chongqing 400000, China
| | - Yuan Zhao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Na Zhang
- Hunan Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingyu Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
16
|
Zhai C, Han L, Xiong C, Ge A, Yue X, Li Y, Zhou Z, Feng J, Ru J, Song J, Jiang L, Yang Y, Zhang L, Wan S. Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167217. [PMID: 37751844 DOI: 10.1016/j.scitotenv.2023.167217] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Soil microbiomes play a critical role in regulating ecosystem multifunctionality. However, whether and how soil protists and microbiome interactions affect ecosystem multifunctionality under climate change is unclear. Here, we transplanted 54 soil monoliths from three typical temperate grasslands (i.e., desert, typical, and meadow steppes) along a precipitation gradient in the Mongolian Plateau and examined their response to nighttime warming, decreased, and increased precipitation. Across the three steppes, nighttime warming only stimulated protistan diversity by 15.61 (absolute change, phylogenetic diversity) but had no effect on ecosystem multifunctionality. Decreased precipitation reduced bacterial (8.78) and fungal (22.28) diversity, but significantly enhanced soil microbiome network complexity by 1.40. Ecosystem multifunctionality was reduced by 0.23 under decreased precipitation, which could be largely attributed to the reduced soil moisture that negatively impacted bacterial and fungal communities. In contrast, increased precipitation had little impact on soil microbial communities. Overall, both bacterial and fungal diversity and network complexity play a fundamental role in maintaining ecosystem multifunctionality in response to drought stress. Protists alter ecosystem multifunctionality by indirectly affecting microbial network complexity. Therefore, not only microbial diversity but also their interactions (regulated by soil protists) should be considered in evaluating the responses of ecosystem multifunctionality, which has important implications for predicting changes in ecosystem functioning under future climate change scenarios.
Collapse
Affiliation(s)
- Changchun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chao Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anhui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaojing Yue
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Ying Li
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhenxing Zhou
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayin Feng
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jingyi Ru
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jian Song
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Limei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
17
|
Chalifour BN, Elder LE, Li J. Diversity of gut microbiome in Rocky Mountainsnail across its native range. PLoS One 2023; 18:e0290292. [PMID: 38011083 PMCID: PMC10681204 DOI: 10.1371/journal.pone.0290292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/07/2023] [Indexed: 11/29/2023] Open
Abstract
The animal gut microbiome is often a key requirement for host nutrition, digestion, and immunity, and can shift in relation to host geography and environmental factors. However, ecological drivers of microbiome community assembly across large geographic ranges have rarely been examined in invertebrates. Oreohelix strigosa (Rocky Mountainsnail) is a widespread land snail found in heterogeneous environments across the mountainous western United States. It is ideally suited for biogeography studies due to its broad distribution, low migration, and low likelihood of passive transport via other animals. This study aims to uncover large-scale geographic shifts in the composition of O. strigosa gut microbiomes by using 16S rRNA gene sequencing on samples from across its native range. Additionally, we elucidate smaller-scale microbiome variation using samples collected only within Colorado. Results show that gut microbiomes vary significantly across broad geographic ranges. Several possible ecological drivers, including soil and vegetation composition, habitat complexity, habitat type, and human impact, collectively explained 27% of the variation across Coloradan O. strigosa gut microbiomes. Snail gut microbiomes show more similarity to vegetation than soil microbiomes. Gut microbial richness was highest in the rocky habitats and increased significantly in the most disturbed habitats (low complexity, high human impact), potentially indicating signs of dysbiosis in the snails' gut microbiomes. These small-scale environmental factors may be driving changes in O. strigosa gut microbiome composition seen across large-scale geography. This knowledge will also help us better understand how microbial associations influence species survival in diverse environments and aid wildlife conservation efforts.
Collapse
Affiliation(s)
- Bridget N. Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Leanne E. Elder
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
18
|
Zhao S, Zhao X, Li Y, Zhang R, Zhao Y, Fang H, Li W. Impact of altered groundwater depth on soil microbial diversity, network complexity and multifunctionality. Front Microbiol 2023; 14:1214186. [PMID: 37601343 PMCID: PMC10434790 DOI: 10.3389/fmicb.2023.1214186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Understanding the effects of groundwater depth on soil microbiota and multiple soil functions is essential for ecological restoration and the implementation of groundwater conservation. The current impact of increased groundwater levels induced by drought on soil microbiota and multifunctionality remains ambiguous, which impedes our understanding of the sustainability of water-scarce ecosystems that heavily rely on groundwater resources. This study investigated the impacts of altered groundwater depths on soil microbiota and multifunctionality in a semi-arid region. Three groundwater depth levels were studied, with different soil quality and soil moisture at each level. The deep groundwater treatment had negative impacts on diversity, network complexity of microbiota, and the relationships among microbial phylum unites. Increasing groundwater depth also changed composition of soil microbiota, reducing the relative abundance of dominant phyla including Proteobacteria and Ascomycota. Increasing groundwater depth led to changes in microbial community characteristics, which are strongly related to alterations in soil multifunctionality. Overall, our results suggest that groundwater depth had a strongly effect on soil microbiota and functionality.
Collapse
Affiliation(s)
- Siteng Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyong Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Yulin Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Rui Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Yanming Zhao
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| | - Hong Fang
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| | - Wenshuang Li
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| |
Collapse
|
19
|
Zhang D, Wang L, Qin S, Kou D, Wang S, Zheng Z, Peñuelas J, Yang Y. Microbial nitrogen and phosphorus co-limitation across permafrost region. GLOBAL CHANGE BIOLOGY 2023; 29:3910-3923. [PMID: 37097019 DOI: 10.1111/gcb.16743] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The status of plant and microbial nutrient limitation have profound impacts on ecosystem carbon cycle in permafrost areas, which store large amounts of carbon and experience pronounced climatic warming. Despite the long-term standing paradigm assumes that cold ecosystems primarily have nitrogen deficiency, large-scale empirical tests of microbial nutrient limitation are lacking. Here we assessed the potential microbial nutrient limitation across the Tibetan alpine permafrost region, using the combination of enzymatic and elemental stoichiometry, genes abundance and fertilization method. In contrast with the traditional view, the four independent approaches congruently detected widespread microbial nitrogen and phosphorus co-limitation in both the surface soil and deep permafrost deposits, with stronger limitation in the topsoil. Further analysis revealed that soil resources stoichiometry and microbial community composition were the two best predictors of the magnitude of microbial nutrient limitation. High ratio of available soil carbon to nutrient and low fungal/bacterial ratio corresponded to strong microbial nutrient limitation. These findings suggest that warming-induced enhancement in soil nutrient availability could stimulate microbial activity, and probably amplify soil carbon losses from permafrost areas.
Collapse
Affiliation(s)
- Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Biogeochemistry Research Group, Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio, Finland
| | - Siyu Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhihu Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Josep Peñuelas
- Consejo Superior de Investigaciones Científicas (CSIC), Global Ecology Unit CREAF-CSIC-UAB (Universitat Autònoma de Barcelona), Barcelona, Spain
- CREAF, Barcelona, Catalonia, Spain
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Zhang J, Feng Y, Maestre FT, Berdugo M, Wang J, Coleine C, Sáez-Sandino T, García-Velázquez L, Singh BK, Delgado-Baquerizo M. Water availability creates global thresholds in multidimensional soil biodiversity and functions. Nat Ecol Evol 2023; 7:1002-1011. [PMID: 37169879 DOI: 10.1038/s41559-023-02071-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Soils support an immense portion of Earth's biodiversity and maintain multiple ecosystem functions which are essential for human well-being. Environmental thresholds are known to govern global vegetation patterns, but it is still unknown whether they can be used to predict the distribution of soil organisms and functions across global biomes. Using a global field survey of 383 sites across contrasting climatic and vegetation conditions, here we showed that soil biodiversity and functions exhibited pervasive nonlinear patterns worldwide and are mainly governed by water availability (precipitation and potential evapotranspiration). Changes in water availability resulted in drastic shifts in soil biodiversity (bacteria, fungi, protists and invertebrates) and soil functions including plant-microbe interactions, plant productivity, soil biogeochemical cycles and soil carbon sequestration. Our findings highlight that crossing specific water availability thresholds can have critical consequences for the provision of essential ecosystem services needed to sustain our planet.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Youzhi Feng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China.
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef', Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - Miguel Berdugo
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Depatamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - Juntao Wang
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Tadeo Sáez-Sandino
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain
| | - Laura García-Velázquez
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain.
| |
Collapse
|
21
|
Baeshen NN, Baz L, Shami AY, Ashy RA, Jalal RS, Abulfaraj AA, Refai M, Majeed MA, Abuzahrah SS, Abdelkader H, Baeshen NA, Baeshen MN. Composition, Abundance, and Diversity of the Soil Microbiome Associated with the Halophytic Plants Tamarix aphylla and Halopeplis perfoliata on Jeddah Seacoast, Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112176. [PMID: 37299153 DOI: 10.3390/plants12112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The coast of the Red Sea in Jeddah City is home to a unique microbial community that has adapted to extreme environmental conditions. Therefore, it is essential to characterize the microbial community in this unique microbiome to predict how environmental changes will affect it. The aim of this study was to conduct metagenomic sequencing of 16S rRNA and ITS rRNA genes for the taxonomic classification of the microbial community in soil samples associated with the halophytic plants Tamarix aphylla and Halopeplis perfoliata. Fifteen soil samples were collected in triplicate to enhance robustness and minimize sampling bias. Firstly, to identify novel microbial candidates, the gDNAs were isolated from the saline soil samples surrounding each plant, and then bacterial 16S (V3-V4) and fungal ITS1 regions were sequenced utilizing a high-throughput approach (next-generation sequencing; NGS) on an Illumina MiSeq platform. Quality assessment of the constructed amplicon libraries was conducted using Agilent Bioanalyzer and fluorometric quantification methods. The raw data were processed and analyzed using the Pipeline (Nova Lifetech, Singapore) for bioinformatics analysis. Based on the total number of readings, it was determined that the phylum Actinobacteriota was the most prevalent in the soil samples examined, followed by the phylum Proteobacteria. Based on ITS rRNA gene analysis, the alpha and beta fungal diversity in the studied soil samples revealed that the fungal population is structured into various groups according to the crust (c) and/or rhizosphere (r) plant parts. Fungal communities in the soil samples indicated that Ascomycota and Basidiomycota were the two most abundant phyla based on the total amount of sequence reads. Secondly, heat-map analysis of the diversity indices showed that the bacterial alpha diversity, as measured by Shannon, Simpson, and InvSimpson, was associated with soil crust (Hc and Tc enclosing H. perfoliata and T. aphylla, respectively) and that the soil rhizosphere (Hr and Tr) was strongly correlated with bacterial beta diversity. Finally, fungal-associated Tc and Hc samples clustered together, according to observations made using the Fisher and Chao1 methods, and Hr and Tr samples clustered together according to Shannon, Simpson, and InvSimpson analyses. As a result of the soil investigation, potential agents that have been identified could lead to innovative agricultural, medical, and industrial applications.
Collapse
Affiliation(s)
- Naseebh N Baeshen
- Department of Biology, College of Sciences and Arts at Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashwag Y Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Ruba A Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Rewaa S Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Mazen A Majeed
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Samah S Abuzahrah
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Hayam Abdelkader
- Virus Research Department, Molecular Biology Laboratory, PPRI, ARC, Giza 12613, Egypt
| | - Nabih A Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed N Baeshen
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| |
Collapse
|
22
|
Zhu L, Chen Y, Sun R, Zhang J, Hale L, Dumack K, Geisen S, Deng Y, Duan Y, Zhu B, Li Y, Liu W, Wang X, Griffiths BS, Bonkowski M, Zhou J, Sun B. Resource-dependent biodiversity and potential multi-trophic interactions determine belowground functional trait stability. MICROBIOME 2023; 11:95. [PMID: 37127665 PMCID: PMC10150482 DOI: 10.1186/s40168-023-01539-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND For achieving long-term sustainability of intensive agricultural practices, it is pivotal to understand belowground functional stability as belowground organisms play essential roles in soil biogeochemical cycling. It is commonly believed that resource availability is critical for controlling the soil biodiversity and belowground organism interactions that ultimately lead to the stabilization or collapse of terrestrial ecosystem functions, but evidence to support this belief is still limited. Here, we leveraged field experiments from the Chinese National Ecosystem Research Network (CERN) and two microcosm experiments mimicking high and low resource conditions to explore how resource availability mediates soil biodiversity and potential multi-trophic interactions to control functional trait stability. RESULTS We found that agricultural practice-induced higher resource availability increased potential cross-trophic interactions over 316% in fields, which in turn had a greater effect on functional trait stability, while low resource availability made the stability more dependent on the potential within trophic interactions and soil biodiversity. This large-scale pattern was confirmed by fine-scale microcosm systems, showing that microcosms with sufficient nutrient supply increase the proportion of potential cross-trophic interactions, which were positively associated with functional stability. Resource-driven belowground biodiversity and multi-trophic interactions ultimately feedback to the stability of plant biomass. CONCLUSIONS Our results indicated the importance of potential multi-trophic interactions in supporting belowground functional trait stability, especially when nutrients are sufficient, and also suggested the ecological benefits of fertilization programs in modern agricultural intensification. Video Abstract.
Collapse
Affiliation(s)
- Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| | - Ruibo Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| | - Lauren Hale
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- United States Department of Agriculture, Agricultural Research Service (ARS), Washington, DC, 20250, USA
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6700AB, The Netherlands
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Wenzhao Liu
- Institute of Soil and Water Conservation, Chine, Academy of Sciences and Ministry of Water Resources , Yangling, 712100, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China
| | - Bryan S Griffiths
- SRUC, Crop and Soil System Research Group, West Mains Road, Edinburgh, EH93JG, UK
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| |
Collapse
|
23
|
Rillig MC, van der Heijden MG, Berdugo M, Liu YR, Riedo J, Sanz-Lazaro C, Moreno-Jiménez E, Romero F, Tedersoo L, Delgado-Baquerizo M. Increasing the number of stressors reduces soil ecosystem services worldwide. NATURE CLIMATE CHANGE 2023; 13:478-483. [PMID: 37193246 PMCID: PMC7614524 DOI: 10.1038/s41558-023-01627-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 05/18/2023]
Abstract
Increasing the number of environmental stressors could decrease ecosystem functioning in soils. Yet this relationship has never been globally assessed outside laboratory experiments. Here, using two independent global standardized field surveys, and a range of natural and human factors, we test the relationship between the number of environmental stressors exceeding different critical thresholds and the maintenance of multiple ecosystem services across biomes. Our analysis shows that, multiple stressors, from medium levels (>50%), negatively and significantly correlates with impacts on ecosystem services, and that multiple stressors crossing a high-level critical threshold (over 75% of maximum observed levels), reduces soil biodiversity and functioning globally. The number of environmental stressors >75% threshold was consistently seen as an important predictor of multiple ecosystem services, therefore improving prediction of ecosystem functioning. Our findings highlight the need to reduce the dimensionality of the human footprint on ecosystems to conserve biodiversity and function.
Collapse
Affiliation(s)
| | - Marcel G.A. van der Heijden
- Agroscope, Plant-Soil Interactions Group, 8046 Zurich, Switzerland
- University of Zurich, Department of Plant and Microbial Biology, 8057 Zurich, Switzerland
| | - Miguel Berdugo
- Institute of Integrative Biology, Department of Environment Systems Science, ETH Zürich, 8092 Zürich, Switzerland
- Complutense University of Madrid, Department of Biodiversity, Ecology and Evolution, Madrid, Spain
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Judith Riedo
- Agroscope, Plant-Soil Interactions Group, 8046 Zurich, Switzerland
| | - Carlos Sanz-Lazaro
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain
- Department of Ecology, University of Alicante, PO Box 99, E-03080 Alicante, Spain
| | - Eduardo Moreno-Jiménez
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ferran Romero
- Agroscope, Plant-Soil Interactions Group, 8046 Zurich, Switzerland
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, 14a Ravila, 50411 Tartu, Estonia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
24
|
Tessler M, David FJ, Cunningham SW, Herstoff EM. Rewilding in Miniature: Suburban Meadows Can Improve Soil Microbial Biodiversity and Soil Health. MICROBIAL ECOLOGY 2023; 85:1077-1086. [PMID: 36725750 DOI: 10.1007/s00248-023-02171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/11/2023] [Indexed: 05/04/2023]
Abstract
Lawns are a ubiquitous, human-made environment created for human enjoyment, leisure, and aesthetics. While net positive for carbon storage, lawns can have negative environmental impacts. Lawns require frequent mowing, which produces high levels of CO2 pollution and kills off native plants. Lawn fertilizing creates its own environmental pollution. One (presumed) ecologically-friendly alternative to lawns is restoration, or rewilding, of these spaces as meadows, which need less maintenance (e.g., infrequent mowing). However, little work has compared lawns against small-scale meadows for biodiversity outside of pollinator studies. Here, we tested the hypotheses that compared to lawns, meadows have (1) unique and higher levels of soil microbial biodiversity and (2) different soil physical and chemical characteristics. We conducted bacterial (16S) and fungal (ITS2) metabarcoding, and found that both bacteria and fungi are indeed more diverse in meadows (significantly so for bacteria). Species composition between meadows and lawns was significantly different for both types of microbes, including higher levels of mycorrhizal fungi in meadows. We also found that chemistry (e.g., potassium and metrics relating to pH) differed significantly between lawns and meadows and was more optimal for plant growth in the meadows. We believe these differences are caused by the different organisms dwelling in these habitats. In summary, these findings point to notable-positive-shifts in microbial and chemical compositions within meadows, further indicating that meadow restoration benefits biodiversity and soil health.
Collapse
Affiliation(s)
- Michael Tessler
- Department of Biology, St. Francis College, Brooklyn, NY, 11201, USA.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA.
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA.
| | - Felix J David
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Seth W Cunningham
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Emily M Herstoff
- Department of Biology, St. Francis College, Brooklyn, NY, 11201, USA
| |
Collapse
|
25
|
Fan K, Chu H, Eldridge DJ, Gaitan JJ, Liu YR, Sokoya B, Wang JT, Hu HW, He JZ, Sun W, Cui H, Alfaro FD, Abades S, Bastida F, Díaz-López M, Bamigboye AR, Berdugo M, Blanco-Pastor JL, Grebenc T, Duran J, Illán JG, Makhalanyane TP, Mukherjee A, Nahberger TU, Peñaloza-Bojacá GF, Plaza C, Verma JP, Rey A, Rodríguez A, Siebe C, Teixido AL, Trivedi P, Wang L, Wang J, Yang T, Zhou XQ, Zhou X, Zaady E, Tedersoo L, Delgado-Baquerizo M. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat Ecol Evol 2023; 7:113-126. [PMID: 36631668 DOI: 10.1038/s41559-022-01935-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023]
Abstract
While the contribution of biodiversity to supporting multiple ecosystem functions is well established in natural ecosystems, the relationship of the above- and below-ground diversity with ecosystem multifunctionality remains virtually unknown in urban greenspaces. Here we conducted a standardized survey of urban greenspaces from 56 municipalities across six continents, aiming to investigate the relationships of plant and soil biodiversity (diversity of bacteria, fungi, protists and invertebrates, and metagenomics-based functional diversity) with 18 surrogates of ecosystem functions from nine ecosystem services. We found that soil biodiversity across biomes was significantly and positively correlated with multiple dimensions of ecosystem functions, and contributed to key ecosystem services such as microbially driven carbon pools, organic matter decomposition, plant productivity, nutrient cycling, water regulation, plant-soil mutualism, plant pathogen control and antibiotic resistance regulation. Plant diversity only indirectly influenced multifunctionality in urban greenspaces via changes in soil conditions that were associated with soil biodiversity. These findings were maintained after controlling for climate, spatial context, soil properties, vegetation and management practices. This study provides solid evidence that conserving soil biodiversity in urban greenspaces is key to supporting multiple dimensions of ecosystem functioning, which is critical for the sustainability of urban ecosystems and human wellbeing.
Collapse
Affiliation(s)
- Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Juan J Gaitan
- National Institute of Agricultural Technology (INTA), Institute of Soil Science, Hurlingham, Argentina.,National University of Luján, Department of Technology, Luján, Argentina.,National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Blessing Sokoya
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Jun-Tao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Wei Sun
- Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Haiying Cui
- Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Santiago, Chile
| | - Sebastian Abades
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Santiago, Chile
| | | | | | - Adebola R Bamigboye
- Natural History Museum (Botany Unit), Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Miguel Berdugo
- Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain.,Institute of Integrative Biology, Department of Environment Systems Science, ETH Zurich, Univeritätstrasse, Zurich, Switzerland
| | | | - Tine Grebenc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Jorge Duran
- Misión Biolóxica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Spain.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Javier G Illán
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Arpan Mukherjee
- Plant-Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tina U Nahberger
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Gabriel F Peñaloza-Bojacá
- Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Brazil
| | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jay Prakash Verma
- Plant-Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Soil Microbiology Lab, Department of Soil Science, Federal University of Ceara, Fortaleza, Brazil
| | - Ana Rey
- Department of Biogeography and Global Change, National Museum of Natural History (MNCN), Spanish National Research Council (CSIC) C/ Serrano 115bis, Madrid, Spain
| | - Alexandra Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Christina Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
| | - Alberto L Teixido
- Departamento de Botância e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Boa Esperança, Cuiabá, Brazil
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Ling Wang
- Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Jianyong Wang
- Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Tianxue Yang
- Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Institute of Plant Sciences, Gilat Research Center, Negev, Israel
| | - Leho Tedersoo
- Department of Mycology and Microbiology, University of Tartu, Tartu, Estonia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain. .,Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
26
|
Maestre FT, Le Bagousse-Pinguet Y, Delgado-Baquerizo M, Eldridge DJ, Saiz H, Berdugo M, Gozalo B, Ochoa V, Guirado E, García-Gómez M, Valencia E, Gaitán JJ, Asensio S, Mendoza BJ, Plaza C, Díaz-Martínez P, Rey A, Hu HW, He JZ, Wang JT, Lehmann A, Rillig MC, Cesarz S, Eisenhauer N, Martínez-Valderrama J, Moreno-Jiménez E, Sala O, Abedi M, Ahmadian N, Alados CL, Aramayo V, Amghar F, Arredondo T, Ahumada RJ, Bahalkeh K, Ben Salem F, Blaum N, Boldgiv B, Bowker MA, Bran D, Bu C, Canessa R, Castillo-Monroy AP, Castro H, Castro I, Castro-Quezada P, Chibani R, Conceição AA, Currier CM, Darrouzet-Nardi A, Deák B, Donoso DA, Dougill AJ, Durán J, Erdenetsetseg B, Espinosa CI, Fajardo A, Farzam M, Ferrante D, Frank ASK, Fraser LH, Gherardi LA, Greenville AC, Guerra CA, Gusmán-Montalvan E, Hernández-Hernández RM, Hölzel N, Huber-Sannwald E, Hughes FM, Jadán-Maza O, Jeltsch F, Jentsch A, Kaseke KF, Köbel M, Koopman JE, Leder CV, Linstädter A, le Roux PC, Li X, Liancourt P, Liu J, Louw MA, Maggs-Kölling G, Makhalanyane TP, Issa OM, Manzaneda AJ, Marais E, Mora JP, Moreno G, Munson SM, Nunes A, Oliva G, Oñatibia GR, Peter G, Pivari MOD, Pueyo Y, Quiroga RE, Rahmanian S, Reed SC, Rey PJ, Richard B, Rodríguez A, Rolo V, Rubalcaba JG, Ruppert JC, Salah A, Schuchardt MA, Spann S, Stavi I, Stephens CRA, Swemmer AM, Teixido AL, Thomas AD, Throop HL, Tielbörger K, Travers S, Val J, Valkó O, van den Brink L, Ayuso SV, Velbert F, Wamiti W, Wang D, Wang L, Wardle GM, Yahdjian L, Zaady E, Zhang Y, Zhou X, Singh BK, Gross N. Grazing and ecosystem service delivery in global drylands. Science 2022; 378:915-920. [DOI: 10.1126/science.abq4062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.
Collapse
Affiliation(s)
- Fernando T. Maestre
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | | | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - David J. Eldridge
- Department of Planning and Environment, c/o Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hugo Saiz
- Departamento de Ciencias Agrarias y Medio Natural, Escuela Politécnica Superior, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Huesca, Spain
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Miguel Berdugo
- Institut de Biología Evolutiva (UPF-CSIC), Barcelona, Spain
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
| | - Victoria Ochoa
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Emilio Guirado
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
| | - Miguel García-Gómez
- Departamento de Ingeniería y Morfología del Terreno, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Enrique Valencia
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan J. Gaitán
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Suelos-CNIA, Buenos Aires, Argentina
- Universidad Nacional de Luján, Departamento de Tecnología, Luján, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
| | - Sergio Asensio
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
| | - Betty J. Mendoza
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Paloma Díaz-Martínez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana Rey
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Hang-Wei Hu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Science, Fujian Normal University, Fuzhou, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Science, Fujian Normal University, Fuzhou, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jun-Tao Wang
- Global Centre for Land-Based Innovation, Western Sydney University, Sydney, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Anika Lehmann
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C. Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Institute of Biology, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Institute of Biology, Leipzig, Germany
| | - Jaime Martínez-Valderrama
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
| | - Eduardo Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Osvaldo Sala
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- School of Sustainability, Arizona State University, Tempe, AZ, USA
- Global Drylands Center, Arizona State University, Tempe, AZ, USA
| | - Mehdi Abedi
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran Province, Iran
| | - Negar Ahmadian
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran Province, Iran
| | | | - Valeria Aramayo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Bariloche, Bariloche, Río Negro, Argentina
| | - Fateh Amghar
- Laboratoire de Recherche: Biodiversité, Biotechnologie, Environnement et Développement Durable (BioDev), Faculté des Sciences, Université M’hamed Bougara de Boumerdès, Boumerdès, Algérie
| | - Tulio Arredondo
- Instituto Potosino de Investigación Científica y Tecnológica, A.C., San Luis Potosí, Mexico
| | - Rodrigo J. Ahumada
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Catamarca, Catamarca, Argentina
| | - Khadijeh Bahalkeh
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran Province, Iran
| | - Farah Ben Salem
- Laboratory of Range Ecology, Institut des Régions Arides (IRA), Médenine, Tunisia
| | - Niels Blaum
- University of Potsdam, Plant Ecology and Conservation Biology, Potsdam, Germany
| | - Bazartseren Boldgiv
- Laboratory of Ecological and Evolutionary Synthesis, Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Matthew A. Bowker
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Donaldo Bran
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Bariloche, Bariloche, Río Negro, Argentina
| | - Chongfeng Bu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Rafaella Canessa
- Ecological Plant Geography, Faculty of Geography, University of Marburg, Marburg, Germany
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
| | | | - Helena Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ignacio Castro
- Universidad Nacional Experimental Simón Rodríguez (UNESR), Instituto de Estudios Científicos y Tecnológicos (IDECYT), Centro de Estudios de Agroecología Tropical (CEDAT), Miranda, Venezuela
| | - Patricio Castro-Quezada
- Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Carrera de Ingeniería Agronómica, Grupo de Agroforestería, Manejo y Conservación del paisaje, Cuenca, Ecuador
| | - Roukaya Chibani
- Laboratory of Range Ecology, Institut des Régions Arides (IRA), Médenine, Tunisia
| | - Abel A. Conceição
- Universidade Estadual de Feira de Santana (UEFS), Departamento de Ciências Biológicas, Bahia, Brazil
| | - Courtney M. Currier
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Global Drylands Center, Arizona State University, Tempe, AZ, USA
| | | | - Balázs Deák
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - David A. Donoso
- Departamento de Biología, Escuela Politécnica Nacional, Quito, Ecuador
- Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Andrew J. Dougill
- Department of Environment and Geography, University of York, York, UK
| | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Misión Biolóxica de Galicia, CSIC, Pontevedra, Spain
| | - Batdelger Erdenetsetseg
- Laboratory of Ecological and Evolutionary Synthesis, Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Carlos I. Espinosa
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Alex Fajardo
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, Universidad de Talca, Talca, Chile
| | - Mohammad Farzam
- Department of Range and Watershed Management, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Daniela Ferrante
- Instituto Nacional de Tecnología Agropecuaria EEA Santa Cruz, Río Gallegos, Santa Cruz, Argentina
- Universidad Nacional de la Patagonia Austral, Río Gallegos, Santa Cruz, Argentina
| | - Anke S. K. Frank
- School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Port Macquarie, New South Wales, Australia
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Lauchlan H. Fraser
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Laureano A. Gherardi
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron C. Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Carlos A. Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Martin-Luther University Halle Wittenberg, Halle (Saale), Germany
| | | | - Rosa M. Hernández-Hernández
- Universidad Nacional Experimental Simón Rodríguez (UNESR), Instituto de Estudios Científicos y Tecnológicos (IDECYT), Centro de Estudios de Agroecología Tropical (CEDAT), Miranda, Venezuela
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | | | - Frederic M. Hughes
- Universidade Estadual de Feira de Santana (UEFS), Departamento de Ciências Biológicas, Bahia, Brazil
- Instituto Nacional da Mata Atlântica (INMA), Espírito Santo, Brazil
| | - Oswaldo Jadán-Maza
- Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Carrera de Ingeniería Agronómica, Grupo de Agroforestería, Manejo y Conservación del paisaje, Cuenca, Ecuador
| | - Florian Jeltsch
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- University of Potsdam, Plant Ecology and Conservation Biology, Potsdam, Germany
| | - Anke Jentsch
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Kudzai F. Kaseke
- Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Melanie Köbel
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Jessica E. Koopman
- Microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Cintia V. Leder
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
- Universidad Nacional de Río Negro, Sede Atlántica, CEANPa, Río Negro, Argentina
| | - Anja Linstädter
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Biodiversity Research/Systematic Botany Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Peter C. le Roux
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Xinkai Li
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Pierre Liancourt
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
- Institute of Botany, Czech Academy of Sciences, Pruhonice, Czech Republic
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Jushan Liu
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Michelle A. Louw
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Thulani P. Makhalanyane
- Microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Oumarou Malam Issa
- Institut d’Écologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, IRD, CNRS, INRAE, Université Paris Est Creteil, Université de Paris, Centre IRD de France Nord, Bondy, France
| | - Antonio J. Manzaneda
- Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía, Universidad de Jaén, Jaén, Spain
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | - Eugene Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - Juan P. Mora
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, Universidad de Talca, Talca, Chile
| | - Gerardo Moreno
- Forestry School, INDEHESA, Universidad de Extremadura, Plasencia, Spain
| | - Seth M. Munson
- US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
| | - Alice Nunes
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriel Oliva
- Instituto Nacional de Tecnología Agropecuaria EEA Santa Cruz, Río Gallegos, Santa Cruz, Argentina
- Universidad Nacional de la Patagonia Austral, Río Gallegos, Santa Cruz, Argentina
| | - Gastón R. Oñatibia
- Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guadalupe Peter
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
- Universidad Nacional de Río Negro, Sede Atlántica, CEANPa, Río Negro, Argentina
| | - Marco O. D. Pivari
- Departamento de Botânica, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Yolanda Pueyo
- Instituto Pirenaico de Ecología (IPE, CSIC), Zaragoza, Spain
| | - R. Emiliano Quiroga
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Catamarca, Catamarca, Argentina
- Cátedra de Manejo de Pastizales Naturales, Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Catamarca, Argentina
| | - Soroor Rahmanian
- Department of Range and Watershed Management, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Brasov, Romania
| | - Sasha C. Reed
- US Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Pedro J. Rey
- Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía, Universidad de Jaén, Jaén, Spain
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | | | - Alexandra Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Víctor Rolo
- Forestry School, INDEHESA, Universidad de Extremadura, Plasencia, Spain
| | | | - Jan C. Ruppert
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
| | | | - Max A. Schuchardt
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Sedona Spann
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Ilan Stavi
- Dead Sea and Arava Science Center, Yotvata, Israel
| | - Colton R. A. Stephens
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Anthony M. Swemmer
- South African Environmental Observation Network (SAEON), Phalaborwa, Kruger National Park, South Africa
| | - Alberto L. Teixido
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Mato Grosso, Brazil
| | - Andrew D. Thomas
- Department of Geography and Earth Sciences, Aberystwyth University, Wales, UK
| | - Heather L. Throop
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Samantha Travers
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - James Val
- Science Division, Department of Planning, Industry and Environment, New South Wales Government, Buronga, New South Wales, Australia
| | - Orsolya Valkó
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | | | - Sergio Velasco Ayuso
- Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Frederike Velbert
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Wanyoike Wamiti
- Zoology Department, National Museums of Kenya, Nairobi, Kenya
| | - Deli Wang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Lixin Wang
- Department of Earth Sciences, Indiana University–Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Glenda M. Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura Yahdjian
- Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Institute of Plant Sciences, Gilat Research Center, Mobile Post Negev, Israel
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Brajesh K. Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Sydney, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia
| | - Nicolas Gross
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche Ecosystème Prairial, Clermont-Ferrand, France
| |
Collapse
|
27
|
Huang S, Yu C, Fu G, Sun W, Li S, Xiao J. Different responses of soil bacterial species diversity and phylogenetic diversity to short-term nitrogen input in an alpine steppe at the source of Brahmaputra. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1073177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Qinghai-Tibet Plateau has experienced an increase in N deposition/input due to global change. However, it remains unclear how the responses and whether the responses of soil bacterial diversity to short-term N input are consistent at different levels. Here, we investigated soil bacterial species and phylogenetic α-diversity and community composition based on a short-term nitrogen input experiment (five levels: 0, 2.5, 5, 10, and 20 g N m−2 y−1) in an alpine steppe at the source of Brahmaputra, using high-throughput sequencing technology. Short-term nitrogen input did not affect the species α-diversity and β-diversity of soil bacteria. However, soil bacterial phylogenetic α-diversity and dissimilarity increased with increasing nitrogen input. Different relative contributions and correlations of primary factors to species and phylogenetic diversity under short-term nitrogen input may result in different responses, in which ecological processes also play a role. Therefore, studying the response of soil bacteria to short-term nitrogen input should take into account not only the species level but also the phylogenetic level. We should pay close attention to the potential influence of short-term nitrogen deposition/fertilization on the soil bacterial community in the alpine steppe on the Tibetan Plateau.
Collapse
|
28
|
Guerra CA, Berdugo M, Eldridge DJ, Eisenhauer N, Singh BK, Cui H, Abades S, Alfaro FD, Bamigboye AR, Bastida F, Blanco-Pastor JL, de Los Ríos A, Durán J, Grebenc T, Illán JG, Liu YR, Makhalanyane TP, Mamet S, Molina-Montenegro MA, Moreno JL, Mukherjee A, Nahberger TU, Peñaloza-Bojacá GF, Plaza C, Picó S, Verma JP, Rey A, Rodríguez A, Tedersoo L, Teixido AL, Torres-Díaz C, Trivedi P, Wang J, Wang L, Wang J, Zaady E, Zhou X, Zhou XQ, Delgado-Baquerizo M. Global hotspots for soil nature conservation. Nature 2022; 610:693-698. [PMID: 36224389 DOI: 10.1038/s41586-022-05292-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
Soils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils-that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services-peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.
Collapse
Affiliation(s)
- Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. .,Institute of Biology, Martin Luther University Halle Wittenberg, Halle(Saale), Germany. .,Institute of Biology, Leipzig University, Leipzig, Germany.
| | - Miguel Berdugo
- Institute of Integrative Biology, Department of Environment Systems Science, ETH Zürich, Zürich, Switzerland
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Haiying Cui
- Institute of Grassland Science, School of Life Science, Northeast Normal University, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China.,Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| | - Sebastian Abades
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Huechuraba, Chile
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Huechuraba, Chile.,Instituto de Ecología & Biodiversidad (IEB), Santiago, Chile
| | | | - Felipe Bastida
- CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | | | - Asunción de Los Ríos
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,Misión Biolóxica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Spain
| | - Tine Grebenc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Javier G Illán
- Department of Entomology, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, USA
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Steven Mamet
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Marco A Molina-Montenegro
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,CEAZA, Universidad Católica del Norte, Coquimbo, Chile
| | - José L Moreno
- CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | | | | | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sergio Picó
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Ana Rey
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alexandra Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alberto L Teixido
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Cristian Torres-Díaz
- Grupo de Investigación en Biodiversidad y Cambio Global (GI BCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Ling Wang
- Institute of Grassland Science, School of Life Science, Northeast Normal University, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Jianyong Wang
- Institute of Grassland Science, School of Life Science, Northeast Normal University, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Institute of Plant Sciences, Gilat Research Center, Negev, Israel
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain. .,Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
29
|
Yu F, Luo W, Xie W, Li Y, Meng S, Kan J, Ye X, Peng T, Wang H, Huang T, Hu Z. Community reassemblies of eukaryotes, prokaryotes, and viruses in the hexabromocyclododecanes-contaminated microcosms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129159. [PMID: 35643009 DOI: 10.1016/j.jhazmat.2022.129159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The microbial community in seriously contaminated environment were not well known. This research investigated the community reassemblies in microcosms made of two distinct mangrove sediments amended with high levels of hexabromocyclododecanes (HBCDs). After eight months of contamination, the transformation of HBCDs yielded various lower brominated products and resulted in acidification (pH ~2). Therefore, the degraders and dehalogenase homologous genes involved in transformation of HBCDs only presented in low abundance to avoid further deterioration of the habitats. Moreover, in these deteriorated habitats, 1344 bacterial, 969 archaeal, 599 eukaryotic (excluded fungi), 187 fungal OTUs, and 10 viral genera, were reduced compared with controls. Specifically, in two groups of microcosms, Zetaproteobacteria, Deinococcus-Thermus, Spirochaetes, Bacteroidetes, Euryarchaeota, and Ascomycota, were positively responding taxa to HBCDs. Caloneis (Bacillariophyta) and Ascomycota turned to the dominant eukaryotic and fungal taxa. Most of predominant taxa were related to the contamination of brominated flame retardants (BFRs). Microbial communities were reassembled in divergent and sediment-dependent manner. The long-term contamination of HBCDs leaded to the change of relations between many taxa, included some of the environmental viruses and their known hosts. This research highlight the importance of monitoring the ecological effects around plants producing or processing halogenated compounds.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Jie Kan
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, PR China.
| |
Collapse
|
30
|
Effects of Land Use Conversion on the Soil Microbial Community Composition and Functionality in the Urban Wetlands of North-Eastern China. FORESTS 2022. [DOI: 10.3390/f13071148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Urban wetlands are undergoing intensive conversion from natural wetlands to farmlands, woodlands, and even alkaline land. This study aimed to determine the effects of land conversion on soil microbial communities of urban wetlands in the hinterland of Songnen Plain, Northeastern China. Soil samples were collected from various sites of Longfeng wetland, including swamp wetland (SW), meadow wetland (MW), woodland (WL), farmland (FL), and alkaline land (AL). High-throughput sequencing followed by bioinformatic analysis was conducted to evaluate the structure, composition, and function of soil bacterial and fungal communities. The most dominant bacterial and fungal phylum among the land-use types were Proteobacteria and Ascomycota, respectively. In addition, the bacterial diversity and functions varied significantly across different land-use types. However, no remarkable differences in fungal communities were observed under various land-use types. Edaphic parameters, including exchange sodium percent (ESP) and total nitrogen (TN), remarkably influenced the abundance and diversity of soil microbial communities. These results show that land-use type shapes various aspects of soil microbial communities, including soil physicochemical properties, microbial taxa structure, potential functional genes, and correlation with environmental factors. This study provides reliable data to guide land use management and supervision by decision-makers in this region.
Collapse
|
31
|
Wang G, Chen L, Zhang D, Qin S, Peng Y, Yang G, Wang J, Yu J, Wei B, Liu Y, Li Q, Kang L, Wang Y, Yang Y. Divergent Trajectory of Soil Autotrophic and Heterotrophic Respiration upon Permafrost Thaw. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10483-10493. [PMID: 35748652 DOI: 10.1021/acs.est.1c07575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Warming-induced permafrost thaw may stimulate soil respiration (Rs) and thus cause a positive feedback to climate warming. However, due to the limited in situ observations, it remains unclear about how Rs and its autotrophic (Ra) and heterotrophic (Rh) components change upon permafrost thaw. Here we monitored variations in Rs and its components along a permafrost thaw sequence on the Tibetan Plateau, and explored the potential linkage of Rs components (i.e., Ra and Rh) with biotic (e.g., plant functional traits and soil microbial diversity) and abiotic factors (e.g., substrate quality). We found that Ra and Rh exhibited divergent responses to permafrost collapse: Ra increased with the time of thawing, while Rh exhibited a hump-shaped pattern along the thaw sequence. We also observed different drivers of thaw-induced changes in the ratios of Ra:Rs and Rh:Rs. Except for soil water status, plant community structure, diversity, and root properties explained the variation in Ra:Rs ratio, soil substrate quality and microbial diversity were key factors associated with the dynamics of Rh:Rs ratio. Overall, these findings demonstrate divergent patterns and drivers of Rs components as permafrost thaw prolongs, which call for considerations in Earth system models for better forecasting permafrost carbon-climate feedback.
Collapse
Affiliation(s)
- Guanqin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianchun Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Resources and Environmental Science/Hebei Province Key Laboratory for Farmland Eco-Environment, Agricultural University of Hebei, Baoding 071000, China
| | - Qinlu Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Xiong W, Delgado-Baquerizo M, Shen Q, Geisen S. Pedogenesis shapes predator-prey relationships within soil microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154405. [PMID: 35276178 DOI: 10.1016/j.scitotenv.2022.154405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Pedogenesis determines soil physicochemical properties and many biodiversity facets, including belowground microbial bacteria and fungi. At the local scale, top-down predation by microbial protists regulates the soil microbiome, while the microbiome also affects protistan communities. However, it remains unknown how pedogenesis affects protistan communities and the potential protist-microbiome predator-prey relationships. With 435 soil samples representing different stages of pedogenesis ranging in soil age from centuries to millennia, we examined the influence of pedogenesis on the main protistan groups, and the interrelationships between protistan predators and microbial prey biomass. We revealed an enrichment in the diversity of total protists across pedogenesis and increasing richness of phototrophic protists in the medium compared with the early stages of pedogenesis. The richness of predatory protists accumulated throughout pedogenesis, which was more strongly determined by microbial biomass than environmental factors. Predator-prey associations were stronger in the young and the medium soils than in the older soils, likely because prey biomass accumulated in the latter and might be no longer limit predators. Together, our work provides evidence that pedogenesis shapes predatory protists differently than their prey, leading to shifts in predator-prey relationships. This knowledge is critical to better understand how soil food webs develop across soil development which might lead to changes in ecosystem functions.
Collapse
Affiliation(s)
- Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain; Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, 6700 ES Wageningen, the Netherlands.
| |
Collapse
|
33
|
Chen QL, Hu HW, Yan ZZ, Zhu YG, He JZ, Delgado-Baquerizo M. Cross-biome antibiotic resistance decays after millions of years of soil development. THE ISME JOURNAL 2022; 16:1864-1867. [PMID: 35354945 PMCID: PMC9213521 DOI: 10.1038/s41396-022-01225-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 05/27/2023]
Abstract
Soils harbor the most diverse naturally evolved antibiotic resistance genes (ARGs) on Earth, with implications for human health and ecosystem functioning. How ARGs evolve as soils develop over centuries, to millennia (i.e., pedogenesis), remains poorly understood, which introduces uncertainty in predictions of the dynamics of ARGs under changing environmental conditions. Here we investigated changes in the soil resistome by analyzing 16 globally distributed soil chronosequences, from centuries to millennia, spanning a wide range of ecosystem types and substrate age ranges. We show that ARG abundance and diversity decline only after millions of years of soil development as observed in very old chronosequences. Moreover, our data show increases in soil organic carbon content and microbial biomass as soil develops that were negatively correlated with the abundance and diversity of soil ARGs. This work reveals natural dynamics of soil ARGs during pedogenesis and suggests that such ecological patterns are predictable, which together advances our understanding of the environmental drivers of ARGs in terrestrial environments.
Collapse
Affiliation(s)
- Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Zhen-Zhen Yan
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Manuel Delgado-Baquerizo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain.
| |
Collapse
|
34
|
Li J, Li S, Huang X, Tang R, Zhang R, Li C, Xu C, Su J. Plant diversity and soil properties regulate the microbial community of monsoon evergreen broad-leaved forest under different intensities of woodland use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153565. [PMID: 35101489 DOI: 10.1016/j.scitotenv.2022.153565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
A key aspect of global forest management, woodland use intensity (WUI) greatly affects the composition and diversity of soil microbial communities, thereby affecting multiple ecosystem functions and services. However, the effects of WUI on soil microbial community composition and enzymatic activities remains unclear. The effects of anthropomorphic alterations to a natural monsoon evergreen broad-leaved forest in terms of the composition and diversity of soil fungal and bacterial communities, was investigated at a site in Yunnan Province, Southwest China. Soil microbial communities were assessed under four levels of disturbance with increasing levels of WUI: (i) none, undisturbed forest (control), (ii) light, naturally-regenerated Pinus kesiya Royle ex Gordon forest, (iii) intermediate, shrub and grassland communities formed through grazing, and (iv) severe, continuously managed coffee (Coffea arabica L.) plantations. With increasing WUI, the diversity of soil fungal and bacterial communities increased, while similarities in community composition decreased for fungi but increased for bacteria. Among fungal functional guilds, ectomycorrhizal fungi decreased significantly with increasing WUI, whereas saprotrophic fungi (undefined, wood, and soil saprotrophs) increased significantly. The species richness of woody plants remarkably affected fungal functional guilds. Ectomycorrhizal fungi interacted in a synergistic manner with the fungal network structure. Significantly affecting microorganismal network structure, WUI increases led to more homogeneous networks with less integration within modules within the microbial community. The WUI strongly altered hub identity and module composition in the microbial community. According to structural equation models, WUI had direct positive effects on soil fungal community composition via its effects on plant species richness. The diversity of bacterial and fungal communities and composition of bacterial communities were jointly regulated by the indirect effects of plant species richness and soil nutrients (including enzyme activity). Deterministic processes largely determined the composition of soil fungal and bacterial communities. This study highlights the importance of maintaining the diversity of soil fungal and bacterial communities despite changes in woodland use to sustain ecosystem functions. These results can be used to develop management practices in subtropical forests and help sustain plant and soil microbial diversity at levels sufficient to maintain long-term ecosystem function and services.
Collapse
Affiliation(s)
- Jing Li
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China; Nanjing Forestry University, Nanjing 210037, China
| | - Shuaifeng Li
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China
| | - Xiaobo Huang
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China
| | - Rong Tang
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China
| | - Rui Zhang
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China
| | - Cong Li
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China
| | - Chonghua Xu
- Taiyanghe Provincial Nature Reserve, Pu'er 66500, Yunnan, China
| | - Jianrong Su
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China.
| |
Collapse
|
35
|
Hu L, Li Q, Yan J, Liu C, Zhong J. Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153137. [PMID: 35041964 DOI: 10.1016/j.scitotenv.2022.153137] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 05/16/2023]
Abstract
Soil organic carbon (SOC) is an important component of soil ecosystems, and soils are a hotbed of microorganisms playing critical roles in soil functions and ecosystem services. Understanding the interaction between SOC and soil microbial community is of paramount significance in predicting the C fate in soils following vegetation restoration. In this study, high-throughput sequencing of 16S rRNA and ITS genes combined with 13C NMR spectroscopy analysis were applied to characterize SOC chemical compounds and elucidate associated soil microbial community. Our results indicated that the contents of SOC, total nitrogen, total phosphorus, microbial biomass carbon and biomass nitrogen, dissolved organic carbon, available potassium, exchangeable calcium and soil moisture increased significantly (P < 0.05) along with the vegetation restoration processes from corn land, grassland, shrub land, to secondary and primary forests. Moreover, the Alkyl C and O-alkyl C abundance increased with vegetation recovery, but no significant differences of Alkyl C were observed in different successional stages. In contrast, the relative abundance of Methoxyl C showed an opposite trend. The dominate phyla Proteobacteria, Acidobacteria, Actinobacteria, Ascomycota and Basidiomycota were strongly related to SOC. And, SOC was found to be the determining factor shaping soil bacterial and fungal communities in vegetation restoration processes. The complexity of soil bacteria and fungi interactions along the vegetation restoration chronosequence increased. Determinism was the major assembly mechanism of bacterial community while stochasticity dominated the assembly of fungal community. Bryobacter, Haliangium, and MND1 were identified as keystone genera in co-occurrence network. Besides, the dominant functional groups across all vegetation restoration processes were mainly involved in soil C and N cycles and linked to the enhanced recalcitrant SOC storage. Our results provide invaluable reference to advance the understanding of microbe response to vegetation restoration processes and highlight the impact of microbes on recalcitrant SOC storage.
Collapse
Affiliation(s)
- Linan Hu
- Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, China; Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; International Research Center on Karst under the Auspices of UNESCO, Guilin 541004, China
| | - Qiang Li
- Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; International Research Center on Karst under the Auspices of UNESCO, Guilin 541004, China.
| | - Jiahui Yan
- Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; International Research Center on Karst under the Auspices of UNESCO, Guilin 541004, China
| | - Chun Liu
- Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, China; Department of Ecology, Jinan University, Guangzhou 510632, China.
| | - Juxin Zhong
- Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; International Research Center on Karst under the Auspices of UNESCO, Guilin 541004, China
| |
Collapse
|
36
|
Rodriguez V, Moskwa LM, Oses R, Kühn P, Riveras-Muñoz N, Seguel O, Scholten T, Wagner D. Impact of Climate and Slope Aspects on the Composition of Soil Bacterial Communities Involved in Pedogenetic Processes along the Chilean Coastal Cordillera. Microorganisms 2022; 10:847. [PMID: 35630293 PMCID: PMC9143490 DOI: 10.3390/microorganisms10050847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Soil bacteria play a fundamental role in pedogenesis. However, knowledge about both the impact of climate and slope aspects on microbial communities and the consequences of these items in pedogenesis is lacking. Therefore, soil-bacterial communities from four sites and two different aspects along the climate gradient of the Chilean Coastal Cordillera were investigated. Using a combination of microbiological and physicochemical methods, soils that developed in arid, semi-arid, mediterranean, and humid climates were analyzed. Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, and Planctomycetes were found to increase in abundance from arid to humid climates, while Actinobacteria and Gemmatimonadetes decreased along the transect. Bacterial-community structure varied with climate and aspect and was influenced by pH, bulk density, plant-available phosphorus, clay, and total organic-matter content. Higher bacterial specialization was found in arid and humid climates and on the south-facing slope and was likely promoted by stable microclimatic conditions. The presence of specialists was associated with ecosystem-functional traits, which shifted from pioneers that accumulated organic matter in arid climates to organic decomposers in humid climates. These findings provide new perspectives on how climate and slope aspects influence the composition and functional capabilities of bacteria, with most of these capabilities being involved in pedogenetic processes.
Collapse
Affiliation(s)
- Victoria Rodriguez
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (V.R.); (L.-M.M.)
| | - Lisa-Marie Moskwa
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (V.R.); (L.-M.M.)
| | - Rómulo Oses
- Centro Regional de Investigación y Desarrollo Sustentable de Atacama, Universidad de Atacama (CRIDESAT UDA), Copayapu 484, Copiapó 1530000, Chile;
| | - Peter Kühn
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, 72070 Tübingen, Germany; (P.K.); (N.R.-M.); (T.S.)
| | - Nicolás Riveras-Muñoz
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, 72070 Tübingen, Germany; (P.K.); (N.R.-M.); (T.S.)
| | - Oscar Seguel
- Facultad de Ciencias Agronómicas, Universidad de Chile, Av. Santa Rosa #11315, La Pintana, Santiago 8820808, Chile;
| | - Thomas Scholten
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, 72070 Tübingen, Germany; (P.K.); (N.R.-M.); (T.S.)
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (V.R.); (L.-M.M.)
- Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
37
|
Eldridge DJ, Oliver I, Powell JR, Dorrough J, Carrillo Y, Nielsen UN, Macdonald CA, Wilson B, Fyfe C, Amarasinghe A, Kuginis L, Peake T, Robinson T, Howe B, Delgado‐Baquerizo M. Temporal dynamics in biotic and functional recovery following mining. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David J. Eldridge
- Department of Planning, Industry and Environment, c/‐ Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney, New South Wales 2052 Australia
| | - Ian Oliver
- Department of Planning, Industry and Environment, Locked Bag 2906 Lisarow NSW 2250 Australia
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment Western Sydney University Penrith, NSW 2751 Australia
| | - Josh Dorrough
- Department of Planning, Industry and Environment, P.O. Box PO Box 656, Merimbula NSW 2548 Australia
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment Western Sydney University Penrith, NSW 2751 Australia
| | - Uffe N. Nielsen
- Hawkesbury Institute for the Environment Western Sydney University Penrith, NSW 2751 Australia
| | - Catriona A. Macdonald
- Hawkesbury Institute for the Environment Western Sydney University Penrith, NSW 2751 Australia
| | - Brian Wilson
- Department of Planning, Industry and Environment, c/‐ School of Environmental and Rural Science University of New England Armidale, NSW 2351 Australia
| | - Christine Fyfe
- chool of Environmental and Rural Science University of New England Armidale, NSW 2351 Australia
| | - Apsara Amarasinghe
- chool of Environmental and Rural Science University of New England Armidale, NSW 2351 Australia
| | - Laura Kuginis
- Department of Planning, Industry and Environment, P.O. Box 1226 Newcastle, NSW, 2300 Australia
| | - Travis Peake
- Umwelt (Australia) Pty Limited, 75 York Street, Teralba NSW 2284 Australia
| | - Trish Robinson
- Umwelt (Australia) Pty Limited, 75 York Street, Teralba NSW 2284 Australia
| | - Belinda Howe
- Umwelt (Australia) Pty Limited, 75 York Street, Teralba NSW 2284 Australia
| | - Manuel Delgado‐Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E‐41012 Sevilla Spain
- Unidad Asociada CSIC‐UPO (BioFun). Universidad Pablo de Olavide, 41013 Sevilla Spain
| |
Collapse
|
38
|
Cano-Díaz C, Maestre FT, Wang J, Li J, Singh BK, Ochoa V, Gozalo B, Delgado-Baquerizo M. Effects of vegetation on soil cyanobacterial communities through time and space. THE NEW PHYTOLOGIST 2022; 234:435-448. [PMID: 35088410 DOI: 10.1111/nph.17996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Photoautotrophic soil cyanobacteria play essential ecological roles and are known to exhibit large changes in their diversity and abundance throughout early succession. However, much less is known about how and why soil cyanobacterial communities change as soil develops over centuries and millennia, and the effects that vegetation have on such communities. We combined an extensive field survey, including 16 global soil chronosequences across contrasting ecosystems (from deserts to tropical forests), with molecular analyses to investigate how the diversity and abundance of photosynthetic and nonphotosynthetic soil cyanobacteria are affected by vegetation change during soil development, over time periods from hundreds to thousands of years. We show that, in most chronosequences, the abundance, species richness and community composition of soil cyanobacteria are relatively stable as soil develops (from centuries to millennia). Regardless of soil age, forest chronosequences were consistently dominated by nonphotosynthetic cyanobacteria (Vampirovibrionia), while grasslands and shrublands were dominated by photosynthetic cyanobacteria. Chronosequences undergoing drastic vegetation shifts (e.g. transitions from grasslands to forests) experienced significant changes in the composition of soil cyanobacterial communities. Our results advance our understanding of the ecology of cyanobacterial classes, and of the understudied nonphotosynthetic cyanobacteria in particular, and highlight the key role of vegetation as a major driver of their temporal dynamics as soil develops.
Collapse
Affiliation(s)
- Concha Cano-Díaz
- Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
- CISAS - Centre for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
- Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
| | - Juntao Wang
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Jing Li
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
- Beijing Key Laboratory of Wetland Ecological Function and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Brajesh K Singh
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Victoria Ochoa
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Sevilla, E-41012, Spain
- Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, 41013, Spain
| |
Collapse
|
39
|
Pérez CA, Kim M, Aravena JC, Silva W. Diazotrophic activity and denitrification in two long-term chronosequences of maritime Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152234. [PMID: 34896140 DOI: 10.1016/j.scitotenv.2021.152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The main goals of this study were to identify whether key processes involved in microbial soil nitrogen transformations, such as diazotrophic activity and denitrification, the chemical properties of limiting elements in the soil, and microbial community structure, differ in the different successional stages of two long term chronosequences in maritime Antarctica. Moreover, we expect the rates of diazotrophic activity and denitrification to be stimulated by increases in air temperature and moisture. To answer these questions, we selected three stages in the succession (early, mid and late) in each of two well established chronosequences: three raised beaches in Ardley Island; and the Barton Peninsula, which includes two cosmogenically dated sites and the forefield of the Fourcade glacier. In the Ardley chronosequence, higher diazotrophic activity was found in the older successional stages, concomitant with an increase in the abundance of Cyanobacteria. In the Barton chronosequence, Cyanobacteria were only present and abundant (Microcoleus) in the early successional stage, coinciding with the highest diazotrophic activity. Denitrification in the Barton chronosequence tended to be highest at the mid successional sites, associated with the highest abundance of Rhodanobacter. In the Ardley chronosequence, the lowest abundance of Rhodanobacter was linked to lower denitrification rates in the mid successional stage. In the Ardley chronosequence, significant positive effects of passive warming and water addition on diazotrophic activity were detected in the first and the second years of the study respectively. In the Barton chronosequence on the other hand, there was no response to either passive warming or water addition, probably a manifestation of the higher nutrient limitation in this site. Denitrification showed no response to either warming or water addition. Thus, the response of microbial nitrogen transformations to global change is highly dependent on the environmental setting, such as soil origin, age and climate regime.
Collapse
Affiliation(s)
- Cecilia A Pérez
- Institute of Ecology and Biodiversity (IEB), Las Palmeras, 3425 Santiago, Chile.
| | - Mincheol Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Juan Carlos Aravena
- Centro de Investigación Gaia Antártica (CIGA), Universidad de Magallanes, Punta Arenas, Chile
| | - Wladimir Silva
- Institute of Ecology and Biodiversity (IEB), Las Palmeras, 3425 Santiago, Chile
| |
Collapse
|
40
|
The Changes in Soil Microbial Communities across a Subalpine Forest Successional Series. FORESTS 2022. [DOI: 10.3390/f13020289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Knowledge regarding changes in soil microbial communities with forest succession is vital to understand soil microbial community shifts under global change scenarios. The composition and diversity of soil microbial communities across a subalpine forest successional series were therefore investigated in the Wanglang National Nature Reserve on the eastern Qinghai-Tibet Plateau, China. The calculated diversity indices of soil bacteria (8.598 to 9.791 for Shannon-Wiener, 0.997 to 0.974 for Simpson, 4131 to 4974 for abundance-based coverage estimator (ACE) and 3007 to 3511 for Species richness indices), and ACE (1323 to 921) and Species richness (1251 to 879) indices of soil fungi decreased from initial to terminal succession stages, but Shannon-Wiener and Simpson of soil fungi indices varied slightly with forest succession. Meanwhile, the composition and structure of soil microbial communities varied markedly with forest succession. The relative abundance of the dominant bacterial phyla (Acidobacteria, Firmicutes and Actinobacteria) and fungal taxa (Mortierellomycota, Rozellomycota and unassigned phylum clade GS01) varied considerably with forest succession. However, regardless of successional stage, Proteobacteria and Acidobacteria dominated soil bacterial communities and Ascomycota and Basidiomycota dominated soil fungal communities. Moreover, the changes in soil microbial diversity with forest succession were significantly affected by soil pH, soil organic carbon, soil temperature, altitude, and non-woody debris stock. Importantly, soil pH was the dominant driver of soil microbial community shift with forest succession. In conclusion, the forests at different succession stages not only conserve same microbial populations, but also nurse unique microbial diversity across the forest succession series; and the biodiversity of soil bacterial and fungal communities has differential responses to forest succession.
Collapse
|
41
|
Functional soil mycobiome across ecosystems. J Proteomics 2022; 252:104428. [PMID: 34818587 DOI: 10.1016/j.jprot.2021.104428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022]
Abstract
Fungi support a wide range of ecosystem processes such as decomposition of organic matter and plant-soil relationships. Yet, our understanding of the factors driving the metaproteome of fungal communities is still scarce. Here, we conducted a field survey including data on fungal biomass (by phospholipid fatty acids, PLFA), community composition (by metabarcoding of the 18S rRNA gene from extracted DNA) and functional profile (by metaproteomics) to investigate soil fungi and their relation to edaphic and environmental variables across three ecosystems (forests, grasslands, and shrublands) distributed across the globe. We found that protein richness of soil fungi was significantly higher in forests than in shrublands. Among a wide suite of edaphic and environmental variables, we found that soil carbon content and plant cover shaped evenness and diversity of fungal soil proteins while protein richness correlated to mean annual temperature and pH. Functions shifted from metabolism in forests to information processing and storage in shrublands. The differences between the biomes highlight the utility of metaproteomics to investigate functional microbiomes in soil. SIGNIFICANCE: Understanding the structure and the function of fungal communities and the driving factors is crucial to determine the contribution to ecosystem services of fungi and what effect future climate has. While there is considerable knowledge on the ecosystem processes provided by fungi such as decomposition of organic matter and plant-soil relationships, our understanding of the driving factors of the fungal metaproteome is scarce. Here we present the first estimates of fungal topsoil protein diversity in a wide range of soils across global biomes. We report taxonomic differences for genes delivered by amplicon sequencing of the 18S rRNA gene and differences of the functional microbiome based on metaproteomics. Both methods gave a complementary view on the fungal topsoil communities, unveiling both taxonomic and functional changes with changing environments. Such a comprehensive multi-omic analysis of fungal topsoil communities has never been performed before, to our knowledge.
Collapse
|
42
|
Wei B, Zhang D, Kou D, Yang G, Liu F, Peng Y, Yang Y. Decreased ultraviolet radiation and decomposer biodiversity inhibit litter decomposition under continuous nitrogen inputs. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Wei
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- Biogeochemistry Research Group Department of Biological and Environmental Sciences University of Eastern Finland Kuopio 70210 Finland
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Futing Liu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- Research Institute of Natural Protected Area Chinese Academy of Forestry Beijing 100091 China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
43
|
Lem AJ, Liddicoat C, Bissett A, Cando‐Dumancela C, Gardner MG, Peddle SD, Watson CD, Breed MF. Does revegetation cause soil microbiota recovery? Evidence from revisiting a revegetation chronosequence six years after initial sampling. Restor Ecol 2022. [DOI: 10.1111/rec.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alfie J. Lem
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| | - Craig Liddicoat
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
- School of Public Health The University of Adelaide, SA, 5005 Australia
| | - Andrew Bissett
- CSIRO Oceans and Atmosphere Hobart Tasmania 7001 Australia
| | | | - Michael G. Gardner
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace Adelaide SA 5000 Australia
| | - Shawn D. Peddle
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| | - Carl D. Watson
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| | - Martin F. Breed
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| |
Collapse
|
44
|
Kang L, Chen L, Zhang D, Peng Y, Song Y, Kou D, Deng Y, Yang Y. Stochastic processes regulate belowground community assembly in alpine grasslands on the Tibetan Plateau. Environ Microbiol 2021; 24:179-194. [PMID: 34750948 DOI: 10.1111/1462-2920.15827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023]
Abstract
Understanding biogeographical patterns and underlying processes of belowground community assembly is crucial for predicting soil functions and their responses to global environmental change. However, little is known about potential differences of belowground community assembly among bacteria, fungi, protists and soil animals, particularly for alpine ecosystems. Based on the combination of large-scale field sampling, high-throughput marker-gene sequencing and multiple statistical analyses, we explored patterns and drivers of belowground community assembly in alpine grasslands on the Tibetan Plateau. Our results revealed that the distance-decay rates varied among trophic levels, with organisms of higher trophic level having weaker distance-decay pattern. The spatial and environmental variables explained limited variations of belowground communities. By contrast, the stochastic processes, mainly consisting of dispersal limitation and drift, played a primary role in regulating belowground community assembly. Moreover, the relative importance of stochastic processes varied among trophic levels, with the role of dispersal limitation weakening whereas that of drift enhancing in the order of bacteria, fungi, protists and soil animals. These findings advance our understanding of patterns and mechanisms driving belowground community assembly in alpine ecosystems and provide a reference basis for predicting the dynamics of ecosystem functions under changing environment.
Collapse
Affiliation(s)
- Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yutong Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ye Deng
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Ficetola GF, Marta S, Guerrieri A, Gobbi M, Ambrosini R, Fontaneto D, Zerboni A, Poulenard J, Caccianiga M, Thuiller W. Dynamics of Ecological Communities Following Current Retreat of Glaciers. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-010521-040017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glaciers are retreating globally, and the resulting ice-free areas provide an experimental system for understanding species colonization patterns, community formation, and dynamics. The last several years have seen crucial advances in our understanding of biotic colonization after glacier retreats, resulting from the integration of methodological innovations and ecological theories. Recent empirical studies have demonstrated how multiple factors can speed up or slow down the velocity of colonization and have helped scientists develop theoretical models that describe spatiotemporalchanges in community structure. There is a growing awareness of how different processes (e.g., time since glacier retreat, onset or interruption of surface processes, abiotic factors, dispersal, biotic interactions) interact to shape community formation and, ultimately, their functional structure through succession. Here, we examine how these studies address key theoretical questions about community dynamics and show how classical approaches are increasingly being combined with environmental DNA metabarcoding and functional trait analysis to document the formation of multitrophic communities, revolutionizing our understanding of the biotic processes that occur following glacier retreat.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| | - Silvio Marta
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Alessia Guerrieri
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Mauro Gobbi
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Science Museum, I-38122 Trento, Italy
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Diego Fontaneto
- Molecular Ecology Group, Water Research Institute (IRSA), Italian National Research Council (CNR), I-28922 Verbania Pallanza, Italy
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra “A. Desio,” Università degli Studi di Milano, I-20133 Milano, Italy
| | - Jerome Poulenard
- Laboratory of Environments, Dynamics, and Mountain Territories (EDYTEM), Université Savoie Mont Blanc, Université Grenoble Alpes, CNRS, F‐73000 Chambéry, France
| | - Marco Caccianiga
- Department of Biosciences, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| |
Collapse
|
46
|
Tian J, Bu L, Zhang M, Yuan J, Zhang Y, Wei G, Wang H. Soil bacteria with distinct diversity and functions mediates the soil nutrients after introducing leguminous shrub in desert ecosystems. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
47
|
Bacterial community changes and their responses to nitrogen addition among different alpine grassland types at the eastern edge of Qinghai-Tibetan Plateau. Arch Microbiol 2021; 203:5963-5974. [PMID: 34557954 DOI: 10.1007/s00203-021-02535-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/23/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023]
Abstract
Soil microbes play a fundamental role in maintaining nutrient biogeochemical cycles. To understand the distribution of soil bacterial communities on grassland plateaus, high-throughput sequencing was used to compare bacterial communities in soils from swamp meadows (SM), alpine meadows (AM), alpine steppes (AS), and desert steppes (DS) at the eastern edge of the Qinghai-Tibetan Plateau (QTP) in China. We then compared response to nitrogen addition between SM and DS soils in microcosms. Bacterial α-diversity decreased from SM > AM > AS > DS. Variations in soil properties across grassland types was associated with different soil bacterial communities corresponding to bacterial species associated with nutrient cycles to those associated with degradation. Soil moisture, pH, and total phosphorus were the main drivers of these differences. Nitrogen addition decreased bacterial diversity but had inconsistent effects on soil bacterial communities in SM and DS, which may also indicate that different alpine grassland soil types have unique bacterial communities. Alpine grassland degradation significantly affects bacterial communities, and the response to nitrogen addition depends on the alpine grassland type. These results allow for better predictions of soil bacteria community-level responses to geochemical and environmental change in alpine areas.
Collapse
|
48
|
Vermeire ML, Thoresen J, Lennard K, Vikram S, Kirkman K, Swemmer AM, Te Beest M, Siebert F, Gordijn P, Venter Z, Brunel C, Wolfaard G, Krumins JA, Cramer MD, Hawkins HJ. Fire and herbivory drive fungal and bacterial communities through distinct above- and belowground mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147189. [PMID: 33933764 DOI: 10.1016/j.scitotenv.2021.147189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Fire and herbivory are important natural disturbances in grassy biomes. Both drivers are likely to influence belowground microbial communities but no studies have unravelled the long-term impact of both fire and herbivory on bacterial and fungal communities. We hypothesized that soil bacterial communities change through disturbance-induced shifts in soil properties (e.g. pH, nutrients) while soil fungal communities change through vegetation modification (biomass and species composition). To test these ideas, we characterised soil physico-chemical properties (pH, acidity, C, N, P and exchangeable cations content, texture, bulk density, moisture), plant species richness and biomass, microbial biomass and bacterial and fungal community composition and diversity (using 16S and ITS rRNA amplicon sequencing, respectively) in six long-term (18 to 70 years) ecological research sites in South African savanna and grassland ecosystems. We found that fire and herbivory regimes profoundly modified soil physico-chemical properties, plant species richness and standing biomass. In all sites, an increase in woody biomass (ranging from 12 to 50%) was observed when natural disturbances were excluded. The intensity and direction of changes in soil properties were highly dependent on the topo-pedo-climatic context. Overall, fire and herbivory shaped bacterial and fungal communities through distinct driving forces: edaphic properties (including Mg, pH, Ca) for bacteria, and vegetation (herbaceous biomass and woody cover) for fungi. Fire and herbivory explained on average 7.5 and 9.8% of the fungal community variability, respectively, compared to 6.0 and 5.6% for bacteria. The relatively small changes in microbial communities due to natural disturbance is in stark contrast to dramatic vegetation and edaphic changes and suggests that soil microbial communities, having evolved with disturbance, are resistant to change. This represents both a buffer to short-term anthropogenic-induced changes and a restoration challenge in the face of long-term changes.
Collapse
Affiliation(s)
- M-L Vermeire
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa; IRD, CIRAD, University of Montpellier, PHIM, Montpellier, France.
| | - J Thoresen
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - K Lennard
- Computational Biology Division, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - S Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, South Africa
| | - K Kirkman
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - A M Swemmer
- South African Environmental Observation Network (SAEON), Phalaborwa, South Africa
| | - M Te Beest
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands; Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth 6031, South Africa; South African Environmental Observation Network, Grasslands-Forests-Wetlands Node, Montrose 3201, South Africa
| | - F Siebert
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - P Gordijn
- South African Environmental Observation Network, Grasslands-Forests-Wetlands Node, Montrose 3201, South Africa
| | - Z Venter
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa; Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway (present affiliation)
| | - C Brunel
- IRD, CIRAD, University of Montpellier, PHIM, Montpellier, France
| | - G Wolfaard
- Sustineri Ecological Consulting (Pty) Ltd., Mbombela 1200, South Africa
| | - J A Krumins
- Department of Biology, Montclair State University, Montclair, NJ, USA
| | - M D Cramer
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - H-J Hawkins
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa; Conservation South Africa, 301 Heritage House, Claremont 7375, South Africa
| |
Collapse
|
49
|
Qin S, Kou D, Mao C, Chen Y, Chen L, Yang Y. Temperature sensitivity of permafrost carbon release mediated by mineral and microbial properties. SCIENCE ADVANCES 2021; 7:eabe3596. [PMID: 34362729 PMCID: PMC8346221 DOI: 10.1126/sciadv.abe3596] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 06/22/2021] [Indexed: 05/04/2023]
Abstract
Temperature sensitivity (Q 10) of permafrost carbon (C) release upon thaw is a vital parameter for projecting permafrost C dynamics under climate warming. However, it remains unclear how mineral protection interacts with microbial properties and intrinsic recalcitrance to affect permafrost C fate. Here, we sampled permafrost soils across a 1000-km transect on the Tibetan Plateau and conducted two laboratory incubations over 400- and 28-day durations to explore patterns and drivers of permafrost C release and its temperature response after thaw. We find that mineral protection and microbial properties are two types of crucial predictors of permafrost C dynamics upon thaw. Both high C release and Q 10 are associated with weak organo-mineral associations but high microbial abundances and activities, whereas high microbial diversity corresponds to low Q 10 The attenuating effects of mineral protection and the dual roles of microbial properties would make the permafrost C-climate feedback more complex than previously thought.
Collapse
Affiliation(s)
- Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Biogeochemistry Research Group, Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio 70210, Finland
| | - Chao Mao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongliang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Liu J, Wang C, Guo Z, Liu Y, Pan K, Xu A, Zhang F, Pan X. Linking soil bacterial diversity to satellite-derived vegetation productivity: a case study in arid and semi-arid desert areas. Environ Microbiol 2021; 23:6137-6147. [PMID: 34296506 DOI: 10.1111/1462-2920.15683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
Increasing studies have begun to focus on biodiversity-productivity relationships for soil microorganisms through molecular ecology methods. However, most of these studies involve controlled experiments, and whether the relationship remains at large spatial scales is still largely unknown. To unravel this issue, archived desert soils from long-term experiments were analysed using high-throughput sequencing, and satellite-derived vegetation datasets were acquired to quantify productivity. Most of the abundant genera were significantly different between low- and high-productivity conditions, and soil bacterial communities were strongly impacted by productivity. Soil bacterial biodiversity, including observed operational taxonomic units and the Chao1, Shannon, and Faith's PD indexes, increased rapidly with productivity at low levels and then reached a relatively stable state, and similar phenomena were observed at multiple taxonomic ranks and for most of the dominant groups. Furthermore, we discovered that the mechanisms resulting in the observed relationship might be ecosystem resource availability in large-scale regions and species competition in local regions. Collectively, these results enhance our understanding of the linkage between belowground microorganisms and aboveground vegetation in arid and semi-arid areas and confirm the potential value of satellite-derived datasets in research on soil microbial diversity at large spatial scales.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changkun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya Liu
- Jinling Institute of Technology, Nanjing, 211169, China
| | - Kai Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,National Earth System Science Data Center, Nanjing, 210008, China
| | - Aiai Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangfang Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianzhang Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|