1
|
Xian J, Huang Y, Bai J, Liao Q, Chen Q, Cheng W, Su Z, Li S, Wu Y, Li J, Zhang J. Recent Advances in the Anti-Obesity Benefits of Phytoconstituents: From Phytochemistry to Targeting Novel-Systems. Phytother Res 2025; 39:630-660. [PMID: 39629748 DOI: 10.1002/ptr.8400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 02/19/2025]
Abstract
Obesity is a metabolic disorder that has become a global health concern. The existing pharmaceutical drugs for treating obesity have some side effects. Compounds from natural sources are prospective substitutes for treating chronic diseases such as obesity, with the added advantages of being safe and cost-effective. However, due to factors such as poor solubility, low bioavailability, and instability in the physiological environment, the therapeutic efficacy of phytoconstituents is limited. Nowadays, developing nanoscaled systems has emerged as a vital strategy for enhancing the delivery and therapeutic effect of phytoconstituents. The present study discusses and categorizes phytoconstituents with anti-obesity effects and concludes the main mechanisms underlying their effects. Importantly, strategies used to develop phytoconstituent-based nano-drug delivery systems (NDDS) for obesity treatment that show improved efficacy relative to traditional administration routes are reviewed. Finally, the progress of research on phytoconstituent-based NDDS for obesity treatment is summarized to provide a reference for the development of safe and effective treatment strategies for obesity.
Collapse
Affiliation(s)
- Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Qiyan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Weijian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziye Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Liang B, Fu L, Liu P. Regulation of lipid droplet dynamics and lipid homeostasis by hydroxysteroid dehydrogenase proteins. Trends Cell Biol 2025; 35:153-165. [PMID: 39603915 DOI: 10.1016/j.tcb.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
The superfamily of hydroxysteroid dehydrogenases (HSDs) has been well-characterized as enzymes in lipid metabolism, and especially in steroid hormone metabolism from bacteria to mammals. Recently, a subset of HSDs members, including 3β-HSD, 11β-HSD, and 17β-HSD, have been shown to be lipid droplet (LD)-associated proteins that are involved in LD dynamics beyond their canonical functions. This review summarizes current understanding of these LD-associated HSD proteins, focusing on how they regulate different LDs with respect to distinct neutral lipids including triacylglycerols (TAGs), cholesterol esters (CEs), and retinyl esters (REs), the evolutionally conserved role of some LD-associated 17β-HSDs in preventing lipolysis, and specific targeting of HSDs for the treatment of metabolic diseases and viral infections.
Collapse
Affiliation(s)
- Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China.
| | - Lin Fu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming 650500, China; Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China.
| | - Pingsheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Clarke SA, Eng PC, Comninos AN, Lazarus K, Choudhury S, Tsang C, Meeran K, Tan TM, Dhillo WS, Abbara A. Current Challenges and Future Directions in the Assessment of Glucocorticoid Status. Endocr Rev 2024; 45:795-817. [PMID: 38795365 PMCID: PMC11581704 DOI: 10.1210/endrev/bnae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/27/2024]
Abstract
Glucocorticoid (GC) hormones are secreted in a circadian and ultradian rhythm and play a critical role in maintaining physiological homeostasis, with both excess and insufficient GC associated with adverse effects on health. Current assessment of GC status is primarily clinical, often in conjunction with serum cortisol values, which may be stimulated or suppressed depending on the GC disturbance being assessed. In the setting of extreme perturbations in cortisol levels ie, markedly low or high levels, symptoms and signs of GC dysfunction may be overt. However, when disturbances in cortisol GC status values are less extreme, such as when assessing optimization of a GC replacement regimen, signs and symptoms can be more subtle or nonspecific. Current tools for assessing GC status are best suited to identifying profound disturbances but may lack sensitivity for confirming optimal GC status. Moreover, single cortisol values do not necessarily reflect an individual's GC status, as they are subject to inter- and intraindividual variation and do not take into account the pulsatile nature of cortisol secretion, variation in binding proteins, or local tissue concentrations as dictated by 11beta-hydroxysteroid dehydrogenase activity, as well as GC receptor sensitivity. In the present review, we evaluate possible alternative methods for the assessment of GC status that do not solely rely on the measurement of circulating cortisol levels. We discuss the potential of changes in metabolomic profiles, micro RNA, gene expression, and epigenetic and other novel biomarkers such as growth differentiating factor 15 and osteocalcin, which could in the future aid in the objective classification of GC status.
Collapse
Affiliation(s)
- Sophie A Clarke
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Pei Chia Eng
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
- Department of Endocrinology, National University of Singapore, Singapore
| | - Alexander N Comninos
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Katharine Lazarus
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Sirazum Choudhury
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Christie Tsang
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
| | - Karim Meeran
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Tricia M Tan
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Ali Abbara
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| |
Collapse
|
4
|
Milosevic A, Milosevic K, Zivkovic A, Lavrnja I, Savic D, Bjelobaba I, Janjic MM. Alterations in the Hypothalamic-Pituitary-Adrenal Axis as a Response to Experimental Autoimmune Encephalomyelitis in Dark Agouti Rats of Both Sexes. Biomolecules 2024; 14:1020. [PMID: 39199407 PMCID: PMC11352252 DOI: 10.3390/biom14081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease that affects the central nervous system, usually diagnosed during the reproductive period. Both MS and its commonly used animal model, experimental autoimmune encephalomyelitis (EAE), exhibit sex-specific features regarding disease progression and disturbances in the neuroendocrine and endocrine systems. This study investigates the hypothalamic-pituitary-adrenal (HPA) axis response of male and female Dark Agouti rats during EAE. At the onset of EAE, Crh expression in the hypothalamus of both sexes is decreased, while males show reduced plasma adrenocorticotropic hormone levels. Adrenal gland activity is increased during EAE in both males and females, as evidenced by enlarged adrenal glands and increased StAR gene and protein expression. However, only male rats show increased serum and adrenal corticosterone levels, and an increased volume of the adrenal cortex. Adrenal 3β-HSD protein and progesterone levels are elevated in males only. Serum progesterone levels of male rats are also increased, although testicular progesterone levels are decreased during the disease, implying that the adrenal gland is the source of elevated serum progesterone levels in males. Our results demonstrate a sex difference in the response of the HPA axis at the adrenal level, with male rats showing a more pronounced induction during EAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marija M. Janjic
- Department for Neurobiology, Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.M.); (K.M.); (A.Z.); (I.L.); (D.S.); (I.B.)
| |
Collapse
|
5
|
Stepanov YK, Herrmann C, Stöckl JB, Köhn FM, Pickl U, Trottmann M, Fröhlich T, Mayerhofer A, Welter H. Prolonged exposure to dexamethasone alters the proteome and cellular phenotype of human testicular peritubular cells. Proteomics 2024; 24:e2300616. [PMID: 38419139 DOI: 10.1002/pmic.202300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Human testicular peritubular cells (HTPCs) are smooth muscle cells, which in the testis form a small compartment surrounding the seminiferous tubules. Contractions of HTPCs are responsible for sperm transport, HTPCs contribute to spermatogenesis, have immunological roles and are a site of glucocorticoid receptor expression. Importantly, HTPCs maintain their characteristics in vitro, and thus can serve as an experimental window into the male gonad. Previously we reported consequences of 3-day treatment with Dexamethasone (Dex), a synthetic glucocorticoid and multi-purpose anti-inflammatory drug. However, as glucocorticoid therapies in man often last longer, we now studied consequences of a prolonged 7-day exposure to 1 µM Dex. Combining live cell imaging with quantative proteomics of samples taken from men, we confirmed our recent findings but more importantly, found numerous novel proteomic alterations induced by prolonged Dex treatment. The comparison of the 7-day treatment with the 3-day treatment dataset revealed that extracellular matrix- and focal adhesion-related proteins become more prominent after 7 days of treatment. In contrast, extended stimulation is, for example, associated with a decrease of proteins related to cholesterol and steroid metabolism. Our dataset, which describes phenotypic and proteomic alterations, is a valuable resource for further research projects investigating effects of Dex on human testicular cells.
Collapse
Affiliation(s)
- Youli K Stepanov
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), Ludwig Maximilian University of Munich, Munich, Germany
| | - Carola Herrmann
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, AG Mayerhofer, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Jan B Stöckl
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), Ludwig Maximilian University of Munich, Munich, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, AG Mayerhofer, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Harald Welter
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, AG Mayerhofer, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Yuan X, An G. Characterizing the Nonlinear Pharmacokinetics and Pharmacodynamics of BI 187004, an 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor, in Humans by a Target-Mediated Drug Disposition Model. J Clin Pharmacol 2024; 64:993-1005. [PMID: 38652112 DOI: 10.1002/jcph.2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
BI 187004, a selective small-molecule inhibitor of 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1), displayed complex nonlinear pharmacokinetics (PK) in humans. Following nine single oral doses, BI 187004 exhibited nonlinear PK at low doses and linear PK at higher doses. Notably, substantial hepatic 11β-HSD1 inhibition (50%) was detected in a very low-dose group, achieving a consistent 70% hepatic enzyme inhibition in subsequent ascending doses without any dose-dependent effects. The unusual PK and PD profiles of BI 187004 suggest the presence of pharmacological target-mediated drug disposition (TMDD), arising from the saturable binding of BI 187004 compound to its high-affinity and low-capacity target 11β-HSD1. The non-intuitive dose, exposure, and response relationship for BI 187004 pose a significant challenge in rational dose selection. This study aimed to construct a TMDD model to explain the complex nonlinear PK behavior and underscore the importance of recognizing TMDD in this small-molecule compound. Among the various models explored, the best model was a two-compartment TMDD model with three transit absorption components. The final model provides insights into 11β-HSD1 binding-related parameters for BI 187004, including the total amount of 11β-HSD1 in the liver (estimated to be 8000 nmol), the second order association rate constant (estimated to be 0.102 nM-1h-1), and the first-order dissociation rate constant (estimated to be 0.11 h-1). Our final population PK model successfully characterized the intricate nonlinear PK of BI 187004 across a wide dose range. This modeling work serves as a valuable reference for the rational selection of the dose regimens for BI 187004's future clinical trials.
Collapse
Affiliation(s)
- Xuanzhen Yuan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Guohua An
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
7
|
Tsai SF, Hsu PL, Yeh MC, Hung HC, Shih MMC, Chung BC, Wang CY, Chang CJ, Kuo YM. High-fat diet-induced increase in glucocorticoids contributes to adipogenesis in obese mice. Biomed J 2024:100772. [PMID: 39048079 DOI: 10.1016/j.bj.2024.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND This study was designed to examine how glucocorticoids (GCs) induced by a long-term ingestion of high-fat diet (HFD) mediate the HFD-induced adipose expansion and obesity. MATERIAL AND METHODS To address this goal, we used a unique L/L mouse model that fails to induce its corticosterone (CORT) level, a major type of GCs in rodents, after prolonged exposure to an HFD. RESULTS We found that, after receiving a 12-week HFD feeding, the L/L mice show less weight gain, milder adipose expansion, and higher plasma levels of triglycerides than the wild-type mice. These changes were reversed by replenishing CORT to L/L mice. When examining the expression levels of various molecules linked to lipid uptake and de novo lipogenesis in CORT-induced adipose expansion, we observed a reduction in the expression of adipose preadipocyte factor 1 (Pref-1), a key regulator in adipogenesis. In 3T3-L1 preadipocyte-like cells, dexamethasone, an agonist of the glucocorticoid receptor, also reduced expressions of Pref-1 and facilitated intracellular accumulation of lipids. CONCLUSIONS Our results suggest that fat ingestion-induced release of CORT contributes to adipose expansion and development of obesity and highlight the pathogenic role of CORT-mediated downregulation of adipose Pref-1 in diet-induced obesity.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Mei-Chen Yeh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 710402, Taiwan
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 710402, Taiwan
| | - Monica Meng-Chun Shih
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115021, Taiwan
| | - Bon-Chu Chung
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115021, Taiwan; Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, 404328, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600566, Taiwan.
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan.
| |
Collapse
|
8
|
Batista EK, de Lima LMA, Gomes DA, Crans DC, Silva WE, Belian MF, Lira EC. Dexamethasone-Induced Insulin Resistance Attenuation by Oral Sulfur-Oxidovanadium(IV) Complex Treatment in Mice. Pharmaceuticals (Basel) 2024; 17:760. [PMID: 38931427 PMCID: PMC11206843 DOI: 10.3390/ph17060760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Vanadium compounds are known to exert insulin-enhancing activity, normalize elevated blood glucose levels in diabetic subjects, and show significant activity in models of insulin resistance (IR). Faced with insulin resistance, the present work investigates the antidiabetic performance of a known oxidovanadium(IV)-based coordination compound-[VIVO(octd)]-and effects associated with glucocorticoid-induced insulin resistance in mice. The effects of [VIVO(octd)] were evaluated in a female Swiss mice model of insulin resistance induced by seven days of dexamethasone treatment in comparison with groups receiving metformin treatment. Biological assays such as hematological, TyG index, hepatic lipids, glycogen, oxidative stress in the liver, and oral glucose tolerance tests were evaluated. [VIVO(octd)] was characterized with 51V NMR, infrared spectroscopy (FTIR), electron paramagnetic resonance (EPR), electronic absorption spectroscopy, and mass spectrometry (ESI-FT-MS). The [VIVO(octd)] oral treatment (50 mg/kg) had an antioxidant effect, reducing 50% of fast blood glucose (p < 0.05) and 25% of the TyG index, which is used to estimate insulin resistance (p < 0.05), compared with the non-treated group. The oxidovanadium-sulfur compound is a promising antihyperglycemic therapeutic, including in cases aggravated by insulin resistance induced by glucocorticoid treatment.
Collapse
Affiliation(s)
- Eucilene K. Batista
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (E.K.B.); (D.A.G.); (E.C.L.)
| | - Lidiane M. A. de Lima
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.S.)
| | - Dayane A. Gomes
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (E.K.B.); (D.A.G.); (E.C.L.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80513, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80513, USA
| | - Wagner E. Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.S.)
| | - Mônica F. Belian
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.S.)
| | - Eduardo C. Lira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (E.K.B.); (D.A.G.); (E.C.L.)
| |
Collapse
|
9
|
Schill RL, Visser J, Ashby ML, Li Z, Lewis KT, Morales-Hernandez A, Hoose KS, Maung JN, Uranga RM, Hariri H, Hermsmeyer IDK, Mori H, MacDougald OA. Deficiency of glucocorticoid receptor in bone marrow adipocytes has mild effects on bone and hematopoiesis but does not influence expansion of marrow adiposity with caloric restriction. Front Endocrinol (Lausanne) 2024; 15:1397081. [PMID: 38887268 PMCID: PMC11180776 DOI: 10.3389/fendo.2024.1397081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Unlike white adipose tissue depots, bone marrow adipose tissue (BMAT) expands during caloric restriction (CR). Although mechanisms for BMAT expansion remain unclear, prior research suggested an intermediary role for increased circulating glucocorticoids. Methods In this study, we utilized a recently described mouse model (BMAd-Cre) to exclusively target bone marrow adipocytes (BMAds) for elimination of the glucocorticoid receptor (GR) (i.e. Nr3c1) whilst maintaining GR expression in other adipose depots. Results Mice lacking GR in BMAds (BMAd-Nr3c1 -/-) and control mice (BMAd-Nr3c1 +/+) were fed ad libitum or placed on a 30% CR diet for six weeks. On a normal chow diet, tibiae of female BMAd-Nr3c1-/- mice had slightly elevated proximal trabecular metaphyseal bone volume fraction and thickness. Both control and BMAd-Nr3c1-/- mice had increased circulating glucocorticoids and elevated numbers of BMAds in the proximal tibia following CR. However, no significant differences in trabecular and cortical bone were observed, and quantification with osmium tetroxide and μCT revealed no difference in BMAT accumulation between control or BMAd-Nr3c1 -/- mice. Differences in BMAd size were not observed between BMAd-Nr3c1-/- and control mice. Interestingly, BMAd-Nr3c1-/- mice had decreased circulating white blood cell counts 4 h into the light cycle. Discussion In conclusion, our data suggest that eliminating GR from BMAd has minor effects on bone and hematopoiesis, and does not impair BMAT accumulation during CR.
Collapse
Affiliation(s)
- Rebecca L. Schill
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Jack Visser
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Mariah L. Ashby
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Ziru Li
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Kenneth T. Lewis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Antonio Morales-Hernandez
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Keegan S. Hoose
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Jessica N. Maung
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Romina M. Uranga
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Hadla Hariri
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Isabel D. K. Hermsmeyer
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Hiroyuki Mori
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Ormond A. MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Bavaresco A, Mazzeo P, Lazzara M, Barbot M. Adipose tissue in cortisol excess: What Cushing's syndrome can teach us? Biochem Pharmacol 2024; 223:116137. [PMID: 38494065 DOI: 10.1016/j.bcp.2024.116137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Endogenous Cushing's syndrome (CS) is a rare condition due to prolonged exposure to elevated circulating cortisol levels that features its typical phenotype characterised by moon face, proximal myopathy, easy bruising, hirsutism in females and a centripetal distribution of body fat. Given the direct and indirect effects of hypercortisolism, CS is a severe disease burdened by increased cardio-metabolic morbidity and mortality in which visceral adiposity plays a leading role. Although not commonly found in clinical setting, endogenous CS is definitely underestimated leading to delayed diagnosis with consequent increased rate of complications and reduced likelihood of their reversal after disease control. Most of all, CS is a unique model for systemic impairment induced by exogenous glucocorticoid therapy that is commonly prescribed for a number of chronic conditions in a relevant proportion of the worldwide population. In this review we aim to summarise on one side, the mechanisms behind visceral adiposity and lipid metabolism impairment in CS during active disease and after remission and on the other explore the potential role of cortisol in promoting adipose tissue accumulation.
Collapse
Affiliation(s)
- Alessandro Bavaresco
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Pierluigi Mazzeo
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Martina Lazzara
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Mattia Barbot
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy.
| |
Collapse
|
11
|
Schiffer L, Oestlund I, Snoep JL, Gilligan LC, Taylor AE, Sinclair AJ, Singhal R, Freeman A, Ajjan R, Tiganescu A, Arlt W, Storbeck KH. Inhibition of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 drives concurrent 11-oxygenated androgen excess. FASEB J 2024; 38:e23574. [PMID: 38551804 DOI: 10.1096/fj.202302131r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is a key enzyme in the activation of both classic and 11-oxygenated androgens. In adipose tissue, AKR1C3 is co-expressed with 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1), which catalyzes not only the local activation of glucocorticoids but also the inactivation of 11-oxygenated androgens, and thus has the potential to counteract AKR1C3. Using a combination of in vitro assays and in silico modeling we show that HSD11B1 attenuates the biosynthesis of the potent 11-oxygenated androgen, 11-ketotestosterone (11KT), by AKR1C3. Employing ex vivo incubations of human female adipose tissue samples we show that inhibition of HSD11B1 results in the increased peripheral biosynthesis of 11KT. Moreover, circulating 11KT increased 2-3 fold in individuals with type 2 diabetes after receiving the selective oral HSD11B1 inhibitor AZD4017 for 35 days, thus confirming that HSD11B1 inhibition results in systemic increases in 11KT concentrations. Our findings show that HSD11B1 protects against excess 11KT production by adipose tissue, a finding of particular significance when considering the evidence for adverse metabolic effects of androgens in women. Therefore, when targeting glucocorticoid activation by HSD11B1 inhibitor treatment in women, the consequently increased generation of 11KT may offset beneficial effects of decreased glucocorticoid activation.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Imken Oestlund
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Alexandra J Sinclair
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Rishi Singhal
- Upper GI Unit and Minimally Invasive Unit, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Adrian Freeman
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ramzi Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - Ana Tiganescu
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
- Medical Research Council Laboratory of Medical Sciences, London, UK
| | - Karl-Heinz Storbeck
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
Reis F, Fernandes R. Molecular Pharmacology in Diabetes. Int J Mol Sci 2024; 25:3051. [PMID: 38474296 DOI: 10.3390/ijms25053051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
This Special Issue highlights the key molecules and molecular signaling pathways associated with diabetes and its multifaceted complications [...].
Collapse
Affiliation(s)
- Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| |
Collapse
|
13
|
Bakhtiarizadeh MR. Deciphering the role of alternative splicing as a potential regulator in fat-tail development of sheep: a comprehensive RNA-seq based study. Sci Rep 2024; 14:2361. [PMID: 38287039 PMCID: PMC10825154 DOI: 10.1038/s41598-024-52855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Although research on alternative splicing (AS) has been widely conducted in mammals, no study has investigated the splicing profiles of genes involved in fat-tail formation in sheep. Here, for the first time, a comprehensive study was designed to investigate the profile of AS events and their involvement in fat-tail development of sheep. In total, 45 RNA-Seq samples related to seven different studies, which have compared the fat-tailed vs thin-tailed sheep breeds, were analyzed. Two independent tools, rMATS and Whippet, along with a set of stringent filters were applied to identify differential AS (DAS) events between the breeds per each study. Only DAS events that were detected by both tools as well as in at least three datasets with the same ΔPSI trend (percent spliced in), were considered as the final high-confidence set of DAS genes. Final results revealed 130 DAS skipped exon events (69 negative and 61 positive ΔPSI) belonged to 124 genes. Functional enrichment analysis highlighted the importance of the genes in the underlying molecular mechanisms of fat metabolism. Moreover, protein-protein interaction network analysis revealed that DAS genes are significantly connected. Of DAS genes, five transcription factors were found that were enriched in the biological process associated with lipid metabolism like "Fat Cell Differentiation". Further investigations of the findings along with a comprehensive literature review provided a reliable list of candidate genes that may potentially contribute to fat-tail formation including HSD11B1, SIRT2, STRN3 and TCF7L2. Based on the results, it can be stated that the AS patterns may have evolved, during the evolution of sheep breeds, as another layer of regulation to contribute to biological complexity by reprogramming the gene regulatory networks. This study provided the theoretical basis of the molecular mechanisms behind the sheep fat-tail development in terms of AS.
Collapse
|
14
|
Abstract
11-beta-hydroxysteroid dehydrogenases (11β-HSDs) catalyse the conversion of active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inert 11-keto forms (cortisone, 11-dehydrocorticosterone). They were first reported in the body and brain 70 years ago, but only recently have they become of interest. 11β-HSD2 is a dehydrogenase, potently inactivating glucocorticoids. In the kidney, 11β-HSD2 generates the aldosterone-specificity of intrinsically non-selective mineralocorticoid receptors. 11β-HSD2 also protects the developing foetal brain and body from premature glucocorticoid exposure, which otherwise engenders the programming of neuropsychiatric and cardio-metabolic disease risks. In the adult CNS, 11β-HSD2 is confined to a part of the brain stem where it generates aldosterone-specific central control of salt appetite and perhaps blood pressure. 11β-HSD1 is a reductase, amplifying active glucocorticoid levels within brain cells, notably in the cortex, hippocampus and amygdala, paralleling its metabolic functions in peripheral tissues. 11β-HSD1 is elevated in the ageing rodent and, less certainly, human forebrain. Transgenic models show this rise contributes to age-related cognitive decline, at least in mice. 11β-HSD1 inhibition robustly improves memory in healthy and pathological ageing rodent models and is showing initial promising results in phase II studies of healthy elderly people. Larger trials are needed to confirm and clarify the magnitude of effect and define target populations. The next decade will be crucial in determining how this tale ends - in new treatments or disappointment.
Collapse
Affiliation(s)
- Jonathan Seckl
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Khan S, Livingstone DEW, Zielinska A, Doig CL, Cobice DF, Esteves CL, Man JTY, Homer NZM, Seckl JR, MacKay CL, Webster SP, Lavery GG, Chapman KE, Walker BR, Andrew R. Contribution of local regeneration of glucocorticoids to tissue steroid pools. J Endocrinol 2023; 258:e230034. [PMID: 37343234 PMCID: PMC10448579 DOI: 10.1530/joe-23-0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/20/2022] [Indexed: 06/23/2023]
Abstract
11β-Hydroxysteroid dehydrogenase 1 (11βHSD1) is a drug target to attenuate adverse effects of chronic glucocorticoid excess. It catalyses intracellular regeneration of active glucocorticoids in tissues including brain, liver and adipose tissue (coupled to hexose-6-phosphate dehydrogenase, H6PDH). 11βHSD1 activity in individual tissues is thought to contribute significantly to glucocorticoid levels at those sites, but its local contribution vs glucocorticoid delivery via the circulation is unknown. Here, we hypothesised that hepatic 11βHSD1 would contribute significantly to the circulating pool. This was studied in mice with Cre-mediated disruption of Hsd11b1 in liver (Alac-Cre) vs adipose tissue (aP2-Cre) or whole-body disruption of H6pdh. Regeneration of [9,12,12-2H3]-cortisol (d3F) from [9,12,12-2H3]-cortisone (d3E), measuring 11βHSD1 reductase activity was assessed at steady state following infusion of [9,11,12,12-2H4]-cortisol (d4F) in male mice. Concentrations of steroids in plasma and amounts in liver, adipose tissue and brain were measured using mass spectrometry interfaced with matrix-assisted laser desorption ionisation or liquid chromatography. Amounts of d3F were higher in liver, compared with brain and adipose tissue. Rates of appearance of d3F were ~6-fold slower in H6pdh-/- mice, showing the importance for whole-body 11βHSD1 reductase activity. Disruption of liver 11βHSD1 reduced the amounts of d3F in liver (by ~36%), without changes elsewhere. In contrast disruption of 11βHSD1 in adipose tissue reduced rates of appearance of circulating d3F (by ~67%) and also reduced regenerated of d3F in liver and brain (both by ~30%). Thus, the contribution of hepatic 11βHSD1 to circulating glucocorticoid levels and amounts in other tissues is less than that of adipose tissue.
Collapse
Affiliation(s)
- S Khan
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - D E W Livingstone
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - A Zielinska
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - C L Doig
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - D F Cobice
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - C L Esteves
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - J T Y Man
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - N Z M Homer
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - J R Seckl
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - C L MacKay
- SIRCAMS, School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, Edinburgh, UK
| | - S P Webster
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - G G Lavery
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - K E Chapman
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - B R Walker
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Clinical & Translational Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - R Andrew
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Yu Q, Gamayun I, Wartenberg P, Zhang Q, Qiao S, Kusumakshi S, Candlish S, Götz V, Wen S, Das D, Wyatt A, Wahl V, Ectors F, Kattler K, Yildiz D, Prevot V, Schwaninger M, Ternier G, Giacobini P, Ciofi P, Müller TD, Boehm U. Bitter taste cells in the ventricular walls of the murine brain regulate glucose homeostasis. Nat Commun 2023; 14:1588. [PMID: 36949050 PMCID: PMC10033832 DOI: 10.1038/s41467-023-37099-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
The median eminence (ME) is a circumventricular organ at the base of the brain that controls body homeostasis. Tanycytes are its specialized glial cells that constitute the ventricular walls and regulate different physiological states, however individual signaling pathways in these cells are incompletely understood. Here, we identify a functional tanycyte subpopulation that expresses key taste transduction genes including bitter taste receptors, the G protein gustducin and the gustatory ion channel TRPM5 (M5). M5 tanycytes have access to blood-borne cues via processes extended towards diaphragmed endothelial fenestrations in the ME and mediate bidirectional communication between the cerebrospinal fluid and blood. This subpopulation responds to metabolic signals including leptin and other hormonal cues and is transcriptionally reprogrammed upon fasting. Acute M5 tanycyte activation induces insulin secretion and acute diphtheria toxin-mediated M5 tanycyte depletion results in impaired glucose tolerance in diet-induced obese mice. We provide a cellular and molecular framework that defines how bitter taste cells in the ME integrate chemosensation with metabolism.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Igor Gamayun
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Philipp Wartenberg
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Qian Zhang
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Soumya Kusumakshi
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Sarah Candlish
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Viktoria Götz
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Shuping Wen
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Debajyoti Das
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Amanda Wyatt
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Vanessa Wahl
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Fabien Ectors
- FARAH Mammalian Transgenics Platform, Liège University, Liège, Belgium
| | - Kathrin Kattler
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Daniela Yildiz
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Gaetan Ternier
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Philippe Ciofi
- Neurocentre Magendie - INSERM Unit 1215, University of Bordeaux, Bordeaux, France
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ulrich Boehm
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany.
| |
Collapse
|
17
|
Sua-Cespedes C, Lacerda JT, Zanetti G, David DD, Moraes MN, de Assis LVM, Castrucci AML. Melanopsin (OPN4) is a novel player in skin homeostasis and attenuates UVA-induced effects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2023; 242:112702. [PMID: 37018912 DOI: 10.1016/j.jphotobiol.2023.112702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The presence of melanopsin (OPN4) has been shown in cultured murine melanocytes and was associated with ultraviolet A radiation (UVA) reception. Here we demonstrated the protective role of OPN4 in skin physiology and the increased UVA-induced damage in its absence. Histological analysis showed a thicker dermis and thinner hypodermal white adipose tissue layer in Opn4-/- (KO) mice than in wild-type (WT) animals. Proteomics analyses revealed molecular signatures associated with proteolysis, remodeling chromatin, DNA damage response (DDR), immune response, and oxidative stress coupled with antioxidant responses in the skin of Opn4 KO mice compared to WT. Skin protein variants were found in Opn4 KO mice and Opn2, Opn3, and Opn5 gene expressions were increased in the genotype. We investigated each genotype response to UVA stimulus (100 kJ/m2). We found an increase of Opn4 gene expression following stimulus on the skin of WT mice suggesting melanopsin as a UVA sensor. Proteomics findings suggest that UVA decreases DDR pathways associated with ROS accumulation and lipid peroxidation in the skin of Opn4 KO mice. Relative changes in methylation (H3-K79) and acetylation sites of histone between genotypes and differentially modulated by UVA stimulus were also observed. We also identified alterations of molecular traits of the central hypothalamus-pituitary- adrenal (HPA) and the skin HPA-like axes in the absence of OPN4. Higher skin corticosterone levels were detected in UVA-stimulated Opn4 KO compared to irradiated WT mice. Taken altogether, functional proteomics associated with gene expression experiments allowed a high-throughput evaluation that suggests an important protective role of OPN4 in regulating skin physiology in the presence and absence of UVA radiation.
Collapse
Affiliation(s)
- Cristhian Sua-Cespedes
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - José Thalles Lacerda
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Zanetti
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Dantas David
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Maria L Castrucci
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, USA.
| |
Collapse
|
18
|
Employing Molecular Docking Calculations for the Design of Alkyl (2-Alcoxy-2-Hydroxypropanoyl)-L-Tryptophanate Derivatives as Potential Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1). REACTIONS 2023. [DOI: 10.3390/reactions4010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this paper, we presented the design by computational tools of novel alkyl (2-alcoxy-2-hydroxypropanoyl)-L-tryptophanate derivatives, which can be potential inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The molecular structure optimization of a group of 36 compounds was performed employing DFT-B3LYP calculations at the level 6-311G(d,p). Then, molecular docking calculations were performed using Autodock tools software, employing the Lamarckian genetic algorithm (LGA). Four parameters (binding, intermolecular and Van Der Waals hydrogen bonding desolvation energies, and HOMO-LUMO gap) were used to evaluate the potential as 11β-HSD1 inhibitors, which nominate L-tryptophan derivatives as the most promissory molecules. Finally, these molecules were obtained starting from the amino acid and pyruvic acid in a convergent methodology with moderate to low yields.
Collapse
|
19
|
Korokin MV, Gudyrev OS, Lebedev PR, Kuzubova EV, Radchenko AI, Koklin IS, Taran EI, Kochkarov AA. Characteristics of the state of bone tissue in genetically modified mice with impaired enzymatic regulation of steroid hormone metabolism. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.98779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: The aim was to evaluate the structural and functional changes of bone tissue in mice with null expression of 11β-HSD2 or both 11β-HSD2 and Apolipoprotein E.
Materials and methods: The experimental study was performed in 60 male mice, weighting 24–30 g. The animals were kept in accordance with the rules of laboratory practice for preclinical studies on the territory of the Russian Federation. Mice lacking 11β-HSD2 (Hsd2-/-) and male mice lacking 11β-HSD2 and Apolipoprotein E (Hsd2-/-/Apoe-/-) were used in the study. We studied and characterized the state of bone tissue, indicators of bone density, microcirculation in bone tissue, endothelial dysfunction coefficient, width of bone trabeculae, as well as serum concentrations of bone alkaline phosphatase, hydroxyproline, deoxyprinoline and expression levels of p53, Bcl2, Bax, eNOS genes.
Results and discussion: We showed that mice with the Hsd2-/- genotype with no expression of 11ß-HSD2 by the 6th month of life showed a statistically significant decrease in bone density, which progresses to the 7th and 8th months of life. At the 8th month of animal life, a decrease in bone density is accompanied by a statistically significant decrease in the level of microcirculation in the bone and an increase in the coefficient of endothelial dysfunction. Taking into account the relationship of endothelial dysfunction, atherogenesis and disorders in the processes of bone remodeling, in the framework of this study, we also assessed the state of bone tissue in double transgenes with the genotype Hsd2-/-/Apoe-/-, which lack the expression of both 11ß-HSD2 and Apolipoprotein E. In this study, we also saw increased activation of processes leading to disruption of bone remodeling processes. In the group of the animals with the genotype Hsd2-/-/Apoe-/-, we found statistically significant differences from the mice with no expression of 11ß-HSD2 in bone density and microcirculation, and the width of bone trabeculae. Also, a statistically significant increase in hydroxyproline and deoxyprinoline was found in the group of double transgenes, in the absence of significant changes in the concentration of bone alkaline phosphatase. This fact indicates a pronounced activation of bone resorption processes in the absence of activation of osteosynthesis processes, which leads to the detected violation of bone remodeling processes.
Conclusion: Thus, we have shown that a violation of the metabolic regulation of steroid hormone metabolism in animals with null expression of the 11ß-HSD2 (Hsd2-/- genotype) leads to the development of signs of osteoporosis – bone density decreases, which is accompanied by a decrease in the width of bone trabeculae, the level of microcirculation in bone tissue decreases simultaneously with an increase in the coefficient of endothelial dysfunction. The additional null expression of ApoE gene in double transgenes with the genotype Hsd2-/-/Apoe-/- leads to an increase in the severity of changes associated with a violation of bone remodeling processes and, in addition to a more pronounced change in bone tissue density, bone trabecular width, microcirculation and the coefficient of endothelial dysfunction leads to an increase in the concentration of biochemical markers of bone resorption. These changes indicate the important role of the enzyme 11ß-hydroxysteroid dehydrogenase type 2 in the processes of bone remodeling disorders.
Graphical abstract
Collapse
|
20
|
Nouchi Y, Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Fujii R, Kageyama I, Wakasugi T, Sakakibara T, Teshigawara A, Ishikawa H, Shimono Y, Suzuki K, Hashimoto S, Ohashi K. Effects of High-Fructose Corn Syrup Intake on Glucocorticoid
Metabolism in Rats During Childhood, Adolescence and Adulthood. Exp Clin Endocrinol Diabetes 2022; 130:814-820. [DOI: 10.1055/a-1936-3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractThe consumption of high-fructose corn syrup (HFCS) has been increasing in recent
decades, especially among children. Some reports suggest that children and
adolescents are more sensitive to the adverse effects of fructose intake than
adults. However, the underlying mechanism of the difference in vulnerability
between adolescence and adulthood have not yet been elucidated. In this study,
we attempted to elucidate the different effects of HFCS intake at different
growth stages in rats: childhood and adolescence (postnatal day (PD)
21–60), young adulthood (PD60–100), and adulthood
(PD100–140). Since alterations in hepatic glucocorticoid (GC) metabolism
can cause diseases including insulin resistance, we focused on GC metabolizing
enzymes such as 11 beta-hydroxysteroid dehydrogenase 1 and 2 (Hsd11b1 and
Hsd11b2) and steroid 5 alpha-reductase 1 (Srd5a1). Western blotting showed an
increase in Hsd11b1 expression and a decrease in Hsd11b2 expression in childhood
and adolescence but not in adulthood. We also observed changes in Hsd11b1 and
Hsd11b2 activities only in childhood and adolescence, consistent with the
results of mRNA and protein expression analysis. The effect of high-fructose
intake with regards to GC metabolism may therefore vary with developmental
stage. This study provides insight into the adverse effects of fructose on GC
metabolism in children in the context of increasing rates of HFCS
consumption.
Collapse
Affiliation(s)
- Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of
Medicine, Toyoake, Aichi, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine,
Toyoake, Aichi, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of
Health Sciences, Takamatsu, Kagawa, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Genki Mizuno
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Takuya Wakasugi
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Tomohide Sakakibara
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of
Medicine, Toyoake, Aichi, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine,
Toyoake, Aichi, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| |
Collapse
|
21
|
Kupczyk D, Studzińska R, Kołodziejska R, Baumgart S, Modrzejewska M, Woźniak A. 11β-Hydroxysteroid Dehydrogenase Type 1 as a Potential Treatment Target in Cardiovascular Diseases. J Clin Med 2022; 11:jcm11206190. [PMID: 36294507 PMCID: PMC9605099 DOI: 10.3390/jcm11206190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) belong to the group of steroid hormones. Their representative in humans is cortisol. GCs are involved in most physiological processes of the body and play a significant role in important biological processes, including reproduction, growth, immune responses, metabolism, maintenance of water and electrolyte balance, functioning of the central nervous system and the cardiovascular system. The availability of cortisol to the glucocorticoid receptor is locally controlled by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Evidence of changes in intracellular GC metabolism in the pathogenesis of obesity, metabolic syndrome (MetS) and cardiovascular complications highlights the role of selective 11β-HSD1 inhibition in the pharmacotherapy of these diseases. This paper discusses the role of 11β-HSD1 in MetS and its cardiovascular complications and the importance of selective inhibition of 11β-HSD1.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland
- Correspondence: (D.K.); (R.S.)
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
- Correspondence: (D.K.); (R.S.)
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland
| | - Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
22
|
Akalestou E, Lopez-Noriega L, Christakis I, Hu M, Miras AD, Leclerc I, Rutter GA. Vertical sleeve gastrectomy normalizes circulating glucocorticoid levels and lowers glucocorticoid action tissue-selectively in mice. Front Endocrinol (Lausanne) 2022; 13:1020576. [PMID: 36246869 PMCID: PMC9556837 DOI: 10.3389/fendo.2022.1020576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Glucocorticoids produced by the adrenal cortex are essential for the maintenance of metabolic homeostasis. Glucocorticoid activation is catalysed by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). Excess glucocorticoids are associated with insulin resistance and hyperglycaemia. A small number of studies have demonstrated effects on glucocorticoid metabolism of bariatric surgery, a group of gastrointestinal procedures known to improve insulin sensitivity and secretion, which were assumed to result from weight loss. In this study, we hypothesize that a reduction in glucocorticoid action following bariatric surgery contributes to the widely observed euglycemic effects of the treatment. Methods Glucose and insulin tolerance tests were performed at ten weeks post operatively and circulating corticosterone was measured. Liver and adipose tissues were harvested from fed mice and 11β-HSD1 levels were measured by quantitative RT-PCR or Western (immuno-) blotting, respectively. 11β-HSD1 null mice (Hsd11b1 -/-) were generated using CRISPR/Cas9 genome editing. Wild type and littermate Hsd11b1 -/- mice underwent Vertical Sleeve Gastrectomy (VSG) or sham surgery. Results Under the conditions used, no differences in weight loss were observed between VSG treated and sham operated mice. However, both lean and obese WT VSG mice displayed significantly improved glucose clearance and insulin sensitivity. Remarkably, VSG restored physiological corticosterone production in HFD mice and reduced 11β-HSD1 expression in liver and adipose tissue post-surgery. Elimination of the 11β-HSD1/Hsd11b1 gene by CRISPR/Cas9 mimicked the effects of VSG on body weight and tolerance to 1g/kg glucose challenge. However, at higher glucose loads, the euglycemic effect of VSG was superior to Hsd11b1 elimination. Conclusions Bariatric surgery improves insulin sensitivity and reduces glucocorticoid activation at the tissular level, under physiological and pathophysiological (obesity) conditions, irrespective of weight loss. These findings point towards a physiologically relevant gut-glucocorticoid axis, and suggest that lowered glucocorticoid exposure may represent an additional contribution to the health benefits of bariatric surgery.
Collapse
Affiliation(s)
- Elina Akalestou
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Livia Lopez-Noriega
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ioannis Christakis
- Endocrine and General Surgery, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alexander D. Miras
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Centre de Recherches du CHUM, University of Montreal, Montreal, QC, Canada
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Centre de Recherches du CHUM, University of Montreal, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
23
|
Naredo-Gonzalez G, Upreti R, Jansen MA, Semple S, Sutcliffe OB, Marshall I, Walker BR, Andrew R. Non-invasive in vivo assessment of 11β-hydroxysteroid dehydrogenase type 1 activity by 19F-Magnetic Resonance Spectroscopy. Sci Rep 2022; 12:16268. [PMID: 36175417 PMCID: PMC9523021 DOI: 10.1038/s41598-022-18740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies tissue glucocorticoid levels and is a pharmaceutical target in diabetes and cognitive decline. Clinical translation of inhibitors is hampered by lack of in vivo pharmacodynamic biomarkers. Our goal was to monitor substrates and products of 11β-HSD1 non-invasively in liver via 19Fluorine magnetic resonance spectroscopy (19F-MRS). Interconversion of mono/poly-fluorinated substrate/product pairs was studied in Wistar rats (male, n = 6) and healthy men (n = 3) using 7T and 3T MRI scanners, respectively. Here we show that the in vitro limit of detection, as absolute fluorine content, was 0.625 μmole in blood. Mono-fluorinated steroids, dexamethasone and 11-dehydrodexamethasone, were detected in phantoms but not in vivo in human liver following oral dosing. A non-steroidal polyfluorinated tracer, 2-(phenylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethanone and its metabolic product were detected in vivo in rat liver after oral administration of the keto-substrate, reading out reductase activity. Administration of a selective 11β-HSD1 inhibitor in vivo in rats altered total liver 19F-MRS signal. We conclude that there is insufficient sensitivity to measure mono-fluorinated tracers in vivo in man with current dosage regimens and clinical scanners. However, since reductase activity was observed in rats using poly-fluorinated tracers, this concept could be pursued for translation to man with further development.
Collapse
Affiliation(s)
- Gregorio Naredo-Gonzalez
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Rita Upreti
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Maurits A Jansen
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Edinburgh Imaging, Queen's Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Scott Semple
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Edinburgh Imaging, Queen's Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Ian Marshall
- Edinburgh Imaging, Queen's Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4SB, Scotland, UK
| | - Brian R Walker
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.
| |
Collapse
|
24
|
Deng X, Huang SL, Ren J, Pan ZH, Shen Y, Zhou HF, Zuo ZL, Leng Y, Zhao QS. Development and structure-activity relationships of tanshinones as selective 11β-hydroxysteroid dehydrogenase 1 inhibitors. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:36. [PMID: 36131216 PMCID: PMC9492458 DOI: 10.1007/s13659-022-00358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) represents a promising drug target for metabolic syndrome, including obesity and type 2 diabetes. Our initial screen of a collection of natural products from Danshen led to the identification of tanshinones as the potent and selective 11β-HSD1 inhibitors. To improve the druggability and explore the structure-activity relationships (SARs), more than 40 derivatives have been designed and synthesized using tanshinone IIA and cryptotanshinone as the starting materials. More than 10 derivatives exhibited potent in vitro 11β-HSD1 inhibitory activity and good selectivity over 11β-HSD2 across human and mouse species. Based on the biological results, SARs were further discussed, which was also partially rationalized by a molecular docking model of 1 bound to the 11β-HSD1. Remarkably, compounds 1, 17 and 30 significantly inhibited 11β-HSD1 in 3T3-L1 adipocyte and in livers of ob/ob mice, which merits further investigations as anti-diabetic agents. This study not only provides a series of novel selective 11β-HSD1 inhibitors with promising therapeutic potentials in metabolic syndromes, but also expands the boundaries of the chemical and biological spaces of tanshinones.
Collapse
Affiliation(s)
- Xu Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Zheng-Hong Pan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, 541006, China
| | - Yu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao-Feng Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Zhi-Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
| |
Collapse
|
25
|
Kupczyk D, Bilski R, Kozakiewicz M, Studzińska R, Kędziora-Kornatowska K, Kosmalski T, Pedrycz-Wieczorska A, Głowacka M. 11β-HSD as a New Target in Pharmacotherapy of Metabolic Diseases. Int J Mol Sci 2022; 23:ijms23168984. [PMID: 36012251 PMCID: PMC9409048 DOI: 10.3390/ijms23168984] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs), which are secreted by the adrenal cortex, are important regulators in the metabolism of carbohydrates, lipids, and proteins. For the proper functioning of the body, strict control of their release is necessary, as increased GCs levels may contribute to the development of obesity, type 2 diabetes mellitus, hypertension, cardiovascular diseases, and other pathological conditions contributing to the development of metabolic syndrome. 11β-hydroxysteroid dehydrogenase type I (11β-HSD1) locally controls the availability of the active glucocorticoid, namely cortisol and corticosterone, for the glucocorticoid receptor. Therefore, the participation of 11β-HSD1 in the development of metabolic diseases makes both this enzyme and its inhibitors attractive targets in the pharmacotherapy of the above-mentioned diseases.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland
- Correspondence: (D.K.); (R.S.)
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, Dębowa 3, 85-626 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
- Correspondence: (D.K.); (R.S.)
| | - Kornelia Kędziora-Kornatowska
- Department of Geriatrics, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, Dębowa 3, 85-626 Bydgoszcz, Poland
| | - Tomasz Kosmalski
- Department of Organic Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
| | | | - Mariola Głowacka
- Faculty of Health Sciences, Mazovian State University in Płock, Plac Dąbrowskiego 2, 09-402 Płock, Poland
| |
Collapse
|
26
|
Zhang C, Xu M, He C, Zhuo J, Burns DM, Qian DQ, Lin Q, Li YL, Chen L, Shi E, Agrios C, Weng L, Sharief V, Jalluri R, Li Y, Scherle P, Diamond S, Hunter D, Covington M, Marando C, Wynn R, Katiyar K, Contel N, Vaddi K, Yeleswaram S, Hollis G, Huber R, Friedman S, Metcalf B, Yao W. Discovery of 1'-(1-phenylcyclopropane-carbonyl)-3H-spiro[isobenzofuran-1,3'-pyrrolidin]-3-one as a novel steroid mimetic scaffold for the potent and tissue-specific inhibition of 11β-HSD1 using a scaffold-hopping approach. Bioorg Med Chem Lett 2022; 69:128782. [PMID: 35537608 DOI: 10.1016/j.bmcl.2022.128782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022]
Abstract
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11β-HSD1, particularly in adipose tissues, has been associated with metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11β-HSD1 with a small nonsteroidal molecule is therapeutically desirable. Implementation of a scaffold-hopping approach revealed a three-point pharmacophore for 11β-HSD1 that was utilized to design a steroid mimetic scaffold. Reiterative optimization provided valuable insight into the bioactive conformation of our novel scaffold and led to the discovery of INCB13739. Clinical evaluation of INCB13739 confirmed for the first time that tissue-specific inhibition of 11β-HSD1 in patients with type 2 diabetes mellitus was efficacious in controlling glucose levels and reducing cardiovascular risk factors.
Collapse
Affiliation(s)
- Colin Zhang
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Meizhong Xu
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Chunhong He
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Jincong Zhuo
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - David M Burns
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Ding-Quan Qian
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Qiyan Lin
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Yun-Long Li
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Lihua Chen
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Eric Shi
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Costas Agrios
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Linkai Weng
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Vaqar Sharief
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Ravi Jalluri
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Yanlong Li
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Peggy Scherle
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Sharon Diamond
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Deborah Hunter
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Maryanne Covington
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Cindy Marando
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Richard Wynn
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Kamna Katiyar
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Nancy Contel
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Kris Vaddi
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Swamy Yeleswaram
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Gregory Hollis
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Reid Huber
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Steve Friedman
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Brian Metcalf
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | - Wenqing Yao
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA.
| |
Collapse
|
27
|
Burns DM, He C, Li YL, Zhuo J, Qian DQ, Chen L, Jalluri R, Diamond S, Covington MB, Li Y, Wynn R, Scherle P, Yeleswaram S, Hollis G, Friedman S, Metcalf B, Yao W. Discovery of a novel 2-spiroproline steroid mimetic scaffold for the potent inhibition of 11β-HSD1. Bioorg Med Chem Lett 2022; 73:128884. [PMID: 35835377 DOI: 10.1016/j.bmcl.2022.128884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues, resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11β-HSD1, particularly in adipose tissues, has been associated with a variety of ailments including metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11β-HSD1 with a small nonsteroidal molecule is therapeutically desirable. Implementation of a scaffold-hopping approach revealed a 3-point pharmacophore for 11β-HSD1 that was utilized to design a 2-spiroproline derivative as a steroid mimetic scaffold. Reiterative optimization provided valuable insight into the bioactive conformation of our novel scaffold and led to the discovery of several leads, such as compounds 39 and 51. Importantly, deleterious hERG inhibition and pregnane X receptor induction were mitigated by the introduction of a 4-hydroxyl group to the proline ring system.
Collapse
Affiliation(s)
- David M Burns
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA.
| | - Chunhong He
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | | | - Jincong Zhuo
- Prelude Therapeutics, 200 Powder Mill Road, Wilmington, DE 19803, USA
| | - Ding-Quan Qian
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | | | | | - Sharon Diamond
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | | | - Yanlong Li
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | | | - Peggy Scherle
- Prelude Therapeutics, 200 Powder Mill Road, Wilmington, DE 19803, USA
| | - Swamy Yeleswaram
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | | | | | | | | |
Collapse
|
28
|
Luo G, Zhu T, Ren Z. METTL3 Regulated the Meat Quality of Rex Rabbits by Controlling PCK2 Expression via a YTHDF2–N6-Methyladenosine Axis. Foods 2022; 11:foods11111549. [PMID: 35681299 PMCID: PMC9180525 DOI: 10.3390/foods11111549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 01/27/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal mRNA modification in eukaryotes. The M6A modification plays an important role in transcription and cell function. The mechanism by which m6A modification regulates meat quality remains elusive. In this study, gene knockout and overexpression were used to explore m6A-modified regulation of meat quality. The content of PCK2 in blood increased significantly with the increase of Rex rabbits’ age. PCK2 expression levels in the longissimus lumborum and liver also increased significantly with the increase of Rex rabbits’ age. However, the expression level of PCK2 showed no significant difference in adipose tissue. In cell experiments, we found that METTL3 inhibited adipocyte differentiation by targeting the PCK2 gene via the recognition function of YTHDF2. Finally, the results of correlation analysis showed that PCK2 expression was positively correlated with intramuscular fat, whereas PCK2 expression was negatively correlated with total water loss rate at three different stages. In addition, PCK2 expression was also negatively correlated with reduced pH value at 75 and 165 days. Intramuscular fat content, pH and muscle water holding capacity are the main factors affecting the taste and flavor of muscle. Therefore, N6-methyladenosine regulated muscle quality by targeting the PCK2 gene.
Collapse
|
29
|
Equisetin is an anti-obesity candidate through targeting 11 β-HSD1. Acta Pharm Sin B 2022; 12:2358-2373. [PMID: 35646525 PMCID: PMC9136616 DOI: 10.1016/j.apsb.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is increasingly prevalent globally, searching for therapeutic agents acting on adipose tissue is of great importance. Equisetin (EQST), a meroterpenoid isolated from a marine sponge-derived fungus, has been reported to display antibacterial and antiviral activities. Here, we revealed that EQST displayed anti-obesity effects acting on adipose tissue through inhibiting adipogenesis in vitro and attenuating HFD-induced obesity in mice, doing so without affecting food intake, blood pressure or heart rate. We demonstrated that EQST inhibited the enzyme activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), a therapeutic target of obesity in adipose tissue. Anti-obesity properties of EQST were all offset by applying excessive 11β-HSD1's substrates and 11β-HSD1 inhibition through knockdown in vitro or 11β-HSD1 knockout in vivo. In the 11β-HSD1 bypass model constructed by adding excess 11β-HSD1 products, EQST's anti-obesity effects disappeared. Furthermore, EQST directly bond to 11β-HSD1 protein and presented remarkable better intensity on 11β-HSD1 inhibition and better efficacy on anti-obesity than known 11β-HSD1 inhibitor. Therefore, EQST can be developed into anti-obesity candidate compound, and this study may provide more clues for developing higher effective 11β-HSD1 inhibitors.
Collapse
|
30
|
Shibayama Y, Alkhoury C, Nemazanyy I, F Henneman N, Cagnard N, Girard M, Atsumi T, Panasyuk G. Class 3 phosphoinositide 3-kinase promotes hepatic glucocorticoid receptor stability and transcriptional activity. Acta Physiol (Oxf) 2022; 235:e13793. [PMID: 35094500 PMCID: PMC9539506 DOI: 10.1111/apha.13793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
Abstract
Aim Lipid kinase class 3 phosphoinositide 3‐kinase (PI3K) and nuclear receptor transcription factor glucocorticoid receptor (GR) play essential physiological roles in metabolic adaptation to fasting by activating lysosomal degradation by autophagy and metabolic gene expression, yet their functional interaction is unknown. The requirement of class 3 PI3K for GR function was investigated in liver tissue. Methods Inactivation of class 3 PI3K was achieved through deletion of its essential regulatory subunit Vps15, by expressing Cre‐recombinase in the livers of Vps15f/f mice. The response to both 24‐h fasting and synthetic GR ligand, dexamethasone (DEX) was evaluated in control and mutant mice. Liver tissue was analysed by immunoblot, RT‐qPCR, and LC‐MS. Results Vps15 mutant mice show decreased transcript levels of GR targets, coupled with lower nuclear levels of total and phosphorylated on Ser211, GR protein. Acute DEX treatment and 24‐h fasting both failed to re‐activate expression of GR targets in the livers of Vps15 mutant mice to the levels observed in controls. Decreased levels of endogenous GR ligand corticosterone and lower expression of 11β‐hydroxysteroid dehydrogenase 1 (11β‐HSD1), a metabolic enzyme that controls corticosterone availability, were found in the livers of Vps15 mutants. Hepatic Vps15 depletion resulted in the activation of nuclear Akt1 signalling, which was paralleled by increased polyubiquitination of GR. Conclusion In the liver, class 3 PI3K is required for corticosterone metabolism and GR transcriptional activity.
Collapse
Affiliation(s)
- Yui Shibayama
- Institut Necker‐Enfants Malades (INEM) Paris France
- INSERM U1151/CNRS UMR 8253 Paris France
- Université de Paris Paris France
- Department of Rheumatology Endocrinology and Nephrology Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Chantal Alkhoury
- Institut Necker‐Enfants Malades (INEM) Paris France
- INSERM U1151/CNRS UMR 8253 Paris France
- Université de Paris Paris France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses Structure Fédérative de Recherche Necker INSERM US24/CNRS UAR 3633 Paris France
| | - Nathaniel F Henneman
- Institut Necker‐Enfants Malades (INEM) Paris France
- INSERM U1151/CNRS UMR 8253 Paris France
- Université de Paris Paris France
| | - Nicolas Cagnard
- Bio‐Informatique Platform Structure Fédérative de Recherche Necker INSERM US24/CNRS UAR 3633 Paris France
| | - Muriel Girard
- Institut Necker‐Enfants Malades (INEM) Paris France
- INSERM U1151/CNRS UMR 8253 Paris France
- Université de Paris Paris France
- Pediatric Hepatology Unit Hôpital Necker‐Enfants Malades Assistance Publique‐Hôpitaux de Paris Paris France
| | - Tatsuya Atsumi
- Department of Rheumatology Endocrinology and Nephrology Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Ganna Panasyuk
- Institut Necker‐Enfants Malades (INEM) Paris France
- INSERM U1151/CNRS UMR 8253 Paris France
- Université de Paris Paris France
| |
Collapse
|
31
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Abu Bakar MH, Mohamad Khalid MSF, Nor Shahril NS, Shariff KA, Karunakaran T. Celastrol attenuates high-fructose diet-induced inflammation and insulin resistance via inhibition of 11β-hydroxysteroid dehydrogenase type 1 activity in rat adipose tissues. Biofactors 2022; 48:111-134. [PMID: 34676604 DOI: 10.1002/biof.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/27/2021] [Indexed: 11/10/2022]
Abstract
High fructose consumption has been linked to low-grade inflammation and insulin resistance that results in increased intracellular 11ß-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. Celastrol, a pentacyclic triterpene, has been demonstrated to exhibit multifaceted targets to attenuate various metabolic diseases associated with inflammation. However, the underlying mechanisms by which celastrol exerts its attributive properties on high fructose diet (HFrD)-induced metabolic syndrome remain elusive. Herein, the present study was aimed to elucidate the mechanistic targets of celastrol co-administrations upon HFrD in rats and evaluate its potential to modulate 11β-HSD1 activity. Celastrol remarkably improved glucose tolerance, lipid profiles, and insulin sensitivity along with suppression of hepatic glucose production. In rat adipose tissues, celastrol attenuated nuclear factor-kappa B (NF-κB)-driven inflammation, reduced c-Jun N-terminal kinases (JNK) phosphorylation, and mitigated oxidative stress via upregulated genes expression involved in mitochondrial biogenesis. Furthermore, insulin signaling pathways were significantly improved through the restoration of Akt phosphorylation levels at Ser473 and Thr308 residues. Celastrol exhibited a potent, selective and specific inhibitor of intracellular 11β-HSD1 towards oxidoreductase activity (IC50 value = 4.3 nM) in comparison to other HSD-related enzymes. Inhibition of 11β-HSD1 expression in rat adipose microsomes reduced the availability of its cofactor NADPH and substrate H6PDH in couple to upregulated mRNA and protein expressions of glucocorticoid receptor. In conclusion, our results underscore the most likely conceivable mechanisms exhibited by celastrol against HFrD-induced metabolic dysregulations mainly through attenuating inflammation and insulin resistance, at least via specific inhibitions on 11β-HSD1 activity in adipose tissues.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | | | - Nor Shafiqah Nor Shahril
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Khairul Anuar Shariff
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | | |
Collapse
|
33
|
Tsai SF, Hung HC, Shih MMC, Chang FC, Chung BC, Wang CY, Lin YL, Kuo YM. High-fat diet-induced increases in glucocorticoids contribute to the development of non-alcoholic fatty liver disease in mice. FASEB J 2021; 36:e22130. [PMID: 34959259 DOI: 10.1096/fj.202101570r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate the causal relationship between chronic ingestion of a high-fat diet (HFD)-induced secretion of glucocorticoids (GCs) and the development of non-alcoholic fatty liver disease (NAFLD). We have produced a strain of transgenic mice (termed L/L mice) that have normal levels of circulating corticosterone (CORT), the major type of GCs in rodents, but unlike wild-type (WT) mice, their circulating CORT was not affected by HFD. Compared to WT mice, 12-week HFD-induced fatty liver was less pronounced with higher plasma levels of triglycerides in L/L mice. These changes were reversed by CORT supplement to L/L mice. By analyzing a sort of lipid metabolism-related proteins, we found that expressions of the hepatic cluster of differentiation 36 (CD36) were upregulated by HFD-induced CORT and involved in CORT-mediated fatty liver. Dexamethasone, an agonist of the glucocorticoid receptor (GR), upregulated expressions of CD36 in HepG2 hepatocytes and facilitated lipid accumulation in the cells. In conclusion, the fat ingestion-induced release of CORT contributes to NAFLD. This study highlights the pathogenic role of CORT-mediated upregulation of hepatic CD 36 in diet-induced NAFLD.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | - Fu-Chuan Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ling Lin
- Division of Gastroenterology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
34
|
Leach DA, Brooke GN, Bevan CL. Roles of steroid receptors in the lung and COVID-19. Essays Biochem 2021; 65:1025-1038. [PMID: 34328182 PMCID: PMC8628186 DOI: 10.1042/ebc20210005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 symptoms and mortality are largely due to its devastating effects in the lungs. The disease is caused by the SARS (Severe Acute Respiratory Syndrome)-CoV-2 coronavirus, which requires host cell proteins such as ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane serine protease 2) for infection of lung epithelia. The expression and function of the steroid hormone receptor family is important in many aspects that impact on COVID-19 effects in the lung - notably lung development and function, the immune system, and expression of TMPRSS2 and ACE2. This review provides a brief summary of current knowledge on the roles of the steroid hormone receptors [androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR) and oestrogen receptor (ER)] in the lung, their effects on host cell proteins that facilitate SARS-CoV-2 uptake, and provides a snapshot of current clinical trials investigating the use of steroid receptor (SR) ligands to treat COVID-19.
Collapse
Affiliation(s)
- Damien A. Leach
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
| | - Greg N. Brooke
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, U.K
| | - Charlotte L. Bevan
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
| |
Collapse
|
35
|
Liu Y, Ding Q, Guo W. Life Course Impact of Glucocorticoids During Pregnancy on Muscle Development and Function. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 36325303 PMCID: PMC9624510 DOI: 10.3389/fanim.2021.788930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal stress, such as maternal obesity, can induce severe gestational disease and hormonal disorder which may disrupt fetal organ maturation and further cause endangered early or future health in offspring. During fetal development, glucocorticoids are essential for the maturation of organ systems. For instance, in clinical applications, glucocorticoids are commonly utilized to pregnant women with the risk of preterm delivery to reduce mortality of the newborns. However, exposure of excessive glucocorticoids at embryonic and fetal developmental stages can cause diseases such as cardiovascular disease and muscle atrophy in adulthood. Effects of excessive glucocorticoids on human health are well-recognized and extensively studied. Nonetheless, effects of these hormones on farm animal growth and development, particularly on prenatal muscle development, and postnatal growth, did not attract much attention until the last decade. Here, we provided a short review of the recent progress relating to the effect of glucocorticoids on prenatal skeletal muscle development and postnatal muscle growth as well as heart muscle development and cardiovascular disease during life course.
Collapse
|
36
|
Kim S, Henneicke H, Cavanagh LL, Macfarlane E, Thai LJ, Foong D, Gasparini SJ, Fong-Yee C, Swarbrick MM, Seibel MJ, Zhou H. Osteoblastic glucocorticoid signaling exacerbates high-fat-diet- induced bone loss and obesity. Bone Res 2021; 9:40. [PMID: 34465731 PMCID: PMC8408138 DOI: 10.1038/s41413-021-00159-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic high-fat diet (HFD) consumption not only promotes obesity and insulin resistance, but also causes bone loss through mechanisms that are not well understood. Here, we fed wild-type CD-1 mice either chow or a HFD (43% of energy from fat) for 18 weeks; HFD-fed mice exhibited decreased trabecular volume (-28%) and cortical thickness (-14%) compared to chow-fed mice. In HFD-fed mice, bone loss was due to reduced bone formation and mineral apposition, without obvious effects on bone resorption. HFD feeding also increased skeletal expression of sclerostin and caused deterioration of the osteocyte lacunocanalicular network (LCN). In mice fed HFD, skeletal glucocorticoid signaling was activated relative to chow-fed mice, independent of serum corticosterone concentrations. We therefore examined whether skeletal glucocorticoid signaling was necessary for HFD-induced bone loss, using transgenic mice lacking glucocorticoid signaling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice). In HSD2OB/OCY-tg mice, bone formation and mineral apposition rates were not suppressed by HFD, and bone loss was significantly attenuated. Interestingly, in HSD2OB/OCY-tg mice fed HFD, both Wnt signaling (less sclerostin induction, increased β-catenin expression) and glucose uptake were significantly increased, relative to diet- and genotype-matched controls. The osteocyte LCN remained intact in HFD-fed HSD2OB/OCY-tg mice. When fed a HFD, HSD2OB/OCY-tg mice also increased their energy expenditure and were protected against obesity, insulin resistance, and dyslipidemia. Therefore, glucocorticoid signaling in osteoblasts and osteocytes contributes to the suppression of bone formation in HFD-fed mice. Skeletal glucocorticoid signaling is also an important determinant of glucose uptake in bone, which influences the whole-body metabolic response to HFD.
Collapse
Affiliation(s)
- Sarah Kim
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia.,Concord Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Holger Henneicke
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Medicine III, Technische University Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische University Dresden, Dresden, Germany
| | - Lauryn L Cavanagh
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Eugenie Macfarlane
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Lee Joanne Thai
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Daphne Foong
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Sylvia J Gasparini
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Colette Fong-Yee
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michael M Swarbrick
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia.,Concord Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia.,Concord Clinical School, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology and Metabolism, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia. .,Concord Clinical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Glucocorticoids: Fuelling the Fire of Atherosclerosis or Therapeutic Extinguishers? Int J Mol Sci 2021; 22:ijms22147622. [PMID: 34299240 PMCID: PMC8303333 DOI: 10.3390/ijms22147622] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/21/2023] Open
Abstract
Glucocorticoids are steroid hormones with key roles in the regulation of many physiological systems including energy homeostasis and immunity. However, chronic glucocorticoid excess, highlighted in Cushing's syndrome, is established as being associated with increased cardiovascular disease (CVD) risk. Atherosclerosis is the major cause of CVD, leading to complications including coronary artery disease, myocardial infarction and heart failure. While the associations between glucocorticoid excess and increased prevalence of these complications are well established, the mechanisms underlying the role of glucocorticoids in development of atheroma are unclear. This review aims to better understand the importance of glucocorticoids in atherosclerosis and to dissect their cell-specific effects on key processes (e.g., contractility, remodelling and lesion development). Clinical and pre-clinical studies have shown both athero-protective and pro-atherogenic responses to glucocorticoids, effects dependent upon their multifactorial actions. Evidence indicates regulation of glucocorticoid bioavailability at the vasculature is complex, with local delivery, pre-receptor metabolism, and receptor expression contributing to responses linked to vascular remodelling and inflammation. Further investigations are required to clarify the mechanisms through which endogenous, local glucocorticoid action and systemic glucocorticoid treatment promote/inhibit atherosclerosis. This will provide greater insights into the potential benefit of glucocorticoid targeted approaches in the treatment of cardiovascular disease.
Collapse
|
38
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
39
|
Rensel MA, Schlinger BA. 11ß hydroxysteroid dehydrogenases regulate circulating glucocorticoids but not central gene expression. Gen Comp Endocrinol 2021; 305:113734. [PMID: 33548254 PMCID: PMC7954975 DOI: 10.1016/j.ygcen.2021.113734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/17/2021] [Accepted: 01/30/2021] [Indexed: 11/15/2022]
Abstract
Regulation of glucocorticoids (GCs), important mediators of physiology and behavior at rest and during stress, is multi-faceted and dynamic. The 11ß hydroxysteroid dehydrogenases 11ß-HSD1 and 11ß-HSD2 catalyze the regeneration and inactivation of GCs, respectively, and provide peripheral and central control over GC actions in mammals. While these enzymes have only recently been investigated in just two songbird species, central expression patterns suggest that they may function differently in birds and mammals, and little is known about how peripheral expression regulates circulating GCs. In this study, we utilized the 11ß-HSD inhibitor carbenoxolone (CBX) to probe the functional effects of 11ß-HSD activity on circulating GCs and central GC-dependent gene expression in the adult zebra finch (Taeniopygia guttata). Peripheral CBX injection produced a marked increase in baseline GCs 60 min after injection, suggestive of a dominant role for 11ß-HSD2 in regulating circulating GCs. In the adult zebra finch brain, where 11ß-HSD2 but not 11ß-HSD1 is expressed, co-incubation of micro-dissected brain regions with CBX and stress-level GCs had no impact on expression of several GC-dependent genes. These results suggest that peripheral 11ß-HSD2 attenuates circulating GCs, whereas central 11ß-HSD2 has little impact on gene expression. Instead, rapid 11ß-HSD2-based regulation of local GC levels might fine-tune membrane GC actions in brain. These results provide new insights into the dynamics of GC secretion and action in this important model organism.
Collapse
Affiliation(s)
- Michelle A Rensel
- Institute for Society and Genetics, University of California Los Angeles, 621 Charles E Young Drive S, Los Angeles, CA 90095, USA; Laboratory of Neuroendocrinology, Brain Research Institute UCLA, Box 951761, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Barney A Schlinger
- Laboratory of Neuroendocrinology, Brain Research Institute UCLA, Box 951761, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E Young Drive E, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E Young Drive S, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Anderson AJ, Andrew R, Homer NZM, Hughes KA, Boyle LD, Nixon M, Karpe F, Stimson RH, Walker BR. Effects of Obesity and Insulin on Tissue-Specific Recycling Between Cortisol and Cortisone in Men. J Clin Endocrinol Metab 2021; 106:e1206-e1220. [PMID: 33270115 PMCID: PMC7947841 DOI: 10.1210/clinem/dgaa896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT 11β-Hydroxysteroid dehydrogenase 1 (11βHSD1) reduces inert cortisone into active cortisol but also catalyzes reverse dehydrogenase activity. Drivers of cortisol/cortisone equilibrium are unclear. With obesity, 11βHSD1 transcripts are more abundant in adipose, but the consequences for oxidation vs reduction remain unknown. OBJECTIVE This work aimed to determine whether 11βHSD1 equilibrium in metabolic tissues is regulated by insulin and obesity. METHODS A 2-phase, randomized, crossover, single-blinded study in a clinical research facility was conducted of 10 lean and obese healthy men. 11β-Reductase and 11β-dehydrogenase activities were measured during infusion of 9,11,12,12-[2H]4-cortisol and 1,2-[2H]2-cortisone, respectively, on 2 occasions: once during saline infusion and once during a hyperinsulinemic-euglycemic clamp. Arterialized and venous samples were obtained across forearm skeletal muscle and abdominal subcutaneous adipose. Steroids were quantified by liquid chromatography-tandem mass spectrometry and adipose tissue transcripts by quantitative polymerase chain reaction. RESULTS Neither whole-body nor tissue-specific rates of production of cortisol or cortisone differed between lean and obese men, however insulin attenuated the diurnal decrease. Whole-body 11β-HSD1 reductase activity tended to be higher in obesity (~ 10%) and was further increased by insulin. Across adipose tissue, 11β-reductase activity was detected in obese individuals only and increased in the presence of insulin (18.99 ± 9.62 vs placebo 11.68 ± 3.63 pmol/100 g/minute; P < .05). Across skeletal muscle, 11β-dehydrogenase activity was reduced by insulin in lean men only (2.55 ± 0.90 vs 4.50 ± 1.42 pmol/100 g/minute, P < .05). CONCLUSIONS Regeneration of cortisol is upregulated by insulin in adipose tissue but not skeletal muscle. In obesity, the equilibrium between 11β-reductase and 11β-dehydrogenase activities likely promotes cortisol accumulation in adipose, which may lead to adverse metabolic consequences.
Collapse
Affiliation(s)
- Anna J Anderson
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ruth Andrew
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Correspondence: Ruth Andrew, PhD, Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, EH16 4TJ Edinburgh, Scotland, UK.
| | - Natalie Z M Homer
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Katherine A Hughes
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Luke D Boyle
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mark Nixon
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, University of Oxford, Headington, Oxford, UK
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Brian R Walker
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
41
|
Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance. Int J Mol Sci 2021; 22:ijms22020623. [PMID: 33435513 PMCID: PMC7827500 DOI: 10.3390/ijms22020623] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are steroids secreted by the adrenal cortex under the hypothalamic-pituitary-adrenal axis control, one of the major neuro-endocrine systems of the organism. These hormones are involved in tissue repair, immune stability, and metabolic processes, such as the regulation of carbohydrate, lipid, and protein metabolism. Globally, GCs are presented as ‘flight and fight’ hormones and, in that purpose, they are catabolic hormones required to mobilize storage to provide energy for the organism. If acute GC secretion allows fast metabolic adaptations to respond to danger, stress, or metabolic imbalance, long-term GC exposure arising from treatment or Cushing’s syndrome, progressively leads to insulin resistance and, in fine, cardiometabolic disorders. In this review, we briefly summarize the pharmacological actions of GC and metabolic dysregulations observed in patients exposed to an excess of GCs. Next, we describe in detail the molecular mechanisms underlying GC-induced insulin resistance in adipose tissue, liver, muscle, and to a lesser extent in gut, bone, and brain, mainly identified by numerous studies performed in animal models. Finally, we present the paradoxical effects of GCs on beta cell mass and insulin secretion by the pancreas with a specific focus on the direct and indirect (through insulin-sensitive organs) effects of GCs. Overall, a better knowledge of the specific action of GCs on several organs and their molecular targets may help foster the understanding of GCs’ side effects and design new drugs that possess therapeutic benefits without metabolic adverse effects.
Collapse
|
42
|
Lammertink F, Vinkers CH, Tataranno ML, Benders MJNL. Premature Birth and Developmental Programming: Mechanisms of Resilience and Vulnerability. Front Psychiatry 2021; 11:531571. [PMID: 33488409 PMCID: PMC7820177 DOI: 10.3389/fpsyt.2020.531571] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The third trimester of pregnancy represents a sensitive phase for infant brain plasticity when a series of fast-developing cellular events (synaptogenesis, neuronal migration, and myelination) regulates the development of neural circuits. Throughout this dynamic period of growth and development, the human brain is susceptible to stress. Preterm infants are born with an immature brain and are, while admitted to the neonatal intensive care unit, precociously exposed to stressful procedures. Postnatal stress may contribute to altered programming of the brain, including key systems such as the hypothalamic-pituitary-adrenal axis and the autonomic nervous system. These neurobiological systems are promising markers for the etiology of several affective and social psychopathologies. As preterm birth interferes with early development of stress-regulatory systems, early interventions might strengthen resilience factors and might help reduce the detrimental effects of chronic stress exposure. Here we will review the impact of stress following premature birth on the programming of neurobiological systems and discuss possible stress-related neural circuits and pathways involved in resilience and vulnerability. Finally, we discuss opportunities for early intervention and future studies.
Collapse
Affiliation(s)
- Femke Lammertink
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christiaan H. Vinkers
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maria L. Tataranno
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
43
|
Han JC, Weiss R. Obesity, Metabolic Syndrome and Disorders of Energy Balance. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:939-1003. [DOI: 10.1016/b978-0-323-62520-3.00024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Leachman JR, Rea MD, Cohn DM, Xu X, Fondufe-Mittendorf YN, Loria AS. Exacerbated obesogenic response in female mice exposed to early life stress is linked to fat depot-specific upregulation of leptin protein expression. Am J Physiol Endocrinol Metab 2020; 319:E852-E862. [PMID: 32830551 PMCID: PMC7790118 DOI: 10.1152/ajpendo.00243.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early life stress (ELS) is an independent risk factor for increased BMI and cardiometabolic disease risk later in life. We have previously shown that a mouse model of ELS, maternal separation and early weaning (MSEW), exacerbates high-fat diet (HF)-induced obesity only in adult female mice. Therefore, the aim of this study was to investigate 1) whether the short- and long-term effects of HF on leptin expression are influenced by MSEW in a sex-specific manner and 2) the potential epigenetic mechanisms underlying the MSEW-induced changes in leptin expression. After 1 wk of HF, both MSEW male and female mice displayed increased fat mass compared with controls (P < 0.05). However, only MSEW female mice showed elevated leptin mRNA expression in gonadal white adipose tissue (gWAT; P < 0.05). After 12 wk of HF, fat mass remained increased only in female mice (P < 0.05). Moreover, plasma leptin and both leptin mRNA and protein expression in gWAT were augmented in MSEW female mice compered to controls (P < 0.05), but not in MSEW male mice. This association was not present in subcutaneous WAT. Furthermore, among 16 CpG sites in the leptin promoter, we identified three hypomethylated sites in tissue from HF-fed MSEW female mice compared with controls (3, 15, and 16, P < 0.05). These hypomethylated sites showed greater binding of key adipogenic factors such as PPARγ (P < 0.05). Taken together, our study reveals that MSEW superimposed to HF increases leptin protein expression in a sex- and fat depot-specific fashion. Our data suggest that the mechanism by which MSEW increases leptin expression could be epigenetic.
Collapse
Affiliation(s)
- Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Mathew D Rea
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky
| | - Dianne M Cohn
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Xiu Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | | | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
45
|
Chen J, Mishra R, Yu Y, McDonald JG, Eckert KM, Gao L, Mendelson CR. Decreased 11β-hydroxysteroid dehydrogenase 1 in lungs of steroid receptor coactivator (Src)-1/-2 double-deficient fetal mice is caused by impaired glucocorticoid and cytokine signaling. FASEB J 2020; 34:16243-16261. [PMID: 33070362 DOI: 10.1096/fj.202001809r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Our previous research revealed that steroid receptor coactivators (Src)-1 and -2 serve a critical cooperative role in production of parturition signals, surfactant protein A and platelet-activating factor, by the developing mouse fetal lung (MFL). To identify the global landscape of genes in MFL affected by Src-1/-2 double-deficiency, we conducted RNA-seq analysis of lungs from 18.5 days post-coitum (dpc) Src-1-/- /-2-/- (dKO) vs. WT fetuses. One of the genes most highly downregulated (~4.8 fold) in Src-1/-2 dKO fetal lungs encodes 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyzes conversion of inactive 11-dehydrocorticosterone to the glucocorticoid receptor (GR) ligand, corticosterone. Glucocorticoids were reported to upregulate 11β-HSD1 expression in various cell types via induction of C/EBP transcription factors. We observed that C/ebpα and C/ebpβ mRNA and protein were markedly reduced in Src-1/-2 double-deficient (Src-1/-2d/d ) fetal lungs, compared to WT. Moreover, glucocorticoid induction of 11β-hsd1, C/ebpα and C/ebpβ in cultured MFL epithelial cells was prevented by the SRC family inhibitor, SI-2. Cytokines also contribute to the induction of 11β-HSD1. Expression of IL-1β and TNFα, which dramatically increased toward term in lungs of WT fetuses, was markedly reduced in Src-1/-2d/d fetal lungs. Our collective findings suggest that impaired lung development and surfactant synthesis in Src-1/-2d/d fetuses are likely caused, in part, by decreased GR and cytokine induction of C/EBP and NF-κB transcription factors. This results in reduced 11β-HSD1 expression and glucocorticoid signaling within the fetal lung, causing a break in the glucocorticoid-induced positive feedforward loop.
Collapse
Affiliation(s)
- Jingfei Chen
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ritu Mishra
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yaqin Yu
- Department of Physiology, Second Military Medical University, Shanghai, P.R. China
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kaitlyn M Eckert
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, P.R. China.,School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Carole R Mendelson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
46
|
Offensive Behavior, Striatal Glutamate Metabolites, and Limbic-Hypothalamic-Pituitary-Adrenal Responses to Stress in Chronic Anxiety. Int J Mol Sci 2020; 21:ijms21207440. [PMID: 33050201 PMCID: PMC7589759 DOI: 10.3390/ijms21207440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Variations in anxiety-related behavior are associated with individual allostatic set-points in chronically stressed rats. Actively offensive rats with the externalizing indicators of sniffling and climbing the stimulus and material tearing during 10 days of predator scent stress had reduced plasma corticosterone, increased striatal glutamate metabolites, and increased adrenal 11-dehydrocorticosterone content compared to passively defensive rats with the internalizing indicators of freezing and grooming, as well as to controls without any behavioral changes. These findings suggest that rats that display active offensive activity in response to stress develop anxiety associated with decreased allostatic set-points and increased resistance to stress.
Collapse
|
47
|
Præstholm SM, Correia CM, Grøntved L. Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism. Front Endocrinol (Lausanne) 2020; 11:572981. [PMID: 33133019 PMCID: PMC7578419 DOI: 10.3389/fendo.2020.572981] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) and the glucocorticoid receptor (GR) are important regulators of development, inflammation, stress response and metabolism, demonstrated in various diseases including Addison's disease, Cushing's syndrome and by the many side effects of prolonged clinical administration of GCs. These conditions include severe metabolic challenges in key metabolic organs like the liver. In the liver, GR is known to regulate the transcription of key enzymes in glucose and lipid metabolism and contribute to the regulation of circadian-expressed genes. Insights to the modes of GR regulation and the underlying functional mechanisms are key for understanding diseases and for the development of improved clinical uses of GCs. The activity and function of GR is regulated at numerous levels including ligand availability, interaction with heat shock protein (HSP) complexes, expression of GR isoforms and posttranslational modifications. Moreover, recent genomics studies show functional interaction with multiple transcription factors (TF) and coregulators in complex transcriptional networks controlling cell type-specific gene expression by GCs. In this review we describe the different regulatory steps important for GR activity and discuss how different TF interaction partners of GR selectively control hepatic gene transcription and metabolism.
Collapse
Affiliation(s)
| | | | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
48
|
Wu Y, Goodrich JM, Dolinoy DC, Sánchez BN, Ruiz-Narváez EA, Banker M, Cantoral A, Mercado-Garcia A, Téllez-Rojo MM, Peterson KE. Accelerometer-measured Physical Activity, Reproductive Hormones, and DNA Methylation. Med Sci Sports Exerc 2020; 52:598-607. [PMID: 31652236 DOI: 10.1249/mss.0000000000002175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION/PURPOSE Limited studies have examined the association of physical activity with reproductive hormones, DNA methylation, and pubertal status among adolescents. METHODS Among 248 boys and 271 girls, we estimated daily physical activity levels based on 7 d of wrist-worn accelerometer data. We used an isotemporal substitution paradigm and sex-stratified regression models to examine the association of physical activity levels with 1) testosterone, cortisol, progesterone, and androstenedione concentrations; 2) DNA methylation of long interspersed nucleotide (LINE-1) repeats and the genes H19, hydroxysteroid (11-Beta) dehydrogenase 2 (HSD11B2), and peroxisome proliferator-activated receptor alpha (PPARA) from blood leukocytes; and 3) Tanner stages, adjusted for age, BMI, and socioeconomic status. RESULTS In boys, substituting 30 min of moderate physical activity for 30 min of sedentary behavior per day was associated with 29% (-49%, 0%) of lower testosterone and 29% (4%, 61%) of higher progesterone. Substituting 30 min of light physical activity for sedentary behavior was associated with 13% (-22%, -2%) of lower progesterone. Among girls, 30 min of additional sedentary behavior was associated with 8% (-15%, 0%) of lower testosterone and 24% (8%, 42%) of higher progesterone concentrations. Substituting 30 min of moderate physical activity for sedentary behavior was associated with 15% (0%, 31%) of higher cortisol, whereas substituting the same amount of light physical activity for sedentary behavior was associated with 22% (-39%, 0%) of lower progesterone. Substituting 30 min of vigorous physical activity for sedentary behavior per day was associated with almost six times higher levels (5.83, 95% confidence interval = 1.79-9.86) of HSD11B2 methylation in boys. CONCLUSIONS Accelerometer-measured daily physical activity was associated with reproductive hormones and HSD11B2 DNA methylation, differed by sex and activity intensity levels.
Collapse
Affiliation(s)
- Yue Wu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | | | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Edward A Ruiz-Narváez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Margaret Banker
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Alejandra Cantoral
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, MEXICO
| | - Adriana Mercado-Garcia
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, MEXICO
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, MEXICO
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| |
Collapse
|
49
|
Verma M, Sooy K, Just G, Nixon M, Morgan R, Andrew R, Chapman KE, Homer NZ. Quantitative analysis of 11-dehydrocorticosterone and corticosterone for preclinical studies by liquid chromatography/triple quadrupole mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 4:e8610. [PMID: 31677354 PMCID: PMC7540072 DOI: 10.1002/rcm.8610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE The activity of the glucocorticoid activating enzyme 11β-hydroxysteroid dehydrogenase type-1 (11βHSD1) is altered in diseases such as obesity, inflammation and psychiatric disorders. In rodents 11βHSD1 converts inert 11-dehydrocorticosterone (11-DHC) into the active form, corticosterone (CORT). A sensitive, specific liquid chromatography/tandem mass spectrometry method was sought to simultaneously quantify total 11-DHC and total and free CORT in murine plasma for simple assessment of 11βHSD1 activity in murine models. METHODS Mass spectrometry parameters were optimised and a method for the chromatographic separation of CORT and 11-DHC was developed. Murine plasma was prepared by 10:1 chloroform liquid-liquid extraction (LLE) for analysis. Limits of quantitation (LOQs), linearity and other method criteria were assessed, according to bioanalytical method validation guidelines. RESULTS Reliable separation of 11-DHC and CORT was achieved using an ACE Excel 2 C18-AR (2.1 × 150 mm; 2 μm) fused core column at 25°C, with an acidified water/acetonitrile gradient over 10 min. Analytes were detected by multiple reaction monitoring after positive electrospray ionisation (m/z 345.1.1 ➔ 121.2, m/z 347.1 ➔ 121.1 for 11-DHC and CORT, respectively). The LOQs were 0.25 and 0.20 ng/mL for 11-DHC and CORT, respectively. CONCLUSIONS This LC/MS method is suitable for the reliable analysis of 11-DHC and CORT following simple LLE of murine plasma, bringing preclinical analysis in line with recommendations for clinical endocrinology and biochemistry.
Collapse
Affiliation(s)
- Manu Verma
- University/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Karen Sooy
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research InstituteUniversity of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - George Just
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research InstituteUniversity of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Mark Nixon
- University/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Ruth Morgan
- University/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Ruth Andrew
- University/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Karen E. Chapman
- University/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Natalie Z.M. Homer
- University/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research InstituteUniversity of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| |
Collapse
|
50
|
Yu B, Pu Y, Liu J, Liao J, Chen K, Zhang J, Zhong W, Hu Y, Wang XQ, Liu B, Liu H, Tan W. Targeted delivery of emodin to adipocytes by aptamer-functionalized PEG-PLGA nanoparticles in vitro. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|