1
|
Chrispell JD, Dong E, Osawa S, Liu J, Cameron DJ, Weiss ER. Grk1b and Grk7a Both Contribute to the Recovery of the Isolated Cone Photoresponse in Larval Zebrafish. Invest Ophthalmol Vis Sci 2018; 59:5116-5124. [PMID: 30372740 PMCID: PMC6203174 DOI: 10.1167/iovs.18-24455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Purpose To define the functional roles of Grk1 and Grk7 in zebrafish cones in vivo. Methods Genome editing was used to generate grk7a and grk1b knockout zebrafish. Electroretinogram (ERG) analyses of the isolated cone mass receptor potential and the b-wave were performed in dark-adapted zebrafish using a paired flash paradigm to determine recovery of cone photoreceptors and the inner retina after an initial flash. In addition, psychophysical visual response was measured using the optokinetic response (OKR). Results ERG analysis demonstrated that deletion of either Grk1b or Grk7a in zebrafish larvae resulted in modestly lower rates of recovery of the isolated cone mass receptor potential from an initial flash compared to wildtype larvae. On the other hand, grk1b-/- and grk7a-/- larvae exhibited a b-wave recovery that was similar to wildtype larvae. We evaluated the OKR and found that deletion of either Grk1b or Grk7a leads to a small decrease in temporal contrast sensitivity and alterations in visual acuity. Conclusions For the first time, we demonstrate that Grk1b and Grk7a both contribute to visual function in larval zebrafish cones. Since the difference between wildtype and each knockout fish is modest, it appears that either GRK is sufficient for adequate cone visual function.
Collapse
Affiliation(s)
- Jared D. Chrispell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Enheng Dong
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Shoji Osawa
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - D. Joshua Cameron
- College of Optometry, Western University of Health Sciences, Pomona, California, United States
| | - Ellen R. Weiss
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
2
|
Vladimirov VI, Zernii EY, Baksheeva VE, Wimberg H, Kazakov AS, Tikhomirova NK, Nemashkalova EL, Mitkevich VA, Zamyatnin AA, Lipkin VM, Philippov PP, Permyakov SE, Senin II, Koch KW, Zinchenko DV. Photoreceptor calcium sensor proteins in detergent-resistant membrane rafts are regulated via binding to caveolin-1. Cell Calcium 2018; 73:55-69. [PMID: 29684785 DOI: 10.1016/j.ceca.2018.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023]
Abstract
Rod cell membranes contain cholesterol-rich detergent-resistant membrane (DRM) rafts, which accumulate visual cascade proteins as well as proteins involved in regulation of phototransduction such as rhodopsin kinase and guanylate cyclases. Caveolin-1 is the major integral component of DRMs, possessing scaffolding and regulatory activities towards various signaling proteins. In this study, photoreceptor Ca2+-binding proteins recoverin, NCS1, GCAP1, and GCAP2, belonging to neuronal calcium sensor (NCS) family, were recognized as novel caveolin-1 interacting partners. All four NCS proteins co-fractionate with caveolin-1 in DRMs, isolated from illuminated bovine rod outer segments. According to pull-down assay, surface plasmon resonance spectroscopy and isothermal titration calorimetry data, they are capable of high-affinity binding to either N-terminal fragment of caveolin-1 (1-101), or its short scaffolding domain (81-101) via a novel structural site. In recoverin this site is localized in C-terminal domain in proximity to the third EF-hand motif and composed of aromatic amino acids conserved among NCS proteins. Remarkably, the binding of NCS proteins to caveolin-1 occurs only in the absence of calcium, which is in agreement with higher accessibility of the caveolin-1 binding site in their Ca2+-free forms. Consistently, the presence of caveolin-1 produces no effect on regulatory activity of Ca2+-saturated recoverin or NCS1 towards rhodopsin kinase, but upregulates GCAP2, which potentiates guanylate cyclase activity being in Ca2+-free conformation. In addition, the interaction with caveolin-1 decreases cooperativity and augments affinity of Ca2 + binding to recoverin apparently by facilitating exposure of its myristoyl group. We suggest that at low calcium NCS proteins are compartmentalized in photoreceptor rafts via binding to caveolin-1, which may enhance their activity or ensure their faster responses on Ca2+-signals thereby maintaining efficient phototransduction recovery and light adaptation.
Collapse
Affiliation(s)
- Vasiliy I Vladimirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Evgeni Yu Zernii
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Viktoriia E Baksheeva
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Hanna Wimberg
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, 26111 Germany
| | - Alexey S Kazakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Natalya K Tikhomirova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Ekaterina L Nemashkalova
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Valery M Lipkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Pavel P Philippov
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Sergei E Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Ivan I Senin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Karl-W Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, 26111 Germany
| | - Dmitry V Zinchenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| |
Collapse
|
3
|
Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods. J Neurosci 2010; 30:1213-20. [PMID: 20107049 DOI: 10.1523/jneurosci.4353-09.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Ca(2+)-binding protein recoverin is thought to regulate rhodopsin kinase and to modulate the lifetime of the photoexcited state of rhodopsin (Rh*), the visual pigment of vertebrate rods. Recoverin has been postulated to inhibit the kinase in darkness, when Ca(2+) is high, and to be released from the disk membrane in light when Ca(2+) is low, accelerating rhodopsin phosphorylation and shortening the lifetime of Rh*. This proposal has remained controversial, in part because the normally rapid turnoff of Rh* has made Rh* modulation difficult to study in an intact rod. To circumvent this problem, we have made mice that underexpress rhodopsin kinase so that Rh* turnoff is rate limiting for the decay of the rod light response. We show that background light speeds the decay of Rh* turnoff, and that this no longer occurs in mice that have had recoverin knocked out. This is the first demonstration in an intact rod that light accelerates Rh* inactivation and that the Ca(2+)-binding protein recoverin may be required for the light-dependent modulation of Rh* lifetime.
Collapse
|
4
|
Wensel TG. Signal transducing membrane complexes of photoreceptor outer segments. Vision Res 2008; 48:2052-61. [PMID: 18456304 DOI: 10.1016/j.visres.2008.03.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/25/2022]
Abstract
Signal transduction in outer segments of vertebrate photoreceptors is mediated by a series of reactions among multiple polypeptides that form protein-protein complexes within or on the surface of the disk and plasma membranes. The individual components in the activation reactions include the photon receptor rhodopsin and the products of its absorption of light, the three subunits of the G protein, transducin, the four subunits of the cGMP phosphodiesterase, PDE6 and the four subunits of the cGMP-gated cation channel. Recovery involves membrane complexes with additional polypeptides including the Na(+)/Ca(2+), K(+) exchanger, NCKX2, rhodopsin kinases RK1 and RK7, arrestin, guanylate cyclases, guanylate cyclase activating proteins, GCAP1 and GCAP2, and the GTPase accelerating complex of RGS9-1, G(beta5L), and membrane anchor R9AP. Modes of membrane binding by these polypeptides include transmembrane helices, fatty acyl or isoprenyl modifications, polar interactions with lipid head groups, non-polar interactions of hydrophobic side chains with lipid hydrocarbon phase, and both polar and non-polar protein-protein interactions. In the course of signal transduction, complexes among these polypeptides form and dissociate, and undergo structural rearrangements that are coupled to their interactions with and catalysis of reactions by small molecules and ions, including guanine nucleotides, ATP, Ca(2+), Mg(2+), and lipids. The substantial progress that has been made in understanding the composition and function of these complexes is reviewed, along with the more preliminary state of our understanding of the structures of these complexes and the challenges and opportunities that present themselves for deepening our understanding of these complexes, and how they work together to convert a light signal into an electrical signal.
Collapse
Affiliation(s)
- Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Rosenzweig DH, Nair KS, Wei J, Wang Q, Garwin G, Saari JC, Chen CK, Smrcka AV, Swaroop A, Lem J, Hurley JB, Slepak VZ. Subunit dissociation and diffusion determine the subcellular localization of rod and cone transducins. J Neurosci 2007; 27:5484-94. [PMID: 17507570 PMCID: PMC2655354 DOI: 10.1523/jneurosci.1421-07.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Activation of rod photoreceptors by light induces a massive redistribution of the heterotrimeric G-protein transducin. In darkness, transducin is sequestered within the membrane-enriched outer segments of the rod cell. In light, it disperses throughout the entire neuron. We show here that redistribution of rod transducin by light requires activation, but it does not require ATP. This observation rules out participation of molecular motors in the redistribution process. In contrast to the light-stimulated redistribution of rod transducin in rods, cone transducin in cones does not redistribute during activation. Remarkably, when cone transducin is expressed in rods, it does undergo light-stimulated redistribution. We show here that the difference in subcellular localization of activated rod and cone G-proteins correlates with their affinity for membranes. Activated rod transducin releases from membranes, whereas activated cone transducin remains bound to membranes. A synthetic peptide that dissociates G-protein complexes independently of activation facilitates dispersion of both rod and cone transducins within the cells. This peptide also facilitates detachment of both G-proteins from the membranes. Together, these results show that it is the dissociation state of transducin that determines its localization in photoreceptors. When rod transducin is stimulated, its subunits dissociate, leave outer segment membranes, and equilibrate throughout the cell. Cone transducin subunits do not dissociate during activation and remain sequestered within the outer segment. These findings indicate that the subunits of some heterotrimeric G-proteins remain associated during activation in their native environments.
Collapse
Affiliation(s)
- Derek H. Rosenzweig
- Department of Molecular and Cellular Pharmacology and Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - K. Saidas Nair
- Department of Molecular and Cellular Pharmacology and Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | | | - Qiang Wang
- Department of Molecular and Cellular Pharmacology and Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Greg Garwin
- Ophthalmology, University of Washington, Seattle, Washington 98195
| | - John C. Saari
- Ophthalmology, University of Washington, Seattle, Washington 98195
| | - Ching-Kang Chen
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Alan V. Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14603
| | - Anand Swaroop
- Departments of Ophthalmology and Visual Sciences, and Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Janis Lem
- Molecular Cardiology Research Institute, Tufts–New England Medical Center, Boston, Massachusetts 02111
| | | | - Vladlen Z. Slepak
- Department of Molecular and Cellular Pharmacology and Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| |
Collapse
|
6
|
Abstract
Phototransduction is the process by which light triggers an electrical signal in a photoreceptor cell. Image-forming vision in vertebrates is mediated by two types of photoreceptors: the rods and the cones. In this review, we provide a summary of the success in which the mouse has served as a vertebrate model for studying rod phototransduction, with respect to both the activation and termination steps. Cones are still not as well-understood as rods partly because it is difficult to work with mouse cones due to their scarcity and fragility. The situation may change, however.
Collapse
Affiliation(s)
- Yingbin Fu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
7
|
Chen CK. The vertebrate phototransduction cascade: amplification and termination mechanisms. Rev Physiol Biochem Pharmacol 2006; 154:101-21. [PMID: 16634148 DOI: 10.1007/s10254-005-0004-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The biochemical cascade which transduces light into a neuronal signal in retinal photoreceptors is a heterotrimeric GTP-binding protein (G protein) signaling pathway called phototransduction. Works from psychophysicists, electrophysiologists, biochemists, and geneticists over several decades have come together to shape our understanding of how photon absorption leads to photoreceptor membrane hyperpolarization. The insights of phototransduction provide the foundation for a mechanistic account of signaling from many other G protein-coupled receptors (GPCR) found throughout nature. The application of reverse genetic techniques has strengthened many historic findings and helped to describe this pathway at greater molecular details. However, many important questions remain to be answered.
Collapse
Affiliation(s)
- C K Chen
- Virginia Commonwealth University, Department of Biochemistry, 1101 E. Marshall Street, Rm 2-032, Richmond, 23298-0614 VA, USA.
| |
Collapse
|
8
|
Strissel KJ, Lishko PV, Trieu LH, Kennedy MJ, Hurley JB, Arshavsky VY. Recoverin undergoes light-dependent intracellular translocation in rod photoreceptors. J Biol Chem 2005; 280:29250-5. [PMID: 15961391 DOI: 10.1074/jbc.m501789200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photoreceptor cells have a remarkable capacity to adapt the sensitivity and speed of their responses to ever changing conditions of ambient illumination. Recent studies have revealed that a major contributor to this adaptation is the phenomenon of light-driven translocation of key signaling proteins into and out of the photoreceptor outer segment, the cellular compartment where phototransduction takes place. So far, only two such proteins, transducin and arrestin, have been established to be involved in this mechanism. To investigate the extent of this phenomenon we examined additional photoreceptor proteins that might undergo light-driven translocation, focusing on three Ca(2+)-binding proteins, recoverin and guanylate cyclase activating proteins 1 (GCAP1) and GCAP2. The changes in the subcellular distribution of each protein were assessed quantitatively using a recently developed technique combining serial tangential sectioning of mouse retinas with Western blot analysis of the proteins in the individual sections. Our major finding is that light causes a significant reduction of recoverin in rod outer segments, accompanied by its redistribution toward rod synaptic terminals. In both cases the majority of recoverin was found in rod inner segments, with approximately 12% present in the outer segments in the dark and less than 2% remaining in that compartment in the light. We suggest that recoverin translocation is adaptive because it may reduce the inhibitory constraint that recoverin imposes on rhodopsin kinase, an enzyme responsible for quenching the photo-excited rhodopsin during the photoresponse. To the contrary, no translocation of rhodopsin kinase itself or either GCAP was identified.
Collapse
Affiliation(s)
- Katherine J Strissel
- Department of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kim YH, Kim YS, Noh HS, Kang SS, Cheon EW, Park SK, Lee BJ, Choi WS, Cho GJ. Changes in rhodopsin kinase and transducin in the rat retina in early-stage diabetes. Exp Eye Res 2005; 80:753-60. [PMID: 15939031 DOI: 10.1016/j.exer.2004.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 09/07/2004] [Indexed: 10/25/2022]
Abstract
To establish changes in phototransduction in diabetes, the effects of high glucose on rhodopsin kinase (RK) and transducin (G(t)), as well as recoverin, were examined in the retina of STZ-induced diabetic rats. Diabetes was induced by single intraperitoneal injection of STZ (50mg/kg) to Sprague-Dawley (SD) rats and the animals were sacrificed after 6 weeks. Immunohistochemistry (IHC) and Western blot analysis were carried out using antibodies against RK and G(talpha) (alpha subunit of G(t)) in the STZ-induced diabetic retina and the control retina. The expression level of recoverin protein was also analysed. In the diabetic retina, while the expression of RK protein increased, that of G(talpha) and recoverin proteins decreased. RK immunoreactivity (IR) appeared generally in the retina, and its signal increased in the outer limiting membrane (OLM), some rod cells in the outer segment layer (OSL) and at the tip of the outer plexiform layer (OPL) in the diabetic retina. G(talpha)-IR also appeared in the OPL and in photoreceptor layer. In the diabetic retina, G(talpha)-IR significantly decreased in the OPL, indicating RK-IR increase. This study illustrates the alterations in RK, G(talpha) and recoverin in the diabetic retina that may induce dysfunctions in phototransduction even in early-stage diabetes.
Collapse
Affiliation(s)
- Young Hee Kim
- Department of Anatomy and Neurobiology, College of Medicine, Institute of Health Science, Gyeongsang National University, Chilam-dong 92, Jinju, Gyungnam 660-751, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Significant progress has been made in membrane protein engineering over the last 5 years, based largely on the re-design of existing scaffolds. Engineering techniques that have been employed include direct genetic engineering, both covalent and non-covalent modification, unnatural amino acid mutagenesis and total synthesis aided by chemical ligation of unprotected fragments. Combinatorial mutagenesis and directed evolution remain, by contrast, underemployed. Techniques for assembling and purifying heteromeric multisubunit pores have been improved. Progress in the de novo design of channels and pores has been slower. But, we are at the beginning of a new era in membrane protein engineering based on the accelerating acquisition of structural information, a better understanding of molecular motion in membrane proteins, technical improvements in membrane protein refolding and the application of computational approaches developed for soluble proteins. In addition, the next 5 years should see further advances in the applications of engineered channels and pores, notably in therapeutics and sensor technology.
Collapse
Affiliation(s)
- Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.
| | | |
Collapse
|
11
|
Makino CL, Dodd RL, Chen J, Burns ME, Roca A, Simon MI, Baylor DA. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. ACTA ACUST UNITED AC 2005; 123:729-41. [PMID: 15173221 PMCID: PMC2234569 DOI: 10.1085/jgp.200308994] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ca2+-binding protein recoverin may regulate visual transduction in retinal rods and cones, but its functional role and mechanism of action remain controversial. We compared the photoresponses of rods from control mice and from mice in which the recoverin gene was knocked out. Our analysis indicates that Ca2+-recoverin prolongs the dark-adapted flash response and increases the rod's sensitivity to dim steady light. Knockout rods had faster Ca2+ dynamics, indicating that recoverin is a significant Ca2+ buffer in the outer segment, but incorporation of exogenous buffer did not restore wild-type behavior. We infer that Ca2+-recoverin potentiates light-triggered phosphodiesterase activity, probably by effectively prolonging the catalytic activity of photoexcited rhodopsin.
Collapse
Affiliation(s)
- Clint L Makino
- Department of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Senin II, Höppner-Heitmann D, Polkovnikova OO, Churumova VA, Tikhomirova NK, Philippov PP, Koch KW. Recoverin and rhodopsin kinase activity in detergent-resistant membrane rafts from rod outer segments. J Biol Chem 2004; 279:48647-53. [PMID: 15355976 DOI: 10.1074/jbc.m402516200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol-rich membranes or detergent-resistant membranes (DRMs) have recently been isolated from bovine rod outer segments and were shown to contain several signaling proteins such as, for example, transducin and its effector, cGMP-phosphodiesterase PDE6. Here we report the presence of rhodopsin kinase and recoverin in DRMs that were isolated in either light or dark conditions at high and low Ca2+ concentrations. Inhibition of rhodopsin kinase activity by recoverin was more effective in DRMs than in the initial rod outer segment membranes. Furthermore, the Ca2+ sensitivity of rhodopsin kinase inhibition in DRMs was shifted to lower free Ca2+ concentration in comparison with the initial rod outer segment membranes (IC50=0.76 microm in DRMs and 1.91 microm in rod outer segments). We relate this effect to the high cholesterol content of DRMs because manipulating the cholesterol content of rod outer segment membranes by methyl-beta-cyclodextrin yielded a similar shift of the Ca2+-dependent dose-response curve of rhodopsin kinase inhibition. Furthermore, a high cholesterol content in the membranes also increased the ratio of the membrane-bound form of recoverin to its cytoplasmic free form. These data suggest that the Ca2+-dependent feedback loop that involves recoverin is spatially heterogeneous in the rod cell.
Collapse
Affiliation(s)
- Ivan I Senin
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
13
|
Kennedy MJ, Dunn FA, Hurley JB. Visual pigment phosphorylation but not transducin translocation can contribute to light adaptation in zebrafish cones. Neuron 2004; 41:915-28. [PMID: 15046724 DOI: 10.1016/s0896-6273(04)00086-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 12/22/2003] [Accepted: 02/03/2004] [Indexed: 11/20/2022]
Abstract
The ability of cone photoreceptors to adapt to light is extraordinary. In this study we evaluated two biochemical processes, visual pigment phosphorylation and transducin translocation, for their ability to contribute to light adaptation in zebrafish cones. Since cytoplasmic Ca2+ regulates light adaptation, the sensitivities of these processes to both light and Ca2+ were examined. Cytoplasmic Ca2+ regulates the sites of light-stimulated phosphorylation. Unexpectedly, we found that Ca2+ also regulates the extent of phosphorylation of unbleached cone pigments. Immunocytochemical analyses revealed that neither light nor cytoplasmic Ca2+ influences the localization of transducin in zebrafish cones.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
14
|
Nakatani K, Chen C, Yau KW, Koutalos Y. Calcium and phototransduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:1-20. [PMID: 12596912 DOI: 10.1007/978-1-4615-0121-3_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visual phototransduction, the conversion of incoming light to an electrical signal, takes place in the outer segments of the rod and cone photoreceptor cells. Light reduces the concentration of cGMP, which, in darkness, keeps open cationic channels present in the plasma membrane of the outer segment. Ca2+ plays an important role in phototransduction by modulating the cGMP-gated channels as well as cGMP synthesis and breakdown. Ca2+ is involved in a negative feedback that is essential for photoreceptor adaptation to background illumination. The effects of Ca2+ on the different components of rod phototransduction have been characterized and can quantitatively account for the steady state responses of the rod cell to background illumination. The propagation of the Ca2+ feedback signal from the periphery toward the center of the outer segment depends on the Ca2+ diffusion coefficient, which has a value of 15 +/- 1 microm2 s(-1). This value shows that diffusion of Ca2+ in the radial direction is quite slow providing a significant barrier in the propagation of the feedback signal. Also, because the diffusion coefficient of Ca2+ is much smaller than that of cGMP, the decline of Ca2+ in the longitudinal direction lags behind the propagation of excitation by the decline of cGMP.
Collapse
Affiliation(s)
- Kei Nakatani
- Institute of Biological Sciences, University of Tsukuba, Japan
| | | | | | | |
Collapse
|
15
|
Abstract
The majority of proteins involved in vertebrate phototransduction are expressed specifically in photoreceptors. Recoverin and rhodopsin kinase are expressed primarily in retinal photoreceptors and they interact with each other in a Ca2+-dependent manner. This Ca2+-dependent interaction has been studied extensively in vitro. Experiments utilizing animal models and electrophysiological approaches have started to provide important insight regarding its invivo function. Recoverin can be viewed as a negative regulator of rhodopsin kinase in vertebrate phototransduction. This interaction imparts a negative feedback loop at the receptor level and may play an important role in light adaptation and in recovery.
Collapse
Affiliation(s)
- Ching-Kang Jason Chen
- Department of Ophthalmology, University of Utah, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
16
|
Senin II, Koch KW, Akhtar M, Philippov PP. Ca2+-dependent control of rhodopsin phosphorylation: recoverin and rhodopsin kinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:69-99. [PMID: 12596916 DOI: 10.1007/978-1-4615-0121-3_5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Over many years until the middle of the 1980s, the main problem in vision research had been the mechanism of transducing the visual signal from photobleached rhodopsin to the cationic channels in the plasma membrane of a photoreceptor to trigger the electrophysiological response of the cell. After cGMP was proven to be the secondary messenger, the main intriguing question has become the mechanisms of negative feedback in photoreceptors to modulate their response to varying conditions of illumination. Although the mechanisms of light-adaptation are not completely understood, it is obvious that Ca2+ plays a crucial role in these mechanisms and that the effects of Ca2+ can be mediated by several Ca2+-binding proteins. One of them is recoverin. The leading candidate for the role of an intracellular target for recoverin is believed to be rhodopsin kinase, a member of a family of G-protein-coupled receptor kinases. The present review considers recoverin, rhodopsin kinase and their interrelationships in the in vitro as well as in vivo contexts.
Collapse
Affiliation(s)
- Ivan I Senin
- Department of Cell Signalling, A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | | | | | |
Collapse
|
17
|
Abstract
S-Modulin is a Ca2+-binding protein found in frog rod photoreceptors (1,2) and its bovine homologue is known as recoverin (3,4). In the Ca2+-bound form, S-modulin inhibits rhodopsin phosphorylation5 through inhibition of rhodopsin kinase. (6-9) Because rhodopsin phosphorylation is the quench mechanism of light-activated rhodopsin (R*), (10,11) the inhibition of the phosphorylation by S-modulin probably contributes to increase the lifetime of R* to result in sustained hydrolysis of cGMP5. The Ca2+ concentration decreases in the light in vertebrate photoreceptors, (12-14) and this decrease is essential for light-adaptation. (15,16) Thus, S-modulin is expected to regulate the lifetime of R* and thereby regulate the extent and the time course of hydrolysis of cGMP depending on the intensity of background light. With this mechanism, S-modulin is believed to regulate the waveform of a photoresponse and the efficiency of the light in the generation of a photoresponse.
Collapse
Affiliation(s)
- Satoru Kawamura
- Department of Biology, Graduate School of Science, Osaka University, Machikane-yama 1-1, Toyonaka, Osaka 560-0043, Japan
| | | |
Collapse
|
18
|
Affiliation(s)
- James B Hurley
- Department of Biochemistry, University of Washington, Seattle, WA 91895, USA
| |
Collapse
|
19
|
The Complex of cGMP-Gated Channel and Na+/ Ca2+K+Exchanger in Rod Photoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002. [DOI: 10.1007/978-1-4615-0121-3_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
20
|
Gu LQ, Cheley S, Bayley H. Prolonged residence time of a noncovalent molecular adapter, beta-cyclodextrin, within the lumen of mutant alpha-hemolysin pores. J Gen Physiol 2001; 118:481-94. [PMID: 11696607 PMCID: PMC2233842 DOI: 10.1085/jgp.118.5.481] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noncovalent molecular adapters, such as cyclodextrins, act as binding sites for channel blockers when lodged in the lumen of the alpha-hemolysin (alphaHL) pore, thereby offering a basis for the detection of a variety of organic molecules with alphaHL as a sensor element. beta-Cyclodextrin (betaCD) resides in the wild-type alphaHL pore for several hundred microseconds. The residence time can be extended to several milliseconds by the manipulation of pH and transmembrane potential. Here, we describe mutant homoheptameric alphaHL pores that are capable of accommodating betaCD for tens of seconds. The mutants were obtained by site-directed mutagenesis at position 113, which is a residue that lies near a constriction in the lumen of the transmembrane beta barrel, and fall into two classes. Members of the tight-binding class, M113D, M113N, M113V, M113H, M113F and M113Y, bind betaCD approximately 10(4)-fold more avidly than the remaining alphaHL pores, including WT-alphaHL. The lower K(d) values of these mutants are dominated by reduced values of k(off). The major effect of the mutations is most likely a remodeling of the binding site for betaCD in the vicinity of position 113. In addition, there is a smaller voltage-sensitive component of the binding, which is also affected by the residue at 113 and may result from transport of the neutral betaCD molecule by electroosmotic flow. The mutant pores for which the dwell time of betaCD is prolonged can serve as improved components for stochastic sensors.
Collapse
Affiliation(s)
- Li-Qun Gu
- Department of Medical Biochemistry and Genetics, The Texas A&M University System Health Science Center, College Station, TX 77843
| | - Stephen Cheley
- Department of Medical Biochemistry and Genetics, The Texas A&M University System Health Science Center, College Station, TX 77843
| | - Hagan Bayley
- Department of Medical Biochemistry and Genetics, The Texas A&M University System Health Science Center, College Station, TX 77843
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| |
Collapse
|
21
|
Matthews HR, Cornwall M, Crouch R. Prolongation of actions of Ca2+ early in phototransduction by 9-demethylretinal. J Gen Physiol 2001; 118:377-90. [PMID: 11585850 PMCID: PMC2233701 DOI: 10.1085/jgp.118.4.377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During adaptation Ca2+ acts on a step early in phototransduction, which is normally available for only a brief period after excitation. To investigate the identity of this step, we studied the effect of the light-induced decline in intracellular Ca2+ concentration on the response to a bright flash in normal rods, and in rods bleached and regenerated with 11-cis 9-demethylretinal, which forms a photopigment with a prolonged photoactivated lifetime. Changes in cytoplasmic Ca2+ were opposed by rapid superfusion of the outer segment with a 0Na+/0Ca2+ solution designed to minimize Ca2+ fluxes across the surface membrane. After regeneration of a bleached rod with 9-demethlyretinal, the response in Ringer's to a 440-nm bright flash was prolonged in comparison with the unbleached control, and the response remained in saturation for 10-15s. If the dynamic fall in Ca2+i induced by the flash was delayed by stepping the outer segment to 0Na+/0Ca2+ solution just before the flash and returning it to Ringer's shortly before recovery, then the response saturation was prolonged further, increasing linearly by 0.41 +/- 0.01 of the time spent in this solution. In contrast, even long exposures to 0Na+/0Ca2+ solution of rods containing native photopigment evoked only a modest response prolongation on the return to Ringer's. Furthermore, if the rod was preexposed to steady subsaturating light, thereby reducing the cytoplasmic calcium concentration, then the prolongation of the bright flash response evoked by 0Na+/0Ca2+ solution was reduced in a graded manner with increasing background intensity. These results indicate that altering the chromophore of rhodopsin prolongs the time course of the Ca2+-dependent step early in the transduction cascade so that it dominates response recovery, and suggest that it is associated with photopigment quenching by phosphorylation.
Collapse
Affiliation(s)
- Hugh R. Matthews
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - M.C. Cornwall
- Department of Physiology, Boston University Medical School, Boston, MA 02215
| | - R.K. Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29401
| |
Collapse
|
22
|
McBee JK, Palczewski K, Baehr W, Pepperberg DR. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 2001; 20:469-529. [PMID: 11390257 DOI: 10.1016/s1350-9462(01)00002-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Absorption of light by rhodopsin or cone pigments in photoreceptors triggers photoisomerization of their universal chromophore, 11-cis-retinal, to all-trans-retinal. This photoreaction is the initial step in phototransduction that ultimately leads to the sensation of vision. Currently, a great deal of effort is directed toward elucidating mechanisms that return photoreceptors to the dark-adapted state, and processes that restore rhodopsin and counterbalance the bleaching of rhodopsin. Most notably, enzymatic isomerization of all-trans-retinal to 11-cis-retinal, called the visual cycle (or more properly the retinoid cycle), is required for regeneration of these visual pigments. Regeneration begins in rods and cones when all-trans-retinal is reduced to all-trans-retinol. The process continues in adjacent retinal pigment epithelial cells (RPE), where a complex set of reactions converts all-trans-retinol to 11-cis-retinal. Although remarkable progress has been made over the past decade in understanding the phototransduction cascade, our understanding of the retinoid cycle remains rudimentary. The aim of this review is to summarize recent developments in our current understanding of the retinoid cycle at the molecular level, and to examine the relevance of these reactions to phototransduction.
Collapse
Affiliation(s)
- J K McBee
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The basis of the duplex theory of vision is examined in view of the dazzling array of data on visual pigment sequences and the pigments they form, on the microspectrophotometry measurements of single photoreceptor cells, on the kinds of photoreceptor cascade enzymes, and on the electrophysiological properties of photoreceptors. The implications of the existence of five distinct visual pigment families are explored, especially with regard to what pigments are in what types of photoreceptors, if there are different phototransduction enzymes associated with different types of photoreceptors, and if there are electrophysiological differences between different types of cones.
Collapse
Affiliation(s)
- T Ebrey
- University of Washington, Seattle 98195, USA
| | | |
Collapse
|
24
|
Burgoyne RD, Weiss JL. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 2001; 353:1-12. [PMID: 11115393 PMCID: PMC1221537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Ca(2+) plays a central role in the function of neurons as the trigger for neurotransmitter release, and many aspects of neuronal activity, from rapid modulation to changes in gene expression, are controlled by Ca(2+). These actions of Ca(2+) must be mediated by Ca(2+)-binding proteins, including calmodulin, which is involved in Ca(2+) regulation, not only in neurons, but in most other cell types. A large number of other EF-hand-containing Ca(2+)-binding proteins are known. One family of these, the neuronal calcium sensor (NCS) proteins, has a restricted expression in retinal photoreceptors or neurons and neuroendocrine cells, suggesting that they have specialized roles in these cell types. Two members of the family (recoverin and guanylate cyclase-activating protein) have established roles in the regulation of phototransduction. Despite close sequence similarities, the NCS proteins have distinct neuronal distributions, suggesting that they have different functions. Recent work has begun to demonstrate the physiological roles of members of this protein family. These include roles in the modulation of neurotransmitter release, control of cyclic nucleotide metabolism, biosynthesis of polyphosphoinositides, regulation of gene expression and in the direct regulation of ion channels. In the present review we describe the known sequences and structures of the NCS proteins, information on their interactions with target proteins and current knowledge about their cellular and physiological functions.
Collapse
Affiliation(s)
- R D Burgoyne
- The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | |
Collapse
|
25
|
Abstract
When light is absorbed within the outer segment of a vertebrate photoreceptor, the conformation of the photopigment rhodopsin is altered to produce an activated photoproduct called metarhodopsin II or Rh(*). Rh(*) initiates a transduction cascade similar to that for metabotropic synaptic receptors and many hormones; the Rh(*) activates a heterotrimeric G protein, which in turn stimulates an effector enzyme, a cyclic nucleotide phosphodiesterase. The phosphodiesterase then hydrolyzes cGMP, and the decrease in the concentration of free cGMP reduces the probability of opening of channels in the outer segment plasma membrane, producing the electrical response of the cell. Photoreceptor transduction can be modulated by changes in the mean light level. This process, called light adaptation (or background adaptation), maintains the working range of the transduction cascade within a physiologically useful region of light intensities. There is increasing evidence that the second messenger responsible for the modulation of the transduction cascade during background adaptation is primarily, if not exclusively, Ca(2+), whose intracellular free concentration is decreased by illumination. The change in free Ca(2+) is believed to have a variety of effects on the transduction mechanism, including modulation of the rate of the guanylyl cyclase and rhodopsin kinase, alteration of the gain of the transduction cascade, and regulation of the affinity of the outer segment channels for cGMP. The sensitivity of the photoreceptor is also reduced by previous exposure to light bright enough to bleach a substantial fraction of the photopigment in the outer segment. This form of desensitization, called bleaching adaptation (the recovery from which is known as dark adaptation), seems largely to be due to an activation of the transduction cascade by some form of bleached pigment. The bleached pigment appears to activate the G protein transducin directly, although with a gain less than Rh(*). The resulting decrease in intracellular Ca(2+) then modulates the transduction cascade, by a mechanism very similar to the one responsible for altering sensitivity during background adaptation.
Collapse
Affiliation(s)
- G L Fain
- Department of Physiological Science, University of California, Los Angeles, California 90095-1527, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
Phytochromes are bifunctional photoreceptors with a two-domain structure, consisting of the N-terminal photosensory domain and the C-terminal regulatory domain. The photo-induced Pr <--> Pfr phototransformation accompanies subtle conformational changes, primarily triggered by the apoprotein-chromophore interactions in the N-terminal domain. The conformational signals are subsequently transmitted to the C-terminal domain through various inter-domain crosstalks, resulting in the interaction of the activated C-terminal domain with phytochrome interacting factors. Thus the inter-domain crosstalks play critical roles in the photoactivation of the phytochromes. Protein phosphorylation, such as that of Ser-598, is implicated in this process by inducing conformational changes and by modulating inter-domain signaling.
Collapse
Affiliation(s)
- C M Park
- Kumho Life & Environmental Science Laboratory, Kwangju, 500-480, Korea
| | | | | |
Collapse
|
27
|
Palczewski K, Polans AS, Baehr W, Ames JB. Ca(2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays 2000; 22:337-50. [PMID: 10723031 DOI: 10.1002/(sici)1521-1878(200004)22:4<337::aid-bies4>3.0.co;2-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The complex sensation of vision begins with the relatively simple photoisomerization of the visual pigment chromophore 11-cis-retinal to its all-trans configuration. This event initiates a series of biochemical reactions that are collectively referred to as phototransduction, which ultimately lead to a change in the electrochemical signaling of the photoreceptor cell. To operate in a wide range of light intensities, however, the phototransduction pathway must allow for adjustments to background light. These take place through physiological adaptation processes that rely primarily on Ca(2+) ions. While Ca(2+) may modulate some activities directly, it is more often the case that Ca(2+)-binding proteins mediate between transient changes in the concentration of Ca(2+) and the adaptation processes that are associated with phototransduction. Recently, combined genetic, physiological, and biochemical analyses have yielded new insights about the properties and functions of many phototransduction-specific components, including some novel Ca(2+)-binding proteins. Understanding these Ca(2+)-binding proteins will provide a more complete picture of visual transduction, including the mechanisms associated with adaptation, and of related degenerative diseases.
Collapse
Affiliation(s)
- K Palczewski
- Department of Ophthalmology, University of Washington, Seattle, WA 98195-6485, USA.
| | | | | | | |
Collapse
|
28
|
Kawamura S. Calcium-dependent regulation of rhodopsin phosphorylation. ACTA ACUST UNITED AC 2000; 224:208-18; discussion 218-24. [PMID: 10614053 DOI: 10.1002/9780470515693.ch12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Depending on ambient light conditions, a rod photoreceptor cell adapts to a light stimulus. For example, when it is kept in the light, its light sensitivity decreases because of light adaptation. The adaptational state is regulated by the Ca2+ concentration in the cytoplasm ([Ca2+]i). The [Ca2+]i is high in the dark and becomes low when the cell is light-adapted. The change in [Ca2+]i is detected by several Ca(2+)-binding proteins that change their conformations by binding Ca2+. S-modulin, found in frog rods, or its bovine homologue recoverin, is a 23 kDa Ca(2+)-binding protein that inhibits rhodopsin phosphorylation at high Ca2+ concentrations by inhibiting rhodopsin kinase. Since rhodopsin phosphorylation is an inactivating mechanism for light-activated rhodopsin (R*), the inhibition of this reaction will prolong the lifetime of R*. In this way, S-modulin is expected to increase the efficiency of phototransduction and therefore the light-sensitivity of rods in the dark. When rods are light-adapted, [Ca2+]i decreases so that the lifetime of the R* is expected to reduce, resulting in a decrease in light sensitivity. Even though it is generally agreed that S-modulin inhibits rhodopsin phosphorylation, its physiological function is not yet well understood.
Collapse
Affiliation(s)
- S Kawamura
- Department of Biology, Graduate School of Science, Osaka University, Japan
| |
Collapse
|
29
|
Affiliation(s)
- E N Pugh
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| |
Collapse
|
30
|
Abstract
G-protein coupled receptors (GPCRs) comprise one of the largest classes of signalling molecules. A wide diversity of activating ligands induce the active conformation of GPCRs and lead to signalling via heterotrimeric G-proteins and downstream effectors. In addition, a complex series of reactions participate in the 'turn-off' of GPCRs in both physiological and pharmacological settings. Some key players in the inactivation or 'desensitization' of GPCRs have been identified, whereas others remain the target of ongoing studies. G-protein coupled receptor kinases (GRKs) specifically phosphorylate activated GPCRs and initiate homologous desensitization. Uncoupling proteins, such as members of the arrestin family, bind to the phosphorylated and activated GPCRs and cause desensitization by precluding further interactions of the GPCRs and G-proteins. Adaptor proteins, including arrestins, and endocytic machinery participate in the internalization of GPCRs away from their normal signalling milieu. In this review we discuss the roles of these regulatory molecules as modulators of GPCR signalling.
Collapse
Affiliation(s)
- M Bünemann
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue S215, Chicago, IL 60611, USA
| | | |
Collapse
|