1
|
Kowalczyk J, Kłodawska K, Zych M, Burczyk J, Malec P. Ubiquitin-like and ubiquitinylated proteins associated with the maternal cell walls of Scenedesmus obliquus 633 as identified by immunochemistry and LC-MS/MS proteomics. PROTOPLASMA 2024:10.1007/s00709-024-01994-3. [PMID: 39365352 DOI: 10.1007/s00709-024-01994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The cell walls of green algae Scenedesmus obliquus are complex, polymeric structures including an inner cellulose layer surrounded by an algaenan-containing trilaminar sheath. The process of autosporulation leads to the formation of sporangial (maternal) cell walls, which are released into the medium after sporangial autolysis. In this study, a fraction of maternal cell wall material (CWM) was isolated from the stationary phase cultures of Scenedesmus obliquus 633 and subjected to immunofluorescence microscopy using polyclonal anti-ubiquitin antibodies. The water-extracted polypeptide fraction from the maternal cell walls was then analyzed using immunoblotting and LC-MS/MS. An immunoanalysis showed the presence of several peptides reactive with polyclonal anti-ubiquitin serum, with apparent molecular masses of c. 12, 70, 120, 200, and > 250 kDa. Cell wall-associated peptides were identified on the basis of LC-MS/MS spectra across NCBI databases, including the Scenedesmaceae family (58 records), the Chlorophyceae class (37 records), and Chlamydomonas reinhardtii (18 records) corresponding to the signatures of 95 identified proteins. In particular, three signatures identified ubiquitin and ubiquitin-related proteins. In the maternal cell walls, immunoblotting analysis, immunofluorescence microscopy, and LC-MS/MS proteomics collectively demonstrated the presence of ubiquitin-like epitopes, ubiquitin-specific peptide signatures, and several putative ubiquitin conjugates of a higher molecular mass. These results support the presence of ubiquitin-like proteins in the extramembranous compartment of Scenedesmus obliquus 633 and suggest that protein ubiquitination plays a significant role in the formation and functional integrity of the maternal cell walls in green algae.
Collapse
Affiliation(s)
- Justyna Kowalczyk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348, Kraków, Poland
| | - Kinga Kłodawska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Jan Burczyk
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
- Laboratory of Biotechnology, Puńcowska 74, 43-400, Cieszyn, Poland
| | - Przemysław Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland.
| |
Collapse
|
2
|
Abstract
Expansins comprise an ancient group of cell wall proteins ubiquitous in land plants and their algal ancestors. During cell growth, they facilitate passive yielding of the wall's cellulose networks to turgor-generated tensile stresses, without evidence of enzymatic activity. Expansins are also implicated in fruit softening and other developmental processes and in adaptive responses to environmental stresses and pathogens. The major expansin families in plants include α-expansins (EXPAs), which act on cellulose-cellulose junctions, and β-expansins, which can act on xylans. EXPAs mediate acid growth, which contributes to wall enlargement by auxin and other growth agents. The genomes of diverse microbes, including many plant pathogens, also encode expansins designated expansin-like X. Expansins are proposed to disrupt noncovalent bonding between laterally aligned polysaccharides (notably cellulose), facilitating wall loosening for a variety of biological roles.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
3
|
Li X, Hu N, Huang X, Josy Karel NN, He Y, Tang H, Li Y, Xu J. Morphological, physiological, and transcriptomic analyses indicate that cell wall properties and antioxidant processes are potential targets for improving the aluminium tolerance of broad beans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109164. [PMID: 39357198 DOI: 10.1016/j.plaphy.2024.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Aluminium (Al) stress is the second-leading abiotic stress on crops. An improved understanding of the response mechanisms of plants to Al stress will provide scientific guidance for enhancing the crops' tolerance to Al stress. In this study, Al stress (50-200 μM AlCl3) caused visible damage to broad bean (Vicia faba L.) roots rather than shoots, which was attributed to Al accumulation and distribution in different tissues. Root transcriptomic analysis revealed that Al stress altered cell wall properties by downregulating lignin synthesis and several xyloglucan endotransglucosylase/hydrolase-, expansin- and peroxidase (POD)-encoding genes, which likely weakened cell extensibility to inhibit root growth. Additionally, Al stress impeded reactive oxygen species scavenging pathways involving POD activity and flavonoid biosynthesis, leading to oxidative damage characterised by malondialdehyde accumulation. These results indicate that optimising cell wall properties and/or enhancing antioxidant processes are crucial for alleviating Al toxicity to broad beans. Interestingly, exogenous application (500 and 1000 μM) of the flavonoid apigenin effectively alleviated Al toxicity in broad bean roots by partially improving the total antioxidant capacity of the roots. This study contributes to understanding the interaction between plants and Al and provides new strategies to alleviate Al toxicity in crops.
Collapse
Affiliation(s)
- Xiong Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China
| | - Na Hu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China
| | - Xumei Huang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China; School of Forestry, Southwest Forestry University, Kunming, 650224, China
| | - Ngueuyim Nono Josy Karel
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhua He
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Haisheng Tang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China; School of Forestry, Southwest Forestry University, Kunming, 650224, China
| | - Yanshuang Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China; School of Ecology and Environment, Yunnan University, Kunming, 650500, China
| | - Jianchu Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China.
| |
Collapse
|
4
|
Chi Y, Wang Z, Chen S, Feng L, Zhou M, Li Y, Yu Y, Gao C, Wang C. Identification of BpEXP family genes and functional characterization of the BpEXPA1 gene in the stems development of Betula platyphylla. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154361. [PMID: 39332321 DOI: 10.1016/j.jplph.2024.154361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Expansins (EXPs) are unique plant cell wall proteins with the ability to induce cell wall expansion and play potential roles in xylem development. In the present study, a total of 25 BpEXP genes were identified in Betula platyphylla. Results of bioinformatics analysis described that BpEXP gene family was highly conserved in the process of evolution. All these genes were clustered into four groups, EXPA (Expansin A), EXPB (Expansin B), EXLA (Expansin-like A) and EXLB (Expansin-like B), according to phylogenetic analysis and BpEXPA1 was highly homologous to PttEXP1 and PttEXP2. The results of RT-qPCR showed that BpEXPA1 was expressed higher in stems and preferentially expressed in the first internodes, followed by apical buds and the third internodes, promoter expression analysis with GUS assay demonstrated that it was expressed in developing xylem, suggesting that BpEXPA1 might be involved in the development of the primary stems of birch. Overexpression of BpEXPA1 can promote cortex cell expansion and then enlarge the cortex cell area and layer, however inhibit the secondary cell wall deposition and result in the thinner cell wall and larger lumens of xylem fiber in transgenic plants. This study will provide information for investigating the regulation mechanism of BpEXP family genes and gene resources for birch genetics improvement.
Collapse
Affiliation(s)
- Yao Chi
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Zihan Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Shizhong Chen
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Lin Feng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Meiqi Zhou
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Yang Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Ying Yu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China.
| |
Collapse
|
5
|
Liu Z, Yin K, Zhang Y, Yan C, Zhao Z, Li J, Liu Y, Feng B, Zhao R, Liu J, Dong K, Yao J, Zhao N, Zhou X, Chen S. Populus trichocarpa EXPA6 Facilitates Radial and Longitudinal Transport of Na + under Salt Stress. Int J Mol Sci 2024; 25:9354. [PMID: 39273303 PMCID: PMC11395417 DOI: 10.3390/ijms25179354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Expansins are cell wall (CW) proteins that mediate the CW loosening and regulate salt tolerance in a positive or negative way. However, the role of Populus trichocarpa expansin A6 (PtEXPA6) in salt tolerance and the relevance to cell wall loosening is still unclear in poplars. PtEXPA6 gene was transferred into the hybrid species, Populus alba × P. tremula var. glandulosa (84K) and Populus tremula × P. alba INRA '717-1B4' (717-1B4). Under salt stress, the stem growth, gas exchange, chlorophyll fluorescence, activity and transcription of antioxidant enzymes, Na+ content, and Na+ flux of root xylem and petiole vascular bundle were investigated in wild-type and transgenic poplars. The correlation analysis and principal component analysis (PCA) were used to analyze the correlations among the characteristics and principal components. Our results show that the transcription of PtEXPA6 was downregulated upon a prolonged duration of salt stress (48 h) after a transient increase induced by NaCl (100 mM). The PtEXPA6-transgenic poplars of 84K and 717-1B4 showed a greater reduction (42-65%) in stem height and diameter growth after 15 days of NaCl treatment compared with wild-type (WT) poplars (11-41%). The Na+ accumulation in roots, stems, and leaves was 14-83% higher in the transgenic lines than in the WT. The Na+ buildup in the transgenic poplars affects photosynthesis; the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and the transcription of PODa2, SOD [Cu-Zn], and CAT1. Transient flux kinetics showed that the Na+ efflux of root xylem and leaf petiole vascular bundle were 1.9-3.5-fold greater in the PtEXPA6-transgenic poplars than in the WT poplars. PtEXPA6 overexpression increased root contractility and extensibility by 33% and 32%, indicating that PtEXPA6 increased the CW loosening in the transgenic poplars of 84K and 717-1B4. Noteworthily, the PtEXPA6-promoted CW loosening was shown to facilitate Na+ efflux of root xylem and petiole vascular bundle in the transgenic poplars. We conclude that the overexpression of PtEXPA6 leads to CW loosening that facilitates the radial translocation of Na+ into the root xylem and the subsequent Na+ translocation from roots to leaves, resulting in an excessive Na+ accumulation and consequently, reducing salt tolerance in transgenic poplars. Therefore, the downregulation of PtEXPA6 in NaCl-treated Populus trichocarpa favors the maintenance of ionic and reactive oxygen species (ROS) homeostasis under long-term salt stress.
Collapse
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Caixia Yan
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ziyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yi Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Bing Feng
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Kaiyue Dong
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Lou T, Lv S, Wang J, Wang D, Lin K, Zhang X, Zhang B, Guo Z, Yi Z, Li Y. Cell size and xylem differentiation regulating genes from Salicornia europaea contribute to plant salt tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:2640-2659. [PMID: 38558078 DOI: 10.1111/pce.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.
Collapse
Affiliation(s)
- Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control, Beijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Jinhui Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
7
|
Zhang J, Wang L, Wu D, Zhao H, Gong L, Xu J. Regulation of SmEXPA13 expression by SmMYB1R1-L enhances salt tolerance in Salix matsudana Koidz. Int J Biol Macromol 2024; 270:132292. [PMID: 38750858 DOI: 10.1016/j.ijbiomac.2024.132292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Expansins, cell wall proteins, play a significant role in plant stress resistance. Our previous study confirmed the expression of the expansin gene SmEXPA13 from Salix matsudana Koidz. enhanced salt tolerance of plants. This report presented an assay that the expression of SmEXPA13 was higher in the salt-resistant willow variety 9901 than in the salt-sensitive variety Yanjiang. In order to understand the possible reasons, a study of the regulation process was conducted. Despite being cloned from both varieties, SmEXPA13 and its promotor showed no significant differences in the structure and sequence. A transcription factor (TF), SmMYB1R1-L, identified through screening the yeast library of willow cDNA, was found to regulate SmEXPA13. Yeast one-hybrid (Y1H) assay confirmed that SmMYB1R1-L could bind to the MYB element at the -520 bp site on the SmEXPA13 promotor. A dual-luciferase reporter assay also demonstrated that SmMYB1R1-L could greatly activate SmEXPA13 expression. The willow calli with over-expression of SmMYB1R1-L exhibited better physiological performance than the wild type under salt stress. Further testing the expression of SmMYB1R1-L displayed it significantly higher in 9901 willow than that in Yanjiang under salt stress. In conclusion, the high accumulation of SmMYB1R1-L in 9901 willow under salt stress led to the high expression of SmEXPA13, resulting in variations in salt stress resistance among willow varieties. The SmMYB1R1-L/SmEXPA13 cascade module in willow offers a new perspective on plant resistance mechanisms.
Collapse
Affiliation(s)
- Junkang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lei Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Han Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Longfeng Gong
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jichen Xu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Cosgrove DJ. Structure and growth of plant cell walls. Nat Rev Mol Cell Biol 2024; 25:340-358. [PMID: 38102449 DOI: 10.1038/s41580-023-00691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Plant cells build nanofibrillar walls that are central to plant growth, morphogenesis and mechanics. Starting from simple sugars, three groups of polysaccharides, namely, cellulose, hemicelluloses and pectins, with very different physical properties are assembled by the cell to make a strong yet extensible wall. This Review describes the physics of wall growth and its regulation by cellular processes such as cellulose production by cellulose synthase, modulation of wall pH by plasma membrane H+-ATPase, wall loosening by expansin and signalling by plant hormones such as auxin and brassinosteroid. In addition, this Review discusses the nuanced roles, properties and interactions of cellulose, matrix polysaccharides and cell wall proteins and describes how wall stress and wall loosening cooperatively result in cell wall growth.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
9
|
Zhang Y, Chen S, Xu L, Chu S, Yan X, Lin L, Wen J, Zheng B, Chen S, Li Q. Transcription factor PagMYB31 positively regulates cambium activity and negatively regulates xylem development in poplar. THE PLANT CELL 2024; 36:1806-1828. [PMID: 38339982 PMCID: PMC11062435 DOI: 10.1093/plcell/koae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Wood formation involves consecutive developmental steps, including cell division of vascular cambium, xylem cell expansion, secondary cell wall (SCW) deposition, and programmed cell death. In this study, we identified PagMYB31 as a coordinator regulating these processes in Populus alba × Populus glandulosa and built a PagMYB31-mediated transcriptional regulatory network. PagMYB31 mutation caused fewer layers of cambial cells, larger fusiform initials, ray initials, vessels, fiber and ray cells, and enhanced xylem cell SCW thickening, showing that PagMYB31 positively regulates cambial cell proliferation and negatively regulates xylem cell expansion and SCW biosynthesis. PagMYB31 repressed xylem cell expansion and SCW thickening through directly inhibiting wall-modifying enzyme genes and the transcription factor genes that activate the whole SCW biosynthetic program, respectively. In cambium, PagMYB31 could promote cambial activity through TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/PHLOEM INTERCALATED WITH XYLEM (PXY) signaling by directly regulating CLAVATA3/ESR-RELATED (CLE) genes, and it could also directly activate WUSCHEL HOMEOBOX RELATED4 (PagWOX4), forming a feedforward regulation. We also observed that PagMYB31 could either promote cell proliferation through the MYB31-MYB72-WOX4 module or inhibit cambial activity through the MYB31-MYB72-VASCULAR CAMBIUM-RELATED MADS2 (VCM2)/PIN-FORMED5 (PIN5) modules, suggesting its role in maintaining the homeostasis of vascular cambium. PagMYB31 could be a potential target to manipulate different developmental stages of wood formation.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Linghua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shimin Chu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Lanying Lin
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Bo Zheng
- Poplar Research Center, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
10
|
Dahiya D, Koitto T, Kutvonen K, Wang Y, Haddad Momeni M, de Ruijter S, Master ER. Fungal loosenin-like proteins boost the cellulolytic enzyme conversion of pretreated wood fiber and cellulosic pulps. BIORESOURCE TECHNOLOGY 2024; 394:130188. [PMID: 38104665 DOI: 10.1016/j.biortech.2023.130188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Microbial expansin-related proteins, including loosenins, can disrupt cellulose networks and increase enzyme accessibility to cellulosic substrates. Herein, four loosenins from Phanerochaete carnosa (PcaLOOLs), and a PcaLOOL fused to a family 63 carbohydrate-binding module, were compared for ability to boost the cellulolytic deconstruction of steam pretreated softwood (SSW) and kraft pulps from softwood (ND-BSKP) and hardwood (ND-BHKP). Amending the Cellic® CTec-2 cellulase cocktail with PcaLOOLs increased reducing products from SSW by up to 40 %, corresponding to 28 % higher glucose yield. Amending Cellic® CTec-2 with PcaLOOLs also increased the release of glucose from ND-BSKP and ND-BHKP by 82 % and 28 %, respectively. Xylose release from ND-BSKP and ND-BHKP increased by 47 % and 57 %, respectively, highlighting the potential of PcaLOOLs to enhance hemicellulose recovery. Scanning electron microscopy and fiber image analysis revealed fibrillation and curlation of ND-BSKP after PcaLOOL treatment, consistent with increasing enzyme accessibility to targeted substrates.
Collapse
Affiliation(s)
- Deepika Dahiya
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Taru Koitto
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Kim Kutvonen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Yan Wang
- Biorefining Business Development & Production, St1 Oy, Firdonkatu 2, 00520 Helsinki, Finland
| | - Majid Haddad Momeni
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Siiri de Ruijter
- Biorefining Business Development & Production, St1 Oy, Firdonkatu 2, 00520 Helsinki, Finland
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, M5S 3E5 Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Zhang Y, Cai G, Zhang K, Sun H, Huang L, Ren W, Ding Y, Wang N. PdeERF114 recruits PdeWRKY75 to regulate callus formation in poplar by modulating the accumulation of H 2 O 2 and the relaxation of cell walls. THE NEW PHYTOLOGIST 2024; 241:732-746. [PMID: 37872751 DOI: 10.1111/nph.19349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
Callus formation is important for numerous biological processes in plants. Previously, we revealed that the PdeWRKY75-PdeRBOHB module positively regulates hydrogen peroxide (H2 O2 ) accumulation, thereby affecting callus formation in poplar. In this study, we identified and confirmed a transcription factor, PdeERF114, that interacts with PdeWRKY75 both in vitro and in vivo. Gene expression analysis identified both PdeRBOHB and PdeEXPB2 as downstream genes of PdeERF114 and PdeWRKY75. Overexpression (OE) and reduced-expression (RE) transgenic poplar lines for these four genes were generated, and the observation of callus formation was also performed in all plant materials. We demonstrated that PdeERF114 and PdeWRKY75 formed a protein complex and that this complex could bind W-Box motifs in the promoters of PdeRBOHB and PdeEXPB2, thereby positively regulating the expression of PdeRBOHB and PdeEXPB2. The OE/RE transgenic lines for these four genes also showed enhanced/reduced callus formation. Overall, we revealed a novel gene regulatory network for the regulation of callus formation in plants that involves four genes and regulates callus formation through two pathways: the accumulation of H2 O2 in explants and the relaxation of cell walls. In the future, the four genes could be used to enhance transformation effectiveness in genetic engineering.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Guanghua Cai
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keai Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanxi Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyu Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyu Ren
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Ding
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| |
Collapse
|
12
|
Xu F, Yu F. Sensing and regulation of plant extracellular pH. TRENDS IN PLANT SCIENCE 2023; 28:1422-1437. [PMID: 37596188 DOI: 10.1016/j.tplants.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 08/20/2023]
Abstract
In plants, pH determines nutrient acquisition and sensing, and triggers responses to osmotic stress, whereas pH homeostasis protects the cellular machinery. Extracellular pH (pHe) controls the chemistry and rheology of the cell wall to adjust its elasticity and regulate cell expansion in space and time. Plasma membrane (PM)-localized proton pumps, cell-wall components, and cell wall-remodeling enzymes jointly maintain pHe homeostasis. To adapt to their environment and modulate growth and development, plant cells must sense subtle changes in pHe caused by the environment or neighboring cells. Accumulating evidence indicates that PM-localized cell-surface peptide-receptor pairs sense pHe. We highlight recent advances in understanding how plants perceive and maintain pHe, and discuss future perspectives.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
13
|
Uemura Y, Kimura S, Ohta T, Suzuki T, Mase K, Kato H, Sakaoka S, Uefune M, Komine Y, Hotta K, Shimizu M, Morikami A, Tsukagoshi H. A very long chain fatty acid responsive transcription factor, MYB93, regulates lateral root development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1408-1427. [PMID: 37247130 DOI: 10.1111/tpj.16330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Lateral roots (LRs) are critical to root system architecture development in plants. Although the molecular mechanisms by which auxin regulates LR development have been extensively studied, several additional regulatory systems are hypothesized to be involved. Recently, the regulatory role of very long chain fatty acids (VLCFAs) has been shown in LR development. Our analysis showed that LTPG1 and LTPG2, transporters of VLCFAs, are specifically expressed in the developing LR primordium (LRP), while the number of LRs is reduced in the ltpg1/ltpg2 double mutant. Moreover, late LRP development was hindered when the VLCFA levels were reduced by the VLCFA synthesis enzyme mutant, kcs1-5. However, the details of the regulatory mechanisms of LR development controlled by VLCFAs remain unknown. In this study, we propose a novel method to analyze the LRP development stages with high temporal resolution using a deep neural network and identify a VLCFA-responsive transcription factor, MYB93, via transcriptome analysis of kcs1-5. MYB93 showed a carbon chain length-specific expression response following treatment of VLCFAs. Furthermore, myb93 transcriptome analysis suggested that MYB93 regulated the expression of cell wall organization genes. In addition, we also found that LTPG1 and LTPG2 are involved in LR development through the formation of root cap cuticle, which is different from transcriptional regulation by VLCFAs. Our results suggest that VLCFA is a regulator of LRP development through transcription factor-mediated regulation of gene expression and the transportation of VLCFAs is also involved in LR development through root cap cuticle formation.
Collapse
Affiliation(s)
- Yuta Uemura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Saori Kimura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Tomomichi Ohta
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 478-8501, Japan
| | - Kosuke Mase
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Hiroyuki Kato
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Satomi Sakaoka
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Masayoshi Uefune
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Yuki Komine
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Kazuhiro Hotta
- Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Atsushi Morikami
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Hironaka Tsukagoshi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| |
Collapse
|
14
|
Yin Z, Zhou F, Chen Y, Wu H, Yin T. Genome-Wide Analysis of the Expansin Gene Family in Populus and Characterization of Expression Changes in Response to Phytohormone (Abscisic Acid) and Abiotic (Low-Temperature) Stresses. Int J Mol Sci 2023; 24:ijms24097759. [PMID: 37175464 PMCID: PMC10178758 DOI: 10.3390/ijms24097759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Expansins are a group of cell wall enzyme proteins that help to loosen cell walls by breaking hydrogen bonds between cellulose microfibrils and hemicellulose. Expansins are essential plant proteins that are involved in several key processes, including seed germination, the growth of pollen tubes and root hairs, fruit ripening and abscission processes. Currently, there is a lack of knowledge concerning the role of expansins in woody plants. In this study, we analyzed expansin genes using Populus genome as the study target. Thirty-six members of the expansin gene family were identified in Populus that were divided into four subfamilies (EXPA, EXPB, EXLA and EXLB). We analyzed the molecular structure, chromosome localization, evolutionary relationships and tissue specificity of these genes and investigated expression changes in responses to phytohormone and abiotic stresses of the expansin genes of Populus tremula L. (PtEXs). Molecular structure analysis revealed that each PtEX protein had several conserved motifs and all of the PtEXs genes had multiple exons. Chromosome structure analysis showed that the expansin gene family is distributed on 14 chromosomes. The PtEXs gene family expansion patterns showed segmental duplication. Transcriptome data of Populus revealed that 36 PtEXs genes were differently expressed in different tissues. Cis-element analysis showed that the PtEXs were closely associated with plant development and responses to phytohormone and abiotic stress. Quantitative real-time PCR showed that abscisic acid (ABA) and low-temperature treatment affected the expression of some PtEXs genes, suggesting that these genes are involved in responses to phytohormone and abiotic stress. This study provides a further understanding of the expansin gene family in Populus and forms a basis for future functional research studies.
Collapse
Affiliation(s)
- Zhihui Yin
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fangwei Zhou
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yingnan Chen
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Huaitong Wu
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
15
|
Monschein M, Ioannou E, Koitto T, Al Amin LAKM, Varis JJ, Wagner ER, Mikkonen KS, Cosgrove DJ, Master ER. Loosenin-Like Proteins from Phanerochaete carnosa Impact Both Cellulose and Chitin Fiber Networks. Appl Environ Microbiol 2023; 89:e0186322. [PMID: 36645281 PMCID: PMC9888185 DOI: 10.1128/aem.01863-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023] Open
Abstract
Microbial expansin-related proteins are ubiquitous across bacterial and fungal organisms and reportedly play a role in the modification and deconstruction of cell wall polysaccharides, including lignocellulose. So far, very few microbial expansin-related proteins, including loosenins and loosenin-like (LOOL) proteins, have been functionally characterized. Herein, four LOOLs encoded by Phanerochaete carnosa and belonging to different subfamilies (i.e., PcaLOOL7 and PcaLOOL9 from subfamily A and PcaLOOL2 and PcaLOOL12 from subfamily B) were recombinantly produced and the purified proteins were characterized using diverse cellulose and chitin substrates. The purified PcaLOOLs weakened cellulose filter paper and cellulose nanofibril networks (CNF); however, none significantly boosted cellulase activity on the selected cellulose substrates (Avicel and Whatman paper). Although fusing the family 63 carbohydrate-binding module (CBM63) of BsEXLX1 encoded by Bacillus subtilis to PcaLOOLs increased their binding to cellulose, the CBM63 fusion appeared to reduce the cellulose filter paper weakening observed using wild-type proteins. Binding of PcaLOOLs to alpha-chitin was considerably higher than that to cellulose (Avicel) and was pH dependent, with the highest binding at pH 5.0. Amendment of certain PcaLOOLs in fungal liquid cultivations also impacted the density of the cultivated mycelia. The present study reveals the potential of fungal expansin-related proteins to impact both cellulose and chitin networks and points to a possible biological role in fungal cell wall processing. IMPORTANCE The present study deepens investigations of microbial expansin-related proteins and their applied significance by (i) reporting a detailed comparison of diverse loosenins encoded by the same organism, (ii) considering both cellulosic and chitin-containing materials as targeted substrates, and (iii) investigating the impact of the C-terminal carbohydrate binding module (CBM) present in other expansin-related proteins on loosenin function. By revealing the potential of fungal loosenins to impact both cellulose and chitin-containing networks, our study reveals a possible biological and applied role of loosenins in fungal cell wall processing.
Collapse
Affiliation(s)
- Mareike Monschein
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Eleni Ioannou
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Taru Koitto
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | | - Jutta J. Varis
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Edward R. Wagner
- Department of Biology, Pennsylvania State University, University Park, State College, Pennsylvania, USA
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Kirsi S. Mikkonen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Daniel J. Cosgrove
- Department of Biology, Pennsylvania State University, University Park, State College, Pennsylvania, USA
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Emma R. Master
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Bonardd S, Nandi M, Hernández García JI, Maiti B, Abramov A, Díaz Díaz D. Self-Healing Polymeric Soft Actuators. Chem Rev 2023; 123:736-810. [PMID: 36542491 PMCID: PMC9881012 DOI: 10.1021/acs.chemrev.2c00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Natural evolution has provided multicellular organisms with sophisticated functionalities and repair mechanisms for surviving and preserve their functions after an injury and/or infection. In this context, biological systems have inspired material scientists over decades to design and fabricate both self-healing polymeric materials and soft actuators with remarkable performance. The latter are capable of modifying their shape in response to environmental changes, such as temperature, pH, light, electrical/magnetic field, chemical additives, etc. In this review, we focus on the fusion of both types of materials, affording new systems with the potential to revolutionize almost every aspect of our modern life, from healthcare to environmental remediation and energy. The integration of stimuli-triggered self-healing properties into polymeric soft actuators endow environmental friendliness, cost-saving, enhanced safety, and lifespan of functional materials. We discuss the details of the most remarkable examples of self-healing soft actuators that display a macroscopic movement under specific stimuli. The discussion includes key experimental data, potential limitations, and mechanistic insights. Finally, we include a general table providing at first glance information about the nature of the external stimuli, conditions for self-healing and actuation, key information about the driving forces behind both phenomena, and the most important features of the achieved movement.
Collapse
Affiliation(s)
- Sebastian Bonardd
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Mridula Nandi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - José Ignacio Hernández García
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Binoy Maiti
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Alex Abramov
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| | - David Díaz Díaz
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| |
Collapse
|
17
|
Schmidt L, Nagel KA, Galinski A, Sannemann W, Pillen K, Maurer A. Unraveling Genomic Regions Controlling Root Traits as a Function of Nitrogen Availability in the MAGIC Wheat Population WM-800. PLANTS (BASEL, SWITZERLAND) 2022; 11:3520. [PMID: 36559632 PMCID: PMC9785272 DOI: 10.3390/plants11243520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
An ever-growing world population demands to be fed in the future and environmental protection and climate change need to be taken into account. An important factor here is nitrogen uptake efficiency (NUpE), which is influenced by the root system (the interface between plant and soil). To understand the natural variation of root system architecture (RSA) as a function of nitrogen (N) availability, a subset of the multiparent advanced generation intercross (MAGIC) winter wheat population WM-800 was phenotyped under two contrasting N treatments in a high-throughput phenotyping system at the seedling stage. Fourteen root and shoot traits were measured. Subsequently, these traits were genetically analyzed using 13,060 polymorphic haplotypes and SNPs in a genome-wide association study (GWAS). In total, 64 quantitative trait loci (QTL) were detected; 60 of them were N treatment specific. Candidate genes for the detected QTL included NRT1.1 and genes involved in stress signaling under N-, whereas candidate genes under N+ were more associated with general growth, such as mei2 and TaWOX11b. This finding may indicate (i) a disparity of the genetic control of root development under low and high N supply and, furthermore, (ii) the need for an N specific selection of genes and genotypes in breeding new wheat cultivars with improved NUpE.
Collapse
Affiliation(s)
- Laura Schmidt
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Kerstin A. Nagel
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Research Institute Jülich GmbH, 52425 Jülich, Germany
| | - Anna Galinski
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Research Institute Jülich GmbH, 52425 Jülich, Germany
| | - Wiebke Sannemann
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Klaus Pillen
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| |
Collapse
|
18
|
Abdirad S, Wu Y, Ghorbanzadeh Z, Tazangi SE, Amirkhani A, Fitzhenry MJ, Kazemi M, Ghaffari MR, Koobaz P, Zeinalabedini M, Habibpourmehraban F, Masoomi-Aladizgeh F, Atwell BJ, Mirzaei M, Salekdeh GH, Haynes PA. Proteomic analysis of the meristematic root zone in contrasting genotypes reveals new insights in drought tolerance in rice. Proteomics 2022; 22:e2200100. [PMID: 35920597 DOI: 10.1002/pmic.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022]
Abstract
Drought is responsible for major losses in rice production. Root tips contain meristematic and elongation zones that play major roles in determination of root traits and adaptive strategies to drought. In this study we analysed two contrasting genotypes of rice: IR64, a lowland, drought-susceptible, and shallow-rooting genotype; and Azucena, an upland, drought-tolerant, and deep-rooting genotype. Samples were collected of root tips of plants grown under control and water deficit stress conditions. Quantitative proteomics analysis resulted in the identification of 7294 proteins from the root tips of IR64 and 6307 proteins from Azucena. Data are available via ProteomeXchange with identifier PXD033343. Using a Partial Least Square Discriminant Analysis on 4170 differentially abundant proteins, 1138 statistically significant proteins across genotypes and conditions were detected. Twenty two enriched biological processes showing contrasting patterns between two genotypes in response to stress were detected through gene ontology enrichment analysis. This included identification of novel proteins involved in root elongation with specific expression patterns in Azucena, including four Expansins and seven Class III Peroxidases. We also detected an antioxidant network and a metallo-sulfur cluster assembly machinery in Azucena, with roles in reactive oxygen species and iron homeostasis, and positive effects on root cell cycle, growth and elongation.
Collapse
Affiliation(s)
- Somayeh Abdirad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Sara Esmaeili Tazangi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Matthew J Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Mehrbano Kazemi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | | | | - Brian J Atwell
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia.,School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.,School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
19
|
Ding S, Liu X, Hakulinen N, Taherzadeh MJ, Wang Y, Wang Y, Qin X, Wang X, Yao B, Luo H, Tu T. Boosting enzymatic degradation of cellulose using a fungal expansin: Structural insight into the pretreatment mechanism. BIORESOURCE TECHNOLOGY 2022; 358:127434. [PMID: 35680086 DOI: 10.1016/j.biortech.2022.127434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The recalcitrance of cellulosic biomass greatly hinders its enzymatic degradation. Expansins induce cell wall loosening and promote efficient cellulose utilization; however, the molecular mechanism underlying their action is not well understood. In this study, TlEXLX1, a fungal expansin from Talaromyces leycettanus JCM12802, was characterized in terms of phylogeny, synergy, structure, and mechanism of action. TlEXLX1 displayed varying degrees of synergism with commercial cellulase in the pretreatment of corn straw and filter paper. TlEXLX1 binds to cellulose via domain 2, mediated by CH-π interactions with residues Tyr291, Trp292, and Tyr327. Residues Asp237, Glu238, and Asp248 in domain 1 form hydrogen bonds with glucose units and break the inherent hydrogen bonding within the cellulose matrix. This study identified the expansin amino acid residues crucial for cellulose binding, and elucidated the structure and function of expansins in cell wall networks; this has potential applications in biomass utilization.
Collapse
Affiliation(s)
- Sunjia Ding
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu 80130, Finland
| | | | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
20
|
Involvement of Auxin-Mediated CqEXPA50 Contributes to Salt Tolerance in Quinoa (Chenopodium quinoa) by Interaction with Auxin Pathway Genes. Int J Mol Sci 2022; 23:ijms23158480. [PMID: 35955612 PMCID: PMC9369402 DOI: 10.3390/ijms23158480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Soil salinization is a global problem that limits crop yields and threatens agricultural development. Auxin-induced expansins contribute to plant salt tolerance through cell wall loosening. However, how auxins and expansins contribute to the adaptation of the halophyte quinoa (Chenopodium quinoa) to salt stress has not yet been reported. Here, auxin was found to contribute to the salt tolerance of quinoa by promoting the accumulation of photosynthetic pigments under salt stress, maintaining enzymatic and nonenzymatic antioxidant systems and scavenging excess reactive oxygen species (ROS). The Chenopodium quinoa expansin (Cqexpansin) family and the auxin pathway gene family (Chenopodium quinoa auxin response factor (CqARF), Chenopodium quinoa auxin/indoleacetic acid (CqAux/IAA), Chenopodium quinoa Gretchen Hagen 3 (CqGH3) and Chenopodium quinoa small auxin upregulated RNA (CqSAUR)) were identified from the quinoa genome. Combined expression profiling identified Chenopodium quinoa α-expansin 50 (CqEXPA50) as being involved in auxin-mediated salt tolerance. CqEXPA50 enhanced salt tolerance in quinoa seedlings was revealed by transient overexpression and physiological and biochemical analyses. Furthermore, the auxin pathway and salt stress-related genes regulated by CqEXPA50 were identified. The interaction of CqEXPA50 with these proteins was demonstrated by bimolecular fluorescence complementation (BIFC). The proteins that interact with CqEXPA50 were also found to improve salt tolerance. In conclusion, this study identified some genes potentially involved in the salt tolerance regulatory network of quinoa, providing new insights into salt tolerance.
Collapse
|
21
|
Overexpression of AcEXPA23 Promotes Lateral Root Development in Kiwifruit. Int J Mol Sci 2022; 23:ijms23148026. [PMID: 35887372 PMCID: PMC9317778 DOI: 10.3390/ijms23148026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Kiwifruit is loved by consumers for its unique taste and rich vitamin C content. Kiwifruit are very sensitive to adverse soil environments owing to fleshy and shallow roots, which limits the uptake of water and nutrients into the root system, resulting in low yield and poor fruit quality. Lateral roots are the key organs for plants to absorb water and nutrients. Improving water and fertilizer use efficiency by promoting lateral root development is a feasible method to improve yield and quality. Expansin proteins plays a major role in lateral root growth; hence, it is important to identify expansin protein family members, screen key genes, and explore gene function in root development. In this study, 41 expansin genes were identified based on the genome of kiwifruit (‘Hongyang’, Actinidia chinensis). By clustering with the Arabidopsis thaliana expansin protein family, the 41 AcExpansin proteins were divided into four subfamilies. The AcExpansin protein family was further analysed by bioinformatics methods and was shown to be evolutionarily diverse and conserved at the DNA and protein levels. Based on previous transcriptome data and quantitative real-time PCR assays, we screened the candidate gene AcEXPA23. Overexpression of AcEXPA23 in kiwifruit increased the number of kiwifruit lateral roots.
Collapse
|
22
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
23
|
Characterization of the Cell Wall Component through Thermogravimetric Analysis and Its Relationship with an Expansin-like Protein in Deschampsia antarctica. Int J Mol Sci 2022; 23:ijms23105741. [PMID: 35628551 PMCID: PMC9143908 DOI: 10.3390/ijms23105741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Deschampsia antarctica Desv. (Poaceae) is one of the two vascular plants that have colonized the Antarctic Peninsula, which is usually exposed to extreme environmental conditions. To support these conditions, the plant carries out modifications in its morphology and metabolism, such as modifications to the cell wall. Thus, we performed a comparative study of the changes in the physiological properties of the cell-wall-associated polysaccharide contents of aerial and root tissues of the D. antarctica via thermogravimetric analysis (TGA) combined with a computational approach. The result showed that the thermal stability was lower in aerial tissues with respect to the root samples, while the DTG curve describes four maximum peaks of degradation, which occurred between 282 and 358 °C. The carbohydrate polymers present in the cell wall have been depolymerized showing mainly cellulose and hemicellulose fragments. Additionally, a differentially expressed sequence encoding for an expansin-like (DaEXLA2), which is characterized by possessing cell wall remodeling function, was found in D. antarctica. To gain deep insight into a probable mechanism of action of the expansin protein identified, a comparative model of the structure was carried out. DaEXLA2 protein model displayed two domains with an open groove in the center. Finally, using a cell wall polymer component as a ligand, the protein-ligand interaction was evaluated by molecular dynamic (MD) simulation. The MD simulations showed that DaEXLA2 could interact with cellulose and XXXGXXXG polymers. Finally, the cell wall component description provides the basis for a model for understanding the changes in the cell wall polymers in response to extreme environmental conditions.
Collapse
|
24
|
Fedoreyeva LI, Baranova EN, Chaban IA, Dilovarova TA, Vanyushin BF, Kononenko NV. Elongating Effect of the Peptide AEDL on the Root of Nicotiana tabacum under Salinity. PLANTS 2022; 11:plants11101352. [PMID: 35631778 PMCID: PMC9147445 DOI: 10.3390/plants11101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
The overall survival of a plant depends on the development, growth, and functioning of the roots. Root development and growth are not only genetically programmed but are constantly influenced by environmental factors, with the roots adapting to such changes. The peptide AEDL (alanine–glutamine acid–asparagine acid–leucine) at a concentration of 10−7 M had an elongating effect on the root cells of Nicotiana tabacum seedlings. The action of this peptide at such a low concentration is similar to that of peptide phytohormones. In the presence of 150 mM NaCl, a strong distortion in the development and architecture of the tobacco roots was observed. However, the combined presence of AEDL and NaCl resulted in normal root development. In the presence of AEDL, reactive oxygen species (ROS) were detected in the elongation and root hair zones of the roots. The ROS marker fluorescence intensity in plant cells grown with AEDL was much lower than that of plant cells grown without the peptide. Thus, AEDL protected the root tissue from damage by oxidative stress caused by the toxic effects of NaCl. Localization and accumulation of AEDL at the root were tissue-specific. Fluorescence microscopy showed that FITC-AEDL predominantly localized in the zones of elongation and root hairs, with insignificant localization in the meristem zone. AEDL induced a change in the structural organization of chromatin. Structural changes in chromatin caused significant changes in the expression of numerous genes associated with the development and differentiation of the root system. In the roots of tobacco seedlings grown in the presence of AEDL, the expression of WOX family genes decreased, and differentiation of stem cells increased, which led to root elongation. However, in the presence of NaCl, elongation of the tobacco root occurred via a different mechanism involving genes of the expansin family that weaken the cell wall in the elongation zone. Root elongation of plants is of fundamental importance in biology and is especially relevant to crop production as it can affect crop yields.
Collapse
Affiliation(s)
- Larisa I. Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
- Correspondence:
| | - Ekaterina N. Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia
| | - Inn A. Chaban
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
| | - Tatyana A. Dilovarova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
| | - Boris F. Vanyushin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Neonila V. Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
| |
Collapse
|
25
|
Veronico P, Rosso LC, Melillo MT, Fanelli E, De Luca F, Ciancio A, Colagiero M, Pentimone I. Water Stress Differentially Modulates the Expression of Tomato Cell Wall Metabolism-Related Genes in Meloidogyne incognita Feeding Sites. FRONTIERS IN PLANT SCIENCE 2022; 13:817185. [PMID: 35498686 PMCID: PMC9051518 DOI: 10.3389/fpls.2022.817185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Microscopic observations and transcriptomic RNA-Seq analyses were applied to investigate the effect of water stress during the formation of tomato galls formation 1 and 2 weeks after inoculation with the root-knot nematode Meloidogyne incognita. Water stress affected root growth and the nematode ability to mount an efficient parasitism. The effects of water stress on the feeding site development were already observed at 1 week after nematode inoculation, with smaller giant cells, delayed development, and thinner cell walls. These features suggested changes in the expression levels of genes involved in the feeding site formation and maintenance. Gene Ontology (GO) enrichment and expression patterns were used to characterize differentially expressed genes. Water stress modified the expression profile of genes involved in the synthesis, degradation, and remodeling of the cell wall during the development of nematode feeding site. A comparison of gene expression with unstressed galls revealed that water stress intensified the up or downregulation of most genes. However, it particularly influenced the expression pattern of expansin A11 (Solyc04g081870.4.1), expansin-like B1(Solyc08g077910.3.1), a pectin acetylesterase (Solyc08g005800.4.1), and the pectin methylesterase pmeu1 (Solyc03g123630.4.1) which were upregulated in unstressed galls and repressed by water stress, at both sampling times. The expression of most members of the genes involved in cell wall metabolism, i.e., those coding for Csl, fasciclin, and COBRA proteins, were negatively influenced. Interestingly, alteration in the expression profiles of most dirigent protein genes (DIRs) and upregulation of five gene coding for Casparian strip domain protein (CASP)-like proteins were found. Gene expression analysis of galls from water stressed plants allowed us to better understand the molecular basis of M. incognita parasitism in tomato. Specific genes, including those involved in regulation of cellulose synthesis and lignification process, require further study to develop defense strategies against root-knot nematodes.
Collapse
|
26
|
Narváez-Barragán DA, Tovar-Herrera OE, Guevara-García A, Serrano M, Martinez-Anaya C. Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility. FRONTIERS IN PLANT SCIENCE 2022; 13:969343. [PMID: 36082287 PMCID: PMC9445675 DOI: 10.3389/fpls.2022.969343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 05/13/2023]
Abstract
Cell wall integrity is tightly regulated and maintained given that non-physiological modification of cell walls could render plants vulnerable to biotic and/or abiotic stresses. Expansins are plant cell wall-modifying proteins active during many developmental and physiological processes, but they can also be produced by bacteria and fungi during interaction with plant hosts. Cell wall alteration brought about by ectopic expression, overexpression, or exogenous addition of expansins from either eukaryote or prokaryote origin can in some instances provide resistance to pathogens, while in other cases plants become more susceptible to infection. In these circumstances altered cell wall mechanical properties might be directly responsible for pathogen resistance or susceptibility outcomes. Simultaneously, through membrane receptors for enzymatically released cell wall fragments or by sensing modified cell wall barrier properties, plants trigger intracellular signaling cascades inducing defense responses and reinforcement of the cell wall, contributing to various infection phenotypes, in which expansins might also be involved. Here, we review the plant immune response activated by cell wall surveillance mechanisms, cell wall fragments identified as responsible for immune responses, and expansin's roles in resistance and susceptibility of plants to pathogen attack.
Collapse
Affiliation(s)
| | | | | | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | |
Collapse
|
27
|
Geitmann A, Mulder BM, Persson S, Spalding EP. Modeling the molecular structures and dynamics responsible for the remarkable mechanical properties of a plant cell wall. Fac Rev 2022; 11:24. [PMID: 36262560 PMCID: PMC9533765 DOI: 10.12703/r-01-0000016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The primary plant cell wall is a hydrated meshwork of polysaccharides that is strong enough to withstand large mechanical stresses imposed by turgor while remaining pliant in ways that permit growth. To understand how its macromolecular architecture produces its complex mechanical properties, Zhang et al.1 computationally assembled a realistic network of cellulose microfibrils, hemicellulose, and pectin. The simulated wall responded to computationally applied stress like the real wall on which it was based. The model showed the location and chemical identity of stress-bearing components. It showed that cellulose microfibril interactions and movements dominated the wall's mechanical behavior, while hemicellulose and pectin had surprisingly minor effects.
Collapse
|
28
|
Zhong R, Phillips DR, Ye ZH. A Single Xyloglucan Xylosyltransferase Is Sufficient for Generation of the XXXG Xylosylation Pattern of Xyloglucan. PLANT & CELL PHYSIOLOGY 2021; 62:1589-1602. [PMID: 34264339 DOI: 10.1093/pcp/pcab113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/26/2023]
Abstract
Xyloglucan is the most abundant hemicellulose in the primary cell walls of dicots. Dicot xyloglucan is the XXXG type consisting of repeating units of three consecutive xylosylated Glc residues followed by one unsubstituted Glc. Its xylosylation is catalyzed by xyloglucan 6-xylosyltransferases (XXTs) and there exist five XXTs (AtXXT1-5) in Arabidopsis. While AtXXT1 and AtXXT2 have been shown to add the first two Xyl residues in the XXXG repeat, which XXTs are responsible for the addition of the third Xyl residue remains elusive although AtXXT5 was a proposed candidate. In this report, we generated recombinant proteins of all five Arabidopsis XXTs and one rice XXT (OsXXT1) in the mammalian HEK293 cells and investigated their ability to sequentially xylosylate Glc residues to generate the XXXG xylosylation pattern. We found that like AtXXT1/2, AtXXT4 and OsXXT1 could efficiently xylosylate the cellohexaose (G6) acceptor to produce mono- and di-xylosylated G6, whereas AtXXT5 was only barely capable of adding one Xyl onto G6. When AtXXT1-catalyzed products were used as acceptors, AtXXT1/2/4 and OsXXT1, but not AtXXT5, were able to xylosylate additional Glc residues to generate tri- and tetra-xylosylated G6. Further characterization of the tri- and tetra-xylosylated G6 revealed that they had the sequence of GXXXGG and GXXXXG with three and four consecutive xylosylated Glc residues, respectively. In addition, we have found that although tri-xylosylation occurred on G6, cello-oligomers with a degree of polymerization of 3 to 5 could only be mono- and di-xylosylated. Together, these results indicate that each of AtXXT1/2/4 and OsXXT1 is capable of sequentially adding Xyl onto three contiguous Glc residues to generate the XXXG xylosylation pattern and these findings provide new insight into the biochemical mechanism underlying xyloglucan biosynthesis.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
29
|
Morales-Quintana L, Barrera A, Hereme R, Jara K, Rivera-Mora C, Valenzuela-Riffo F, Gundel PE, Pollmann S, Ramos P. Molecular and structural characterization of expansins modulated by fungal endophytes in the Antarctic Colobanthus quitensis (Kunth) Bartl. Exposed to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:465-476. [PMID: 34717178 DOI: 10.1016/j.plaphy.2021.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Expansins are proteins involved in cell wall metabolism that play an important role in plant growth, development, fruit ripening and abiotic stress tolerance. In the present study, we analyzed putative expansins that respond to drought stress. Five expansin genes were identified in cDNA libraries isolated from Colobanthus quitensis gown either with or without endophytic fungi under hydric stress. A differential transcript abundance was observed by qPCR analysis upon drought stress. To compare these expansin genes, and to suggest a possible mechanism of action at the molecular level, the structural model of the deduced proteins was obtained by comparative modeling methodology. The structures showed two domains and an open groove on the surface of the proteins was observed in the five structural models. The proteins were evaluated in terms of their protein-ligand interactions using four different ligands. The results suggested differences in their mode of protein-ligand interaction, in particular concerning the residues involved in the protein-ligand interaction. The presented evidence supports the participation of some members of the expansin multiprotein family in the response to drought stress in C. quitensis and suggest that the response is modulated by endophytic fungi.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédica, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, 3467987, Chile
| | - Andrea Barrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Rasme Hereme
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Karla Jara
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | | | - Pedro E Gundel
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; IFEVA (Facultad de Agronomía, Universidad de Buenos Aires - CONICET), Argentina
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Patricio Ramos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Centro de Biotecnología de los Recursos Naturales (CenBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
30
|
Sekmen Cetinel AH, Yalcinkaya T, Akyol TY, Gokce A, Turkan I. Pretreatment of seeds with hydrogen peroxide improves deep-sowing tolerance of wheat seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:321-336. [PMID: 34392045 DOI: 10.1016/j.plaphy.2021.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Drought is a prevalent natural factor limiting crop production in arid regions across the world. To overcome this limitation, seeds are sown much deeper to boost germination by soil moisture produced by underground water. Seed pretreatment can effectively induce deep-sowing tolerance in plants. In the present study, we evaluated whether H2O2 pretreatment of seeds can initiate metabolic changes and lead to improved deep-sowing tolerance in wheat. Pretreatment with 0.05 μM H2O2 promoted first internode elongation by 13% in the deep-sowing tolerant wheat cultivar "Tir" and by 32% in the sensitive cultivar "Kıraç-66" under deep-sowing conditions, whereas internode elongation was inhibited by diphenyleneiodonium chloride. In contrast to Tir seedlings, H2O2 levels in the first internode of Kıraç-66 seedlings increased under deep-sowing condition in the H2O2-treated group compared to controls. Moreover, these seedlings had significantly lower catalase (CAT), peroxidase (POX), and ascorbate peroxidase (APX) activities but higher NADPH oxidase (NOX) and superoxide dismutase (SOD) activities under the same conditions, which consequently induced greater H2O2 accumulation. Contrary to Tir, both total glutathione and glutathione S-transferase (GST) activity decreased in Kıraç-66 after deep-sowing at 10 cm. However, H2O2 treatment increased the total glutathione amounts and the activities of glutathione-related enzymes (except GST and GPX) in the first internode of Kıraç-66. Taken together, these data support that H2O2 acts as a signaling molecule in the activation of antioxidant enzymes (specifically NOX, SOD, and CAT), regulation of both glutathione-related enzymes and total glutathione content, and upregulation of the cell wall-loosening protein gene TaEXPB23.
Collapse
Affiliation(s)
| | - Tolga Yalcinkaya
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey.
| | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
| | - Azime Gokce
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey.
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
31
|
Conservation of endo-glucanase 16 (EG16) activity across highly divergent plant lineages. Biochem J 2021; 478:3063-3078. [PMID: 34338284 DOI: 10.1042/bcj20210341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Plant cell walls are highly dynamic structures that are composed predominately of polysaccharides. As such, endogenous carbohydrate active enzymes (CAZymes) are central to the synthesis and subsequent modification of plant cells during morphogenesis. The endo-glucanase 16 (EG16) members constitute a distinct group of plant CAZymes, angiosperm orthologs of which were recently shown to have dual β-glucan/xyloglucan hydrolase activity. Molecular phylogeny indicates that EG16 members comprise a sister clade with a deep evolutionary relationship to the widely studied apoplastic xyloglucan endo-transglycosylases/hydrolases (XTH). A cross-genome survey indicated that EG16 members occur as a single ortholog across species and are widespread in early diverging plants, including the non-vascular bryophytes, for which functional data were previously lacking. Remarkably, enzymological characterization of an EG16 ortholog from the model moss Physcomitrella patens (PpEG16) revealed that EG16 activity and sequence/structure are highly conserved across 500 million years of plant evolution, vis-à-vis orthologs from grapevine and poplar. Ex vivo biomechanical assays demonstrated that the application of EG16 gene products caused abrupt breakage of etiolated hypocotyls rather than slow extension, thereby indicating a mode-of-action distinct from endogenous expansins and microbial endo-glucanases. The biochemical data presented here will inform future genomic, genetic, and physiological studies of EG16 enzymes.
Collapse
|
32
|
Zhang S, Ghatak A, Bazargani MM, Bajaj P, Varshney RK, Chaturvedi P, Jiang D, Weckwerth W. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:669-687. [PMID: 34227164 PMCID: PMC9291999 DOI: 10.1111/tpj.15410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Grain filling and grain development are essential biological processes in the plant's life cycle, eventually contributing to the final seed yield and quality in all cereal crops. Studies of how the different wheat (Triticum aestivum L.) grain components contribute to the overall development of the seed are very scarce. We performed a proteomics and metabolomics analysis in four different developing components of the wheat grain (seed coat, embryo, endosperm, and cavity fluid) to characterize molecular processes during early and late grain development. In-gel shotgun proteomics analysis at 12, 15, 20, and 26 days after anthesis (DAA) revealed 15 484 identified and quantified proteins, out of which 410 differentially expressed proteins were identified in the seed coat, 815 in the embryo, 372 in the endosperm, and 492 in the cavity fluid. The abundance of selected protein candidates revealed spatially and temporally resolved protein functions associated with development and grain filling. Multiple wheat protein isoforms involved in starch synthesis such as sucrose synthases, starch phosphorylase, granule-bound and soluble starch synthase, pyruvate phosphate dikinase, 14-3-3 proteins as well as sugar precursors undergo a major tissue-dependent change in abundance during wheat grain development suggesting an intimate interplay of starch biosynthesis control. Different isoforms of the protein disulfide isomerase family as well as glutamine levels, both involved in the glutenin macropolymer pattern, showed distinct spatial and temporal abundance, revealing their specific role as indicators of wheat gluten quality. Proteins binned into the functional category of cell growth/division and protein synthesis/degradation were more abundant in the early stages (12 and 15 DAA). At the metabolome level all tissues and especially the cavity fluid showed highly distinct metabolite profiles. The tissue-specific data are integrated with biochemical networks to generate a comprehensive map of molecular processes during grain filling and developmental processes.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Arindam Ghatak
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | | | - Prasad Bajaj
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
- State Agricultural Biotechnology CentreCentre for Crop and Food InnovationMurdoch UniversityMurdochWA6150Australia
| | - Palak Chaturvedi
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop EcophysiologyMinistry of Agriculture/Nanjing Agricultural UniversityNanjing210095China
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| |
Collapse
|
33
|
A Molecular Pinball Machine of the Plasma Membrane Regulates Plant Growth-A New Paradigm. Cells 2021; 10:cells10081935. [PMID: 34440704 PMCID: PMC8391756 DOI: 10.3390/cells10081935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/31/2022] Open
Abstract
Novel molecular pinball machines of the plasma membrane control cytosolic Ca2+ levels that regulate plant metabolism. The essential components involve: 1. an auxin-activated proton pump; 2. arabinogalactan glycoproteins (AGPs); 3. Ca2+ channels; 4. auxin-efflux "PIN" proteins. Typical pinball machines release pinballs that trigger various sound and visual effects. However, in plants, "proton pinballs" eject Ca2+ bound by paired glucuronic acid residues of numerous glycomodules in periplasmic AGP-Ca2+. Freed Ca2+ ions flow down the electrostatic gradient through open Ca2+ channels into the cytosol, thus activating numerous Ca2+-dependent activities. Clearly, cytosolic Ca2+ levels depend on the activity of the proton pump, the state of Ca2+ channels and the size of the periplasmic AGP-Ca2+ capacitor; proton pump activation is a major regulatory focal point tightly controlled by the supply of auxin. Auxin efflux carriers conveniently known as "PIN" proteins (null mutants are pin-shaped) pump auxin from cell to cell. Mechanosensitive Ca2+ channels and their activation by reactive oxygen species (ROS) are yet another factor regulating cytosolic Ca2+. Cell expansion also triggers proton pump/pinball activity by the mechanotransduction of wall stress via Hechtian adhesion, thus forming a Hechtian oscillator that underlies cycles of wall plasticity and oscillatory growth. Finally, the Ca2+ homeostasis of plants depends on cell surface external storage as a source of dynamic Ca2+, unlike the internal ER storage source of animals, where the added regulatory complexities ranging from vitamin D to parathormone contrast with the elegant simplicity of plant life. This paper summarizes a sixty-year Odyssey.
Collapse
|
34
|
Effect of Exogenous Auxin Treatment on Cell Wall Polymers of Strawberry Fruit. Int J Mol Sci 2021; 22:ijms22126294. [PMID: 34208198 PMCID: PMC8230797 DOI: 10.3390/ijms22126294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/24/2023] Open
Abstract
The role of auxin in the fruit-ripening process during the early developmental stages of commercial strawberry fruits (Fragaria x ananassa) has been previously described, with auxin production occurring in achenes and moving to the receptacle. Additionally, fruit softening is a consequence of the depolymerization and solubilization of cell wall components produced by the action of a group of proteins and enzymes. The aim of this study was to compare the effect of exogenous auxin treatment on the physiological properties of the cell wall-associated polysaccharide contents of strawberry fruits. We combined thermogravimetric (TG) analysis with analyses of the mRNA abundance, enzymatic activity, and physiological characteristics related to the cell wall. The samples did not show a change in fruit firmness at 48 h post-treatment; by contrast, we showed changes in the cell wall stability based on TG and differential thermogravimetric (DTG) analysis curves. Less degradation of the cell wall polymers was observed after auxin treatment at 48 h post-treatment. The results of our study indicate that auxin treatment delays the cell wall disassembly process in strawberries.
Collapse
|
35
|
Hasegawa T, Lucob-Agustin N, Yasufuku K, Kojima T, Nishiuchi S, Ogawa A, Takahashi-Nosaka M, Kano-Nakata M, Inari-Ikeda M, Sato M, Tsuji H, Wainaina CM, Yamauchi A, Inukai Y. Mutation of OUR1/OsbZIP1, which encodes a member of the basic leucine zipper transcription factor family, promotes root development in rice through repressing auxin signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110861. [PMID: 33775366 DOI: 10.1016/j.plantsci.2021.110861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
A well-developed root system is essential for efficient water uptake, particularly in drought-prone environments. However, the molecular mechanisms underlying the promotion of root development are poorly understood. We identified and characterized a rice mutant, outstanding rooting1 (our1), which exhibited a well-developed root system. The our1 mutant displayed typical auxin-related phenotypes, including elongated seminal root and defective gravitropism. Seminal root elongation in the our1 mutant was accelerated via the promotion of cell division and elongation. In addition, compared with the wild type, the density of short and thin lateral roots (S-type LRs) was reduced in the our1 mutant, whereas that of long and thick LRs (L-type LRs) was increased. Expression of OUR1, which encodes OsbZIP1, a member of the basic leucine zipper transcription factor family, was observed in the seminal root tip and sites of LR emergence, wherein attenuation of reporter gene expression levels controlled by the auxin response promoter DR5 was also observed in the our1 mutant. Taken together, our results indicate that the our1 gene promotes root development by suppressing auxin signaling, which may be a key factor contributing to an improvement in root architecture.
Collapse
Affiliation(s)
- Tomomi Hasegawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Nonawin Lucob-Agustin
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines.
| | - Koki Yasufuku
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Shunsaku Nishiuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Atsushi Ogawa
- Department of Biological Production, Akita Prefectural University, Akita, 010-0146, Japan.
| | | | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Mayuko Inari-Ikeda
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan.
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan.
| | - Cornelius Mbathi Wainaina
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya.
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
36
|
Yin X. Phyllotaxis: from classical knowledge to molecular genetics. JOURNAL OF PLANT RESEARCH 2021; 134:373-401. [PMID: 33550488 DOI: 10.1007/s10265-020-01247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Plant organs are repetitively generated at the shoot apical meristem (SAM) in recognizable patterns. This phenomenon, known as phyllotaxis, has long fascinated scientists from different disciplines. While we have an enriched body of knowledge on phyllotactic patterns, parameters, and transitions, only in the past 20 years, however, have we started to identify genes and elucidate genetic pathways that involved in phyllotaxis. In this review, I first summarize the classical knowledge of phyllotaxis from a morphological perspective. I then discuss recent advances in the regulation of phyllotaxis, from a molecular genetics perspective. I show that the morphological beauty of phyllotaxis we appreciate is the manifestation of many regulators, in addition to the critical role of auxin as a patterning signal, exerting their respective effects in a coordinated fashion either directly or indirectly in the SAM.
Collapse
Affiliation(s)
- Xiaofeng Yin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
| |
Collapse
|
37
|
Calderini DF, Castillo FM, Arenas‐M A, Molero G, Reynolds MP, Craze M, Bowden S, Milner MJ, Wallington EJ, Dowle A, Gomez LD, McQueen‐Mason SJ. Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential. THE NEW PHYTOLOGIST 2021; 230:629-640. [PMID: 33124693 PMCID: PMC8048851 DOI: 10.1111/nph.17048] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/21/2020] [Indexed: 05/19/2023]
Abstract
Wheat is the most widely grown crop globally, providing 20% of all human calories and protein. Achieving step changes in genetic yield potential is crucial to ensure food security, but efforts are thwarted by an apparent trade-off between grain size and number. Expansins are proteins that play important roles in plant growth by enhancing stress relaxation in the cell wall, which constrains cell expansion. Here, we describe how targeted overexpression of an α-expansin in early developing wheat seeds leads to a significant increase in grain size without a negative effect on grain number, resulting in a yield boost under field conditions. The best-performing transgenic line yielded 12.3% higher average grain weight than the control, and this translated to an increase in grain yield of 11.3% in field experiments using an agronomically appropriate plant density. This targeted transgenic approach provides an opportunity to overcome a common bottleneck to yield improvement across many crops.
Collapse
Affiliation(s)
- Daniel F. Calderini
- Institute of Plant Production and ProtectionUniversidad Austral de ChileCampus Isla TejaValdivia5090000Chile
| | - Francisca M. Castillo
- Institute of Plant Production and ProtectionUniversidad Austral de ChileCampus Isla TejaValdivia5090000Chile
- Institute of Biochemistry and MicrobiologyFaculty of SciencesUniversidad Austral de ChileValdivia5090000Chile
| | - Anita Arenas‐M
- Institute of Plant Production and ProtectionUniversidad Austral de ChileCampus Isla TejaValdivia5090000Chile
- Institute of Biochemistry and MicrobiologyFaculty of SciencesUniversidad Austral de ChileValdivia5090000Chile
| | - Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT)El BatánTexcocoCP 56237Mexico
| | - Matthew P. Reynolds
- International Maize and Wheat Improvement Center (CIMMYT)El BatánTexcocoCP 56237Mexico
| | | | | | | | | | - Adam Dowle
- CNAPBiology DepartmentUniversity of YorkWentworth Way, HeslingtonYorkYO10 5YWUK
| | - Leonardo D. Gomez
- CNAPBiology DepartmentUniversity of YorkWentworth Way, HeslingtonYorkYO10 5YWUK
| | | |
Collapse
|
38
|
Zhang H, Wang Y, Brunecky R, Yao B, Xie X, Zheng F, Luo H. A Swollenin From Talaromyces leycettanus JCM12802 Enhances Cellulase Hydrolysis Toward Various Substrates. Front Microbiol 2021; 12:658096. [PMID: 33854492 PMCID: PMC8039133 DOI: 10.3389/fmicb.2021.658096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/10/2021] [Indexed: 12/02/2022] Open
Abstract
Swollenins exist within some fungal species and are candidate accessory proteins for the biodegradation of cellulosic substrates. Here, we describe the identification of a swollenin gene, Tlswo, in Talaromyces leycettanus JCM12802. Tlswo was successfully expressed in both Trichoderma reesei and Pichia pastoris. Assay results indicate that TlSWO is capable of releasing reducing sugars from lichenan, barley β-glucan, carboxymethyl cellulose sodium (CMC-Na) and laminarin. The specific activity of TlSWO toward lichenan, barley β-glucan, carboxymethyl cellulose sodium (CMC-Na) and laminarin is 9.0 ± 0.100, 8.9 ± 0.100, 2.3 ± 0.002 and 0.79 ± 0.002 U/mg, respectively. Additionally, TlSWO had disruptive activity on Avicel and a synergistic effect with cellobiohydrolases, increasing the activity on pretreated corn stover by up to 72.2%. The functional diversity of TlSWO broadens its applicability in experimental settings, and indicating that it may be a promising candidate for future industrial applications.
Collapse
Affiliation(s)
- Honghai Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Roman Brunecky
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Fei Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Huiying Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Liu C, Bi J, Kang L, Zhou J, Liu X, Liu Z, Yuan S. The molecular mechanism of stipe cell wall extension for mushroom stipe elongation growth. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Two Expansin Genes, AtEXPA4 and AtEXPB5, Are Redundantly Required for Pollen Tube Growth and AtEXPA4 Is Involved in Primary Root Elongation in Arabidopsis thaliana. Genes (Basel) 2021; 12:genes12020249. [PMID: 33578704 PMCID: PMC7916401 DOI: 10.3390/genes12020249] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation.
Collapse
|
41
|
Zhang P, Su R, Duan Y, Cui M, Huang R, Qi W, He Z, Thielemans W. Synergy between endo/exo-glucanases and expansin enhances enzyme adsorption and cellulose conversion. Carbohydr Polym 2021; 253:117287. [DOI: 10.1016/j.carbpol.2020.117287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/01/2020] [Accepted: 10/17/2020] [Indexed: 10/23/2022]
|
42
|
Fu A, Wang Q, Mu J, Ma L, Wen C, Zhao X, Gao L, Li J, Shi K, Wang Y, Zhang X, Zhang X, Wang F, Grierson D, Zuo J. Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium edule) evolution and fruit development. HORTICULTURE RESEARCH 2021; 8:35. [PMID: 33517348 PMCID: PMC7847470 DOI: 10.1038/s41438-021-00487-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 05/11/2023]
Abstract
Chayote (Sechium edule) is an agricultural crop in the Cucurbitaceae family that is rich in bioactive components. To enhance genetic research on chayote, we used Nanopore third-generation sequencing combined with Hi-C data to assemble a draft chayote genome. A chromosome-level assembly anchored on 14 chromosomes (N50 contig and scaffold sizes of 8.40 and 46.56 Mb, respectively) estimated the genome size as 606.42 Mb, which is large for the Cucurbitaceae, with 65.94% (401.08 Mb) of the genome comprising repetitive sequences; 28,237 protein-coding genes were predicted. Comparative genome analysis indicated that chayote and snake gourd diverged from sponge gourd and that a whole-genome duplication (WGD) event occurred in chayote at 25 ± 4 Mya. Transcriptional and metabolic analysis revealed genes involved in fruit texture, pigment, flavor, flavonoids, antioxidants, and plant hormones during chayote fruit development. The analysis of the genome, transcriptome, and metabolome provides insights into chayote evolution and lays the groundwork for future research on fruit and tuber development and genetic improvements in chayote.
Collapse
Affiliation(s)
- Anzhen Fu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Lili Ma
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Changlong Wen
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Xuechuan Zhang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Xuewen Zhang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Fengling Wang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
43
|
Abstract
Atomic force microscopy (AFM) is an indentation technique used to reconstruct the topography of various materials and organisms. AFM can also measure the mechanical properties of the sample. In plants, AFM is applied to image cell wall structural details and measure the elastic properties in the outer cell walls. Here, I describe the use of high-resolution AFM to measure the elasticity of resin-embedded ultrathin sections of leaf epidermal cell walls. This approach allows to access the fine details within the wall matrix and eliminate the influence of the topography or the turgor on mechanical measurements. In this chapter, the sample preparation, AFM image acquisition, and processing of force curves are described. Altogether, these methods allow to measure the wall stiffness and compare different cell wall regions.
Collapse
|
44
|
Dong W, Li L, Cao R, Xu S, Cheng L, Yu M, Lv Z, Lu G. Changes in cell wall components and polysaccharide-degrading enzymes in relation to differences in texture during sweetpotato storage root growth. JOURNAL OF PLANT PHYSIOLOGY 2020; 254:153282. [PMID: 32992132 DOI: 10.1016/j.jplph.2020.153282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Sweetpotato has special texture characteristics, which directly affect the eating quality and post-production processing quality of sweetpotato. To investigate the texture change mechanism of sweetpotato during the growth process, this study selected two varieties with significant differences in texture from 35 varieties. The storage roots were sampled at 50, 80, 110, and 140 days after planting. Measure the texture parameters, the cell wall composition content, cell wall-related enzyme activities and the expression of expansin genes of sweetpotato storage roots. The results show that the hardness, adhesiveness and chewiness parameters of 'Yushu No 10' were significantly lower than those of 'Mianfen No 1', they have significantly different texture properties. In terms of cell wall composition, the soluble pectin content of 'Yushu No 10' was more than twice that of 'Mianfen No 1', whereas the insoluble pectin content was lower than that of 'Mianfen No 1', with the cellulose content of 'Yushu No 10' being significantly higher than that of 'Mianfen No 1'. In terms of cell wall-related enzymes, 'Yushu No 10' hardness gumminess and chewiness had a significant correlation with hemicellulose activity, and 'Mianfen No 1' had insignificant correlation with four cell wall-related enzymes. Expansin genes were also expressed differently during the various stages of root tubers expansin. The expressions of IbEXP1, IbEXP2 and IbEXPL1 were significantly correlated with the changes in cell wall component content, and were related to the qualitative structure changes. The research conclusion shows that the texture changes during the growth of sweetpotato are related to cell wall composition, cell wall-related enzyme activity changes, and the expression of expansin genes. This study provides theoretical guidance for in-depth study of texture changes of sweetpotato, post-harvest processing and utilization and quality improvement of storage roots.
Collapse
Affiliation(s)
- Wei Dong
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Ling Li
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Ruxia Cao
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shu Xu
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Lingling Cheng
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Minyi Yu
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zunfu Lv
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Guoquan Lu
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
45
|
Maiz-Fernández S, Pérez-Álvarez L, Ruiz-Rubio L, Vilas-Vilela JL, Lanceros-Mendez S. Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications. Polymers (Basel) 2020; 12:E2261. [PMID: 33019575 PMCID: PMC7600516 DOI: 10.3390/polym12102261] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
In situ hydrogels have attracted increasing interest in recent years due to the need to develop effective and practical implantable platforms. Traditional hydrogels require surgical interventions to be implanted and are far from providing personalized medicine applications. However, in situ hydrogels offer a wide variety of advantages, such as a non-invasive nature due to their localized action or the ability to perfectly adapt to the place to be replaced regardless the size, shape or irregularities. In recent years, research has particularly focused on in situ hydrogels based on natural polysaccharides due to their promising properties such as biocompatibility, biodegradability and their ability to self-repair. This last property inspired in nature gives them the possibility of maintaining their integrity even after damage, owing to specific physical interactions or dynamic covalent bonds that provide reversible linkages. In this review, the different self-healing mechanisms, as well as the latest research on in situ self-healing hydrogels, is presented, together with the potential applications of these materials in tissue regeneration.
Collapse
Affiliation(s)
- Sheila Maiz-Fernández
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Leyre Pérez-Álvarez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Leire Ruiz-Rubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Jose Luis Vilas-Vilela
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
46
|
Yang J, Zhang G, An J, Li Q, Chen Y, Zhao X, Wu J, Wang Y, Hao Q, Wang W, Wang W. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110596. [PMID: 32771153 DOI: 10.1016/j.plantsci.2020.110596] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Expansins loosen plant cell walls and are involved in cell enlargement and various abiotic stresses. In previous studies, we cloned the expansin gene TaEXPA2 from the wheat cultivar HF9703. Here, we studied its function and regulation in wheat drought stress tolerance. The results indicated that TaEXPA2-overexpressing wheat plants (OE) exhibited drought tolerant phenotypes, whereas down-regulation of TaEXPA2 by RNA interference (RNAi) resulted in elevated drought sensitivity, as measured by survival rate, photosynthetic rate and water containing ability under drought stress. Overexpression of TaEXPA2 enhanced the antioxidant capacity in wheat plants, via elevation of antioxidant enzyme activity and the increase of the transcripts of some ROS scavenging enzyme-related genes. Further investigation revealed that TaEXPA2 positively influenced lateral root formation under drought conditions. A MYB transcription factor of wheat named TaMPS activates TaEXPA2 expression directly by binding to its promoter. Overexpression of TaMPS in Arabidopsis conferred drought tolerance associated with improved lateral root number, and the close homolog genes of TaEXPA2 were up-regulated in Arabidopsis roots overexpressing TaMPS, which suggest that TaMPS may function as one of the regulator of TaEXPA2 gene expression in the root lateral development under drought stress. These findings suggest that TaEXPA2 positively regulates drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Junjiao Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jie An
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yanhui Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China; Research Institute of Pomology of Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China
| | - Xiaoyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, Shandong, China
| | - Wenqiang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, Shandong, China.
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
47
|
Valenzuela-Riffo F, Parra-Palma C, Ramos P, Morales-Quintana L. Molecular and structural insights into FaEXPA5, an alpha-expansin protein related with cell wall disassembly during ripening of strawberry fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:581-589. [PMID: 32711363 DOI: 10.1016/j.plaphy.2020.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Cell wall modification is one of the main factors that produce the tissue softening during ripening of many fruit including strawberry (Fragaria x ananassa). Expansins have been studied for over 20 years as a class of the important cell growth regulators, and in the last years these have been related with the fruit softening. In strawberry, five partial sequences of the expansins genes were described in the past, this analysis showed that FaEXP5 partial gene was present throughout fruit development, but was more strongly expressed during ripening. Now, we reported the full length of this α-expansin (FaEXPA5), whose had been related with fruit softening, and the protein structural was described by homology model. Their transcript accumulation during softening was confirmed by qRT-PCR, displaying a high accumulation rate during fruit ripening. In silico analysis of promoter sequence showed four ABA and two auxin cis-regulatory elements, potentially responsible for the expression patterns observed in response to the hormone treatments. Additionally, 3D protein model displayed two domains and one open groove characteristic of expansin structures. The protein-ligand interactions were evaluated by molecular dynamic (MD) simulation using three different long structure ligands (a cellulose fiber, a xyloglucan fiber (XXXG type), and a pectin fiber as control). Favorable interactions were observed with xyloglucan and cellulose, being cellulose the best ligand with lower RMSD value. Additionally, MD simulations showed that FaEXPA5 can interact with the ligands through residues present in the open groove along the two domains.
Collapse
Affiliation(s)
- Felipe Valenzuela-Riffo
- Programa de Doctorado en Ciencias Mención Ingeniería Genética, Instituto de Ciencias Biológicas, Universidad de Talca, Chile
| | - Carolina Parra-Palma
- Programa de Doctorado en Ciencias Mención Ingeniería Genética, Instituto de Ciencias Biológicas, Universidad de Talca, Chile
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Chile; Núcleo Científico Multidisciplinario-DI, Universidad de Talca, Chile.
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédica, Facultad Ciencias de La Salud, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
48
|
Tu B, Zhang T, Wang Y, Hu L, Li J, Zheng L, Zhou Y, Li J, Xue F, Zhu X, Yuan H, Chen W, Qin P, Ma B, Li S. Membrane-associated xylanase-like protein OsXYN1 is required for normal cell wall deposition and plant development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4797-4811. [PMID: 32337581 DOI: 10.1093/jxb/eraa200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/22/2020] [Indexed: 05/22/2023]
Abstract
The rice (Oryza sativa) genome encodes 37 putative β-1,4-xylanase proteins, but none of them has been characterized at the genetic level. In this work, we report the isolation of slim stem (ss) mutants with pleiotropic defects, including dwarfism, leaf tip necrosis, and withered and rolled leaves under strong sunlight. Map-based cloning of the ss1 mutant identified the candidate gene as OsXyn1 (LOC_03g47010), which encodes a xylanase-like protein belonging to the glycoside hydrolase 10 (GH10) family. OsXyn1 was found to be widely expressed, especially in young tissues. Subcellular localization analysis showed that OsXyn1 encodes a membrane-associated protein. Physiological analysis of ss1 and the allelic ss2 mutant revealed that water uptake was partially compromised in these mutants. Consistently, the plant cell wall of the mutants exhibited middle lamella abnormalities or deficiencies. Immunogold assays revealed an unconfined distribution of xylan in the mutant cell walls, which may have contributed to a slower rate of plant cell wall biosynthesis and delayed plant growth. Additionally, water deficiency caused abscisic acid accumulation and triggered drought responses in the mutants. The findings that OsXyn1 is involved in plant cell wall deposition and the regulation of plant growth and development help to shed light on the functions of the rice GH10 family.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Tao Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Yuping Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Li Hu
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Jin Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Ling Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
- Hybrid Rice Research Center, Neijiang Academy of Agricultural Sciences, Neijiang, Sichuan, China
| | - Yi Zhou
- Collage of Life Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Jialian Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Fengyin Xue
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Weilan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| |
Collapse
|
49
|
Shoaib M, Quadri SMR, Wani OB, Bobicki E, Garrido GI, Elkamel A, Abdala A. Adsorption of enhanced oil recovery polymer, schizophyllan, over carbonate minerals. Carbohydr Polym 2020; 240:116263. [PMID: 32475555 DOI: 10.1016/j.carbpol.2020.116263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
Abstract
Schizophyllan is a natural polysaccharide that has shown great potential as enhanced oil recovery (EOR) polymer for high-temperature, high-salinity reservoirs. Nevertheless, the adsorption behavior of schizophyllan over carbonate minerals remains ambiguous element towards its EOR applications. Here, we investigate the adsorption of schizophyllan on different carbonate minerals. The effect of mineral type, salinity, and background ions on adsorption is analyzed. Our results indicate the adsorption capacity is higher on calcite and dolomite compared to silica and kaolin and the adsorption capacity decreases with salinity. Moreover, the adsorption kinetics follows pseudo-second order mechanism regardless of the mineral type. Adsorption over calcite is diminished in presence of water structure making ions and enhanced in presence of structure breaking ion and in presence of urea. Gel permeation chromatography results reveal the preferential adsorption of longer chains. The adsorption over carbonate minerals proceed via complex formation between polymer molecule and mineral surface.
Collapse
Affiliation(s)
- Mohammad Shoaib
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | | | - Omar Bashir Wani
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Erin Bobicki
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | | | - Ali Elkamel
- Department of Chemical Engineering, University of Waterloo, Ontario, Canada; Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar.
| |
Collapse
|
50
|
Fullerton CG, Prakash R, Ninan AS, Atkinson RG, Schaffer RJ, Hallett IC, Schröder R. Fruit From Two Kiwifruit Genotypes With Contrasting Softening Rates Show Differences in the Xyloglucan and Pectin Domains of the Cell Wall. FRONTIERS IN PLANT SCIENCE 2020; 11:964. [PMID: 32714354 PMCID: PMC7343912 DOI: 10.3389/fpls.2020.00964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Fruit softening is controlled by hormonal and developmental cues, causing an upregulation of cell wall-associated enzymes that break down the complex sugar matrices in the cell wall. The regulation of this process is complex, with different genotypes demonstrating quite different softening patterns, even when they are closely related. Currently, little is known about the relationship between cell wall structure and the rate of fruit softening. To address this question, the softening of two Actinidia chinensis var. chinensis (kiwifruit) genotypes (a fast 'AC-F' and a slow 'AC-S' softening genotype) was examined using a range of compositional, biochemical, structural, and molecular techniques. Throughout softening, the cell wall structure of the two genotypes was fundamentally different at identical firmness stages. In the hemicellulose domain, xyloglucanase enzyme activity was higher in 'AC-F' at the firm unripe stage, a finding supported by differential expression of xyloglucan transglycosylase/hydrolase genes during softening. In the pectin domain, differences in pectin solubilization and location of methyl-esterified homogalacturonan in the cell wall between 'AC-S' and 'AC-F' were shown. Side chain analyses and molecular weight elution profiles of polyuronides and xyloglucans of cell wall extracts revealed fundamental differences between the genotypes, pointing towards a weakening of the structural integrity of cell walls in the fast softening 'AC-F' genotype even at the firm, unripe stage. As a consequence, the polysaccharides in the cell walls of 'AC-F' may be easier to access and hence more susceptible to enzymatic degradation than in 'AC-S', resulting in faster softening. Together these results suggest that the different rates of softening between 'AC-F' and 'AC-S' are not due to changes in enzyme activities alone, but that fundamental differences in the cell wall structure are likely to influence the rates of softening through differential modification and accessibility of specific cell wall polysaccharides during ripening.
Collapse
Affiliation(s)
- Christina G. Fullerton
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
- Joint Graduate School of Plant and Food Science, University of Auckland, Auckland, New Zealand
| | - Roneel Prakash
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| | - Annu Smitha Ninan
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| | - Ross G. Atkinson
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| | - Robert J. Schaffer
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
- Joint Graduate School of Plant and Food Science, University of Auckland, Auckland, New Zealand
| | - Ian C. Hallett
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| |
Collapse
|