1
|
Yang Y, Li X, Wang Y, Wang J, Liu G, Geng Z, Wu R, Lian S, Wang J. Estrogen and glucocorticoid promote the lactoferrin synthesis and secretion ability of bovine mammary epithelial cells through ER and GR signaling pathways. Int J Biol Macromol 2025:140636. [PMID: 39904446 DOI: 10.1016/j.ijbiomac.2025.140636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/09/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Lactoferrin (LF) is an innate immunity glycoprotein with antibacterial, anti-inflammatory, antiviral, anti-tumor, and autoantibody activity-enhancing properties. Steroid hormones are essential for development and lactation in the dairy cow mammary gland, and act through binding to receptors that drive gene transcription. However, it remains unclear whether steroid hormone receptors play roles in LF synthesis in bovine mammary epithelial cells (BMECs). In this study, we investigated the direct effects of estrogen and glucocorticoid on LF synthesis and secretion by BMECs. The results show that treatment of BMECs with estrogen (17-β-estradiol, E2) and glucocorticoid (hydrocortisone) significantly promoted cell proliferation. Furthermore, E2 or hydrocortisone increased the expression levels of estrogen receptor (ER) and glucocorticoid receptor (GR), and stimulated the synthesis and secretion of LF in BMECs. Treatment of BMECs with various inhibitors (fulvestrant, mifepristone, and pimozide) decreased LF gene transcript and LF protein levels. It was concluded that fulvestrant and mifepristone inhibit LF transcription and translation via inhibiting ER and GR, respectively. Our data indicate that E2 and hydrocortisone regulate LF protein synthesis through the ER and GR signaling pathways. These results provide new information about the regulation of the synthesis of functional proteins in milk.
Collapse
Affiliation(s)
- Yuejie Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Xinru Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Yandi Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Jianhui Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Guichi Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Zijian Geng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China; College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China.
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China.
| |
Collapse
|
2
|
Liu P, Zuo J, Lu H, Zhang B, Wu C. Lactoferrin exhibits PEDV antiviral activity by interfering with spike-heparan sulfate proteoglycans binding and activating mucosal immune response. Vet Res 2025; 56:25. [PMID: 39891300 PMCID: PMC11786531 DOI: 10.1186/s13567-025-01456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/02/2024] [Indexed: 02/03/2025] Open
Abstract
Neonatal piglets infected with Porcine Epidemic Diarrhea Virus (PEDV) experience a mortality rate of up to 90%, resulting in significant economic losses to the swine industry in China. Current strategies using specific antibodies in sow milk to prevent Porcine Epidemic Diarrhea (PED) in these piglets through specific antibodies in sow milk is unsatisfactory. Preliminary studies have shown limited success. Emerging evidence suggests that general immune factors in sow milk provide protection to neonatal piglets, particularly, lactoferrin, play a crucial role in protecting piglets by inhibiting PEDV replication. However, the precise mechanism by which lactoferrin exerts its antiviral effects remains unclear. This study sought to clarify these mechanisms through both in vitro and in vivo approaches, proposing that higher concentrations of lactoferrin lead to greater antiviral activity. It was hypothesized that lactoferrin can impede PEDV by blocking its binding to heparan sulfate proteoglycans (HSPG) on the surface of target cells, and molecular docking experiments was conducted to identify the binding sites between lactoferrin and HSPG. Additionally, the findings indicated that lactoferrin can effectively trigger the maturation of porcine dendritic cells and boosts their antigen-presenting functions, thereby improving intestinal mucosal immunity in neonatal piglets against PEDV. Overall, these findings aid to elucidate the antiviral actions and mechanisms of lactoferrin in sow colostrum, offering new insights for the effective prevention and control of PED in neonatal piglets.
Collapse
Affiliation(s)
- Peng Liu
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, Jiangsu, China.
| | - Jinjiao Zuo
- Pet Science and Technology College, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, Jiangsu, China
| | - Hui Lu
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, Jiangsu, China
| | - Bin Zhang
- Pet Science and Technology College, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, Jiangsu, China
| | - Caihong Wu
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, Jiangsu, China.
| |
Collapse
|
3
|
Kaewjiw N, Thaingtamtanha T, Mehra D, Chawnawa W, Prommool T, Puttikhunt C, Songjaeng A, Kongmanas K, Avirutnan P, Luangaram P, Srisawat C, Roytrakul S, Bäurle SA, Noisakran S. Domperidone inhibits dengue virus infection by targeting the viral envelope protein and nonstructural protein 1. Sci Rep 2025; 15:3817. [PMID: 39885306 PMCID: PMC11782576 DOI: 10.1038/s41598-025-87146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Dengue is a mosquito-borne disease caused by dengue virus (DENV) infection, which remains a major public health concern worldwide owing to the lack of specific treatments or antiviral drugs available. This study investigated the potential repurposing of domperidone, an antiemetic and gastrokinetic agent, to control DENV infection. Domperidone was identified by pharmacophore-based virtual screening as a small molecule that can bind to both the viral envelope (E) and the nonstructural protein 1 (NS1) of DENV. Molecular dynamics (MD) simulations and surface plasmon resonance (SPR) analysis were subsequently performed to determine specific interactions of domperidone with the DENV E and NS1 proteins and their binding affinity. Treatment of immortalized human hepatocyte-like cells (imHC) with domperidone could inhibit DENV production and NS1 secretion in a dose-dependent manner following infection with DENV serotype 2. These inhibitory effects were mediated by reduction in viral RNA replication and viral E and NS1 protein expression, but not by interference with virus entry into cells or NS1 oligomerization. The suppression of DENV production and NS1 secretion by domperidone was observed across all four DENV serotypes to varying degrees between different virus strains. The findings from our study suggest viral target-based repurposing of domperidone for modulating DENV.
Collapse
Grants
- R016637004 Siriraj Research Development Fund, Faculty of Medicine Siriraj Hospital, Mahidol University.
- B16F650037 The National Science, Research and Innovation Fund (NSRF) through the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, Thailand
- Research Excellence Development: RED program, Faculty of Medicine Siriraj Hospital, Mahidol University.
- The National Science, Research and Innovation Fund (NSRF) through the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, Thailand
Collapse
Affiliation(s)
- Nuttapong Kaewjiw
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanawat Thaingtamtanha
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Damini Mehra
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Wanida Chawnawa
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Tanapan Prommool
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Chunya Puttikhunt
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasit Luangaram
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Stephan A Bäurle
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Sansanee Noisakran
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand.
| |
Collapse
|
4
|
Bushiri Pwesombo D, Beese C, Schmied C, Sun H. Semisupervised Contrastive Learning for Bioactivity Prediction Using Cell Painting Image Data. J Chem Inf Model 2025; 65:528-543. [PMID: 39761993 PMCID: PMC11776044 DOI: 10.1021/acs.jcim.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025]
Abstract
Morphological profiling has recently demonstrated remarkable potential for identifying the biological activities of small molecules. Alongside the fully supervised and self-supervised machine learning methods recently proposed for bioactivity prediction from Cell Painting image data, we introduce here a semisupervised contrastive (SemiSupCon) learning approach. This approach combines the strengths of using biological annotations in supervised contrastive learning and leveraging large unannotated image data sets with self-supervised contrastive learning. SemiSupCon enhances downstream prediction performance of classifying MeSH pharmacological classifications from PubChem, as well as mode of action and biological target annotations from the Drug Repurposing Hub across two publicly available Cell Painting data sets. Notably, our approach has effectively predicted the biological activities of several unannotated compounds, and these findings were validated through literature searches. This demonstrates that our approach can potentially expedite the exploration of biological activity based on Cell Painting image data with minimal human intervention.
Collapse
Affiliation(s)
- David Bushiri Pwesombo
- Research
Unit Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Carsten Beese
- Research
Unit Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Christopher Schmied
- Research
Unit Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- EU-OPENSCREEN, Berlin 13125, Germany
| | - Han Sun
- Research
Unit Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| |
Collapse
|
5
|
Sun NN, Xu QF, Yang MD, Wang RH, Shu GW, Li GL. Pretreatment-free aptasensing of lactoferrin in complex biological samples by portable electrophoretic mobility shift assay. Int J Biol Macromol 2025; 286:138265. [PMID: 39631614 DOI: 10.1016/j.ijbiomac.2024.138265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Aptamers are attractive recognition ligands for sensing proteins due to their favorable affinity, specificity, stability, and easy synthesis. However, it is difficult to detect proteins directly in complex biological samples without sophisticated equipment or tedious sample pretreatment. Herein, we developed a portable electrophoretic mobility shift assay (EMSA) platform for direct protein aptasensing in complex biological samples. This portable EMSA consists of a mini agarose gel apparatus and a simple blue light transmission instrument integrated a smartphone camera. Lactoferrin (LF), which plays critical roles in food quality and dry eye diagnosis, was selected for feasibility verification. The successful direct determination of LF in dairy samples revealed that agarose gel not only provides separation power for the LF-aptamer complex but also functions as a physical barrier, excluding milk fat globules and casein micelles and further eliminating their interference. In addition, this pretreatment-free approach also exhibits good generality and multiplexity for other proteins assay by altering aptamer sequences. Therefore, the portable EMSA could be a reliable, affordable, user-friendly and pretreatment-free tool for protein aptasensing in biological and clinical samples for point-of-need diagnostics as well as food quality and safety.
Collapse
Affiliation(s)
- Na-Na Sun
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qin-Feng Xu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Meng-di Yang
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui-Hong Wang
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guo-Wei Shu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guo-Liang Li
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
6
|
Qu H, Wang S, He M, Wu Y, Yan F, Liu T, Zhang M. Is it feasible to use AI-based drug design methods in the process of generating effective COVID-19 inhibitors? A validation study using molecular docking, molecular simulation, and pharmacophore methods. J Biomol Struct Dyn 2024:1-14. [PMID: 39727340 DOI: 10.1080/07391102.2024.2445169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/21/2024] [Indexed: 12/28/2024]
Abstract
Although the COVID-19 pandemic has been brought under control to some extent globally, there is still debate in the industry about the feasibility of using artificial intelligence (AI) to generate COVID small-molecule inhibitors. In this study, we explored the feasibility of using AI to design effective inhibitors of COVID-19. By combining a generative model with reinforcement learning and molecular docking, we designed small-molecule inhibitors targeting the COVID-19 3CLpro enzyme. After screening based on molecular docking scores and physicochemical properties, we obtained five candidate inhibitors. Furthermore, theoretical calculations confirmed that these candidate inhibitors have significant binding stability with COVID-19 3CLpro, comparable to or better than existing COVID-19 inhibitors. Additionally, through ligand-based pharmacophore model screening, we validated the effectiveness of the generative model, demonstrating the potential value of AI in drug design.
Collapse
Affiliation(s)
- Hanyang Qu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Shengpeng Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Mingyang He
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Yuhui Wu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Fei Yan
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Meiling Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Zhu MD, Shi XH, Wen HP, Chen LM, Fu DD, Du L, Li J, Wan QQ, Wang ZG, Yu C, Pang DW, Liu SL. Rapid Deployment of Antiviral Drugs Using Single-Virus Tracking and Machine Learning. ACS NANO 2024. [PMID: 39692754 DOI: 10.1021/acsnano.4c10136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The outbreak of emerging acute viral diseases urgently requires the acceleration of specialized antiviral drug development, thus widely adopting phenotypic screening as a strategy for drug repurposing in antiviral research. However, traditional phenotypic screening methods typically require several days of experimental cycles and lack visual confirmation of a drug's ability to inhibit viral infection. Here, we report a robust method that utilizes quantum-dot-based single-virus tracking and machine learning to generate unique single-virus infection fingerprint data from viral trajectories and detect the dynamic changes in viral movement following drug administration. Our findings demonstrated that this approach can successfully identify viral infection patterns at various infection phases and predict antiviral drug efficacy through machine learning within 90 min. This method provides valuable support for assessing the efficacy of antiviral drugs and offers promising applications for responding to future outbreaks of emerging viruses.
Collapse
Affiliation(s)
- Meng-Die Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Xue-Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Hui-Ping Wen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Li-Ming Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qian-Qian Wan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Chuanming Yu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
8
|
Huang G, Li N, Wu X, Zheng N, Zhao S, Zhang Y, Wang J. Nutrition, production, and processing of virgin omega-3 polyunsaturated fatty acids in dairy: An integrative review. Heliyon 2024; 10:e39810. [PMID: 39748956 PMCID: PMC11693896 DOI: 10.1016/j.heliyon.2024.e39810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 01/04/2025] Open
Abstract
With improving living standards, functional and healthy foods are accounting for an increased share in human food. The development of dairy products that are rich in virgin omega-3 polyunsaturated fatty acids (n-3 PUFAs) has become a topic of interest. Virgin n-3 PUFA milk can provide high-quality protein and calcium, as well as provide n-3 PUFAs to improve human health. This review aims to investigate the effect of virgin n-3 PUFAs in milk on human health and discuss the content of virgin n-3 PUFAs in milk regulated by dairy animal diet and the effect of food processing on the content of virgin n-3 PUFAs in dairy production. The interaction between n-3 PUFAs and proteins in milk is the key to improving the nutritional value of n-3 PUFAs in milk. n-3 PUFA supplementation in the diet of dairy animals is the key method to improve n-3 PUFAs in raw milk, as well as to adjust the types of virgin n-3 PUFAs. Compared with a common source, virgin n-3 PUFAs in milk show higher antioxidant activity, but elevated temperatures and long-term thermal processing should be avoided.
Collapse
Affiliation(s)
- Guoxin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- College of Life Science, Nankai University, Tianjin, 300071, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Ning Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Xufang Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| |
Collapse
|
9
|
Pugach P, Sadeghi-Latefi N. Supporting respiratory epithelia and lowering inflammation to effectively treat common cold symptoms: A randomized controlled trial. PLoS One 2024; 19:e0301959. [PMID: 39602479 PMCID: PMC11602100 DOI: 10.1371/journal.pone.0301959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
Common cold viruses are leading triggers of asthma attacks, causing nearly two million hospitalizations per year and productivity losses approaching $40B. They also increase susceptibility to bacterial infections driving antibiotic use. Post-market clinical studies have questioned the efficacy of most over the counter (OTC) cough and cold ingredients against placebo in treating various symptoms. To our knowledge, only aspirin significantly improved overall illness severity compared to placebo and that was by about 25-30%. In this double-blind randomized placebo-controlled trial involving 157 participants, we sought to determine whether a throat spray containing a mucosal immune complex (MIC) (comprised of lysozyme, lactoferrin, and aloe) along with anti-inflammatory salicylates can increase the hereto reported efficacy of aspirin at reducing common cold symptoms. Previously published reports showed that the MIC can protect respiratory epithelia and lower inflammatory cytokines. Salicylates are naturally occurring plant compounds found in many common foods as well as wintergreen oil and are chemically similar precursors to aspirin (acetyl salicylate). Participants self-administered treatments (throat sprays every hour and tablets every four hours) and completed surveys at home over two days. Treatments included MIC spray mixed with 6 mg aspirin + placebo tablet (Treatment 1), MIC spray mixed with 6 mg wintergreen oil+ placebo tablet (Treatment 2), MIC spray mixed with 6mg wintergreen oil+ 325 mg aspirin tablet (Treatment 3). Participants included adult volunteers ages 21-66 (average 44), 54% female, 46% male, 46% African American, 8% Asian, 39% Caucasian, and 7% Hispanic, having common cold symptoms lasting less than two days. The main outcome measures included Sore Throat Pain Intensity (STPIS) 0-100 at 36 hours (primary endpoint) and Modified Jackson Score (MJS), a combination of eight cold symptoms (secondary endpoint). Both primary and secondary endpoints were met. Sore throat pain as measured by STPIS decreased 68-75% by 36 hours depending on treatment. Other symptoms such as nasal discharge, congestion, sneezing, cough, sore throat, and malaise as measured by MJS decreased 38-68% depending on treatment. In repeated measure within group analysis observing the same participants over multiple time points; the mean change of STPIS values and their percentage change from baseline to 36 hours were as follows: Placebo (-7.84 [95% CI -14.20 to -1.47];(-14%)), Treatment 1 (-42.41 [95% CI -48.30 to -36.52];(-75%)), Treatment 2 (-38.60 [95% CI -46.64 to -31.56];(-68%)), and Treatment 3 (-44.19 [95% CI -52.11 to -36.27];(-79%)). In repeated measure within group analysis all treatments significantly reduced cold symptom severity (MJS) from Days 1-2. Results were as follows: Treatment 1 (-2.26 [95% CI -3.04 to -1.47] (-38%)), Treatment 2 (-3.81 [95% CI -4.82 to -2.80];(-53%)), Treatment 3 (-4.49 [95% CI -5.62 to -3.57];(-69%)). As a result of this study, we conclude that supporting upper respiratory epithelia and reducing COX-mediated inflammation may be used to effectively treat common cold symptoms. Trial registration: ClinicalTrials.gov Identifier: NCT06106880 Posted 30/10/2023.
Collapse
Affiliation(s)
- Pavel Pugach
- Applied Biological Laboratories Inc, New York, NY, United States of America
| | | |
Collapse
|
10
|
Armbruster KM, Jiang J, Sartorio MG, Scott NE, Peterson JM, Sexton JZ, Feldman MF, Koropatkin NM. Identification and characterization of the lipoprotein N-acyltransferase in Bacteroides. Proc Natl Acad Sci U S A 2024; 121:e2410909121. [PMID: 39495918 PMCID: PMC11573676 DOI: 10.1073/pnas.2410909121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/12/2024] [Indexed: 11/06/2024] Open
Abstract
Members of the Bacteroidota compose a large portion of the human gut microbiota, contributing to overall gut health via the degradation of various polysaccharides. This process is facilitated by lipoproteins, globular proteins anchored to the cell surface by a lipidated N-terminal cysteine. Despite their importance, lipoprotein synthesis by these bacteria is understudied. In Escherichia coli, the α-amino-linked lipid of lipoproteins is added by the lipoprotein N-acyltransferase Lnt. Herein, we have identified a protein distinct from Lnt responsible for the same process in Bacteroides, named lipoprotein N-acyltransferase in Bacteroides (Lnb). Deletion of Lnb yields cells that synthesize diacylated lipoproteins, with impacts on cell viability and morphology, growth on polysaccharides, and protein composition of membranes and outer membrane vesicles (OMVs). Our results not only challenge the accepted paradigms of lipoprotein biosynthesis in gram-negative bacteria but also suggest the existence of a new family of lipoprotein N-acyltransferases.
Collapse
Affiliation(s)
- Krista M Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jiawen Jiang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mariana G Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia
| | - Jenna M Peterson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jonathan Z Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
11
|
Manzoni P, Messina A, Germano C, Picone S, Masturzo B, Sainaghi PP, Sola D, Rizzi M. Lactoferrin Supplementation in Preventing and Protecting from SARS-CoV-2 Infection: Is There Any Role in General and Special Populations? An Updated Review of Literature. Int J Mol Sci 2024; 25:10248. [PMID: 39408576 PMCID: PMC11476995 DOI: 10.3390/ijms251910248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
At the beginning of the pandemic, SARS-CoV-2 infection represented a great medical burden worldwide, as targeted and effective therapeutic options were lacking. This resulted in the revival of existing molecules and the increasing popularity of over-the-counter nutritional supplements. Among the latter, lactoferrin has been investigated as an adjuvant in COVID-19 therapy with conflicting results, mainly depending on different study designs. Considering that lactoferrin is one of the main components of human breast milk with anti-microbial and anti-inflammatory activity, it is conceivable that such bioactive molecule could be effective in supporting anti-SARS-CoV-2 infection therapy, especially in infants and pregnant women, two subpopulations that have been poorly evaluated in the existing clinical trials. This narrative review is intended to offer insight into the existing literature on lactoferrin's biological functions and protective effects against COVID-19, with a special focus on pregnant women and their infants.
Collapse
Affiliation(s)
- Paolo Manzoni
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Alessandro Messina
- School of Medicine, University of Turin, 10124 Turin, Italy;
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Germano
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Simonetta Picone
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, 00169 Rome, Italy
| | - Bianca Masturzo
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Pier Paolo Sainaghi
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Daniele Sola
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Laboratory of Metabolic Research, IRCCS Istituto Auxologico Italiano, S. Giuseppe Hospital, 28824 Piancavallo, Italy
| | - Manuela Rizzi
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Health Sciences (DiSS), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
12
|
Yu F, Liu X, Ou H, Li X, Liu R, Lv X, Xiao S, Hu M, Liang T, Chen T, Wei X, Zhang Z, Liu S, Liu H, Zhu Y, Liu G, Tu T, Li P, Zhang H, Pan T, Ma X. The histamine receptor H1 acts as an alternative receptor for SARS-CoV-2. mBio 2024; 15:e0108824. [PMID: 38953634 PMCID: PMC11324024 DOI: 10.1128/mbio.01088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Numerous host factors, in addition to human angiotensin-converting enzyme 2 (hACE2), have been identified as coreceptors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), demonstrating broad viral tropism and diversified druggable potential. We and others have found that antihistamine drugs, particularly histamine receptor H1 (HRH1) antagonists, potently inhibit SARS-CoV-2 infection. In this study, we provided compelling evidence that HRH1 acts as an alternative receptor for SARS-CoV-2 by directly binding to the viral spike protein. HRH1 also synergistically enhanced hACE2-dependent viral entry by interacting with hACE2. Antihistamine drugs effectively prevent viral infection by competitively binding to HRH1, thereby disrupting the interaction between the spike protein and its receptor. Multiple inhibition assays revealed that antihistamine drugs broadly inhibited the infection of various SARS-CoV-2 mutants with an average IC50 of 2.4 µM. The prophylactic function of these drugs was further confirmed by authentic SARS-CoV-2 infection assays and humanized mouse challenge experiments, demonstrating the therapeutic potential of antihistamine drugs for combating coronavirus disease 19.IMPORTANCEIn addition to human angiotensin-converting enzyme 2, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can utilize alternative cofactors to facilitate viral entry. In this study, we discovered that histamine receptor H1 (HRH1) not only functions as an independent receptor for SARS-CoV-2 but also synergistically enhances ACE2-dependent viral entry by directly interacting with ACE2. Further studies have demonstrated that HRH1 facilitates the entry of SARS-CoV-2 by directly binding to the N-terminal domain of the spike protein. Conversely, antihistamine drugs, primarily HRH1 antagonists, can competitively bind to HRH1 and thereby prevent viral entry. These findings revealed that the administration of repurposable antihistamine drugs could be a therapeutic intervention to combat coronavirus disease 19.
Collapse
Affiliation(s)
- Fei Yu
- Medical Research
Institute, Guangdong Provincial People’s Hospital (Guangdong
Academy of Medical Sciences), Southern Medical
University, Guangzhou,
Guangdong, China
| | - Xiaoqing Liu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- Institute of Human
Virology, Zhongshan School of Medicine, Sun Yat-sen
University, Guangzhou,
Guangdong, China
| | - Hailan Ou
- Medical Research
Institute, Guangdong Provincial People’s Hospital (Guangdong
Academy of Medical Sciences), Southern Medical
University, Guangzhou,
Guangdong, China
| | - Xinyu Li
- Shenzhen Key
Laboratory of Systems Medicine for Inflammatory Diseases, Shenzhen
Campus of Sun Yat-sen University,
Shenzhen, Guangdong,
China
| | - Ruxin Liu
- Shenzhen Key
Laboratory of Systems Medicine for Inflammatory Diseases, Shenzhen
Campus of Sun Yat-sen University,
Shenzhen, Guangdong,
China
| | - Xi Lv
- Medical Research
Institute, Guangdong Provincial People’s Hospital (Guangdong
Academy of Medical Sciences), Southern Medical
University, Guangzhou,
Guangdong, China
- School of Medicine,
South China University of Technology,
Guangzhou, Guangdong,
China
| | - Shiqi Xiao
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Meilin Hu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- Department of Breast
Surgery, The Second Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
Guangdong, China
| | - Taizhen Liang
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- State Key Laboratory
of Respiratory Disease, National Clinical Research Center for
Respiratory Disease, Guangzhou Institute of Respiratory Health, the
First Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
Guangdong, China
| | - Tao Chen
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- State Key Laboratory
of Respiratory Disease, National Clinical Research Center for
Respiratory Disease, Guangzhou Institute of Respiratory Health, the
First Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
Guangdong, China
| | - Xuepeng Wei
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Zhenglai Zhang
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Sen Liu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- School of Biology and
Biological Engineering, South China University of
Technology, Guangzhou,
Guangdong, China
| | - Han Liu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Yiqiang Zhu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Guangyan Liu
- Department of Pathogen
Biology, Shenyang Medical College,
Shenyang, Liaoning,
China
| | - Tianyong Tu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Peiwen Li
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Hui Zhang
- Institute of Human
Virology, Zhongshan School of Medicine, Sun Yat-sen
University, Guangzhou,
Guangdong, China
| | - Ting Pan
- Shenzhen Key
Laboratory of Systems Medicine for Inflammatory Diseases, Shenzhen
Campus of Sun Yat-sen University,
Shenzhen, Guangdong,
China
| | - Xiancai Ma
- Medical Research
Institute, Guangdong Provincial People’s Hospital (Guangdong
Academy of Medical Sciences), Southern Medical
University, Guangzhou,
Guangdong, China
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- State Key Laboratory
of Respiratory Disease, National Clinical Research Center for
Respiratory Disease, Guangzhou Institute of Respiratory Health, the
First Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
Guangdong, China
| |
Collapse
|
13
|
Armbruster KM, Jiang J, Sartorio MG, Scott NE, Peterson JM, Sexton JZ, Feldman MF, Koropatkin NM. Identification and Characterization of the Lipoprotein N-acyltransferase in Bacteroides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596883. [PMID: 38853980 PMCID: PMC11160734 DOI: 10.1101/2024.05.31.596883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Members of the Bacteroidota compose a large portion of the human gut microbiota, contributing to overall gut health via the degradation of various polysaccharides. This process is facilitated by lipoproteins, globular proteins anchored to the cell surface by a lipidated N-terminal cysteine. Despite their importance, lipoprotein synthesis by these bacteria is understudied. In E. coli, the α-amino linked lipid of lipoproteins is added by the lipoprotein N-acyltransferase Lnt. Herein, we have identified a protein distinct from Lnt responsible for the same process in Bacteroides, named lipoprotein N-acyltransferase in Bacteroides (Lnb). Deletion of Lnb yields cells that synthesize diacylated lipoproteins, with impacts on cell viability and morphology, growth on polysaccharides, and protein composition of membranes and outer membrane vesicles (OMVs). Our results not only challenge the accepted paradigms of lipoprotein biosynthesis in Gram-negative bacteria, but also support the establishment of a new family of lipoprotein N-acyltransferases.
Collapse
Affiliation(s)
- Krista M Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jiawen Jiang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mariana G Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, 3000, Australia
| | - Jenna M Peterson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
14
|
Sun NN, Xu QF, Yang MD, Li YN, Liu H, Tantai W, Shu GW, Li GL. A high-throughput differential scanning fluorimetry method for rapid detection of thermal stability and iron saturation in lactoferrin. Int J Biol Macromol 2024; 267:131285. [PMID: 38583841 DOI: 10.1016/j.ijbiomac.2024.131285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
Thermal stability and iron saturation of lactoferrin (LF) are of great significance not only for the evaluation of the biological activities of LF but also for the optimization of the isolation and drying process parameters. Differential scanning calorimetry (DSC) is a well-established and efficient method for thermal stability and iron saturation detection in LF. However, multiple DSC measurements are typically performed sequentially, thus time-consuming and low throughput. Herein, we introduced the differential scanning fluorimetry (DSF) approach to overcome such limitations. The DSF can monitor LF thermal unfolding with a commonly available real-time PCR instrument and a fluorescent dye (SYPRO orange or Glomelt), and the measured melting temperature of LF is consistent with that determined by DSC. On the basis of that, a new quantification method was established for determination of iron saturation levels using the linear correlation of the degree of ion saturation of LF with DSF measurements. Such DSF method is simple, inexpensive, rapid (<15 min), and high throughput (>96 samples per experiment), and provides a valuable alternative tool for thermal stability detection of LF and other whey proteins.
Collapse
Affiliation(s)
- Na-Na Sun
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Qin-Feng Xu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Meng-di Yang
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yan-Ni Li
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Hao Liu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wei Tantai
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guo-Wei Shu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guo-Liang Li
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
15
|
Freidel MR, Vakhariya PA, Sardarni SK, Armen RS. The Dual-Targeted Fusion Inhibitor Clofazimine Binds to the S2 Segment of the SARS-CoV-2 Spike Protein. Viruses 2024; 16:640. [PMID: 38675980 PMCID: PMC11054727 DOI: 10.3390/v16040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Clofazimine and Arbidol have both been reported to be effective in vitro SARS-CoV-2 fusion inhibitors. Both are promising drugs that have been repurposed for the treatment of COVID-19 and have been used in several previous and ongoing clinical trials. Small-molecule bindings to expressed constructs of the trimeric S2 segment of Spike and the full-length SARS-CoV-2 Spike protein were measured using a Surface Plasmon Resonance (SPR) binding assay. We demonstrate that Clofazimine, Toremifene, Arbidol and its derivatives bind to the S2 segment of the Spike protein. Clofazimine provided the most reliable and highest-quality SPR data for binding with S2 over the conditions explored. A molecular docking approach was used to identify the most favorable binding sites on the S2 segment in the prefusion conformation, highlighting two possible small-molecule binding sites for fusion inhibitors. Results related to molecular docking and modeling of the structure-activity relationship (SAR) of a newly reported series of Clofazimine derivatives support the proposed Clofazimine binding site on the S2 segment. When the proposed Clofazimine binding site is superimposed with other experimentally determined coronavirus structures in structure-sequence alignments, the changes in sequence and structure may rationalize the broad-spectrum antiviral activity of Clofazimine in closely related coronaviruses such as SARS-CoV, MERS, hCoV-229E, and hCoV-OC43.
Collapse
Affiliation(s)
| | | | | | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, 901 Walnut St. Suite 918, Philadelphia, PA 19170, USA (P.A.V.); (S.K.S.)
| |
Collapse
|
16
|
Sahu M, Vashishth S, Kukreti N, Gulia A, Russell A, Ambasta RK, Kumar P. Synergizing drug repurposing and target identification for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:111-169. [PMID: 38789177 DOI: 10.1016/bs.pmbts.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Despite dedicated research efforts, the absence of disease-curing remedies for neurodegenerative diseases (NDDs) continues to jeopardize human society and stands as a challenge. Drug repurposing is an attempt to find new functionality of existing drugs and take it as an opportunity to discourse the clinically unmet need to treat neurodegeneration. However, despite applying this approach to rediscover a drug, it can also be used to identify the target on which a drug could work. The primary objective of target identification is to unravel all the possibilities of detecting a new drug or repurposing an existing drug. Lately, scientists and researchers have been focusing on specific genes, a particular site in DNA, a protein, or a molecule that might be involved in the pathogenesis of the disease. However, the new era discusses directing the signaling mechanism involved in the disease progression, where receptors, ion channels, enzymes, and other carrier molecules play a huge role. This review aims to highlight how target identification can expedite the whole process of drug repurposing. Here, we first spot various target-identification methods and drug-repositioning studies, including drug-target and structure-based identification studies. Moreover, we emphasize various drug repurposing approaches in NDDs, namely, experimental-based, mechanism-based, and in silico approaches. Later, we draw attention to validation techniques and stress on drugs that are currently undergoing clinical trials in NDDs. Lastly, we underscore the future perspective of synergizing drug repurposing and target identification in NDDs and present an unresolved question to address the issue.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Neha Kukreti
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ashima Gulia
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ashish Russell
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
17
|
Eiken MK, Childs CJ, Brastrom LK, Frum T, Plaster EM, Shachaf O, Pfeiffer S, Levine JE, Alysandratos KD, Kotton DN, Spence JR, Loebel C. Nascent matrix deposition supports alveolar organoid formation from aggregates in synthetic hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585720. [PMID: 38562781 PMCID: PMC10983987 DOI: 10.1101/2024.03.19.585720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Human induced pluripotent stem cell (iPSC) derived alveolar organoids have emerged as a system to model the alveolar epithelium in homeostasis and disease. However, alveolar organoids are typically grown in Matrigel, a mouse-sarcoma derived basement membrane matrix that offers poor control over matrix properties, prompting the development of synthetic hydrogels as a Matrigel alternative. Here, we develop a two-step culture method that involves pre-aggregation of organoids in hydrogel-based microwells followed by embedding in a synthetic hydrogel that supports alveolar organoid growth, while also offering considerable control over organoid and hydrogel properties. We find that the aggregated organoids secrete their own nascent extracellular matrix (ECM) both in the microwells and upon embedding in the synthetic hydrogels. Thus, the synthetic gels described here allow us to de-couple exogenous and nascent ECM in order to interrogate the role of ECM in organoid formation.
Collapse
Affiliation(s)
- Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lindy K. Brastrom
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tristan Frum
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eleanor M. Plaster
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Orren Shachaf
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - Suzanne Pfeiffer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Justin E. Levine
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jason R. Spence
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Passi R, Cholewa-Waclaw J, Wereski R, Bennett M, Veizades S, Berkeley B, Caporali A, Li Z, Rodor J, Dewerchin M, Mills NL, Beqqali A, Brittan M, Baker AH. COVID-19 plasma induces subcellular remodelling within the pulmonary microvascular endothelium. Vascul Pharmacol 2024; 154:107277. [PMID: 38266794 DOI: 10.1016/j.vph.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect multiple organ systems, including the pulmonary vasculature. Endothelial cells (ECs) are thought to play a key role in the propagation of COVID-19, however, our understanding of the exact scale of dysregulation sustained by the pulmonary microvasculature (pMV) remains incomplete. Here we aim to identify transcriptional, phenotypic, and functional changes within the pMV induced by COVID-19. METHODS AND RESULTS Human pulmonary microvascular endothelial cells (HPMVEC) treated with plasma acquired from patients hospitalised with severe COVID-19 were compared to HPMVEC treated with plasma from patients hospitalised without COVID-19 but with other severe illnesses. Exposure to COVID-19 plasma caused a significant functional decline in HPMVECs as seen by a decrease in both cell viability via the WST-1 cell-proliferation assay and cell-to-cell barrier function as measured by electric cell-substrate impedance sensing. High-content imaging using a Cell Painting image-based assay further quantified morphological variations within sub-cellular organelles to show phenotypic changes in the whole endothelial cell, nucleus, mitochondria, plasma membrane and nucleolus morphology. RNA-sequencing of HPMVECs treated with COVID-19 plasma suggests the observed phenotype may, in part, be regulated by genes such as SMAD7, BCOR, SFMBT1, IFIT5 and ZNF566 which are involved in transcriptional regulation, protein monoubiquitination and TGF-β signalling. CONCLUSION AND IMPACT During COVID-19, the pMV undergoes significant remodelling, which is evident based on the functional, phenotypic, and transcriptional changes seen following exposure to COVID-19 plasma. The observed morphological variation may be responsible for downstream complications, such as a decline in overall cellular function and cell-to-cell barrier integrity. Moreover, genes identified through bulk RNA sequencing may contribute to our understanding of the observed phenotype and assist in developing strategies that can inform the rescue of the dysregulated endothelium.
Collapse
Affiliation(s)
- Rainha Passi
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Justyna Cholewa-Waclaw
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Ryan Wereski
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Matthew Bennett
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Stefan Veizades
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Stanford Cardiovascular Institute, Stanford University, Stanford 94305, CA, USA
| | - Bronwyn Berkeley
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ziwen Li
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Julie Rodor
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands.
| |
Collapse
|
19
|
Santos I, Silva M, Grácio M, Pedroso L, Lima A. Milk Antiviral Proteins and Derived Peptides against Zoonoses. Int J Mol Sci 2024; 25:1842. [PMID: 38339120 PMCID: PMC10855762 DOI: 10.3390/ijms25031842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Milk is renowned for its nutritional richness but also serves as a remarkable reservoir of bioactive compounds, particularly milk proteins and their derived peptides. Recent studies have showcased several robust antiviral activities of these proteins, evidencing promising potential within zoonotic viral diseases. While several publications focus on milk's bioactivities, antiviral peptides remain largely neglected in reviews. This knowledge is critical for identifying novel research directions and analyzing potential nutraceuticals within the One Health context. Our review aims to gather the existing scientific information on milk-derived antiviral proteins and peptides against several zoonotic viral diseases, and their possible mechanisms. Overall, in-depth research has increasingly revealed them as a promising and novel strategy against viruses, principally for those constituting a plausible pandemic threat. The underlying mechanisms of the bioactivity of milk's proteins include inhibiting viral entry and attachment to the host cells, blocking replication, or even viral inactivation via peptide-membrane interactions. Their marked versatility and effectiveness stand out compared to other antiviral peptides and can support future research and development in the post-COVID-19 era. Overall, our review helps to emphasize the importance of potentially effective milk-derived peptides, and their significance for veterinary and human medicines, along with the pharmaceutical, nutraceutical, and dairy industry.
Collapse
Affiliation(s)
- Isabel Santos
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Mariana Silva
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
| | - Madalena Grácio
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
| | - Laurentina Pedroso
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ana Lima
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| |
Collapse
|
20
|
Grau S, Vela JM, Gurt A, Barceló-Vidal J, Ojeda F, López I, Gómez-García L, Loza MI, Martín-García E, Maldonado R, Monfort J. Efficacy of SIGMAR1-based therapy in the early treatment of confirmed mild symptomatic COVID-19 patients. J Infect 2024; 88:187-190. [PMID: 37992877 DOI: 10.1016/j.jinf.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Affiliation(s)
- Santiago Grau
- Department of Pharmacy, Hospital del Mar, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Alba Gurt
- CAP Vila Olímpica, Parc Sanitari Pere Virgili, Barcelona, Spain
| | | | - Fabiola Ojeda
- Rheumatology Service, Hospital del Mar, Barcelona, Spain
| | - Iago López
- IMIM (Hospital Del Mar Medical Research Institute), PRBB, Barcelona, Spain
| | - Laura Gómez-García
- Health Research Institute of Santiago de Compostela (IDIS), Drug Screening and Pharmacogenomics Platform/BioFarma Research Group, CIMUS Research Center, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Isabel Loza
- Health Research Institute of Santiago de Compostela (IDIS), Drug Screening and Pharmacogenomics Platform/BioFarma Research Group, CIMUS Research Center, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Elena Martín-García
- IMIM (Hospital Del Mar Medical Research Institute), PRBB, Barcelona, Spain; Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Rafael Maldonado
- IMIM (Hospital Del Mar Medical Research Institute), PRBB, Barcelona, Spain; Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| | - Jordi Monfort
- Rheumatology Service, Hospital del Mar, Barcelona, Spain; IMIM (Hospital Del Mar Medical Research Institute), PRBB, Barcelona, Spain
| |
Collapse
|
21
|
Ashraf MF, Zubair D, Bashir MN, Alagawany M, Ahmed S, Shah QA, Buzdar JA, Arain MA. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol Trace Elem Res 2024; 202:56-72. [PMID: 37059920 PMCID: PMC10104436 DOI: 10.1007/s12011-023-03658-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Lactoferrin is a natural cationic iron-binding glycoprotein of the transferrin family found in bovine milk and other exocrine secretions, including lacrimal fluid, saliva, and bile. Lactoferrin has been investigated for its numerous powerful influences, including anticancer, anti-inflammatory, anti-oxidant, anti-osteoporotic, antifungal, antibacterial, antiviral, immunomodulatory, hepatoprotective, and other beneficial health effects. Lactoferrin demonstrated several nutraceutical and pharmaceutical potentials and have a significant impact on improving the health of humans and animals. Lactoferrin plays a critical role in keeping the normal physiological homeostasis associated with the development of pathological disorders. The current review highlights the medicinal value, nutraceutical role, therapeutic application, and outstanding favorable health sides of lactoferrin, which would benefit from more exploration of this glycoprotein for the design of effective medicines, drugs, and pharmaceuticals for safeguarding different health issues in animals and humans.
Collapse
Affiliation(s)
| | - Dawood Zubair
- Iqraa Medical Complex, Johar Town Lahore, Punjab, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Shabbir Ahmed
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan.
| |
Collapse
|
22
|
Saadi S, Makhlouf C, Nacer NE, Halima B, Faiza A, Kahina H, Wahiba F, Afaf K, Rabah K, Saoudi Z. Whey proteins as multifunctional food materials: Recent advancements in hydrolysis, separation, and peptidomimetic approaches. Compr Rev Food Sci Food Saf 2024; 23:e13288. [PMID: 38284584 DOI: 10.1111/1541-4337.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Whey protein derived bioactives, including α-lactalbumin, ß-lactoglobulin, bovine serum albumin, lactoferrin, transferrin, and proteose-peptones, have exhibited wide ranges of functional, biological and therapeutic properties varying from anticancer, antihypertensive, and antimicrobial effects. In addition, their functional properties involve gelling, emulsifying, and foaming abilities. For these reasons, this review article is framed to understand the relationship existed in between those compound levels and structures with their main functional, biological, and therapeutic properties exhibited either in vitro or in vivo. The impacts of hydrolysis mechanism and separation techniques in enhancing those properties are likewise discussed. Furthermore, special emphasize is given to multifunctional effects of whey derived bioactives and their future trends in ameliorating further food, pharmaceutical, and nutraceutical products. The underlying mechanism effects of those properties are still remained unclear in terms of activity levels, efficacy, and targeted effectiveness. For these reasons, some important models linking to functional properties, thermal properties and cell circumstances are established. Moreover, the coexistence of radical trapping groups, chelating groups, sulfhydryl groups, inhibitory groups, and peptide bonds seemed to be the key elements in triggering those functions and properties. Practical Application: Whey proteins are the byproducts of cheese processing and usually the exploitation of these food waste products has increasingly getting acceptance in many countries, especially European countries. Whey proteins share comparable nutritive values to milk products, particularly on their richness on important proteins that can serve immune protection, structural, and energetic roles. The nutritive profile of whey proteins shows diverse type of bioactive molecules like α-lactalbumin, ß-lactoglobulin, lactoferrin, transferrin, immunoglobulin, and proteose peptones with wide biological importance to the living system, such as in maintaining immunological, neuronal, and signaling roles. The diversification of proteins of whey products prompted scientists to exploit the real mechanisms behind of their biological and therapeutic effects, especially in declining the risk of cancer, tumor, and further complications like diabetes type 2 and hypertension risk effects. For these reasons, profiling these types of proteins using different proteomic and peptidomic approaches helps in determining their biological and therapeutic targets along with their release into gastrointestinal tract conditions and their bioavailabilities into portal circulation, tissue, and organs. The wide applicability of those protein fractions and their derivative bioactive products showed significant impacts in the field of emulsion and double emulsion stabilization by playing roles as emulsifying, surfactant, stabilizing, and foaming agents. Their amphoteric properties helped them to act as excellent encapsulating agents, particularly as vehicle for delivering important vitamins and bioactive compounds. The presence of ferric elements increased their transportation to several metal-ions in the same time increased their scavenging effects to metal-transition and peroxidation of lipids. Their richness with almost essential and nonessential amino acids makes them as selective microbial starters, in addition their richness in sulfhydryl amino acids allowed them to act a cross-linker in conjugating further biomolecules. For instance, conjugating gold-nanoparticles and fluorescent materials in targeting diseases like cancer and tumors in vivo is considered the cutting-edges strategies for these versatile molecules due to their active diffusion across-cell membrane and the presence of specific transporters to these therapeutic molecules.
Collapse
Affiliation(s)
- Sami Saadi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Chaalal Makhlouf
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratory of Biotechnology and Food Quality, Institute of Nutrition, Food and Agro-Food Technologies, University of Constantine 1, Constantine, Algeria
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University of Bejaia, Bejaia, Algeria
| | - Nor Elhouda Nacer
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, Batna, Algeria
| | - Boughellout Halima
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Adoui Faiza
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Hafid Kahina
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Equipe MaQuaV, Laboratoire Bioqual INATAA, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Falek Wahiba
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Kheroufi Afaf
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Kezih Rabah
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratory of Biotechnology and Food Quality, Institute of Nutrition, Food and Agro-Food Technologies, University of Constantine 1, Constantine, Algeria
| | - Zineddine Saoudi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| |
Collapse
|
23
|
Subramani C, Sharma G, Chaira T, Barman TK. High content screening strategies for large-scale compound libraries with a focus on high-containment viruses. Antiviral Res 2024; 221:105764. [PMID: 38008193 DOI: 10.1016/j.antiviral.2023.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
A majority of viral diseases do not have FDA-approved drugs. The recent outbreaks caused by SARS-CoV-2, monkeypox, and Sudan ebolavirus have exposed the critical need for rapid screening and identification of antiviral compounds against emerging/re-emerging viral pathogens. A high-content screening (HCS) platform is becoming an essential part of the drug discovery process, thanks to developments in image acquisition and analysis. While HCS has several advantages, its full potential has not been realized in antiviral drug discovery compared to conventional drug screening approaches, such as fluorescence or luminescence-based microplate assays. Therefore, this review aims to summarize HCS workflow, strategies, and developments in image-based drug screening, focusing on high-containment viruses.
Collapse
Affiliation(s)
- Chandru Subramani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Ghanshyam Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Tridib Chaira
- Department of Pharmacology, SGT University, Gurugram, Haryana, India
| | - Tarani Kanta Barman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA.
| |
Collapse
|
24
|
Bragazzi Cunha J, Leix K, Sherman EJ, Mirabelli C, Frum T, Zhang CJ, Kennedy AA, Lauring AS, Tai AW, Sexton JZ, Spence JR, Wobus CE, Emmer BT. Type I interferon signaling induces a delayed antiproliferative response in respiratory epithelial cells during SARS-CoV-2 infection. J Virol 2023; 97:e0127623. [PMID: 37975674 PMCID: PMC10734423 DOI: 10.1128/jvi.01276-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
ABSTRACT Disease progression during SARS-CoV-2 infection is tightly linked to the fate of lung epithelial cells, with severe cases of COVID-19 characterized by direct injury of the alveolar epithelium and an impairment in its regeneration from progenitor cells. The molecular pathways that govern respiratory epithelial cell death and proliferation during SARS-CoV-2 infection, however, remain unclear. We now report a high-throughput CRISPR screen for host genetic modifiers of the survival and proliferation of SARS-CoV-2-infected Calu-3 respiratory epithelial cells. The top four genes identified in our screen encode components of the same type I interferon (IFN-I) signaling complex—IFNAR1, IFNAR2, JAK1, and TYK2. The fifth gene, ACE2, was an expected control encoding the SARS-CoV-2 viral receptor. Surprisingly, despite the antiviral properties of IFN-I signaling, its disruption in our screen was associated with an increase in Calu-3 cell fitness. We validated this effect and found that IFN-I signaling did not sensitize SARS-CoV-2-infected cultures to cell death but rather inhibited the proliferation of surviving cells after the early peak of viral replication and cytopathic effect. We also found that IFN-I signaling alone, in the absence of viral infection, was sufficient to induce this delayed antiproliferative response in both Calu-3 cells and iPSC-derived type 2 alveolar epithelial cells. Together, these findings highlight a cell autonomous antiproliferative response by respiratory epithelial cells to persistent IFN-I signaling during SARS-CoV-2 infection. This response may contribute to the deficient alveolar regeneration that has been associated with COVID-19 lung injury and represents a promising area for host-targeted therapeutic development.
Collapse
Affiliation(s)
- Juliana Bragazzi Cunha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kyle Leix
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Emily J. Sherman
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tristan Frum
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Charles J. Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew A. Kennedy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Adam S. Lauring
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew W. Tai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R. Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brian T. Emmer
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Lin T, Zhou Y, Dadmohammadi Y, Yaghoobi M, Meletharayil G, Kapoor R, Abbaspourrad A. Encapsulation and stabilization of lactoferrin in polyelectrolyte ternary complexes. Food Hydrocoll 2023; 145:109064. [PMID: 37545760 PMCID: PMC10399645 DOI: 10.1016/j.foodhyd.2023.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Effective delivery of the bioactive protein, lactoferrin (LF), remains a challenge as it is sensitive to environmental changes and easily denatured during heating, restricting its application in functional food products. To overcome these challenges, we formulated novel polyelectrolyte ternary complexes of LF with gelatin (G) and negatively charged polysaccharides, to improve the thermal stability of LF with retained antibacterial activity. Linear, highly charged polysaccharides were able to form interpolymeric complexes with LF and G, while coacervates were formed with branched polysaccharides. A unique multiphase coacervate was observed in the gum Arabic GA-LF-G complex, where a special coacervate-in-coacervate structure was found. The ternary complexes made with GA, soy soluble polysaccharide (SSP), or high methoxyl pectin (HMP) preserved the protein structures and demonstrated enhanced thermal stability of LF. The GA-LF-G complex was especially stable with >90% retention of the native LF after treatment at 90 °C for 2 min in a water bath or at 145 °C for 30 s, while the LF control had only ~ 7% undenatured LF under both conditions. In comparison to untreated LF, LF in ternary complex retained significant antibacterial activity on both Gram-positive and Gram-negative bacteria, even after heat treatment. These ternary complexes of LF maintain the desired functionality of LF, thermal stability and antibacterial activity, in the final products. The ternary complex structure, particularly the multiphase coacervate, may serve as a template for the encapsulation and stabilization of other bioactives and peptides.
Collapse
Affiliation(s)
- Tiantian Lin
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Yufeng Zhou
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Mohammad Yaghoobi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
26
|
Cutone A, Musci G, Bonaccorsi di Patti MC. Lactoferrin, the Moonlighting Protein of Innate Immunity. Int J Mol Sci 2023; 24:15888. [PMID: 37958871 PMCID: PMC10650585 DOI: 10.3390/ijms242115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Lactoferrin (Lf), a naturally occurring glycoprotein involved in innate immunity, was first discovered in bovine milk [...].
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.M.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.M.)
| | | |
Collapse
|
27
|
LaLone V, Smith D, Diaz-Espinosa J, Rosania GR. Quantitative Raman chemical imaging of intracellular drug-membrane aggregates and small molecule drug precipitates in cytoplasmic organelles. Adv Drug Deliv Rev 2023; 202:115107. [PMID: 37769851 PMCID: PMC10841539 DOI: 10.1016/j.addr.2023.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Raman confocal microscopes have been used to visualize the distribution of small molecule drugs within different subcellular compartments. This visualization allows the discovery, characterization, and detailed analysis of the molecular transport phenomena underpinning the Volume of Distribution - a key parameter governing the systemic pharmacokinetics of small molecule drugs. In the specific case of lipophilic small molecules with large Volumes of Distribution, chemical imaging studies using Raman confocal microscopes have revealed how weakly basic, poorly soluble drug molecules can accumulate inside cells by forming stable, supramolecular complexes in association with cytoplasmic membranes or by precipitating out within organelles. To study the self-assembly and function of the resulting intracellular drug inclusions, Raman chemical imaging methods have been developed to measure and map the mass, concentration, and ionization state of drug molecules at a microscopic, subcellular level. Beyond the field of drug delivery, Raman chemical imaging techniques relevant to the study of microscopic drug precipitates and drug-lipid complexes which form inside cells are also being developed by researchers with seemingly unrelated scientific interests. Highlighting advances in data acquisition, calibration methods, and computational data management and analysis tools, this review will cover a decade of technological developments that enable the conversion of spectral signals obtained from Raman confocal microscopes into new discoveries and information about previously unknown, concentrative drug transport pathways driven by soluble-to-insoluble phase transitions occurring within the cytoplasmic organelles of eukaryotic cells.
Collapse
Affiliation(s)
- Vernon LaLone
- Cambium Analytica Research Laboratories, Traverse City, MI, United States
| | - Doug Smith
- Cambium Analytica Research Laboratories, Traverse City, MI, United States
| | - Jennifer Diaz-Espinosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
28
|
Berkowitz RL, Bluhm AP, Knox GW, McCurdy CR, Ostrov DA, Norris MH. Sigma Receptor Ligands Prevent COVID Mortality In Vivo: Implications for Future Therapeutics. Int J Mol Sci 2023; 24:15718. [PMID: 37958703 PMCID: PMC10647780 DOI: 10.3390/ijms242115718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The emergence of lethal coronaviruses follows a periodic pattern which suggests a recurring cycle of outbreaks. It remains uncertain as to when the next lethal coronavirus will emerge, though its eventual emergence appears to be inevitable. New mutations in evolving SARS-CoV-2 variants have provided resistance to current antiviral drugs, monoclonal antibodies, and vaccines, reducing their therapeutic efficacy. This underscores the urgent need to investigate alternative therapeutic approaches. Sigma receptors have been unexpectedly linked to the SARS-CoV-2 life cycle due to the direct antiviral effect of their ligands. Coronavirus-induced cell stress facilitates the formation of an ER-derived complex conducive to its replication. Sigma receptor ligands are believed to prevent the formation of this complex. Repurposing FDA-approved drugs for COVID-19 offers a timely and cost-efficient strategy to find treatments with established safety profiles. Notably, diphenhydramine, a sigma receptor ligand, is thought to counteract the virus by inhibiting the creation of ER-derived replication vesicles. Furthermore, lactoferrin, a well-characterized immunomodulatory protein, has shown antiviral efficacy against SARS-CoV-2 both in laboratory settings and in living organisms. In the present study, we aimed to explore the impact of sigma receptor ligands on SARS-CoV-2-induced mortality in ACE2-transgenic mice. We assessed the effects of an investigational antiviral drug combination comprising a sigma receptor ligand and an immunomodulatory protein. Mice treated with sigma-2 receptor ligands or diphenhydramine and lactoferrin exhibited improved survival rates and rapid rebound in mass following the SARS-CoV-2 challenge compared to mock-treated animals. Clinical translation of these findings may support the discovery of new treatment and research strategies for SARS-CoV-2.
Collapse
Affiliation(s)
- Reed L. Berkowitz
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Andrew P. Bluhm
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
| | - Glenn W. Knox
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL 32610, USA
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Michael H. Norris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
29
|
Rabanal Basalo A, Navarro Pablos M, Viejo Pinero N, Vila Méndez ML, Molina Barcena V, Montilla Bernabé A, Villanueva Morán MDP, Blanco Gallego AM, Guirao Sánchez C, Juárez Antón S, Fernández Rodríguez Á, Revuelta Puigdollers ML, Sarriá Sánchez MT, Martín Alegre C, Martínez Álvarez MÁ, Mestre de Juan M, Mielgo Salvador R, Gijón Seco MT, Saníger Herrera JM, Rodríguez Jiménez ME, Navas de la Peña B, Santa Cruz Hernández J, Abad Esteban AM, Díaz Martín R, García Pérez L, Herrero Vanrell P, Arias de Saavedra Criado MI, Vaquero Vinent A, López Gómez V, Montegrifo Rentero VM, Simón Miguel L, Campo Martos I, Ortiz Zamorano S, Izquierdo Zamarriego MJ, Vázquez Carrión I, López Valero RM, Gil C, Martínez A, Soler López B. A randomized, double-blind study on the efficacy of oral domperidone versus placebo for reducing SARS-CoV-2 viral load in mild-to-moderate COVID-19 patients in primary health care. Ann Med 2023; 55:2268535. [PMID: 37847999 PMCID: PMC10583612 DOI: 10.1080/07853890.2023.2268535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
INTRODUCTION The clinical effect of domperidone against COVID-19 has been investigated in a double-blind phase III clinical trial (EudraCT number 2021-001228-17). Domperidone has shown in vitro antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and potential immudolatory properties through the stimulation of prolactin secretion. PATIENTS AND METHODS The efficacy of oral domperidone plus standard of care (SOC; n = 87) versus placebo plus SOC (n = 86) was evaluated in a 28-day randomized double-blind multicentre study in primary health care centres. A total of 173 outpatients with mild-to-moderate COVID-19 were included. Three daily doses of 10 mg (30 mg/day) of domperidone or placebo were administered for 7 days. Reduction of viral load on day 4 was the primary efficay endpoint. It was estimated in saliva samples by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), as the cycle thresholds detected ORF1ab, N Protein and S Protein genes. RESULTS A significant reduction in the viral load was observed (p < 0.001) from baseline to days 4, 7 and 14 of the three genes studied with non-significant differences between domperidone and placebo groups. Twenty-three patients (13.3%) experienced adverse events, 14 patients in the domperidone group (16.1%) and 9 patients in the placebo group (10.5%). No patients needed to be hospitalized. CONCLUSION Results do not prove the use of domperidone as antiviral in patients with COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Carmen Gil
- Centro de Investigaciones Biológicas ‘Margarita Salas’, CSIC, Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas ‘Margarita Salas’, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, ISCiii, Madrid, Spain
| | | |
Collapse
|
30
|
Niort K, Dancourt J, Boedec E, Al Amir Dache Z, Lavieu G, Tareste D. Cholesterol and Ceramide Facilitate Membrane Fusion Mediated by the Fusion Peptide of the SARS-CoV-2 Spike Protein. ACS OMEGA 2023; 8:32729-32739. [PMID: 37720777 PMCID: PMC10500581 DOI: 10.1021/acsomega.3c03610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 09/19/2023]
Abstract
SARS-CoV-2 entry into host cells is mediated by the Spike (S) protein of the viral envelope. The S protein is composed of two subunits: S1 that induces binding to the host cell via its interaction with the ACE2 receptor of the cell surface and S2 that triggers fusion between viral and cellular membranes. Fusion by S2 depends on its heptad repeat domains that bring membranes close together and its fusion peptide (FP) that interacts with and perturbs the membrane structure to trigger fusion. Recent studies have suggested that cholesterol and ceramide lipids from the cell surface may facilitate SARS-CoV-2 entry into host cells, but their exact mode of action remains unknown. We have used a combination of in vitro liposome-liposome and in situ cell-cell fusion assays to study the lipid determinants of S-mediated membrane fusion. Our findings reveal that both cholesterol and ceramide lipids facilitate fusion, suggesting that targeting these lipids could be effective against SARS-CoV-2. As a proof of concept, we examined the effect of chlorpromazine (CPZ), an antipsychotic drug known to perturb membrane structure. Our results show that CPZ effectively inhibits S-mediated membrane fusion, thereby potentially impeding SARS-CoV-2 entry into the host cell.
Collapse
Affiliation(s)
- Kristina Niort
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| | - Julia Dancourt
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - Erwan Boedec
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| | - Zahra Al Amir Dache
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - Grégory Lavieu
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - David Tareste
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| |
Collapse
|
31
|
Vanderlinden E, Boonen A, Noppen S, Schoofs G, Imbrechts M, Geukens N, Snoeck R, Stevaert A, Naesens L, Andrei G, Schols D. PRO-2000 exhibits SARS-CoV-2 antiviral activity by interfering with spike-heparin binding. Antiviral Res 2023; 217:105700. [PMID: 37562608 DOI: 10.1016/j.antiviral.2023.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Here, we report on the anti-SARS-CoV-2 activity of PRO-2000, a sulfonated polyanionic compound. In Vero cells infected with the Wuhan, alpha, beta, delta or omicron variant, PRO-2000 displayed EC50 values of 1.1 μM, 2.4 μM, 1.3 μM, 2.1 μM and 0.11 μM, respectively, and an average selectivity index (i.e. ratio of cytotoxic versus antiviral concentration) of 172. Its anti-SARS-CoV-2 activity was confirmed by virus yield assays in Vero cells, Caco2 cells and A549 cells overexpressing ACE2 and TMPRSS2 (A549-AT). Using pseudoviruses bearing the SARS-CoV-2 spike (S), PRO-2000 was shown to block the S-mediated pseudovirus entry in Vero cells and A549-AT cells, with EC50 values of 0.091 μM and 1.6 μM, respectively. This entry process is initiated by interaction of the S glycoprotein with angiotensin-converting enzyme 2 (ACE2) and heparan sulfate proteoglycans. Surface Plasmon Resonance (SPR) studies showed that PRO-2000 binds to the receptor-binding domain (RBD) of S with a KD of 1.6 nM. Similar KD values (range: 1.2 nM-2.1 nM) were obtained with the RBDs of the alpha, beta, delta and omicron variants. In an SPR neutralization assay, PRO-2000 had no effect on the interaction between the RBD and ACE2. Instead, PRO-2000 was proven to inhibit binding of the RBD to a heparin-coated sensor chip, yielding an IC50 of 1.1 nM. To conclude, PRO-2000 has the potential to inhibit a broad range of SARS-CoV-2 variants by blocking the heparin-binding site on the S protein.
Collapse
Affiliation(s)
- Evelien Vanderlinden
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| | - Arnaud Boonen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Sam Noppen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Geert Schoofs
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Maya Imbrechts
- PharmAbs, The KU Leuven Antibody Center, Herestraat 49 box 820, 3000, Leuven, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, Herestraat 49 box 820, 3000, Leuven, Belgium
| | - Robert Snoeck
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Graciela Andrei
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
32
|
Mann JK, Reddy T, van der Stok M, Ngubane A, Mulaudzi T, Mchunu N, Nevhungoni P, Manickchund N, Manickchund P, Louise Cairns CH, Govender V, Ndung'u T, Suleman Moosa MY, Gosnell BI. Hen egg white bovine colostrum supplement reduces symptoms of mild/moderate COVID-19: a randomized control trial. Future Sci OA 2023; 9:FSO882. [PMID: 37621850 PMCID: PMC10445555 DOI: 10.2144/fsoa-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023] Open
Abstract
Aim The ability of a hen egg white bovine colostrum supplement to prevent severe COVID-19 was tested in a double-blind randomized control study. Methods Adults with mild/moderate COVID-19, risk factors for severe disease, and within 5 days of symptom onset were assigned to the intervention (n = 77) or placebo (n = 79) arms. Symptoms were documented until day 42 post-enrollment and viral clearance was assessed at 11-13 days post-symptom onset. Results One participant developed severe COVID-19. The severe-type symptom score was lower in the active arm at 11-13 days post-symptom onset (p = 0.049). Chest pain, fever/chills, joint pain/malaise, and sore throat were significantly less frequent in the active arm. No differences in viral clearance were observed. Conclusion The intervention reduced symptoms of mild/moderate COVID-19. Clinical Trial Registration DOH-27-062021-9191 (South African National Clinical Trials Register).
Collapse
Affiliation(s)
- Jaclyn Kelly Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Tarylee Reddy
- Biostatistics Research Unit, South African Medical Research Council, Durban, 4091, South Africa
| | - Mary van der Stok
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Ayanda Ngubane
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Takalani Mulaudzi
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Nobuhle Mchunu
- Biostatistics Research Unit, South African Medical Research Council, Durban, 4091, South Africa
| | - Portia Nevhungoni
- Biostatistics Research Unit, South African Medical Research Council, Durban, 4091, South Africa
| | - Nithendra Manickchund
- Department of Infectious Diseases, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Pariva Manickchund
- Department of Infectious Diseases, University of KwaZulu-Natal, Durban, 4001, South Africa
| | | | | | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, 4001, South Africa
- Africa Health Research Institute, Durban, 4001, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology & Harvard University, Cambridge, MA 02139, USA
- Division of Infection & Immunity, University College London, London, WC1E 6BT, UK
| | | | | |
Collapse
|
33
|
Huang Y, Zhang P, Han S, He H. Lactoferrin Alleviates Inflammation and Regulates Gut Microbiota Composition in H5N1-Infected Mice. Nutrients 2023; 15:3362. [PMID: 37571299 PMCID: PMC10421285 DOI: 10.3390/nu15153362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The impact of lactoferrin, an antimicrobial peptide (AMP) with iron-binding properties, on the intestinal barrier and microflora of mice infected with highly pathogenic avian influenza A (H5N1) virus remains unclear. To investigate the effects of lactoferrin on the histopathology and intestinal microecological environment, we conducted a study using H5N1-infected mice. H5N1 infection resulted in pulmonary and intestinal damage, as well as an imbalance in gut microbiota, significantly increasing the abundance of pathogenic bacteria such as Helicobacter pylori and Campylobacter. The consumption of lactoferrin in the diet alleviated lung injury and restored the downregulation of the INAVA gene and intestinal dysfunction caused by H5N1 infection. Lactoferrin not only reduced lung and intestinal injury, but also alleviated inflammation and reversed the changes in intestinal microflora composition while increasing the abundance of beneficial bacteria. Moreover, lactoferrin rebalanced the gut microbiota and partially restored intestinal homeostasis. This study demonstrated that lactoferrin exerts its effects on the intestinal tract, leading to improvements in gut microbiota and restoration of the integrity of both the intestinal wall and lung tissue. These findings support the notion that lactoferrin may be a promising candidate for systemic treatment of influenza by locally acting on the intestine and microbiota.
Collapse
Affiliation(s)
- Yanyi Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyang Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
34
|
Qiao Y, Wotring JW, Zheng Y, Zhang CJ, Zhang Y, Jiang X, Pretto CD, Eyunni S, Parolia A, He T, Cheng C, Cao X, Wang R, Su F, Ellison SJ, Wang Y, Qin J, Yan H, Zhou Q, Ma L, Sexton JZ, Chinnaiyan AM. Proxalutamide reduces SARS-CoV-2 infection and associated inflammatory response. Proc Natl Acad Sci U S A 2023; 120:e2221809120. [PMID: 37459541 PMCID: PMC10372636 DOI: 10.1073/pnas.2221809120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Early in the COVID-19 pandemic, data suggested that males had a higher risk of developing severe disease and that androgen deprivation therapy might be associated with protection. Combined with the fact that TMPRSS2 (transmembrane serine protease 2), a host entry factor for the SARS-CoV-2 virus, was a well-known androgen-regulated gene, this led to an upsurge of research investigating androgen receptor (AR)-targeting drugs. Proxalutamide, an AR antagonist, was shown in initial clinical studies to benefit COVID-19 patients; however, further validation is needed as one study was retracted. Due to continued interest in proxalutamide, which is in phase 3 trials, we examined its ability to impact SARS-CoV-2 infection and downstream inflammatory responses. Proxalutamide exerted similar effects as enzalutamide, an AR antagonist prescribed for advanced prostate cancer, in decreasing AR signaling and expression of TMPRSS2 and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. However, proxalutamide led to degradation of AR protein, which was not observed with enzalutamide. Proxalutamide inhibited SARS-CoV-2 infection with an IC50 value of 97 nM, compared to 281 nM for enzalutamide. Importantly, proxalutamide inhibited infection by multiple SARS-CoV-2 variants and synergized with remdesivir. Proxalutamide protected against cell death in response to tumor necrosis factor alpha and interferon gamma, and overall survival of mice was increased with proxalutamide treatment prior to cytokine exposure. Mechanistically, we found that proxalutamide increased levels of NRF2, an essential transcription factor that mediates antioxidant responses, and decreased lung inflammation. These data provide compelling evidence that proxalutamide can prevent SARS-CoV-2 infection and cytokine-induced lung damage, suggesting that promising clinical data may emerge from ongoing phase 3 trials.
Collapse
Affiliation(s)
- Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Jesse W. Wotring
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI48109
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Charles J. Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI48109
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Xia Jiang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Carla D. Pretto
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Stephanie J. Ellison
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Yini Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Honghua Yan
- Kintor Pharmaceutical Limited, Suzhou Industrial Park, Suzhuo215123, China
| | - Qianxiang Zhou
- Kintor Pharmaceutical Limited, Suzhou Industrial Park, Suzhuo215123, China
| | - Liandong Ma
- Kintor Pharmaceutical Limited, Suzhou Industrial Park, Suzhuo215123, China
| | - Jonathan Z. Sexton
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109
- Center for Drug Repurposing, University of Michigan, Ann Arbor, MI48109
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI48109
- Department of Pharmacology, University of Michigan, Ann Arbor, MI48109
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Urology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
35
|
Metzner K, O’Meara MJ, Halligan B, Wotring JW, Sexton JZ, O’Meara TR. Imaging-Based Screening Identifies Modulators of the eIF3 Translation Initiation Factor Complex in Candida albicans. Antimicrob Agents Chemother 2023; 67:e0050323. [PMID: 37382550 PMCID: PMC10353439 DOI: 10.1128/aac.00503-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
Fungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins. An attractive new approach for antimicrobial development is to target virulence factors: non-essential processes that are required for the organism to cause disease in human hosts. This approach expands the potential target space while reducing the selective pressure toward resistance, as these targets are not essential for viability. In C. albicans, a key virulence factor is the ability to transition to hyphal morphology. We developed a high-throughput image analysis pipeline to distinguish between yeast and filamentous growth in C. albicans at the single cell level. Based on this phenotypic assay, we screened the FDA drug repurposing library of 2,017 compounds for their ability to inhibit filamentation and identified 33 compounds that block the hyphal transition in C. albicans with IC50 values ranging from 0.2 to 150 μM. Multiple compounds showed a phenyl sulfone chemotype, prompting further analysis. Of these phenyl sulfones, NSC 697923 displayed the most efficacy, and by selecting for resistant mutants, we identified eIF3 as the target of NSC 697923 in C. albicans.
Collapse
Affiliation(s)
- Katura Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin Halligan
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jesse W. Wotring
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, Michigan, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
Jeong JH, Choi JH, Kim BK, Min SC, Chokkakula S, Oh S, Park JH, Shim SM, Kim EG, Choi YK, Lee JY, Baek YH, Song MS. Evaluating Z-FA-FMK, a host cathepsin L protease inhibitor, as a potent and broad-spectrum antiviral therapy against SARS-CoV-2 and related coronaviruses. Antiviral Res 2023; 216:105669. [PMID: 37437781 DOI: 10.1016/j.antiviral.2023.105669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Even though the World Health Organization announced the end of the COVID-19 pandemic as a global public health emergency on May 5, 2023, SARS-CoV-2 continues to pose a significant health threat worldwide, resulting in substantial numbers of infections and fatalities. This study investigated the antiviral potential of Z-FA-FMK (FMK), a novel host cathepsin L protease inhibitor, against SARS-CoV-2 infection using both in vitro and in vivo models. In vitro assessments of FMK against a diverse set of SARS-CoV-2 strains, including the Wuhan-like strain and nine variants, demonstrated potent inhibition with EC50 values ranging from 0.55 to 2.41 μM, showcasing similar or superior efficacy compared to FDA-approved antivirals nirmatrelvir (NTV) and molnupiravir (MPV). In vivo experiments using orally administered FMK (25 mg/kg) in SARS-CoV-2-infected K18 hACE2 transgenic mice revealed improved survival rates of 60% and accelerated recovery compared to NTV and MPV treatments. Additionally, FMK displayed a longer half-life (17.26 ± 8.89 h) than NTV and MPV in the mouse model. Due to its host-targeting mechanism, FMK offers potential advantages such as reduced drug resistance and broad-spectrum antiviral activity against multiple coronaviruses. These findings indicate that FMK may serve as a promising candidate for further clinical evaluation in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jang-Hoon Choi
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Beom Kyu Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Seong Cheol Min
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Santosh Chokkakula
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sol Oh
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ji-Hyun Park
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang-Mu Shim
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Republic of Korea.
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
37
|
Coccolini C, Berselli E, Blanco-Llamero C, Fathi F, Oliveira MBPP, Krambeck K, Souto EB. Biomedical and Nutritional Applications of Lactoferrin. Int J Pept Res Ther 2023; 29:71. [DOI: 10.1007/s10989-023-10541-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 01/05/2025]
Abstract
AbstractLactoferrin (Lf) is a glycoprotein belonging to the transferrin family, which can be found in mammalian milk. It was first isolated from bovine milk in the 1930s, and later in the 1960s, it was determined from human milk. This multifunctional protein has the specific ability to bind iron. It plays various biological roles, such as antibacterial, antiviral, antifungal, anti-tumour, anti-obesity, antioxidant, anti-inflammatory and immunomodulatory activities. There are several studies describing its use against in various cancer cell lines (e.g., liver, lung and breast) and the glycoprotein has even been reported to inhibit the development of experimental metastases in mice. Previous studies also suggest Lf-mediated neuroprotection against age-related neurodegenerative diseases and it is also expected to attenuate aging. More recently, Lf has been proposed as a potential approach in COVID-19 prophylaxis. In this review, we discuss the recent developments about the biological activities of this pleiotropic glycoprotein that will reason the exploitation of its biomedical and supplementary nutritional value.
Collapse
|
38
|
Williams JM, Chen YJ, Cho WJ, Tai AW, Tsai B. Reticulons promote formation of ER-derived double-membrane vesicles that facilitate SARS-CoV-2 replication. J Cell Biol 2023; 222:e202203060. [PMID: 37093123 PMCID: PMC10130743 DOI: 10.1083/jcb.202203060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/24/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiologic agent for the global COVID-19 pandemic, triggers the formation of endoplasmic reticulum (ER)-derived replication organelles, including double-membrane vesicles (DMVs), in the host cell to support viral replication. Here, we clarify how SARS-CoV-2 hijacks host factors to construct the DMVs. We show that the ER morphogenic proteins reticulon-3 (RTN3) and RTN4 help drive DMV formation, enabling viral replication, which leads to productive infection. Different SARS-CoV-2 variants, including the delta variant, use the RTN-dependent pathway to promote infection. Mechanistically, our results reveal that the membrane-embedded reticulon homology domain (RHD) of the RTNs is sufficient to functionally support viral replication and physically engage NSP3 and NSP4, two viral non-structural membrane proteins known to induce DMV formation. Our findings thus identify the ER morphogenic RTN3 and RTN4 membrane proteins as host factors that help promote the biogenesis of SARS-CoV-2-induced DMVs, which can act as viral replication platforms.
Collapse
Affiliation(s)
- Jeffrey M. Williams
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yu-Jie Chen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Woo Jung Cho
- Biomedical Research Core Facilities, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew W. Tai
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Tomezsko PJ, Phillipson CW, Walsh ME. Lessons Learned From Limited Overlap of 15 In Vitro COVID-19 Drug Repurposing Screens. Health Secur 2023; 21:249-257. [PMID: 37196212 PMCID: PMC10357111 DOI: 10.1089/hs.2022.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/19/2023] Open
Abstract
Drug repurposing can quickly and cost-effectively identify medical countermeasures against pathogens with pandemic potential and could be used as a down-selection method for selecting US Food and Drug Administration-approved drugs to test in clinical trials. We compared results from 15 high-throughput in vitro screening efforts that tested approved and clinically evaluated drugs for activity against SARS-CoV-2 replication. From the 15 studies, 304 drugs were identified as displaying the highest level of confidence from the individual screens. Of those 304 drugs, 30 were identified in 2 or more screens, while only 3 drugs (apilimod, tetrandrine, and salinomycin) were identified in 4 screens. The lack of concordance in high-confidence hits and variations in protocols makes it challenging to use the collective data as down-selection criteria for identifying repurposing candidates to move into a clinical trial.
Collapse
Affiliation(s)
- Phillip J. Tomezsko
- Phillip J. Tomezsko, PhD, is Technical Staff, Counter WMD Systems Group, MIT Lincoln Laboratory, Lexington, MA
| | | | - Matthew E. Walsh
- Matthew E. Walsh was Associate Technical Staff, Biological and Chemical Technologies Group, MIT Lincoln Laboratory, Lexington, MA
- Matthew E. Walsh is currently a PhD Student, Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
40
|
Procario MC, Sexton JZ, Halligan BS, Imperiale MJ. Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection. Microbiol Spectr 2023; 11:e0087323. [PMID: 37154756 PMCID: PMC10269497 DOI: 10.1128/spectrum.00873-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection. IMPORTANCE BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV.
Collapse
Affiliation(s)
- Megan C. Procario
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- Center for Drug Repurposing, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin S. Halligan
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Abd El-Hack ME, Abdelnour SA, Kamal M, Khafaga AF, Shakoori AM, Bagadood RM, Naffadi HM, Alyahyawi AY, Khojah H, Alghamdi S, Jaremko M, Świątkiewicz S. Lactoferrin: Antimicrobial impacts, genomic guardian, therapeutic uses and clinical significance for humans and animals. Biomed Pharmacother 2023; 164:114967. [PMID: 37290189 DOI: 10.1016/j.biopha.2023.114967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Lactoferrin (LF) is a protein found in several bodily fluids, such as milk. This protein has a diverse range of functions and is evolutionarily conserved. Lactoferrin is a multifunction protein with distinct biological abilities affecting mammals' immune structures. Reports indicated that the daily uptake of LF from dairy products is unsatisfactory in detecting further health-promoting abilities. Research has shown that it protects against infection, mitigates cellular senescence, and improves nutritional quality. Additionally, LF is being studied as a potential treatment for various diseases and conditions, including gastrointestinal issues and infections. Studies have also demonstrated its effectiveness against various viruses and bacteria. In this article, we'll look closer at the structure of LF and its various biological activities, including its antimicrobial, anti-viral, anti-cancer, anti-osteoporotic, detoxifying, and immunomodulatory properties. More specifically, the protective effect of LF against oxidative DNA damage was also clarified through its ability to abolish DNA damaging issues without interfacing with host genetic material. Fortification with LF protects mitochondria dysfunction syndromes via sustaining redox status and biogenesis and suppressing apoptosis and autophagy singling. Additionally, we'll examine the potential benefits of lactoferrin and provide an overview of recent clinical trials conducted to examine its use in laboratory and living models.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Afnan M Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Rehab M Bagadood
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hind M Naffadi
- Department of medical genetics,college of medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Areej Y Alyahyawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Hanan Khojah
- Pharmacognosy Department, Faculty of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of clinical pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
42
|
Mirabelli C, Bragazzi Cunha J, Wotring JW, Sherman EJ, El Saghir J, Harder J, Kretzler M, Sexton JZ, Emmer BT, Wobus CE. ARF6 is a host factor for SARS-CoV-2 infection in vitro. J Gen Virol 2023; 104:001868. [PMID: 37342971 PMCID: PMC10397720 DOI: 10.1099/jgv.0.001868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged beta-coronavirus that enter cells via two routes, direct fusion at the plasma membrane or endocytosis followed by fusion with the late endosome/lysosome. While the viral receptor, ACE2, multiple entry factors and the mechanism of fusion of the virus at the plasma membrane have been investigated extensively, viral entry via the endocytic pathway is less understood. By using a human hepatocarcinoma cell line, Huh-7, which is resistant to the antiviral action of the TMPRSS2 inhibitor camostat, we discovered that SARS-CoV-2 entry is not dependent on dynamin but on cholesterol. ADP-ribosylation factor 6 (ARF6) has been described as a host factor for SARS-CoV-2 replication and is involved in the entry and infection of several pathogenic viruses. Using CRISPR/Cas9 genetic deletion, a modest reduction in SARS-CoV-2 uptake and infection in Huh-7 was observed. In addition, pharmacological inhibition of ARF6 with the small molecule NAV-2729 showed a dose-dependent reduction of viral infection. Importantly, NAV-2729 also reduced SARS-CoV-2 viral loads in more physiological models of infection: Calu-3 cells and kidney organoids. This highlighted a role for ARF6 in multiple cell contexts. Together, these experiments point to ARF6 as a putative target to develop antiviral strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- C. Mirabelli
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Present address: Institut für Virologie und Zellbiologie, University of Lübeck, Lübeck, Germany
| | - J. Bragazzi Cunha
- Department of Internal Medicine, Division of Hospital Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J. W. Wotring
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - E. J. Sherman
- Department of Internal Medicine, Division of Hospital Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Present address: Territory Manager at Takara Bio, Inc., MI, MN, IN, KY, USA
| | - J. El Saghir
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Harder
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - M. Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Z. Sexton
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - B. T. Emmer
- Department of Internal Medicine, Division of Hospital Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - C. E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Singh P, Hernandez‐Rauda R, Peña‐Rodas O. Preventative and therapeutic potential of animal milk components against COVID-19: A comprehensive review. Food Sci Nutr 2023; 11:2547-2579. [PMID: 37324885 PMCID: PMC10261805 DOI: 10.1002/fsn3.3314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023] Open
Abstract
The global pandemic of COVID-19 is considered one of the most catastrophic events on earth. During the pandemic, food ingredients may play crucial roles in preventing infectious diseases and sustaining people's general health and well-being. Animal milk acts as a super food since it has the capacity to minimize the occurrence of viral infections due to inherent antiviral properties of its ingredients. SARS-CoV-2 virus infection can be prevented by immune-enhancing and antiviral properties of caseins, α-lactalbumin, β-lactoglobulin, mucin, lactoferrin, lysozyme, lactoperoxidase, oligosaccharides, glycosaminoglycans, and glycerol monolaurate. Some of the milk proteins (i.e., lactoferrin) may work synergistically with antiviral medications (e.g., remdesivir), and enhance the effectiveness of treatment in this disease. Cytokine storm during COVID-19 can be managed by casein hydrolyzates, lactoferrin, lysozyme, and lactoperoxidase. Thrombus formation can be prevented by casoplatelins as these can inhibit human platelet aggregation. Milk vitamins (i.e., A, D, E, and B complexes) and minerals (i.e., Ca, P, Mg, Zn, and Se) can have significantly positive effects on boosting the immunity and health status of individuals. In addition, certain vitamins and minerals can also act as antioxidants, anti-inflammatory, and antivirals. Thus, the overall effect of milk might be a result of synergistic antiviral effects and host immunomodulator activities from multiple components. Due to multiple overlapping functions of milk ingredients, they can play vital and synergistic roles in prevention as well as supportive agents during principle therapy of COVID-19.
Collapse
Affiliation(s)
- Parminder Singh
- Department of Animal Husbandry AmritsarGovernment of PunjabAmritsarIndia
| | - Roberto Hernandez‐Rauda
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| | - Oscar Peña‐Rodas
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| |
Collapse
|
44
|
Sokolov AV, Isakova-Sivak IN, Mezhenskaya DA, Kostevich VA, Gorbunov NP, Elizarova AY, Matyushenko VA, Berson YM, Grudinina NA, Kolmakov NN, Zabrodskaya YA, Komlev AS, Semak IV, Budevich AI, Rudenko LG, Vasilyev VB. Molecular mimicry of the receptor-binding domain of the SARS-CoV-2 spike protein: from the interaction of spike-specific antibodies with transferrin and lactoferrin to the antiviral effects of human recombinant lactoferrin. Biometals 2023; 36:437-462. [PMID: 36334191 PMCID: PMC9638208 DOI: 10.1007/s10534-022-00458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
The pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves dysregulations of iron metabolism, and although the mechanism of this pathology is not yet fully understood, correction of iron metabolism pathways seems a promising pharmacological target. The previously observed effect of inhibiting SARS-CoV-2 infection by ferristatin II, an inducer of transferrin receptor 1 (TfR1) degradation, prompted the study of competition between Spike protein and TfR1 ligands, especially lactoferrin (Lf) and transferrin (Tf). We hypothesized molecular mimicry of Spike protein as cross-reactivity of Spike-specific antibodies with Tf and Lf. Thus, strong positive correlations (R2 > 0.95) were found between the level of Spike-specific IgG antibodies present in serum samples of COVID-19-recovered and Sputnik V-vaccinated individuals and their Tf-binding activity assayed with peroxidase-labeled anti-Tf. In addition, we observed cross-reactivity of Lf-specific murine monoclonal antibody (mAb) towards the SARS-CoV-2 Spike protein. On the other hand, the interaction of mAbs produced to the receptor-binding domain (RBD) of the Spike protein with recombinant RBD protein was disrupted by Tf, Lf, soluble TfR1, anti-TfR1 aptamer, as well as by peptides RGD and GHAIYPRH. Furthermore, direct interaction of RBD protein with Lf, but not Tf, was observed, with affinity of binding estimated by KD to be 23 nM and 16 nM for apo-Lf and holo-Lf, respectively. Treatment of Vero E6 cells with apo-Lf and holo-Lf (1-4 mg/mL) significantly inhibited SARS-CoV-2 replication of both Wuhan and Delta lineages. Protective effects of Lf on different arms of SARS-CoV-2-induced pathogenesis and possible consequences of cross-reactivity of Spike-specific antibodies are discussed.
Collapse
Affiliation(s)
- A V Sokolov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia.
| | - I N Isakova-Sivak
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - D A Mezhenskaya
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V A Kostevich
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N P Gorbunov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - A Yu Elizarova
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V A Matyushenko
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - Yu M Berson
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N A Grudinina
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N N Kolmakov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - Y A Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popova Str. 15/17, St. Petersburg, 197376, Russia
- Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064, Saint Petersburg, Russia
| | - A S Komlev
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - I V Semak
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Nezavisimisty Ave. 4, 220030, Minsk, Belarus
| | - A I Budevich
- Scientific and Practical Center of the National Academy of Sciences of Belarus for Animal Breeding, 11 Frunze Str., 222160, Zhodino, Belarus
| | - L G Rudenko
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V B Vasilyev
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| |
Collapse
|
45
|
Wang RS, Loscalzo J. Repurposing Drugs for the Treatment of COVID-19 and Its Cardiovascular Manifestations. Circ Res 2023; 132:1374-1386. [PMID: 37167362 PMCID: PMC10171294 DOI: 10.1161/circresaha.122.321879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
COVID-19 is an infectious disease caused by SARS-CoV-2 leading to the ongoing global pandemic. Infected patients developed a range of respiratory symptoms, including respiratory failure, as well as other extrapulmonary complications. Multiple comorbidities, including hypertension, diabetes, cardiovascular diseases, and chronic kidney diseases, are associated with the severity and increased mortality of COVID-19. SARS-CoV-2 infection also causes a range of cardiovascular complications, including myocarditis, myocardial injury, heart failure, arrhythmias, acute coronary syndrome, and venous thromboembolism. Although a variety of methods have been developed and many clinical trials have been launched for drug repositioning for COVID-19, treatments that consider cardiovascular manifestations and cardiovascular disease comorbidities specifically are limited. In this review, we summarize recent advances in drug repositioning for COVID-19, including experimental drug repositioning, high-throughput drug screening, omics data-based, and network medicine-based computational drug repositioning, with particular attention on those drug treatments that consider cardiovascular manifestations of COVID-19. We discuss prospective opportunities and potential methods for repurposing drugs to treat cardiovascular complications of COVID-19.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Channing Division of Network Medicine (R.-S.W., J.L.), Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
| | - Joseph Loscalzo
- Channing Division of Network Medicine (R.-S.W., J.L.), Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
- Division of Cardiovascular Medicine (J.L.), Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
| |
Collapse
|
46
|
Metzner K, O’Meara MJ, Halligan B, Wotring JW, Sexton JZ, O’Meara TR. Imaging-based screening identifies modulators of the eIF3 translation initiation factor complex in Candida albicans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537517. [PMID: 37131825 PMCID: PMC10153179 DOI: 10.1101/2023.04.19.537517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins. An attractive new approach for antimicrobial development is to target virulence factors: non-essential processes that are required for the organism to cause disease in human hosts. This approach expands the potential target space while reducing the selective pressure towards resistance, as these targets are not essential for viability. In C. albicans, a key virulence factor is the ability to transition to hyphal morphology. We developed a high-throughput image analysis pipeline to distinguish between yeast and filamentous growth in C. albicans at the single cell level. Based on this phenotypic assay, we screened the FDA drug repurposing library of 2,017 compounds for their ability to inhibit filamentation and identified 33 compounds that block the hyphal transition in C. albicans with IC 50 values ranging from 0.2 to 150 µM. Multiple compounds showed a phenyl vinyl sulfone chemotype, prompting further analysis. Of these phenyl vinyl sulfones, NSC 697923 displayed the most efficacy, and by selecting for resistant mutants, we identified eIF3 as the target of NSC 697923 in C. albicans .
Collapse
Affiliation(s)
- Katura Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew J O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Halligan
- University of Michigan Center for Drug Repurposing, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jesse W. Wotring
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, MI, USA
- University of Michigan Center for Drug Repurposing, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, MI, USA
- University of Michigan Center for Drug Repurposing, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Teresa R O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
48
|
Matino E, Tavella E, Rizzi M, Avanzi GC, Azzolina D, Battaglia A, Becco P, Bellan M, Bertinieri G, Bertoletti M, Casciaro GF, Castello LM, Colageo U, Colangelo D, Comolli D, Costanzo M, Croce A, D’Onghia D, Della Corte F, De Mitri L, Dodaro V, Givone F, Gravina A, Grillenzoni L, Gusmaroli G, Landi R, Lingua A, Manzoni R, Marinoni V, Masturzo B, Minisini R, Morello M, Nelva A, Ortone E, Paolella R, Patti G, Pedrinelli A, Pirisi M, Ravizzi L, Rizzi E, Sola D, Sola M, Tonello N, Tonello S, Topazzo G, Tua A, Valenti P, Vaschetto R, Vassia V, Zecca E, Zublena N, Manzoni P, Sainaghi PP. Effect of Lactoferrin on Clinical Outcomes of Hospitalized Patients with COVID-19: The LAC Randomized Clinical Trial. Nutrients 2023; 15:1285. [PMID: 36904283 PMCID: PMC10005739 DOI: 10.3390/nu15051285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
As lactoferrin is a nutritional supplement with proven antiviral and immunomodulatory abilities, it may be used to improve the clinical course of COVID-19. The clinical efficacy and safety of bovine lactoferrin were evaluated in the LAC randomized double-blind placebo-controlled trial. A total of 218 hospitalized adult patients with moderate-to-severe COVID-19 were randomized to receive 800 mg/die oral bovine lactoferrin (n = 113) or placebo (n = 105), both given in combination with standard COVID-19 therapy. No differences in lactoferrin vs. placebo were observed in the primary outcomes: the proportion of death or intensive care unit admission (risk ratio of 1.06 (95% CI 0.63-1.79)) or proportion of discharge or National Early Warning Score 2 (NEWS2) ≤ 2 within 14 days from enrollment (RR of 0.85 (95% CI 0.70-1.04)). Lactoferrin showed an excellent safety and tolerability profile. Even though bovine lactoferrin is safe and tolerable, our results do not support its use in hospitalized patients with moderate-to-severe COVID-19.
Collapse
Affiliation(s)
- Erica Matino
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Elena Tavella
- Department of Maternal-Infant Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
- Internal Medicine, Department of Medical Sciences, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza, University of Turin School of Medicine, 10126 Turin, Italy
| | - Manuela Rizzi
- Department of Health Sciences, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Gian Carlo Avanzi
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Danila Azzolina
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Antonio Battaglia
- Division of Dermatology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Paolo Becco
- Division of Oncology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Giovanni Bertinieri
- Division of Internal Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | | | - Giuseppe Francesco Casciaro
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Division of Internal Medicine, Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Umberto Colageo
- Intensive Care Unit, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Donato Colangelo
- Department of Health Sciences, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Davide Comolli
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Martina Costanzo
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Alessandro Croce
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Davide D’Onghia
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Francesco Della Corte
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Anesthesia and Intensive Care Medicine, AOU “Maggiore della Carità”, 28100 Novara, Italy
| | - Luigi De Mitri
- Division of Diabetology and Endocrinology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Valentina Dodaro
- Internal Medicine, Department of Medical Sciences, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza, University of Turin School of Medicine, 10126 Turin, Italy
| | - Filippo Givone
- Division of Pneumology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Alessia Gravina
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Luca Grillenzoni
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | | | - Raffaella Landi
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Anna Lingua
- Division of Infectious Disease, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Roberto Manzoni
- Division of Dermatology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Vito Marinoni
- Division of Geriatric Care, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Bianca Masturzo
- Division of Obstetrics and Gynecology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Marina Morello
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Anna Nelva
- Division of Diabetology and Endocrinology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Elena Ortone
- Division of Geriatric Care, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Rita Paolella
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Medical Department, Division of Cardiology, AOU “Maggiore della Carità”, 28100 Novara, Italy
| | - Anita Pedrinelli
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Lidia Ravizzi
- Division of Pneumology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Eleonora Rizzi
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Daniele Sola
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Mariolina Sola
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Nadir Tonello
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Gigliola Topazzo
- Division of Diabetology and Endocrinology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Aldo Tua
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome, La Sapienza, 00185 Rome, Italy
| | - Rosanna Vaschetto
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Anesthesia and Intensive Care Medicine, AOU “Maggiore della Carità”, 28100 Novara, Italy
| | - Veronica Vassia
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Erika Zecca
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Nicoletta Zublena
- Division of Palliative Care, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Paolo Manzoni
- Department of Maternal-Infant Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
- Internal Medicine, Department of Medical Sciences, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza, University of Turin School of Medicine, 10126 Turin, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
49
|
Qiao Y, Wotring JW, Zhang CJ, Jiang X, Xiao L, Watt A, Gattis D, Scandalis E, Freier S, Zheng Y, Pretto CD, Ellison SJ, Swayze EE, Guo S, Sexton JZ, Chinnaiyan AM. Antisense oligonucleotides to therapeutically target SARS-CoV-2 infection. PLoS One 2023; 18:e0281281. [PMID: 36735698 PMCID: PMC9897518 DOI: 10.1371/journal.pone.0281281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Although the COVID-19 pandemic began over three years ago, the virus responsible for the disease, SARS-CoV-2, continues to infect people across the globe. As such, there remains a critical need for development of novel therapeutics against SARS-CoV-2. One technology that has remained relatively unexplored in COVID-19 is the use of antisense oligonucleotides (ASOs)-short single-stranded nucleic acids that bind to target RNA transcripts to modulate their expression. In this study, ASOs targeted against the SARS-CoV-2 genome and host entry factors, ACE2 and TMPRSS2, were designed and tested for their ability to inhibit cellular infection by SARS-CoV-2. Using our previously developed SARS-CoV-2 bioassay platform, we screened 180 total ASOs targeting various regions of the SARS-CoV-2 genome and validated several ASOs that potently blocked SARS-CoV-2 infection in vitro. Notably, select ASOs retained activity against both the WA1 and B.1.1.7 (commonly known as alpha) variants. Screening of ACE2 and TMPRSS2 ASOs showed that targeting of ACE2 also potently prevented infection by the WA1 and B.1.1.7 SARS-CoV-2 viruses in the tested cell lines. Combined with the demonstrated success of ASOs in other disease indications, these results support further research into the development of ASOs targeting SARS-CoV-2 and host entry factors as potential COVID-19 therapeutics.
Collapse
Affiliation(s)
- Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States of America
| | - Jesse W. Wotring
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States of America
| | - Charles J. Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States of America
| | - Xia Jiang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States of America
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States of America
| | - Andy Watt
- Ionis Pharmaceuticals, Carlsbad, CA, United States of America
| | - Danielle Gattis
- Ionis Pharmaceuticals, Carlsbad, CA, United States of America
| | - Eli Scandalis
- Ionis Pharmaceuticals, Carlsbad, CA, United States of America
| | - Susan Freier
- Ionis Pharmaceuticals, Carlsbad, CA, United States of America
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States of America
| | - Carla D. Pretto
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Stephanie J. Ellison
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States of America
| | - Eric E. Swayze
- Ionis Pharmaceuticals, Carlsbad, CA, United States of America
| | - Shuling Guo
- Ionis Pharmaceuticals, Carlsbad, CA, United States of America
| | - Jonathan Z. Sexton
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
- Center for Drug Repurposing, University of Michigan, Ann Arbor, MI, United States of America
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States of America
- Department of Urology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
50
|
Patil D, Chen S, Fogliano V, Madadlou A. Hydrolysis improves the inhibition efficacy of bovine lactoferrin against infection by SARS-CoV-2 pseudovirus. Int Dairy J 2023; 137:105488. [PMID: 36089931 PMCID: PMC9444154 DOI: 10.1016/j.idairyj.2022.105488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/15/2022]
Abstract
The entry of SARS-CoV-2 into host cells may involve the spike protein cleavage by cathepsin L (CTSL). Certain food proteins such as lactoferrin (Lf) inhibit CTSL. The current study investigated the impact of hydrolysis (0-180 min) by proteinase K on electrophoretic pattern, secondary structure, cathepsin inhibitory and SARS-CoV-2 pseudovirus infectivity inhibitory of bovine Lf. Gel electrophoresis indicated that hydrolysis cut Lf molecules to half lobes (∼40 kDa) and produced peptides ≤18 kDa. Approximation of the secondary structural features through analysis of the second-derivative amide I band collected by infra-red spectroscopy suggested a correlative-causative relationship between cathepsin inhibition and the content of helix-unordered structures in Lf hydrolysate. The half maximal inhibitory concentration (IC50) of Lf hydrolysed for 90 min (H90) against CTSL was about 100 times smaller than that of the Lf hydrolysed for 0 min (H0). H90 had also double activity against SARS-CoV-2 pseudo-types infectivity compared with H0.
Collapse
Affiliation(s)
- Devashree Patil
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Siyu Chen
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Ashkan Madadlou
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|