1
|
Rose AE, Fansler RT, Zhu W. Commensal resilience: ancient ecological lessons for the modern microbiota. Infect Immun 2025; 93:e0050224. [PMID: 40387449 DOI: 10.1128/iai.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
The gut microbiota constitutes a complex ecosystem essential for host health, offering metabolic support, modulating the immune system, and protecting against pathogens. However, this community faces constant destabilizing challenges, including dietary changes, antibiotics, and enteric infection. Prolonged microbiota imbalance or dysbiosis can exacerbate intestinal disease states, including inflammatory bowel disease and colorectal cancer. Understanding the mechanisms that sustain microbiota resilience in the face of these imbalances is crucial for maintaining host health and developing effective therapeutics. This review explores microbiota resilience through the lens of an ecological model, emphasizing the interplay between microbial communities and host-driven environmental controls. We highlight two critical factors shaping microbiota resilience: oxygen tension and iron availability-challenges encountered by ancient anaerobic organisms during early evolutionary history, from which the predominant members of the microbiota have descended. Disruptions in intestinal anaerobiosis during inflammation increase luminal oxygen levels, favoring pro-inflammatory facultative anaerobes and depleting obligately anaerobic commensals. Simultaneously, host nutritional immunity restricts iron availability, further challenging commensal survival. This dual environmental challenge of rising oxygen tension and reduced iron availability is a convergent outcome of a diverse array of perturbations, from pathogen invasion to antibiotic treatment. By highlighting these conserved downstream environmental challenges rather than the specific upstream perturbations, this ecological view offers a focused framework for understanding microbiota resilience. This perspective not only enhances our understanding of host-microbiota interactions but also informs therapeutic strategies to foster resilience and support host health.
Collapse
Affiliation(s)
- Abigail E Rose
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ryan T Fansler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Qi P, Jiang X, Wang X, Sheng L, Liang J, Zhang L. Unraveling the pathogenesis and prevention strategies of acute high-altitude illness through gut microecology. NPJ Biofilms Microbiomes 2025; 11:62. [PMID: 40263277 PMCID: PMC12015534 DOI: 10.1038/s41522-025-00701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
High-altitude environments, characterized by hypobaric and hypoxic conditions, induce acute hypoxia, resulting in decreased blood oxygen saturation. This hypoxic stress perturbs gut microecological homeostasis, significantly contributing to the pathogenesis of acute mountain sickness. Consequently, elucidating the mechanisms by which high altitude affects gut homeostasis is crucial for developing effective interventions.
Collapse
Affiliation(s)
- Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Xiansen Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaojuan Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Liang Sheng
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jiawen Liang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, 730000, PR China.
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, 730000, PR China.
| |
Collapse
|
3
|
Matveeva VO, Grebennikova AD, Sakharov DI, Fomin VV, Manukhov IV, Bazhenov SV. Oxidative Stress Leads to Fur-Mediated Activation of ftnA in Escherichia coli Independently of OxyR/SoxRs Regulators. J Basic Microbiol 2025:e70038. [PMID: 40259687 DOI: 10.1002/jobm.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/29/2025] [Accepted: 04/06/2025] [Indexed: 04/23/2025]
Abstract
Ferritin FtnA is the main scavenger of Fe2+ and storage of Fe3+ in bacterial cells, together with Dps and Bfr it prevents the Fenton reaction. To study the regulation of Escherichia coli ftnA expression under oxidative stress conditions, we used PftnA-luxCDABE transcriptional fusion. It was shown that PftnA is induced after the addition of oxidative stress inducers. This activation was independent of the presence of functional oxyR and soxR genes in the cell, but was completely abolished in the absence of fur. The response is amplified in the ftnA mutant and is diminished in the FtnA-overproducing strain, which indicates that iron sequestration by apoferritin blocks the response and helps to cope with stress consequences. Comparison of the activation kinetics of the PfecA and PftnA promoters, responsible for iron uptake and storage regulation, showed that the addition of H2O2 initially leads to the inactivation of Fur, causing derepression of iron uptake and, as a consequence, an increase in intracellular iron. As the redox balance in the cell is restored, Fur is reactivated, which leads to the induction of ftnA expression. Thus, oxidative stress leads to PftnA activation, which is mediated by Fur and time-delayed in comparison with OxyR-response.
Collapse
Affiliation(s)
- Valeriia Olegovna Matveeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Anna Dmitrievna Grebennikova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Daniil Igorevich Sakharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Vadim Valerevich Fomin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Laboratory of Microbiology, BIOTECH University, Moscow, Russia
| | - Ilya Vladimirovich Manukhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Laboratory of Microbiology, BIOTECH University, Moscow, Russia
| | - Sergey Vladimirovich Bazhenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
4
|
Boyanova L, Gergova R, Markovska R. Coculture systems to study interactions between anaerobic bacteria and intestinal epithelium. Anaerobe 2025; 92:102949. [PMID: 40010487 DOI: 10.1016/j.anaerobe.2025.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Coculture systems (CCSs) are experimental tools used to study the interactions of anaerobic bacteria among themselves and the gut epithelial cells under conditions simulating the human gut, unlike those in animal models. Although the studies on animal models are useful in determining the relationship between the causative agents of infections and human infections, they have disadvantages, such as ethical issues, in addition to the differences in the microbiota of the animal and humans. Therefore, the results obtained using animal models cannot be directly extrapolated to humans. CCSs can more completely reflect in vivo gut homeostasis and contribute to better understanding of the interplay between the intestinal cells and anaerobes, prevalent among the gut bacteria. Moreover, they provide new insights on the pathogenesis of infections and aid in assessing the usefulness of new probiotics and antibacterials. Therefore, CCSs, including the gut-on-a-chip models, can significantly improve microbiota-based therapy. Moreover, they can also be used to detect microbiota-derived metabolites such as those with mutagenic properties. The aim of this review was to explore selected CCS models of anaerobes with intestinal epithelium and their application in investigating intestinal homeostasis. The focus was to highlight the application of different CCSs and important data obtained from their implementation.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria.
| | - Raina Gergova
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| |
Collapse
|
5
|
Mirchandani AS, Sanchez-Garcia MA, Walmsley SR. How oxygenation shapes immune responses: emerging roles for physioxia and pathological hypoxia. Nat Rev Immunol 2025; 25:161-177. [PMID: 39349943 DOI: 10.1038/s41577-024-01087-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 03/04/2025]
Abstract
Most eukaryotes require oxygen for their survival and, with increasing multicellular complexity, oxygen availability and delivery rates vary across the tissues of complex organisms. In humans, healthy tissues have markedly different oxygen gradients, ranging from the hypoxic environment of the bone marrow (where our haematopoietic stem cells reside) to the lungs and their alveoli, which are among the most oxygenated areas of the body. Immune cells are therefore required to adapt to varying oxygen availability as they move from the bone marrow to peripheral organs to mediate their effector functions. These changing oxygen gradients are exaggerated during inflammation, where oxygenation is often depleted owing to alterations in tissue perfusion and increased cellular activity. As such, it is important to consider the effects of oxygenation on shaping the immune response during tissue homeostasis and disease conditions. In this Review, we address the relevance of both physiological oxygenation (physioxia) and disease-associated hypoxia (where cellular oxygen demand outstrips supply) for immune cell functions, discussing the relevance of hypoxia for immune responses in the settings of tissue homeostasis, inflammation, infection, cancer and disease immunotherapy.
Collapse
Affiliation(s)
- Ananda Shanti Mirchandani
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | | | - Sarah Ruth Walmsley
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Wang Y, Lin R, Zhang L, Lan S, Ye X, Pan H, Chen S. Oxygen influences in vitro assessment for phenolic compounds: Digestive stability, α-glucosidase inhibitory activity and bioavailability. Food Chem 2025; 466:142165. [PMID: 39608122 DOI: 10.1016/j.foodchem.2024.142165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Phenolic compounds are popular in screening novel hypoglycemic agents, but the impact of oxidative degradation on the determination of α-glucosidase inhibitory activity and bioavailability is unclear. Here we showed 12 phenolic compounds structure-dependently degraded during standard simulated digestion, while in physiological hypoxia their retention rates were all over 87.89 %. This enhancement of digestive stability resulted in the biggest drop of 31.72 % in IC50 against α-glucosidase and a significant increase in bioavailability. Enzyme kinetic and multi-spectroscopic analysis confirmed oxygen weakened the affinity of compounds to α-glucosidase, but the mechanisms were not changed. Moreover, a two-chamber culture system was designed to meet conflicting demands for oxygen between epithelium and cavity, and better α-glucosidase inhibitory activities (51.61 % maximum reduction in glucose production) and absorption rates (up to 1.10 % from undetectable) were obtained than those of uncontrolled oxygen. Hence, the oxygen level should be monitored to assess the activities of phenolic compounds in vitro.
Collapse
Affiliation(s)
- Yi Wang
- College of Biosystems Engineering and Food Sciencet, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipmen, Zhejiang University, Hangzhou 310058, PR China
| | - Ruge Lin
- College of Biosystems Engineering and Food Sciencet, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipmen, Zhejiang University, Hangzhou 310058, PR China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, PR China
| | - Laiming Zhang
- College of Biosystems Engineering and Food Sciencet, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipmen, Zhejiang University, Hangzhou 310058, PR China
| | - Suqing Lan
- College of Biosystems Engineering and Food Sciencet, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipmen, Zhejiang University, Hangzhou 310058, PR China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, PR China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Sciencet, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipmen, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China
| | - Haibo Pan
- College of Biosystems Engineering and Food Sciencet, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipmen, Zhejiang University, Hangzhou 310058, PR China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, PR China.
| | - Shiguo Chen
- College of Biosystems Engineering and Food Sciencet, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipmen, Zhejiang University, Hangzhou 310058, PR China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| |
Collapse
|
7
|
Gregory AL, Bussan HE, Topf MA, Hryckowian AJ. Impacts of perR on oxygen sensitivity, gene expression, and murine infection in Clostridioides difficile 630∆ erm. J Bacteriol 2025; 207:e0046824. [PMID: 39846733 PMCID: PMC11841134 DOI: 10.1128/jb.00468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Clostridioides difficile infection (CDI), characterized by colitis and diarrhea, afflicts approximately half a million people in the USA every year, burdening both individuals and the healthcare system. C. difficile 630Δerm is an erythromycin-sensitive variant of the clinical isolate C. difficile 630 and is commonly used in the C. difficile research community due to its genetic tractability. 630Δerm possesses a point mutation in perR, an autoregulated transcriptional repressor that regulates oxidative stress resistance genes. This point mutation results in a constitutively de-repressed PerR operon in 630Δerm. To address the impacts of perR on phenotypes relevant for oxygen tolerance and relevant to a murine model of CDI, we corrected the point mutant to restore PerR function in 630∆erm (herein, 630∆erm perRWT). We demonstrate that there is no difference in growth between 630Δerm and 630Δerm perRWT under anaerobic conditions or when exposed to concentrations of O2 that mimic those found near the surface of the colonic epithelium. However, 630∆erm perRWT is more sensitive to ambient oxygen than 630∆erm, which coincides with alterations in expression of a variety of perR-dependent and perR-independent genes. Finally, we show that 630∆erm and 630∆erm perRWT do not differ in their ability to infect and cause disease in a well-established murine model of CDI. Together, these data support the hypothesis that the perR mutation in 630∆erm arose as a result of exposure to ambient oxygen and that the perR mutation in 630∆erm is unlikely to impact CDI-relevant phenotypes in laboratory studies.IMPORTANCEClostridioides difficile is a diarrheal pathogen and a major public health concern. To improve humans' understanding of C. difficile, a variety of C. difficile isolates are used in research, including C. difficile 630Δerm. 630Δerm is a derivative of the clinical isolate 630 and is commonly studied because it is genetically manipulable. Previous work showed that a mutation in perR in 630Δerm results in a dysregulated oxidative stress response, but no work has been done to characterize perR-dependent effects on the transcriptome or to determine impacts of perR during infection. Here, we identify transcriptomic differences between 630∆erm and 630∆erm perRWT exposed to ambient oxygen and demonstrate that there is no strain-based difference in burdens in murine C. difficile infection.
Collapse
Affiliation(s)
- Anna L. Gregory
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hailey E. Bussan
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Madeline A. Topf
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Walter S, Schatz V, Petzold J, Schmidt C, Hoffmann S, Jantsch J, Gerlach RG. O 2-dependent incapacitation of the Salmonella pathogenicity island 1 repressor HilE. Front Cell Infect Microbiol 2025; 15:1434254. [PMID: 40041146 PMCID: PMC11876186 DOI: 10.3389/fcimb.2025.1434254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
For successful colonization, pathogenic bacteria need to adapt their metabolism and virulence functions to challenging environments within their mammalian hosts that are frequently characterized by low oxygen (O2) tensions. Upon oral ingestion, the human pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) is exposed to changing O2 and pH levels. Low concentrations of O2, which can enhance the virulence of enteroinvasive pathogens, facilitate the expression of the type three secretion system (T3SS-1) encoded by the Salmonella pathogenicity island 1 (SPI-1) that is critical for enteroinvasion and pathogenicity of S. Typhimurium. To study the impact of key environmental cues of the intestine when Salmonella encounter enterocytes, we established an in vitro growth model, which allows shifting the concentration of O2 from 0.5% to 11% and the pH from 5.9 to 7.4 in the presence of acetate and the alternative electron acceptor nitrate. Compared to normoxia, hypoxia elevated the expression of SPI-1 genes encoding T3SS-1 translocators and effectors, which resulted in higher invasion and effector translocation in epithelial cells. While hypoxia and pH shift only marginally altered the gene expression of SPI-1 regulators, including the SPI-1 repressor hilE, hypoxia and pH shift completely incapacitated HilE in a post-translational manner, ultimately promoting SPI-1 activity. From these findings, we conclude that O2-dependent HilE function allows for ultrasensitive adaptation of SPI-1 activity in environments with varying O2 availability such as the intestinal tract.
Collapse
Affiliation(s)
- Steffi Walter
- Project Group 5, Robert Koch Institute, Wernigerode, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jana Petzold
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman G. Gerlach
- Project Group 5, Robert Koch Institute, Wernigerode, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Corcione S, Ferrocino I, Lupia T, Busca A, Bianco G, Dellacasa C, Giaccone L, Brunello L, Butera S, Costa C, Bruno B, De Rosa FG. Influence of ESBL colonization status on gut microbiota composition during allogenic hematopoietic stem cell transplantation. Sci Rep 2025; 15:1275. [PMID: 39779737 PMCID: PMC11711636 DOI: 10.1038/s41598-025-85128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
After allogeneic HSCT (allo-HSCT), the diversity of the intestinal microbiota significantly decreases. The changes can be rapid and are thought to be caused by chemotherapy, antibiotics, or intestinal inflammation. Most patients are exposed to prophylactic and therapeutic antibiotics during neutropenia and several patients are colonized by ESBL bacteria. We investigated the changes in gut microbiota composition in allo-HSCT, aiming at investigating if the acquisition of ESBL colonization may affect gut microbiome diversity during allo-HSCT. This was a single-center prospective pilot study. All patients consecutively admitted to the Haematological Unit of the City of Health and Science, Molinette Hospital in Turin, Italy, and undergoing allo-HSCT between August 2017 to August 2020 were enrolled in the study. Microbiome analysis on fecal samples were collected every 7 days from hospital admission to discharge and until 1 year after HSCT. 48 patients were enrolled in the study. At baseline 14 patients (29.16%) were colonized by MDR bacteria, mostly extended-spectrum beta-lactamase (ESBL)-producing gram negatives (N = 11; 78.57%). During allo-HSCT, one patient had a positive rectal swab for a carbapenemase-producing Klebsiella pneumoniae and eight patients lost the colonization during the hospital stay. Microbiota composition was compared between patients colonized by ESBL at baseline and non-colonized patients. Patients colonized by ESBL had a greater abundances of Bifidobacterium, Blautia, Clostridium, Coprococcus, L-Ruminococcus Mogibacteriaceae, Peptostreptococceae and Oscillospira, while non-colonized ESBL patients had a greater abundance of Actinomycetales, Staphylococcus and Sutterella. Moreover, microbiota composition of colonized by ESBL that retained colonization after HSCT showed an increased in abundances of Akkermansia, Dialister, Erysipelotrichaceae and Methanobrevibacter when compared with patients that become negative at rectal swabs. From a clinical perspective, the evolution of this prospective pilot study will be to investigate markers of gut barrier functions, SCFA productions and to correlate the predictivity of these parameters with risk of invasive infections and clinical outcomes in allo-HSCT population.
Collapse
Affiliation(s)
- Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy.
- Tufts Medical Center and Tufts University School of Medicine, Boston, MA, USA.
| | - Ilario Ferrocino
- Department of Agriculture, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Alessandro Busca
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Gabriele Bianco
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Chiara Dellacasa
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Luisa Giaccone
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Lucia Brunello
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Sara Butera
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Benedetto Bruno
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | | |
Collapse
|
10
|
Archontakis-Barakakis P, Mavridis T, Chlorogiannis DD, Barakakis G, Laou E, Sessler DI, Gkiokas G, Chalkias A. Intestinal oxygen utilisation and cellular adaptation during intestinal ischaemia-reperfusion injury. Clin Transl Med 2025; 15:e70136. [PMID: 39724463 DOI: 10.1002/ctm2.70136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The gastrointestinal tract can be deranged by ailments including sepsis, trauma and haemorrhage. Ischaemic injury provokes a common constellation of microscopic and macroscopic changes that, together with the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow, are collectively known as ischaemia-reperfusion injury (IRI). Although much of the gastrointestinal tract is normally hypoxemic, intestinal IRI results when there is inadequate oxygen availability due to poor supply (pathological hypoxia) or abnormal tissue oxygen use and metabolism (dysoxia). Intestinal oxygen uptake usually remains constant over a wide range of blood flows and pressures, with cellular function being substantively compromised when ischaemia leads to a >50% decline in intestinal oxygen consumption. Restoration of perfusion and oxygenation provokes additional injury, resulting in mucosal damage and disruption of intestinal barrier function. The primary cellular mechanism for sensing hypoxia and for activating a cascade of cellular responses to mitigate the injury is a family of heterodimer proteins called hypoxia-inducible factors (HIFs). The HIF system is connected to numerous biochemical and immunologic pathways induced by IRI and the concentration of those proteins increases during hypoxia and dysoxia. Activation of the HIF system leads to augmented transcription of specific genes in various types of affected cells, but may also augment apoptotic and inflammatory processes, thus aggravating gut injury. KEY POINTS: During intestinal ischaemia, mitochondrial oxygen uptake is reduced when cellular oxygen partial pressure decreases to below the threshold required to maintain normal oxidative metabolism. Upon reperfusion, intestinal hypoxia may persist because microcirculatory flow remains impaired and/or because available oxygen is consumed by enzymes, intestinal cells and neutrophils.
Collapse
Affiliation(s)
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | | | - Georgios Barakakis
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, Athens, Greece
| | - Daniel I Sessler
- Center for Outcomes Research and Department of Anesthesiology, UTHealth, Houston, Texas, USA
- Outcomes Research Consortium®, Houston, Texas, USA
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Chalkias
- Outcomes Research Consortium®, Houston, Texas, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Critical Care Medicine, Tzaneio General Hospital, Piraeus, Greece
| |
Collapse
|
11
|
Izadifar Z, Charrez B, Almeida M, Robben S, Pilobello K, van der Graaf-Mas J, Marquez SL, Ferrante TC, Shcherbina K, Gould R, LoGrande NT, Sesay AM, Ingber DE. Organ chips with integrated multifunctional sensors enable continuous metabolic monitoring at controlled oxygen levels. Biosens Bioelectron 2024; 265:116683. [PMID: 39213819 PMCID: PMC11391946 DOI: 10.1016/j.bios.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Despite remarkable advances in Organ-on-a-chip (Organ Chip) microfluidic culture technology, recreating tissue-relevant physiological conditions, such as the region-specific oxygen concentrations, remains a formidable technical challenge, and analysis of tissue functions is commonly carried out using one analytical technique at a time. Here, we describe two-channel Organ Chip microfluidic devices fabricated from polydimethylsiloxane and gas impermeable polycarbonate materials that are integrated with multiple sensors, mounted on a printed circuit board and operated using a commercially available Organ Chip culture instrument. The novelty of this system is that it enables the recreation of physiologically relevant tissue-tissue interfaces and oxygen tension as well as non-invasive continuous measurement of transepithelial electrical resistance, oxygen concentration and pH, combined with simultaneous analysis of cellular metabolic activity (ATP/ADP ratio), cell morphology, and tissue phenotype. We demonstrate the reliable and reproducible functionality of this system in living human Gut and Liver Chip cultures. Changes in tissue barrier function and oxygen tension along with their functional and metabolic responses to chemical stimuli (e.g., calcium chelation, oligomycin) were continuously and noninvasively monitored on-chip for up to 23 days. A physiologically relevant microaerobic microenvironment that supports co-culture of human intestinal cells with living Lactococcus lactis bacteria also was demonstrated in the Gut Chip. The integration of multi-functional sensors into Organ Chips provides a robust and scalable platform for the simultaneous, continuous, and non-invasive monitoring of multiple physiological functions that can significantly enhance the comprehensive and reliable evaluation of engineered tissues in Organ Chip models in basic research, preclinical modeling, and drug development.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Berenice Charrez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Micaela Almeida
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Stijn Robben
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Department of Microelectronics, Technical University Delft, Delft, 2628 CD, Netherlands
| | - Kanoelani Pilobello
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Janet van der Graaf-Mas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Susan L Marquez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Kostyantyn Shcherbina
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Russell Gould
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
Gregory AL, Bussan HE, Topf MA, Hryckowian AJ. Impacts of perR on oxygen sensitivity, gene expression, and murine infection in Clostridioides difficile 630Δ erm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621113. [PMID: 39554039 PMCID: PMC11565800 DOI: 10.1101/2024.10.30.621113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Clostridioides difficile infection (CDI), characterized by colitis and diarrhea, afflicts approximately half a million people in the United States every year, burdening both individuals and the healthcare system. C. difficile 630Δerm is an erythromycin-sensitive variant of the clinical isolate C. difficile 630 and is commonly used in the C. difficile research community due to its genetic tractability. 630Δerm possesses a point mutation in perR, an autoregulated transcriptional repressor that regulates oxidative stress resistance genes. This point mutation results in a constitutively de-repressed PerR operon in 630Δerm. To address the impacts of perR on phenotypes relevant for oxygen tolerance and relevant to a murine model of CDI, we corrected the point mutant to restore PerR function in 630Δerm (herein, 630Δerm perR WT). We demonstrate that there is no difference in growth between 630Δerm and a 630Δerm perR WT under anaerobic conditions or when exposed to concentrations of O2 that mimic those found near the surface of the colonic epithelium. However, 630Δerm perR WT is more sensitive to ambient oxygen than 630Δerm, which coincides with alterations in expression of a variety of perR-dependent and perR-independent genes. Finally, we show that 630Δerm and 630Δerm perR WT do not differ in their ability to infect and cause disease in a well-established murine model of CDI. Together, these data support the hypothesis that the perR mutation in 630Δerm arose as a result of exposure to ambient oxygen and that the perR mutation in 630Δerm is unlikely to impact CDI-relevant phenotypes in laboratory studies.
Collapse
Affiliation(s)
- Anna L. Gregory
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Hailey E. Bussan
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Madeline A. Topf
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
13
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time-resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. mSphere 2024; 9:e0053424. [PMID: 39254340 PMCID: PMC11520297 DOI: 10.1128/msphere.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024] Open
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. In this study, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation in high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity in samples based on Salmonella ribosomal activity, which is separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expressions descriptive of each phase. Surprisingly, we identified genes associated with host cell entry expressed throughout infection, suggesting subpopulations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection.IMPORTANCEIdentifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts toward Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella. We observed differential gene expression across infection phases in mice over time on a high-fat diet. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, which explores the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
Affiliation(s)
- Katherine Kokkinias
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Ikaia Leleiwi
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Richard Kevorkian
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rebecca A. Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Mikayla A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C. Wrighton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
14
|
Wang T, Wang RX, Colgan SP. Physiologic hypoxia in the intestinal mucosa: a central role for short-chain fatty acids. Am J Physiol Cell Physiol 2024; 327:C1087-C1093. [PMID: 39159391 PMCID: PMC11482044 DOI: 10.1152/ajpcell.00472.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
The intestinal mucosa is a dynamic surface that facilitates interactions between the host and an outside world that includes trillions of microbes, collectively termed the microbiota. This fine balance is regulated by an energetically demanding physical and biochemical barrier that is formed by the intestinal epithelial cells. In addition, this homeostasis exists at an interface between the anaerobic colonic lumen and a highly oxygenated, vascularized lamina propria. The resultant oxygen gradient within the intestine establishes "physiologic hypoxia" as a central metabolic feature of the mucosa. Although oxygen is vital for energy production to meet cellular metabolism needs, the availability of oxygen has far-reaching influences beyond just energy provision. Recent studies have shown that the intestinal mucosa has purposefully adapted to use differential oxygen levels largely through the presence of short-chain fatty acids (SCFAs), particularly butyrate (BA). Intestinal epithelial cells use butyrate for a multitude of functions that promote mucosal homeostasis. In this review, we explore how the physiologic hypoxia profile interfaces with SCFAs to benefit host mucosal tissues.
Collapse
Affiliation(s)
- Timothy Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Healthcare Studies, University of Texas Dallas, Richardson, Texas, United States
| | - Ruth X Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Dermatology, University of California San Diego, San Diego, California, United States
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, United States
| |
Collapse
|
15
|
Sharma R, Raza GS, Sodum N, Walkowiak J, Herzig KH. Effect of hypoxia on GLP-1 secretion - an in vitro study using enteroendocrine STC-1 -cells as a model. Pflugers Arch 2024; 476:1613-1621. [PMID: 39075239 PMCID: PMC11381484 DOI: 10.1007/s00424-024-02996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Glucagon-like peptide (GLP)-1 is a hormone released by enteroendocrine L-cells after food ingestion. L-cells express various receptors for nutrient sensing including G protein-coupled receptors (GPRs). Intestinal epithelial cells near the lumen have a lower O2 tension than at the base of the crypts, which leads to hypoxia in L-cells. We hypothesized that hypoxia affects nutrient-stimulated GLP-1 secretion from the enteroendocrine cell line STC-1, the most commonly used model. In this study, we investigated the effect of hypoxia (1% O2) on alpha-linolenic acid (αLA) stimulated GLP-1 secretion and their receptor expressions. STC-1 cells were incubated for 12 h under hypoxia (1% O2) and treated with αLA to stimulate GLP-1 secretion. 12 h of hypoxia did not change basal GLP-1 secretion, but significantly reduced nutrient (αLA) stimulated GLP-1 secretion. In normoxia, αLA (12.5 μM) significantly stimulated (~ 5 times) GLP-1 secretion compared to control, but under hypoxia, GLP-1 secretion was reduced by 45% compared to normoxia. αLA upregulated GPR120, also termed free fatty acid receptor 4 (FFAR4), expressions under normoxia as well as hypoxia. Hypoxia downregulated GPR120 and GPR40 expression by 50% and 60%, respectively, compared to normoxia. These findings demonstrate that hypoxia does not affect the basal GLP-1 secretion but decreases nutrient-stimulated GLP-1 secretion. The decrease in nutrient-stimulated GLP-1 secretion was due to decreased GPR120 and GPR40 receptors expression. Changes in the gut environment and inflammation might contribute to the hypoxia of the epithelial and L-cells.
Collapse
Affiliation(s)
- Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572, Poznań, Poland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland.
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572, Poznań, Poland.
| |
Collapse
|
16
|
Ohuchi H, Asano R, Mori A, Ishibashi T, Motooka D, Nakai M, Nakaoka Y. Gut Dysbiosis in Patients With Fontan Circulation. J Am Heart Assoc 2024; 13:e034538. [PMID: 39248279 PMCID: PMC11935625 DOI: 10.1161/jaha.124.034538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The process underlying Fontan pathophysiology is multifactorial and may include gut dysbiosis (GD). We investigated the presence of GD and elucidated its correlation with Fontan pathophysiology. METHODS AND RESULTS Gut microbiomes of 155 consecutive patients with Fontan pathophysiology and 44 healthy individuals were analyzed using 16S rRNA sequencing of bacterial DNA extracted from fecal samples. GD was evaluated on the basis of α and ß diversities of the gut microbiome and was compared with natural log-transformed C-reactive protein, hemodynamics, von Willebrand factor antigen (a bacterial translocation marker), Mac-2 binding protein glycosylation isomer (a liver fibrosis indicator), peak oxygen uptake, and heart failure hospitalization. Patients with Fontan exhibited GD in terms of α and ß diversities as compared with controls (P<0.01). Reduced α diversity was associated with a failed hemodynamic phenotype, hypoxia, high natural log-transformed C-reactive protein levels, and elevated von Willebrand factor antigen and Mac-2 binding protein glycosylation isomer levels (P<0.05-0.01). In addition to elevated von Willebrand factor antigen and hypoxia, decreased α diversity was independently correlated with a high natural log-transformed C-reactive protein level (P<0.05), which was associated with liver imaging abnormalities and a heightened risk of heart failure hospitalization (P<0.01 for both). CONCLUSIONS Patients with Fontan pathophysiology exhibited GD compared with healthy individuals, and GD was linked to failed hemodynamics and systemic inflammation with a poor prognosis. Therefore, GD may play a pivotal role in a failing Fontan status, including Fontan-associated liver disease, through GD-associated systemic inflammation.
Collapse
Affiliation(s)
- Hideo Ohuchi
- Department of Pediatric CardiologyNational Cerebral and Cardiovascular CenterSuitaJapan
- Adult Congenital Heart Disease CenterNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Ryotaro Asano
- Department of Vascular PhysiologyNational Cerebral and Cardiovascular Center Research InstituteSuitaJapan
- Department of Cardiovascular MedicineNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Aki Mori
- Department of Pediatric CardiologyNational Cerebral and Cardiovascular CenterSuitaJapan
- Adult Congenital Heart Disease CenterNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Tomohiko Ishibashi
- Department of Vascular PhysiologyNational Cerebral and Cardiovascular Center Research InstituteSuitaJapan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Michikazu Nakai
- Clinical Research Support CenterUniversity of Miyazaki HospitalMiyazakiJapan
| | - Yoshikazu Nakaoka
- Department of Vascular PhysiologyNational Cerebral and Cardiovascular Center Research InstituteSuitaJapan
- Department of Cardiovascular MedicineNational Cerebral and Cardiovascular CenterSuitaJapan
| |
Collapse
|
17
|
Ohgaki R, Hirase Y, Xu M, Okanishi H, Kanai Y. LAT1 expression in colorectal cancer cells is unresponsive to HIF-1/2α accumulation under experimental hypoxia. Sci Rep 2024; 14:19635. [PMID: 39179631 PMCID: PMC11343765 DOI: 10.1038/s41598-024-70603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
L-type amino acid transporter 1 (LAT1) is upregulated in various cancer types and contributes to disease progression. Previous studies have demonstrated or suggested that hypoxia-inducible factors (HIFs), the key transcription factors in hypoxic responses, control the expression of LAT1 gene in several types of cancer cells. However, this regulatory relationship has not been investigated yet in colorectal cancer (CRC), one of the cancer types in which the increased LAT1 expression holds prognostic significance. In this study, we found that neither LAT1 mRNA nor protein is induced under hypoxic condition (1% O2) in CRC HT-29 cells in vitro, regardless of the prominent HIF-1/2α accumulation and HIFs-dependent upregulation of glucose transporter 1. The hypoxic treatment generally did not increase either the mRNA or protein expression of LAT1 in eight CRC cell lines tested, in contrast to the pronounced upregulation by amino acid restriction. Interestingly, knockdown of von Hippel-Lindau ubiquitin ligase to inhibit the proteasomal degradation of HIFs caused an accumulation of HIF-2α and increased the LAT1 expression in certain CRC cell lines. This study contributes to delineating the molecular mechanisms responsible for the pathological expression of LAT1 in CRC cells, emphasizing the ambiguity of HIFs-dependent transcriptional upregulation of LAT1 across cancer cells.
Collapse
Affiliation(s)
- Ryuichi Ohgaki
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan.
| | - Yuma Hirase
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan.
- Department of Metabolic Reprogramming and Signal Regulation, Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Wang D, Zhang H, Liao X, Li J, Zeng J, Wang Y, Zhang M, Ma X, Wang X, Ren F, Wang Y, Li M, Xu J, Jin P, Sheng J. Oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles attenuates gastric and small intestinal mucosal ferroptosis caused by hypoxia through inhibiting HIF-1α- and HIF-2α-mediated lipid peroxidation. J Nanobiotechnology 2024; 22:479. [PMID: 39134988 PMCID: PMC11321022 DOI: 10.1186/s12951-024-02663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
The prevention and treatment of gastrointestinal mucosal injury caused by a plateau hypoxic environment is a clinical conundrum due to the unclear mechanism of this syndrome; however, oxidative stress and microbiota dysbiosis may be involved. The Robinia pseudoacacia L. flower, homologous to a functional food, exhibits various pharmacological effects, such as antioxidant, antibacterial, and hemostatic activities. An increasing number of studies have revealed that plant exosome-like nanoparticles (PELNs) can improve the intestinal microbiota and exert antioxidant effects. In this study, the oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles (RFELNs) significantly ameliorated hypoxia-induced gastric and small intestinal mucosal injury in mice by downregulating hypoxia-inducible factor-1α (HIF-1α) and HIF-2α expression and inhibiting hypoxia-mediated ferroptosis. In addition, oral RFELNs partially improved hypoxia-induced microbial and metabolic disorders of the stomach and small intestine. Notably, RFELNs displayed specific targeting to the gastrointestinal tract. In vitro experiments using gastric and small intestinal epithelial cell lines showed that cell death caused by elevated HIF-1α and HIF-2α under 1% O2 mainly occurred via ferroptosis. RFELNs obviously inhibited HIF-1α and HIF-2α expression and downregulated the expression of NOX4 and ALOX5, which drive reactive oxygen species production and lipid peroxidation, respectively, suppressing ferroptosis under hypoxia. In conclusion, our findings underscore the potential of oral RFELNs as novel, naturally derived agents targeting the gastrointestinal tract, providing a promising therapeutic approach for hypoxia-induced gastric and small intestinal mucosal ferroptosis.
Collapse
Affiliation(s)
- Dezhi Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Heng Zhang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xingchen Liao
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Jun Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Jie Zeng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yilin Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Mingjie Zhang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xianzong Ma
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Meng Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
| | - Peng Jin
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
| | - Jianqiu Sheng
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China.
| |
Collapse
|
19
|
He Y, Zhang X, Zhang X, Fu B, Xing J, Fu R, Lv J, Guo M, Huo X, Liu X, Lu J, Cao L, Du X, Ge Z, Chen Z, Lu X, Li C. Hypoxia exacerbates the malignant transformation of gastric epithelial cells induced by long-term H. pylori infection. Microbiol Spectr 2024; 12:e0031124. [PMID: 38916312 PMCID: PMC11302036 DOI: 10.1128/spectrum.00311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Helicobacter pylori is a microaerophilic Gram-negative bacterium that resides in the human stomach and is classified as a class I carcinogen for gastric cancer. Numerous studies have demonstrated that H. pylori infection plays a role in regulating the function of host cells, thereby contributing to the malignant transformation of these cells. However, H. pylori infection is a chronic process, and short-term cellular experiments may not provide a comprehensive understanding of the in vivo situation, especially when considering the lower oxygen levels in the human stomach. In this study, we aimed to investigate the mechanisms underlying gastric cell dysfunction after prolonged exposure to H. pylori under hypoxic conditions. We conducted a co-culture experiment using the gastric cell line GES-1 and H. pylori for 30 generations under intermittent hypoxic conditions. By closely monitoring cell proliferation, migration, invasion, autophagy, and apoptosis, we revealed that sustained H. pylori stimulation under hypoxic conditions significantly influences the function of GES-1 cells. This stimulation induces epithelial-mesenchymal transition and contributes to the propensity for malignant transformation of gastric cells. To confirm the in vitro results, we conducted an experiment involving Mongolian gerbils infected with H. pylori for 85 weeks. All the results strongly suggest that the Nod1 receptor signaling pathway plays a crucial role in H. pylori-related apoptosis and autophagy. In summary, continuous stimulation by H. pylori affects the functioning of gastric cells through the Nod1 receptor signaling pathway, increasing the likelihood of cell carcinogenesis. The presence of hypoxic conditions further exacerbates this process.IMPORTANCEDeciphering the collaborative effects of Helicobacter pylori infection on gastric epithelial cell function is key to unraveling the development mechanisms of gastric cancer. Prior research has solely examined the outcomes of short-term H. pylori stimulation on gastric epithelial cells under aerobic conditions, neglecting the bacterium's nature as a microaerophilic organism that leads to cancer following prolonged stomach colonization. This study mimics a more genuine in vivo infection scenario by repeatedly exposing gastric epithelial cells to H. pylori under hypoxic conditions for up to 30 generations. The results show that chronic exposure to H. pylori in hypoxia substantially increases cell migration, invasion, and epithelial-mesenchymal transition, while suppressing autophagy and apoptosis. This highlights the significance of hypoxic conditions in intensifying the carcinogenic impact of H. pylori infection. By accurately replicating the in vivo gastric environment, this study enhances our comprehension of H. pylori's pathogenic mechanisms in gastric cancer.
Collapse
Affiliation(s)
- Yang He
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- School of Nursing, Dalian Medical University, Dalian, China
| | - Xiulin Zhang
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolu Zhang
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Bo Fu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyi Lv
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Meng Guo
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xueyun Huo
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xin Liu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jing Lu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Lixue Cao
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xiaoyan Du
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhenwen Chen
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changlong Li
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Kochanowsky R, Carothers K, Roxas BAP, Anwar F, Viswanathan VK, Vedantam G. Clostridioides difficile superoxide reductase mitigates oxygen sensitivity. J Bacteriol 2024; 206:e0017524. [PMID: 38953644 PMCID: PMC11270899 DOI: 10.1128/jb.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Clostridioides difficile causes a serious diarrheal disease and is a common healthcare-associated bacterial pathogen. Although it has a major impact on human health, the mechanistic details of C. difficile intestinal colonization remain undefined. C. difficile is highly sensitive to oxygen and requires anaerobic conditions for in vitro growth. However, the mammalian gut is not devoid of oxygen, and C. difficile tolerates moderate oxidative stress in vivo. The C. difficile genome encodes several antioxidant proteins, including a predicted superoxide reductase (SOR) that is upregulated upon exposure to antimicrobial peptides. The goal of this study was to establish SOR enzymatic activity and assess its role in protecting C. difficile against oxygen exposure. Insertional inactivation of sor rendered C. difficile more sensitive to superoxide, indicating that SOR contributes to antioxidant defense. Heterologous C. difficile sor expression in Escherichia coli conferred protection against superoxide-dependent growth inhibition, and the corresponding cell lysates showed superoxide scavenging activity. Finally, a C. difficile SOR mutant exhibited global proteome changes under oxygen stress when compared to the parent strain. Collectively, our data establish the enzymatic activity of C. difficile SOR, confirm its role in protection against oxidative stress, and demonstrate SOR's broader impacts on the C. difficile vegetative cell proteome.IMPORTANCEClostridioides difficile is an important pathogen strongly associated with healthcare settings and capable of causing severe diarrheal disease. While considered a strict anaerobe in vitro, C. difficile has been shown to tolerate low levels of oxygen in the mammalian host. Among other well-characterized antioxidant proteins, the C. difficile genome encodes a predicted superoxide reductase (SOR), an understudied component of antioxidant defense in pathogens. The significance of the research reported herein is the characterization of SOR's enzymatic activity, including confirmation of its role in protecting C. difficile against oxidative stress. This furthers our understanding of C. difficile pathogenesis and presents a potential new avenue for targeted therapies.
Collapse
Affiliation(s)
- Rebecca Kochanowsky
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Katelyn Carothers
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Bryan Angelo P. Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, The University of Arizona, Tucson, Arizona, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, The University of Arizona, Tucson, Arizona, USA
- Southern Arizona VA Healthcare System, Tucson, Arizona, USA
| |
Collapse
|
21
|
Benej M, Hoyd R, Kreamer M, Wheeler CE, Grencewicz DJ, Choueiry F, Chan CH, Zakharia Y, Ma Q, Dodd RD, Ulrich CM, Hardikar S, Churchman ML, Tarhini AA, Robinson LA, Singer EA, Ikeguchi AP, McCarter MD, Tinoco G, Husain M, Jin N, Tan AC, Osman AE, Eljilany I, Riedlinger G, Schneider BP, Benejova K, Kery M, Papandreou I, Zhu J, Denko N, Spakowicz D, for the exORIEN Consortium. The Tumor Microbiome Reacts to Hypoxia and Can Influence Response to Radiation Treatment in Colorectal Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1690-1701. [PMID: 38904265 PMCID: PMC11234499 DOI: 10.1158/2767-9764.crc-23-0367] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Tumor hypoxia has been shown to predict poor patient outcomes in several cancer types, partially because it reduces radiation's ability to kill cells. We hypothesized that some of the clinical effects of hypoxia could also be due to its impact on the tumor microbiome. Therefore, we examined the RNA sequencing data from the Oncology Research Information Exchange Network database of patients with colorectal cancer treated with radiotherapy. We identified microbial RNAs for each tumor and related them to the hypoxic gene expression scores calculated from host mRNA. Our analysis showed that the hypoxia expression score predicted poor patient outcomes and identified tumors enriched with certain microbes such as Fusobacterium nucleatum. The presence of other microbes, such as Fusobacterium canifelinum, predicted poor patient outcomes, suggesting a potential interaction between hypoxia, the microbiome, and radiation response. To experimentally investigate this concept, we implanted CT26 colorectal cancer cells into immune-competent BALB/c and immune-deficient athymic nude mice. After growth, in which tumors passively acquired microbes from the gastrointestinal tract, we harvested tumors, extracted nucleic acids, and sequenced host and microbial RNAs. We stratified tumors based on their hypoxia score and performed a metatranscriptomic analysis of microbial gene expression. In addition to hypoxia-tropic and -phobic microbial populations, analysis of microbial gene expression at the strain level showed expression differences based on the hypoxia score. Thus, hypoxia gene expression scores seem to associate with different microbial populations and elicit an adaptive transcriptional response in intratumoral microbes, potentially influencing clinical outcomes. SIGNIFICANCE Tumor hypoxia reduces radiotherapy efficacy. In this study, we explored whether some of the clinical effects of hypoxia could be due to interaction with the tumor microbiome. Hypoxic gene expression scores associated with certain microbes and elicited an adaptive transcriptional response in others that could contribute to poor clinical outcomes.
Collapse
Affiliation(s)
- Martin Benej
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Rebecca Hoyd
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - McKenzie Kreamer
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Caroline E. Wheeler
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Dennis J. Grencewicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Fouad Choueiry
- Department of Health Sciences, The Ohio State University, Columbus, Ohio.
| | - Carlos H.F. Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | - Yousef Zakharia
- Division of Oncology, Hematology and Blood & Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa.
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Sheetal Hardikar
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | | | - Ahmad A. Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Lary A. Robinson
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Eric A. Singer
- Department of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Alexandra P. Ikeguchi
- Department of Hematology/Oncology, Stephenson Cancer Center of University of Oklahoma, Oklahoma City, Oklahoma.
| | - Martin D. McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado.
| | - Gabriel Tinoco
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Marium Husain
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Ning Jin
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Aik C. Tan
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Afaf E.G. Osman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.
| | - Islam Eljilany
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Clinical Science Lab, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Gregory Riedlinger
- Department of Precision Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| | - Bryan P. Schneider
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana.
| | - Katarina Benejova
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Martin Kery
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Jiangjiang Zhu
- Department of Health Sciences, The Ohio State University, Columbus, Ohio.
| | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Daniel Spakowicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | | |
Collapse
|
22
|
Möller MN, Vitturi DA. The chemical biology of dinitrogen trioxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 8:100026. [PMID: 38957295 PMCID: PMC11218869 DOI: 10.1016/j.rbc.2024.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Dinitrogen trioxide (N 2 O 3 ) mediates low-molecular weight and protein S- and N-nitrosation, with recent reports suggesting a role in the formation of nitrating intermediates as well as in nitrite-dependent hypoxic vasodilatation. However, the reactivity ofN 2 O 3 in biological systems results in an extremely short half-life that renders this molecule essentially undetectable by currently available technologies. As a result, evidence for in vivoN 2 O 3 formation derives from the detection of nitrosated products as well as from in vitro kinetic determinations, isotopic labeling studies, and spectroscopic analyses. This review will discuss mechanisms ofN 2 O 3 formation, reactivity and decomposition, as well as address the role of sub-cellular localization as a key determinant of its actions. Finally, evidence will be discussed supporting different roles forN 2 O 3 as a biologically relevant signaling molecule.
Collapse
Affiliation(s)
- Matías N. Möller
- Laboratorio Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Darío A. Vitturi
- Department of Pathology. University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
Das A, Martinez-Ruiz GU, Bouladoux N, Stacy A, Moraly J, Vega-Sendino M, Zhao Y, Lavaert M, Ding Y, Morales-Sanchez A, Harly C, Seedhom MO, Chari R, Awasthi P, Ikeuchi T, Wang Y, Zhu J, Moutsopoulos NM, Chen W, Yewdell JW, Shapiro VS, Ruiz S, Taylor N, Belkaid Y, Bhandoola A. Transcription factor Tox2 is required for metabolic adaptation and tissue residency of ILC3 in the gut. Immunity 2024; 57:1019-1036.e9. [PMID: 38677292 PMCID: PMC11096055 DOI: 10.1016/j.immuni.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/13/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.
Collapse
Affiliation(s)
- Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gustavo Ulises Martinez-Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Faculty of Medicine, Research Division, National Autonomous University of Mexico, Mexico City, Mexico; Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Josquin Moraly
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maria Vega-Sendino
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Yongge Zhao
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Marieke Lavaert
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Yi Ding
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Abigail Morales-Sanchez
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Christelle Harly
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Mina O Seedhom
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Parirokh Awasthi
- Mouse Modeling Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Infection Section, NIDCR, NIH, Bethesda, MD, USA
| | - Yueqiang Wang
- Shenzhen Typhoon HealthCare, Shenzhen, Guangdong, China
| | - Jinfang Zhu
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | | | - WanJun Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, USA
| | | | | | - Sergio Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
24
|
Lee J, Menon N, Lim CT. Dissecting Gut-Microbial Community Interactions using a Gut Microbiome-on-a-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302113. [PMID: 38414327 PMCID: PMC11132043 DOI: 10.1002/advs.202302113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/21/2023] [Indexed: 02/29/2024]
Abstract
While the human gut microbiota has a significant impact on gut health and disease, understanding of the roles of gut microbes, interactions, and collective impact of gut microbes on various aspects of human gut health is limited by the lack of suitable in vitro model system that can accurately replicate gut-like environment and enable the close visualization on causal and mechanistic relationships between microbial constitutents and the gut. , In this study, we present a scalable Gut Microbiome-on-a-Chip (GMoC) with great imaging capability and scalability, providing a physiologically relevant dynamic gut-microbes interfaces. This chip features a reproducible 3D stratified gut epithelium derived from Caco-2 cells (µGut), mimicking key intestinal architecture, functions, and cellular complexity, providing a physiolocially relevant gut environment for microbes residing in the gut. Incorporating tumorigenic bacteria, enterotoxigenic Bacteroides fragilis (ETBF), into the GMoC enable the observation of pathogenic behaviors of ETBF, leading to µGut disruption and pro-tumorigenic signaling activations. Pre-treating the µGut with a beneficial gut microbe Lactobacillus spp., effectively prevent ETBF-mediated gut pathogenesis, preserving the healthy state of the µGut through competition-mediated colonization resistance. The GMoC holds potential as a valuable tool for exploring unknown roles of gut microbes in microbe-induced pathogenesis and microbe-based therapeutic development.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech)National University of SingaporeSingapore117599Singapore
| | - Nishanth Menon
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech)National University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
| |
Collapse
|
25
|
Vorländer D, Schultz G, Hoffmann K, Rasch D, Dohnt K. PETR: A novel peristaltic mixed tubular bioreactor simulating human colonic conditions. Biotechnol Bioeng 2024; 121:1118-1143. [PMID: 38151924 DOI: 10.1002/bit.28636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/29/2023]
Abstract
A novel bioreactor simulating human colonic conditions for in vitro cultivation of intestinal microbiota is presented. The PEristaltic mixed Tubular bioReactor (PETR) is modular designed and periodically kneaded to simulate intestinal peristalsis. The reactor is introduced, characterized from a bioprocess engineer's perspective and discussed in its ability to mimic colon conditions. PETR provides physiological temperature and appropriate anaerobic conditions, simulates intestinal peristalsis, and has a mean residence time of 32.8 ± 0.8 h comparable to the adult human colon. The single-tube design enables a time-constant and longitudinally progressive pH gradient from 5.5 to 7.0. Using a dialysis liquid containing high molecular weight polyethylene glycol, the integrated dialysis system efficiently absorbs short chain fatty acids (up to 60%) and water (on average 850 mL d-1 ). Cultivation of a typical gut bacterium (Bifidobacterium animalis) was performed to demonstrate the applicability for controlled microbiota cultivation. PETR is unique in combining simulation of the entire colon, peristaltic mixing, dialytic water and metabolite absorption, and a progressive pH gradient in a single-tube design. PETR is a further step to precise replication of colonic conditions in vitro for reliable and reproducible microbiota research, such as studying the effect of food compounds, prebiotics or probiotics, or the development and treatment of infections with enteric pathogens, but also for further medical applications such as drug delivery studies or to study the effect of drugs on and their degradation by the microbiota.
Collapse
Affiliation(s)
- David Vorländer
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Gábor Schultz
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristin Hoffmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Katrin Dohnt
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
26
|
Jiang F, Yang Y, Mao Z, Cai W, Li G. ArcA positively regulates the expression of virulence genes and contributes to virulence of porcine Shiga toxin-producing enterotoxigenic Escherichia coli. Microbiol Spectr 2023; 11:e0152523. [PMID: 37916813 PMCID: PMC10714933 DOI: 10.1128/spectrum.01525-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhea in humans and animals, leading to death and huge economic loss worldwide. Thus, elucidation of ETEC's pathogenic mechanisms will provide powerful data for the discovery of drugs serving as prevention or therapeutics against ETEC-caused diarrheal diseases. Here, we report that ArcA plays an essential role in the pathogenicity and virulence regulation in ETEC by positively regulating the expression of several key virulence factors including F18 fimbriae, heat-labile and heat-stable toxins, Shiga toxin 2e, and hemolysin, under microaerobic conditions and in vivo. Moreover, we found that positive regulation of several virulence genes by ArcA requires a global repressor H-NS (histone-like nucleoid structuring), implying that ArcA may exert positive effects by antagonizing H-NS. Collectively, our data established a key role for ArcA in the pathogenicity of porcine ETEC and ETEC strains isolated from human infections. Moreover, our work reveals another layer of regulation in relation to oxygen control of virulence factors in ETEC.
Collapse
Affiliation(s)
- Fengwei Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yan Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhao Mao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wentong Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ganwu Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
27
|
Mergani A, Meurer M, Wiebe E, Dümmer K, Wirz K, Lehmann J, Brogden G, Schenke M, Künnemann K, Naim HY, Grassl GA, von Köckritz-Blickwede M, Seeger B. Alteration of cholesterol content and oxygen level in intestinal organoids after infection with Staphylococcus aureus. FASEB J 2023; 37:e23279. [PMID: 37902583 DOI: 10.1096/fj.202300799r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
The pathogenicity elicited by Staphylococcus (S.) aureus, one of the best-studied bacteria, in the intestine is not well understood. Recently, we demonstrated that S. aureus infection induces alterations in membrane composition that are associated with concomitant impairment of intestinal function. Here, we used two organoid models, induced pluripotent stem cell (iPSC)-derived intestinal organoids and colonic intestinal stem cell-derived intestinal organoids (colonoids), to examine how sterol metabolism and oxygen levels change in response to S. aureus infection. HPLC quantification showed differences in lipid homeostasis between infected and uninfected cells, characterized by a remarkable decrease in total cellular cholesterol. As the altered sterol metabolism is often due to oxidative stress response, we next examined intracellular and extracellular oxygen levels. Three different approaches to oxygen measurement were applied: (1) cell-penetrating nanoparticles to quantify intracellular oxygen content, (2) sensor plates to quantify extracellular oxygen content in the medium, and (3) a sensor foil system for oxygen distribution in organoid cultures. The data revealed significant intracellular and extracellular oxygen drop after infection in both intestinal organoid models as well as in Caco-2 cells, which even 48 h after elimination of extracellular bacteria, did not return to preinfection oxygen levels. In summary, we show alterations in sterol metabolism and intra- and extracellular hypoxia as a result of S. aureus infection. These results will help understand the cellular stress responses during sustained bacterial infections in the intestinal epithelium.
Collapse
Affiliation(s)
- AhmedElmontaser Mergani
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marita Meurer
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Elena Wiebe
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Dümmer
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Wirz
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Judith Lehmann
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Graham Brogden
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Schenke
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Künnemann
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany
| | - Hassan Y Naim
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
28
|
Sisk-Hackworth L, Brown J, Sau L, Levine AA, Tam LYI, Ramesh A, Shah RS, Kelley-Thackray ET, Wang S, Nguyen A, Kelley ST, Thackray VG. Genetic hypogonadal mouse model reveals niche-specific influence of reproductive axis and sex on intestinal microbial communities. Biol Sex Differ 2023; 14:79. [PMID: 37932822 PMCID: PMC10626657 DOI: 10.1186/s13293-023-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The gut microbiome has been linked to many diseases with sex bias including autoimmune, metabolic, neurological, and reproductive disorders. While numerous studies report sex differences in fecal microbial communities, the role of the reproductive axis in this differentiation is unclear and it is unknown how sex differentiation affects microbial diversity in specific regions of the small and large intestine. METHODS We used a genetic hypogonadal mouse model that does not produce sex steroids or go through puberty to investigate how sex and the reproductive axis impact bacterial diversity within the intestine. Using 16S rRNA gene sequencing, we analyzed alpha and beta diversity and taxonomic composition of fecal and intestinal communities from the lumen and mucosa of the duodenum, ileum, and cecum from adult female (n = 20) and male (n = 20) wild-type mice and female (n = 17) and male (n = 20) hypogonadal mice. RESULTS Both sex and reproductive axis inactivation altered bacterial composition in an intestinal section and niche-specific manner. Hypogonadism was significantly associated with bacteria from the Bacteroidaceae, Eggerthellaceae, Muribaculaceae, and Rikenellaceae families, which have genes for bile acid metabolism and mucin degradation. Microbial balances between males and females and between hypogonadal and wild-type mice were also intestinal section-specific. In addition, we identified 3 bacterial genera (Escherichia Shigella, Lachnoclostridium, and Eggerthellaceae genus) with higher abundance in wild-type female mice throughout the intestinal tract compared to both wild-type male and hypogonadal female mice, indicating that activation of the reproductive axis leads to female-specific differentiation of the gut microbiome. Our results also implicated factors independent of the reproductive axis (i.e., sex chromosomes) in shaping sex differences in intestinal communities. Additionally, our detailed profile of intestinal communities showed that fecal samples do not reflect bacterial diversity in the small intestine. CONCLUSIONS Our results indicate that sex differences in the gut microbiome are intestinal niche-specific and that sampling feces or the large intestine may miss significant sex effects in the small intestine. These results strongly support the need to consider both sex and reproductive status when studying the gut microbiome and while developing microbial-based therapies.
Collapse
Affiliation(s)
- Laura Sisk-Hackworth
- University of California San Diego, La Jolla, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Jada Brown
- University of California San Diego, La Jolla, CA, USA
| | - Lillian Sau
- University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Reeya S Shah
- University of California San Diego, La Jolla, CA, USA
| | | | - Sophia Wang
- University of California San Diego, La Jolla, CA, USA
| | - Anita Nguyen
- University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
29
|
Jansma J, Chatziioannou AC, Castricum K, van Hemert S, El Aidy S. Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community. mSystems 2023; 8:e0033223. [PMID: 37668401 PMCID: PMC10654062 DOI: 10.1128/msystems.00332-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/13/2023] [Indexed: 09/06/2023] Open
Abstract
IMPORTANCE The development of probiotic therapies targeted at the small intestinal microbiota represents a significant advancement in the field of probiotic interventions. This region poses unique opportunities due to its low number of gut microbiota, along with the presence of heightened immune and metabolic host responses. However, progress in this area has been hindered by a lack of detailed understanding regarding the molecular mechanisms through which probiotics exert their effects in the small intestine. Our study, utilizing a synthetic community of three small intestinal bacterial strains and the addition of two different probiotic species, and kynurenine as a representative dietary or endogenously produced compound, highlights the importance of selecting probiotic species with diverse genetic capabilities that complement the functional capacity of the resident microbiota, or alternatively, constructing a multispecies formula. This approach holds great promise for the development of effective probiotic therapies and underscores the need to consider the functional capacity of probiotic species when designing interventions.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | | | | | | | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| |
Collapse
|
30
|
Castrillón-Betancur JC, López-Agudelo VA, Sommer N, Cleeves S, Bernardes JP, Weber-Stiehl S, Rosenstiel P, Sommer F. Epithelial Dual Oxidase 2 Shapes the Mucosal Microbiome and Contributes to Inflammatory Susceptibility. Antioxidants (Basel) 2023; 12:1889. [PMID: 37891968 PMCID: PMC10603924 DOI: 10.3390/antiox12101889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive molecules formed from diatomic oxygen. They act as cellular signals, exert antibiotic activity towards invading microorganisms, but can also damage host cells. Dual oxidase 2 (DUOX2) is the main ROS-producing enzyme in the intestine, regulated by cues of the commensal microbiota and functions in pathogen defense. DUOX2 plays multiple roles in different organs and cell types, complicating the functional analysis using systemic deletion models. Here, we interrogate the precise role of epithelial DUOX2 for intestinal homeostasis and host-microbiome interactions. Conditional Duox2∆IEC mice lacking DUOX2, specifically in intestinal epithelial cells, were generated, and their intestinal mucosal immune phenotype and microbiome were analyzed. Inflammatory susceptibility was evaluated by challenging Duox2∆IEC mice in the dextran sodium sulfate (DSS) colitis model. DUOX2-microbiome interactions in humans were investigated by paired analyses of mucosal DUOX2 expression and fecal microbiome data in patients with intestinal inflammation. Under unchallenged conditions, we did not observe any obvious phenotype of Duox2∆IEC mice, although intestinal epithelial ROS production was drastically decreased, and the mucosal microbiome composition was altered. When challenged with DSS, Duox2∆IEC mice were protected from colitis, possibly by inhibiting ROS-mediated damage and fostering epithelial regenerative responses. Finally, in patients with intestinal inflammation, DUOX2 expression was increased in inflamed tissue, and high DUOX2 levels were linked to a dysbiotic microbiome. Our findings demonstrate that bidirectional DUOX2-microbiome interactions contribute to mucosal homeostasis, and their dysregulation may drive disease development, thus highlighting this axis as a therapeutic target to treat intestinal inflammation.
Collapse
Affiliation(s)
| | - Víctor Alonso López-Agudelo
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Nina Sommer
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Sven Cleeves
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Joana Pimenta Bernardes
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Saskia Weber-Stiehl
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| |
Collapse
|
31
|
Poceviciute R, Bogatyrev SR, Romano AE, Dilmore AH, Mondragón-Palomino O, Takko H, Pradhan O, Ismagilov RF. Quantitative whole-tissue 3D imaging reveals bacteria in close association with mouse jejunum mucosa. NPJ Biofilms Microbiomes 2023; 9:64. [PMID: 37679412 PMCID: PMC10485000 DOI: 10.1038/s41522-023-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Because the small intestine (SI) epithelium lacks a thick protective mucus layer, microbes that colonize the thin SI mucosa may exert a substantial effect on the host. For example, bacterial colonization of the human SI may contribute to environmental enteropathy dysfunction (EED) in malnourished children. Thus far, potential bacterial colonization of the mucosal surface of the SI has only been documented in disease states, suggesting mucosal colonization is rare, likely requiring multiple perturbations. Furthermore, conclusive proof of bacterial colonization of the SI mucosal surface is challenging, and the three-dimensional (3D) spatial structure of mucosal colonies remains unknown. Here, we tested whether we could induce dense bacterial association with jejunum mucosa by subjecting mice to a combination of malnutrition and oral co-gavage with a bacterial cocktail (E. coli and Bacteroides spp.) known to induce EED. To visualize these events, we optimized our previously developed whole-tissue 3D imaging tools with third-generation hybridization chain reaction (HCR v3.0) probes. Only in mice that were malnourished and gavaged with the bacterial cocktail did we detect dense bacterial clusters surrounding intestinal villi suggestive of colonization. Furthermore, in these mice we detected villus loss, which may represent one possible consequence that bacterial colonization of the SI mucosa has on the host. Our results suggest that dense bacterial colonization of jejunum mucosa is possible in the presence of multiple perturbations and that whole-tissue 3D imaging tools can enable the study of these rare events.
Collapse
Affiliation(s)
- Roberta Poceviciute
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Said R Bogatyrev
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Medically Associated Science and Technology Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anna E Romano
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Amanda H Dilmore
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Biomedical Sciences Program, University of California San Diego, San Diego, CA, USA
| | - Octavio Mondragón-Palomino
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Heli Takko
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ojas Pradhan
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rustem F Ismagilov
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
32
|
Jiang Y, Cui W, Zhang Y, Wang T, Zheng X, Li H, Shang J. FG-4592 relieves diabetic kidney disease severity by influencing metabolic profiles via gut microbiota reconstruction in both human and mouse models. Front Physiol 2023; 14:1195441. [PMID: 37654676 PMCID: PMC10465800 DOI: 10.3389/fphys.2023.1195441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Objective: Diabetic kidney disease (DKD) is one of the most prevalent complications of diabetes mellitus (DM) and is highly associated with devastating outcomes. Hypoxia-inducible factor (HIF), the main transcription factor that regulates cellular responses to hypoxia, plays an important role in regulating erythropoietin (EPO) synthesis. FG-4592 is the HIF stabilizer that is widely used in patients with renal anemia. We investigated the effect of FG-4592 on DKD phenotypes and the pharmacologic mechanism from the perspective of gut microbiota and systemic metabolism. Design: We collected the clinical data of 73 participants, including 40 DKD patients with combined renal anemia treated with FG-4592, and 33 clinical index-matched DKD patients without FG-4592 treatment from The First Affiliated Hospital of Zhengzhou University at the beginning and after a 3-6-month follow-up period. We established DKD mouse models treated by FG-4592 and performed fecal microbiota transplantation from FG-4592-treated DKD mice to investigate the effects of FG-4592 on DKD and to understand this mechanism from a microbial perspective. Untargeted metabolome-microbiome combined analysis was implemented to globally delineate the mechanism of FG-4592 from both microbial and metabolomic aspects. Result: DKD phenotypes significantly improved after 3-6 months of FG-4592 treatment in DKD patients combined with renal anemia, including a decreased level of systolic blood pressure, serum creatinine, and increased estimated glomerular infiltration rate. Such effects were also achieved in the DKD mouse model treated with FG-4592 and can be also induced by FG-4592-influenced gut microbiota. Untargeted plasma metabolomics-gut microbiota analysis showed that FG-4592 dramatically altered both the microbial and metabolic profiles of DKD mice and relieved DKD phenotypes via upregulating beneficial gut microbiota-associated metabolites. Conclusion: FG-4592 can globally relieve the symptoms of DKD patients combined with renal anemia. In the animal experiment, FG-4592 can reconstruct the intestinal microbial profiles of DKD to further upregulate the production of gut-associated beneficial metabolites, subsequently improving DKD phenotypes.
Collapse
Affiliation(s)
- Yumin Jiang
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejun Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Huangmin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Alonso S, Edelblum K. Metabolic regulation of γδ intraepithelial lymphocytes. DISCOVERY IMMUNOLOGY 2023; 2:kyad011. [PMID: 38179241 PMCID: PMC10766425 DOI: 10.1093/discim/kyad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Elucidating the relationship between cellular metabolism and T cell function has substantially advanced our understanding of how T cells are regulated in response to activation. The metabolic profiles of circulating or peripheral T cells have been well-described, yet less is known regarding how complex local microenvironments shape or modulate the bioenergetic profile of tissue-resident T lymphocytes. Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IEL) provide immunosurveillance of the intestinal epithelium to limit tissue injury and microbial invasion; however, their activation and effector responses occur independently of antigen recognition. In this review, we will summarize the current knowledge regarding γδ T cell and IEL metabolic profiles and how this informs our understanding of γδ IEL metabolism. We will also discuss the role of the gut microbiota in shaping the metabolic profile of these sentinel lymphocytes, and in turn, how these bioenergetics contribute to regulation of γδ IEL surveillance behavior and effector function. Improved understanding of the metabolic processes involved in γδ IEL homeostasis and function may yield novel strategies to amplify the protective functions of these cells in the context of intestinal health and disease.
Collapse
Affiliation(s)
- Sara Alonso
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Chaukimath P, Frankel G, Visweswariah SS. The metabolic impact of bacterial infection in the gut. FEBS J 2023; 290:3928-3945. [PMID: 35731686 DOI: 10.1111/febs.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 08/17/2023]
Abstract
Bacterial infections of the gut are one of the major causes of morbidity and mortality worldwide. The interplay between the pathogen and the host is finely balanced, with the bacteria evolving to proliferate and establish infection. In contrast, the host mounts a response to first restrict and then eliminate the infection. The intestine is a rapidly proliferating tissue, and metabolism is tuned to cater to the demands of proliferation and differentiation along the crypt-villus axis (CVA) in the gut. As bacterial pathogens encounter the intestinal epithelium, they elicit changes in the host cell, and core metabolic pathways such as the tricarboxylic acid (TCA) cycle, lipid metabolism and glycolysis are affected. This review highlights the mechanisms utilized by diverse gut bacterial pathogens to subvert host metabolism and describes host responses to the infection.
Collapse
Affiliation(s)
- Pooja Chaukimath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College, London, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
35
|
Forsyth JH, Barron NL, Scott L, Watson BNJ, Chisnall MAW, Meaden S, van Houte S, Raymond B. Decolonizing drug-resistant E. coli with phage and probiotics: breaking the frequency-dependent dominance of residents. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001352. [PMID: 37418300 PMCID: PMC10433417 DOI: 10.1099/mic.0.001352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Widespread antibiotic resistance in commensal bacteria creates a persistent challenge for human health. Resident drug-resistant microbes can prevent clinical interventions, colonize wounds post-surgery, pass resistance traits to pathogens or move to more harmful niches following routine interventions such as catheterization. Accelerating the removal of resistant bacteria or actively decolonizing particular lineages from hosts could therefore have a number of long-term benefits. However, removing resident bacteria via competition with probiotics, for example, poses a number of ecological challenges. Resident microbes are likely to have physiological and numerical advantages and competition based on bacteriocins or other secreted antagonists is expected to give advantages to the dominant partner, via positive frequency dependence. Since a narrow range of Escherichia coli genotypes (primarily those belonging to the clonal group ST131) cause a significant proportion of multidrug-resistant infections, this group presents a promising target for decolonization with bacteriophage, as narrow-host-range viral predation could lead to selective removal of particular genotypes. In this study we tested how a combination of an ST131-specific phage and competition from the well-known probiotic E. coli Nissle strain could displace E. coli ST131 under aerobic and anaerobic growth conditions in vitro. We showed that the addition of phage was able to break the frequency-dependent advantage of a numerically dominant ST131 isolate. Moreover, the addition of competing E. coli Nissle could improve the ability of phage to suppress ST131 by two orders of magnitude. Low-cost phage resistance evolved readily in these experiments and was not inhibited by the presence of a probiotic competitor. Nevertheless, combinations of phage and probiotic produced stable long-term suppression of ST131 over multiple transfers and under both aerobic and anaerobic growth conditions. Combinations of phage and probiotic therefore have real potential for accelerating the removal of drug-resistant commensal targets.
Collapse
Affiliation(s)
- Jessica H. Forsyth
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
- Present address: Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Natalie L. Barron
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Lucy Scott
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | | | | | - Sean Meaden
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
- Present address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Stineke van Houte
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| |
Collapse
|
36
|
Hockney S, Parker J, Turner JE, Todd X, Todryk S, Gieling RG, Hilgen G, Simoes DCM, Pal D. Next generation organoid engineering to replace animals in cancer drug testing. Biochem Pharmacol 2023; 213:115586. [PMID: 37164297 DOI: 10.1016/j.bcp.2023.115586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Cancer therapies have several clinical challenges associated with them, namely treatment toxicity, treatment resistance and relapse. Due to factors ranging from patient profiles to the tumour microenvironment (TME), there are several hurdles to overcome in developing effective treatments that have low toxicity that can mitigate emergence of resistance and occurrence of relapse. De novo cancer development has the highest drug attrition rates with only 1 in 10,000 preclinical candidates reaching the market. To alleviate this high attrition rate, more mimetic and sustainable preclinical models that can capture the disease biology as in the patient, are required. Organoids and next generation 3D tissue engineering is an emerging area that aims to address this problem. Advancement of three-dimensional (3D) in vitro cultures into complex organoid models incorporating multiple cell types alongside acellular aspects of tissue microenvironments can provide a system for therapeutic testing. Development of microfluidic technologies have furthermore increased the biomimetic nature of these models. Additionally, 3D bio-printing facilitates generation of tractable ex vivo models in a controlled, scalable and reproducible manner. In this review we highlight some of the traditional preclinical models used in cancer drug testing and debate how next generation organoids are being used to replace not only animal models, but also some of the more elementary in vitro approaches, such as cell lines. Examples of applications of the various models will be appraised alongside the future challenges that still need to be overcome.
Collapse
Affiliation(s)
- Sean Hockney
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jessica Parker
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jasmin E Turner
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Xanthea Todd
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Stephen Todryk
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Roben Ger Gieling
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gerrit Hilgen
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Davina Camargo Madeira Simoes
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Deepali Pal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
37
|
DeMichele E, Sosnowski O, Buret AG, Allain T. Regulatory Functions of Hypoxia in Host-Parasite Interactions: A Focus on Enteric, Tissue, and Blood Protozoa. Microorganisms 2023; 11:1598. [PMID: 37375100 PMCID: PMC10303274 DOI: 10.3390/microorganisms11061598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Body tissues are subjected to various oxygenic gradients and fluctuations and hence can become transiently hypoxic. Hypoxia-inducible factor (HIF) is the master transcriptional regulator of the cellular hypoxic response and is capable of modulating cellular metabolism, immune responses, epithelial barrier integrity, and local microbiota. Recent reports have characterized the hypoxic response to various infections. However, little is known about the role of HIF activation in the context of protozoan parasitic infections. Growing evidence suggests that tissue and blood protozoa can activate HIF and subsequent HIF target genes in the host, helping or hindering their pathogenicity. In the gut, enteric protozoa are adapted to steep longitudinal and radial oxygen gradients to complete their life cycle, yet the role of HIF during these protozoan infections remains unclear. This review focuses on the hypoxic response to protozoa and its role in the pathophysiology of parasitic infections. We also discuss how hypoxia modulates host immune responses in the context of protozoan infections.
Collapse
Affiliation(s)
- Emily DeMichele
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
38
|
Genomic Island-Encoded Histidine Kinase and Response Regulator Coordinate Mannose Utilization with Virulence in Enterohemorrhagic Escherichia coli. mBio 2023; 14:e0315222. [PMID: 36786613 PMCID: PMC10128022 DOI: 10.1128/mbio.03152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a highly adaptive pathogen and has acquired diverse genetic elements, such as genomic islands and prophages, via horizontal gene transfer to promote fitness in vivo. Two-component signaling systems (TCSs) allow bacteria to sense, respond to, and adapt to various environments. This study identified a putative two-component signaling system composed of the histidine kinase EDL5436 (renamed LmvK) and the response regulator EDL5428 (renamed LmvR) in EHEC. lmvK and lmvR along with EDL5429 to EDL5434 (EDL5429-5434) between them constitute the OI167 genomic island and are highly associated with the EHEC pathotype. EDL5429-5434 encode transporters and metabolic enzymes that contribute to growth on mannose and are directly upregulated by LmvK/LmvR in the presence of mannose, as revealed by quantitative PCR (qPCR) and DNase I footprint assays. Moreover, LmvR directly activates the expression of the type III secretion system in response to mannose and promotes the formation of attaching and effacing lesions on HeLa cells. Using human colonoid and mouse infection models, we show that lmvK and lmvR contributed greatly to adherence and microcolony (MC) formation ex vivo and colonization in vivo. Finally, RNA sequencing and chromatin immunoprecipitation coupled with sequencing analyses identified additional direct targets of LmvR, most of which are involved in metabolism. Given that mannose is a mucus-derived sugar that induces virulence and is preferentially used by EHEC during infection, our data revealed a previously unknown mechanism by which EHEC recognizes the host metabolic landscape and regulates virulence expression accordingly. Our findings provide insights into how pathogenic bacteria evolve by acquiring genetic elements horizontally to adapt to host environments. IMPORTANCE The gastrointestinal tract represents a complex and challenging environment for enterohemorrhagic Escherichia coli (EHEC). However, EHEC is a highly adaptable pathogen, requiring only 10 to 100 CFUs to cause infection. This ability was achieved partially by acquiring mobile genetic elements, such as genomic islands, that promote overall fitness. Mannose is an intestinal mucus-derived sugar that stimulates virulence and is preferentially used by EHEC during infection. Here, we characterize the OI167 genomic island of EHEC, which encodes a novel two-component signaling system (TCS) and transporters and metabolic enzymes (EDL5429-5434) involved in mannose utilization. The TCS directly upregulates EDL5429-5434 and genes encoding the type III secretion system in the presence of mannose. Moreover, the TCS contributes greatly to EHEC virulence ex vivo and in vivo. Our data demonstrate an elegant example in which EHEC strains evolve by acquiring genetic elements horizontally to recognize the host metabolic landscape and regulate virulence expression accordingly, leading to successful infections.
Collapse
|
39
|
Lun J, Zhang H, Guo J, Yu M, Fang J. Hypoxia inducible factor prolyl hydroxylases in inflammatory bowel disease. Front Pharmacol 2023; 14:1045997. [PMID: 37201028 PMCID: PMC10187758 DOI: 10.3389/fphar.2023.1045997] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that is characterized by intestinal inflammation. Epithelial damage and loss of intestinal barrier function are believed to be the hallmark pathologies of the disease. In IBD, the resident and infiltrating immune cells consume much oxygen, rendering the inflamed intestinal mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies have shown that PHD-targeting is beneficial to the treatment of IBD. In this Review, we summarize the current understanding of the role of HIF and PHDs in IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Guo
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Yu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang,
| |
Collapse
|
40
|
Schubert C, Unden G. Fumarate, a central electron acceptor for Enterobacteriaceae beyond fumarate respiration and energy conservation. Adv Microb Physiol 2023; 82:267-299. [PMID: 36948656 DOI: 10.1016/bs.ampbs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C4-dicarboxylates (C4-DCs) such as fumarate, l-malate and l-aspartate are key substrates for Enterobacteria such as Escherichia coli or Salmonella typhimurium during anaerobic growth. In general, C4-DCs are oxidants during biosynthesis, e.g., of pyrimidine or heme, acceptors for redox balancing, a high-quality nitrogen source (l-aspartate) and electron acceptor for fumarate respiration. Fumarate reduction is required for efficient colonization of the murine intestine, even though the colon contains only small amounts of C4-DCs. However, fumarate can be produced endogenously by central metabolism, allowing autonomous production of an electron acceptor for biosynthesis and redox balancing. Bacteria possess a complex set of transporters for the uptake (DctA), antiport (DcuA, DcuB, TtdT) and excretion (DcuC) of C4-DCs. DctA and DcuB exert regulatory functions and link transport to metabolic control through interaction with regulatory proteins. The sensor kinase DcuS of the C4-DC two-component system DcuS-DcuR forms complexes with DctA (aerobic) or DcuB (anaerobic), representing the functional state of the sensor. Moreover, EIIAGlc from the glucose phospho-transferase system binds to DctA and presumably inhibits C4-DC uptake. Overall, the function of fumarate as an oxidant in biosynthesis and redox balancing explains the pivotal role of fumarate reductase for intestinal colonization, while the role of fumarate in energy conservation (fumarate respiration) is of minor importance.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
41
|
The Challenges of O 2 Detection in Biological Fluids: Classical Methods and Translation to Clinical Applications. Int J Mol Sci 2022; 23:ijms232415971. [PMID: 36555613 PMCID: PMC9786805 DOI: 10.3390/ijms232415971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dissolved oxygen (DO) is deeply involved in preserving the life of cellular tissues and human beings due to its key role in cellular metabolism: its alterations may reflect important pathophysiological conditions. DO levels are measured to identify pathological conditions, explain pathophysiological mechanisms, and monitor the efficacy of therapeutic approaches. This is particularly relevant when the measurements are performed in vivo but also in contexts where a variety of biological and synthetic media are used, such as ex vivo organ perfusion. A reliable measurement of medium oxygenation ensures a high-quality process. It is crucial to provide a high-accuracy, real-time method for DO quantification, which could be robust towards different medium compositions and temperatures. In fact, biological fluids and synthetic clinical fluids represent a challenging environment where DO interacts with various compounds and can change continuously and dynamically, and further precaution is needed to obtain reliable results. This study aims to present and discuss the main oxygen detection and quantification methods, focusing on the technical needs for their translation to clinical practice. Firstly, we resumed all the main methodologies and advancements concerning dissolved oxygen determination. After identifying the main groups of all the available techniques for DO sensing based on their mechanisms and applicability, we focused on transferring the most promising approaches to a clinical in vivo/ex vivo setting.
Collapse
|
42
|
Daniel H. Gut physiology meets microbiome science. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 4:e1. [PMID: 39295899 PMCID: PMC11406389 DOI: 10.1017/gmb.2022.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2024]
Abstract
Research on the gut microbiome has gained high popularity and almost every disease has meanwhile been linked to alterations in microbiome composition. Typically assessed via stool samples, the microbiome displays a huge diversity with a multitude of environmental parameters already identified as contributing to its character. Despite impressive scientific progress, normal microbiome diversity remains largely unexplained and it is tempting to speculate some of the yet unexplained variance is hidden in normal gut physiology. Although a few genome/phenome-wide associations studies have recently highlighted physiological parameters such as stool frequency, known as contributing to microbiome diversity, there is a large knowledge base from decades of basic research on gut functions that can be explored for possible links to stool features and microbiome characteristics. And, when extrapolating findings from faecal samples to the biology in the intestinal lumen or the mucosal microenvironment, gut anatomy and physiology features need to be considered. Similarly, differences in anatomy and physiology between rodents and humans need attention when discussing findings in animals in relation to human physiology and nutrition.
Collapse
Affiliation(s)
- Hannelore Daniel
- ex. School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| |
Collapse
|
43
|
Lv J, Qi P, Bai LH, Yan XD, Zhang L. Review of the relationship and underlying mechanisms between the Qinghai-Tibet plateau and host intestinal flora. Front Microbiol 2022; 13:1055632. [PMID: 36523840 PMCID: PMC9745141 DOI: 10.3389/fmicb.2022.1055632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 12/01/2023] Open
Abstract
The intestinal microbial community is the largest ecosystem in the human body, in which the intestinal flora plays a dominant role and has a wide range of biological functions. However, it is vulnerable to a variety of factors, and exposure to extreme environments at high altitudes, as seen on the Qinghai-Tibet plateau, may cause changes in the structure and function of the host intestinal flora. Conversely, the intestinal flora can help the host adapt to the plateau environment through a variety of ways. Herein, we review the relationship and underlying mechanism between the host intestinal flora and the plateau environment by discussing the characteristics of the plateau environment, its influence on the intestinal flora, and the important role of the intestinal flora in host adaptation to the plateau environment. This review aimed to provide a reference for maintaining the health of the plateau population.
Collapse
Affiliation(s)
- Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liu-Hui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiang-Dong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
44
|
Marinea M, Ellis A, Golding M, Loveday SM. Delivering Phenolic Acids in Soy Protein Gels: Noncovalent Interactions Control Gastrointestinal Bioaccessibility. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractThis study aimed to explore how the delivery of added phenolic acids was affected by the soy protein gel matrix using the INFOGEST static in vitro digestion protocol. Gels were prepared by two consecutive heating steps and by adding glucono–$$\delta$$
δ
–lactone (GDL) as an acidifier or magnesium sulphate (MgSO$$_{4}$$
4
) as a salt coagulant. The addition of phenolic acids in GDL gels doubled their elastic modulus (G’) (p<0.05), without showing the same effect on MgSO$$_{4}$$
4
gels. Nevertheless, the bioaccessibility of phenolic acids was not significantly different between the gel matrices (p>0.05). The release of all phenolics was almost complete (>80%) at the oral phase (pH 7) and significantly lower at gastric phase (pH 3), then at intestinal phase, the release was either increased or significantly reduced depending on the phenolic acid structure. The results of this study suggest that the bioaccessibility of the added phenolic acids is controlled by their interactions with the soy protein gels rather than the protein digestion kinetics of the gels.
Collapse
|
45
|
Van Meijel RLJ, Venema K, Canfora EE, Blaak EE, Goossens GH. Mild intermittent hypoxia exposure alters gut microbiota composition in men with overweight and obesity. Benef Microbes 2022; 13:355-364. [PMID: 35866596 DOI: 10.3920/bm2021.0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Results from high altitude studies in humans and controlled animal experiments suggest that hypoxia exposure induces alterations in gut microbiota composition, which may in turn affect host metabolism. However, well-controlled studies investigating the effects of normobaric hypoxia exposure on gut microbiota composition in humans are lacking. The aim of this study was to explore the impact of mild intermittent hypoxia (MIH) exposure on gut microbiota composition in men with overweight and/or obesity. We performed a randomised, single-blind crossover study, in which participants were exposed to MIH (FiO2: 15%, 3×2 h per day) and normoxia (FiO2: 21%) for seven consecutive days. Following the MIH and normoxia exposure regimens, faecal samples were collected for determination of faecal microbiota composition using 16S rRNA gene-amplicon sequencing in the morning of day 8. Paired faecal samples were available for five individuals. Furthermore, tissue-specific insulin sensitivity was determined using the gold-standard two-step hyperinsulinemic-euglycemic clamp. MIH did not affect microbial alpha and beta-diversity but reduced the relative abundance of Christensenellaceae and Clostridiaceae bacterial families. MIH significantly increased the abundances of obligate anaerobic bacterial genera including Fusicatenibacter, Butyricicoccus and Holdemania, whilst reducing Christensenellaceae R-7 group and Clostridium sensu stricto 1, although these findings were not statistically significant after correction for multiple testing. Furthermore, MIH-induced alterations in abundances of several genera were associated with changes in metabolic parameters such as adipose and peripheral insulin sensitivity, plasma levels of insulin, fatty acids, triacylglycerol and lactate, and substrate oxidation. In conclusion, we demonstrate for the first time that MIH exposure induces modest effects on faecal microbiota composition in humans, shifting several bacterial families and genera towards higher abundances of anaerobic butyrate-producing bacteria. Moreover, MIH-induced effects on faecal microbial composition were associated with parameters related to glucose and lipid homeostasis, supporting a link between MIH-induced alterations in faecal microbiota composition and host metabolism. The study was registered at the Netherlands Trial Register: NL7120/NTR7325.
Collapse
Affiliation(s)
- R L J Van Meijel
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - K Venema
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - Campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - E E Canfora
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
46
|
Hidalgo-Vico S, Casas J, García C, Lillo MP, Alonso-Monge R, Román E, Pla J. Overexpression of the White Opaque Switching Master Regulator Wor1 Alters Lipid Metabolism and Mitochondrial Function in Candida albicans. J Fungi (Basel) 2022; 8:1028. [PMID: 36294593 PMCID: PMC9604646 DOI: 10.3390/jof8101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 02/26/2024] Open
Abstract
Candida albicans is a commensal yeast that inhabits the gastrointestinal tract of humans; increased colonization of this yeast in this niche has implicated the master regulator of the white-opaque transition, Wor1, by mechanisms not completely understood. We have addressed the role that this transcription factor has on commensalism by the characterization of strains overexpressing this gene. We show that WOR1 overexpression causes an alteration of the total lipid content of the fungal cell and significantly alters the composition of structural and reserve molecular species lipids as determined by lipidomic analysis. These cells are hypersensitive to membrane-disturbing agents such as SDS, have increased tolerance to azoles, an augmented number of peroxisomes, and increased phospholipase activity. WOR1 overexpression also decreases mitochondrial activity and results in altered susceptibility to certain oxidants. All together, these changes reflect drastic alterations in the cellular physiology that facilitate adaptation to the gastrointestinal tract environment.
Collapse
Affiliation(s)
- Susana Hidalgo-Vico
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Instituto de Química Avanzada de Cataluña, Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Carolina García
- Departamento de Química Física Biológica, Instituto Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - M. Pilar Lillo
- Departamento de Química Física Biológica, Instituto Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
47
|
Sakai SA, Aoshima M, Sawada K, Horasawa S, Yoshikawa A, Fujisawa T, Kadowaki S, Denda T, Matsuhashi N, Yasui H, Goto M, Yamazaki K, Komatsu Y, Nakanishi R, Nakamura Y, Bando H, Hamaya Y, Kageyama SI, Yoshino T, Tsuchihara K, Yamashita R. Fecal microbiota in patients with a stoma decreases anaerobic bacteria and alters taxonomic and functional diversities. Front Cell Infect Microbiol 2022; 12:925444. [PMID: 36189350 PMCID: PMC9515963 DOI: 10.3389/fcimb.2022.925444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant diseases. Generally, stoma construction is performed following surgery for the resection of the primary tumor in patients with CRC. The association of CRC with the gut microbiota has been widely reported, and the gut microbiota is known to play an important role in the carcinogenesis, progression, and treatment of CRC. In this study, we compared the microbiota of patients with CRC between with and without a stoma using fecal metagenomic sequencing data from SCRUM-Japan MONSTAR-SCREEN, a joint industry-academia cancer research project in Japan. We found that the composition of anaerobes was reduced in patients with a stoma. In particular, the abundance of Alistipes, Akkermansia, Intestinimonas, and methane-producing archaea decreased. We also compared gene function (e.g., KEGG Orthology and KEGG pathway) and found that gene function for methane and short-chain fatty acids (SCFAs) production was underrepresented in patients with a stoma. Furthermore, a stoma decreased Shannon diversity based on taxonomic composition but increased that of the KEGG pathway. These results suggest that the feces of patients with a stoma have a reduced abundance of favorable microbes for cancer immunotherapy. In conclusion, we showed that a stoma alters the taxonomic and functional profiles in feces and may be a confounding factor in fecal microbiota analysis.
Collapse
Affiliation(s)
- Shunsuke A. Sakai
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masato Aoshima
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Kentaro Sawada
- Department of Medical Oncology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Satoshi Horasawa
- Translational Research Support Section, National Cancer Center Hospital East, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ayumu Yoshikawa
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takao Fujisawa
- Department Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Tadamichi Denda
- Divisioin of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological surgery Pediatric surgery, Gifu University Hospital, Gifu, Japan
| | - Hisateru Yasui
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Hokkaido, Japan
| | - Ryota Nakanishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Section, National Cancer Center Hospital East, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Translational Research Support Section, National Cancer Center Hospital East, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yamato Hamaya
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shun-Ichiro Kageyama
- Department of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Katsuya Tsuchihara
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Japan
- *Correspondence: Riu Yamashita,
| |
Collapse
|
48
|
Gr1+ myeloid-derived suppressor cells participate in the regulation of lung-gut axis during mouse emphysema model. Biosci Rep 2022; 42:231730. [PMID: 36052717 PMCID: PMC9508528 DOI: 10.1042/bsr20221041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is often accompanied by intestinal symptoms. Myeloid-derived suppressor cells (MDSCs) possess immunosuppressive ability in cancer, chronic inflammation, and infection. The aim of this study was to verify the distribution of MDSCs in emphysema mouse model and participation in lung–gut cross-talk. Methods: Adult male C57BL/6 mice were exposed to cigarette smoke (CS) for 6 months or injected with porcine pancreas elastase to establish emphysema models. Flow cytometry and immunohistochemistry analysis revealed the distribution of MDSCs in tissues. The expression of inflammation and MDSCs-associated genes in the small intestine and colon were analyzed by real-time PCR. Results: The small intestine and colon of CS-induced emphysematous mice displayed pathological changes, CD4+/CD8+ T cells imbalance, and increased neutrophils, monocytes, and macrophages infiltration. A significant expansion of MDSCs could be seen in CS-affected respiratory and gastrointestinal tract. Importantly, higher expression of MDSCs-related effector molecules inducible nitric oxide synthase (INOS), NADPH oxidase 2 (NOX2), and arginase 1 (ARG-1) suggested the immunosuppressive effect of migrated MDSCs (P<0.05). Conclusion: These data provide evidence for lung–gut axis in emphysema model and the participants of MDSCs.
Collapse
|
49
|
Wagner AS, Lumsdaine SW, Mangrum MM, King AE, Hancock TJ, Sparer TE, Reynolds TB. Cek1 regulates ß(1,3)-glucan exposure through calcineurin effectors in Candida albicans. PLoS Genet 2022; 18:e1010405. [PMID: 36121853 PMCID: PMC9521907 DOI: 10.1371/journal.pgen.1010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/29/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
In order to successfully induce disease, the fungal pathogen Candida albicans regulates exposure of antigens like the cell wall polysaccharide ß(1,3)-glucan to the host immune system. C. albicans covers (masks) ß(1,3)-glucan with a layer of mannosylated glycoproteins, which aids in immune system evasion by acting as a barrier to recognition by host pattern recognition receptors. Consequently, enhanced ß(1,3)-glucan exposure (unmasking) makes fungal cells more visible to host immune cells and facilitates more robust fungal clearance. However, an understanding of how C. albicans regulates its exposure levels of ß(1,3)-glucan is needed to leverage this phenotype. Signal transduction pathways and their corresponding effector genes mediating these changes are only beginning to be defined. Here, we report that the phosphatase calcineurin mediates unmasking of ß(1,3)-glucan in response to inputs from the Cek1 MAPK pathway and in response to caspofungin exposure. In contrast, calcineurin reduces ß-glucan exposure in response to high levels of extracellular calcium. Thus, depending on the input, calcineurin acts as a switchboard to regulate ß(1,3)-glucan exposure levels. By leveraging these differential ß(1,3)-glucan exposure phenotypes, we identified two novel effector genes in the calcineurin regulon, FGR41 and C1_11990W_A, that encode putative cell wall proteins and mediate masking/unmasking. Loss of either effector caused unmasking and attenuated virulence during systemic infection in mice. Furthermore, immunosuppression restored the colonization decrease seen in mice infected with the fgr41Δ/Δ mutant to wild-type levels, demonstrating a reliance on the host immune system for virulence attenuation. Thus, calcineurin and its downstream regulon are general regulators of unmasking.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Stephen W. Lumsdaine
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Ainsley E. King
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| |
Collapse
|
50
|
Chen Y, Rudolph S, Longo BN, Pace F, Roh T, Condruti R, Gee M, Watnick P, Kaplan DL. Bioengineered 3D Tissue Model of Intestine Epithelium with Oxygen Gradients to Sustain Human Gut Microbiome. Adv Healthc Mater 2022; 11:e2200447. [PMID: 35686484 PMCID: PMC9388577 DOI: 10.1002/adhm.202200447] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/25/2022] [Indexed: 01/24/2023]
Abstract
The human gut microbiome is crucial to hosting physiology and health. Therefore, stable in vitro coculture of primary human intestinal cells with a microbiome community is essential for understanding intestinal disease progression and revealing novel therapeutic targets. Here, a three-dimensional scaffold system is presented to regenerate an in vitro human intestinal epithelium that recapitulates many functional characteristics of the native small intestines. The epithelium, derived from human intestinal enteroids, contains mature intestinal epithelial cells and possesses selectively permeable barrier functions. Importantly, by properly positioning the scaffolds cultured under normal atmospheric conditions, two physiologically relevant oxygen gradients, a proximal-to-distal oxygen gradient along the gastrointestinal (GI) tract, and a radial oxygen gradient across the epithelium, are distinguished in the tissues when the lumens are faced up and down in cultures, respectively. Furthermore, the presence of the low oxygen gradients supported the coculture of intestinal epithelium along with a complex living commensal gut microbiome (including obligate anaerobes) to simulate temporal microbiome dynamics in the native human gut. This unique silk scaffold platform may enable the exploration of microbiota-related mechanisms of disease pathogenesis and host-pathogen dynamics in infectious diseases including the potential to explore the human microbiome-gut-brain axis and potential novel microbiome-based therapeutics.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA,To whom correspondence may be addressed. ;
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Brooke N. Longo
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Fernanda Pace
- Division of Infectious Diseases, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,Department of Pediatrics, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Terrence Roh
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Rebecca Condruti
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Michelle Gee
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Paula Watnick
- Division of Infectious Diseases, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,Department of Pediatrics, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA,Division of Infectious Diseases, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,To whom correspondence may be addressed. ;
| |
Collapse
|