1
|
The Tyrosine Phosphatase SHP2: A New Target for Insulin Resistance? Biomedicines 2022; 10:biomedicines10092139. [PMID: 36140242 PMCID: PMC9495760 DOI: 10.3390/biomedicines10092139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
The SH2 containing protein tyrosine phosphatase 2(SHP2) plays essential roles in fundamental signaling pathways, conferring on it versatile physiological functions during development and in homeostasis maintenance, and leading to major pathological outcomes when dysregulated. Many studies have documented that SHP2 modulation disrupted glucose homeostasis, pointing out a relationship between its dysfunction and insulin resistance, and the therapeutic potential of its targeting. While studies from cellular or tissue-specific models concluded on both pros-and-cons effects of SHP2 on insulin resistance, recent data from integrated systems argued for an insulin resistance promoting role for SHP2, and therefore a therapeutic benefit of its inhibition. In this review, we will summarize the general knowledge of SHP2’s molecular, cellular, and physiological functions, explaining the pathophysiological impact of its dysfunctions, then discuss its protective or promoting roles in insulin resistance as well as the potency and limitations of its pharmacological modulation.
Collapse
|
2
|
Ruzzi LR, Schilman PE, San Martin A, Lew SE, Gelb BD, Pagani MR. The Phosphatase CSW Controls Life Span by Insulin Signaling and Metabolism Throughout Adult Life in Drosophila. Front Genet 2020; 11:364. [PMID: 32457793 PMCID: PMC7221067 DOI: 10.3389/fgene.2020.00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/25/2020] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome and related disorders are caused by mutations in genes encoding for proteins of the RAS-ERK1/2 signaling pathway, which affect development by enhanced ERK1/2 activity. However, the mutations’ effects throughout adult life are unclear. In this study, we identify that the protein most commonly affected in Noonan syndrome, the phosphatase SHP2, known in Drosophila as corkscrew (CSW), controls life span, triglyceride levels, and metabolism without affecting ERK signaling pathway. We found that CSW loss-of-function mutations extended life span by interacting with components of the insulin signaling pathway and impairing AKT activity in adult flies. By expressing csw-RNAi in different organs, we determined that CSW extended life span by acting in organs that regulate energy availability, including gut, fat body and neurons. In contrast to that in control animals, loss of CSW leads to reduced homeostasis in metabolic rate during activity. Clinically relevant gain-of-function csw allele reduced life span, when expressed in fat body, but not in other tissues. However, overexpression of a wild-type allele did not affect life span, showing a specific effect of the gain-of-function allele independently of a gene dosage effect. We concluded that CSW normally regulates life span and that mutations in SHP2 are expected to have critical effects throughout life by insulin-dependent mechanisms in addition to the well-known RAS-ERK1/2-dependent developmental alterations.
Collapse
Affiliation(s)
- Leonardo R Ruzzi
- Department of Physiology and Biophysics, School of Medicine, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| | - Pablo E Schilman
- Department of Biodiversity and Experimental Biology, Faculty of Exact and Natural Sciences, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| | - Alvaro San Martin
- Department of Physiology and Biophysics, School of Medicine, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| | - Sergio E Lew
- Institute of Biomedical Engineering, Faculty of Engineering, University of Buenos Aires, Buenos Aires, Argentina
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario R Pagani
- Department of Physiology and Biophysics, School of Medicine, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Lipko M, Debski B. Mechanism of insulin-like effect of chromium(III) ions on glucose uptake in C2C12 mouse myotubes involves ROS formation. J Trace Elem Med Biol 2018; 45:171-175. [PMID: 29173475 DOI: 10.1016/j.jtemb.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 11/26/2022]
Abstract
Chromium is considered a trace element which improves glucose tolerance, but mechanism accounting for this insulin-like action is not recognized. The main purpose of this study was to examine the role of reactive oxygen species (ROS) in chromium and insulin stimulated glucose transport using antioxidants. Effect of chromium ions on phosphatases, enzymes involved in inhibition of insulin signaling was also investigated. Experiments were performed in vitro on C2C12 mouse myotubes. ROS level was measured with the use of confocal microscope and 2',7' dichlorodihydrofluorescein diacetate (DCFH-DA). Glucose metabolism was assayed by the measurement of 2-[3H]-deoxyglucose uptake. Cr3+ ions and insulin treatment caused significant increase of ROS formation and also stimulated glucose uptake in C2C12 cells in concentration dependent manner. Antioxidants (L-ascorbic acid and N-acetyl cysteine 100μM) and DPI (diphenyleneiodonium-NADPH oxidase inhibitor, 10μM) abolished insulin- and Cr-inducted glucose transport. Our results confirm the hypothesis that the ROS are integral part of insulin signaling pathway and that the insulin mimetic effect of Cr3+ ions depends on the antioxidant status of the cells. Surprisingly, chromium treatment resulted in increased activity of membrane phosphatases.
Collapse
Affiliation(s)
- Maciej Lipko
- Department of Physiological Science, Faculty of Veterinary Medicine, Warsaw Agricultural University, Poland.
| | - Bogdan Debski
- Department of Physiological Science, Faculty of Veterinary Medicine, Warsaw Agricultural University, Poland
| |
Collapse
|
4
|
Cellular Dynamics Controlled by Phosphatases. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
|
6
|
Coulombe G, Rivard N. New and Unexpected Biological Functions for the Src-Homology 2 Domain-Containing Phosphatase SHP-2 in the Gastrointestinal Tract. Cell Mol Gastroenterol Hepatol 2015; 2:11-21. [PMID: 28174704 PMCID: PMC4980741 DOI: 10.1016/j.jcmgh.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
SHP-2 is a tyrosine phosphatase expressed in most embryonic and adult tissues. SHP-2 regulates many cellular functions including growth, differentiation, migration, and survival. Genetic and biochemical evidence show that SHP-2 is required for rat sarcoma viral oncogene/extracellular signal-regulated kinases mitogen-activated protein kinase pathway activation by most tyrosine kinase receptors, as well as by G-protein-coupled and cytokine receptors. In addition, SHP-2 can regulate the Janus kinase/signal transducers and activators of transcription, nuclear factor-κB, phosphatidyl-inositol 3-kinase/Akt, RhoA, Hippo, and Wnt/β-catenin signaling pathways. Emerging evidence has shown that SHP-2 dysfunction represents a key factor in the pathogenesis of gastrointestinal diseases, in particular in chronic inflammation and cancer. Variations within the gene locus encoding SHP-2 have been associated with increased susceptibility to develop ulcerative colitis and gastric atrophy. Furthermore, mice with conditional deletion of SHP-2 in intestinal epithelial cells rapidly develop severe colitis. Similarly, hepatocyte-specific deletion of SHP-2 induces hepatic inflammation, resulting in regenerative hyperplasia and development of tumors in aged mice. However, the SHP-2 gene initially was suggested to be a proto-oncogene because activating mutations of this gene were found in pediatric leukemias and certain forms of liver and colon cancers. Moreover, SHP-2 expression is up-regulated in gastric and hepatocellular cancers. Notably, SHP-2 functions downstream of cytotoxin-associated antigen A (CagA), the major virulence factor of Helicobacter pylori, and is associated with increased risks of gastric cancer. Further compounding this complexity, most recent findings suggest that SHP-2 also coordinates carbohydrate, lipid, and bile acid synthesis in the liver and pancreas. This review aims to summarize current knowledge and recent data regarding the biological functions of SHP-2 in the gastrointestinal tract.
Collapse
Key Words
- CagA, cytotoxin-associated gene A
- ERK, extracellular signal-regulated kinases
- FGF, fibroblast growth factor
- GI, gastrointestinal
- HCC, hepatocellular carcinoma
- IBD, inflammatory bowel disease
- IEC, intestinal epithelial cell
- JMML, juvenile myelomonocytic leukemia
- KO, knockout
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor-κB
- PI3K, phosphatidyl-inositol 3-kinase
- PTP, protein tyrosine phosphatase
- PTPN11
- RAS, rat sarcoma viral oncogene
- epithelium
- gastrointestinal cancer
- inflammation
Collapse
Affiliation(s)
| | - Nathalie Rivard
- Correspondence Address correspondence to: Nathalie Rivard, PhD, 3201, Jean Mignault, Sherbrooke, Quebec, Canada, J1E4K8.3201Jean Mignault, SherbrookeQuebecCanada, J1E4K8
| |
Collapse
|
7
|
SHP2 sails from physiology to pathology. Eur J Med Genet 2015; 58:509-25. [PMID: 26341048 DOI: 10.1016/j.ejmg.2015.08.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2015] [Accepted: 08/30/2015] [Indexed: 02/08/2023]
Abstract
Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases.
Collapse
|
8
|
Gurzov EN, Stanley WJ, Brodnicki TC, Thomas HE. Protein tyrosine phosphatases: molecular switches in metabolism and diabetes. Trends Endocrinol Metab 2015; 26:30-9. [PMID: 25432462 DOI: 10.1016/j.tem.2014.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are a large family of enzymes that generally oppose the actions of protein tyrosine kinases (PTKs). Genetic polymorphisms for particular PTPs are associated with altered risk of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Moreover, recent evidence suggests that PTPs play crucial roles in metabolism. They can act as regulators of liver homeostasis, food intake, or immune-mediated pancreatic b cell death. In this review we describe the mechanisms by which different members of the non-receptor PTP (PTPN) family influence metabolic physiology. This 'metabolic job' of PTPs is discussed in depth and the role of these proteins in different cell types compared. Understanding the pathways regulated by PTPs will provide novel therapeutic strategies for the treatment of diabetes.
Collapse
|
9
|
Tajan M, Batut A, Cadoudal T, Deleruyelle S, Le Gonidec S, Saint Laurent C, Vomscheid M, Wanecq E, Tréguer K, De Rocca Serra-Nédélec A, Vinel C, Marques MA, Pozzo J, Kunduzova O, Salles JP, Tauber M, Raynal P, Cavé H, Edouard T, Valet P, Yart A. LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity. Proc Natl Acad Sci U S A 2014; 111:E4494-503. [PMID: 25288766 PMCID: PMC4210352 DOI: 10.1073/pnas.1406107111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
LEOPARD syndrome (multiple Lentigines, Electrocardiographic conduction abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, Retardation of growth, sensorineural Deafness; LS), also called Noonan syndrome with multiple lentigines (NSML), is a rare autosomal dominant disorder associating various developmental defects, notably cardiopathies, dysmorphism, and short stature. It is mainly caused by mutations of the PTPN11 gene that catalytically inactivate the tyrosine phosphatase SHP2 (Src-homology 2 domain-containing phosphatase 2). Besides its pleiotropic roles during development, SHP2 plays key functions in energetic metabolism regulation. However, the metabolic outcomes of LS mutations have never been examined. Therefore, we performed an extensive metabolic exploration of an original LS mouse model, expressing the T468M mutation of SHP2, frequently borne by LS patients. Our results reveal that, besides expected symptoms, LS animals display a strong reduction of adiposity and resistance to diet-induced obesity, associated with overall better metabolic profile. We provide evidence that LS mutant expression impairs adipogenesis, triggers energy expenditure, and enhances insulin signaling, three features that can contribute to the lean phenotype of LS mice. Interestingly, chronic treatment of LS mice with low doses of MEK inhibitor, but not rapamycin, resulted in weight and adiposity gains. Importantly, preliminary data in a French cohort of LS patients suggests that most of them have lower-than-average body mass index, associated, for tested patients, with reduced adiposity. Altogether, these findings unravel previously unidentified characteristics for LS, which could represent a metabolic benefit for patients, but may also participate to the development or worsening of some traits of the disease. Beyond LS, they also highlight a protective role of SHP2 global LS-mimicking modulation toward the development of obesity and associated disorders.
Collapse
Affiliation(s)
- Mylène Tajan
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Aurélie Batut
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Thomas Cadoudal
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Simon Deleruyelle
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Sophie Le Gonidec
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Céline Saint Laurent
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Maëlle Vomscheid
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Estelle Wanecq
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Karine Tréguer
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Audrey De Rocca Serra-Nédélec
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Claire Vinel
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Marie-Adeline Marques
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Joffrey Pozzo
- Cardiology Unit, University Hospital Center of Rangueil Toulouse, F-31432 Toulouse, France
| | - Oksana Kunduzova
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Jean-Pierre Salles
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, University Hospital Center of Purpan Toulouse, F-31024 Toulouse, France
| | - Maithé Tauber
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, University Hospital Center of Purpan Toulouse, F-31024 Toulouse, France
| | - Patrick Raynal
- EA4568 Laboratoire Mécanismes des Cardiopathies et Résistances Hormonales dans le Syndrome de Noonan et les Syndromes Apparentés, Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France; and
| | - Hélène Cavé
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche S1131, Unité de Formation et de Recherche de Médecine Paris-Diderot-Institut Universitaire d'Hématologie Département de Génétique, Unité Fonctionnelle de Génétique Moléculaire Hôpital Robert Debré, F-75019 Paris, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, University Hospital Center of Purpan Toulouse, F-31024 Toulouse, France
| | - Philippe Valet
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Armelle Yart
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France;
| |
Collapse
|
10
|
Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord 2014; 15:79-97. [PMID: 24264858 DOI: 10.1007/s11154-013-9282-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major disorder that links obesity to type 2 diabetes mellitus (T2D). It involves defects in the insulin actions owing to a reduced ability of insulin to trigger key signaling pathways in major metabolic tissues. The pathogenesis of insulin resistance involves several inhibitory molecules that interfere with the tyrosine phosphorylation of the insulin receptor and its downstream effectors. Among those, growing interest has been developed toward the protein tyrosine phosphatases (PTPs), a large family of enzymes that can inactivate crucial signaling effectors in the insulin signaling cascade by dephosphorylating their tyrosine residues. Herein we briefly review the role of several PTPs that have been shown to be implicated in the regulation of insulin action, and then focus on the Src homology 2 (SH2) domain-containing SHP1 and SHP2 enzymes, since recent reports have indicated major roles for these PTPs in the control of insulin action and glucose metabolism. Finally, the therapeutic potential of targeting PTPs for combating insulin resistance and alleviating T2D will be discussed.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
11
|
Guan HP, Chen G. Factors affecting insulin-regulated hepatic gene expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:165-215. [PMID: 24373238 DOI: 10.1016/b978-0-12-800101-1.00006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity has become a major concern of public health. A common feature of obesity and related metabolic disorders such as noninsulin-dependent diabetes mellitus is insulin resistance, wherein a given amount of insulin produces less than normal physiological responses. Insulin controls hepatic glucose and fatty acid metabolism, at least in part, via the regulation of gene expression. When the liver is insulin-sensitive, insulin can stimulate the expression of genes for fatty acid synthesis and suppress those for gluconeogenesis. When the liver becomes insulin-resistant, the insulin-mediated suppression of gluconeogenic gene expression is lost, whereas the induction of fatty acid synthetic gene expression remains intact. In the past two decades, the mechanisms of insulin-regulated hepatic gene expression have been studied extensively and many components of insulin signal transduction pathways have been identified. Factors that alter these pathways, and the insulin-regulated hepatic gene expression, have been revealed and the underlying mechanisms have been proposed. This chapter summarizes the recent progresses in our understanding of the effects of dietary factors, drugs, bioactive compounds, hormones, and cytokines on insulin-regulated hepatic gene expression. Given the large amount of information and progresses regarding the roles of insulin, this chapter focuses on findings in the liver and hepatocytes and not those described for other tissues and cells. Typical insulin-regulated hepatic genes, such as insulin-induced glucokinase and sterol regulatory element-binding protein-1c and insulin-suppressed cytosolic phosphoenolpyruvate carboxyl kinase and insulin-like growth factor-binding protein 1, are used as examples to discuss the mechanisms such as insulin regulatory element-mediated transcriptional regulation. We also propose the potential mechanisms by which these factors affect insulin-regulated hepatic gene expression and discuss potential future directions of the area of research.
Collapse
Affiliation(s)
- Hong-Ping Guan
- Department of Diabetes, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
12
|
Effect of Candesartan cilexetil as a sensitive and effective inhibitor of SHP-1 on insulin signaling pathway. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2505-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Müller PJ, Rigbolt KTG, Paterok D, Piehler J, Vanselow J, Lasonder E, Andersen JS, Schaper F, Sobota RM. Protein tyrosine phosphatase SHP2/PTPN11 mistargeting as a consequence of SH2-domain point mutations associated with Noonan Syndrome and leukemia. J Proteomics 2013; 84:132-47. [PMID: 23584145 DOI: 10.1016/j.jprot.2013.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/25/2022]
Abstract
UNLABELLED SHP2/PTPN11 is a key regulator of cytokine, growth factor and integrin signaling. SHP2 influences cell survival, proliferation and differentiation by regulating major signaling pathways. Mutations in PTPN11 cause severe diseases like Noonan, LEOPARD syndrome or leukemia. Whereas several of these mutations result in altered enzymatic activity due to impaired auto-inhibition, not all disease patterns can be explained by this mechanism. In this study we analyzed altered binding properties of disease-related SHP2-mutants bearing point mutations within the SH2-domain (T42A, E139D, and R138Q). Mutants were chosen according to SPR assays, which revealed different binding properties of mutated SH2 towards phosphorylated receptor peptides. To analyze global changes in mutant binding properties we applied quantitative mass spectrometry (SILAC). Using an in vitro approach we identified overall more than 1000 protein candidates, which specifically bind to the SH2-domain of SHP2. We discovered that mutations in the SH2-domain selectively affected protein enrichment by altering the binding capacity of the SH2-domain. Mutation-dependent, enhanced or reduced exposure of SHP2 to its binding partners could have an impact on the dynamics of signaling networks. Thus, disease-associated mutants of SHP2 should not only be discussed in the context of deregulated auto-inhibition but also with respect to deregulated protein targeting of the SHP2 mutants. BIOLOGICAL SIGNIFICANCE Using quantitative mass spectrometry based proteomics we provided evidence that disease related mutations in SHP2 domains of SHP2 are able to influence SHP2 recruitment to its targets in mutation dependent manner. We discovered that mutations in the SH2-domain selectively affected protein enrichment ratios suggesting altered binding properties of the SH2-domain. We demonstrated that mutations within SHP2, which had been attributed to affect the enzymatic activity (i.e. affect the open/close status of SHP2), also differ in respect to binding properties. Our study indicates that SHP2 mutations need to be discussed not only in terms of deregulated auto-inhibition but also with respect to deregulated protein targeting properties of the SHP2 mutants. Discovery of the new binding partners for disease-related SHP2 mutants might provide a fruitful foundation for developing strategies targeting Noonan-associated leukemia.
Collapse
Affiliation(s)
- Pia J Müller
- Department of Biochemistry, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu E, Charbonneau A, Rolland Y, Bellmann K, Pao L, Siminovitch KA, Neel BG, Beauchemin N, Marette A. Hepatocyte-specific Ptpn6 deletion protects from obesity-linked hepatic insulin resistance. Diabetes 2012; 61:1949-58. [PMID: 22698917 PMCID: PMC3402325 DOI: 10.2337/db11-1502] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein-tyrosine phosphatase Shp1 negatively regulates insulin action on glucose homeostasis in liver and muscle, but its potential role in obesity-linked insulin resistance has not been examined. To investigate the role of Shp1 in hepatic insulin resistance, we generated hepatocyte-specific Shp1 knockout mice (Ptpn6(H-KO)), which were subjected to extensive metabolic monitoring throughout an 8-week standard chow diet (SD) or high-fat diet (HFD) feeding. We report for the first time that Shp1 expression is upregulated in metabolic tissues of HFD-fed obese mice. When compared with their Shp1-expressing Ptpn6(f/f) littermates, Ptpn6(H-KO) mice exhibited significantly lowered fasting glycemia and heightened hepatic insulin sensitivity. After HFD feeding, Ptpn6(H-KO) mice developed comparable levels of obesity as Ptpn6(f/f) mice, but they were remarkably protected from liver insulin resistance, as revealed by euglycemic clamps and hepatic insulin signaling determinations. Although Ptpn6(H-KO) mice still acquired diet-induced peripheral insulin resistance, they were less hyperinsulinemic during a glucose tolerance test because of reduced insulin secretion. Ptpn6(H-KO) mice also exhibited increased insulin clearance in line with enhanced CC1 tyrosine phosphorylation in liver. These results show that hepatocyte Shp1 plays a critical role in the development of hepatic insulin resistance and represents a novel therapeutic target for obesity-linked diabetes.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Alexandre Charbonneau
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Yannève Rolland
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Kerstin Bellmann
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Lily Pao
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Katherine A. Siminovitch
- Department of Medicine, University of Toronto, Mount Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Benjamin G. Neel
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Departments of Biochemistry, Medicine, and Oncology, McGill University, Montréal, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
- Corresponding author: André Marette,
| |
Collapse
|
15
|
Nagata N, Matsuo K, Bettaieb A, Bakke J, Matsuo I, Graham J, Xi Y, Liu S, Tomilov A, Tomilova N, Gray S, Jung DY, Ramsey JJ, Kim JK, Cortopassi G, Havel PJ, Haj FG. Hepatic Src homology phosphatase 2 regulates energy balance in mice. Endocrinology 2012; 153:3158-69. [PMID: 22619361 PMCID: PMC3380313 DOI: 10.1210/en.2012-1406] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Src homology 2 domain-containing protein-tyrosine phosphatase Src homology phosphatase 2 (Shp2) is a negative regulator of hepatic insulin action in mice fed regular chow. To investigate the role of hepatic Shp2 in lipid metabolism and energy balance, we determined the metabolic effects of its deletion in mice challenged with a high-fat diet (HFD). We analyzed body mass, lipid metabolism, insulin sensitivity, and glucose tolerance in liver-specific Shp2-deficient mice (referred to herein as LSHKO) and control mice fed HFD. Hepatic Shp2 protein expression is regulated by nutritional status, increasing in mice fed HFD and decreasing during fasting. LSHKO mice gained less weight and exhibited increased energy expenditure compared with control mice. In addition, hepatic Shp2 deficiency led to decreased liver steatosis, enhanced insulin-induced suppression of hepatic glucose production, and impeded the development of insulin resistance after high-fat feeding. At the molecular level, LSHKO exhibited decreased hepatic endoplasmic reticulum stress and inflammation compared with control mice. In addition, tyrosine and serine phosphorylation of total and mitochondrial signal transducer and activator of transcription 3 were enhanced in LSHKO compared with control mice. In line with this observation and the increased energy expenditure of LSHKO, oxygen consumption rate was higher in liver mitochondria of LSHKO compared with controls. Collectively, these studies identify hepatic Shp2 as a novel regulator of systemic energy balance under conditions of high-fat feeding.
Collapse
Affiliation(s)
- Naoto Nagata
- Department of Nutrition, University of California Davis, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bettaieb A, Matsuo K, Matsuo I, Nagata N, Chahed S, Liu S, Haj FG. Adipose-specific deletion of Src homology phosphatase 2 does not significantly alter systemic glucose homeostasis. Metabolism 2011; 60:1193-201. [PMID: 21353259 PMCID: PMC4433310 DOI: 10.1016/j.metabol.2011.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/21/2010] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
The SH2 domain-containing protein-tyrosine phosphatase Src homology phosphatase 2 (Shp2) has been implicated in a variety of growth factor signaling pathways, but its metabolic role in some peripheral insulin-responsive tissues remains unknown. To address the metabolic function of Shp2 in adipose tissue, we generated mice with adipose-specific Shp2 deletion using adiponectin-Cre transgenic mice. We then analyzed insulin sensitivity, glucose tolerance, and body mass in adipose-specific Shp2-deficient and control mice on regular chow and high-fat diet (HFD). Control mice on HFD exhibited increased Shp2 expression in various adipose depots compared with those on regular chow. Adiponectin-Cre mice enabled efficient and specific deletion of Shp2 in adipose tissue. However, adipose Shp2 deletion did not significantly alter body mass in mice on chow or HFD. In addition, mice with adipose Shp2 deletion exhibited comparable insulin sensitivity and glucose tolerance compared with controls. Consistent with this, basal and insulin-stimulated Erk and Akt phosphorylations were comparable in adipose tissue of Shp2-deficient and control mice. Our findings indicate that adipose-specific Shp2 deletion does not significantly alter systemic insulin sensitivity and glucose homeostasis.
Collapse
Affiliation(s)
- Ahmed Bettaieb
- University of California Davis, Nutrition Department, Davis, CA 95616
| | - Kosuke Matsuo
- University of California Davis, Nutrition Department, Davis, CA 95616
| | - Izumi Matsuo
- University of California Davis, Nutrition Department, Davis, CA 95616
| | - Naoto Nagata
- University of California Davis, Nutrition Department, Davis, CA 95616
| | - Samah Chahed
- University of California Davis, Nutrition Department, Davis, CA 95616
| | - Siming Liu
- University of California Davis, Nutrition Department, Davis, CA 95616
| | - Fawaz G. Haj
- University of California Davis, Nutrition Department, Davis, CA 95616
- Corresponding author: University of California Davis, 3135 Meyer Hall, Davis, CA 95616, Fax: (530) 753-8966, Tel: (530) 752-3214,
| |
Collapse
|
17
|
Calò LA, Bordin L, Davis PA, Pagnin E, Dal Maso L, Rossi GP, Pessina AC, Clari G. PLCβ1-SHP-2 complex, PLCβ1 tyrosine dephosphorylation and SHP-2 phosphatase activity: a new part of Angiotensin II signaling? J Biomed Sci 2011; 18:38. [PMID: 21663700 PMCID: PMC3120746 DOI: 10.1186/1423-0127-18-38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Angiotensin II (Ang II) signaling occurs via two major receptors which activate non-receptor tyrosin kinases that then interact with protein tyrosin-phosphatases (PTPs) to regulate cell function. SHP-2 is one such important PTP that also functions as an adaptor to promote downstream signaling pathway. Its role in Ang II signaling remains to be clarified. RESULTS Using cultured normal human fibroblasts, immunoprecipitation and western blots, we show for the first time that SHP-2 and PLCβ1 are present as a preformed complex. Complex PLCβ1 is tyr-phosphorylated basally and Ang II increased SHP-2-PLCβ1 complexes and caused complex associated PLCβ1 tyr-phosphorylation to decline while complex associated SHP-2's tyr-phosphorylation increased and did so via the Ang II type 1 receptors as shown by Ang II type 1 receptor blocker losartan's effects. Moreover, Ang II induced both increased complex phosphatase activity and decreased complex associated PLCβ1 tyr-phosphorylation, the latter response required regulator of G protein signaling (RGS)-2. CONCLUSIONS Ang II signals are shown for the first time to involve a preformed SHP-2-PLCβ1 complex. Changes in the complex's PLCβ1 tyr-phosphorylation and SHP-2's tyr-phosphorylation as well as SHP-2-PLCβ1 complex formation are the result of Ang II type 1 receptor activation with changes in complex associated PLCβ1 tyr-phosphorylation requiring RGS-2. These findings might significantly expand the number and complexity of Ang II signaling pathways. Further studies are needed to delineate the role/s of this complex in the Ang II signaling system.
Collapse
Affiliation(s)
- Lorenzo A Calò
- Department of Clinical and Experimental Medicine, Clinica Medica University of Padova, School of Medicine, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Oriente F, Iovino S, Cabaro S, Cassese A, Longobardi E, Miele C, Ungaro P, Formisano P, Blasi F, Beguinot F. Prep1 controls insulin glucoregulatory function in liver by transcriptional targeting of SHP1 tyrosine phosphatase. Diabetes 2011; 60:138-47. [PMID: 20864515 PMCID: PMC3012165 DOI: 10.2337/db10-0860] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE We investigated the function of the Prep1 gene in insulin-dependent glucose homeostasis in liver. RESEARCH DESIGN AND METHODS Prep1 action on insulin glucoregulatory function has been analyzed in liver of Prep1-hypomorphic mice (Prep1(i/i)), which express 2-3% of Prep1 mRNA. RESULTS Based on euglycemic hyperinsulinemic clamp studies and measurement of glycogen content, livers from Prep1(i/i) mice feature increased sensitivity to insulin. Tyrosine phosphorylation of both insulin receptor (IR) and insulin receptor substrate (IRS)1/2 was significantly enhanced in Prep1(i/i) livers accompanied by a specific downregulation of the SYP and SHP1 tyrosine phosphatases. Prep1 overexpression in HepG2 liver cells upregulated SYP and SHP1 and inhibited insulin-induced IR and IRS1/2 phosphorylation and was accompanied by reduced glycogen content. Consistently, overexpression of the Prep1 partner Pbx1, but not of p160MBP, mimicked Prep1 effects on tyrosine phosphorylations, glycogen content, and on SYP and SHP1 expression. In Prep1 overexpressing cells, antisense silencing of SHP1, but not that of SYP, rescued insulin-dependent IR phosphorylation and glycogen accumulation. Both Prep1 and Pbx1 bind SHP1 promoter at a site located between nucleotides -2,113 and -1,778. This fragment features enhancer activity and induces luciferase function by 7-, 6-, and 30-fold, respectively, in response to Prep1, Pbx1, or both. CONCLUSIONS SHP1, a known silencer of insulin signal, is a transcriptional target of Prep1. In liver, transcriptional activation of SHP1 gene by Prep1 attenuates insulin signal transduction and reduces glucose storage.
Collapse
Affiliation(s)
- Francesco Oriente
- Dipartimento di Biologia e Patologia Cellulare e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Salvatore Iovino
- Dipartimento di Biologia e Patologia Cellulare e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Serena Cabaro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Angela Cassese
- Dipartimento di Biologia e Patologia Cellulare e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Elena Longobardi
- Istituto FIRC di Oncologia Molecolare (Fondazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology), Milano, Italy
- Università Vita Salute San Raffaele, Milano, Italy
| | - Claudia Miele
- Dipartimento di Biologia e Patologia Cellulare e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Paola Ungaro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Pietro Formisano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Francesco Blasi
- Istituto FIRC di Oncologia Molecolare (Fondazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology), Milano, Italy
- Università Vita Salute San Raffaele, Milano, Italy
| | - Francesco Beguinot
- Dipartimento di Biologia e Patologia Cellulare e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, Naples, Italy
- Corresponding author: Francesco Beguinot,
| |
Collapse
|
19
|
Abstract
Docking proteins comprise a distinct category of intracellular, noncatalytic signalling protein, that function downstream of a variety of receptor and receptor-associated tyrosine kinases and regulate diverse physiological and pathological processes. The growth factor receptor bound 2-associated binder/Daughter of Sevenless, insulin receptor substrate, fibroblast growth factor receptor substrate 2 and downstream of tyrosine kinases protein families fall into this category. This minireview focuses on the structure, function and regulation of these proteins.
Collapse
Affiliation(s)
- Tilman Brummer
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
20
|
Matsuo K, Delibegovic M, Matsuo I, Nagata N, Liu S, Bettaieb A, Xi Y, Araki K, Yang W, Kahn BB, Neel BG, Haj FG. Altered glucose homeostasis in mice with liver-specific deletion of Src homology phosphatase 2. J Biol Chem 2010; 285:39750-8. [PMID: 20841350 DOI: 10.1074/jbc.m110.153734] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Src homology 2 domain-containing protein-tyrosine phosphatase Shp2 has been implicated in a variety of growth factor signaling pathways, but its role in insulin signaling has remained unresolved. In vitro studies suggest that Shp2 is both a negative and positive regulator of insulin signaling, although its physiological function in a number of peripheral insulin-responsive tissues remains unknown. To address the metabolic role of Shp2 in the liver, we generated mice with either chronic or acute hepatic Shp2 deletion using tissue-specific Cre-LoxP and adenoviral Cre approaches, respectively. We then analyzed insulin sensitivity, glucose tolerance, and insulin signaling in liver-specific Shp2-deficient and control mice. Mice with chronic Shp2 deletion exhibited improved insulin sensitivity and increased glucose tolerance compared with controls. Acute Shp2 deletion yielded comparable results, indicating that the observed metabolic effects are directly caused by the lack of Shp2 in the liver. These findings correlated with, and were most likely caused by, direct dephosphorylation of insulin receptor substrate (IRS)1/2 in the liver, accompanied by increased PI3K/Akt signaling. In contrast, insulin-induced ERK activation was dramatically attenuated, yet there was no effect on the putative ERK site on IRS1 (Ser(612)) or on S6 kinase 1 activity. These studies show that Shp2 is a negative regulator of hepatic insulin action, and its deletion enhances the activation of PI3K/Akt pathway downstream of the insulin receptor.
Collapse
Affiliation(s)
- Kosuke Matsuo
- Department of Nutrition, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The phosphoinositide (PI) cycle, discovered over 50 years ago by Mabel and Lowell Hokin, describes a series of biochemical reactions that occur on the inner leaflet of the plasma membrane of cells in response to receptor activation by extracellular stimuli. Studies from our laboratory have shown that the retina and rod outer segments (ROSs) have active PI metabolism. Biochemical studies revealed that the ROSs contain the enzymes necessary for phosphorylation of phosphoinositides. We showed that light stimulates various components of the PI cycle in the vertebrate ROS, including diacylglycerol kinase, PI synthetase, phosphatidylinositol phosphate kinase, phospholipase C, and phosphoinositide 3-kinase (PI3K). This article describes recent studies on the PI3K-generated PI lipid second messengers in the control and regulation of PI-binding proteins in the vertebrate retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology and Cell Biology, and Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. r
| |
Collapse
|
22
|
Rajala RVS, Tanito M, Neel BG, Rajala A. Enhanced retinal insulin receptor-activated neuroprotective survival signal in mice lacking the protein-tyrosine phosphatase-1B gene. J Biol Chem 2010; 285:8894-904. [PMID: 20061388 DOI: 10.1074/jbc.m109.070854] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphatase 1B (PTP1B) has been implicated in the negative regulation of insulin signaling. We previously demonstrated that light-induced tyrosine phosphorylation of the retinal insulin receptor (IR) results in the activation of phosphoinositide 3-kinase/Akt survival pathway in rod photoreceptor cells. The molecular mechanism behind light-induced activation of IR is not known. We investigated the in vivo mechanism of IR activation and found that PTP1B activity in dark-adapted retinas was significantly higher than in light-adapted retinas. We made a novel finding in this study that the light-dependent regulation of PTP1B activity is signaled through photobleaching of rhodopsin. Conditional deletion of PTP1B in rod photoreceptors by the Cre-loxP system resulted in enhanced IR signaling. Further PTP1B activity negatively regulated the neuroprotective survival signaling in the retina. One of the challenging questions in the retina research is how mutations in human rhodopsin gene slowly disable and eventually disrupt photoreceptor functions. Our studies suggest that a defect in the photobleaching of rhodopsin and mutation in rhodopsin gene enhances the activity of PTP1B, and this activated activity could down-regulate the IR survival signaling. Our studies suggest that PTP1B antagonists could be potential therapeutic agents to treat stress-induced photoreceptor degenerations and provide further evidence that rhodopsin photoexcitation may trigger signaling events alternative to the classic phototransduction.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, Dean A McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
23
|
Lee YJ, Hsu TC, Du JY, Valentijn AJ, Wu TY, Cheng CF, Yang Z, Streuli CH. Extracellular matrix controls insulin signaling in mammary epithelial cells through the RhoA/Rok pathway. J Cell Physiol 2009; 220:476-84. [DOI: 10.1002/jcp.21793] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Rajala RVS, Wiskur B, Tanito M, Callegan M, Rajala A. Diabetes reduces autophosphorylation of retinal insulin receptor and increases protein-tyrosine phosphatase-1B activity. Invest Ophthalmol Vis Sci 2008; 50:1033-40. [PMID: 19029027 DOI: 10.1167/iovs.08-2851] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Protein-tyrosine phosphatase-1B (PTP1B) has been implicated in the negative regulation of insulin signaling. The expression, activity, and functional role of PTP1B in the retina are unknown. In this study, the authors examined the relationship between the retinal insulin receptor (IR) and PTP1B in normal and diabetic mouse retinas. METHODS IR and PTP1B localization was examined by immunohistochemistry. The activation of IR was analyzed using specific antibodies against phosphotyrosine. PTP1B activity was determined in anti-PTP1B immunoprecipitates. Glutathione-S-transferase fusion proteins containing wild-type and catalytically inactive mutant PTP1B was used to study the interaction between IR and PTP1B. Anti-IR immunoprecipitates and the cytoplasmic domain of purified IR were incubated in the presence of ATP, and the autophosphorylation of IR with antiphosphotyrosine antibody was analyzed. RESULTS Immunohistochemical analysis of PTP1B shows that it is predominantly expressed in nonphotoreceptor layers of the retina, though it is clearly expressed in the inner segments of the rod photoreceptors. The IR is predominately expressed in rod inner segments. Biochemical analysis of rod outer segments indicates the presence of IR and PTP1B. Retinal IR exhibits a high level of basal autophosphorylation, and this autophosphorylation is reduced in diabetic mouse retinas. In vitro, PTP1B is able to dephosphorylate the autophosphorylated IR. Substrate mutant-trap results indicate a stable interaction between IR and PTP1B. Further, PTP1B activity was increased in diabetic mouse retinas. CONCLUSIONS These studies indicate that diabetes reduces the autophosphorylation of retinal IR and increased PTP1B activity. Further, PTP1B regulates the state of IR phosphorylation in the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | |
Collapse
|
25
|
Deletion of Shp2 tyrosine phosphatase in muscle leads to dilated cardiomyopathy, insulin resistance, and premature death. Mol Cell Biol 2008; 29:378-88. [PMID: 19001090 DOI: 10.1128/mcb.01661-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The intracellular signaling mechanisms underlying the pathogenesis of cardiac diseases are not fully understood. We report here that selective deletion of Shp2, an SH2-containing cytoplasmic tyrosine phosphatase, in striated muscle results in severe dilated cardiomyopathy in mice, leading to heart failure and premature mortality. Development of cardiomyopathy in this mouse model is coupled with insulin resistance, glucose intolerance, and impaired glucose uptake in striated muscle cells. Shp2 deficiency leads to upregulation of leukemia inhibitory factor-stimulated phosphatidylinositol 3-kinase/Akt, Erk5, and Stat3 pathways in cardiomyocytes. Insulin resistance and impaired glucose uptake in Shp2-deficient mice are at least in part due to impaired protein kinase C-zeta/lambda and AMP-kinase activities in striated muscle. Thus, we have generated a mouse line modeling human patients suffering from cardiomyopathy and insulin resistance. This study reinforces a concept that a compound disease with multiple cardiovascular and metabolic disturbances can be caused by a defect in a single molecule such as Shp2, which modulates multiple signaling pathways initiated by cytokines and hormones.
Collapse
|
26
|
Aga-Mizrachi S, Brutman-Barazani T, Jacob AI, Bak A, Elson A, Sampson SR. Cytosolic protein tyrosine phosphatase-epsilon is a negative regulator of insulin signaling in skeletal muscle. Endocrinology 2008; 149:605-14. [PMID: 18006633 DOI: 10.1210/en.2007-0908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Whereas positive regulatory events triggered by insulin binding to insulin receptor (IR) have been well documented, the mechanism by which the activated IR is returned to the basal status is not completely understood. Recently studies focused on the involvement of protein tyrosine phosphatases (PTPs) and how they might influence IR signaling. In this study, we examined the possibility that cytosolic PTPepsilon (cytPTPepsilon) is involved in IR signaling. Studies were performed on L6 skeletal muscle cells. cytPTPepsilon was overexpressed by using pBABE retroviral expression vectors. In addition, we inhibited cytPTPepsilon by RNA silencing. We found that insulin induced rapid association of cytPTPepsilon with IR. Interestingly, this association appeared to occur in the plasma membrane and on stimulation with insulin the two proteins internalized together. Moreover, it appeared that almost all internalized IR was associated with cytPTPepsilon. We found that knockdown of cytPTPepsilon by RNA silencing increased insulin-induced tyrosine phosphorylation of IR and IR substrate (IRS)-1 as well as phosphorylation of protein kinase B and glycogen synthase kinase-3 and insulin-induced stimulation of glucose uptake. Moreover, overexpression of wild-type cytPTPepsilon reduced insulin-induced tyrosine phosphorylation of IR, IRS-1, and phosphorylation of protein kinase B and glycogen synthase kinase-3 and insulin-induced stimulation of glucose uptake. Finally, insulin-induced tyrosine phosphorylation of IR and IRS-1 was greater in skeletal muscle from mice lacking the cytPTPepsilon gene than that from wild-type control animals. We conclude that cytPTPepsilon serves as another major candidate negative regulator of IR signaling in skeletal muscle.
Collapse
Affiliation(s)
- Shlomit Aga-Mizrachi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Koren S, Fantus IG. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract Res Clin Endocrinol Metab 2007; 21:621-40. [PMID: 18054739 DOI: 10.1016/j.beem.2007.08.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The global epidemic of obesity and type-2 diabetes mellitus (T2DM) has highlighted the need for new therapeutic approaches. The association of insulin resistance with these disorders and the knowledge that insulin receptor signaling is mediated by tyrosine (Tyr) phosphorylation have generated great interest in the regulation of the balance between Tyr phosphorylation and dephosphorylation. Several protein Tyr phosphatases (PTPs) have been implicated in the regulation of insulin action, with the most convincing data for PTP1B. Murine models targeting PTP1B, PTP1B(-/-)mice, demonstrate enhanced insulin sensitivity without the weight gain seen with other insulin sensitizers such as peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, probably due to a second action of PTP1B as a negative regulator of leptin signaling. Despite intensive efforts and recent progress, a safe, selective and efficacious PTP1B inhibitor has yet to be identified.
Collapse
Affiliation(s)
- Shlomit Koren
- Department of Medicine and The Banting and Best Diabetes Centre, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Wadley GD, Konstantopoulos N, Macaulay L, Howlett KF, Garnham A, Hargreaves M, Cameron-Smith D. Increased insulin-stimulated Akt pSer473 and cytosolic SHP2 protein abundance in human skeletal muscle following acute exercise and short-term training. J Appl Physiol (1985) 2006; 102:1624-31. [PMID: 17185494 DOI: 10.1152/japplphysiol.00821.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to determine in human skeletal muscle whether a single exercise bout and 7 days of consecutive endurance (cycling) training 1) increased insulin-stimulated Akt pSer(473) and 2) altered the abundance of the protein tyrosine phosphatases (PTPases), PTP1B and SHP2. In healthy, untrained men (n = 8; 24 +/- 1 yr), glucose infusion rate during a hyperinsulinemic euglycemic clamp, when compared with untrained values, was not improved 24 h following a single 60-min bout of endurance cycling but was significantly increased ( approximately 30%; P < 0.05) 24 h following completion of 7 days of exercise training. Insulin-stimulated Akt pSer(473) was approximately 50% higher (P < 0.05) 24 h following the acute bout of exercise, with this effect remaining after 7 days of training (P < 0.05). Insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation were not altered 24 h after acute exercise and short-term training. Insulin did not acutely regulate the localization of the PTPases, PTP1B or SHP2, although cytosolic protein abundance of SHP2 was increased (P < 0.05; main effect) 24 h following acute exercise and short-term training. In conclusion, insulin-sensitive Akt pSer(473) and cytosolic SHP2 protein abundance are higher after acute exercise and short-term training, and this effect appears largely due to the residual effects of the last bout of prior exercise. The significance of exercise-induced alterations in cytosolic SHP2 and insulin-stimulated Akt pSer(473) on the improvement in insulin sensitivity requires further elucidation.
Collapse
Affiliation(s)
- Glenn D Wadley
- 1School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kim SK, Novak RF. The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther 2006; 113:88-120. [PMID: 17097148 PMCID: PMC1828071 DOI: 10.1016/j.pharmthera.2006.07.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/18/2006] [Indexed: 12/28/2022]
Abstract
Endogenous factors, including hormones, growth factors and cytokines, play an important role in the regulation of hepatic drug metabolizing enzyme expression in both physiological and pathophysiological conditions. Diabetes, fasting, obesity, protein-calorie malnutrition and long-term alcohol consumption produce changes in hepatic drug metabolizing enzyme gene and protein expression. This difference in expression alters the metabolism of xenobiotics, including procarcinogens, carcinogens, toxicants and therapeutic agents, potentially impacting the efficacy and safety of therapeutic agents, and/or resulting in drug-drug interactions. Although the mechanisms by which xenobiotics regulate drug metabolizing enzymes have been studied intensively, less is known regarding the cellular signaling pathways and components which regulate drug metabolizing enzyme gene and protein expression in response to hormones and cytokines. Recent findings, however, have revealed that several cellular signaling pathways are involved in hormone- and growth factor-mediated regulation of drug metabolizing enzymes. Our laboratory has reported that insulin and growth factors regulate drug metabolizing enzyme gene and protein expression, including cytochromes P450 (CYP), glutathione S-transferases (GST) and microsomal epoxide hydrolase (mEH), through receptors which are members of the large receptor tyrosine kinase (RTK) family, and by downstream effectors such as phosphatidylinositol 3-kinase, mitogen activated protein kinase (MAPK), Akt/protein kinase B (PKB), mammalian target of rapamycin (mTOR), and the p70 ribosomal protein S6 kinase (p70S6 kinase). Here, we review current knowledge of the signaling pathways implicated in regulation of drug metabolizing enzyme gene and protein expression in response to insulin and growth factors, with the goal of increasing our understanding of how disease affects these signaling pathways, components, and ultimately gene expression and translational control.
Collapse
Affiliation(s)
- Sang K. Kim
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
- College of Pharmacy and Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 305-764, South Korea
| | - Raymond F. Novak
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
| |
Collapse
|
30
|
Oak SA, Tran C, Pan G, Thamotharan M, Devaskar SU. Perturbed skeletal muscle insulin signaling in the adult female intrauterine growth-restricted rat. Am J Physiol Endocrinol Metab 2006; 290:E1321-30. [PMID: 16449300 DOI: 10.1152/ajpendo.00437.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the molecular mechanism(s) linking fetal adaptations in intrauterine growth restriction (IUGR) to adult maladaptations of type 2 diabetes mellitus, we investigated the effect of prenatal seminutrient restriction, modified by early postnatal ad libitum access to nutrients (CM/SP) or seminutrient restriction (SM/SP), vs. early postnatal seminutrient restriction alone (SM/CP) or control nutrition (CM/CP) on the skeletal muscle postreceptor insulin-signaling pathway in the adult offspring. The altered in utero hormonal/metabolic milieu was associated with no change in basal total IRS-1, p85, and p110beta subunits of PI 3-kinase, PKCtheta, and PKCzeta concentrations but an increase in basal IRS-2 (P < 0.05) only in the CM/SP group and an increase in basal phospho (p)-PDK-1 (P < 0.05), p-Akt (P < 0.05), and p-PKCzeta (P < 0.05) concentrations in the CM/SP and SM/SP groups. Insulin-stimulated increases in p-PDK-1 (P < 0.05) and p-Akt (P < 0.0007), with no increase in p-PKCzeta, were seen in both CM/SP and SM/SP groups. SHP2 (P < 0.03) and PTP1B (P < 0.03) increased only in SM/SP with no change in PTEN in CM/SP and SM/SP groups. Aberrations in kinase and phosphatase moieties in the adult IUGR offspring were initiated in utero but further sculpted by the early postnatal nutritional state. Although the CM/SP group demonstrated enhanced kinase activation, the SM/SP group revealed an added increase in phosphatase concentrations with the net result of heightened basal insulin sensitivity in both groups. The inability to further respond to exogenous insulin was due to the key molecular distal roadblock consisting of resistance to phosphorylate and activate PKCzeta necessary for GLUT4 translocation. This protective adaptation may become maladaptive and serve as a forerunner for gestational and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Shilpa A Oak
- Division of Neonatology and Developmental Biology, David Geffen School at Medicine at University of California at Los Angeles, CA 90095-1752, USA
| | | | | | | | | |
Collapse
|
31
|
Dubois MJ, Bergeron S, Kim HJ, Dombrowski L, Perreault M, Fournès B, Faure R, Olivier M, Beauchemin N, Shulman GI, Siminovitch KA, Kim JK, Marette A. The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nat Med 2006; 12:549-56. [PMID: 16617349 DOI: 10.1038/nm1397] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 03/17/2006] [Indexed: 12/17/2022]
Abstract
The protein tyrosine phosphatase SHP-1 is a well-known inhibitor of activation-promoting signaling cascades in hematopoietic cells but its potential role in insulin target tissues is unknown. Here we show that Ptpn6(me-v/me-v) (also known as viable motheaten) mice bearing a functionally deficient SHP-1 protein are markedly glucose tolerant and insulin sensitive as compared to wild-type littermates, as a result of enhanced insulin receptor signaling to IRS-PI3K-Akt in liver and muscle. Downregulation of SHP-1 activity in liver of normal mice by adenoviral expression of a catalytically inert mutant of SHP-1, or after small hairpin RNA-mediated SHP-1 silencing, further confirmed this phenotype. Tyrosine phosphorylation of CEACAM1, a modulator of hepatic insulin clearance, and clearance of serum [125I]-insulin were markedly increased in SHP-1-deficient mice or SHP-1-deficient hepatic cells in vitro. These findings show a novel role for SHP-1 in the regulation of glucose homeostasis through modulation of insulin signaling in liver and muscle as well as hepatic insulin clearance.
Collapse
Affiliation(s)
- Marie-Julie Dubois
- Department of Anatomy-Physiology and Lipid Research Unit, Laval University Hospital Research Center, 2705 Laurier Boulevard, Québec, Québec G1V 4G2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vinciguerra M, Foti M. PTEN and SHIP2 phosphoinositide phosphatases as negative regulators of insulin signalling. Arch Physiol Biochem 2006; 112:89-104. [PMID: 16931451 DOI: 10.1080/13813450600711359] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insulin resistance in peripheral tissues is the primary cause responsible for onset of type II diabetes mellitus. Recently, the genetic and biochemical dissection of intracellular signalling pathways transducing the metabolic and mitogenic effects of insulin has contributed to the understanding of the molecular causes of this insulin resistance. In particular, important efforts have been developed to comprehend the role of negative regulators of insulin signalling, since they might represent future therapeutical targets to reduce insulin resistance in peripheral tissues. Herein, we will briefly review major intracellular signalling pathways activated by insulin and how they are negatively regulated by distinct mechanisms. In particular, the role of PTEN and SHIP2, two phosphoinositide phosphatases recently implicated as negative modulators of insulin signalling, is in focus. Current knowledge on the role of PTEN and SHIP2 in insulin resistance, type II diabetes and related disorders will also be discussed.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
33
|
Haber EP, Procópio J, Carvalho CRO, Carpinelli AR, Newsholme P, Curi R. New Insights into Fatty Acid Modulation of Pancreatic β‐Cell Function. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:1-41. [PMID: 16487789 DOI: 10.1016/s0074-7696(06)48001-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Insulin resistance states as found in type 2 diabetes and obesity are frequently associated with hyperlipidemia. Both stimulatory and detrimental effects of free fatty acids (FFA) on pancreatic beta cells have long been recognized. Acute exposure of the pancreatic beta cell to both high glucose concentrations and saturated FFA results in a substantial increase of insulin release, whereas a chronic exposure results in desensitization and suppression of secretion. Reduction of plasma FFA levels in fasted rats or humans severely impairs glucose-induced insulin release but palmitate can augment insulin release in the presence of nonstimulatory concentrations of glucose. These results imply that changes in physiological plasma levels of FFA are important for regulation of beta-cell function. Although it is widely accepted that fatty acid (FA) metabolism (notably FA synthesis and/or formation of LC-acyl-CoA) is necessary for stimulation of insulin secretion, the key regulatory molecular mechanisms controlling the interplay between glucose and fatty acid metabolism and thus insulin secretion are not well understood but are now described in detail in this review. Indeed the correct control of switching between FA synthesis or oxidation may have critical implications for beta-cell function and integrity both in vivo and in vitro. LC-acyl-CoA (formed from either endogenously synthesized or exogenous FA) controls several aspects of beta-cell function including activation of certain types of PKC, modulation of ion channels, protein acylation, ceramide- and/or NO-mediated apoptosis, and binding to and activating nuclear transcriptional factors. The present review also describes the possible effects of FAs on insulin signaling. We have previously reported that acute exposure of islets to palmitate up-regulates some key components of the intracellular insulin signaling pathway in pancreatic islets. Another aspect considered in this review is the potential source of fatty acids for pancreatic islets in addition to supply in the blood. Lipids can be transferred from leukocytes (macrophages) to pancreatic islets in coculture. This latter process may provide an additional source of FAs that may play a significant role in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Esther P Haber
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Yoshizaki T, Maegawa H, Egawa K, Ugi S, Nishio Y, Imamura T, Kobayashi T, Tamura S, Olefsky JM, Kashiwagi A. Protein Phosphatase-2Cα as a Positive Regulator of Insulin Sensitivity through Direct Activation of Phosphatidylinositol 3-Kinase in 3T3-L1 Adipocytes. J Biol Chem 2004; 279:22715-26. [PMID: 15016818 DOI: 10.1074/jbc.m313745200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During differentiation, expression of protein phosphatase-2Calpha (PP2Calpha) is increased in 3T3-L1 adipocytes. To elucidate the role of PP2Calpha in insulin signaling, we overexpressed wild-type (WT) PP2Calpha by adenovirus-mediated gene transfer in 3T3-L1 adipocytes. Overexpression of PP2Calpha-WT enhanced the insulin sensitivity of glucose uptake without any changes in the early steps of insulin signaling. Infection with adenovirus 5 expressing PP2Calpha-WT increased phosphatidylinositol 3-kinase (PI3K) activities in the immunoprecipitate using antibody against the p85 or p110 subunit under both basal and insulin-stimulated conditions, followed by activation of downstream steps in the PI3K pathway, such as phosphorylation of Akt, glycogen synthase kinase-3, and atypical protein kinase C. In contrast, overexpression of the phosphatase-defective mutant PP2Calpha(R174G) did not produce such effects. Furthermore, overexpression of PP2Calpha-WT (but not PP2Calpha(R174G)) decreased the (32)P-labeled phosphorylation state as well as the gel mobility shift of the p85 subunit, suggesting that dephosphorylation of the p85 subunit by PP2Calpha activation might stimulate PI3K catalytic activity. Moreover, knockdown of PP2Calpha by transfection of small interfering RNA led to a significant decrease in Akt phosphorylation. In addition, microinjection of anti-PP2Calpha antibody or PP2Calpha small interfering RNA led to decreased insulin-stimulated GLUT4 translocation. In conclusion, PP2Calpha is a new positive regulator of insulin sensitivity that acts through a direct activation of PI3K in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Takeshi Yoshizaki
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yu WM, Hawley TS, Hawley RG, Qu CK. Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling. Oncogene 2003; 22:5995-6004. [PMID: 12955078 DOI: 10.1038/sj.onc.1206846] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SHP-2 tyrosine phosphatase is highly expressed in hematopoietic cells, however, the function of SHP-2 in hematopoietic cell signaling is not well understood. Here we focus on the role of SHP-2 phosphatase in the signal transduction of interleukin (IL)-3, a cytokine involved in hematopoietic cell survival, proliferation, and differentiation. We established immortalized SHP-2(-/-) hematopoietic cell pools and showed that IL-3-induced proliferative response was diminished in SHP-2(-/-) cells. Moreover, inhibition of the catalytic activity of SHP-2 in wild-type (WT) bone marrow hematopoietic progenitor cells and Ba/F3 cells by overexpression of catalytically inactive SHP-2 mutant suppressed their differentiative and proliferative responses to IL-3, demonstrating an important positive role for SHP-2 in IL-3 signal transduction. Further biochemical analyses revealed that IL-3-induced Jak/Stat, Erk, and PI3 kinase pathways in SHP-2(-/-) cells were impaired and reintroduction of WT SHP-2 into mutant cells partially restored IL-3 signaling. Interestingly, in catalytically inactive SHP-2-overexpressing Ba/F3 cells, although IL-3-induced activation of Jak2 and Erk kinases was reduced and shortened, PI3 kinase activation remained unaltered. Taken together, these results suggest that SHP-2 tyrosine phosphatase plays multiple roles in IL-3 signal transduction, functioning in both catalytic-dependent and -independent manners in the Jak/Stat, Erk, and PI3 kinase pathways.
Collapse
Affiliation(s)
- Wen-Mei Yu
- Department of Hematopoiesis, Jerome H Holland Laboratory for the Biomedical Sciences, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | | | | | |
Collapse
|
36
|
Khamzina L, Gruppuso PA, Wands JR. Insulin signaling through insulin receptor substrate 1 and 2 in normal liver development. Gastroenterology 2003; 125:572-85. [PMID: 12891559 DOI: 10.1016/s0016-5085(03)00893-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The insulin growth factor signal transduction pathway is an important regulator of adult hepatocyte proliferation. The purpose of this study was to determine the roles of the insulin receptor substrate (IRS-1 and IRS-2)-mediated growth cascades in rapidly growing fetal rat liver. METHODS We determined the expression and tyrosyl phosphorylation of the insulin receptor beta subunit (IRbeta), IRS-1 and IRS-2, the binding of phosphatidylinositol 3-kinase (PI3K), and activation of the mitogen-activated protein kinase (MAPK) pathway in the presence or absence of insulin stimulation in vivo during development and in the adult liver. In addition, activation of other downstream components including PI3K, Akt, GSK3beta, Bad, and p70S6 kinase was studied. RESULTS We observed reduced expression and tyrosyl phosphorylation of IRS-1 in the fetal liver compared with the adult liver. These developmental changes resulted in a lack of sensitivity to insulin stimulation and subsequent downstream activation of the PI3K and MAPK cascades until the postneonatal period. In contrast, there was a high level of IRS-2 expression and insulin-stimulated tyrosyl phosphorylation as early as embryonic day 15 with robust PI3K binding and activation, which may enhance hepatocyte survival during the rapid growth phase of the liver. CONCLUSIONS The IRS-1 signal transduction pathway does not play a major role in fetal liver growth because IRS-2 functions as the major insulin responsive molecule in early development. However, insulin-mediated IRS-1/MAPK cascade activation contributes to growth in the adult.
Collapse
Affiliation(s)
- Leila Khamzina
- Liver Research Center, Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA
| | | | | |
Collapse
|
37
|
Sordella R, Jiang W, Chen GC, Curto M, Settleman J. Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 2003; 113:147-58. [PMID: 12705864 DOI: 10.1016/s0092-8674(03)00271-x] [Citation(s) in RCA: 303] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mature adipocytes and myocytes are derived from a common mesenchymal precursor. While IGF-1 promotes the differentiation of both cell types, the signaling pathways that specify the distinct cell fates are largely unknown. Here, we show that the Rho GTPase and its regulator, p190-B RhoGAP, are components of a critical switch in the adipogenesis-myogenesis "decision." Cells derived from embryos lacking p190-B RhoGAP exhibit excessive Rho activity, are defective for adipogenesis, but undergo myogenesis in response to IGF-1 exposure. In vitro, activation of Rho-kinase by Rho inhibits adipogenesis and is required for myogenesis. The activation state of Rho following IGF-1 signaling is determined by the tyrosine-phosphorylation status of p190-B RhoGAP and its resulting subcellular relocalization. Moreover, adjusting Rho activity is sufficient to alter the differentiation program of adipocyte and myocyte precursors. Together, these results identify the Rho GTPase as an essential modulator of IGF-1 signals that direct the adipogenesis-myogenesis cell fate decision.
Collapse
Affiliation(s)
- Raffaella Sordella
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
38
|
Asante-Appiah E, Kennedy BP. Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am J Physiol Endocrinol Metab 2003; 284:E663-70. [PMID: 12626322 DOI: 10.1152/ajpendo.00462.2002] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Type 2 diabetes is increasing at an alarming rate worldwide, and there has been a considerable effort in several laboratories to identify suitable targets for the design of drugs against the disease. To this end, the protein tyrosine phosphatases that attenuate insulin signaling by dephosphorylating the insulin receptor (IR) have been actively pursued. This is because inhibiting the phosphatases would be expected to prolong insulin signaling and thereby facilitate glucose uptake and, presumably, result in a lowering of blood glucose. Targeting the IR protein tyrosine phosphatase, therefore, has the potential to be a significant disease-modifying strategy. Several protein tyrosine phosphatases (PTPs) have been implicated in the dephosphorylation of the IR. These phosphatases include PTPalpha, LAR, CD45, PTPepsilon, SHP2, and PTP1B. In most cases, there is evidence for and against the involvement of the phosphatases in insulin signaling. The most convincing data, however, support a critical role for PTP1B in insulin action. PTP1B knockout mice are not only insulin sensitive but also maintain euglycemia (in the fed state), with one-half the level of insulin observed in wild-type littermates. Interestingly, these mice are also resistant to diet-induced obesity when fed a high-fat diet. The insulin-sensitive phenotype of the PTP1B knockout mouse is reproduced when the phosphatase is also knocked down with an antisense oligonucleotide in obese mice. Thus PTP1B appears to be a very attractive candidate for the design of drugs for type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Ernest Asante-Appiah
- Department of Biochemistry and Molecular Biology, Merck Frosst Center for Therapeutic Research, Pointe-Claire - Dorval, Quebec, Canada H9R 4P8
| | | |
Collapse
|
39
|
Abstract
The incidence of type 2 diabetes mellitus (T2D) and obesity is increasing rapidly worldwide, reaching epidemic proportions. Insulin resistance is a key feature in both conditions and plays an important pathophysiological role. Over the last two decades a central role in the origin of insulin resistance has emerged for defects in the intracellular insulin signaling cascade leading to glucose uptake. Herein, we will 1) review insulin signaling pathways leading to glucose uptake, 2) review mouse models of insulin resistance that demonstrate the pathophysiologic importance of specific defects of these pathways and 3) discuss the molecular basis for insulin resistance in some human disease states known to be associated with insulin resistance. Finally, we will briefly mention some novel treatment targets for T2D stemming from this knowledge.
Collapse
Affiliation(s)
- Peter Vollenweider
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
40
|
Haber EP, Ximenes HMA, Procópio J, Carvalho CRO, Curi R, Carpinelli AR. Pleiotropic effects of fatty acids on pancreatic beta-cells. J Cell Physiol 2003; 194:1-12. [PMID: 12447984 DOI: 10.1002/jcp.10187] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hyperlipidemia is frequently associated with insulin resistance states as found in type 2 diabetes and obesity. Effects of free fatty acids (FFA) on pancreatic beta-cells have long been recognized. Acute exposure of the pancreatic beta-cell to FFA results in an increase of insulin release, whereas a chronic exposure results in desensitization and suppression of secretion. We recently showed that palmitate augments insulin release in the presence of non-stimulatory concentrations of glucose. Reduction of plasma FFA levels in fasted rats or humans severely impairs glucose-induced insulin release. These results imply that physiological plasma levels of FFA are important for beta-cell function. Although, it has been accepted that fatty acid oxidation is necessary for its stimulation of insulin secretion, the possible mechanisms by which fatty acids (FA) affect insulin secretion are discussed in this review. Long-chain acyl-CoA (LC-CoA) controls several aspects of the beta-cell function including activation of certain types of protein kinase C (PKC), modulation of ion channels, protein acylation, ceramide- and/or nitric oxide (NO)-mediated apoptosis, and binding to nuclear transcriptional factors. The present review also describes the possible effects of FA on insulin signaling. We showed for the first time that acute exposure of islets to palmitate upregulates the intracellular insulin-signaling pathway in pancreatic islets. Another aspect considered in this review is the source of FA for pancreatic islets. In addition to be exported to the medium, lipids can be transferred from leukocytes (macrophages) to pancreatic islets in co-culture. This process consists an additional source of FA that may plays a significant role to regulate insulin secretion.
Collapse
Affiliation(s)
- E P Haber
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
41
|
Qu CK. Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:297-301. [PMID: 12421673 DOI: 10.1016/s0167-4889(02)00322-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytokines and growth factors are important extracellular regulatory proteins. They exert their biological functions through binding to their cognate receptors on the cell surface and triggering intracellular signaling cascades. However, the intracellular signaling mechanisms of cytokines and growth factors are not well understood. Accumulating evidence has shown that protein phosphorylation and dephosphorylation carried out by protein kinases and protein phosphatases are fundamental biochemical events in intracellular signal transduction. SHP-2, a Src homology (SH) 2 domain-containing protein tyrosine phosphatase (PTP), is widely involved in a variety of signaling pathways triggered by cytokines and growth factors, including the MAP kinase, Jak-Stat, and PI3 kinase pathways. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signals relayed from the cell surface to the nucleus, and is a critical intracellular regulator in cytokine and growth factor-induced cell survival, proliferation, and differentiation.
Collapse
Affiliation(s)
- Cheng-Kui Qu
- Department of Hematopoiesis, Jerome H. Holland Laboratory, American Red Cross, Rockville, MD 20855, USA.
| |
Collapse
|
42
|
Lima MHM, Ueno M, Thirone ACP, Rocha EM, Carvalho CRO, Saad MJA. Regulation of IRS-1/SHP2 interaction and AKT phosphorylation in animal models of insulin resistance. Endocrine 2002; 18:1-12. [PMID: 12166618 DOI: 10.1385/endo:18:1:01] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2001] [Revised: 12/12/2001] [Accepted: 02/15/2002] [Indexed: 11/11/2022]
Abstract
Insulin stimulates tyrosine kinase activity of its receptor, resulting in phosphorylation of its cytosolic substrate, insulin receptor substrate-1, which, in turn, associates with proteins containing SH2 domains, including phosphatidylinositol 3-kinase (PI 3-kinase) and the phosphotyrosine phosphatase SHP2. The regulation of these associations in situations of altered insulin receptor substrate-1 (IRS-1) phosphorylation was not yet investigated. In the present study, we investigated insulin-induced IRS-1/SHP2 and IRS-1/PI 3-kinase associations and the regulation of a downstream serine-kinase AKT/PKB in liver and muscle of three animal models of insulin resistance: STZ diabetes, epinephrine-treated rats, and aging, which have alterations in IRS-1 tyrosine phosphorylation in common. The results demonstrated that insulin-induced IRS-1/PI 3-kinase association has a close correlation with IRS-1 tyrosine phosphorylation levels, but insulin-induced IRS-1/SHP2 association showed a modulation that did not parallel IRS-1 phosphorylation, with a tissue-specific regulation in aging. The integration of the behavior of IRS-1/PI 3-kinase and with IRS-1/SHP2 associations may be important for insulin signaling downstream as AKT phosphorylation. In conclusion, the results of the present study demonstrated that insulin-induced IRS-1/SHP2 association can be regulated in insulin-sensitive tissues of animal models of insulin resistance and may have a role in the control of AKT phosphorylation, which may be implicated in the control of glucose metabolism.
Collapse
|
43
|
Cheng A, Dubé N, Gu F, Tremblay ML. Coordinated action of protein tyrosine phosphatases in insulin signal transduction. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1050-9. [PMID: 11856336 DOI: 10.1046/j.0014-2956.2002.02756.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insulin is the principal regulatory hormone involved in the tight regulation of fuel metabolism. In response to blood glucose levels, it is secreted by the beta cells of the pancreas and exerts its effects by binding to cell surface receptors that are present on virtually all cell types and tissues. In humans, perturbations in insulin function and/or secretion lead to diabetes mellitus, a severe disorder primarily characterized by an inability to maintain blood glucose homeostasis. Furthermore, it is estimated that 90-95% of diabetic patients exhibit resistance to insulin action. Thus an understanding of insulin signal transduction and insulin resistance at the molecular level is crucial to the understanding of the pathogenesis of this disease. The insulin receptor (IR) is a transmembrane tyrosine kinase that becomes activated upon ligand binding. Consequently, the receptor and its downstream substrates become tyrosine phosphorylated. This activates a series of intracellular signaling cascades which coordinately initiate the appropriate biological response. One important mechanism by which insulin signaling is regulated involves the protein tyrosine phosphatases (PTPs), which may either act on the IR itself and/or its substrates. Two well characterized examples include leuckocyte antigen related (LAR) and protein tyrosine phosphatase-1B (PTP-1B). The present review will discuss the current knowledge of these two and other potential PTPs involved in the insulin signaling pathway.
Collapse
Affiliation(s)
- Alan Cheng
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
44
|
Larsen SD, Barf T, Liljebris C, May PD, Ogg D, O'Sullivan TJ, Palazuk BJ, Schostarez HJ, Stevens FC, Bleasdale JE. Synthesis and biological activity of a novel class of small molecular weight peptidomimetic competitive inhibitors of protein tyrosine phosphatase 1B. J Med Chem 2002; 45:598-622. [PMID: 11806712 DOI: 10.1021/jm010393s] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling in part by dephosphorylating key tyrosine residues within the regulatory domain of the beta-subunit of the insulin receptor (IR), thereby attenuating receptor tyrosine kinase activity. Inhibition of PTP1B is therefore anticipated to improve insulin resistance and has recently become the focus of discovery efforts aimed at identifying new drugs to treat type II diabetes. We previously reported that the tripeptide Ac-Asp-Tyr(SO(3)H)-Nle-NH(2) is a surprisingly effective inhibitor of PTP1B (K(i) = 5 microM). With the goal of improving the stability and potency of this lead, as well as attenuating its peptidic character, an analogue program was undertaken. Specific elements of the initial phase of this program included replacement of the N- and C-termini with non-amino acid components, modification of the tyrosine subunit, and replacement of the tyrosine sulfate with other potential phosphate mimics. The most potent analogue arising from this effort was triacid 71, which inhibits PTP1B competitively with a K(i) = 0.22 microM without inhibiting SHP-2 or LAR at concentrations up to 100 microM. Overall, the inhibitors generated in this work showed little or no enhancement of insulin signaling in cellular assays. However, potential prodrug triester 70 did induce enhancements in 2-deoxyglucose uptake into two different cell lines with concomitant augmentation of the tyrosine phosphorylation levels of insulin-signaling molecules. Key elements of the overall SAR reported herein include confirmation of the effectiveness and remarkable PTP1B-specificity of the novel tyrosine phosphate bioisostere, O-carboxymethyl salicylic acid; demonstration that the tyrosine skeleton is optimal relative to closely related structures; replacement of the p-1 aspartic acid with phenylalanine with little effect on activity; and demonstration that inhibitory activity can be maintained in the absence of an N-terminal carboxylic acid. An X-ray cocrystal structure of an analogue bearing a neutral N-terminus (69) bound to PTP1B is reported that confirms a mode of binding similar to that of peptidic substrates.
Collapse
Affiliation(s)
- Scott D Larsen
- Department of Medicinal Chemistry, Pharmacia Corporation, Kalamazoo, Michigan 49007, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rojnuckarin P, Miyakawa Y, Fox NE, Deou J, Daum G, Kaushansky K. The roles of phosphatidylinositol 3-kinase and protein kinase Czeta for thrombopoietin-induced mitogen-activated protein kinase activation in primary murine megakaryocytes. J Biol Chem 2001; 276:41014-22. [PMID: 11535599 DOI: 10.1074/jbc.m106508200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombopoietin (TPO) stimulates a network of intracellular signaling pathways that displays extensive cross-talk. We have demonstrated previously that the ERK/mitogen-activated protein kinase pathway is important for TPO-induced endomitosis in primary megakaryocytes (MKs). One known pathway by which TPO induces ERK activation is through the association of Shc with the penultimate phosphotyrosine within the TPO receptor, Mpl. However, several investigators found that the membrane-proximal half of the cytoplasmic domain of Mpl is sufficient to activate ERK in vitro and support base-line megakaryopoiesis in vivo. Using BaF3 cells expressing a truncated Mpl (T69Mpl) as a tool to identify non-Shc/Ras-dependent signaling pathways, we describe here novel mechanisms of TPO-induced ERK activation mediated, in part, by phosphoinositide 3-kinase (PI3K). Similar to cells expressing full-length receptor, PI3K was activated by its incorporation into a complex with IRS2 or Gab2. Furthermore, the MEK-phosphorylating activity of protein kinase Czeta (PKCzeta) was also enhanced after TPO stimulation of T69Mpl, contributing to ERK activity. PKCzeta and PI3K also contribute to TPO-induced ERK activation in MKs, confirming their physiological relevance. Like in BaF3 cells, a TPO-induced signaling complex containing p85PI3K is detectable in MKs expressing T61Mpl and is probably responsible for PI3K activation. These data demonstrate a novel role of PI3K and PKCzeta in steady-state megakaryopoiesis.
Collapse
Affiliation(s)
- P Rojnuckarin
- Division of Hematology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ali S, Ali S. Recruitment of the protein-tyrosine phosphatase SHP-2 to the C-terminal tyrosine of the prolactin receptor and to the adaptor protein Gab2. J Biol Chem 2000; 275:39073-80. [PMID: 10991949 DOI: 10.1074/jbc.m007478200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein-tyrosine phosphatase SHP-2 modulates signaling events through receptor tyrosine kinases and cytokine receptors including the receptor for prolactin (PRLR). Here we investigated mechanisms of SHP-2 recruitment within the PRLR signaling complex. Using SHP-2 and PRLR immunoprecipitation studies in 293 cells and in the mouse mammary epithelial cell line HC11, we found that SHP-2 co-immunoprecipitates with the PRLR and that the C-terminal tyrosine of the PRLR plays a regulatory role in both the tyrosine phosphorylation and the recruitment of SHP-2. Our results further indicate that SHP-2 association to the PRLR occurs via the C-terminal SH2 domain of the phosphatase. In addition, we determined that the newly identified adaptor protein Gab2, but not Gab1, is specifically tyrosine phosphorylated and is able to recruit SHP-2 and phosphatidyinositol 3-kinase in response to PRLR activation. Together, these studies suggest the presence of dual recruitment sites for SHP-2; the first is to the C-terminal tyrosine of the PRLR and the second is to the adaptor protein Gab2.
Collapse
Affiliation(s)
- S Ali
- Department of Medicine, Division of Hematology and Molecular Oncology Group, Royal Victoria Hospital, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | |
Collapse
|
47
|
Abstract
Cellular biological activities are tightly controlled by intracellular signaling processes initiated by extracellular signals. Protein tyrosine phosphatases, which remove phosphate groups from phosphorylated signaling molecules, play equally important tyrosine roles as protein tyrosine kinases in signal transduction. SHP-2, a cytoplasmic SH2 domain containing protein tyrosine phosphatase, is involved in the signaling pathways of a variety of growth factors and cytokines. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus, and is a critical intracellular regulator in mediating cell proliferation and differentiation.
Collapse
Affiliation(s)
- C K Qu
- Department of Hematopoiesis, American Red Cross, Rockville, MD 20855, USA.
| |
Collapse
|
48
|
Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 2000; 20:5479-89. [PMID: 10891488 PMCID: PMC85999 DOI: 10.1128/mcb.20.15.5479-5489.2000] [Citation(s) in RCA: 969] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2000] [Accepted: 04/24/2000] [Indexed: 12/16/2022] Open
Abstract
Protein-tyrosine phosphatase 1B (PTP-1B) is a major protein-tyrosine phosphatase that has been implicated in the regulation of insulin action, as well as in other signal transduction pathways. To investigate the role of PTP-1B in vivo, we generated homozygotic PTP-1B-null mice by targeted gene disruption. PTP-1B-deficient mice have remarkably low adiposity and are protected from diet-induced obesity. Decreased adiposity is due to a marked reduction in fat cell mass without a decrease in adipocyte number. Leanness in PTP-1B-deficient mice is accompanied by increased basal metabolic rate and total energy expenditure, without marked alteration of uncoupling protein mRNA expression. In addition, insulin-stimulated whole-body glucose disposal is enhanced significantly in PTP-1B-deficient animals, as shown by hyperinsulinemic-euglycemic clamp studies. Remarkably, increased insulin sensitivity in PTP-1B-deficient mice is tissue specific, as insulin-stimulated glucose uptake is elevated in skeletal muscle, whereas adipose tissue is unaffected. Our results identify PTP-1B as a major regulator of energy balance, insulin sensitivity, and body fat stores in vivo.
Collapse
Affiliation(s)
- L D Klaman
- Cancer Biology Program, Division of Hematology-Oncology, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hakak Y, Hsu YS, Martin GS. Shp-2 mediates v-Src-induced morphological changes and activation of the anti-apoptotic protein kinase Akt. Oncogene 2000; 19:3164-71. [PMID: 10918571 DOI: 10.1038/sj.onc.1203655] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The protein-tyrosine phosphatase Shp-2 is a positive modulator of the Ras/mitogen-activated protein kinase pathway and a putative substrate of the transforming non-receptor tyrosine kinase v-Src. To characterize the role of Shp-2 in cellular transformation and signaling by v-Src, we expressed v-Src in normal and Shp-2-deficient mouse embryo fibroblasts. Expression of Shp-2 was found to be necessary for morphological transformation by v-Src: Shp-2+/+ cells became rounded or spindly upon v-Src expression, whereas Shp-2-deficient cells remained relatively flat. v-Src-induced reorganization of the actin cytoskeleton and the formation of podosomes were compromised in Shp-2-deficient cells. Shp-2 deficiency also reduced v-Src-induced activation of the anti-apoptotic protein kinase Akt. The reduced activation of Akt in Shp-2-deficient cells correlated with a reduction in the association of the p85 regulatory subunit of PI3-kinase with the adapter protein Cbl. Activation of PI3-kinase by v-Src may be mediated by the association of the adapter protein Cbl with the p85 subunit. Since activation of Akt is dependent on PI3-kinase, this suggests that the effect of Shp-2 on Akt activation may be mediated, at least in part, by its effects on the interaction between PI3-kinase and Cbl. The defect in activation of the Akt survival pathway also correlated with enhanced sensitivity of Shp-2-deficient cells to an apoptosis-inducing agent. These results implicate Shp-2 in v-Src-induced cytoskeletal reorganization and activation of the Akt cell survival pathway.
Collapse
Affiliation(s)
- Y Hakak
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | | | |
Collapse
|