1
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
2
|
Roy T, Petersen NN, Gopalan G, Gising J, Hallberg M, Larhed M. 2-Alkyl substituted benzimidazoles as a new class of selective AT2 receptor ligands. Bioorg Med Chem 2022; 66:116804. [PMID: 35576659 DOI: 10.1016/j.bmc.2022.116804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
Ligands comprising a benzimidazole rather than the imidazole ring that is common in AT2R ligands e.g. in the AT2R agonist C21, can provide both high affinity and receptor selectivity. In particular, compounds encompassing benzimidazoles, substituted in the 2-position with small bulky groups such as an isopropyl (Ki = 4.0 nM) or a tert-butyl (Ki = 5.3 nM) or alternatively a thiazole heterocycle (Ki = 5.1 nM) demonstrate high affinity and AT2R selectivity. An n-butyl chain, as found in the AT1R selective sartans, makes the ligand less receptor selective. The isobutyl group on the biaryl scaffold present in most AT2R selective ligands reported so far was originally derived from the nonselective potent AT1R/AT2R ligand L-162,313. Notably, in all ligands discussed herein, the isobutyl group was substituted by an n-propyl group and ligands with high affinity to AT2R were provided and in addition the majority of them demonstrate a favorable AT2R/AT1R selectivity. The introduction of fluoro atoms in various positions had no pronounced effect on the affinity data. Ligands with a thiazole or a tert-butyl group attached to the 2-position and with a terminal trifluoromethyl butoxycarbonyl sidechain exhibited a similar stability as C21 in human liver microsomes, while other ligands examined were less stable in the microsome assay.
Collapse
Affiliation(s)
- Tamal Roy
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Nadia N Petersen
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Greeshma Gopalan
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Johan Gising
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
3
|
Gopalan G, Palo-Nieto C, Petersen NN, Hallberg M, Larhed M. Angiotensin II AT2 receptor ligands with phenylthiazole scaffolds. Bioorg Med Chem 2022; 65:116790. [PMID: 35550979 DOI: 10.1016/j.bmc.2022.116790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
The syntheses and the AT1R and AT2R binding data of a series of new small molecule ligands are reported. These ligands comprise a phenylthiazole scaffold rather than the biphenyl or phenylthiophene scaffolds found in essentially all of the previously described ligands originating from the nonselective AT1R/AT2R ligand L-162,313 and the AT2R selective agonist C21, the latter now in Phase II/III clinical trials. A phenylthiazole rather than the phenylthiophene scaffold that is present in the AT2R selective agonist C21 and in the AT2R selective antagonist C38 had a deleterious effect on the affinity to AT2R. Nevertheless, a significant improvement could be accomplished by introduction of a small bulky alkyl group in the 2-position of the imidazole ring attached through a methylene group bridge to the phenylthiazole scaffold. Hence, a combination of a 2-tert-butyl or a 2-isopropyl group and a butoxycarbonyl furnished potent AT2R selective ligands. Furthermore, a high affinity ligand derived from L-162,313 and exhibiting a > 35 fold selectivity for AT1R was identified (10). The ligand 21 with the 2-tert-butyl group and ∼ 35 fold selectivity for AT2R, demonstrated high stability in human, rat and mouse liver microsomes and a very attractive profile with regard to the inhibition of common drug-metabolizing CYP enzymes. Thus, very low levels of inhibition of CYP 3A (5%), 2D6 (12%), 2C8 (26%), 2C9 (23%) and 2B6 (24%) were observed with the 2-tert-butyl derivative comprising the methoxycarbonyl sulfonamide function, levels that are significantly lower than those obtained with C21 under the same experimental conditions.
Collapse
Affiliation(s)
- Greeshma Gopalan
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Carlos Palo-Nieto
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Nadia N Petersen
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
4
|
Heine P, Witt G, Gilardi A, Gribbon P, Kummer L, Plückthun A. High-Throughput Fluorescence Polarization Assay to Identify Ligands Using Purified G Protein-Coupled Receptor. SLAS DISCOVERY 2019; 24:915-927. [PMID: 30925845 DOI: 10.1177/2472555219837344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of cell-free high-throughput (HT) methods to screen and select novel lead compounds remains one of the key challenges in G protein-coupled receptor (GPCR) drug discovery. Mutational approaches have allowed the stabilization of GPCRs in a purified and ligand-free state. The increased intramolecular stability overcomes two major drawbacks for usage in in vitro screening, the low receptor density on cells and the low stability in micelles. Here, an HT fluorescence polarization (FP) assay for the neurotensin receptor type 1 (NTS1) was developed. The assay operates in a 384-well format and is tolerant to DMSO. From a library screen of 1272 compounds, 12 (~1%) were identified as primary hits. These compounds were validated in orthogonal assay formats using surface plasmon resonance (SPR), which confirmed binding of seven compounds (0.6%). One of these compounds showed a clear preference for the orthosteric binding pocket with submicromolar affinity. A second compound revealed binding at a nonorthosteric binding region and showed specific biological activity on NTS1-expressing cells. A search of analogs led to further enhancement of affinity, but at the expense of activity. The identification of GPCR ligands in a cell-free assay should allow the expansion of GPCR pharmaceuticals with antagonistic or agonistic activity.
Collapse
Affiliation(s)
- P Heine
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - G Witt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Hamburg, Germany
| | - A Gilardi
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Hamburg, Germany
| | - P Gribbon
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Hamburg, Germany
| | - L Kummer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Hallberg M, Sumners C, Steckelings UM, Hallberg A. Small-molecule AT2 receptor agonists. Med Res Rev 2017; 38:602-624. [DOI: 10.1002/med.21449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, BMC; Uppsala University; P.O. Box 591 SE751 24 Uppsala Sweden
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida; College of Medicine and McKnight Brain Institute; Gainesville FL 32611
| | - U. Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research; University of Southern Denmark; P.O. Box 5230 Odense Denmark
| | - Anders Hallberg
- Department of Medicinal Chemistry, BMC; Uppsala University; P.O. Box 574 SE-751 23 Uppsala Sweden
| |
Collapse
|
6
|
Distinctions between non-peptide angiotensin II AT1-receptor antagonists. J Renin Angiotensin Aldosterone Syst 2016; 2:S24-S31. [DOI: 10.1177/14703203010020010401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A far-reaching understanding of the molecular action mechanism of AT1-receptor antagonists (AIIAs) was obtained by using CHO cells expressing transfected human AT 1-receptors. In this model, direct [3H]-antagonist binding and inhibition of agonist-induced responses (inositol phosphate accumulation) can be measured under identical experimental conditions. Whereas preincubation with a surmountable AIIA (losartan) causes parallel shifts of the angiotensin II (Ang II) concentration-response curve, insurmountable antagonists also cause partial (i.e., 30% for irbesartan, 50% for valsartan, 70% for EXP3174,) to almost complete (95% for candesartan) reductions of the maximal response. The main conclusions are that all investigated antagonists are competitive with respect to Ang II. They bind to a common or overlapping site on the receptor in a mutually exclusive way. Insurmountable inhibition is related to the slow dissociation rate of the antagonist-receptor complex (t 1/2 of 7 minutes for irbesartan, 17 minutes for valsartan, 30 minutes for EXP3174 and 120 minutes for candesartan). Antagonist-bound AT1-receptors can adopt a fast and a slow reversible state. This is responsible for the partial nature of the insurmountable inhibition. The long-lasting effect of candesartan, the active metabolite of candesartan cilexetil, in vascular smooth muscle contraction studies, as well as in in vivo experiments on rat and in clinical studies, is compatible with its slow dissociation from, and continuous recycling between AT1-receptors. This recycling, or `rebinding' takes place because of the very high affinity of candesartan for the AT1-receptor.
Collapse
|
7
|
Zhang H, Unal H, Desnoyer R, Han GW, Patel N, Katritch V, Karnik SS, Cherezov V, Stevens RC. Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor. J Biol Chem 2015; 290:29127-39. [PMID: 26420482 DOI: 10.1074/jbc.m115.689000] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 12/23/2022] Open
Abstract
Angiotensin II type 1 receptor (AT1R) is the primary blood pressure regulator. AT1R blockers (ARBs) have been widely used in clinical settings as anti-hypertensive drugs and share a similar chemical scaffold, although even minor variations can lead to distinct therapeutic efficacies toward cardiovascular etiologies. The structural basis for AT1R modulation by different peptide and non-peptide ligands has remained elusive. Here, we report the crystal structure of the human AT1R in complex with an inverse agonist olmesartan (Benicar(TM)), a highly potent anti-hypertensive drug. Olmesartan is anchored to the receptor primarily by the residues Tyr-35(1.39), Trp-84(2.60), and Arg-167(ECL2), similar to the antagonist ZD7155, corroborating a common binding mode of different ARBs. Using docking simulations and site-directed mutagenesis, we identified specific interactions between AT1R and different ARBs, including olmesartan derivatives with inverse agonist, neutral antagonist, or agonist activities. We further observed that the mutation N111(3.35)A in the putative sodium-binding site affects binding of the endogenous peptide agonist angiotensin II but not the β-arrestin-biased peptide TRV120027.
Collapse
Affiliation(s)
- Haitao Zhang
- From the Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089 and
| | - Hamiyet Unal
- the Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio 44195
| | - Russell Desnoyer
- the Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio 44195
| | - Gye Won Han
- Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089 and
| | | | | | - Sadashiva S Karnik
- the Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio 44195
| | - Vadim Cherezov
- Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089 and
| | - Raymond C Stevens
- From the Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089 and
| |
Collapse
|
8
|
Zhang J, Yang J, Jang R, Zhang Y. GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome. Structure 2015; 23:1538-1549. [PMID: 26190572 DOI: 10.1016/j.str.2015.06.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/03/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022]
Abstract
Experimental structure determination remains difficult for G protein-coupled receptors (GPCRs). We propose a new hybrid protocol to construct GPCR structure models that integrates experimental mutagenesis data with ab initio transmembrane (TM) helix assembly simulations. The method was tested on 24 known GPCRs where the ab initio TM-helix assembly procedure constructed the correct fold for 20 cases. When combined with weak homology and sparse mutagenesis restraints, the method generated correct folds for all the tested cases with an average Cα root-mean-square deviation 2.4 Å in the TM regions. The new hybrid protocol was applied to model all 1,026 GPCRs in the human genome, where 923 have a high confidence score and are expected to have correct folds; these contain many pharmaceutically important families with no previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin, and Neuropeptide Y receptors. The results demonstrate new progress on genome-wide structure modeling of TM proteins.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Jianyi Yang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA; School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
| | - Richard Jang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
10
|
Balakumar P, Jagadeesh G. Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor. J Mol Endocrinol 2014; 53:R71-92. [PMID: 25013233 DOI: 10.1530/jme-14-0125] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The renin-angiotensin system (RAS) plays an important role in the pathophysiology of cardiovascular disorders. Pharmacologic interventions targeting the RAS cascade have led to the discovery of renin inhibitors, angiotensin-converting enzyme inhibitors, and AT(1) receptor blockers (ARBs) to treat hypertension and some cardiovascular and renal disorders. Mutagenesis and modeling studies have revealed that differential functional outcomes are the results of multiple active states conformed by the AT(1) receptor upon interaction with angiotensin II (Ang II). The binding of agonist is dependent on both extracellular and intramembrane regions of the receptor molecule, and as a consequence occupies more extensive area of the receptor than a non-peptide antagonist. Both agonist and antagonist bind to the same intramembrane regions to interfere with each other's binding to exhibit competitive, surmountable interaction. The nature of interactions with the amino acids in the receptor is different for each of the ARBs given the small differences in the molecular structure between drugs. AT(1) receptors attain different conformation states after binding various Ang II analogues, resulting in variable responses through activation of multiple signaling pathways. These include both classical and non-classical pathways mediated through growth factor receptor transactivations, and provide cross-communication between downstream signaling molecules. The structural requirements for AT(1) receptors to activate extracellular signal-regulated kinases 1 and 2 through G proteins, or G protein-independently through β-arrestin, are different. We review the structural and functional characteristics of Ang II and its analogs and antagonists, and their interaction with amino acid residues in the AT(1) receptor.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Gowraganahalli Jagadeesh
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| |
Collapse
|
11
|
Behrends M, Wallinder C, Wieckowska A, Guimond MO, Hallberg A, Gallo-Payet N, Larhed M. N-Aryl Isoleucine Derivatives as Angiotensin II AT2 Receptor Ligands. ChemistryOpen 2014; 3:65-75. [PMID: 24808993 PMCID: PMC4000169 DOI: 10.1002/open.201300040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 01/25/2023] Open
Abstract
A novel series of ligands for the recombinant human AT2 receptor has been synthesized utilizing a fast and efficient palladium-catalyzed procedure for aminocarbonylation as the key reaction. Molybdenum hexacarbonyl [Mo(CO)6] was employed as the carbon monoxide source, and controlled microwave heating was applied. The prepared N-aryl isoleucine derivatives, encompassing a variety of amide groups attached to the aromatic system, exhibit binding affinities at best with K i values in the low micromolar range versus the recombinant human AT2 receptor. Some of the new nonpeptidic isoleucine derivatives may serve as starting points for further structural optimization. The presented data emphasize the importance of using human receptors in drug discovery programs.
Collapse
Affiliation(s)
- Malte Behrends
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Charlotta Wallinder
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Anna Wieckowska
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Marie-Odile Guimond
- Service of Endocrinology and Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC J1H 5N4 (Canada)
| | - Anders Hallberg
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Nicole Gallo-Payet
- Service of Endocrinology and Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC J1H 5N4 (Canada)
| | - Mats Larhed
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| |
Collapse
|
12
|
Moreno P, Mantey SA, Nuche-Berenguer B, Reitman ML, González N, Coy DH, Jensen RT. Comparative pharmacology of bombesin receptor subtype-3, nonpeptide agonist MK-5046, a universal peptide agonist, and peptide antagonist Bantag-1 for human bombesin receptors. J Pharmacol Exp Ther 2013; 347:100-16. [PMID: 23892571 DOI: 10.1124/jpet.113.206896] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bombesin-receptor-subtype-3 (BRS-3) is an orphan G-protein-coupled receptor of the bombesin (Bn) family whose natural ligand is unknown and which does not bind any natural Bn-peptide with high affinity. It is present in the central nervous system, peripheral tissues, and tumors; however, its role in normal physiology/pathophysiology is largely unknown because of the lack of selective ligands. Recently, MK-5046 [(2S)-1,1,1-trifluoro-2-[4-(1H-pyrazol-1-yl)phenyl]-3-(4-{[1-(trifluoromethyl)cyclopropyl]methyl}-1H-imidazol-2-yl)propan-2-ol] and Bantag-1 [Boc-Phe-His-4-amino-5-cyclohexyl-2,4,5-trideoxypentonyl-Leu-(3-dimethylamino) benzylamide N-methylammonium trifluoroacetate], a nonpeptide agonist and a peptide antagonist, respectively, for BRS-3 have been described, but there have been limited studies on their pharmacology. We studied MK-5046 and Bantag-1 interactions with human Bn-receptors-human bombesin receptor subtype-3 (hBRS-3), gastrin-releasing peptide receptor (GRP-R), and neuromedin B receptor (NMB-R)-and compared them with the nonselective, peptide-agonist [d-Tyr6,βAla11,Phe13,Nle14]Bn-(6-14) (peptide #1). Receptor activation was detected by activation of phospholipase C (PLC), mitogen-activated protein kinase (MAPK), focal adhesion kinase (FAK), paxillin, and Akt. In hBRS-3 cells, the relative affinities were Bantag-1 (1.3 nM) > peptide #1 (2 nM) > MK-5046 (37-160 nM) > GRP, NMB (>10 μM), and the binding-dose-inhibition curves were broad (>4 logs), with Hill coefficients differing significantly from unity. Curve-fitting demonstrated high-affinity (MK-5046, Ki = 0.08 nM) and low-affinity (MK-5046, Ki = 11-29 nM) binding sites. For PLC activation in hBRS-3 cells, the relative potencies were MK-5046 (0.02 nM) > peptide #1 (6 nM) > GRP, NMB, Bantag-1 (>10 μM), and MK-5046 had a biphasic dose response, whereas peptide #1 was monophasic. Bantag-1 was a specific hBRS-3-antagonist. In hBRS-3 cells, MK-5046 was a full agonist for activation of MAPK, FAK, Akt, and paxillin; however, it was a partial agonist for phospholipase A2 (PLA2) activation. The kinetics of activation/duration of action for PLC/MAPK activation of MK-5046 and peptide #1 differed, with peptide #1 causing more rapid stimulation; however, MK-5046 had more prolonged activity. Our study finds that MK-5046 and Bantag-1 have high affinity/selectivity for hBRS-3. The nonpeptide MK-5046 and peptide #1 agonists differ markedly in their receptor coupling, ability to activate different signaling cascades, and kinetics/duration of action. These results show that their hBRS-3 receptor activation is not always concordant and could lead to markedly different cellular responses.
Collapse
Affiliation(s)
- Paola Moreno
- Digestive Diseases Branch (P.M., S.M., B.N.-B., R.T.J.) and Diabetes, Endocrinology, and Obesity Branch (M.L.R.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; Department of Metabolism, Nutrition and Hormones (N.G.), IIS-Fundación Jiménez Díaz, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; and Peptide Research Laboratories, Department of Medicine, Tulane Health Sciences Center, New Orleans, Louisiana (D.H.C.)
| | | | | | | | | | | | | |
Collapse
|
13
|
Murugaiah AMS, Wu X, Wallinder C, Mahalingam AK, Wan Y, Sköld C, Botros M, Guimond MO, Joshi A, Nyberg F, Gallo-Payet N, Hallberg A, Alterman M. From the first selective non-peptide AT(2) receptor agonist to structurally related antagonists. J Med Chem 2012; 55:2265-78. [PMID: 22248302 DOI: 10.1021/jm2015099] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A para substitution pattern of the phenyl ring is a characteristic feature of the first reported selective AT(2) receptor agonist M024/C21 (1) and all the nonpeptidic AT(2) receptor agonists described so far. Two series of compounds structurally related to 1 but with a meta substitution pattern have now been synthesized and biologically evaluated for their affinity to the AT(1) and AT(2) receptors. A high AT(2)/AT(1) receptor selectivity was obtained with all 41 compounds synthesized, and the majority exhibited K(i) ranging from 2 to 100 nM. Five compounds were evaluated for their functional activity at the AT(2) receptor, applying a neurite outgrowth assay in NG108-15 cells. Notably, four of the five compounds, with representatives from both series, acted as potent AT(2) receptor antagonists. These compounds were found to be considerably more effective than PD 123,319, the standard AT(2) receptor antagonist used in most laboratories. No AT(2) receptor antagonists were previously reported among the derivatives with a para substitution pattern. Hence, by a minor modification of the agonist 1 it could be transformed into the antagonist, compound 38. These compounds should serve as valuable tools in the assessment of the role of the AT(2) receptor in more complex physiological models.
Collapse
Affiliation(s)
- A M S Murugaiah
- Department of Medicinal Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Steckelings UM, Larhed M, Hallberg A, Widdop RE, Jones ES, Wallinder C, Namsolleck P, Dahlöf B, Unger T. Non-peptide AT2-receptor agonists. Curr Opin Pharmacol 2011; 11:187-92. [DOI: 10.1016/j.coph.2010.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/12/2010] [Accepted: 11/21/2010] [Indexed: 11/25/2022]
|
15
|
Wu X, Kihara T, Hongo H, Akaike A, Niidome T, Sugimoto H. Angiotensin receptor type 1 antagonists protect against neuronal injury induced by oxygen-glucose depletion. Br J Pharmacol 2010; 161:33-50. [PMID: 20718738 DOI: 10.1111/j.1476-5381.2010.00840.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Several clinical trials and in vivo animal experiments have suggested that blockade of angiotensin receptor type 1 (AT(1)) improves ischaemic outcomes. However, the mechanism(s) underlying these effects has not been elucidated. Here, we have investigated the protective effects of pretreatment with AT(1) receptor antagonists, losartan or telmisartan, against ischaemic insult to neurons in vitro. EXPERIMENTAL APPROACH Primary rat neuron-astrocyte co-cultures and astrocyte-defined medium (ADM)-cultured pure astrocyte cultures were prepared. Ischaemic injury was modelled by oxygen-glucose depletion (OGD) and lactate dehydrogenase release after OGD was measured with or without AT(1) receptor antagonists or agonists (L162313), AT(2) receptor antagonist (PD123319) or agonist (CGP-42112A) pretreatment, for 48 h. Activity of glutamate transporter 1 (GLT-1) was evaluated by [(3)H]-glutamate uptake assays, after AT(1) receptor agonists or antagonists. Immunoblot and real-time PCR were used for analysis of protein and mRNA levels of GLT-1. KEY RESULTS AT(1) receptor agonists augmented OGD-induced cellular damage, which was attenuated by AT(1) receptor antagonists. AT(1) receptor antagonists also suppressed OGD-induced extracellular glutamate release, reactive oxygen species production and nitric oxide generation. GLT-1 expression and glutamate uptake activity were significantly enhanced by AT(1) receptor antagonists and impaired by AT(1) receptor agonists. AT(1) receptor stimulation suppressed both ADM-induced GLT-1 protein expression and mRNA levels. AT(1)b receptor knock-down with siRNA enhanced GLT-1 expression. In postnatal (P1-P21) rat brains, protein levels of GLT-1 and AT(1) receptors were inversely correlated. CONCLUSIONS AND IMPLICATIONS Suppression of AT(1) receptor stimulation induced GLT-1 up-regulation, which ameliorated effects of ischaemic injury.
Collapse
Affiliation(s)
- X Wu
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Alterman M. Development of selective non-peptide angiotensin II type 2 receptor agonists. J Renin Angiotensin Aldosterone Syst 2009; 11:57-66. [PMID: 19880657 DOI: 10.1177/1470320309347790] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The development of the first drug-like selective angiotensin II type 2 (AT(2)) receptor agonist (22) derived from the non-selective angiotensin II type 1 (AT( 1)) receptor/AT(2) receptor agonist L-162,313 is presented. Compound 22 with a K(i) value of 0.4 nM for the AT( 2) receptor and a K(i) > 10 microM for the AT(1) receptor induces outgrowth of neurite cells, stimulates p42/p44( mapk), enhances in vivo duodenal alkaline secretion in Sprague-Dawley rats and lowers the mean arterial blood pressure in anaesthetised spontaneously hypertensive rats. Thus, the peptidomimetic 22 exerts a similar biological response as the endogenous peptide angiotensin II after selective activation of the AT(2) receptor. In addition, Compound 22 has a bioavailability of 20-30% after oral administration and a half-life estimated to four hours in the rat. Compound 22 will therefore serve as a valuable research tool enabling studies of the function of the AT(2) receptor in more detail.
Collapse
Affiliation(s)
- Mathias Alterman
- Department of Medicinal Chemistry, BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Bawolak MT, Fortin S, Bouthillier J, Adam A, Gera L, C-Gaudreault R, Marceau F. Effects of inactivation-resistant agonists on the signalling, desensitization and down-regulation of bradykinin B(2) receptors. Br J Pharmacol 2009; 158:1375-86. [PMID: 19785654 DOI: 10.1111/j.1476-5381.2009.00409.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE A peptide bradykinin (BK) B(2) receptor agonist partially resistant to degradation, B-9972, down-regulates this receptor subtype. We have used another recently described non-peptide agonist, compound 47a, as a tool to study further the effects of metabolically more stable and thus persistent, agonists of the BK B(2) receptor on signalling, desensitization and down-regulation of this receptor. EXPERIMENTAL APPROACH AND KEY RESULTS Compound 47a was a partial agonist at the B(2) receptor in the human umbilical vein, where it shared with B-9972 a very slow relaxation on washout, and in HEK 293 cell lines expressing tagged forms [myc, green fluorescent protein (GFP)] of the rabbit B(2) receptor. Compound 47a desensitized the umbilical vein to BK. In the cellular systems, the inactivation-resistant agonists induced [Ca(2+)](i) transients as brief as those of BK but affected other functions with a longer duration than BK [12 h; receptor endocytosis, endosomal beta-arrestin(1/2) translocation, protein kinase C-dependent extracellular signal-regulated kinases (ERK)1/2 phosphorylation and c-Fos expression]. The B(2) receptor-GFP was degraded in cells exposed to B-9972 or compound 47a for 12 h. The non-peptide B(2) receptor antagonist LF 16-0687 prevented all effects of compound 47a, which were also absent in cells lacking recombinant B(2) receptors. CONCLUSION AND IMPLICATIONS Inactivation-resistant agonists revealed a long-lasting assembly of the agonist-B(2) receptor-beta-arrestin complexes in endosomal structures and induce 'biased signalling' (in terms of activation of ERK and c-Fos) as a function of time. Further, B-9972 and compound 47a, unlike BK, efficiently down-regulated BK B(2) receptors.
Collapse
Affiliation(s)
- Marie-Thérèse Bawolak
- Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec and Department of Medicine, Université Laval, Québec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Augusto Oliveira F, Silveira PE, Lopes MJ, Kushmerick C, Naves LA. Angiotensin II increases evoked release at the frog neuromuscular junction through a receptor sensitive to A779. Brain Res 2007; 1175:48-53. [PMID: 17888412 DOI: 10.1016/j.brainres.2007.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/24/2007] [Accepted: 06/06/2007] [Indexed: 11/17/2022]
Abstract
Receptor mediated presynaptic modulation is a ubiquitous mechanism involved in synaptic plasticity. Here we show that angiotensin II increased quantal content at the frog neuromuscular junction. This presynaptic effect of angiotensin II was insensitive to losartan and PD123319, but was antagonized by a more potent partial agonist of the amphibian angiotensin receptor, L162313. In addition, A779, a blocker of the angiotensin-[1-7] receptor, also abolished the effect of angiotensin II. These results indicate that the effect of angiotensin II on evoked release is mediated through an angiotensin receptor. L162313 alone increased quantal content, and A779 also antagonized this effect of L162313. We conclude that the neuromuscular junction possesses angiotensin receptors involved in presynaptic modulation.
Collapse
|
19
|
Santos EL, Reis RI, Silva RG, Shimuta SI, Pecher C, Bascands JL, Schanstra JP, Oliveira L, Bader M, Paiva ACM, Costa-Neto CM, Pesquero JB. Functional rescue of a defective angiotensin II AT1 receptor mutant by the Mas protooncogene. ACTA ACUST UNITED AC 2007; 141:159-67. [PMID: 17320985 DOI: 10.1016/j.regpep.2006.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 12/23/2006] [Accepted: 12/23/2006] [Indexed: 11/19/2022]
Abstract
Earlier studies with Mas protooncogene, a member of the G-protein-coupled receptor family, have proposed this gene to code for a functional AngII receptor, however further results did not confirm this assumption. In this work we investigated the hypothesis that a heterodimeration AT(1)/Mas could result in a functional interaction between both receptors. For this purpose, CHO or COS-7 cells were transfected with the wild-type AT(1) receptor, a non-functional AT(1) receptor double mutant (C18F-K20A) and Mas or with WT/Mas and C18F-K20A/Mas. Cells single-expressing Mas or C18F/K20A did not show any binding for AngII. The co-expression of the wild-type AT(1) receptor and Mas showed a binding profile similar to that observed for the wild-type AT(1) expressed alone. Surprisingly, the co-expression of the double mutant C18F/K20A and Mas evoked a total recovery of the binding affinity for AngII to a level similar to that obtained for the wild-type AT(1). Functional measurements using inositol phosphate and extracellular acidification rate assays also showed a clear recovery of activity for AngII on cells co-expressing the mutant C18F/K20A and Mas. In addition, immunofluorescence analysis localized the AT(1) receptor mainly at the plasma membrane and the mutant C18F-K20A exclusively inside the cells. However, the co-expression of C18F-K20A mutant with the Mas changed the distribution pattern of the mutant, with intense signals at the plasma membrane, comparable to those observed in cells expressing the wild-type AT(1) receptor. These results support the hypothesis that Mas is able to rescue binding and functionality of the defective C18F-K20A mutant by dimerization.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin II/metabolism
- Animals
- CHO Cells
- COS Cells
- Cell Membrane/metabolism
- Chlorocebus aethiops
- Cricetinae
- Cricetulus
- Fluoresceins
- Fluorescent Antibody Technique, Direct
- Fluorescent Dyes
- Indoles
- Inhibitory Concentration 50
- Inositol Phosphates/analysis
- Inositol Phosphates/metabolism
- Models, Chemical
- Molecular Sequence Data
- Mutation
- Polymerase Chain Reaction
- Proto-Oncogenes/genetics
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Transfection
Collapse
Affiliation(s)
- Edson L Santos
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, 04023-062 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Oliveira L, Costa-Neto CM, Nakaie CR, Schreier S, Shimuta SI, Paiva ACM. The Angiotensin II AT1 Receptor Structure-Activity Correlations in the Light of Rhodopsin Structure. Physiol Rev 2007; 87:565-92. [PMID: 17429042 DOI: 10.1152/physrev.00040.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The most prevalent physiological effects of ANG II, the main product of the renin-angiotensin system, are mediated by the AT1 receptor, a rhodopsin-like AGPCR. Numerous studies of the cardiovascular effects of synthetic peptide analogs allowed a detailed mapping of ANG II's structural requirements for receptor binding and activation, which were complemented by site-directed mutagenesis studies on the AT1 receptor to investigate the role of its structure in ligand binding, signal transduction, phosphorylation, binding to arrestins, internalization, desensitization, tachyphylaxis, and other properties. The knowledge of the high-resolution structure of rhodopsin allowed homology modeling of the AT1 receptor. The models thus built and mutagenesis data indicate that physiological (agonist binding) or constitutive (mutated receptor) activation may involve different degrees of expansion of the receptor's central cavity. Residues in ANG II structure seem to control these conformational changes and to dictate the type of cytosolic event elicited during the activation. 1) Agonist aromatic residues (Phe8 and Tyr4) favor the coupling to G protein, and 2) absence of these residues can favor a mechanism leading directly to receptor internalization via phosphorylation by specific kinases of the receptor's COOH-terminal Ser and Thr residues, arrestin binding, and clathrin-dependent coated-pit vesicles. On the other hand, the NH2-terminal residues of the agonists ANG II and [Sar1]-ANG II were found to bind by two distinct modes to the AT1 receptor extracellular site flanked by the COOH-terminal segments of the EC-3 loop and the NH2-terminal domain. Since the [Sar1]-ligand is the most potent molecule to trigger tachyphylaxis in AT1 receptors, it was suggested that its corresponding binding mode might be associated with this special condition of receptors.
Collapse
Affiliation(s)
- Laerte Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
21
|
Knudsen LB, Kiel D, Teng M, Behrens C, Bhumralkar D, Kodra JT, Holst JJ, Jeppesen CB, Johnson MD, de Jong JC, Jorgensen AS, Kercher T, Kostrowicki J, Madsen P, Olesen PH, Petersen JS, Poulsen F, Sidelmann UG, Sturis J, Truesdale L, May J, Lau J. Small-molecule agonists for the glucagon-like peptide 1 receptor. Proc Natl Acad Sci U S A 2007; 104:937-42. [PMID: 17213325 PMCID: PMC1783418 DOI: 10.1073/pnas.0605701104] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The peptide hormone glucagon-like peptide (GLP)-1 has important actions resulting in glucose lowering along with weight loss in patients with type 2 diabetes. As a peptide hormone, GLP-1 has to be administered by injection. Only a few small-molecule agonists to peptide hormone receptors have been described and none in the B family of the G protein coupled receptors to which the GLP-1 receptor belongs. We have discovered a series of small molecules known as ago-allosteric modulators selective for the human GLP-1 receptor. These compounds act as both allosteric activators of the receptor and independent agonists. Potency of GLP-1 was not changed by the allosteric agonists, but affinity of GLP-1 for the receptor was increased. The most potent compound identified stimulates glucose-dependent insulin release from normal mouse islets but, importantly, not from GLP-1 receptor knockout mice. Also, the compound stimulates insulin release from perfused rat pancreas in a manner additive with GLP-1 itself. These compounds may lead to the identification or design of orally active GLP-1 agonists.
Collapse
Affiliation(s)
- Lotte Bjerre Knudsen
- Department of Discovery Biology, Novo Nordisk Als, Novo Nordisk Park, DK-2760 Maaloev, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Saita Y, Kodama E, Orita M, Kondo M, Miyazaki T, Sudo K, Kajiwara K, Matsuoka M, Shimizu Y. Structural basis for the interaction of CCR5 with a small molecule, functionally selective CCR5 agonist. THE JOURNAL OF IMMUNOLOGY 2006; 177:3116-22. [PMID: 16920949 DOI: 10.4049/jimmunol.177.5.3116] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chemokine receptor CCR5 is an attractive target for HIV-1 drug development, as individuals whose cells lack surface CCR5 expression are highly resistant to HIV-1 infection. CCR5 ligands, such as CCL5/RANTES, effectively inhibit HIV-1 infection by competing for binding opportunities to the CCR5 and inducing its internalization. However, the inherent proinflammatory activity of the chemotactic response of CCR5 ligands has limited their clinical use. In this study, we found that a novel small molecule, functionally selective CCR5 agonist, 2,2-dichloro-1-(triphenylphosphonio)vinyl formamide perchlorate (YM-370749), down-modulates CCR5 from the cell surface without inducing a chemotactic response and inhibits HIV-1 replication. In molecular docking studies of YM-370749 and a three-dimensional model of CCR5 based on the rhodopsin crystal structure as well as binding and functional studies using various CCR5 mutants, the amino acid residues necessary for interaction with YM-370749 were marked. These results provide a structural basis for understanding the activation mechanism of CCR5 and for designing functionally selective agonists as a novel class of anti-HIV-1 agents.
Collapse
Affiliation(s)
- Yuji Saita
- Molecular Medicine Research Laboratories, Institute for Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li Z, Carter JD, Dailey LA, Huang YCT. Pollutant particles produce vasoconstriction and enhance MAPK signaling via angiotensin type I receptor. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1009-14. [PMID: 16079071 PMCID: PMC1280341 DOI: 10.1289/ehp.7736] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Exposure to particulate matter (PM) is associated with acute cardiovascular mortality and morbidity, but the mechanisms are not entirely clear. In this study, we hypothesized that PM may activate the angiotensin type 1 receptor (AT1R), a G protein-coupled receptor that regulates inflammation and vascular function. We investigated the acute effects of St. Louis, Missouri, urban particles (UPs; Standard Reference Material 1648) on the constriction of isolated rat pulmonary artery rings and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) in human pulmonary artery endothelial cells with or without losartan, an antagonist of AT1R. UPs at 1-100 microg/mL induced acute vasoconstriction in pulmonary artery. UPs also produced a time- and dose-dependent increase in phosphorylation of ERK1/2 and p38 MAPK. Losartan pretreatment inhibited both the vasoconstriction and the activation of ERK1/2 and p38. The water-soluble fraction of UPs was sufficient for inducing ERK1/2 and p38 phosphorylation, which was also losartan inhibitable. Copper and vanadium, two soluble transition metals contained in UPs, induced pulmonary vasoconstriction and phosphorylation of ERK1/2 and p38, but only the phosphorylation of p38 was inhibited by losartan. The UP-induced activation of ERK1/2 and p38 was attenuated by captopril, an angiotensin-converting enzyme inhibitor. These results indicate that activation of the local renin-angiotensin system may play an important role in cardiovascular effects induced by PM.
Collapse
Affiliation(s)
- Zhuowei Li
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
24
|
Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 2005; 57:27-77. [PMID: 15734727 DOI: 10.1124/pr.57.1.2] [Citation(s) in RCA: 729] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development.
Collapse
Affiliation(s)
- L M Fredrik Leeb-Lundberg
- Division of Cellular and Molecular Pharmacology, Department of Experimental Medical Science, Lund University, BMC, A12, SE-22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Abstract
The GH secretagogues (GHS) were developed by reverse pharmacology. The objective was to develop small molecules with pharmacokinetics suitable for once-daily oral administration that would rejuvenate the GH/IGF-I axis. Neither the receptor nor the ligand that controlled pulse amplitude of hormone release was known; therefore, identification of lead structures was based on function. I reasoned that GH pulse amplitude could be increased by four possible mechanisms: 1) increasing GHRH release; 2) amplifying GHRH signaling in somatotrophs of the anterior pituitary gland; 3) reducing somatostatin release; and 4) antagonizing somatostatin receptor signaling. Remarkably, the GHS act through all four mechanisms to reproduce a young adult physiological GH profile in elderly subjects that was accompanied by increased bone mineral density and lean mass, modest improvements in strength, and improved recovery from hip fracture. Furthermore, restoration of thymic function was induced in old mice. The GHS receptor (GHS-R) was subsequently identified by expression cloning and found to be a previously unknown G protein-coupled receptor expressed predominantly in brain, pituitary gland, and pancreas. Reverse pharmacology was completed when the cloned GHS-R was exploited to identify an endogenous agonist (ghrelin) and a partial agonist (adenosine); ghsr-knockout mice studies confirmed that GHS are ghrelin mimetics.
Collapse
Affiliation(s)
- Roy G Smith
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Room M320, Houston, Texas 77030-3498, USA
| |
Collapse
|
26
|
Abstract
The members of the relaxin-like hormone family, relaxin and INSL3, also known as relaxin-like factor (RLF) or Leydig cell-derived insulin-like factor (LEY-I-L), are implicated in various mechanisms associated with tumor cell growth, differentiation, invasion and neovascularization. The recent discovery of the relaxin receptor LGR7 and the INSL3/relaxin receptor LGR8 has provided evidence of an auto/paracrine relaxin-like action in tumor tissues and enables the elucidation of the cellular pathways involved in the proposed functions of relaxin in tumor biology. Our review summarizes our current knowledge of the expression of relaxin and INSL3 in human neoplastic tissues and discusses the etiological roles of these heterodimeric peptide hormones in cancer. Discussion of possible cellular cascades involved in actions linking relaxin-like peptides and neoplasia include the role of relaxin-like peptides in tumor cell growth and differentiation; the effect of relaxin in stimulating the synthesis of the vasodilatory and tumor cell cytostatic and antiapoptotic molecule, nitric oxide; the potential ability of relaxin to upregulate vascular endothelial growth factor to promote angiogenesis and neovascularization and the concerted fine-tuned action of relaxin on the matrix metalloproteinases on the extracellular matrix to facilitate tumor cell attachment, migration and invasion.
Collapse
Affiliation(s)
- Josh D Silvertown
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
27
|
Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; 61:39-78. [PMID: 14674608 DOI: 10.1007/978-3-0348-8049-7_2] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David J Begley
- Centre for Neuroscience Research, Kings College London, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
28
|
Costa-Neto CM, Miyakawa AA, Pesquero JB, Oliveira L, Hjorth SA, Schwartz TW, Paiva ACM. Interaction of a non-peptide agonist with angiotensin II AT1 receptor mutants. Can J Physiol Pharmacol 2002; 80:413-7. [PMID: 12056547 DOI: 10.1139/y02-058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify residues of the rat AT1A angiotensin II receptor involved with signal transduction and binding of the non-peptide agonist L-162,313 (5,7-dimethyl-2-ethyl-3-[[4-[2(n-butyloxycarbonylsulfonamido)-5-isobutyl-3-thienyl]phenyl]methyl]imidazol[4,5,6]-pyridine) we have performed ligand binding and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain of the AT1 receptor are involved in the binding of the non-peptide ligand, or in a general receptor activation phenomenon that involves conformational modifications for a preferential binding of agonists or antagonists.
Collapse
Affiliation(s)
- Claudio M Costa-Neto
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Peptide recognition by G-protein coupled receptors (GPCRs) is reviewed with an emphasis on the indirect approach used to determine the receptor-bound conformation of peptide ligands. This approach was developed in response to the lack of detailed structural information available for these receptors. Recent advances in the structural determination of rhodopsin (the GPCR of the visual system) by crystallography have provided a scaffold for homology modeling of the inactive state of a wide variety of GPCRs that interact with peptide messages. Additionally, the ability to mutate GPCRs and assay compounds of similar chemical structure to test a common binding site on the receptor provides a firm experimental basis for structure-activity studies. Recognition motifs, common in other well-studied systems such as proteolytic enzymes and major histocompatibility class receptors (MHC) are reviewed briefly to provide a basis of comparison. Finally, the development of true peptidomimetics is contrasted with nonpeptide ligands, discovered through combinatorial chemistry. In many systems, the evidence suggests that the peptide ligands bind at the interface between the transmembrane segments and the extracellular loops, while nonpeptide antagonists bind within the transmembrane segments. Plausible models of GPCRs and the mechanism by which they activate G-proteins on binding peptides are beginning to emerge.
Collapse
Affiliation(s)
- G R Marshall
- Center for Computational Biology, 700 S. Euclid Avenue, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Hin S, Bianco A, Zabel C, Jung G, Walden P. Mimetics of a T cell epitope based on poly-N-acylated amine backbone structures induce T cells in vitro and in vivo. J Biol Chem 2001; 276:48790-6. [PMID: 11600499 DOI: 10.1074/jbc.m107552200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptidomimetics of the major histocompatibility complex (MHC) class I-restricted ovalbumin-derived T cell epitope SIINFEKL were generated by replacing parts of the peptide backbone by a poly-N-acylated amine (PAA) backbone with aromatic, heteroaromatic, and pseudoaromatic side chains that branch off of the main chain at the amine nitrogen. The structure of the PAAs was designed to position this side chain in the central epitope anchor pocket of the MHC molecule. A number of biologically active PAAs were found that induced cytolysis by the mouse cytotoxic T cell clone 4G3. Competition experiments with independent peptides that are known to bind to the restricting MHC molecule H-2K(b) suggest that the PAAs are bound by the MHC molecules at the same site as conventional peptide epitopes. The PAAs were active also in vivo and induced primary cytotoxic T cell responses in mice.
Collapse
Affiliation(s)
- S Hin
- Department of Dermatology and Allergy, Charité, Humboldt University, D-10089 Berlin, Germany
| | | | | | | | | |
Collapse
|
31
|
Tibaduiza EC, Chen C, Beinborn M. A small molecule ligand of the glucagon-like peptide 1 receptor targets its amino-terminal hormone binding domain. J Biol Chem 2001; 276:37787-93. [PMID: 11498540 DOI: 10.1074/jbc.m106692200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The glucagon-like peptide 1 receptor (GLP-1R) belongs to a distinct subgroup of G protein-coupled peptide hormone receptors (class B) that has been difficult to target by small molecule drugs. Here, we report that a non-peptide compound, T-0632, binds with micromolar affinity to the human GLP-1R and blocks GLP-1-induced cAMP production. Furthermore, the observation that T-0632 has almost 100-fold selectivity for the human versus the highly homologous rat GLP-1R provided an opportunity to map determinants of non-peptide binding. Radioligand competition experiments utilizing a series of chimeric human/rat GLP-1R constructs revealed that partial substitution of the amino terminus of the rat GLP-1R with the corresponding sequence from the human homolog was sufficient to confer high T-0632 affinity. Follow-up analysis of receptors where individual candidate amino acids had been exchanged between the human and rat GLP-1Rs identified a single residue that explained species selectivity of non-peptide binding. Replacement of tryptophan 33 in the human GLP-1R by serine (the homologous amino acid in the rat GLP-1R) resulted in a 100-fold loss of T-0632 affinity, whereas the converse mutation in the rat GLP-1R led to a reciprocal gain-of-function phenotype. These observations suggest that in a class B receptor, important determinants of non-peptide affinity reside within the extracellular amino-terminal domain. Compound T-0632 may mimic, and thereby interfere with, the putative "pseudo-tethering" mechanism by which the amino terminus of class B receptors initiates the binding of cognate hormones.
Collapse
Affiliation(s)
- E C Tibaduiza
- Department of Medicine and Molecular Pharmacology Research Center, Tupper Research Institute, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
32
|
Hayashi I, Ishihara K, Kumagai Y, Majima M. Proinflammatory characteristics of a nonpeptide bradykinin mimic, FR190997, in vivo. Br J Pharmacol 2001; 133:1296-306. [PMID: 11498515 PMCID: PMC1621159 DOI: 10.1038/sj.bjp.0704208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Proinflammatory potency of the nonpeptide bradykinin (BK) B(2) receptor agonist FR190997 (8-[2,6-dichloro-3-[N-[(E)-4-(N-methylcarbamoyl)cinnamidoacetyl]-N-methylamino]benzyloxy]-2-methyl-4-(2-pyridylmethoxy)quinoline) was investigated. 2. Intradermal injection of FR190997 (0.03 - 3 nmol site(-1)) into dorsal skin of rats increased vascular permeability in a dose-dependent manner. The effect was less than that of BK, but it was long-acting and was inhibited by treatment with FR173657 (3 mg kg(-1), p.o.). Captopril (10 mg kg(-1), i.p.) did not enhance the plasma extravasation by FR190997 (0.3 nmol site(-1)) in the presence of soybean trypsin inhibitor (SBTI, 30 microg site(-1)). 3. Subcutaneous injection of FR190997 (3 nmol site(-1)) into the hindpaw of mice markedly induced paw swelling. The oedema lasted up to 3 h after the injection. Administration of indomethacin or NS-398 (10 mg kg(-1), i.p.) significantly reduced it at 3 h after the injection. 4. Simultaneous i.p. injection of prostaglandin (PG) E(2) (1 nmol site(-1)) or beraprost sodium (0.5 nmol site(-1)) with FR190997 (5 nmol site(-1)) greatly enhanced frequency of writhing reactions in mice. 5. FR190997 (0.3 - 30 nmol kg(-1), i.v.) showed less increase in airway opening pressure (Pao) in the guinea-pig after i.v. injection. Furthermore, FR190997 (0.03 - 30 nmol) resulted in a very weak contraction of tracheal ring strips and lung parenchymal sections in vitro. 6. In mice sponge implants, topical application of FR190997 increased angiogenesis and granulation with enhanced expressions of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) mRNAs. 7. These results indicate that FR190997 has proinflammatory long-lasting characteristics and it might be 'a stable tool' for studying the role of BK B(2) receptor in vivo.
Collapse
Affiliation(s)
- I Hayashi
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara-shi, Kanagawa 228-8555, Japan.
| | | | | | | |
Collapse
|
33
|
Vauquelin G, Morsing P, Fierens FL, De Backer JP, Vanderheyden PM. A two-state receptor model for the interaction between angiotensin II type 1 receptors and non-peptide antagonists. Biochem Pharmacol 2001; 61:277-84. [PMID: 11172731 DOI: 10.1016/s0006-2952(00)00546-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The interaction between non-peptide antagonists and the human angiotensin II type 1 (AT1) receptor in CHO-K1 cells was investigated by incubating the cells with antagonist, followed by a brief exposure to angiotensin II and measurement of the resulting inositol phosphate accumulation. The experimental data, expressed either as angiotensin II concentration-response curves or as antagonist concentration-inhibition curves, were in good agreement with computer-generated data according to a single-state model for the surmountable antagonist losartan and according to a two-step, two-state receptor model for the insurmountable antagonists candesartan, EXP3174, and irbesartan. Experimental and computer-generated data concerning the simultaneous exposure of the receptors to EXP3174 and losartan indicated that losartan produced a concentration-dependent restoration of the maximal response (angiotensin II concentration-response curves) as well as a rightward shift of the insurmountable portion of the EXP3174 inhibition curves, thus counteracting the higher-affinity EXP3174 binding. In conclusion, these findings provide further support for the concept that insurmountable and surmountable AT1 antagonists are mutually competitive and that insurmountable antagonist-receptor complexes may adopt different states.
Collapse
Affiliation(s)
- G Vauquelin
- Department of Molecular and Biochemical Pharmacology, Free University of Brussels (VUB), Sint-Genesius Rode, Belgium.
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Affiliation(s)
- M J Robertson
- Astra Charnwood, Loughborough, Leicestershire, England
| |
Collapse
|
36
|
De Witt BJ, Garrison EA, Champion HC, Kadowitz PJ. L-163,491 is a partial angiotensin AT(1) receptor agonist in the hindquarters vascular bed of the cat. Eur J Pharmacol 2000; 404:213-9. [PMID: 10980281 DOI: 10.1016/s0014-2999(00)00612-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Responses to the nonpeptide angiotensin II agonist 5, 7-Dimethyl-2-ethyl-3-[[2'-([butyloxycarbonyl) aminosulfonyl]-5'-(3-methyoxybenzyl)-[1, 1'-biphenyl]-4-yl]methyl]-3H-imidazo[4,5-b]pyridine (L-163,491) were investigated and compared with responses to angiotensin II, angiotensin IV and norepinephrine in the hindquarters vascular bed of the cat under constant-flow conditions. Injections of L-163,491 into the hindquarter perfusion circuit caused dose-related increases in hindquarters perfusion pressure. In relative terms, angiotensin II was more potent than norepinephrine, which was more potent than angiotensin IV and L-163,491 in increasing hindlimb vascular resistance. The slope of the dose-response curve for L-163,491 was flat, while the apparent affinity of the compound for angiotensin AT(1) receptors was slightly greater than angiotensin IV. Responses to L-163,491 were inhibited by the angiotensin AT(1) receptor antagonist DuP 532 (2-propyl-4-pentafluoroethyl-1-[2'-(1H-tetrazol-5-yl)bipheny l-4-yl)me thyl]imidazole-5-carboxylic acid) and were not altered by the angiotensin AT(2) receptor antagonist PD123,319 (S(+)-1-[[4-(Dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl+ ++) -4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditribluoroacetate). However, the increase in hindlimb perfusion pressure in response to angiotensin II and angiotensin IV was significantly decreased following injection of L-163,491. These data suggest that the nonpeptide angiotensin analog L-163,491 has partial agonist activity, which is dependent on the stimulation of angiotensin AT(1) receptors in the hindquarters vascular bed of the cat.
Collapse
Affiliation(s)
- B J De Witt
- Department of Pharmacology SL83, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
37
|
Holst B, Elling CE, Schwartz TW. Partial agonism through a zinc-Ion switch constructed between transmembrane domains III and VII in the tachykinin NK(1) receptor. Mol Pharmacol 2000; 58:263-70. [PMID: 10908293 DOI: 10.1124/mol.58.2.263] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Partly due to lack of detailed knowledge of the molecular recognition of ligands the structural basis for partial versus full agonism is not known. In the beta(2)-adrenergic receptor the agonist binding site has previously been structurally and functionally exchanged with an activating metal-ion site located between AspIII:08-or a His residue introduced at this position in transmembrane domain (TM)-III-and a Cys residue substituted for AsnVII:06 in TM-VII. Here, this interhelical, bidentate metal-ion site is without loss of Zn(2+) affinity transferred to the tachykinin NK(1) receptor. In contrast to the similarly mutated beta(2)-adrenergic receptor, signal transduction-i.e., inositol phosphate turnover-could be stimulated by both Zn(2+) and by the natural agonist, Substance P in the mutated NK(1) receptor. The metal-ion acted as a 25% partial agonist through binding to the bidentate zinc switch located exactly one helical turn below the two previously identified interaction points for Substance P in, respectively, TM-III and -VII. The metal-ion chelator, phenantroline, which in the beta(2)-adrenergic receptor increased both the potency and the agonistic efficacy of Zn(2+) or Cu(2+) in complex with the chelator, also bound to the metal-ion site-engineered NK(1) receptor, but here the metal-ion chelator complex instead acted as a pure antagonist. It is concluded that signaling of even distantly related rhodopsin-like 7TM receptors can be activated through Zn(2+) coordination between metal-ion binding residues located at positions III:08 and VII:06. It is suggested that only partial agonism is obtained through this simple well defined metal-ion coordination due to lack of proper interactions with residues also in TM-VI.
Collapse
Affiliation(s)
- B Holst
- Laboratory for Molecular Pharmacology, Department of Pharmacology, The Panum Institute, Copenhagen University, Copenhagen, Denmark
| | | | | |
Collapse
|
38
|
Vanderheyden PM, Fierens FL, De Backer J, Vauquelin G. Reversible and syntopic interaction between angiotensin receptor antagonists on Chinese hamster ovary cells expressing human angiotensin II type 1 receptors. Biochem Pharmacol 2000; 59:927-35. [PMID: 10692557 DOI: 10.1016/s0006-2952(99)00403-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evidence for a competitive type of interaction between angiotensin II type 1 (AT(1)) antagonists on Chinese hamster ovary cells expressing the human AT(1) receptor (CHO-AT(1)) was obtained by analyzing the binding of [(3)H]-2-ethoxy-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl]-1H- ben zimidazoline-7-carboxylic acid ([(3)H]candesartan) and by measuring the AT-induced production of inositol phosphates. The AT(1) antagonists candesartan, 2-n-butyl-4-chloro-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl]+ ++imid azole-5-carboxylic acid (EXP3174), or 2-n-butyl-4-chloro-5-hydroxymethyl-1-[(2'-(1H-tetrazol-5-yl)bip hen yl- 4-yl)methyl]imidazole (losartan) produced a concentration-dependent increase in the apparent K(d) values of [(3)H]candesartan in saturation binding experiments, while the B(max) values were unchanged. Furthermore, the dissociation rate of the radioligand initiated by 1 microM unlabelled candesartan was not changed in the presence of 10 microM losartan, 10 microM EXP3174, or 10 microM irbesartan (2-n-butyl-4-spirocyclopentane-1-[(2'-(1H-tetrazol-5-yl)b iph enyl-4-yl) methyl]2-imidazolin-5-one)). Preincubation of the CHO-AT(1) cells with candesartan, EXP3174, and irbesartan caused a reduction in the maximal AT-induced inositol mono-, bis-, and trisphosphate production. This insurmountable effect was reversed in the presence of 1 microM losartan. In line with this finding, the insurmountable antagonist concentration-inhibition curves at 10 microM AT were shifted to the right in the presence of losartan. For candesartan this effect was concentration-dependent, yielding a pK(B) value for losartan of 7.7, which is similar to the pK(B) from previously obtained AT concentration-response curves. Finally, the dissociation rate of candesartan, EXP3174, irbesartan, and losartan was determined by measuring the recovery of AT responses after antagonist pretreatment and washing of the cells with medium containing 1 microM losartan to prevent re-association of the insurmountable antagonists. In addition, similar kinetic data were obtained from the slowing of the [(3)H]candesartan association rate to antagonist preincubated cells.
Collapse
Affiliation(s)
- P M Vanderheyden
- Department of Molecular Pharmacology, Free University of Brussels, Sint-Genesius-Rode, Belgium.
| | | | | | | |
Collapse
|
39
|
Nakamura S, Yamamura Y, Itoh S, Hirano T, Tsujimae K, Aoyama M, Kondo K, Ogawa H, Shinohara T, Kan K, Tanada Y, Teramoto S, Sumida T, Nakayama S, Sekiguchi K, Kambe T, Tsujimoto G, Mori T, Tominaga M. Characterization of a novel nonpeptide vasopressin V(2)-agonist, OPC-51803, in cells transfected human vasopressin receptor subtypes. Br J Pharmacol 2000; 129:1700-6. [PMID: 10780976 PMCID: PMC1571993 DOI: 10.1038/sj.bjp.0703221] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We discovered the first nonpeptide arginine-vasopressin (AVP) V(2)-receptor agonist, OPC-51803. Pharmacological properties of OPC-51803 were elucidated using HeLa cells expressing human AVP receptor subtypes (V(2), V(1a) and V(1b)) and compared with those of 1-desamino-8-D-arginine vasopressin (dDAVP), a peptide V(2)-receptor agonist. OPC-51803 and dDAVP displaced [(3)H]-AVP binding to human V(2)- and V(1a)-receptors with K(i) values of 91.9+/-10.8 nM (n = 6) and 3.12+/-0.38 nM (n = 6) for V(2)-receptors, and 819+/-39 nM (n = 6) and 41.5+/-9.9 nM (n = 6) for V(1a)-receptors, indicating that OPC-51803 was about nine times more selective for V(2)-receptors, similar to the selectivity of dDAVP. OPC-51803 scarcely displaced [(3)H]-AVP binding to human V(1b)-receptors even at 10(-4) M, while dDAVP showed potent affinity to human V(1b)-receptors with the K(i) value of 13.7+/-3.2 nM (n = 4). OPC-51803 concentration-dependently increased cyclic adenosine 3', 5'-monophosphate (cyclic AMP) production in HeLa cells expressing human V(2)-receptors with an EC(50) value of 189+/-14 nM (n = 6). The concentration-response curve for cyclic AMP production induced by OPC-51803 was shifted to the right in the presence of a V(2)-antagonist, OPC-31260. At 10(-5) M, OPC-51803 did not increase the intracellular Ca(2+) concentration ([Ca(2+)](i)) in HeLa cells expressing human V(1a)-receptors. On the other hand, dDAVP increased [Ca(2+)](i) in HeLa cells expressing human V(1a)- and V(1b)-receptors in a concentration-dependent fashion. From these results, OPC-51803 has been confirmed to be the first nonpeptide agonist for human AVP V(2)-receptors without agonistic activities for V(1a)- and V(1b)-receptors. OPC-51803 may be useful for the treatment of AVP-deficient pathophysiological states and as a tool for AVP researches.
Collapse
Affiliation(s)
- S Nakamura
- Second Tokushima Institute of New Drug Research, Otsuka Pharmaceutical Co. Ltd., 463-10, Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
G protein-coupled, seven-transmembrane segment receptors (GPCRs or 7TM receptors), with more than 1000 different members, comprise the largest superfamily of proteins in the body. Since the cloning of the first receptors more than a decade ago, extensive experimental work has uncovered multiple aspects of their function and challenged many traditional paradigms. However, it is only recently that we are beginning to gain insight into some of the most fundamental questions in the molecular function of this class of receptors. How can, for example, so many chemically diverse hormones, neurotransmitters, and other signaling molecules activate receptors believed to share a similar overall tertiary structure? What is the nature of the physical changes linking agonist binding to receptor activation and subsequent transduction of the signal to the associated G protein on the cytoplasmic side of the membrane and to other putative signaling pathways? The goal of the present review is to specifically address these questions as well as to depict the current awareness about GPCR structure-function relationships in general.
Collapse
Affiliation(s)
- U Gether
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
41
|
Abstract
The G-protein coupled receptors form a large and diverse multi-gene superfamily with many important physiological functions. As such, they have become important targets in pharmaceutical research. Molecular modelling and site-directed mutagenesis have played an important role in our increasing understanding of the structural basis of drug action at these receptors. Aspects of this understanding, how these techniques can be used within a drug-design programme, and remaining challenges for the future are reviewed.
Collapse
MESH Headings
- Binding Sites
- Combinatorial Chemistry Techniques
- Drug Design
- GTP-Binding Proteins/chemistry
- Ligands
- Models, Molecular
- Molecular Structure
- Mutagenesis, Site-Directed
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Angiotensin/chemistry
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/classification
- Receptors, Cell Surface/genetics
- Receptors, G-Protein-Coupled
- Saccharomyces cerevisiae Proteins
Collapse
Affiliation(s)
- D R Flower
- Department of Physical Sciences, ASTRA Charnwood, Bakewell Rd, Loughborough, Leicestershire, UK.
| |
Collapse
|
42
|
Fierens FL, Vanderheyden PM, De Backer JP, Vauquelin G. Insurmountable angiotensin AT1 receptor antagonists: the role of tight antagonist binding. Eur J Pharmacol 1999; 372:199-206. [PMID: 10395100 DOI: 10.1016/s0014-2999(99)00205-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Angiotensin II increased the inositol phosphates production (EC50 = 3.4+/-0.7 nM) in Chinese hamster ovary (CHO) cells expressing the cloned human angiotensin AT1 receptor (CHO-AT1 cells). Coincubation with angiotensin AT1 receptor antagonists produced parallel rightward shifts of the concentration-response curve without affecting the maximal response. The potency order is 2-ethoxy-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl]-1H-benz imidazoline-7-carboxylic acid (candesartan) > 2-n-butyl-4-chloro-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl]i midazole-5-carboxylic acid (EXP3174) > 2-n-butyl-4-spirocyclopentane-1-[(2'-(1H-tetrazol-5-yl)biphe nyl-4-yl)methyl]2-imidazolin-5-one (irbesartan)> of 2-n-butyl-4-chloro-5-hydroxymethyl-1-(2'-(1H-tetrazol-5-yl)bipheny l-4-yl)methyl]imidazole (losartan). Additionally, preincubation with these antagonists depressed the maximal response, i.e., 95%, 70%, 30% of the control response for candesartan, EXP3174 and irbesartan and not detectable for losartan. Increasing the antagonist concentration or prolonging the preincubation time did not affect this depression. Furthermore, these values remained constant for candesartan and EXP3174, when the angiotensin II incubation time varied between 1 and 5 min. Our data indicate that antagonist-receptor complexes are divided into a fast reversible/surmountable population and a tight binding/insurmountable population at the very onset of the incubation with angiotensin II.
Collapse
Affiliation(s)
- F L Fierens
- Department of Molecular and Biochemical Pharmacology, Free University of Brussels (VUB), Belgium.
| | | | | | | |
Collapse
|
43
|
Miura S, Feng YH, Husain A, Karnik SS. Role of aromaticity of agonist switches of angiotensin II in the activation of the AT1 receptor. J Biol Chem 1999; 274:7103-10. [PMID: 10066768 DOI: 10.1074/jbc.274.11.7103] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that the octapeptide angiotensin II (Ang II) activates the AT1 receptor through an induced-fit mechanism (Noda, K., Feng, Y. H., Liu, X. P., Saad, Y., Husain, A., and Karnik, S. S. (1996) Biochemistry 35, 16435-16442). In this activation process, interactions between Tyr4 and Phe8 of Ang II with Asn111 and His256 of the AT1 receptor, respectively, are essential for agonism. Here we show that aromaticity, primarily, and size, secondarily, of the Tyr4 side chain are important in activating the receptor. Activation analysis of AT1 receptor position 111 mutants by various Ang II position 4 analogues suggests that an amino-aromatic bonding interaction operates between the residue Asn111 of the AT1 receptor and Tyr4 of Ang II. Degree and potency of AT1 receptor activation by Ang II can be recreated by a reciprocal exchange of aromatic and amide groups between positions 4 and 111 of Ang II and the AT1 receptor, respectively. In several other bonding combinations, set up between Ang II position 4 analogues and receptor mutants, the gain of affinity is not accompanied by gain of function. Activation analysis of position 256 receptor mutants by Ang II position 8 analogues suggests that aromaticity of Phe8 and His256 side chains is crucial for receptor activation; however, a stacked rather than an amino-aromatic interaction appears to operate at this switch locus. Interaction between these residues, unlike the Tyr4:Asn111 interaction, plays an insignificant role in ligand docking.
Collapse
Affiliation(s)
- S Miura
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195-5069, USA
| | | | | | | |
Collapse
|
44
|
Fierens F, Vanderheyden PM, De Backer JP, Vauquelin G. Binding of the antagonist [3H]candesartan to angiotensin II AT1 receptor-transfected [correction of tranfected] Chinese hamster ovary cells. Eur J Pharmacol 1999; 367:413-22. [PMID: 10079018 DOI: 10.1016/s0014-2999(98)00965-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Binding of the non-peptide angiotensin II AT1 antagonist [3H](2-ethoxy-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl]- H-benzimidazoline-7-carboxylic acid ([3H]candesartan) to human angiotensin II AT1 receptor-transfected Chinese hamster ovary (CHO-AT1) cells was inhibited to the same extent by angiotensin II and non-peptide angiotensin II AT1 antagonists. No binding was observed in control CHO-K1 cells. Dissociation was slow (k(-1) = 0.0010+/-0.0001 min(-1)) after removal of the free [3H]candesartan but increased 5-fold upon addition of supramaximal concentrations of angiotensin II AT1 antagonists. Angiotensin II responses recovered equally slow from candesartan-pretreatment. When washed and further incubated, these angiotensin II responses also recovered more rapidly in the presence of 2-n-butyl-4-chloro-5-hydroxymethyl-1-[(2'-(1H-tetrazol-5-yl)biphen yl-4-yl)methyl]imidazole (losartan), indicating that unlabelled ligands prevented reassociation. [3 H]candesartan saturation binding experiments required a long time to reach equilibrium. Therefore, the equilibrium dissociation constant (Kd = 51+/-8 pM) was calculated from the association and dissociation rate constants. Our findings indicate that the insurmountable nature of candesartan in functional studies is related to its slow dissociation from the receptor.
Collapse
Affiliation(s)
- F Fierens
- Department of Molecular and Biochemical Pharmacology, Free University of Brussels (VUB), Sint-Genesius Rode, Belgium
| | | | | | | |
Collapse
|
45
|
Vanderheyden PM, Fierens FL, De Backer JP, Fraeyman N, Vauquelin G. Distinction between surmountable and insurmountable selective AT1 receptor antagonists by use of CHO-K1 cells expressing human angiotensin II AT1 receptors. Br J Pharmacol 1999; 126:1057-65. [PMID: 10193788 PMCID: PMC1571230 DOI: 10.1038/sj.bjp.0702398] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. CHO-K1 cells that were stably transfected with the gene for the human AT1 receptor (CHO-AT1 cells) were used for pharmacological studies of non-peptide AT1 receptor antagonists. 2. In the presence of 10 mM LiCl, angiotensin II caused a concentration-dependent and long-lasting increase of inositol phosphates accumulation with an EC50 of 3.4 nM. No angiotensin II responses are seen in wild-type CHO-K1 cells. 3. [3H]-Angiotensin II bound to cell surface AT1 receptors (dissociates under mild acidic conditions) and is subject to rapid internalization. 4. Non-peptide selective AT1 antagonists inhibited the angiotensin II (0.1 microM) induced IP accumulation and the binding of [3H]-angiotensin II (1 nM) with the potency order: candesartan > EXP3174 > irbesartan > losartan. Their potencies are lower in the presence of bovine serum albumin. 5. Preincubation with the insurmountable antagonist candesartan decreased the maximal angiotensin II induced inositol phosphate accumulation up to 94% and, concomitantly, decreased the maximal binding capacity of the cell surface receptors. These inhibitory effects were half-maximal for 0.6 nM candesartan and were attenuated by simultaneous preincubation with 1 microM losartan indicating a syntopic action of both antagonists. 6. Losartan caused a parallel rightward shift of the angiotensin II concentration-response curves and did not affect the maximal binding capacity. EXP3174 (the active metabolite of losartan) and irbesartan showed a mixed-type behavior in both functional and binding studies. 7. Reversal of the inhibitory effect was slower for candesartan as compared with EXP3174 and irbesartan and it was almost instantaneous for losartan, suggesting that the insurmountable nature of selective AT1 receptor antagonists in functional studies was related to their long-lasting inhibition.
Collapse
Affiliation(s)
- P M Vanderheyden
- Department of Protein Chemistry, Free University of Brussels (VUB), Sint-Genesius Rode, Belgium.
| | | | | | | | | |
Collapse
|
46
|
Parker JC, Andrews KM, Rescek DM, Massefski W, Andrews GC, Contillo LG, Stevenson RW, Singleton DH, Suleske RT. Structure-function analysis of a series of glucagon-like peptide-1 analogs. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 52:398-409. [PMID: 9894845 DOI: 10.1111/j.1399-3011.1998.tb00664.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have used NMR in conjunction with measurements of functional bioactivity to define the receptor-binding structure of glucagon-like peptide-1 (GLP-1.) Identification of the important residues for binding was accomplished by the substitution of amino acids at sites that seemed likely, from an examination of the amino acid sequence and from previously published observations, to be important in the three-dimensional (3D) structure of the molecule. Identification of the receptor-bound conformation of GLP-1, because it is a flexible peptide, required constraint of the peptide backbone into a predetermined 3D structure. Constraint was achieved by the introduction of disulfide bonds and specific side chain-side chain cross-links. The biological relevance of the synthetic structure of each rigidified peptide was assessed by measurement of its ability to bind to the receptor present on RINm5F cells and to elicit a functional response, cyclic AMP production. NMR solution structures were obtained for the most biologically relevant of these analogs. The results of this study indicated that the residues necessary for the biological activity of GLP-1 occupy approximately three equally-spaced regions of the peptide 3D structure, at the corners of an equilateral triangle whose sides are, at a minimum estimate, 12-15A.
Collapse
Affiliation(s)
- J C Parker
- Pfizer Inc., Central Research Division, Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hunyady L, Ji H, Jagadeesh G, Zhang M, Gáborik Z, Mihalik B, Catt KJ. Dependence of AT1 angiotensin receptor function on adjacent asparagine residues in the seventh transmembrane helix. Mol Pharmacol 1998; 54:427-34. [PMID: 9687585 DOI: 10.1124/mol.54.2.427] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For several G protein-coupled receptors, amino acids in the seventh transmembrane helix have been implicated in ligand binding and receptor activation. The function of this region in the AT1 angiotensin receptor was further investigated by mutation of two conserved polar residues (Asn294 and Asn295) and the adjacent Phe293 residue. Analysis of the properties of the mutant receptors expressed in COS-7 cells revealed that alanine replacement of Phe293 had no major effect on AT1 receptor function. Substitution of the adjacent Asn294 residue with alanine (N294A) reduced receptor binding affinities for angiotensin II, two nonpeptide agonists (L-162,313 and L-163,491), and the AT1-selective nonpeptide antagonist losartan but not that for the peptide antagonist [Sar1, Ile8]angiotensin II. The N294A receptor also showed impaired G protein coupling and severely attenuated inositol phosphate generation. In contrast, alanine replacement of Asn295 decreased receptor binding affinities for all angiotensin II ligands but did not impair signal transduction. Additional substitutions of Asn295 with a variety of amino acids did not identify specific structural elements for ligand binding. These findings indicate that Asn295 is required for the integrity of the intramembrane binding pocket of the AT1a receptor but is not essential for signal generation. They also demonstrate the importance of transmembrane helices in the formation of the binding site for nonpeptide AT1 receptor agonists. We conclude that the Asn294 residue of the AT1 receptor is an essential determinant of receptor activation and that the adjacent Asn295 residue is required for normal ligand binding.
Collapse
Affiliation(s)
- L Hunyady
- Department of Physiology, Semmelweis University of Medicine, H-1088 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
48
|
Beinborn M, Quinn SM, Kopin AS. Minor modifications of a cholecystokinin-B/gastrin receptor non-peptide antagonist confer a broad spectrum of functional properties. J Biol Chem 1998; 273:14146-51. [PMID: 9603914 DOI: 10.1074/jbc.273.23.14146] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of non-peptide agonists for peptide hormone receptors would markedly expand the treatment options for a large number of diseases. However, difficulty in identifying non-peptide molecules which possess intrinsic activity has been a major obstacle in achieving this goal. At present, most of the known non-peptide ligands for peptide hormone receptors appear in standard functional assays to be antagonists. Here, we report that a constitutively active mutant of the human cholecystokinin-B/gastrin receptor, Leu325 --> Glu, offers the potential to detect even trace agonist activity of ligands which, at the wild type receptor isoform, appear to lack efficacy. The enhanced functional sensitivity of the mutant receptor enabled us to detect intrinsic activity of L-365,260, an established non-peptide antagonist for the cholecystokinin-B/gastrin receptor. Extending from this observation, we were able to demonstrate that minor structural modifications could convert L-365, 260 into either: (i) an agonist or (ii) an inverse agonist (attenuates ligand-independent signaling). The ability to confer functional activity to small non-peptide ligands suggests that the properties of endogenous peptide hormones can be mimicked, and even extended, by considerably less complex molecules.
Collapse
Affiliation(s)
- M Beinborn
- Department of Medicine and Center for Gastroenterology Research on Absorptive and Secretory Processes, Tupper Research Institute, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
49
|
Asano M, Hatori C, Sawai H, Johki S, Inamura N, Kayakiri H, Satoh S, Abe Y, Inoue T, Sawada Y, Mizutani T, Oku T, Nakahara K. Pharmacological characterization of a nonpeptide bradykinin B2 receptor antagonist, FR165649, and agonist, FR190997. Br J Pharmacol 1998; 124:441-6. [PMID: 9647466 PMCID: PMC1565402 DOI: 10.1038/sj.bjp.0701813] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. The nonpeptide bradykinin (BK) B2 receptor antagonist, FR165649 (8-[2,6-dichloro-3-[N-[(E)-4-(N-methylcarbamoyl)cinnamidoacetyl ]-N-methylamino]benzyloxy]-2-methylquinoline), and agonist, FR190997 (8-[2,6-dichloro-3-[N-[(E)-4-(N-methylcarbamoyl) cinnamidoacetyl]-N-methylamino]benzyloxy]-2-methyl-4-(2-pyridyl methoxy)quinoline) have been identified. These compounds have a common chemical structure, and the 2-pyridylmethoxy group is the only structural difference between them. 2. Both FR165649 and FR190997 displaced [3H]-BK binding to B2 receptors in guinea-pig ileum membranes, with an IC50 of 4.7 x 10(-10) M and 1.5 x 10(-9) M, respectively. They also displaced [3H]-BK binding to B2 receptors in human lung fibroblast IMR-90 cells, with an IC50 of 1.6 x 10(-9) M and 9.8 x 10(-10) M, respectively. 3. In guinea-pig isolated ileum-preparations, FR165649 had no agonistic effect on contraction and caused parallel rightward shifts of the concentration-response curves to BK on contraction. Analysis of the data produced a nominal pA2 value of 9.2+/-0.1 (n=5) and a slope of 1.4+/-0.1 (n=5). On the other hand, FR190997 induced concentration-dependent contraction of guinea-pig ilea with a pD2 of 7.9+/-0.2 and the contraction was inhibited by a specific peptide bradykinin B2 receptor antagonist, Hoe 140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8]BK) in a non-competitive manner. 4. In IMR-90 cells, FR165649 had no agonistic effect on phosphatidyl inositol (PI) hydrolysis and caused parallel rightward shifts (approximately 200 fold shift at 10(-7) M) of the concentration-response curves to BK on PI hydrolysis. FR190997 induced concentration-dependent PI hydrolysis in IMR-90 cells with a pD2 of 8.4+/-0.1, and this effect was inhibited by Hoe 140. 5. These results indicate that FR165649 and FR190997 are, respectively, a potent bradykinin B2 receptor antagonist and agonist, and that the agonistic activity depends on the small part of the nonpeptide ligand. FR165649 and FR190997 may be useful tools for studying the relationship between ligands and receptors.
Collapse
Affiliation(s)
- M Asano
- Department of Pharmacology, Exploratory Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cornish J, Callon KE, Lin CQ, Xiao CL, Mulvey TB, Coy DH, Cooper GJ, Reid IR. Dissociation of the effects of amylin on osteoblast proliferation and bone resorption. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:E827-33. [PMID: 9612240 DOI: 10.1152/ajpendo.1998.274.5.e827] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study assesses the structure-activity relationships of the actions of amylin on bone. In fetal rat osteoblasts, only intact amylin and amylin-(1-8) stimulated cell proliferation (half-maximal concentrations 2.0 x 10(-11) and 2.4 x 10(-10) M, respectively). Amylin-(8-37), COOH terminally deamidated amylin, reduced amylin, and reduced amylin-(1-8) (reduction results in cleavage of the disulfide bond) were without agonist effect but acted as antagonists to the effects of both amylin and amylin-(1-8). Calcitonin gene-related peptide-(8-37) also antagonized the effects of amylin and amylin-(1-8) on osteoblasts but was substantially less potent in this regard than amylin-(8-37). In contrast, inhibition of bone resorption in neonatal mouse calvariae only occurred with the intact amylin molecule and was not antagonized by any of these peptides. The rate of catabolism of the peptides in calvarial cultures was not accelerated in comparison with that of intact amylin. This dissociation of the actions of amylin suggests that it acts through two separate receptors, one on the osteoclast (possibly the calcitonin receptor) and a second on the osteoblast.
Collapse
Affiliation(s)
- J Cornish
- Department of Medicine, University of Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|