1
|
Tang ST, Song XW, Chen J, Shen J, Ma B, Rosen BP, Zhang J, Zhao FJ. Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14579-14588. [PMID: 37737118 PMCID: PMC10699511 DOI: 10.1021/acs.est.3c03458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Microbial oxidation of environmental antimonite (Sb(III)) to antimonate (Sb(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb(III) to Sb(V) under oxic conditions by an unknown mechanism. Genomic analysis of ST2 reveals a gene of unknown function in an arsenic resistance (ars) operon that we term arsO. The transcription level of arsO was significantly upregulated by the addition of Sb(III). ArsO is predicted to be a flavoprotein monooxygenase but shows low sequence similarity to other flavoprotein monooxygenases. Expression of arsO in the arsenic-hypersensitive Escherichia coli strain AW3110Δars conferred increased resistance to Sb(III) but not arsenite (As(III)) or methylarsenite (MAs(III)). Purified ArsO catalyzes Sb(III) oxidation to Sb(V) with NADPH or NADH as the electron donor but does not oxidize As(III) or MAs(III). The purified enzyme contains flavin adenine dinucleotide (FAD) at a ratio of 0.62 mol of FAD/mol protein, and enzymatic activity was increased by addition of FAD. Bioinformatic analyses show that arsO genes are widely distributed in metagenomes from different environments and are particularly abundant in environments affected by human activities. This study demonstrates that ArsO is an environmental Sb(III) oxidase that plays a significant role in the detoxification of Sb(III).
Collapse
Affiliation(s)
- Shi-Tong Tang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Wei Song
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China
- Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Jian Chen
- Institute of Environmental Remediation and Human Health, College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Jie Shen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China
- Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Mohsin H, Shafique M, Zaid M, Rehman Y. Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01068-6. [PMID: 37326815 DOI: 10.1007/s12223-023-01068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Arsenic is a ubiquitous toxic metalloid, the concentration of which is beyond WHO safe drinking water standards in many areas of the world, owing to many natural and anthropogenic activities. Long-term exposure to arsenic proves lethal for plants, humans, animals, and even microbial communities in the environment. Various sustainable strategies have been developed to mitigate the harmful effects of arsenic which include several chemical and physical methods, however, bioremediation has proved to be an eco-friendly and inexpensive technique with promising results. Many microbes and plant species are known for arsenic biotransformation and detoxification. Arsenic bioremediation involves different pathways such as uptake, accumulation, reduction, oxidation, methylation, and demethylation. Each of these pathways has a certain set of genes and proteins to carry out the mechanism of arsenic biotransformation. Based on these mechanisms, various studies have been conducted for arsenic detoxification and removal. Genes specific for these pathways have also been cloned in several microorganisms to enhance arsenic bioremediation. This review discusses different biochemical pathways and the associated genes which play important roles in arsenic redox reactions, resistance, methylation/demethylation, and accumulation. Based on these mechanisms, new methods can be developed for effective arsenic bioremediation.
Collapse
Affiliation(s)
- Hareem Mohsin
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Maria Shafique
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Muhammad Zaid
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Yasir Rehman
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
3
|
Griggs JL, Chi L, Hanley NM, Kohan M, Herbin-Davis K, Thomas DJ, Lu K, Fry RC, Bradham KD. Bioaccessibility of arsenic from contaminated soils and alteration of the gut microbiome in an in vitro gastrointestinal model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119753. [PMID: 35835276 PMCID: PMC9667710 DOI: 10.1016/j.envpol.2022.119753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 05/11/2023]
Abstract
Arsenic exposure has been reported to alter the gut microbiome in mice. Activity of the gut microbiome derived from fecal microbiota has been found to affect arsenic bioaccessibility in an in vitro gastrointestinal (GI) model. Only a few studies have explored the relation between arsenic exposure and changes in the composition of the gut microbiome and in arsenic bioaccessibility. Here, we used simulated GI model system (GIMS) containing a stomach, small intestine, colon phases and microorganisms obtained from mouse feces (GIMS-F) and cecal contents (GIMS-C) to assess whether exposure to arsenic-contaminated soils affect the gut microbiome and whether composition of the gut microbiome affects arsenic bioaccessibility. Soils contaminated with arsenic did not alter gut microbiome composition in GIMS-F colon phase. In contrast, arsenic exposure resulted in the decline of bacteria in GIMS-C, including members of Clostridiaceae, Rikenellaceae, and Parabacteroides due to greater diversity and variability in microbial sensitivity to arsenic exposure. Arsenic bioaccessibility was greatest in the acidic stomach phase of GIMS (pH 1.5-1.7); except for GIMS-C colon phase exposed to mining-impacted soil in which greater levels of arsenic solubilized likely due to microbiome effects. Physicochemical properties of different test soils likely influenced variability in arsenic bioaccessibility (GIMS-F bioaccessibility range: 8-37%, GIMS-C bioaccessibility range: 2-18%) observed in this study.
Collapse
Affiliation(s)
- Jennifer L Griggs
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Liang Chi
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nancy M Hanley
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Michael Kohan
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Karen Herbin-Davis
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - David J Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Karen D Bradham
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modelling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
4
|
Alapa M, Cui C, Shu P, Li H, Kholodovych V, Beuve A. Selective cysteines oxidation in soluble guanylyl cyclase catalytic domain is involved in NO activation. Free Radic Biol Med 2021; 162:450-460. [PMID: 33161042 PMCID: PMC7889651 DOI: 10.1016/j.freeradbiomed.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) binds to soluble guanylyl cyclase (GC1) and stimulates its catalytic activity to produce cGMP. Despite the key role of the NO-cGMP signaling in cardiovascular physiology, the mechanisms of GC1 activation remain ill-defined. It is believed that conserved cysteines (Cys) in GC1 modulate the enzyme's activity through thiol-redox modifications. We previously showed that GC1 activity is modulated via mixed-disulfide bond by protein disulfide isomerase and thioredoxin 1. Herein we investigated the novel concept that NO-stimulated GC1 activity is mediated by thiol/disulfide switches and aimed to map the specific Cys that are involved. First, we showed that the dithiol reducing agent Tris (2-carboxyethyl)-phosphine reduces GC1 response to NO, indicating the significance of Cys oxidation in NO activation. Second, using dibromobimane, which fluoresces when crosslinking two vicinal Cys thiols, we demonstrated decreased fluorescence in NO-stimulated GC1 compared to unstimulated conditions. This suggested that NO-stimulated GC1 contained more bound Cys, potentially disulfide bonds. Third, to identify NO-regulated Cys oxidation using mass spectrometry, we compared the redox status of all Cys identified in tryptic peptides, among which, ten were oxidized and two were reduced in NO-stimulated GC1. Fourth, we resorted to computational modeling to narrow down the Cys candidates potentially involved in disulfide bond and identified Cys489 and Cys571. Fifth, our mutational studies showed that Cys489 and Cys571 were involved in GC1'response to NO, potentially as a thiol/disulfide switch. These findings imply that specific GC1 Cys sensitivity to redox environment is critical for NO signaling in cardiovascular physiology.
Collapse
Affiliation(s)
- Maryam Alapa
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA
| | - Chuanlong Cui
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA; Center for Advanced Proteomics Research- New Jersey Medical School- Rutgers, Newark, NJ, 07103, USA
| | - Ping Shu
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research- New Jersey Medical School- Rutgers, Newark, NJ, 07103, USA
| | - Vlad Kholodovych
- Office of Advanced Research Computing, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Annie Beuve
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA.
| |
Collapse
|
5
|
Jiang N, Li H, Sun H. Recognition of Proteins by Metal Chelation-Based Fluorescent Probes in Cells. Front Chem 2019; 7:560. [PMID: 31448265 PMCID: PMC6695521 DOI: 10.3389/fchem.2019.00560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023] Open
Abstract
Fluorescent probes such as thiol-reactive and Ni2+-nitrilotriacetate (NTA) based probes provide a powerful toolbox for real-time visualization of a protein and a proteome in living cells. Herein, we first went through basic principles and applications of thiol-reactive based probes in protein imaging and recognition. We then summarize a family of metal-NTA based fluorescence probes in the visualization of His6-tagged protein and identification of metalloproteins at proteome-wide scale. The pros and cons of the probes, as well as ways to optimize them, are discussed.
Collapse
Affiliation(s)
| | | | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Xue XM, Ye J, Raber G, Rosen BP, Francesconi K, Xiong C, Zhu Z, Rensing C, Zhu YG. Identification of Steps in the Pathway of Arsenosugar Biosynthesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:634-641. [PMID: 30525501 PMCID: PMC6467767 DOI: 10.1021/acs.est.8b04389] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Arsenosugars are arsenic-containing ribosides that play a substantial role in arsenic biogeochemical cycles. Arsenosugars were identified more than 30 years ago, and yet their mechanism of biosynthesis remains unknown. In this study we report identification of the arsS gene from the cyanobacterium Synechocystis sp. PCC 6803 and show that it is involved in arsenosugar biosynthesis. In the Synechocystis sp. PCC 6803 ars operon, arsS is adjacent to the arsM gene that encodes an As(III) S-adenosylmethionine (SAM) methyltransferase. The gene product, ArsS, contains a characteristic CX3CX2C motif which is typical for the radical SAM superfamily. The function of ArsS was identified from a combination of arsS disruption in Synechocystis sp. PCC 6803 and heterologous expression of arsM and arsS in Escherichia coli. Both genes are necessary, indicating a multistep pathway of arsenosugar biosynthesis. In addition, we demonstrate that ArsS orthologs from three other freshwater cyanobacteria and one picocyanobacterium are involved in arsenosugar biosynthesis in those microbes. This study represents the identification of the first two steps in the pathway of arsenosugar biosynthesis. Our discovery expands the catalytic repertoire of the diverse radical SAM enzyme superfamily and provides a basis for studying the biogeochemistry of complex organoarsenicals.
Collapse
Affiliation(s)
- Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Georg Raber
- Institute of Chemistry, NAWI Graz, University of Graz, Graz 8010, Austria
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Kevin Francesconi
- Institute of Chemistry, NAWI Graz, University of Graz, Graz 8010, Austria
| | - Chan Xiong
- Institute of Chemistry, NAWI Graz, University of Graz, Graz 8010, Austria
| | - Zhe Zhu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China
| | - Christopher Rensing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Yan G, Chen X, Du S, Deng Z, Wang L, Chen S. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr Genet 2018; 65:329-338. [PMID: 30349994 DOI: 10.1007/s00294-018-0894-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
Abstract
Arsenic, distributed pervasively in the natural environment, is an extremely toxic substance which can severely impair the normal functions of living cells. Research on the genetic mechanisms of arsenic metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. This review summarizes arsenic detoxification as well as arsenic respiratory metabolic pathways in bacteria and discusses novel arsenic resistance pathways in various bacterial strains. This knowledge provides insights into the mechanisms of arsenic biotransformation in bacteria. Multiple detoxification strategies among bacteria imply possible functional relationships among different arsenic detoxification/metabolism pathways. In addition, this review sheds light on the bioremediation of arsenic-contaminated environments and prevention of antibiotic resistance.
Collapse
Affiliation(s)
- Ge Yan
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xingxiang Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shiming Du
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lianrong Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shi Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China. .,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
8
|
Hussain A, Das Sarma S, Babu S, Pal D, Das Sarma J. Interaction of arsenic with gap junction protein connexin 43 alters gap junctional intercellular communication. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1423-1436. [PMID: 30031898 DOI: 10.1016/j.bbamcr.2018.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022]
Abstract
Chronic exposure to Arsenic pollution in ground water is one of the largest environmental health disasters in the world. The toxicity of trivalent Arsenicals primarily happens due to its interaction with sulfhydryl groups in proteins. Arsenic binding to the protein can change the conformation of the protein and alter its interactions with other proteins leading to tissue damage. Therefore, much importance has been given to the studies of Arsenic bound proteins, for the purpose of understanding the origins of toxicity and to explore therapeutics. Here we study the dynamic effect of Arsenic on Connexin 43 (Cx43), a protein that forms the gap junctions, whose alteration deeply perturbs the cell-to-cell communication vital for maintaining tissue homeostasis. In silico molecular modelling and in vitro studies comparing Arsenic treated and untreated conditions show distinct results. Gap junction communication is severely disrupted by Arsenic due to reduced availability of unaltered Cx43 in the membrane bound form. In silico and Inductively Coupled Plasma Mass Spectrometry studies revealed the interaction of Arsenic to the Cx43 preferably occurs through surface exposed cysteines, thereby capping the thiol groups that form disulfide bonds in the tertiary structure. This leads to disruption of Cx43 oligomerization, and altered Cx43 is incompetent for transportation to the membrane surface, often forming aggregates primarily localizing in the endoplasmic reticulum. Loss of functional Cx43 on the cell surface have a deleterious effect on cellular homeostasis leading to selective vulnerability to cell death and tissue damage.
Collapse
Affiliation(s)
- Afaq Hussain
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Subhajit Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Swathy Babu
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
9
|
Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proc Natl Acad Sci U S A 2015; 112:15084-9. [PMID: 26598702 DOI: 10.1073/pnas.1521316112] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Arsenic is highly effective for treating acute promyelocytic leukemia (APL) and has shown significant promise against many other tumors. However, although its mechanistic effects in APL are established, its broader anticancer mode of action is not understood. In this study, using a human proteome microarray, we identified 360 proteins that specifically bind arsenic. Among the most highly enriched proteins in this set are those in the glycolysis pathway, including the rate-limiting enzyme in glycolysis, hexokinase-1. Detailed biochemical and metabolomics analyses of the highly homologous hexokinase-2 (HK2), which is overexpressed in many cancers, revealed significant inhibition by arsenic. Furthermore, overexpression of HK2 rescued cells from arsenic-induced apoptosis. Our results thus strongly implicate glycolysis, and HK2 in particular, as a key target of arsenic. Moreover, the arsenic-binding proteins identified in this work are expected to serve as a valuable resource for the development of synergistic antitumor therapeutic strategies.
Collapse
|
10
|
Pillai JK, Venkadesh S, Ajees AA, Rosen BP, Bhattacharjee H. Mutations in the ArsA ATPase that restore interaction with the ArsD metallochaperone. Biometals 2014; 27:1263-75. [PMID: 25183649 PMCID: PMC4224984 DOI: 10.1007/s10534-014-9788-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/21/2014] [Indexed: 01/01/2023]
Abstract
The ArsA ATPase is the catalytic subunit of the ArsAB As(III) efflux pump. It receives trivalent As(III) from the intracellular metallochaperone ArsD. The interaction of ArsA and ArsD allows for resistance to As(III) at environmental concentrations. A quadruple mutant in the arsD gene encoding a K2A/K37A/K62A/K104A ArsD is unable to interact with ArsA. An error-prone mutagenesis approach was used to generate random mutations in the arsA gene that restored interaction with the quadruple arsD mutant in yeast two-hybrid assays. A number of arsA genes with multiple mutations were isolated. These were analyzed in more detail by separation into single arsA mutants. Three such mutants encoding Q56R, F120I and D137V ArsA were able to restore interaction with the quadruple ArsD mutant in yeast two-hybrid assays. Each of the three single ArsA mutants also interacted with wild type ArsD. Only the Q56R ArsA derivative exhibited significant metalloid-stimulated ATPase activity in vitro. Purified Q56R ArsA was stimulated by wild type ArsD and to a lesser degree by the quadruple ArsD derivative. The F120I and D137V ArsAs did not show metalloid-stimulated ATPase activity. Structural models generated by in silico docking suggest that an electrostatic interface favors reversible interaction between ArsA and ArsD. We predict that mutations in ArsA propagate changes in hydrogen bonding and salt bridges to the ArsA-ArsD interface that affect their interactions.
Collapse
Affiliation(s)
- Jitesh K. Pillai
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida 33199, USA
| | - Sarkarai Venkadesh
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida 33199, USA
| | - A. Abdul Ajees
- Department of Atomic and Molecular Physics, Manipal University, Manipal, Karnataka 576104, India
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida 33199, USA
| | - Hiranmoy Bhattacharjee
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida 33199, USA
| |
Collapse
|
11
|
Affiliation(s)
- Shengwen Shen
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - Xing-Fang Li
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - William R. Cullen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver,
British Columbia, Canada, V6T 1Z1
| | - Michael Weinfeld
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada, T6G 1Z2
| | - X. Chris Le
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| |
Collapse
|
12
|
Yang HC, Fu HL, Lin YF, Rosen BP. Pathways of arsenic uptake and efflux. CURRENT TOPICS IN MEMBRANES 2013; 69:325-58. [PMID: 23046656 DOI: 10.1016/b978-0-12-394390-3.00012-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Arsenic is the most prevalent environmental toxic substance and ranks first on the U.S. Environmental Protection Agency's Superfund List. Arsenic is a carcinogen and a causative agent of numerous human diseases. Paradoxically arsenic is used as a chemotherapeutic agent for treatment of acute promyelocytic leukemia. Inorganic arsenic has two biological important oxidation states: As(V) (arsenate) and As(III) (arsenite). Arsenic uptake is adventitious because the arsenate and arsenite are chemically similar to required nutrients. Arsenate resembles phosphate and is a competitive inhibitor of many phosphate-utilizing enzymes. Arsenate is taken up by phosphate transport systems. In contrast, at physiological pH, the form of arsenite is As(OH)(3), which resembles organic molecules such as glycerol. Consequently, arsenite is taken into cells by aquaglyceroporin channels. Arsenic efflux systems are found in nearly every organism and evolved to rid cells of this toxic metalloid. These efflux systems include members of the multidrug resistance protein family and the bacterial exchangers Acr3 and ArsB. ArsB can also be a subunit of the ArsAB As(III)-translocating ATPase, an ATP-driven efflux pump. The ArsD metallochaperone binds cytosolic As(III) and transfers it to the ArsA subunit of the efflux pump. Knowledge of the pathways and transporters for arsenic uptake and efflux is essential for understanding its toxicity and carcinogenicity and for rational design of cancer chemotherapeutic drugs.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Biotechnology and Laboratory Sciences, Chang-Gung University, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
13
|
Park D, Chiu J, Perrone GG, Dilda PJ, Hogg PJ. The tumour metabolism inhibitors GSAO and PENAO react with cysteines 57 and 257 of mitochondrial adenine nucleotide translocase. Cancer Cell Int 2012; 12:11. [PMID: 22448968 PMCID: PMC3349534 DOI: 10.1186/1475-2867-12-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/26/2012] [Indexed: 11/29/2022] Open
Abstract
Background GSAO (4-(N-(S-glutathionylacetyl)amino) phenylarsonous acid) and PENAO (4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid) are tumour metabolism inhibitors that target adenine nucleotide translocase (ANT) of the inner-mitochondrial membrane. Both compounds are currently being trialled in patients with solid tumours. The trivalent arsenical moiety of GSAO and PENAO reacts with two matrix facing cysteine residues of ANT, inactivating the transporter. This leads to proliferation arrest and death of tumour and tumour-supporting cells. Results The two reactive ANT cysteine residues have been identified in this study by expressing cysteine mutants of human ANT1 in Saccharomyces cerevisiae and measuring interaction with the arsenical moiety of GSAO and PENAO. The arsenic atom of both compounds cross-links cysteine residues 57 and 257 of human ANT1. Conclusions The sulphur atoms of these two cysteines are 20 Å apart in the crystal structures of ANT and the optimal spacing of cysteine thiolates for reaction with As (III) is 3-4 Å. This implies that a significant conformational change in ANT is required for the organoarsenicals to react with cysteines 57 and 257. This conformational change may relate to the selectivity of the compounds for proliferating cells.
Collapse
Affiliation(s)
- Danielle Park
- Lowy Cancer Research Centre & Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia
| | - Joyce Chiu
- Lowy Cancer Research Centre & Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia
| | - Gabriel G Perrone
- Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | - Pierre J Dilda
- Lowy Cancer Research Centre & Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia
| | - Philip J Hogg
- Lowy Cancer Research Centre & Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
14
|
Characterization of the role of protein-cysteine residues in the binding with sodium arsenite. Arch Toxicol 2012; 86:911-22. [PMID: 22422341 DOI: 10.1007/s00204-012-0828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/27/2012] [Indexed: 12/15/2022]
Abstract
To better characterize the interaction of protein-cysteines with sodium arsenite, arsenic-binding proteins were identified from the arsenic-resistant Chinese hamster ovary cell line SA7 using a p-aminophenylarsine oxide (PAO)-agarose matrix in combination with proteomic techniques. Twenty of the isolated arsenic-binding proteins were further peptide-mapped by MALDI-Q-TOF-MS. The binding capacity of PAO-agarose-retained proteins was then verified by re-applying Escherichia coli overexpressed recombinant proteins with various numbers of cysteine residues onto the PAO-agarose matrix. The results showed that recombinant heat shock protein 27 (HSP27, with one cysteine residue), reticulocalbin-3 (RCN3, with no cysteine residue), galectin-1 (GAL1, with six cysteine residues), but not peroxiredoxin 6 (Prdx6, with one cysteine residue but not retained by the PAO-agarose matrix), were bound to the PAO-agarose matrix. The six free cysteine residues in GAL1 were individually or double-mutated to alanine by means of site-directed mutagenesis and subjected to CD and ICP-MS analysis. The binding capacity of GAL1 for sodium arsenite was significantly attenuated in C16A, C88A and all double mutant clones. Taken together, our current data suggest that the cysteine residues in GAL1 may play a critical role in the binding of arsenic, but that in the case of RCN3 and Prdx6, this interaction may be mediated by other factors.
Collapse
|
15
|
Abstract
TF (tissue factor) is a transmembrane cofactor that initiates blood coagulation in mammals by binding Factor VIIa to activate Factors X and IX. The cofactor can reside in a cryptic configuration on primary cells and de-encryption may involve a redox change in the C-terminal domain Cys(186)-Cys(209) disulfide bond. The redox potential of the bond, the spacing of the reduced cysteine thiols and their oxidation by TF activators was investigated to test the involvement of the dithiol/disulfide in TF activation. A standard redox potential of -278 mV was determined for the Cys(186)-Cys(209) disulfide of recombinant soluble TF. Notably, ablating the N-terminal domain Cys(49)-Cys(57) disulfide markedly increased the redox potential of the Cys(186)-Cys(209) bond, suggesting that the N-terminal bond may be involved in the regulation of redox activity at the C-terminal bond. Using As(III) and dibromobimane as molecular rulers for closely spaced sulfur atoms, the reduced Cys(186) and Cys(209) sulfurs were found to be within 3-6 Å (1 Å=0.1 nm) of each other, which is close enough to reform the disulfide bond. HgCl2 is a very efficient activator of cellular TF and activating concentrations of HgCl2-mediated oxidation of the reduced Cys(186) and Cys(209) thiols of soluble TF. Moreover, PAO (phenylarsonous acid), which cross-links two cysteine thiols that are in close proximity, and MMTS (methyl methanethiolsulfonate), at concentrations where it oxidizes closely spaced cysteine residues to a cystine residue, were efficient activators of cellular TF. These findings further support a role for Cys(186) and Cys(209) in TF activation.
Collapse
|
16
|
Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand-Breitenbach V, Jeanne M, Zhang QY, Yang HY, Huang QH, Zhou GB, Tong JH, Zhang Y, Wu JH, Hu HY, de Thé H, Chen SJ, Chen Z. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 2010; 328:240-3. [PMID: 20378816 DOI: 10.1126/science.1183424] [Citation(s) in RCA: 603] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Park D, Dilda PJ. Mitochondria as targets in angiogenesis inhibition. Mol Aspects Med 2010; 31:113-31. [DOI: 10.1016/j.mam.2009.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 12/02/2009] [Indexed: 12/27/2022]
|
18
|
Khan MA, Bishop RE. Molecular mechanism for lateral lipid diffusion between the outer membrane external leaflet and a beta-barrel hydrocarbon ruler. Biochemistry 2009; 48:9745-56. [PMID: 19769329 DOI: 10.1021/bi9013566] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane-intrinsic enzymes are embedded in lipids, yet how such enzymes interrogate lipid substrates remains a largely unexplored fundamental question. The outer membrane phospholipid:lipid A palmitoyltransferase PagP combats host immune defenses during infection and selects a palmitate chain using its beta-barrel interior hydrocarbon ruler. Both a molecular embrasure and crenel in Escherichia coli PagP display weakened transmembrane beta-strand hydrogen bonding to provide potential lateral routes for diffusion of the palmitoyl group between the hydrocarbon ruler and outer membrane external leaflet. Prolines in strands A and B lie beneath the dynamic L1 surface loop flanking the embrasure, whereas the crenel is flanked by prolines in strands F and G. Reversibly barricading the embrasure prevents lipid A palmitoylation without affecting the slower phospholipase reaction. Lys42Ala PagP is also a dedicated phospholipase, implicating this disordered L1 loop residue in lipid A recognition. The embrasure barricade additionally prevents palmitoylation of nonspecific fatty alcohols, but not miscible alcohols. Irreversibly barricading the crenel inhibits both lipid A palmitoylation and phospholipase reactions without compromising PagP structure. These findings indicate lateral palmitoyl group diffusion within the PagP hydrocarbon ruler is likely gated during phospholipid entry via the crenel and during lipid A egress via the embrasure.
Collapse
Affiliation(s)
- M Adil Khan
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | | |
Collapse
|
19
|
Yan H, Wang N, Weinfeld M, Cullen WR, Le XC. Identification of Arsenic-Binding Proteins in Human Cells by Affinity Chromatography and Mass Spectrometry. Anal Chem 2009; 81:4144-52. [DOI: 10.1021/ac900352k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huiming Yan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and Department of Laboratory Medicine and Pathology, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - Nan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and Department of Laboratory Medicine and Pathology, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - Michael Weinfeld
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and Department of Laboratory Medicine and Pathology, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - William R. Cullen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and Department of Laboratory Medicine and Pathology, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - X. Chris Le
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and Department of Laboratory Medicine and Pathology, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| |
Collapse
|
20
|
Hatori Y, Hirata A, Toyoshima C, Lewis D, Pilankatta R, Inesi G. Intermediate phosphorylation reactions in the mechanism of ATP utilization by the copper ATPase (CopA) of Thermotoga maritima. J Biol Chem 2008; 283:22541-9. [PMID: 18562314 PMCID: PMC2504886 DOI: 10.1074/jbc.m802735200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/05/2008] [Indexed: 11/24/2022] Open
Abstract
Recombinant and purified Thermotoga maritima CopA sustains ATPase velocity of 1.78-2.73 micromol/mg/min in the presence of Cu+ (pH 6, 60 degrees C) and 0.03-0.08 micromol/mg/min in the absence of Cu+. High levels of enzyme phosphorylation are obtained by utilization of [gamma-32P]ATP in the absence of Cu+. This phosphoenzyme decays at a much slower rate than observed with Cu.E1 approximately P. In fact, the phosphoenzyme is reduced to much lower steady state levels upon addition of Cu+, due to rapid hydrolytic cleavage. Negligible ATPase turnover is sustained by CopA following deletion of its N-metal binding domain (DeltaNMBD) or mutation of NMBD cysteines (CXXC). Nevertheless, high levels of phosphoenzyme are obtained by utilization of [gamma-3)P]ATP by the DeltaNMBD and CXXC mutants, with no effect of Cu+ either on its formation or hydrolytic cleavage. Phosphoenzyme formation (E2P) can also be obtained by utilization of Pi, and this reaction is inhibited by Cu+ (E2 to E1 transition) even in the DeltaNMBD mutant, evidently due to Cu+ binding at a (transport) site other than the NMBD. E2P undergoes hydrolytic cleavage faster in DeltaNMBD and slower in CXXC mutant. We propose that Cu+ binding to the NMBD is required to produce an "active" conformation of CopA, whereby additional Cu+ bound to an alternate (transmembrane transport) site initiates faster cycles including formation of Cu.E1 approximately P, followed by the E1 approximately P to E2-P conformational transition and hydrolytic cleavage of phosphate. An H479Q mutation (analogous to one found in Wilson disease) renders CopA unable to utilize ATP, whereas phosphorylation by Pi is retained.
Collapse
Affiliation(s)
- Yuta Hatori
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Chang JS, Ren X, Kim KW. Biogeochemical cyclic activity of bacterial arsB in arsenic-contaminated mines. J Environ Sci (China) 2008; 20:1348-1355. [PMID: 19202875 DOI: 10.1016/s1001-0742(08)62232-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biogeochemical cyclic activity of the ars (arsenic resistance system) operon is arsB influx/efflux encoded by the ecological of Pseudomonas putida. This suggests that studying arsenite-oxidizing bacteria may lead to a better understanding of molecular geomicrobiology, which can be applied to the bioremediation of arsenic-contaminated mines. This is the first report in which multiple arsB-binding mechanisms have been used on indigenous bacteria. In ArsB (strains OS-5; ABB83931; OS-19; ABB04282 and RW-28; ABB88574), there are ten putative enzyme, Histidine (His) 131, His 133, His 137, Arginine (Arg) 135, Arg 137, Arg 161, Trptohan (Trp) 142, Trp 164, Trp 166, and Trp 171, which are each located in different regions of the partial sequence. The adenosine triphosphate (ATP)-binding cassette transports, binding affinities and associating ratable constants show that As-binding is comparatively insensitive to the location of the residues within the moderately stable alpha-helical structure. The alpha-helical structures in ArsB-permease and anion permease arsB have been shown to import/export arsenic in P. putida. We proposed that arsB residues, His 131, His 133, His 137, Arg 135, Arg 137, Arg 161, Trp 142, Trp 164, Trp 166, and Trp 171 are required for arsenic binding and activation of arsA/arsB or arsAB. This arsB influx/efflux pum-ping is important, and the effect in arsenic species change and mobility in mine soil has got a significantly ecological role because it allows arsenic oxidizing/reducing bacteria to control biogeochemical cycle of abandoned mines.
Collapse
Affiliation(s)
- Jin-Soo Chang
- Department of Environment Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju, Republic of Korea.
| | | | | |
Collapse
|
22
|
Lin YF, Yang J, Rosen BP. ArsD Residues Cys12, Cys13, and Cys18 Form an As(III)-binding Site Required for Arsenic Metallochaperone Activity. J Biol Chem 2007; 282:16783-91. [PMID: 17439954 DOI: 10.1074/jbc.m700886200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ArsA ATPase is the catalytic subunit of the ArsAB pump encoded by the arsRDABC operon of Escherichia coli plasmid R773. ArsD is a metallochaperone that delivers As(III) to ArsA, increasing its affinity for As(III), thus conferring resistance to environmental concentrations of arsenic. R773 ArsD is a homodimer with three vicinal cysteine pairs, Cys(12)-Cys(13), Cys(112)-Cys(113), and Cys(119)-Cys(120), in each subunit. Each vicinal pair binds As(III) or Sb(III). Alignment of the primary sequence of homologues of ArsD indicates that only the first vicinal cysteine pair, Cys(12)-Cys(13), and an additional cysteine, Cys(18), are conserved. The effect of cysteine-to-alanine substitutions and truncations were examined. By yeast two-hybrid analysis, nearly all of the ArsD mutants were able to interact with wild type ArsD, indicating that the mutations do not interfere with dimerization. ArsD mutants with alanines substituting for Cys(112), Cys(113), Cys(119), or Cys(120) individually or in pairs or truncations lacking the vicinal pairs retained ability to interact with ArsA and to activate its ATPase activity. Cells expressing these mutants retained ArsD-enhanced As(III) efflux and resistance. In contrast, mutants with substitutions of conserved Cys(12), Cys(13), or Cys(18), individually or in pairs, were unable to activate ArsA or to enhance the activity of the ArsAB pump. We propose that ArsD residues Cys(12), Cys(13), and Cys(18), but not Cys(112), Cys(113), Cys(119), or Cys(120), are required for delivery of As(III) to and activation of the ArsAB pump.
Collapse
Affiliation(s)
- Yung-Feng Lin
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
23
|
Stanhill A, Haynes CM, Zhang Y, Min G, Steele MC, Kalinina J, Martinez E, Pickart CM, Kong XP, Ron D. An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity. Mol Cell 2006; 23:875-85. [PMID: 16973439 DOI: 10.1016/j.molcel.2006.07.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 05/23/2006] [Accepted: 07/26/2006] [Indexed: 01/26/2023]
Abstract
Protein misfolding caused by exposure to arsenite is associated with transcriptional activation of the AIRAP gene. We report here that AIRAP is an arsenite-inducible subunit of the proteasome's 19S cap that binds near PSMD2 at the 19S base. Compared to the wild-type, knockout mouse cells or C. elegans lacking AIRAP accumulate more polyubiquitylated proteins and exhibit higher levels of stress when exposed to arsenite, and proteasomes isolated from arsenite-treated AIRAP knockout cells are relatively impaired in substrate degradation in vitro. AIRAP's association with the 19S cap reverses the stabilizing affect of ATP on the 26S proteasome during particle purification, and AIRAP-containing proteasomes, though constituted of 19S and 20S subunits, acquire features of hybrid proteasomes with both 19S and 11S regulatory caps. These features include enhanced cleavage of peptide substrates and suggest that AIRAP adapts the cell's core protein degradation machinery to counteract proteotoxicity induced by an environmental toxin.
Collapse
Affiliation(s)
- Ariel Stanhill
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin YF, Walmsley AR, Rosen BP. An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci U S A 2006; 103:15617-22. [PMID: 17030823 PMCID: PMC1622871 DOI: 10.1073/pnas.0603974103] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental arsenic is a world-wide health issue, making it imperative for us to understand mechanisms of metalloid uptake and detoxification. The predominant intracellular form is the highly mephitic arsenite, which is detoxified by removal from cytosol. What prevents arsenite toxicity as it diffuses through cytosol to efflux systems? Although intracellular copper is regulated by metallochaperones, no chaperones involved in conferring resistance to other metals have been identified. In this article, we report identification of an arsenic chaperone, ArsD, encoded by the arsRDABC operon of Escherichia coli. ArsD transfers trivalent metalloids to ArsA, the catalytic subunit of an As(III)/Sb(III) efflux pump. Interaction with ArsD increases the affinity of ArsA for arsenite, thus increasing its ATPase activity at lower concentrations of arsenite and enhancing the rate of arsenite extrusion. Cells are consequently resistant to environmental concentrations of arsenic. This report of an arsenic chaperone suggests that cells regulate the intracellular concentration of arsenite to prevent toxicity.
Collapse
Affiliation(s)
- Yung-Feng Lin
- *Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Adrian R. Walmsley
- Centre for Infectious Diseases, School of Biological and Biomedical Sciences, Durham University, Stockton-on-Tees TS17 6BH, United Kingdom
- To whom correspondence may be addressed at:
Centre for Infectious Diseases, Wolfson Research Institute, University of Durham, Stockton-on-Tees TS17 6BH, United Kingdom. E-mail:
| | - Barry P. Rosen
- *Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
- To whom correspondence may be addressed at:
Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201. E-mail:
| |
Collapse
|
25
|
Lin CH, Huang CF, Chen WY, Chang YY, Ding WH, Lin MS, Wu SH, Huang RN. Characterization of the Interaction of Galectin-1 with Sodium Arsenite. Chem Res Toxicol 2006; 19:469-74. [PMID: 16544954 DOI: 10.1021/tx0503348] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously showed that galectin-1 (GAL1) is an arsenic-binding protein. In the current study, we further characterize the interaction of GAL1 with sodium arsenite (As(III)). The GALl-As(III) complex was prepared from the cell extracts of GAL1-transfected Escherichia coli (E. coli) that were pretreated with As(III). The results of the circular dichroism (CD) spectrum of GAL1-As(III) exhibited a negative signal at around 205-210 nm, whereas that of GAL1 showed a negative signal at around 215-220 nm. This shift in the CD spectrum is indicative of a substantial change in the secondary structure arising from the binding of As(III) to the GAL1 protein. The UV absorptive spectrum of the GAL1-As(III) complex was significantly lower than that of GAL1 itself. A mobility shift binding assay showed that the GAL1-As(III) complex migrated closer than GAL1 toward the anode. Capillary electrophoretic analysis also showed that As(III) binding decreased the mobility of GAL1. These results further confirmed the structural change of the GAL1 complex with As(III). Furthermore, isothermal titration microcalometric studies showed that As(III) titration into the GAL1 protein solution was an endothermic process with absorption enthalpy (DeltaH(abs)) around 8-10 kJ/mol As(III). The affinity constant (K(d)) of As(III) toward GAL1 was around 8.239 +/- 2.627 microM as estimated by tryptophan (Trp) fluorescence quenching. However, the binding of As(III) did not significantly affect the biological activity of GAL1, since the GAL1-As(III) complex only partially lost its lectin activity. In addition, we show that GAL1-transfected KB cells accumulated more arsenic than did the parental cells. Taken together, these results suggest that GAL1 might serve as a target protein of As(III) in vivo, and the binding of GAL1 with As(III) could interfere with the excretion of As(III).
Collapse
Affiliation(s)
- Chen-Huan Lin
- Department of Life Science, College of Science, National Central University & University System of Taiwan, Chung-Li, Taoyuan, Taiwan 32054, ROC
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jayasinghe L, Bayley H. The leukocidin pore: evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis. Protein Sci 2005; 14:2550-61. [PMID: 16195546 PMCID: PMC2253299 DOI: 10.1110/ps.051648505] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The staphylococcal alpha-hemolysin (alphaHL) and leukocidin (Luk) polypeptides are members of a family of related beta-barrel pore-forming toxins. Upon binding to susceptible cells, alphaHL forms water-filled homoheptameric transmembrane pores. By contrast, Luk pores are formed by two classes of subunit, F and S, rendering a heptameric structure displeasing on symmetry grounds at least. Both the subunit stoichiometry and arrangement within the Luk pore have been contentious issues. Here we use chemical and genetic approaches to show that (1) the predominant, or perhaps the only, form of the Luk pore is an octamer; (2) the subunit stoichiometry is 1:1; and (3) the subunits are arranged in an alternating fashion about a central axis of symmetry, at least when a fused LukS-LukF construct is used. The experimental approaches we have used also open up new avenues for engineering the arrangement of the subunits of beta-barrel pore-forming toxins.
Collapse
Affiliation(s)
- Lakmal Jayasinghe
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, England, United Kingdom
| | | |
Collapse
|
27
|
Trakselis MA, Alley SC, Ishmael FT. Identification and Mapping of Protein−Protein Interactions by a Combination of Cross-Linking, Cleavage, and Proteomics. Bioconjug Chem 2005; 16:741-50. [PMID: 16029014 DOI: 10.1021/bc050043a] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions are vital for almost all cellular functions, and many require the formation of multiprotein complexes. Identification of the macroscopic and microscopic protein interactions within these complexes is essential in understanding their mechanisms, both under physiologic as well as pathologic conditions. This review describes the current technology available to investigate interactions between proteins utilizing chemical cross-linking and site-directed cleavage reagents, outlining the necessary steps involved in identifying interacting proteins both in vitro and in vivo. Once interacting proteins are identified, more information about the architecture of the assemblies is necessary. Unique separation techniques coupled with cross-linking and mass spectrometry can now identify specific interaction sites and lead to the development of quaternary structural protein models. Furthermore, combination of these methods with proteomic approaches enables the identification and analysis of complex interactions in vivo. Finally, future directions in cross-linking methodologies are discussed.
Collapse
Affiliation(s)
- Michael A Trakselis
- Medical Research Council, Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | | | |
Collapse
|
28
|
Tonazzi A, Giangregorio N, Indiveri C, Palmieri F. Identification by Site-directed Mutagenesis and Chemical Modification of Three Vicinal Cysteine Residues in Rat Mitochondrial Carnitine/Acylcarnitine Transporter. J Biol Chem 2005; 280:19607-12. [PMID: 15757911 DOI: 10.1074/jbc.m411181200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proximity of the Cys residues present in the mitochondrial rat carnitine/acylcarnitine carrier (CAC) primary structure was studied by using site-directed mutagenesis in combination with chemical modification. CAC mutants, in which one or more Cys residues had been replaced with Ser, were overexpressed in Escherichia coli and reconstituted into liposomes. The effect of SH oxidizing, cross-linking, and coordinating reagents was evaluated on the carnitine/carnitine exchange catalyzed by the recombinant reconstituted CAC proteins. All the tested reagents efficiently inhibited the wild-type CAC. The inhibitory effect of diamide, Cu(2+)-phenanthroline, or phenylarsine oxide was largely reduced or abolished by the double substitutions C136S/C155S, C58S/C136S, and C58S/C155S. The decrease in sensitivity to these reagents was much lower in double mutants in which Cys(23) was substituted with Cys(136) or Cys(155). No decrease in inhibition was found when Cys(89) and/or Cys(283) were replaced with Ser. Sb(3+), which coordinates three cysteines, inhibited only the Cys replacement mutants containing cysteines 58, 136, and 155 of the six native cysteines. In addition, the mutant C23S/C89S/C155S/C283S, in which double tandem fXa recognition sites were inserted in positions 65-72, i.e. between Cys(58) and Cys(136), was not cleaved into two fragments by fXa protease after treatment with diamide. These results are interpreted in light of the homology model of CAC based on the available x-ray structure of the ADP/ATP carrier. They indicate that Cys(58), Cys(136), and Cys(155) become close in the tertiary structure of the CAC during its catalytic cycle.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Italy
| | | | | | | |
Collapse
|
29
|
Teixeira MC, Ciminelli VST. Development of a biosorbent for arsenite: structural modeling based on X-ray spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:895-900. [PMID: 15757356 DOI: 10.1021/es049513m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This work describes a biological route for direct sorption of aqueous As(III) species, which are the most toxic and mobile arsenic species found in soils. Based upon the biochemical mechanisms that explain arsenic toxicity, we propose that a waste biomass with a high fibrous protein content obtained from chicken feathers can be used for selective As(III) adsorption. Prior to adsorption, the disulfide bridges present in the biomass are reduced by thioglycolate. Our investigations demonstrated that As(III) is specifically adsorbed on the biomass and, contrary to the behavior observed with inorganic sorbents, the lower is the pH the more effective is the removal. Arsenic uptake reaches values of up to 270 micromol As(III)/g of biomass. Analyses by synchrotron light techniques, such as XANES, demonstrated that arsenic is adsorbed in its trivalent state, an advantage over conventional techniques for As uptake, which usually require a previous oxidation stage. EXAFS analyses showed that each As atom is directly bound to three S atoms with an estimated distance of 2.26 A. The uptake mechanism is explained in terms of the structural similarities between the As(III)-biomass complex structure and that of arsenite ions and Ars-Operon system encoded proteins and phytochelatins. The biological route presented here offers the perspective of a direct removal of arsenic in its reduced form.
Collapse
Affiliation(s)
- Monica Cristina Teixeira
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte MG, Brazil
| | | |
Collapse
|
30
|
Jiang Y, Bhattacharjee H, Zhou T, Rosen BP, Ambudkar SV, Sauna ZE. Nonequivalence of the nucleotide binding domains of the ArsA ATPase. J Biol Chem 2005; 280:9921-6. [PMID: 15637064 DOI: 10.1074/jbc.m413391200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The arsRDABC operon of Escherichia coli plasmid R773 encodes the ArsAB pump that catalyzes extrusion of the metalloids As(III) and Sb(III), conferring metalloid resistance. The catalytic subunit, ArsA, is an ATPase with two homologous halves, A1 and A2, connected by a short linker. Each half contains a nucleotide binding domain. The overall rate of ATP hydrolysis is slow in the absence of metalloid and is accelerated by metalloid binding. The results of photolabeling of ArsA with the ATP analogue 8-azidoadenosine 5'-[alpha-(32)P]-triphosphate at 4 degrees C indicate that metalloid stimulation correlates with a >10-fold increase in affinity for nucleotide. To investigate the relative contributions of the two nucleotide binding domains to catalysis, a thrombin site was introduced in the linker. This allowed discrimination between incorporation of labeled nucleotides into the two halves of ArsA. The results indicate that both the A1 and A2 nucleotide binding domains bind and hydrolyze trinucleotide, even in the absence of metalloid. Sb(III) increases the affinity of the A1 nucleotide binding domain to a greater extent than the A2 nucleotide binding domain. The ATP analogue labeled with (32)P at the gamma position was used to measure hydrolysis of trinucleotide at 37 degrees C. Under these catalytic conditions, both nucleotide binding domains hydrolyze ATP, but hydrolysis in A1 is stimulated to a greater degree by Sb(III) than A2. These results suggest that the two homologous halves of the ArsA may be functionally nonequivalent.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, 540 E. Canfield Ave, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kumari K, Weigel PH. Identification of a membrane-localized cysteine cluster near the substrate-binding sites of the Streptococcus equisimilis hyaluronan synthase. Glycobiology 2004; 15:529-39. [PMID: 15616126 PMCID: PMC1242197 DOI: 10.1093/glycob/cwi030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The membrane-bound hyaluronan synthase (HAS) from Streptococcus equisimilis (seHAS), which is the smallest Class I HAS, has four cysteine residues (positions 226, 262, 281, and 367) that are generally conserved within this family. Although Cys-null seHAS is still active, chemical modification of cysteine residues causes inhibition of wild-type enzyme. Here we studied the effects of N-ethylmaleimide (NEM) treatment on a panel of seHAS Cys-mutants to examine the structural and functional roles of the four cysteine residues in the activity of the enzyme. We found that Cys226, Cys262, and Cys281 are reactive with NEM, but Cys367 is not. Substrate protection studies of wild-type seHAS and a variety of Cys-mutants revealed that binding of UDP-GlcUA, UDP-GlcNAc, or UDP can protect Cys226 and Cys262 from NEM inhibition. Inhibition of the six double Cys-mutants of seHAS by sodium arsenite, which can cross-link vicinyl sulfhydryl groups, also supported the conclusion that Cys262 and Cys281 are close enough to be cross-linked. Similar results indicated that Cys281 and Cys367 are also very close in the active enzyme. We conclude that three of the four Cys residues in seHAS (Cys262, Cys281, and Cys367) are clustered very close together, that these Cys residues and Cys226 are located at the inner surface of the cell membrane, and that Cys226 and Cys262 are located in or near a UDP binding site.
Collapse
Affiliation(s)
| | - Paul H. Weigel
- +To whom correspondence should be addressed TEL: 405-271-1288; FAX: 405-271-3092;
| |
Collapse
|
32
|
Hwang DR, Tsai YC, Lee JC, Huang KK, Lin RK, Ho CH, Chiou JM, Lin YT, Hsu JTA, Yeh CT. Inhibition of hepatitis C virus replication by arsenic trioxide. Antimicrob Agents Chemother 2004; 48:2876-82. [PMID: 15273095 PMCID: PMC478516 DOI: 10.1128/aac.48.8.2876-2882.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a serious global problem, and present therapeutics are inadequate to cure HCV infection. In the present study, various antiviral assays show that As2O3 at submicromolar concentrations is capable of inhibiting HCV replication. The 50% effective concentration (EC50) of As2O3 required to inhibit HCV replication was 0.35 microM when it was determined by a reporter-based HCV replication assay, and the EC50 was below 0.2 microM when it was determined by quantitative reverse transcription-PCR analysis. As2O3 did not cause cellular toxicity at this concentration, as revealed by an MTS [3-(4,5-dimethylthiozol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] assay. A combination of As2O3 and alpha interferon exerted synergistic effects against HCV, as revealed by a multiple linear logistic model and isobologram analysis. Furthermore, in an alternative HCV antiviral system that may recapitulate additional steps involved in HCV infection and replication, As2O3 at 0.3 microM totally abolished the HCV signal, whereas alpha interferon at a high dose (5,000 IU/ml) only partially suppressed the HCV signal. The study highlights the indications for use of a novel class of anti-HCV agent. Further elucidation of the exact antiviral mechanism of As2O3 may lead to the development of agents with potent activities against HCV or related viruses.
Collapse
Affiliation(s)
- Der-Ren Hwang
- Division of Biotechnology & Pharmaceutical Research, National Health Research Institutes, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang RB, Kuo CL, Lien LL, Lien EJ. Structure-activity relationship: analyses of p-glycoprotein substrates and inhibitors. J Clin Pharm Ther 2003; 28:203-28. [PMID: 12795780 DOI: 10.1046/j.1365-2710.2003.00487.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A large number of structurally and functionally diverse compounds act as substrates or modulators of p-glycoprotein (p-gp). Some of them possess multiple drug resistance (MDR)-reversing activity, but only a small number of them have entered clinical study. In order to uncover the factors which exert a significant impact on the interaction between substrates/modulators and p-gp, we have performed structure-activity relationship (SAR) analyses, including molecular modelling, two-dimensional (2D) and three-dimensional (3D) parameter-frame-setting analysis, quantitative structure activity relationship (QSAR) analysis among substrates/modulators, as well as clinically promising MDR-reversing agents. METHODS The physicochemical parameters C log P, CMR and all regression equations were derived by using C log P version 4.0 and the latest CQSAR software, respectively. Molecular modelling and all other parameter calculations were performed by using HyperChem version 5.0 program, after geometry optimization and energy minimization using the AM1 semiempirical method. RESULTS SAR analyses indicate that MDR reversal activity is correlated with the lipophilicity (C log P), molecular weight (log Mw), longest chain (Nlc) of the molecule and the energy of the highest occupied orbital (Ehomo). In addition, the presence of a basic tertiary nitrogen atom in the structure is also an important contributor to p-gp inhibitory activity. Some separation in space is achieved for different subsets of p-gp substrates and inhibitors using Nlc, C log P and Ehomo as three independent parameters in the 3D-parameter-frame setting. CONCLUSION A highly effective p-gp modulator candidate should possess a log P value of 2.92 or higher, 18-atom-long or longer molecular axis, and a high Ehomo value, as well as at least one tertiary basic nitrogen atom. The results obtained may be useful in explaining drug-p-gp interactions for different compounds, including drug interactions and the development of new MDR chemosensitizers.
Collapse
Affiliation(s)
- R B Wang
- School of Pharmacy, Shandong University, Jinan, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Chang KN, Lee TC, Tam MF, Chen YC, Lee LW, Lee SY, Lin PJ, Huang RN. Identification of galectin I and thioredoxin peroxidase II as two arsenic-binding proteins in Chinese hamster ovary cells. Biochem J 2003; 371:495-503. [PMID: 12519079 PMCID: PMC1223290 DOI: 10.1042/bj20021354] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2002] [Revised: 12/18/2002] [Accepted: 01/09/2003] [Indexed: 01/14/2023]
Abstract
In this study, we report the identification of two arsenic-binding proteins from Chinese hamster ovary (CHO) cells. The crude extract derived from CHO and SA7 (arsenic-resistant CHO cells) was applied to a phenylarsine oxide-agarose affinity column, and after extensive washing, the absorbed proteins were eluted with buffers containing 20 mM 2-mercaptoethanol (2-ME) or dithiothreitol (DTT). Three differentially expressed proteins, galectin 1 (Gal-1; in the 2-ME-eluted fraction from CHO cells), glutathione S-transferase P-form (GST-P) and thioredoxin peroxidase II (TPX-II), respectively in the 2-ME- and DTT-eluted fractions from SA7 cells, were identified by partial amino acid sequence analysis after separation by SDS/PAGE. The GST-P protein has been previously shown to facilitate the excretion of sodium arsenite [As(III)] from SA7 cells. TPX II was detected predominately in SA7 cells [routinely cultured in As(III)-containing medium], but not in CHO or SA7N (a revertant of SA7 cells cultured in regular medium) cells. In contrast, Gal-1 was specifically identified in CHO and SA7N cells, but not in SA7 cells. The preferential expression of Gal-1 in CHO cells and TPX-II in SA7 cells was further illustrated by quantitative PCR analysis. The binding of Gal-1 and TPX-II with As(III) was further verified by both co-immunoprecipitation and co-elution of Gal-1 and TPX-II with As(III). It is suggested that Gal-1 and TPX-II are two proteins that serve as high-affinity binding sites for As(III) and thus both may be involved in the biological action of As(III).
Collapse
Affiliation(s)
- Kwang Ning Chang
- Department of Life Science, National Central University, Chung-Li, Taoyuan, Taiwan 32054, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rosen BP. Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:689-93. [PMID: 12443926 DOI: 10.1016/s1095-6433(02)00201-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transition metals, heavy metals and metalloids are usually toxic in excess, but a number of transition metals are essential trace elements. In all cells there are mechanisms for metal ion homeostasis that frequently involve a balance between uptake and efflux systems. This review will briefly describe ATP-coupled resistance pumps. ZntA and CadA are bacterial P-type ATPases that confers resistance to Zn(II), Cd(II) and Pb(II). Homologous copper pumps include the Menkes and Wilson disease proteins and CopA, an Escherichia coli pump that confers resistance to Cu(I). For resistance to arsenicals and antimonials there are several different families of transporters. In E. coli the ArsAB ATPase is a novel system that confers resistance to As(III) and Sb(III). Eukaryotic arsenic resistance transporters include Acr3p and Ycf1p of Saccharomyces cerevisiae. These systems provide resistance to arsenite [As(III)]. Arsenate [As(V)] detoxification involves reduction of As(V) to As(III), a process catalyzed by arsenate reductase enzymes. There are three families of arsenate reductases, two found in bacterial systems and a third identified in S. cerevisiae.
Collapse
Affiliation(s)
- Barry P Rosen
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
36
|
Wong MD, Lin YF, Rosen BP. The soft metal ion binding sites in the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor are formed between subunits of the homodimer. J Biol Chem 2002; 277:40930-6. [PMID: 12176999 DOI: 10.1074/jbc.m206536200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Staphylococcus aureus plasmid pI258 CadC is a homodimeric repressor that binds Cd(II), Pb(II), and Zn(II) and regulates expression of the cadAC operon. CadC binds two Cd(II) ions per dimer, with a tetrathiolate binding site composed of residues Cys(7), Cys(11), Cys(58), and Cys(60). It is not known whether each site consists of residues from a single monomer or from residues contributed by both subunits. To examine whether Cys(7) and Cys(11) are spatially proximate to Cys(58) and Cys(60) of the same subunit or of the other subunit, homodimers with the same cysteine mutation in each subunit and heterodimers containing different cysteine mutations in the two subunits were reacted with 4,6-bis(bromomethyl)-3,7-dimethyl-1,5-diazabicyclo[3.3.0]octa-3,6-diene-2,8-dione, which cross-links thiol groups that are within 3-6 A of each other. Cys(7) or Cys(11) cross-linked only with Cys(58) or Cys(60) on the other subunit. The data demonstrate that Cys(7) and Cys(11) from one monomer are within 3-6 A of either Cys(58) or Cys(60) in the other monomer. The results of this study strongly indicate that each of the two Cd(II) binding sites in the CadC homodimer is composed of Cys(7) and Cys(11) from one monomer and Cys(58) and Cys(60) from the other monomer.
Collapse
Affiliation(s)
- Marco D Wong
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, 540 E Canfield Avenue, Detroit, MI 48201, USA
| | | | | |
Collapse
|
37
|
Abstract
All living organisms have systems for arsenic detoxification. The common themes are (a) uptake of As(V) in the form of arsenate by phosphate transporters, (b) uptake of As(III) in the form of arsenite by aquaglyceroporins, (c) reduction of As(V) to As(III) by arsenate reductases, and (d) extrusion or sequestration of As(III). While the overall schemes for arsenic resistance are similar in prokaryotes and eukaryotes, some of the specific proteins are the products of separate evolutionary pathways.
Collapse
Affiliation(s)
- Barry P Rosen
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, 48201, Detroit, MI, USA.
| |
Collapse
|
38
|
Anjard C, Loomis WF. Evolutionary analyses of ABC transporters of Dictyostelium discoideum. EUKARYOTIC CELL 2002; 1:643-52. [PMID: 12456012 PMCID: PMC117992 DOI: 10.1128/ec.1.4.643-652.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ABC superfamily of genes is one of the largest in the genomes of both bacteria and eukaryotes. The proteins encoded by these genes all carry a characteristic 200- to 250-amino-acid ATP-binding cassette that gives them their family name. In bacteria they are mostly involved in nutrient import, while in eukaryotes many are involved in export. Seven different families have been defined in eukaryotes based on sequence homology, domain topology, and function. While only 6 ABC genes in Dictyostelium discoideum have been studied in detail previously, sequences from the well-advanced Dictyostelium genome project have allowed us to recognize 68 members of this superfamily. They have been classified and compared to animal, plant, and fungal orthologs in order to gain some insight into the evolution of this superfamily. It appears that many of the genes inferred to have been present in the ancestor of the crown organisms duplicated extensively in some but not all phyla, while others were lost in one lineage or the other.
Collapse
Affiliation(s)
- Christophe Anjard
- Center for Molecular Genetics, Division of Biology, University of California--San Diego, La Jolla, California 92093-0368, USA
| | | |
Collapse
|
39
|
Mandal AK, Cheung WD, Argüello JM. Characterization of a thermophilic P-type Ag+/Cu+-ATPase from the extremophile Archaeoglobus fulgidus. J Biol Chem 2002; 277:7201-8. [PMID: 11756450 DOI: 10.1074/jbc.m109964200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thermophilic, sulfur metabolizing Archaeoglobus fulgidus contains two genes, AF0473 and AF0152, encoding for PIB-type heavy metal transport ATPases. In this study, we describe the cloning, heterologous expression, purification, and functional characterization of one of these ATPases, CopA (NCB accession number AAB90763), encoded by AF0473. CopA is active at high temperatures (75 degrees C; E(a) = 103 kJ/mol) and inactive at 37 degrees C. It is activated by Ag+ (ATPase V(max) = 14.82 micromol/mg/h) and to a lesser extent by Cu+ (ATPase V(max) = 3.66 micromol/mg/h). However, Cu+ interacts with the enzyme with higher apparent affinity (ATPase stimulation, Ag+ K(12) = 29.4 microm; Cu+ K(12) = 2.1 microm). This activation by Ag+ or Cu+ is dependent on the presence of millimolar amounts of cysteine. In the presence of ATP, these metals drive the formation of an acid-stable phosphoenzyme with apparent affinities similar to those observed in the ATPase activity determinations (Ag+, K(12) = 23.0 microm; Cu+, K(12) = 3.9 microm). However, comparable levels of phosphoenzyme are reached in the presence of both cations (Ag+, 1.40 nmol/mg; Cu+, 1.08 nmol/mg). The stimulation of phosphorylation by the cations suggests that CopA drives the outward movement of the metal. CopA presents additional functional characteristics similar to other P-type ATPases. ATP interacts with the enzyme with two apparent affinities (ATPase K(m) = 0.25 mm; phosphorylation K(m) = 4.81 microm), and the presence of vanadate leads to enzyme inactivation (IC(50) = 24 microm). This is the first Ag+/Cu+ -ATPase expressed and purified in a functional form. Thus, it provides a model for structure-functional studies of these transporters. Moreover, its characterization will also contribute to an understanding of thermophilic ion transporters.
Collapse
Affiliation(s)
- Atin K Mandal
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | | | | |
Collapse
|
40
|
Walmsley AR, Zhou T, Borges-Walmsley MI, Rosen BP. Antimonite regulation of the ATPase activity of ArsA, the catalytic subunit of the arsenical pump. Biochem J 2001; 360:589-97. [PMID: 11736648 PMCID: PMC1222261 DOI: 10.1042/0264-6021:3600589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ArsA ATPase is the catalytic subunit of the pump protein, coupling the hydrolysis of ATP to the movement of arsenicals and antimonials through the membrane-spanning ArsB protein. Previously, we have shown the binding and hydrolysis of MgATP to ArsA to be a multi-step process in which the rate-limiting step is an isomerization between different conformational forms of ArsA. This isomerization occurs after product release, at the end of the ATPase reaction, and involves the return of the ArsA to its original conformation, which can then bind MgATP. ArsA possesses an allosteric site for antimonite [Sb(III)], the binding of which elevates the steady-state ATPase activity. We have used a transient kinetics approach to investigate the kinetics of ternary complex formation that lead to an enhancement in the ATPase activity. These studies revealed that ArsA exists in at least two conformational forms that differ in their ligand binding affinities, and that ATP favours one form and Sb(III) the other. Ternary complex formation is rate-limited by a slow transition between these conformational forms, leading to a lag in attaining maximal steady-state activity. Sb(III) enhances the steady-state ATPase activity by inducing rapid product release, allowing ArsA to adopt a conformation that can bind MgATP for the next catalytic cycle. In the presence of Sb(III), ArsA avoids the rate-limiting isomerization at the end of the ATPase reaction and ATP hydrolysis becomes rate-limiting for the reaction. The binding of Sb(III) probably results in more effective pumping of the substrates from the cell by enhancing the rate of efflux.
Collapse
Affiliation(s)
- A R Walmsley
- Division of Infection and Immunity, The Institute of Biomedical and Life Sciences, Robertson Building, The University of Glasgow, Glasgow G11 6NU, Scotland, U.K.
| | | | | | | |
Collapse
|
41
|
Bhattacharjee H, Rosen BP. Structure-function analysis of the ArsA ATPase: contribution of histidine residues. J Bioenerg Biomembr 2001; 33:459-68. [PMID: 11804187 DOI: 10.1023/a:1012818920027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ArsA ATPase is the catalytic subunit of the ArsAB oxyanion pump in Escherichia coli that is responsible for extruding arsenite or antimonite from inside the cell, thereby conferring resistance. Either antimonite or arsenite stimulates ArsA ATPase activity. In this study, the role of histidine residues in ArsA activity was investigated. Treatment of ArsA with diethyl pyrocarbonate (DEPC) resulted in complete loss of catalytic activity. The inactivation could be reversed upon subsequent incubation with hydroxylamine, suggesting specific modification of histidine residues. ATP and oxyanions afforded significant protection against DEPC inactivation, indicating that the histidines are located at the active site. ArsA has 13 histidine residues located at position 138, 148, 219, 327, 359, 368, 388, 397, 453, 465, 477, 520, and 558. Each histidine was individually altered to alanine by site-directed mutagenesis. Cells expressing the altered ArsA proteins were resistant to both arsenite and antimonite. The results indicate that no single histidine residue plays a direct role in catalysis, and the inhibition by DEPC may be caused by steric hindrance from the carbethoxy group.
Collapse
Affiliation(s)
- H Bhattacharjee
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
42
|
Jia H, Kaur P. Role of the linker region of the anion-stimulated ATPase ArsA. Effect of deletion and point mutations in the linker region. J Biol Chem 2001; 276:29582-7. [PMID: 11389146 DOI: 10.1074/jbc.m103042200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anion-stimulated ATPase ArsA in Escherichia coli consists of two homologous halves, A1 and A2, which are connected by a 40-amino acid long stretch of residues designated as the linker region. The linker region of ArsA lies in close proximity of the nucleotide-binding domain(s) of ArsA and is involved in significant conformational changes on binding of the substrates. Hence, it has been suggested earlier that the linker may play an important role in the function of ArsA. The aim of the present study was to determine the role of the linker by deletion and by site-directed mutagenesis of specific residues. Effect of deletion of the linker was determined by using the in vivo complementation approach where two halves of ArsA were co-expressed either with or without the linker region. Two co-expressed halves of ArsA conferred arsenite resistance only if the linker region was present on one of the halves. Of the six different point mutations created in the linker region, three (G284S, R290S, and D303G) were seen to drastically affect the catalytic function of ArsA. In addition, these three mutant alleles conferred arsenite sensitivity in cells carrying the wild type arsB gene. Trypsin proteolysis studies carried out with the purified proteins showed that the A1 nucleotide-binding domain in D303G protein has a conformation different from the wild type ArsA, suggesting that the linker region interacts with the nucleotide-binding domain(s) of ArsA. Based on the studies presented here, we propose that, in addition to providing flexibility, the nature of the residues themselves in the linker region is important for the conformation of the nucleotide-binding domains and for the catalytic function of ArsA.
Collapse
Affiliation(s)
- H Jia
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | |
Collapse
|
43
|
Green NS, Reisler E, Houk KN. Quantitative evaluation of the lengths of homobifunctional protein cross-linking reagents used as molecular rulers. Protein Sci 2001; 10:1293-304. [PMID: 11420431 PMCID: PMC2374107 DOI: 10.1110/ps.51201] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2000] [Revised: 03/26/2001] [Accepted: 03/26/2001] [Indexed: 01/16/2023]
Abstract
UNLABELLED Homobifunctional chemical cross-linking reagents are important tools for functional and structural characterization of proteins. Accurate measures of the lengths of these molecules currently are not available, despite their widespread use. Stochastic dynamics calculations now provide quantitative measures of the lengths, and length dispersions, of 32 widely used molecular rulers. Significant differences from published data have been found. SUPPLEMENTAL MATERIAL See www.proteinscience.org
Collapse
Affiliation(s)
- N S Green
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
44
|
Zhou T, Radaev S, Rosen BP, Gatti DL. Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J 2000; 19:4838-45. [PMID: 10970874 PMCID: PMC302053 DOI: 10.1093/emboj/19.17.4838] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Active extrusion is a common mechanism underlying detoxification of heavy metals, drugs and antibiotics in bacteria, protozoa and mammals. In Escherichia coli, the ArsAB pump provides resistance to arsenite and antimonite. This pump consists of a soluble ATPase (ArsA) and a membrane channel (ArsB). ArsA contains two nucleotide-binding sites (NBSs) and a binding site for arsenic or antimony. Binding of metalloids stimulates ATPase activity. The crystal structure of ArsA reveals that both NBSs and the metal-binding site are located at the interface between two homologous domains. A short stretch of residues connecting the metal-binding site to the NBSs provides a signal transduction pathway that conveys information on metal occupancy to the ATP hydrolysis sites. Based on these structural features, we propose that the metal-binding site is involved directly in the process of vectorial translocation of arsenite or antimonite across the membrane. The relative positions of the NBS and the inferred mechanism of allosteric activation of ArsA provide a useful model for the interaction of the catalytic domains in other transport ATPases.
Collapse
Affiliation(s)
- T Zhou
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
45
|
Abstract
ArsA protein is the soluble subunit of the Ars anion pump in the Escherichia coli membrane which extrudes arsenite or antimonite from the cytoplasm. The molecular weight of the subunit is 63 kDa. In the cell it hydrolyzes ATP, and the energy released is used by the membrane-bound subunit ArsB to transport the substrates across the membrane. We have obtained two-dimensional crystals of ArsA in the presence of arsenite on negatively-charged lipid monolayer composed of DMPS and DOPC. These crystals have been studied using electron microscopy of negatively-stained specimens followed by image processing. The projection map obtained at 2.4 nm resolution reveals a ring-like structure with threefold symmetry. Many molecular assemblies with the same ring-shape and dimensions were also seen dispersed on electron microscopy grids, prepared directly from purified ArsA protein solution. Size-exclusion chromatography of the protein sample with arsenite present revealed that the majority of the protein particles in solution have a molecular weight of about 180 kDa. Based on these experiments, we conclude that in solution the ArsA ATPase with substrate bound is mainly in a trimeric form.
Collapse
Affiliation(s)
- H W Wang
- State Key Laboratory of Biomembrane & Membrane Biotechnology, Department of Biological Sciences & Biotechnology, Tsinghua University, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Plasmid R773 encodes an As(III)/Sb(III)-translocating ATPase that confers resistance to those metalloids in Escherichia coli. The catalytic subunit of the pump, the ArsA ATPase, consists of homologous N- and C-terminal nucleotide-binding domains connected by a 25-residue linker. The role of this linker sequence was examined by deletion of five, 10, 15 or 23 residues or insertion of five glycine residues. Cells expressing arsA with the 5-residue insertion had wild-type arsenite resistance. Resistance of cells expressing modified arsA genes with deletions was dependent on the linker length. Cells with five or 10 deleted residues exhibited slightly reduced resistance. Deletion of 15 or 23 residues resulted in further decreases in resistance. Each altered ArsA was purified. The enzyme with the 5-residue insertion had the same affinity for ATP and Sb(III) as the wild-type enzyme. Enzymes with 5-, 10-, 15- or 23-residue deletions exhibited decreased affinity for both Sb(III) and ATP. The enzyme with a 23-residue deletion exhibited only basal ATPase activity and was unable to be allosterically activated by Sb(III). These results suggest that the linker has evolved to a length optimal for bringing the two halves of the protein into proper contact with each other, facilitating catalysis.
Collapse
Affiliation(s)
- J Li
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
47
|
Klein I, Sarkadi B, Váradi A. An inventory of the human ABC proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:237-62. [PMID: 10581359 DOI: 10.1016/s0005-2736(99)00161-3] [Citation(s) in RCA: 404] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently 30 human ABC proteins are represented by full sequences in various databases, and this paper provides a brief overview of these proteins. ABC proteins are composed of transmembrane domains (TMDs), and nucleotide binding domains (NBDs, or ATP-binding cassettes, ABSs). The arrangement of these domains, together with available membrane topology models of the family members, are presented. Based on their sequence similarity scores, the members of the human ABC protein family can be grouped into eight subfamilies. At present the MDR/TAP, the ALD, the MRP/CFTR, the ABC1, the White, the RNAseL inhibitor, the ANSA, and the GCN20 subfamilies are identified. Mutations of many human ABC proteins are known to be causative in inherited diseases, and a short description of the molecular pathology of these ABC gene-related genetic diseases is also provided.
Collapse
Affiliation(s)
- I Klein
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1502, Budapest, Hungary
| | | | | |
Collapse
|
48
|
Rosen BP, Bhattacharjee H, Zhou T, Walmsley AR. Mechanism of the ArsA ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:207-15. [PMID: 10581357 DOI: 10.1016/s0005-2736(99)00159-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The ArsAB ATPase confers metalloid resistance in Escherichia coli by pumping toxic anions out of the cells. This transport ATPase shares structural and perhaps mechanism features with ABC transporters. The ArsAB pump is composed of a membrane subunit that has two groups of six transmembrane segments, and the catalytic subunit, the ArsA ATPase. As is the case with many ABC transporters, ArsA has an internal repeat, each with an ATP binding domain, and is allosterically activated by substrates of the pump. The mechanism of allosteric activation of the ArsA ATPase has been elucidated at the molecular level. Binding of the activator produces a conformational change that forms a tight interface of the nucleotide binding domains. In the rate-limiting step in the overall reaction, the enzyme undergoes a slow conformational change. The allosteric activator accelerates catalysis by increasing the velocity of this rate-limiting step. We postulate that similar conformational changes may be rate-limiting in the mechanism of ABC transporters.
Collapse
Affiliation(s)
- B P Rosen
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
49
|
Mukhopadhyay R, Li J, Bhattacharjee H, Rosen BP. Metalloid resistance mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 456:159-81. [PMID: 10549368 DOI: 10.1007/978-1-4615-4897-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- R Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- C Rensing
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|