1
|
Cartereau A, Bouchouireb Z, Kaaki S, Héricourt F, Taillebois E, Le Questel JY, Thany SH. Pharmacology and molecular modeling studies of sulfoxaflor, flupyradifurone and neonicotinoids on the human neuronal α7 nicotinic acetylcholine receptor. Toxicol Appl Pharmacol 2024; 492:117123. [PMID: 39393466 DOI: 10.1016/j.taap.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
We conducted electrophysiological and molecular docking studies using a heterologous expression system (Xenopus oocytes) to compare the effects of four neonicotinoids (acetamiprid, imidacloprid, clothianidin and thiamethoxam), one sulfoximine, (sulfoxaflor), and one butenolide (flupyradifurone), on human α7 neuronal nicotinic acetylcholine receptors (nAChRs). All neonicotinoids (except thiamethoxam), as well as the recently introduced nAChR competitive modulators, flupyradifurone and sulfoxaflor, appear to be weaker agonists than acetylcholine. Two mutations in loop C (E211N and E211P) and one mutation in loop D (Q79K), known to be involved in the binding properties of neonicotinoids were introduced to the α7 wild type. Interestingly, the acetylcholine and nicotine-evoked activation was not modified in human α7 mutated receptors, but the net charge was enhanced for clothianidin and imidacloprid, respectively. Flupyradifurone responses strongly increased under the Q79K mutation. The molecular docking investigations demonstrated that the orientations and interactions of the ligands considered were in accordance with those observed experimentally. Specifically, the charged fragments of acetylcholine and nicotine, used as reference ligands, and their neonicotinoid homologs were found to be surrounded by aromatic residues, with key interactions with Trp171 and Y210. Furthermore, the molecular docking investigations predicted the water-mediated interaction between the carbonyl oxygen of acetylcholine and the Nsp2 nitrogen of the pyridine ring for nicotine (as well as for the majority of the corresponding neonicotinoid fragments) and main chain NH of L141. The docking scores, extending over a significant range of 6 kcal/mol, showed that most neonicotinoids were poorly stabilized in the α7 nAChR compared to acetylcholine, except sulfoxaflor.
Collapse
Affiliation(s)
- Alison Cartereau
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | | | - Sara Kaaki
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | - François Héricourt
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | - Emiliane Taillebois
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | | | - Steeve H Thany
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France.
| |
Collapse
|
2
|
Terajima T, Matsumoto Y, Uehara K, Shimomura K, Tomizawa M. Molecular Recognition Properties of Nicotinic Ligands Determining Selectivity Between Insect and Mammalian Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39361838 DOI: 10.1021/acs.jafc.4c07271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
This investigation defines the roles of various amino acids, neighboring key conserved amino acids in loops C and D of the nicotinic acetylcholine (ACh) receptor (nAChR), in the selective molecular recognition of nicotinic ligands with diverse pharmacophores using Aplysia californica ACh binding protein Y55W (Ac-AChBP) mutants (+Q57R; + Q57R+S189 V; + Q57R+S189E; + Q57T; + Q57T+S189 V; + Q57T+S189E) and Lymnaea stagnalis AChBP (Ls-AChBP) mutants (Q55T; Q55T+S186E; Q55R) as insect and mammalian nAChR structural surrogates, respectively. N-nitro/cyanoimine insecticides show high affinity to four Ac-AChBPs containing Arg57 or Thr57 and Ser189 or Val189, except for those with Glu189. Pyrazinoyl compound selectively interacts with the three Ac-AChBPs containing Arg57 and Ser189, Val189, or Glu189. Cationic ligands prefer three Ac-AChBPs with Thr57 and Ser189, Val189, or Glu189 and two Ls-AChBPs providing Thr55 ± Glu186 over the four Ac- and Ls-AChBPs with Arg57/55. Accordingly, loop C contributes to N-nitro/cyanoimine insecticide action, and loop D controls the affinity of the pyrazinoyl or cationic ligand.
Collapse
Affiliation(s)
- Takehito Terajima
- Chemical Biology Laboratory, Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yutsuki Matsumoto
- Chemical Biology Laboratory, Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kana Uehara
- Chemical Biology Laboratory, Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kenji Shimomura
- Chemical Biology Laboratory, Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Motohiro Tomizawa
- Chemical Biology Laboratory, Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
3
|
Martin-Diaz J, Herrera SC. A stem cell activation state coupling spermatogenesis with social interactions in Drosophila males. Cell Rep 2024; 43:114647. [PMID: 39153199 DOI: 10.1016/j.celrep.2024.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Reproduction is paramount to animals. For it to be successful, a coordination of social behavior, physiology, and gamete production is necessary. How are social cues perceived and how do they affect physiology and gametogenesis? While females, ranging from insects to mammals, have provided multiple insights about this coordination, its existence remains largely unknown in males. Here, by using the Drosophila male as a model, we describe a phenomenon by which the availability of potential mating partners triggers an activation state on the stem cell populations of the testis, boosting spermatogenesis. We reveal its reliance on pheromonal communication, even in the absence of mating or other interactions with females. Finally, we identify the interorgan communication signaling network responsible-muscle-secreted tumor necrosis factor alpha (TNF-α)/Eiger and neuronally secreted octopamine trigger, respectively, the Jun N-terminal kinase (JNK) pathway and a change in calcium dynamics in the cyst stem cells. As a consequence, germ line stem cells increase their proliferation.
Collapse
Affiliation(s)
- Javier Martin-Diaz
- Andalusian Center for Developmental Biology (CABD), CSIC, UPO, Junta de Andalucía, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Salvador C Herrera
- Andalusian Center for Developmental Biology (CABD), CSIC, UPO, Junta de Andalucía, Carretera de Utrera km 1, 41013 Sevilla, Spain.
| |
Collapse
|
4
|
Takebayashi M, Mori S, Ito R, Takayama K, Ojima H, Takeuchi M, Takahashi H, Yamamoto N, Egawa R, Kimura Y, Ihara M, Sasaki K, Sattelle DB, Matsuda K. Impact of a worker bee thoracic ganglion RIC-3 variant on the actions of acetylcholine and neonicotinoids on nicotinic receptors in Apis mellifera. PEST MANAGEMENT SCIENCE 2024. [PMID: 39167025 DOI: 10.1002/ps.8371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
A transmembrane thioredoxin (TMX3) enables the functional expression of insect nicotinic acetylcholine receptors (nAChRs) in Xenopus laevis oocytes, while co-factors RIC-3 and UNC-50 regulate the receptor expression level. RIC-3 (resistant to inhibitors of cholinesterase 3) has been shown to diversify by its differential mRNA splicing patterns. How such diversity influences neonicotinoid sensitivity of nAChRs of beneficial insect species remains poorly understood. We have identified a RIC-3 variant expressed most abundantly in the thoracic ganglia of honeybee (Apis mellifera) workers and investigated its effects on the functional expression and pharmacology of Amα1/Amα8/Amβ1 and Amα1/Amα2/Amα8/Amβ1 nAChRs expressed in X. laevis oocytes. The AmRIC-3 enhanced the response amplitude to the acetylcholine (ACh) of these A. mellifera nAChRs when its cRNA was injected into oocytes at low concentrations but suppressed the ACh response amplitude at high concentrations. Co-expression of the AmRIC-3 had a minimal impact on the affinity of ACh, but changed the efficacy of imidacloprid and clothianidin, suggesting that the presence and the level of RIC-3 expression can affect the nAChR responses to ACh and neonicotinoids, depending on nAChR subunit composition in honeybees. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mayuka Takebayashi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Sumito Mori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Ryo Ito
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Hisanori Ojima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Miyu Takeuchi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Hiyori Takahashi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Niina Yamamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Runa Egawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuki Kimura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Tokyo, Japan
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
5
|
Ito R, Kamiya M, Takayama K, Mori S, Matsumoto R, Takebayashi M, Ojima H, Fujimura S, Yamamoto H, Ohno M, Ihara M, Okajima T, Yamashita A, Colman F, Lycett GJ, Sattelle DB, Matsuda K. Unravelling nicotinic receptor and ligand features underlying neonicotinoid knockdown actions on the malaria vector mosquito Anopheles gambiae. Open Biol 2024; 14:240057. [PMID: 39043224 PMCID: PMC11265914 DOI: 10.1098/rsob.240057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agβ1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agβ1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.
Collapse
Affiliation(s)
- Ryo Ito
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masaki Kamiya
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Sumito Mori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Rei Matsumoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Mayuka Takebayashi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hisanori Ojima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shota Fujimura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Haruki Yamamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masayuki Ohno
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Fraser Colman
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Gareth J. Lycett
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - David B. Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
6
|
Lu X, Jiang Z, Xu H, Zhang X, Lin Y, Pan S, Zhang Y, Liu Y, Wang Y, Li X, Duan H, Yang X, Ling Y. Rational Design of Triazinone Derivatives with Low Bee Toxicity Based on the Binding Mechanism of Neonicotinoids to Apis mellifera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12956-12966. [PMID: 38820064 DOI: 10.1021/acs.jafc.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Bees, one of the most vital pollinators in the ecosystem and agriculture, are currently threatened by neonicotinoids. To explore the molecular mechanisms of neonicotinoid toxicity to bees, the different binding modes of imidacloprid, thiacloprid, and flupyradifurone with nicotinic acetylcholine receptor (nAChR) α1β1 and cytochrome P450 9Q3 (CYP9Q3) were studied using homology modeling and molecular dynamics simulations. These mechanisms provided a basis for the design of compounds with a potential low bee toxicity. Consequently, we designed and synthesized a series of triazinone derivatives and assessed their bioassays. Among them, compound 5a not only displayed substantially insecticidal activities against Aphis glycines (LC50 = 4.40 mg/L) and Myzus persicae (LC50 = 6.44 mg/L) but also had low toxicity to Apis mellifera. Two-electrode voltage clamp recordings further confirmed that compound 5a interacted with the M. persicae nAChR α1 subunit but not with the A. mellifera nAChR α1 subunit. This work provides a paradigm for applying molecular toxic mechanisms to the design of compounds with low bee toxicity, thereby aiding the future rational design of eco-friendly nicotinic insecticides.
Collapse
Affiliation(s)
- Xingxing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoming Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yufan Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shixiang Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yimeng Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530004, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Ling
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Terajima T, Ayabe C, Matsumoto Y, Uehara K, Horikoshi R, Suzuki T, Shimomura K, Tomizawa M. Potency and Target Surface Interaction of Diazinoyl Nicotinic Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12967-12974. [PMID: 38814790 DOI: 10.1021/acs.jafc.4c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Structure-activity relationships of diazinoyl nicotinic insecticides (diazinoyl isomers and 5- or 6-substituted pyrazin-2-oyl analogues) are considered in terms of affinity to the insect nicotinic acetylcholine receptor (nAChR) and insecticidal activity against the imidacloprid-resistant brown planthopper. Among the test compounds, 3-(6-chloropyridin-3-ylmethyl)-2-(pyrazinoyl)iminothiazoline shows the highest potency in nAChR affinity and insecticidal activity. Aplysia californica acetylcholine binding protein (AChBP) mutants (Y55W + Q57R and Y55W + Q57T) are utilized to compare molecular recognition of nicotinic insecticides with diverse pharmacophores. N-nitro- or N-cyanoimine imidacloprid or acetamiprid, respectively, exhibits a high affinity to these AChBP mutants at a similar potency level. Intriguingly, the pyrazin-2-oyl analogue has a higher affinity to AChBP Y55W + Q57R than that to Y55W + Q57T, thereby indicating that pyrazine nitrogen atoms contact Arg57 guanidinium and Trp55 indole NH. Furthermore, nicotine prefers AChBP Y55W + Q57T over Y55W + Q57R, conceivably suggesting that the protonated nicotine is repulsed by Arg57 guanidinium, consistent with its inferior potency to insect nAChR.
Collapse
Affiliation(s)
- Takehito Terajima
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Chihiro Ayabe
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Yutsuki Matsumoto
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Kana Uehara
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Ryo Horikoshi
- Biological Solutions Research Center, Research and Development Division, Mitsui Chemicals Crop & Life Solutions, Inc., Mobara 297-0017, Chiba, Japan
| | - Tomonori Suzuki
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Kenji Shimomura
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Motohiro Tomizawa
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
8
|
Das D, Ghosh G, Dutta A, Sherpa RD, Ghosh P, Hui SP, Ghosh S. Fruit ripening retardant Daminozide induces cognitive impairment, cell specific neurotoxicity, and genotoxicity in Drosophila melanogaster. Neurotoxicology 2024; 103:123-133. [PMID: 38851594 DOI: 10.1016/j.neuro.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND We explored neurotoxic and genotoxic effects of Daminozide, a fruit ripening retardant, on the brain of Drosophila melanogaster, based on our previous finding of DNA fragmentation in larval brain cell in the flies experimentally exposed to this chemicals. METHODS Adult flies were subjected to two distinct concentrations of daminozide (200 mg/L and 400 mg/L) mixed in culture medium, followed by an examination of specific behaviors such as courtship conditioning and aversive phototaxis, which serve as indicators of cognitive functions. We investigated brain histology and histochemistry to assess the overall toxicity of daminozide, focusing on neuron type-specific effects. Additionally, we conducted studies on gene expression specific to neuronal function. Statistical comparisons were then made between the exposed and control flies across all tested attributes. RESULTS The outcome of behavioral assays suggested deleterious effects of Daminozide on learning, short term and long term memory function. Histological examination of brain sections revealed cellular degeneration, within Kenyon cell neuropiles in Daminozide-exposed flies. Neurone specific Immuno-histochemistry study revealed significant reduction of dopaminergic and glutaminergic neurones with discernible reduction in cellular counts, alteration in cell and nuclear morphology among daminozide exposed flies. Gene expression analyses demonstrated upregulation of rutabaga (rut), hb9 and down regulation of PKa- C1, CrebB, Ace and nAchRbeta-1 in exposed flies which suggest dysregulation of gene functions involved in motor neuron activity, learning, and memory. CONCLUSION Taken together, our findings suggests that Daminozide induces multifaceted harmful impacts on the neural terrain of Drosophila melanogaster, posing a threat to its cognitive abilities.
Collapse
Affiliation(s)
- Debasmita Das
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Gaurab Ghosh
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER)- Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal, India
| | - Arthita Dutta
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Rinchen D Sherpa
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Papiya Ghosh
- Department of Zoology, Bijoykrishna Girls' College. Howrah. India
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Sujay Ghosh
- Department of Zoology, University of Calcutta, Kolkata, India.
| |
Collapse
|
9
|
Pribbenow C, Owald D. Skewing information flow through pre- and postsynaptic plasticity in the mushroom bodies of Drosophila. Learn Mem 2024; 31:a053919. [PMID: 38876487 PMCID: PMC11199954 DOI: 10.1101/lm.053919.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 06/16/2024]
Abstract
Animal brains need to store information to construct a representation of their environment. Knowledge of what happened in the past allows both vertebrates and invertebrates to predict future outcomes by recalling previous experience. Although invertebrate and vertebrate brains share common principles at the molecular, cellular, and circuit-architectural levels, there are also obvious differences as exemplified by the use of acetylcholine versus glutamate as the considered main excitatory neurotransmitters in the respective central nervous systems. Nonetheless, across central nervous systems, synaptic plasticity is thought to be a main substrate for memory storage. Therefore, how brain circuits and synaptic contacts change following learning is of fundamental interest for understanding brain computations tied to behavior in any animal. Recent progress has been made in understanding such plastic changes following olfactory associative learning in the mushroom bodies (MBs) of Drosophila A current framework of memory-guided behavioral selection is based on the MB skew model, in which antagonistic synaptic pathways are selectively changed in strength. Here, we review insights into plasticity at dedicated Drosophila MB output pathways and update what is known about the plasticity of both pre- and postsynaptic compartments of Drosophila MB neurons.
Collapse
Affiliation(s)
- Carlotta Pribbenow
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - David Owald
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
10
|
Zhang K, Chen L, Chen J, Huang H, Liu K, Zhang Y, Yang J, Wu S. Mutation V65I in the β1 Subunit of the Nicotinic Acetylcholine Receptor Confers Neonicotinoid and Sulfoxaflor Resistance in Insects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5671-5681. [PMID: 38442746 DOI: 10.1021/acs.jafc.3c09456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Neonicotinoids have been widely used to control pests with remarkable effectiveness. Excessive insecticides have led to serious insect resistance. Mutations of the nicotinic acetylcholine receptor (nAChR) are one of the reasons for neonicotinoid resistance conferred in various agricultural pests. Two mutations, V65I and V104I, were found in the nAChR β1 subunit of two neonicotinoid-resistant aphid populations. However, the specific functions of the two mutations remain unclear. In this study, we cloned and identified four nAChR subunits (α1, α2, α8, and β1) of thrips and found them to be highly homologous to the nAChR subunits of other insects. Subsequently, we successfully expressed two subtypes nAChR (α1/α2/α8/β1 and α1/α8/β1) by coinjecting three cofactors for the first time in thrips, and α1/α8/β1 showed abundant current rapidly. Acetylcholine, neonicotinoids, and sulfoxaflor exhibited different activation capacities for the two subtypes of nAChRs. Finally, V65I was found to significantly reduce the binding ability of nAChR to neonicotinoids and sulfoxaflor through electrophysiology and computer simulations. V104I caused a decrease in agonist affinity (pEC50) but an increase in the efficacy (Imax) of nAChR against neonicotinoids and reduced the binding ability of nAChR to sulfoxaflor. This study provides theoretical and technical support for studying the molecular mechanisms of neonicotinoid resistance in pests.
Collapse
Affiliation(s)
- Kun Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Longwei Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jianwen Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Huixiu Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Kaiyang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Yi Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| |
Collapse
|
11
|
Nishikawa K, Ono Y, Mori S, Takayama K, Ihara M, Matsuda K, Morimoto Y. Divergent Nine-Step Syntheses of Perhydrohistrionicotoxin Analogs and Their Inhibition Activity Toward Chicken α4β2-Neuronal Nicotinic Acetylcholine Receptors. J Org Chem 2024; 89:4128-4133. [PMID: 38407917 DOI: 10.1021/acs.joc.3c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Histrionicotoxin (HTX) alkaloids, which are isolated from Colombian poison dart frogs, are analgesic neurotoxins that modulate nicotinic acetylcholine receptors (nAChRs) as antagonists. Perhydrohistrionicotoxin (pHTX) is the potent synthetic analogue of HTX and possesses a 1-azaspiro[5.5]undecane skeleton common to the HTX family. Here, we show for the first time the divergent nine-step synthesis of pHTX and its three stereoisomers from the known aldehyde through a one-step construction of the 1-azaspiro[5.5]undecane framework from a linear amino ynone substrate. Surprisingly, some pHTX diastereomers exhibited antagonistic activities on the chicken α4β2-neuronal nAChRs that were more potent than pHTX.
Collapse
Affiliation(s)
- Keisuke Nishikawa
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Yosuke Ono
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Sumito Mori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Yoshiki Morimoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| |
Collapse
|
12
|
Li Z, Wang Y, Qin Q, Chen L, Dang X, Ma Z, Zhou Z. Imidacloprid disrupts larval molting regulation and nutrient energy metabolism, causing developmental delay in honey bee Apis mellifera. eLife 2024; 12:RP88772. [PMID: 38466325 DOI: 10.7554/elife.88772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Imidacloprid is a global health threat that severely poisons the economically and ecologically important honeybee pollinator, Apis mellifera. However, its effects on developing bee larvae remain largely unexplored. Our pilot study showed that imidacloprid causes developmental delay in bee larvae, but the underlying toxicological mechanisms remain incompletely understood. In this study, we exposed bee larvae to imidacloprid at environmentally relevant concentrations of 0.7, 1.2, 3.1, and 377 ppb. There was a marked dose-dependent delay in larval development, characterized by reductions in body mass, width, and growth index. However, imidacloprid did not affect on larval survival and food consumption. The primary toxicological effects induced by elevated concentrations of imidacloprid (377 ppb) included inhibition of neural transmission gene expression, induction of oxidative stress, gut structural damage, and apoptosis, inhibition of developmental regulatory hormones and genes, suppression of gene expression levels involved in proteolysis, amino acid transport, protein synthesis, carbohydrate catabolism, oxidative phosphorylation, and glycolysis energy production. In addition, we found that the larvae may use antioxidant defenses and P450 detoxification mechanisms to mitigate the effects of imidacloprid. Ultimately, this study provides the first evidence that environmentally exposed imidacloprid can affect the growth and development of bee larvae by disrupting molting regulation and limiting the metabolism and utilization of dietary nutrients and energy. These findings have broader implications for studies assessing pesticide hazards in other juvenile animals.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Yuedi Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Qiqian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Lanchun Chen
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Xiaoqun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Zhengang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Chongqing, China
- The State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Bass C, Hayward A, Troczka BJ, Haas J, Nauen R. The molecular determinants of pesticide sensitivity in bee pollinators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170174. [PMID: 38246392 DOI: 10.1016/j.scitotenv.2024.170174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Bees carry out vital ecosystem services by pollinating both wild and economically important crop plants. However, while performing this function, bee pollinators may encounter potentially harmful xenobiotics in the environment such as pesticides (fungicides, herbicides and insecticides). Understanding the key factors that influence the toxicological outcomes of bee exposure to these chemicals, in isolation or combination, is essential to safeguard their health and the ecosystem services they provide. In this regard, recent work using toxicogenomic and phylogenetic approaches has begun to identify, at the molecular level, key determinants of pesticide sensitivity in bee pollinators. These include detoxification systems that convert pesticides to less toxic forms and key residues in insecticide target-sites that underlie species-specific insecticide selectivity. Here we review this emerging body of research and summarise the state of knowledge of the molecular determinants of pesticide sensitivity in bee pollinators. We identify gaps in our knowledge for future research and examine how an understanding of the genetic basis of bee sensitivity to pesticides can be leveraged to, a) predict and avoid negative bee-pesticide interactions and facilitate the future development of pest-selective bee-safe insecticides, and b) inform traditional effect assessment approaches in bee pesticide risk assessment and address issues of ecotoxicological concern.
Collapse
Affiliation(s)
- Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom.
| | - Angela Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Bartlomiej J Troczka
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Julian Haas
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany.
| |
Collapse
|
14
|
Yin C, O’Reilly AO, Liu SN, Du TH, Gong PP, Zhang CJ, Wei XG, Yang J, Huang MJ, Fu BL, Liang JJ, Xue H, Hu JY, Ji Y, He C, Du H, Wang C, Zhang R, Tan QM, Lu HT, Xie W, Chu D, Zhou XG, Nauen R, Gui LY, Bass C, Yang X, Zhang YJ. Dual mutations in the whitefly nicotinic acetylcholine receptor β1 subunit confer target-site resistance to multiple neonicotinoid insecticides. PLoS Genet 2024; 20:e1011163. [PMID: 38377137 PMCID: PMC10906874 DOI: 10.1371/journal.pgen.1011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/01/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTβ1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dβ1 was replaced with BTβ1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dβ1 were replaced with the wildtype BTβ1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.
Collapse
Affiliation(s)
- Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Andrias O. O’Reilly
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Shao-Nan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tian-Hua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Pei-Pan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Cheng-Jia Zhang
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, P. R. China
| | - Xue-Gao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ming-Jiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Bu-Li Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jin-Jin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jin-Yu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qi-Mei Tan
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, P. R. China
| | - Han-Tang Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, School of Agriculture and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Lian-You Gui
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - You-Jun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
15
|
Han Q, Zhou Y, Zi Y, Zhang R, Feng T, Zou R, Zhu W, Wang Y, Duan H. Discovery of piperonyl-tethered sulfoximines as novel low bee-toxicity aphicides targeting Amelα1/ratβ2 complex. Int J Biol Macromol 2023; 253:126719. [PMID: 37678680 DOI: 10.1016/j.ijbiomac.2023.126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Nicotinic acetylcholine receptor (nAChR) is recognized as a significant insecticide target for neonicotinoids and some agonists. In this study, the nAChR α1 subunit from Apis mellifera was first found to be narrowly tuned to different bee toxicity insecticides, namely, sulfoxaflor (SFX) and flupyradifurone (FPF). Hence, novel sulfoximine derivatives 7a-h were rationally designed and synthesized by introducing a benzo[d][1,3]dioxole moiety into a unique sulfoximine skeleton based on the binding cavity characteristics of Amelα1/ratβ2. The two electrode voltage clamp responses of 7a-h were obviously lower than that of SFX, indicating their potentially low bee toxicity. Besides, representative compounds 7b and 7g exhibited low bee toxicity (LD50 > 11.0 μg/bee at 48 h) revealed by acute contact toxicity bioassays. Molecular modelling results indicated that Ile152, Ala151, and Val160 from honeybee subunit Amelα1 and Lys144 and Trp80 from aphid subunit Mpα1 may be crucial for bee toxicity and aphicidal activity, respectively. These results clarify the toxic mechanism of agonist insecticides on nontargeted pollinators and reveal novel scaffold sulfoximine aphicidal candidates with low bee toxicity. These results will provide a new perspective on the rational design and highly effective development of novel eco-friendly insecticides based on the structure of the nAChR subunit.
Collapse
Affiliation(s)
- Qing Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Yuxin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China
| | - Yunjiang Zi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Rulei Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Tianyu Feng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Renxuan Zou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Wenya Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China.
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China.
| |
Collapse
|
16
|
Fricaux T, Le Navenant A, Siegwart M, Rault M, Coustau C, Le Goff G. The Molecular Resistance Mechanisms of European Earwigs from Apple Orchards Subjected to Different Management Strategies. INSECTS 2023; 14:944. [PMID: 38132618 PMCID: PMC10743755 DOI: 10.3390/insects14120944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
To date, apple orchards are among the most treated crops in Europe with up to 35 chemical treatments per year. Combining control methods that reduce the number of pesticide treatments is essential for agriculture and more respectful of the environment, and the use of predatory insects such as earwigs may be valuable to achieve this goal. European earwigs, Forficula auricularia (Dermaptera: Forficulidae) are considered beneficial insects in apple orchards where they can feed on many pests like aphids. The aim of this study was to investigate the potential impact of orchards' insecticide treatments on resistance-associated molecular processes in natural populations of earwigs. Because very few molecular data are presently available on earwigs, our first goal was to identify earwig resistance-associated genes and potential mutations. Using earwigs from organic, integrated pest management or conventional orchards, we identified mutations in acetylcholinesterase 2, α1 and β2 nicotinic acetylcholine receptors. In addition, the expression level of these targets and of some essential detoxification genes were monitored using RT-qPCR. Unexpectedly, earwigs collected in organic orchards showed the highest expression for acetylcholinesterase 2. Four cytochromes P450, one esterase and one glutathione S-transferases were over-expressed in earwigs exposed to various management strategies in orchards. This first study on resistance-associated genes in Forficula auricularia paves the way for future experimental studies aimed at better understanding the potential competition between natural enemies in apple orchards in order to optimize the efficiency of biocontrol.
Collapse
Affiliation(s)
- Thierry Fricaux
- Université Côte d’Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France; (T.F.); (C.C.)
| | - Adrien Le Navenant
- Avignon Université, Aix-Marseille Université, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, F-84916 Avignon, France; (A.L.N.); (M.R.)
| | - Myriam Siegwart
- INRAE, Unité PSH, Site Agroparc, F-84914 Avignon, Cedex 9, France;
| | - Magali Rault
- Avignon Université, Aix-Marseille Université, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, F-84916 Avignon, France; (A.L.N.); (M.R.)
| | - Christine Coustau
- Université Côte d’Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France; (T.F.); (C.C.)
| | - Gaëlle Le Goff
- Université Côte d’Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France; (T.F.); (C.C.)
| |
Collapse
|
17
|
Mustard JA, Dobb R, Wright GA. Chronic nicotine exposure influences learning and memory in the honey bee. JOURNAL OF INSECT PHYSIOLOGY 2023; 151:104582. [PMID: 37918514 DOI: 10.1016/j.jinsphys.2023.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
In insects, nicotine activates nicotinic acetylcholine receptors, which are expressed throughout the central nervous system. However, little work has been done to investigate the effects of chronic nicotine treatment on learning or other behaviors in non-herbivorous insects. To examine the effects of long term nicotine consumption on learning and memory, honey bees were fed nicotine containing solutions over four days. Bees were able to detect nicotine at 0.1 mM in sucrose solutions, and in a no choice assay, bees reduced food intake when nicotine was 1 mM or higher. Treatment with a low dose of nicotine decreased the proportion of bees able to form an associative memory when bees were conditioned with either a massed or spaced appetitive olfactory training paradigm. On the other hand, higher doses of nicotine increased memory retention and the proportion of bees responding to the odor during 10 min and 24 h recall tests. The reduction in nicotine containing food consumed may also impact response levels during learning and recall tests. These data suggest that long term exposure to nicotine has complex effects on learning and memory.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Rachel Dobb
- Centre for Behaviour and Evolution, Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | |
Collapse
|
18
|
Wang Z, Zhang R, Pei Y, Wu W, Hu Z, Zuo Y. The knockout of the nicotinic acetylcholine receptor subunit gene α1 (nAChR α1) through CRISPR/Cas9 technology exposes its involvement in the resistance of Spodoptera exigua to insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105616. [PMID: 37945231 DOI: 10.1016/j.pestbp.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023]
Abstract
Insect nicotinic acetylcholine receptors (nAChRs) are the directed targets of many insecticides. However, there have been no reports on the molecular characterization of the nAChR gene family or the causal association between nAChR α1 and resistance to insecticides in S. exigua, which is a significant agricultural pest. In this study, we identified a total of 9 candidate nAChR subunits in S. exigua, namely nAChR α1-α7 and nAChR β1-β2. For functional validation roles of Seα1 in insecticide resistance of S. exigua, we introduced a ∼ 1041-bp deletion of the Seα1 gene in a homozygous mutant strain (Seα1-KO) by CRISPR/Cas9 genome editing system, resulting in a premature truncation of the Seα1 protein and the subsequent loss of functional transmembrane (TM) 3 and TM4 elements. Compared with WH-S strain (wild-type strain), the Seα1-KO strain exhibited 2.62-folds resistant to trifluoropyrimidine, 8.3-folds resistant to dimehypo, and 5.28-folds resistant to dinotefuran, but no significant change in susceptibility to emamectin benzoate, spinetoram, lambda-cyhalothrin, permethrin and chlorpyrifos. Thus, this study has laid a solid foundation for investigating the role of nAChRs in S. exigua, and provides evidence for the crucial involvement of the α1 subunit in the mechanism of trifluoropyrimidine, dimehypo, and dinotefuran in S. exigua. Moreover, it provides a reference for the value of Seα1 subunit and its homologues in other species as insecticide targets.
Collapse
Affiliation(s)
- Zeyu Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, PR China
| | - Ruiming Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, PR China
| | - Yakun Pei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, PR China
| | - Wenjun Wu
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, PR China
| | - Zhaonong Hu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, PR China.
| | - Yayun Zuo
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
19
|
Martelli F, Ravenscroft TA, Hutchison W, Batterham P. Tissue-specific transcriptome analyses in Drosophila provide novel insights into the mode of action of the insecticide spinosad and the function of its target, nAChRα6. PEST MANAGEMENT SCIENCE 2023; 79:3913-3925. [PMID: 37248207 DOI: 10.1002/ps.7585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND The insecticides spinosad and imidacloprid are neurotoxins with distinct modes of action. Both target nicotinic acetylcholine receptors (nAChRs), albeit different subunits. Spinosad is an allosteric modulator, that upon binding initiates endocytosis of its target, nAChRα6. Imidacloprid binding triggers excessive neuronal ion influx. Despite these differences, low-dose effects converge downstream in the precipitation of oxidative stress and neurodegeneration. RESULTS Using RNA-sequencing, we compared the transcriptional signatures of spinosad and imidacloprid, at low-dose exposures. Both insecticides cause up-regulation of glutathione S-transferase and cytochrome P450 genes in the brain and down-regulation in the fat body, whereas reduced expression of immune-related genes is observed in both tissues. Spinosad shows unique impacts on genes involved in lysosomal function, protein folding, and reproduction. Co-expression analyses revealed little to no correlation between genes affected by spinosad and nAChRα6 expressing neurons, but a positive correlation with glial cell markers. We also detected and experimentally confirmed nAChRα6 expression in fat body cells and male germline cells. This led us to uncover lysosomal dysfunction in the fat body following spinosad exposure, and a fitness cost in spinosad-resistant (nAChRα6 null) males - oxidative stress in testes, and reduced fertility. CONCLUSION Spinosad and imidacloprid share transcriptional perturbations in immunity-, energy homeostasis-, and oxidative stress-related genes. Low doses of other neurotoxic insecticides should be investigated for similar impacts. While target-site spinosad resistance mutation has evolved in the field, this may have a fitness cost. Our findings demonstrate the power of tissue-specific transcriptomics approach and the use of single-cell transcriptome data. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Felipe Martelli
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - William Hutchison
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Philip Batterham
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Shi C, Tian Y, Wang Y, Guo W, Jiang W. The interaction of nicotinic acetylcholine receptor subunits Ldα3, Ldα8 and Ldβ1 with neonicotinoids in Colorado potato beetle, Leptinotarsa decemlineata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105558. [PMID: 37666594 DOI: 10.1016/j.pestbp.2023.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is an extremely destructive notifiable quarantine pest. Over the last two decades, neonicotinoid insecticides, particularly thiamethoxam and imidacloprid, have been used to control it in Xinjiang, and local field populations have developed different levels of resistance in consequence. However, the contributions of nicotinic acetylcholine receptors (nAChRs) to neonicotinoid resistance are currently poorly understood in CPB. Previous studies have shown that nAChRα1, α3, α8 and β1 are major target subunits for neonicotinoids in some model and important agricultural insects including nAChRα1 subunit of L. decemlineata (Ldα1). In this study, the expression levels of Ldα3, Ldα8 and Ldβ1 following 72 h of treatments with median lethal doses of thiamethoxam and imidacloprid were compared using real-time quantitative PCR. These genes were then individually and simultaneously knocked down with Ldα1 by RNA interference (RNAi) using a double-stranded RNA (dsRNA) feeding method for six days to explore their roles in CPB susceptibility to imidacloprid and thiamethoxam. The results showed that the expressions of Ldα3, Ldα8 and Ldβ1 were significantly decreased by 36.99-74.89% after thiamethoxam and imidacloprid treatments, compared with the control. The significant downregulation of the target genes resulting from RNAi significantly reduced the mortality of adults exposed to thiamethoxam and imidacloprid by 34.53% -56.44% and 28.78%-43.93%, respectively. Furthermore, the adult survival rates were not affected by every dsRNA-feeding treatment, while the body weight of the test adults significantly deceased after four and six days of individual gene RNAi. This study showed that Ldα3, Ldα8 and Ldβ1 are down-regulated by thiamethoxam and imidacloprid and play important roles in the tolerance of CPB to neonicotinoids.
Collapse
Affiliation(s)
- Chengcheng Shi
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Yitong Tian
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Yaqi Wang
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Wenchao Guo
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry Agriculture P.R. China, Urumqi, China
| | - Weihua Jiang
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China.
| |
Collapse
|
21
|
Dirnberger B, Korona D, Popovic R, Deery MJ, Barber H, Russell S, Lilley KS. Enrichment of Membrane Proteins for Downstream Analysis Using Styrene Maleic Acid Lipid Particles (SMALPs) Extraction. Bio Protoc 2023; 13:e4728. [PMID: 37575399 PMCID: PMC10415199 DOI: 10.21769/bioprotoc.4728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Integral membrane proteins are an important class of cellular proteins. These take part in key cellular processes such as signaling transducing receptors to transporters, many operating within the plasma membrane. More than half of the FDA-approved protein-targeting drugs operate via interaction with proteins that contain at least one membrane-spanning region, yet the characterization and study of their native interactions with therapeutic agents remains a significant challenge. This challenge is due in part to such proteins often being present in small quantities within a cell. Effective solubilization of membrane proteins is also problematic, with the detergents typically employed in solubilizing membranes leading to a loss of functional activity and key interacting partners. In recent years, alternative methods to extract membrane proteins within their native lipid environment have been investigated, with the aim of producing functional nanodiscs, maintaining protein-protein and protein-lipid interactions. A promising approach involves extracting membrane proteins in the form of styrene maleic acid lipid particles (SMALPs) that allow the retention of their native conformation. This extraction method offers many advantages for further protein analysis and allows the study of the protein interactions with other molecules, such as drugs. Here, we describe a protocol for efficient SMALP extraction of functionally active membrane protein complexes within nanodiscs. We showcase the method on the isolation of a low copy number plasma membrane receptor complex, the nicotinic acetylcholine receptor (nAChR), from adult Drosophila melanogaster heads. We demonstrate that these nanodiscs can be used to study native receptor-ligand interactions. This protocol can be applied across many biological scenarios to extract the native conformations of low copy number integral membrane proteins.
Collapse
Affiliation(s)
- Benedict Dirnberger
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Dagmara Korona
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Rebeka Popovic
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Michael J. Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Helen Barber
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Tatarko AR, Leonard AS, Mathew D. A neonicotinoid pesticide alters Drosophila olfactory processing. Sci Rep 2023; 13:10606. [PMID: 37391495 PMCID: PMC10313779 DOI: 10.1038/s41598-023-37589-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
Neonicotinoid pesticides are well-known for their sublethal effects on insect behavior and physiology. Recent work suggests neonicotinoids can impair insect olfactory processing, with potential downstream effects on behavior and possibly survival. However, it is unclear whether impairment occurs during peripheral olfactory detection, during information processing in central brain regions, or in both contexts. We used Drosophila melanogaster to explore the potential for neonicotinoids to disrupt olfaction by conducting electrophysiological analyses of single neurons and whole antennae of flies exposed to varying concentrations of the neonicotinoid imidacloprid (IMD) that were shown to cause relative differences in fly survival. Our results demonstrated that IMD exposure significantly reduced the activity of a single focal olfactory neuron and delayed the return to baseline activity of the whole antenna. To determine if IMD also impacts olfactory-guided behavior, we compared flies' relative preference for odor sources varying in ethanol content. Flies exposed to IMD had a greater relative preference for ethanol-laced pineapple juice than control flies, demonstrating that neuronal shifts induced by IMD that we observed are associated with changes in relative preference. Given the interest in the sensory impacts of agrochemical exposure on wild insect behavior and physiology, we highlight the potential of Drosophila as a tractable model for investigating the effects of pesticides at scales ranging from single-neuron physiology to olfactory-guided behavior.
Collapse
Affiliation(s)
- Anna R Tatarko
- Department of Biology, University of Nevada-Reno, Reno, NV, 89557, USA.
| | - Anne S Leonard
- Department of Biology, University of Nevada-Reno, Reno, NV, 89557, USA
| | - Dennis Mathew
- Department of Biology, University of Nevada-Reno, Reno, NV, 89557, USA
| |
Collapse
|
23
|
Yin C, Gui LY, Du TH, Zhang CJ, Wei XG, Yang J, Huang MJ, Fu BL, Gong PP, Liang JJ, Liu SN, Xue H, Hu JY, Ji Y, He C, Du H, Wang C, Zhang R, Wu QJ, Yang X, Zhang YJ. Knockdown of the Nicotinic Acetylcholine Receptor β1 Subunit Decreases the Susceptibility to Five Neonicotinoid Insecticides in Whitefly ( Bemisia tabaci). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7221-7229. [PMID: 37157975 DOI: 10.1021/acs.jafc.3c00782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The sweet potato whitefly, Bemisia tabaci, (Gennadius) (Hemiptera:Aleyrodidae) is a global pest of crops. Neonicotinoids are efficient insecticides used for control of this pest. Insecticidal targets of neonicotinoids are insect nicotinic acetylcholine receptors (nAChRs). Here, we characterized and cloned the full length of the nAChR β1 subunit (BTβ1) in B. tabaci and confirmed the consistency of BTβ1 in B. tabaci MEAM1 and MED. Expression levels of BTβ1 in different developmental stages and body parts of adults were investigated and compared in B. tabaci MED. dsRNA was prepared to knock down BTβ1 in adult B. tabaci and significantly decreases the susceptibility to five neonicotinoid insecticides, including imidacloprid, clothianidin, thiacloprid, nitenpyram, and dinotefuran. This study indicated BTβ1 as a notable site influencing the susceptibility of B. tabaci to neonicotinoids.
Collapse
Affiliation(s)
- Cheng Yin
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, People's Republic of China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Lian-You Gui
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, People's Republic of China
| | - Tian-Hua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Cheng-Jia Zhang
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, Hunan 410125, People's Republic of China
| | - Xue-Gao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Ming-Jiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bu-Li Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Pei-Pan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Jin-Jin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Shao-Nan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Jin-Yu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Qing-Jun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - You-Jun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
24
|
Sun H, Lin X, Zhang H, Zhang Y, Liu Z. A consensus phosphoserine within the large cytoplasmic loop of insect nAChR α8 subunits modulated interaction between 14-3-3ε and nAChRs to regulate neonicotinoid efficacy. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105384. [PMID: 37105614 DOI: 10.1016/j.pestbp.2023.105384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Neonicotinoids are insect-selective nicotinic acetylcholine receptors (nAChRs) agonists that are used extensively for plant protection and animal health care. Some chaperone proteins, such as 14-3-3 proteins, importantly modulate nAChRs to display the physiological and pharmacological properties. Here we found that there is a 14-3-3 binding motif RSPSTH within the cytoplasmic loop of most insect α8 subunits. In the motif, a potential phosphorylated serine residue, serine 337, was a putative protein kinase A (PKA) substrate. Using Locusta migratoria α8 subunit as a representative, here we demonstrated that Loc14-3-3ε interacted with the unique phosphoserine (α8S337) of Locα8 subunit to regulate agonist efficacy on hybrid Locα8/β2 nAChRs in Xenopus oocytes. Co-expression of Loc14-3-3ε caused a dramatic rise of maximal inward currents (Imax) of Locα8/β2 for acetylcholine and imidacloprid to 2.9-fold and 3.1-fold of that of Locα8/β2 alone. The S337A substitution of Locα8 reduced the Imax rise when Locα8S337A/β2 and Loc14-3-3ε were co-expressed. The increased agonist currents by exogenous Loc14-3-3ε on Locα8/β2 could be almost abolished by either PKA inhibitor KT5720 or 14-3-3 inhibitor difopein. The findings revealed that serine 337 within motif RSPSTH was important for the interaction between insect nAChRs and 14-3-3ε, and inhibiting the interaction would change the pharmacological property of insect nAChRs to agonist such as neonicotinoids which may provide insights to develop new targets for insecticide design.
Collapse
Affiliation(s)
- Huahua Sun
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 30071, China
| | - Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
25
|
Ozoe Y, Matsubara Y, Tanaka Y, Yoshioka Y, Ozoe F, Shiotsuki T, Nomura K, Nakao T, Banba S. Controlled expression of nicotinic acetylcholine receptor-encoding genes in insects uncovers distinct mechanisms of action of the neonicotinoid insecticide dinotefuran. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105378. [PMID: 36963946 DOI: 10.1016/j.pestbp.2023.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Dinotefuran, a neonicotinoid, is a unique insecticide owing to its structure and action. We took two approaches that employed insects with controlled expression of nicotinic acetylcholine receptor (nAChR)-encoding genes to gain insight into the uniqueness of dinotefuran. First, we examined the insecticidal activity of dinotefuran and imidacloprid against brown planthoppers (Nilaparvata lugens), in which the expression of eight (of 13) individual subunit-encoding genes was specifically reduced using RNA interference. Knockdown of the tested gene, except one, resulted in a decrease in sensitivity to imidacloprid, whereas the sensitivity of N. lugens to dinotefuran decreased only when two of the eight genes were knocked down. These findings imply that a major dinotefuran-targeted nAChR subtype may contain specific subunits although imidacloprid acts on a broad range of receptor subtypes. Next, we examined the effects of knockout of Drosophila α1 subunit-encoding gene (Dα1) on the insecticidal effects of dinotefuran and imidacloprid. Dα1-deficient flies (Dα1KO) demonstrated the same sensitivity to dinotefuran as control flies, but a decreased sensitivity to imidacloprid. This difference was attributed to a reduction in imidacloprid-binding sites in Dα1KO flies, whereas the binding of dinotefuran remained unchanged. RNA sequencing analysis indicated that Dα2 expression was specifically enhanced in Dα1KO flies. These findings suggest that changes in Dα1 and Dα2 expression contribute to the differences in the insecticidal activity of dinotefuran and imidacloprid in Dα1KO flies. Overall, our findings suggest that dinotefuran acts on distinct nAChR subtypes.
Collapse
Affiliation(s)
- Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan; Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan.
| | - Yoshiki Matsubara
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Yuji Tanaka
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Yasuhide Yoshioka
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Fumiyo Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan; Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Takahiro Shiotsuki
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Kazuki Nomura
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc., Mobara, Chiba 297-0017, Japan
| | - Toshifumi Nakao
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc., Mobara, Chiba 297-0017, Japan
| | - Shinichi Banba
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc., Mobara, Chiba 297-0017, Japan
| |
Collapse
|
26
|
Chen W, Li Z, Zhou C, Ali A, Ali S, Wu J. RNA interference in cytochrome P450 monooxygenase (CYP) gene results in reduced insecticide resistance in Megalurothrips usitatus Bagnall. Front Physiol 2023; 14:1130389. [PMID: 37051022 PMCID: PMC10083390 DOI: 10.3389/fphys.2023.1130389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Genes of the cytochrome P450 (CYP450) superfamily are known to be involved in the evolution of insecticide resistance. In this study, the transcriptomes of two Megalurothrips usitatus Bagnall (Thysanoptera: Thripidae) strains (resistant and susceptible) were screened for detoxification genes. MusiDN2722 encodes a protein composed of 504 amino acid residues with a relative molecular mass of 57.3 kDa. Multiple sequence alignment and phylogenetic analysis showed that MusiDN2722 is a member of the CYP450 family and has characteristics of the conserved CYP6 domain shared by typical CYP450 family members. RT-qPCR (real-time quantitative polymerase chain reaction) analysis showed that MusiDN2722 was upregulated in the acetamiprid-resistant strain compared with the susceptible strain (p < 0.05), and the relative expression level was significantly higher at 48 h after exposure than at 24 h after exposure. The interference efficiency of the injection method was higher than that of the membrane-feeding method. Silencing of MusiDN2722 through RNA interference significantly increased the sensitivity of M. usitatus to acetamiprid. Overall, this study revealed that MusiDN2722 plays a crucial role in the resistance of M. usitatus to acetamiprid. The findings will not only advance our understanding of the role of P450s in insecticide resistance but also provide a potential target for the sustainable control of destructive pests such as thrips.
Collapse
Affiliation(s)
- Weiyi Chen
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhaoyang Li
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Chenyan Zhou
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Asad Ali
- Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan
| | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- *Correspondence: Jianhui Wu, ; Shaukat Ali,
| | - Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- *Correspondence: Jianhui Wu, ; Shaukat Ali,
| |
Collapse
|
27
|
Witwicka A, López‐Osorio F, Patterson V, Wurm Y. Expression of subunits of an insecticide target receptor varies across tissues, life stages, castes, and species of social bees. Mol Ecol 2023; 32:1034-1044. [PMID: 36478483 PMCID: PMC10947401 DOI: 10.1111/mec.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Global losses of insects jeopardize ecosystem stability and crop pollination. Robust evidence indicates that insecticides have contributed to these losses. Notably, insecticides targeting nicotinic acetylcholine receptors (nAChRs) have neurotoxic effects on beneficial insects. Because each nAChR consists of five subunits, the alternative arrangements of subunits could create a multitude of receptors differing in structure and function. Therefore, understanding whether the use of subunits varies is essential for evaluating and predicting the effects of insecticides targeting such receptors. To better understand how the use and composition of nAChRs differ within and between insect pollinators, we analysed RNA-seq gene expression data from tissues and castes of Apis mellifera honey bees and life stages and castes of the Bombus terrestris bumble bees. We reveal that all analysed tissues express nAChRs and that relative expression levels of nAChR subunits vary widely across almost all comparisons. Our work thus shows fine-tuned spatial and temporal expression of nAChRs. Given that coexpression of subunits underpins the compositional diversity of functional receptors and that the affinities of insecticides depend on nAChR composition, our findings provide a likely mechanism for the various damaging effects of nAChR-targeting insecticides on insects. Furthermore, our results indicate that the appraisal of insecticide risks should carefully consider variation in molecular targets.
Collapse
Affiliation(s)
| | | | | | - Yannick Wurm
- Biology DepartmentQueen Mary University of LondonLondonUK
- Digital Environment Research InstituteQueen Mary University of LondonLondonUK
- Alan Turing InstituteLondonUK
| |
Collapse
|
28
|
Komori Y, Takayama K, Okamoto N, Kamiya M, Koizumi W, Ihara M, Misawa D, Kamiya K, Yoshinari Y, Seike K, Kondo S, Tanimoto H, Niwa R, Sattelle DB, Matsuda K. Functional impact of subunit composition and compensation on Drosophila melanogaster nicotinic receptors-targets of neonicotinoids. PLoS Genet 2023; 19:e1010522. [PMID: 36795653 PMCID: PMC9934367 DOI: 10.1371/journal.pgen.1010522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 02/17/2023] Open
Abstract
Neonicotinoid insecticides target insect nicotinic acetylcholine receptors (nAChRs) and their adverse effects on non-target insects are of serious concern. We recently found that cofactor TMX3 enables robust functional expression of insect nAChRs in Xenopus laevis oocytes and showed that neonicotinoids (imidacloprid, thiacloprid, and clothianidin) exhibited agonist actions on some nAChRs of the fruit fly (Drosophila melanogaster), honeybee (Apis mellifera) and bumblebee (Bombus terrestris) with more potent actions on the pollinator nAChRs. However, other subunits from the nAChR family remain to be explored. We show that the Dα3 subunit co-exists with Dα1, Dα2, Dβ1, and Dβ2 subunits in the same neurons of adult D. melanogaster, thereby expanding the possible nAChR subtypes in these cells alone from 4 to 12. The presence of Dα1 and Dα2 subunits reduced the affinity of imidacloprid, thiacloprid, and clothianidin for nAChRs expressed in Xenopus laevis oocytes, whereas the Dα3 subunit enhanced it. RNAi targeting Dα1, Dα2 or Dα3 in adults reduced expression of targeted subunits but commonly enhanced Dβ3 expression. Also, Dα1 RNAi enhanced Dα7 expression, Dα2 RNAi reduced Dα1, Dα6, and Dα7 expression and Dα3 RNAi reduced Dα1 expression while enhancing Dα2 expression, respectively. In most cases, RNAi treatment of either Dα1 or Dα2 reduced neonicotinoid toxicity in larvae, but Dα2 RNAi enhanced neonicotinoid sensitivity in adults reflecting the affinity-reducing effect of Dα2. Substituting each of Dα1, Dα2, and Dα3 subunits by Dα4 or Dβ3 subunit mostly increased neonicotinoid affinity and reduced efficacy. These results are important because they indicate that neonicotinoid actions involve the integrated activity of multiple nAChR subunit combinations and counsel caution in interpreting neonicotinoid actions simply in terms of toxicity.
Collapse
Affiliation(s)
- Yuma Komori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Masaki Kamiya
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Wataru Koizumi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | | | | | - Yuto Yoshinari
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Kazuki Seike
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Invertebrate Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - David B. Sattelle
- Centre for Respiratory Biology, Division of Medicine, University College London, London, United Kingdom
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
- * E-mail:
| |
Collapse
|
29
|
Jensen MA, Blatz DJ, LaLone CA. Defining the Biologically Plausible Taxonomic Domain of Applicability of an Adverse Outcome Pathway: A Case Study Linking Nicotinic Acetylcholine Receptor Activation to Colony Death. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:71-87. [PMID: 36263952 PMCID: PMC10100214 DOI: 10.1002/etc.5501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
For the majority of developed adverse outcome pathways (AOPs), the taxonomic domain of applicability (tDOA) is typically narrowly defined with a single or a handful of species. Defining the tDOA of an AOP is critical for use in regulatory decision-making, particularly when considering protection of untested species. Structural and functional conservation are two elements that can be considered when defining the tDOA. Publicly accessible bioinformatics approaches, such as the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool, take advantage of existing and growing databases of protein sequence and structural information to provide lines of evidence toward structural conservation of key events (KEs) and KE relationships (KERs) of an AOP. It is anticipated that SeqAPASS results could readily be combined with data derived from empirical toxicity studies to provide evidence of both structural and functional conservation, to define the tDOA for KEs, KERs, and AOPs. Such data could be incorporated in the AOP-Wiki as lines of evidence toward biological plausibility for the tDOA. We present a case study describing the process of using bioinformatics to define the tDOA of an AOP using an AOP linking the activation of the nicotinic acetylcholine receptor to colony death/failure in Apis mellifera. Although the AOP was developed to gain a particular biological understanding relative to A. mellifera health, applicability to other Apis bees, as well as non-Apis bees, has yet to be defined. The present study demonstrates how bioinformatics can be utilized to rapidly take advantage of existing protein sequence and structural knowledge to enhance and inform the tDOA of KEs, KERs, and AOPs, focusing on providing evidence of structural conservation across species. Environ Toxicol Chem 2023;42:71-87. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Marissa A. Jensen
- Department of Biology, Swenson College of Science and EngineeringUniversity of Minnesota DuluthDuluthMinnesotaUSA
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | | | - Carlie A. LaLone
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| |
Collapse
|
30
|
Connolly CN, Alexander SPH, Davies JA, Spedding M. Environmental pharmacology-Dosing the environment: IUPHAR review 36. Br J Pharmacol 2022; 179:5172-5179. [PMID: 35975296 PMCID: PMC9804906 DOI: 10.1111/bph.15933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 01/09/2023] Open
Abstract
Pesticide action is predominantly measured as a toxicological outcome, with pharmacological impact of sublethal doses on bystander species left largely undocumented. Likewise, chronic exposure, which often results in responses different from acute administration, has also been understudied. In this article, we propose the application of standard pharmacological principles, already used to establish safe clinical dosing regimens in humans, to the 'dosing of the environment'. These principles include relating the steady state dose of an agent to its beneficial effects (e.g. pest control), while minimising harmful impacts (e.g. off-target bioactivity in beneficial insects). We propose the term 'environmental therapeutic window', analogous to that used in mammalian pharmacology, to guide risk assessment. To make pharmacological terms practically useful to environmental protection, quantitative data on pesticide action need to be made available in a freely accessible database, which should include toxicological and pharmacological impacts on both target and off-target species.
Collapse
Affiliation(s)
| | | | - Jamie A. Davies
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
31
|
Yuan GR, Chen ML, Peng ML, Lei W, Meng LW, Dou W, Wang JJ. Knockdown of a Nicotinic Acetylcholine Receptor Subunit Gene Bdorβ1 Decreases Susceptibility to Oxa-Bridged trans- instead of cis-Nitromethylene Neonicotinoid Insecticides in Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13554-13562. [PMID: 36224100 DOI: 10.1021/acs.jafc.2c04709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate the fast action of acetylcholine in synaptic cholinergic transmissions. Insect nAChRs are the target of several classes of insecticides. Here, the full-length cDNA encoding a nAChR beta1 subunit (Bdorβ1) was identified and characterized from a destructive pest, Bactrocera dorsalis. The amino acid sequence of Bdorβ1 shows high identities to other insect nAChRs β1 subunits. Double injection of dsBdorβ1 reduced the expression of Bdorβ1 and in turn significantly decreased susceptibility to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids. Our results support the involvement of Bdorβ1 in the susceptibility of B. dorsalis to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids and imply that these two classes of neonicotinoids might be acting at different nAChR subtypes.
Collapse
Affiliation(s)
- Guo-Rui Yuan
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Meng-Ling Chen
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Meng-Lan Peng
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Lei
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Li-Wei Meng
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Dou
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| |
Collapse
|
32
|
Sattelle DB. Invertebrate neurones, genomes, phenotypic and target-based screening; their contributions to the search for new chemical leads and new molecular targets for the control of pests, parasites and disease vectors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105175. [PMID: 36127074 DOI: 10.1016/j.pestbp.2022.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Insect-borne diseases of humans, animals and plants can be devastating. The direct damage to crops by insect and nematode pests can also severely reduce crop yields and threaten harvests. Parasitic nematodes can impair human health and the health of farm livestock. Effective control for all such pests, vectors and pathogens is required as the economic and health burden can be substantial. Insecticides, nematicides and anthelmintics have been at the forefront of control and will remain important in the immediate future, even as we explore new and more sustainable methods to maintain the necessary disease control and the growth in food supply. Many important chemicals deployed for the control of invertebrate disease vectors and pathogens of humans, agricultural crops and farm livestock are active on ion channels, resulting in rapid actions. Understanding their modes of action has been accelerated by studies on the physiology of identifiable invertebrate excitable cells. Nematode and insect genetic model organisms and comparative genomics have contributed to defining the molecular targets of insecticides and anthelmintics, facilitating target-based screening. Automated phenotyping, which allows high-throughput screening of chemical libraries for new and re-purposed compounds, has been increasingly deployed in the search for new molecules of interest. With a growing world population to be fed and a 20-49% loss of global harvest to pests, we need to maintain control of the pests, parasites and pathogens that threaten global food supply and global health.
Collapse
Affiliation(s)
- David B Sattelle
- Division of Medicine, Rayne Building, University College London, 5 University Street, London WC1E 6JF, UK.
| |
Collapse
|
33
|
Brunello L, Ménard C, Rousset M, Vignes M, Charnet P, Cens T. Different efficiency of auxiliary/chaperone proteins to promote the functional reconstitution of honeybee glutamate and acetylcholine receptors in Xenopus laevis oocytes. INSECT MOLECULAR BIOLOGY 2022; 31:620-633. [PMID: 35587772 PMCID: PMC9546428 DOI: 10.1111/imb.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Heterologous expression systems (e.g., Xenopus laevis oocytes) are useful to study the biophysical properties and pharmacology of ionotropic receptors such as ionotropic glutamate (iGLuRs) and nicotinic acetylcholine (nAChRs) receptors. However, insect receptors often require the co-expression of chaperone proteins to be functional. Only few iGluRs and nAChRs have been successfully expressed in such systems. Here, we compared the efficiency of chaperone proteins to promote the functional expression of one Apis mellifera iGluR and several nAChR subunit combinations (α1α8β1, α7, α2α8β1 and α2α7α8β1) in Xenopus oocytes. To this end, we cloned a new iGluR (GluR-1) and potential chaperone proteins (e.g., SOL-1, Neto, NACHO) and tested more than 40 combinations of human, nematode and honeybee proteins. We obtained robust expression of GluR-1 and α1α8β1 when co-expressed with honeybee chaperone proteins and found that nAChR expression critically depended on the α1 subunit N-terminal sequence. We recorded small ACh-gated currents in few oocytes when the α7 subunit was co-expressed with Caenorhabditis elegans RIC-3, but none of the chaperone proteins allowed efficient expression of α2α8β1 or α2α7α8β1. Our results show that only some protein combinations can reconstitute functional receptors in Xenopus oocytes and that protein combination efficient in one species is not always efficient in another species.
Collapse
Affiliation(s)
- Lorène Brunello
- Intitut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Claudine Ménard
- Intitut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Matthieu Rousset
- Intitut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Michel Vignes
- Intitut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Pierre Charnet
- Intitut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Thierry Cens
- Intitut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCMMontpellierFrance
| |
Collapse
|
34
|
Wang ZM, Li S, Shi CC, Xie LJ, Fu KY, Jiang WH. The actions of neonicotinoid insecticides on nicotinic acetylcholine subunits Ldα1 and Ldα8 of Leptinotarsa decemlineata and assembled receptors. INSECT SCIENCE 2022; 29:1387-1400. [PMID: 35038787 DOI: 10.1111/1744-7917.13005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The insect nicotinic acetylcholine receptor (nAChR) is a pentameric channel protein and also a target for neonicotinoids. There are few reported studies on the molecular interactions of Leptinotarsa decemlineata nAChRs with neonicotinoids. In this study, we analyzed the response of acetylcholine and neonicotinoids (thiamethoxam [TMX], imidacloprid [IMI], and clothianidin [CLO]) on hybrid receptors constructed by nAChR α1 and α8 subunits of L. decemlineata (Ldα1 and Ldα8) co-expressed with rat β2 subunit (rβ2) at different capped RNA (cRNA) ratios in Xenopus oocytes. In addition, we evaluated the expression changes of Ldα1 and Ldα8 after median lethal dose of TMX treatment for 72 h by quantitative polymerase chain reaction (qPCR). The resulting functional nAChRs Ldα1/rβ2 and Ldα1/Ldα8/rβ2 showed different pharmacological characteristics. The neonicotinoids tested showed lower agonist affinity on Ldα1/Ldα8/rβ2 compared to Ldα1/rβ2 at same ratios of subunit cRNAs. The sensitivities of neonicotinoids tested for Ldα1/rβ2 and Ldα1/Ldα8/rβ2 at cRNA ratios of 5:1, 1:1 and 5:5:1, 1:1:1, respectively, were lower than those for nAChRs at ratios of 1:5 and 1:1:5, respectively, whereas the values of maximum response (Imax ) varied. For Ldα1/Ldα8/rβ2, a reduction of Lda8 cRNA resulted in increased sensitivity to IMI and decreased sensitivity to TMX. The expression of Ldα1 and Ldα8 significantly decreased in adults by 82.12% and 47.02%, respectively, while Ldα8 was significantly upregulated by 2.44 times in 4th instar larvae after exposure to TMX. We infer that Ldα1 and Ldα8 together play an important role in the sensitivity of L. decemlineata to neonicotinoids.
Collapse
Affiliation(s)
- Zhi-Min Wang
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Sha Li
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Cheng-Cheng Shi
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Lin-Jie Xie
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry Agriculture P.R. China, Urumqi, China
| | - Wei-Hua Jiang
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| |
Collapse
|
35
|
Takayama K, Ito R, Yamamoto H, Otsubo S, Matsumoto R, Ojima H, Komori Y, Matsuda K, Ihara M. Effects of cofactors RIC-3, TMX3 and UNC-50, together with distinct subunit ratios on the agonist actions of imidacloprid on Drosophila melanogaster Dα1/Dβ1 nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105177. [PMID: 36127041 DOI: 10.1016/j.pestbp.2022.105177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Insect nicotinic acetylcholine receptors (nAChRs) require cofactors for functional heterologous expression. A previous study revealed that TMX3 was crucial for the functional expression of Drosophila melanogaster Dα1/Dβ1 nAChRs in Xenopus laevis oocytes, while UNC-50 and RIC-3 enhanced the acetylcholine (ACh)-induced responses of the nAChRs. However, it is unclear whether the coexpression of UNC-50 and RIC-3 with TMX3 and the subunit stoichiometry affect pharmacology of Dα1/Dβ1 nAChRs when expressed in X. laevis oocytes. We have investigated the effects of coexpressing UNC-50 and RIC-3 with TMX3 as well as changing the subunit stoichiometry on the agonist activity of ACh and imidacloprid on the Dα1/Dβ1 nAChRs. UNC-50 and RIC-3 hardly affected the agonist affinity of ACh and imidacloprid for the Dα1/Dβ1 nAChRs formed by injecting into X. laevis oocytes with an equal amount mixture of the subunit cRNAs, but enhanced current amplitude of the ACh-induced response. Imidacloprid showed higher affinity for the Dβ1 subunit-excess Dα1/Dβ1 (Dα1/Dβ1 = 1/5) nAChRs than the Dα1 subunit-excess Dα1/Dβ1 (Dα1/Dβ1 = 5/1) nAChRs, suggesting that imidacloprid prefers the Dα1-Dβ1 orthosteric site over the Dα1-Dα1 orthosteric site.
Collapse
Affiliation(s)
- Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Ryo Ito
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Haruki Yamamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shuya Otsubo
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Rei Matsumoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hisanori Ojima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Yuma Komori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
36
|
Parkinson RH, Fecher C, Gray JR. Chronic exposure to insecticides impairs honeybee optomotor behaviour. FRONTIERS IN INSECT SCIENCE 2022; 2:936826. [PMID: 38468783 PMCID: PMC10926483 DOI: 10.3389/finsc.2022.936826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 03/13/2024]
Abstract
Honeybees use wide-field visual motion information to calculate the distance they have flown from the hive, and this information is communicated to conspecifics during the waggle dance. Seed treatment insecticides, including neonicotinoids and novel insecticides like sulfoxaflor, display detrimental effects on wild and managed bees, even when present at sublethal quantities. These effects include deficits in flight navigation and homing ability, and decreased survival of exposed worker bees. Neonicotinoid insecticides disrupt visual motion detection in the locust, resulting in impaired escape behaviors, but it had not previously been shown whether seed treatment insecticides disrupt wide-field motion detection in the honeybee. Here, we show that sublethal exposure to two commonly used insecticides, imidacloprid (a neonicotinoid) and sulfoxaflor, results in impaired optomotor behavior in the honeybee. This behavioral effect correlates with altered stress and detoxification gene expression in the brain. Exposure to sulfoxaflor led to sparse increases in neuronal apoptosis, localized primarily in the optic lobes, however there was no effect of imidacloprid. We propose that exposure to cholinergic insecticides disrupts the honeybee's ability to accurately encode wide-field visual motion, resulting in impaired optomotor behaviors. These findings provide a novel explanation for previously described effects of neonicotinoid insecticides on navigation and link these effects to sulfoxaflor for which there is a gap in scientific knowledge.
Collapse
Affiliation(s)
- Rachel H. Parkinson
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA, United States
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Caroline Fecher
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA, United States
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - John R. Gray
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
37
|
Shuai J, Wang X, Li G, Kong Y, Li W, Li Z, Cheng J. Study on the mode of action between Apis mellifera (α8)2(β1)3 nAChR and typical neonicotinoids versus flupyradifurone with different bee-toxic levels. J Mol Graph Model 2022; 114:108177. [DOI: 10.1016/j.jmgm.2022.108177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/26/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
38
|
Chen W, Gu X, Yang YT, Batterham P, Perry T. Dual nicotinic acetylcholine receptor subunit gene knockouts reveal limits to functional redundancy. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105118. [PMID: 35715057 DOI: 10.1016/j.pestbp.2022.105118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) subunit gene family consists of ten members in Drosophila melanogaster. The mature nAChR is a pentamer assembled from these subunits. Despite recent advances in the in vitro expression of some receptor subunit combinations (nAChR subtypes), the in vivo combinations and stoichiometry of these subtypes remains poorly defined. In addition, there are many potential nAChR signalling roles for different subtypes in insect behaviour, development and physiology. Prior work has shown that nAChR subunit mutants can display altered sleep and mating behaviour, disrupted hormone signalling and reduced locomotion, climbing ability and longevity. Teasing out the specific receptor subunits that are involved in these different functions is potentially made more difficult given that the structural similarity between members of gene families often means that there is a degree of functional redundancy. In order to circumvent this, we created a dual knockout strain for the Dα1 and Dβ2 nAChR subunit genes and examined four traits including insecticide resistance. These subunits had been previously implicated in the response to a neonicotinoid insecticide, imidacloprid. The use of the dual knockout revealed that Dα1 and Dβ2 subunits are involved in signalling that leads to the inflation of wings following adult emergence from the pupal case. The Dβ1 subunit had previously been implicated as a contributor to this function. The lack of a phenotype or low penetrance of the phenotype in the Dα1 and Dβ2 single mutants compared to the dual knockout suggests that these subunits are, to some extent, functionally redundant. We also observed stronger reductions in climbing ability and longevity in the dual knockout. Our findings demonstrate that a dual knockout approach to examining members of the nAChR subunit gene family may increase the power of genetic approaches linking individual subunits and combinations thereof to particular biological functions. This approach will be valuable as the nAChRs are so widely expressed in the insect brain that they are likely to have many functions that hereto remain undetected.
Collapse
Affiliation(s)
- Wei Chen
- Bio21 Molecular Science and Biotechnology Institute, School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Xinyue Gu
- Bio21 Molecular Science and Biotechnology Institute, School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Ying Ting Yang
- Bio21 Molecular Science and Biotechnology Institute, School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Philip Batterham
- Bio21 Molecular Science and Biotechnology Institute, School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Trent Perry
- Bio21 Molecular Science and Biotechnology Institute, School of BioSciences, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
39
|
Korona D, Dirnberger B, Giachello CNG, Queiroz RML, Popovic R, Müller KH, Minde DP, Deery MJ, Johnson G, Firth LC, Earley FG, Russell S, Lilley KS. Drosophila nicotinic acetylcholine receptor subunits and their native interactions with insecticidal peptide toxins. eLife 2022; 11:74322. [PMID: 35575460 PMCID: PMC9110030 DOI: 10.7554/elife.74322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Drosophila nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that represent a target for insecticides. Peptide neurotoxins are known to block nAChRs by binding to their target subunits, however, a better understanding of this mechanism is needed for effective insecticide design. To facilitate the analysis of nAChRs we used a CRISPR/Cas9 strategy to generate null alleles for all ten nAChR subunit genes in a common genetic background. We studied interactions of nAChR subunits with peptide neurotoxins by larval injections and styrene maleic acid lipid particles (SMALPs) pull-down assays. For the null alleles, we determined the effects of α-Bungarotoxin (α-Btx) and ω-Hexatoxin-Hv1a (Hv1a) administration, identifying potential receptor subunits implicated in the binding of these toxins. We employed pull-down assays to confirm α-Btx interactions with the Drosophila α5 (Dα5), Dα6, Dα7 subunits. Finally, we report the localisation of fluorescent tagged endogenous Dα6 during Drosophila CNS development. Taken together, this study elucidates native Drosophila nAChR subunit interactions with insecticidal peptide toxins and provides a resource for the in vivo analysis of insect nAChRs.
Collapse
Affiliation(s)
- Dagmara Korona
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Benedict Dirnberger
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom.,Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Syngenta, Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | - Carlo N G Giachello
- Syngenta, Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | - Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rebeka Popovic
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience/Anatomy Building, University of Cambridge, Cambridge, United Kingdom
| | - David-Paul Minde
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michael J Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Glynnis Johnson
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Lucy C Firth
- Syngenta, Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | - Fergus G Earley
- Syngenta, Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| |
Collapse
|
40
|
Matsuo Y. Introducing Thioredoxin-Related Transmembrane Proteins: Emerging Roles of Human TMX and Clinical Implications. Antioxid Redox Signal 2022; 36:984-1000. [PMID: 34465218 PMCID: PMC9127828 DOI: 10.1089/ars.2021.0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: The presence of a large number of thioredoxin superfamily members suggests a complex mechanism of redox-based regulation in mammalian cells. However, whether these members are functionally redundant or play separate and distinct roles in each cellular compartment remains to be elucidated. Recent Advances: In the mammalian endoplasmic reticulum (ER), ∼20 thioredoxin-like proteins have been identified. Most ER oxidoreductases are soluble proteins located in the luminal compartment, whereas a small family of five thioredoxin-related transmembrane proteins (TMX) also reside in the ER membrane and play crucial roles with specialized functions. Critical Issues: In addition to the predicted function of ER protein quality control, several independent studies have suggested the diverse roles of TMX family proteins in the regulation of cellular processes, including calcium homeostasis, bioenergetics, and thiol-disulfide exchange in the extracellular space. Moreover, recent studies have provided evidence of their involvement in the pathogenesis of various diseases. Future Directions: Extensive research is required to unravel the physiological roles of TMX family proteins. Given that membrane-associated proteins are prime targets for drug discovery in a variety of human diseases, expanding our knowledge on the mechanistic details of TMX action on the cell membrane will provide the molecular basis for developing novel diagnostic and therapeutic approaches as a potent molecular target in a clinical setting. Antioxid. Redox Signal. 36, 984-1000.
Collapse
Affiliation(s)
- Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
41
|
Cens T, Chavanieu A, Bertaud A, Mokrane N, Estaran S, Roussel J, Ménard C, De Jesus Ferreira M, Guiramand J, Thibaud J, Cohen‐Solal C, Rousset M, Rolland V, Vignes M, Charnet P. Molecular Targets of Neurotoxic Insecticides in
Apis mellifera. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thierry Cens
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Alain Chavanieu
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Anaïs Bertaud
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Nawfel Mokrane
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Sébastien Estaran
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Julien Roussel
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Claudine Ménard
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | | | - Janique Guiramand
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Jean‐Baptiste Thibaud
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Catherine Cohen‐Solal
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Matthieu Rousset
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Valérie Rolland
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Michel Vignes
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Pierre Charnet
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| |
Collapse
|
42
|
Mitchell EL, Viscarra F, Bermudez I, Hawkins J, Goodchild JA, Jones AK. The Apis mellifera alpha 5 nicotinic acetylcholine receptor subunit expresses as a homomeric receptor that is sensitive to serotonin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105055. [PMID: 35249651 DOI: 10.1016/j.pestbp.2022.105055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Insect nicotinic acetylcholine receptors (nAChRs) are molecular targets of highly effective insecticides such as neonicotinoids. Functional expression of these receptors provides useful insights into their functional and pharmacological properties. Here, we report that the α5 nAChR subunit of the honey bee, Apis mellifera, functionally expresses in Xenopus laevis oocytes, which is the first time a homomeric insect nAChR has been robustly expressed in a heterologous system without the need for chaperone proteins. Using two-electrode voltage-clamp electrophysiology we show that the α5 receptor has low sensitivity to acetylcholine with an EC50 of 2.37 mM. However, serotonin acts as an agonist with a considerably lower EC50 at 119 μM that is also more efficacious than acetylcholine in activating the receptor. Molecular modelling indicates that residues in the complementary binding site may be involved in the selectivity towards serotonin. This is the first report of a ligand-gated ion channel activated by serotonin from an insect and phylogenetic analysis shows that the α5 subunit of A. mellifera and other non-Dipteran insects, including pest species, belong to a distinct subgroup of subunits, which may represent targets for the development of novel classes of insecticides.
Collapse
Affiliation(s)
- Eleanor L Mitchell
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Franco Viscarra
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Joseph Hawkins
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Jim A Goodchild
- Syngenta, Jealotts Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom.
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| |
Collapse
|
43
|
Hawkins J, Mitchell EL, Jones AK. NACHO permits functional heterologous expression of an insect homomeric α6 nicotinic acetylcholine receptor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105030. [PMID: 35082026 DOI: 10.1016/j.pestbp.2021.105030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Insect nicotinic acetylcholine receptors (nAChR) are molecular targets of highly effective insecticides. The use of chaperone proteins has been key to successful functional expression of these receptors in heterologous systems, permitting functional and pharmacological studies of insect nAChRs with particular subunit composition. Here, we report the first use of the chaperone protein, NACHO, to enable functional expression of an insect nAChR, the α6 subunit from Apis mellifera, in Xenopus laevis oocytes. This is also the first report of functional expression of a homomeric insect α6 nAChR. Using two-electrode voltage-clamp electrophysiology we show that the acetylcholine EC50 of the α6 receptor is 0.88 μM and that acetylcholine responses are antagonized by α-bungarotoxin. Spinosad showed agonist actions and kept the ion channel open when co-applied with acetylcholine, reinforcing the α6 nAChR subunit as a key molecular target for the spinosyn class of insecticide. The use of NACHO may provide a basis for future expression studies of insect α6 nAChRs, potentially providing a tool for the discovery of novel insecticides.
Collapse
Affiliation(s)
- Joseph Hawkins
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Eleanor L Mitchell
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| |
Collapse
|
44
|
Ihara M. Ligand-gated ion channels as targets of neuroactive insecticides. Biosci Biotechnol Biochem 2022; 86:157-164. [PMID: 34849545 DOI: 10.1093/bbb/zbab202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 11/14/2022]
Abstract
The Cys-loop superfamily of ligand-gated ion channels (Cys-loop receptors) is one of the most ubiquitous ion channel families in vertebrates and invertebrates. Despite their ubiquity, they are targeted by several classes of pesticides, including neonicotinoids, phenylpyrazols, and macrolides such as ivermectins. The current commercialized compounds have high target site selectivity, which contributes to the safety of insecticide use. Structural analyses have accelerated progress in this field; notably, the X-ray crystal structures of acetylcholine binding protein and glutamate-gated Cl channels revealed the details of the molecular interactions between insecticides and their targets. Recently, the functional expression of the insect nicotinic acetylcholine receptor (nAChR) has been described, and detailed evaluations using the insect nAChR have emerged. This review discusses the basic concepts and the current insights into the molecular mechanisms of neuroactive insecticides targeting the ligand-gated ion channels, particularly Cys-loop receptors, and presents insights into target-based selectivity, resistance, and future drug design.
Collapse
Affiliation(s)
- Makoto Ihara
- Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
45
|
Montgomery M, Rendine S, Zimmer CT, Elias J, Schaetzer J, Pitterna T, Benfatti F, Skaljac M, Bigot A. Structural Biology-Guided Design, Synthesis, and Biological Evaluation of Novel Insect Nicotinic Acetylcholine Receptor Orthosteric Modulators. J Med Chem 2022; 65:2297-2312. [PMID: 34986308 DOI: 10.1021/acs.jmedchem.1c01767] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of novel and safe insecticides remains an important need for a growing world population to protect crops and animal and human health. New chemotypes modulating the insect nicotinic acetylcholine receptors have been recently brought to the agricultural market, yet with limited understanding of their molecular interactions at their target receptor. Herein, we disclose the first crystal structures of these insecticides, namely, sulfoxaflor, flupyradifurone, triflumezopyrim, flupyrimin, and the experimental compound, dicloromezotiaz, in a double-mutated acetylcholine-binding protein which mimics the insect-ion-channel orthosteric site. Enabled by these findings, we discovered novel pharmacophores with a related mode of action, and we describe herein their design, synthesis, and biological evaluation.
Collapse
Affiliation(s)
- Mark Montgomery
- Syngenta Crop Protection, Jealott's Hill International Research Centre, RG42 6EY Bracknell, Berkshire, U.K
| | - Stefano Rendine
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Christoph T Zimmer
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Jan Elias
- Syngenta Crop Protection AG, Rosentalstrasse 67, 4002 Basel, Switzerland
| | - Jürgen Schaetzer
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Thomas Pitterna
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Fides Benfatti
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Marisa Skaljac
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Aurélien Bigot
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| |
Collapse
|
46
|
Lu W, Liu Z, Fan X, Zhang X, Qiao X, Huang J. Nicotinic acetylcholine receptor modulator insecticides act on diverse receptor subtypes with distinct subunit compositions. PLoS Genet 2022; 18:e1009920. [PMID: 35045067 PMCID: PMC8803171 DOI: 10.1371/journal.pgen.1009920] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/31/2022] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Insect nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels mainly expressed in the central nervous system of insects. They are the directed targets of many insecticides, including neonicotinoids, which are the most widely used insecticides in the world. However, the development of resistance in pests and the negative impacts on bee pollinators affect the application of insecticides and have created a demand for alternatives. Thus, it is very important to understand the mode of action of these insecticides, which is not fully understood at the molecular level. In this study, we systematically examined the susceptibility of ten Drosophila melanogaster nAChR subunit mutants to eleven insecticides acting on nAChRs. Our results showed that there are several subtypes of nAChRs with distinct subunit compositions that are responsible for the toxicity of different insecticides. At least three of them are the major molecular targets of seven structurally similar neonicotinoids in vivo. Moreover, spinosyns may act exclusively on the α6 homomeric pentamers but not any other nAChRs. Behavioral assays using thermogenetic tools further confirmed the bioassay results and supported the idea that receptor activation rather than inhibition leads to the insecticidal effects of neonicotinoids. The present findings reveal native nAChR subunit interactions with various insecticides and have important implications for the management of resistance and the development of novel insecticides targeting these important ion channels. Neonicotinoids and spinosyns account for approximately 24% and 3% of the world market value of insecticides, respectively. However, the negative effects of neonicotinoids on pollinators have led to the development of novel insecticides, such as sulfoxaflor, flupyradifurone and triflumezopyrim. Although all act via insect nicotinic acetylcholine receptors, their modes of action are not fully understood. Our work shows that these insecticides act on diverse receptor subtypes with distinct subunit compositions. This finding could lead to the development of more selective insecticides to control pests with minimal effects on beneficial insects.
Collapse
Affiliation(s)
- Wanjun Lu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhihan Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinyu Fan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaomu Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
47
|
Pribbenow C, Chen YC, Heim MM, Laber D, Reubold S, Reynolds E, Balles I, Fernández-d V Alquicira T, Suárez-Grimalt R, Scheunemann L, Rauch C, Matkovic T, Rösner J, Lichtner G, Jagannathan SR, Owald D. Postsynaptic plasticity of cholinergic synapses underlies the induction and expression of appetitive and familiarity memories in Drosophila. eLife 2022; 11:80445. [PMID: 36250621 PMCID: PMC9733945 DOI: 10.7554/elife.80445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022] Open
Abstract
In vertebrates, several forms of memory-relevant synaptic plasticity involve postsynaptic rearrangements of glutamate receptors. In contrast, previous work indicates that Drosophila and other invertebrates store memories using presynaptic plasticity of cholinergic synapses. Here, we provide evidence for postsynaptic plasticity at cholinergic output synapses from the Drosophila mushroom bodies (MBs). We find that the nicotinic acetylcholine receptor (nAChR) subunit α5 is required within specific MB output neurons for appetitive memory induction but is dispensable for aversive memories. In addition, nAChR α2 subunits mediate memory expression and likely function downstream of α5 and the postsynaptic scaffold protein discs large (Dlg). We show that postsynaptic plasticity traces can be induced independently of the presynapse, and that in vivo dynamics of α2 nAChR subunits are changed both in the context of associative and non-associative (familiarity) memory formation, underlying different plasticity rules. Therefore, regardless of neurotransmitter identity, key principles of postsynaptic plasticity support memory storage across phyla.
Collapse
Affiliation(s)
- Carlotta Pribbenow
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Yi-chun Chen
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - M-Marcel Heim
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Desiree Laber
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Silas Reubold
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Eric Reynolds
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Isabella Balles
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Tania Fernández-d V Alquicira
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Raquel Suárez-Grimalt
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Einstein Center for Neurosciences BerlinBerlinGermany
| | - Lisa Scheunemann
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,NeuroCure, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Institut für Biologie, Freie Universität BerlinBerlinGermany
| | - Carolin Rauch
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Tanja Matkovic
- Institut für Biologie, Freie Universität BerlinBerlinGermany
| | - Jörg Rösner
- NWFZ, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthGreifswaldGermany
| | - Gregor Lichtner
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Universitätsmedizin Greifswald, Department of Anesthesia, Critical Care, Emergency and Pain MedicineGreifswaldGermany
| | - Sridhar R Jagannathan
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - David Owald
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Einstein Center for Neurosciences BerlinBerlinGermany,NeuroCure, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
48
|
Matsuda K. Chemical and biological studies of natural and synthetic products for the highly selective control of pest insect species. Biosci Biotechnol Biochem 2021; 86:1-11. [PMID: 34694357 DOI: 10.1093/bbb/zbab187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/17/2021] [Indexed: 11/12/2022]
Abstract
Tanacetum cinerariifolium was known to produce pyrethrins, but the mechanism of pyrethrin biosynthesis was largely unclear. The author showed that the nonmevalonate and oxylipin pathways underlie biosynthesis of the acid and alcohol moieties, respectively, and a GDSL lipase joins the products of these pathways. A blend of the green leaf volatiles and (E)-β-farnesene mediates the induction of wounding responses to neighboring intact conspecies by enhancing pyrethrin biosynthesis. Plants fight against herbivores underground as well as aboveground, and, in soy pulps, some fungi produce compounds selectively modulating ion channels in insect nervous system. The author proposed that indirect defense of plants occurs where microorganisms produce defense substances in the rhizosphere. Broad-spectrum pesticides, including neonicotinoids, may affect nontarget organisms. The author discovered cofactors enabling functional expression of insect nicotinic acetylcholine receptors (nAChRs). This led to understanding the mechanism of insect nAChR-neonicotinoid interactions, thus paving new avenues for controlling crop pests and disease vectors.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
49
|
Zheng T, Hu T, Zhang J, Tang C, Duan J, Song Y, Zhang Q. Dynamics in imidacloprid sorption related to changes of soil organic matter content and quality along a 20-year cultivation chronosequence of citrus orchards. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118069. [PMID: 34530243 DOI: 10.1016/j.envpol.2021.118069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The on-going and extensive use of neonicotinoids occur in orchards. However, it is still unknown whether and how orchard management affects soil properties, especially the contents and structure of soil organic matter during orchard development, and their further influences on neonicotinoid persistence. Here, surface soil samples were collected from the citrus orchards with different cultivation ages (1, 10, 14, and 20 years), and their physicochemical properties were determined. Changes in the chemical structure of soil organic matter (SOM) were furtherly examined using solid-state CP/TOSS 13C NMR. Then, the sorption isotherms of imidacloprid in these soils were investigated. The sorption coefficient (Kd) of imidacloprid at Ce of 0.05 mg/L in the orchard soils increased by 19.4-23.3%, along a 20-year chronosequence of cultivation, which should be mainly ascribed to the increase of SOM. However, the organic carbon-normalized sorption coefficient (Koc, sorption per unit mass of OM) of imidacloprid declined with increasing cultivation ages. Moreover, the polar and aliphatic domains of SOM had a significantly positive relation to the Koc of imidacloprid, suggesting its key role in governing imidacloprid sorption. The results highlighted that reasonable management measures could be adopted to control the occurrence and fate of neonicotinoids in soils, mainly by affecting the content and quality of SOM.
Collapse
Affiliation(s)
- Taihui Zheng
- Jiangxi Academy of Water Science and Engineering, Nanchang, 330029, China
| | - Tong Hu
- Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, Jiangxi Agricultural University College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Zhang
- Jiangxi Academy of Water Science and Engineering, Nanchang, 330029, China
| | - Chongjun Tang
- Jiangxi Academy of Water Science and Engineering, Nanchang, 330029, China
| | - Jian Duan
- Jiangxi Academy of Water Science and Engineering, Nanchang, 330029, China
| | - Yuejun Song
- Jiangxi Academy of Water Science and Engineering, Nanchang, 330029, China
| | - Qin Zhang
- Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, Jiangxi Agricultural University College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
50
|
Mutations in the nAChR β1 subunit and overexpression of P450 genes are associated with high resistance to thiamethoxam in melon aphid, Aphis gossypii Glover. Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110682. [PMID: 34737138 DOI: 10.1016/j.cbpb.2021.110682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/02/2023]
Abstract
The TMXR is a strain of melon aphids (Aphis gossypii Glover) that has extremely high resistance (resistance ratio > 2300 fold) to thiamethoxam. We explored the basis of this resistance by examining differences in nicotinic acetylcholine receptors (nAChRs) and cytochrome P450 monooxygenase (CYP450s) between the TMXR and the susceptible strain. The results showed that two mutation sites of nAChR β1 subunit, V62I and R81T, were found in TMXR, with the mutation frequencies of the two mutation sites as 93.75%. Meanwhile, compared with the susceptible strain, the expression level of nAChR β1 subunit gene in the TMXR decreased by 38%. In addition, piperonyl butoxide (PBO) showed a synergistic ratio of 17.78-fold on TMX toxicity against the TMXR, which suggested the involvement of CYP450s in the TMX resistance of melon aphid. Moreover, the expression levels of 4 P450s genes were significantly higher in the TMXR than the susceptible strain. Through RNAi, we verified that down-regulating CYP6DA1 increased the sensitivity of TMXR to TMX toxicity, demonstrating that a decrease in CYP6DA1 expression may reduce resistance in vivo. These results suggest that A. gossypii has the capacity to develop extremely high resistance to TMX through aggregated resistance mechanisms including enhancement of detoxification by upregulation of CYP450s, and target insensitivity caused by alteration of nAChR β1 subunit with mutation and low expression. These findings provide basic information for further clarifying the molecular mechanism of insecticide resistance in A. gossypii.
Collapse
|