1
|
Yuan X, Li W, Yan Q, Ou Y, Long Q, Zhang P. Biomarkers of mature neuronal differentiation and related diseases. Future Sci OA 2024; 10:2410146. [PMID: 39429212 PMCID: PMC11497955 DOI: 10.1080/20565623.2024.2410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the markers of mature neuronal differentiation and their relationship with nervous system diseases.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| |
Collapse
|
2
|
Fukuchi M, Shibasaki Y, Akazawa Y, Suzuki-Masuyama H, Takeuchi KI, Iwazaki Y, Tabuchi A, Tsuda M. Neuron-selective and activity-dependent splicing of BDNF exon I-IX pre-mRNA. Neurochem Int 2024; 181:105889. [PMID: 39455010 DOI: 10.1016/j.neuint.2024.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for numerous neuronal functions, including learning and memory. The expression of BDNF is regulated by distinctive transcriptional and post-transcriptional mechanisms. The Bdnf gene in mice and rats comprises eight untranslated exons (exons I-VIII) and one exon (exon IX) that contains the pre-proBDNF coding sequence. Multiple splice donor sites on the untranslated exons and a single acceptor site upstream of the coding sequence result in the characteristic exon skipping patterns that generate multiple Bdnf mRNA variants, which are essential for the spatiotemporal regulation of BDNF expression, mRNA localization, mRNA stability, and translational control. However, the regulation of Bdnf pre-mRNA splicing remains unclear. Here, we focused on the splicing of Bdnf exon I-IX pre-mRNA. We first constructed a minigene to evaluate Bdnf exon I-IX pre-mRNA splicing. Compared with Bdnf exon I-IX pre-mRNA splicing in non-neuronal NIH3T3 cells, splicing was preferentially observed in primary cultures of cortical neurons. Additionally, a series of overexpression and knockdown experiments suggested that neuro-oncological ventral antigen (NOVA) 2 is involved in the neuron-selective splicing of Bdnf exon I-IX pre-mRNA. Supporting this finding, endogenous Nova2 mRNA expression was markedly higher in neurons, and a strong correlation between endogenous Bdnf exon I-IX and Nova2 mRNA was observed across several brain regions. Furthermore, Bdnf exon I-IX pre-mRNA splicing was facilitated by Ca2+ signals evoked via L-type voltage-dependent Ca2+ channels. Notably, among the Bdnf pre-mRNA splicing investigated in the current study, neuron-selective and activity-dependent splicing was observed in Bdnf exon I-IX pre-mRNA. In conclusion, Bdnf exon I-IX pre-mRNA splicing is preferentially observed in neurons and is facilitated in an activity-dependent manner. The neuron-selective and activity-dependent splicing of Bdnf exon I-IX pre-mRNA may contribute to the efficient induction of Bdnf exon I-IX expression in neurons.
Collapse
Affiliation(s)
- Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan; Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yumi Shibasaki
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Yuto Akazawa
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Hitoshi Suzuki-Masuyama
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ken-Ichi Takeuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yumika Iwazaki
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
3
|
García Juárez AM, Carrillo González NJ, Campos-Ordoñez T, Gasca Martínez Y, Gudiño-Cabrera G. Neuronal splicing regulator RBFOX3 (NeuN) distribution and organization are modified in response to monosodium glutamate in rat brain at postnatal day 14. Acta Histochem 2024; 126:152207. [PMID: 39427608 DOI: 10.1016/j.acthis.2024.152207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Neuronal splicing regulator RNA binding protein, fox-1 homolog 3 (NeuN/RbFox3), is expressed in postmitotic neurons and distributed heterogeneously in the cell. During excitotoxicity events caused by the excess glutamate, several alterations that culminate in neuronal death have been described. However, NeuN/RbFox3 organization and distribution are still unknown. Therefore, our objective was to analyze the nucleocytoplasmic distribution and organization of NeuN/RbFox3 in hippocampal and cortical neurons using an excitotoxicity model with monosodium glutamate salt (MSG). We used neonatal Wistar rats administered subcutaneously with 4 MSG mg/kg during the postnatal day (PND) 1, 3, 5, and 7. The control group was rats without MSG administration. On 14 PND, the brain was removed, and coronal sections were used for immunodetection with the antibody NeuN, DAPI, and the propidium iodide staining for histological evaluation. The results indicate that in the control group, NeuN/RbFox3 was organized into macromolecular condensates inside and outside the nucleus, forming defined nuclear compartments. Additionally, NeuN/RbFox3 was distributed proximal to the nucleus in the cytoplasm. In contrast, in the group treated with MSG, the distribution was diffuse and dispersed in the nucleus and cytoplasm without the formation of compartments in the nucleus. Our findings, which highlight the significant impact of MSG administration in the neonatal period on the distribution and organization of NeuN/RbFox3 of neurons in the hippocampus and cerebral cortex, offer a new perspective to investigate MSG alterations in the developmental brain.
Collapse
Affiliation(s)
- Anaís Monzerrat García Juárez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Nidia Jannette Carrillo González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Tania Campos-Ordoñez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Yadira Gasca Martínez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Graciela Gudiño-Cabrera
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Castro-Mendoza PB, Weaver CM, Chang W, Medalla M, Rockland KS, Lowery L, McDonough E, Varghese M, Hof PR, Meyer DE, Luebke JI. Proteomic features of gray matter layers and superficial white matter of the rhesus monkey neocortex: comparison of prefrontal area 46 and occipital area 17. Brain Struct Funct 2024; 229:1495-1525. [PMID: 38943018 PMCID: PMC11374833 DOI: 10.1007/s00429-024-02819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024]
Abstract
In this novel large-scale multiplexed immunofluorescence study we comprehensively characterized and compared layer-specific proteomic features within regions of interest of the widely divergent dorsolateral prefrontal cortex (A46) and primary visual cortex (A17) of adult rhesus monkeys. Twenty-eight markers were imaged in rounds of sequential staining, and their spatial distribution precisely quantified within gray matter layers and superficial white matter. Cells were classified as neurons, astrocytes, oligodendrocytes, microglia, or endothelial cells. The distribution of fibers and blood vessels were assessed by quantification of staining intensity across regions of interest. This method revealed multivariate similarities and differences between layers and areas. Protein expression in neurons was the strongest determinant of both laminar and regional differences, whereas protein expression in glia was more important for intra-areal laminar distinctions. Among specific results, we observed a lower glia-to-neuron ratio in A17 than in A46 and the pan-neuronal markers HuD and NeuN were differentially distributed in both brain areas with a lower intensity of NeuN in layers 4 and 5 of A17 compared to A46 and other A17 layers. Astrocytes and oligodendrocytes exhibited distinct marker-specific laminar distributions that differed between regions; notably, there was a high proportion of ALDH1L1-expressing astrocytes and of oligodendrocyte markers in layer 4 of A17. The many nuanced differences in protein expression between layers and regions observed here highlight the need for direct assessment of proteins, in addition to RNA expression, and set the stage for future protein-focused studies of these and other brain regions in normal and pathological conditions.
Collapse
Affiliation(s)
- Paola B Castro-Mendoza
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Christina M Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, 17604, USA
| | - Wayne Chang
- Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Lisa Lowery
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | | | - Merina Varghese
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Dan E Meyer
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Zhang L, Zetter MA, Hernández VS, Hernández-Pérez OR, Jáuregui-Huerta F, Krabichler Q, Grinevich V. Morphological Signatures of Neurogenesis and Neuronal Migration in Hypothalamic Vasopressinergic Magnocellular Nuclei of the Adult Rat. Int J Mol Sci 2024; 25:6988. [PMID: 39000096 PMCID: PMC11241681 DOI: 10.3390/ijms25136988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS's potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Mario A. Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Department of Medicine and Health, University of La Salle, Mexico City 14000, Mexico
| | - Vito S. Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Oscar R. Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Fernando Jáuregui-Huerta
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| |
Collapse
|
6
|
Ruska Y, Csibi A, Dorogházi B, Szilvásy-Szabó A, Mohácsik P, Környei Z, Dénes Á, Kádár A, Puskár Z, Hrabovszky E, Gereben B, Wittmann G, Fekete C. Topography of the GLP-1/GLP-1 receptor system in the spinal cord of male mice. Sci Rep 2024; 14:14403. [PMID: 38909126 PMCID: PMC11193760 DOI: 10.1038/s41598-024-65442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are now commonly used to treat type 2 diabetes and obesity. GLP-1R signaling in the spinal cord has been suggested to account for the mild tachycardia caused by GLP-1R agonists, and may also be involved in the therapeutic effects of these drugs. However, the neuroanatomy of the GLP-1/GLP-1R system in the spinal cord is still poorly understood. Here we applied in situ hybridization and immunohistochemistry to characterize this system, and its relation to cholinergic neurons. GLP-1R transcript and protein were expressed in neuronal cell bodies across the gray matter, in matching distribution patterns. GLP-1R-immunolabeling was also robust in dendrites and axons, especially in laminae II-III in the dorsal horn. Cerebrospinal fluid-contacting neurons expressed GLP-1R protein at exceedingly high levels. Only small subpopulations of cholinergic neurons expressed GLP-1R, including a subset of sympathetic preganglionic neurons at the rostral tip of the intermediolateral nucleus. GLP-1 axons innervated all regions where GLP-1R neurons were distributed, except laminae II-III. Scattered preproglucagon (Gcg) mRNA-expressing neurons were identified in the cervical and lumbar enlargements. The results will facilitate further studies on how GLP-1 regulates the sympathetic system and other autonomic and somatic functions via the spinal cord.
Collapse
Affiliation(s)
- Yvette Ruska
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Andrea Csibi
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Beáta Dorogházi
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Anett Szilvásy-Szabó
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Petra Mohácsik
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Zsuzsanna Környei
- "Momentum" Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Andrea Kádár
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Balázs Gereben
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Gábor Wittmann
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary.
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary.
| |
Collapse
|
7
|
Bow H, Dang C, Hillsbery K, Markowski C, Black M, Strand C. Food for Thought: The Effects of Feeding on Neurogenesis in the Ball Python, Python regius. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:144-157. [PMID: 38657588 DOI: 10.1159/000539052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Pythons are a well-studied model of postprandial physiological plasticity. Consuming a meal evokes a suite of physiological changes in pythons including one of the largest documented increases in post-feeding metabolic rates relative to resting values. However, little is known about how this plasticity manifests in the brain. Previous work has shown that cell proliferation in the python brain increases 6 days following meal consumption. This study aimed to confirm these findings and build on them in the long term by tracking the survival and maturation of these newly created cells across a 2-month period. METHODS We investigated differences in neural cell proliferation in ball pythons 6 days after a meal with immunofluorescence using the cell-birth marker 5-bromo-12'-deoxyuridine (BrdU). We investigated differences in neural cell maturation in ball pythons 2 months after a meal using double immunofluorescence for BrdU and a reptilian ortholog of the neuronal marker Fox3. RESULTS We did not find significantly greater rates of cell proliferation in snakes 6 days after feeding, but we did observe more new cells in neurogenic regions in fed snakes 2 months after the meal. Feeding was not associated with higher rates of neurogenesis, but snakes that received a meal had higher numbers of newly created nonneuronal cells than fasted controls. We documented particularly high cell survival rates in the olfactory bulbs and lateral cortex. CONCLUSION Consuming a meal stimulates cell proliferation in the brains of ball pythons after digestion is complete, although this effect emerged at a later time point in this study than expected. Higher rates of proliferation partially account for greater numbers of newly created non-neuronal cells in the brains of fed snakes 2 months after the meal, but our results also suggest that feeding may have a mild neuroprotective effect. We captured a slight trend toward higher cell survival rates in fed snakes, and survival rates were particularly high in brain regions associated with olfactory perception and processing. These findings shed light on the relationship between energy balance and the creation of new neural cells in the brains of ball pythons.
Collapse
Affiliation(s)
- Hannah Bow
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Christina Dang
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Katherine Hillsbery
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Carly Markowski
- Biomedical Engineering Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Michael Black
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Christine Strand
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| |
Collapse
|
8
|
Radic R, Lukacova K, Baciak L, Hodova V, Kubikova L. The role of cerebellum in learned vocal communication in adult songbirds. Sci Rep 2024; 14:8168. [PMID: 38589482 PMCID: PMC11001874 DOI: 10.1038/s41598-024-58569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Injury, tumors, ischemia, and lesions in the cerebellum show the involvement of this region in human speech. The association of the cerebellum with learned birdsong has only been identified recently. Cerebellar dysfunction in young songbirds causes learning disabilities, but its role in adult songbirds has not been established. The aim of this study was to investigate the role of the deep cerebellar nuclei (DCN) in adult birdsong. We created bilateral excitotoxic lesions in the DCN of adult male zebra finches (Taeniopygia guttata) and recorded their songs for up to 4 months. Using magnetic resonance imaging (MRI) and immunohistochemistry, we validated the lesion efficacy. We found that the song duration significantly increased from 14 weeks post-op; the increase in duration was caused by a greater number of introductory notes as well as a greater number of syllables sung after the introductory notes. On the other hand, the motif duration decreased from 8 weeks after DCN lesions were induced, which was due to faster singing of syllables, not changes in inter-syllable interval length. DCN lesions also caused a decrease in the fundamental frequency of syllables. In summary, we showed that DCN lesions influence the temporal and acoustic features of birdsong. These results suggest that the cerebellum influences singing in adult songbirds.
Collapse
Affiliation(s)
- Rebecca Radic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Kristina Lukacova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Ladislav Baciak
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Vladimira Hodova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia.
| |
Collapse
|
9
|
Hou W, Yin S, Li P, Zhang L, Chen T, Qin D, Mustafa AU, Liu C, Song M, Qiu C, Xiong X, Wang J. Aberrant splicing of Ca V1.2 calcium channel induced by decreased Rbfox1 enhances arterial constriction during diabetic hyperglycemia. Cell Mol Life Sci 2024; 81:164. [PMID: 38575795 PMCID: PMC10995029 DOI: 10.1007/s00018-024-05198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Diabetic hyperglycemia induces dysfunctions of arterial smooth muscle, leading to diabetic vascular complications. The CaV1.2 calcium channel is one primary pathway for Ca2+ influx, which initiates vasoconstriction. However, the long-term regulation mechanism(s) for vascular CaV1.2 functions under hyperglycemic condition remains unknown. Here, Sprague-Dawley rats fed with high-fat diet in combination with low dose streptozotocin and Goto-Kakizaki (GK) rats were used as diabetic models. Isolated mesenteric arteries (MAs) and vascular smooth muscle cells (VSMCs) from rat models were used to assess K+-induced arterial constriction and CaV1.2 channel functions using vascular myograph and whole-cell patch clamp, respectively. K+-induced vasoconstriction is persistently enhanced in the MAs from diabetic rats, and CaV1.2 alternative spliced exon 9* is increased, while exon 33 is decreased in rat diabetic arteries. Furthermore, CaV1.2 channels exhibit hyperpolarized current-voltage and activation curve in VSMCs from diabetic rats, which facilitates the channel function. Unexpectedly, the application of glycated serum (GS), mimicking advanced glycation end-products (AGEs), but not glucose, downregulates the expression of the splicing factor Rbfox1 in VSMCs. Moreover, GS application or Rbfox1 knockdown dynamically regulates alternative exons 9* and 33, leading to facilitated functions of CaV1.2 channels in VSMCs and MAs. Notably, GS increases K+-induced intracellular calcium concentration of VSMCs and the vasoconstriction of MAs. These results reveal that AGEs, not glucose, long-termly regulates CaV1.2 alternative splicing events by decreasing Rbfox1 expression, thereby enhancing channel functions and increasing vasoconstriction under diabetic hyperglycemia. This study identifies the specific molecular mechanism for enhanced vasoconstriction under hyperglycemia, providing a potential target for managing diabetic vascular complications.
Collapse
Affiliation(s)
- Wei Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Shumin Yin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengpeng Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ludan Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tiange Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongxia Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Atta Ul Mustafa
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caijie Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Miaomiao Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Qiu
- Nanjing Comprehensive Stroke Center, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China.
| | - Juejin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China.
| |
Collapse
|
10
|
Borroto-Escuela D, Serrano-Castro P, Sánchez-Pérez JA, Barbancho-Fernández MA, Fuxe K, Narváez M. Enhanced neuronal survival and BDNF elevation via long-term co-activation of galanin 2 (GALR2) and neuropeptide Y1 receptors (NPY1R): potential therapeutic targets for major depressive disorder. Expert Opin Ther Targets 2024; 28:295-308. [PMID: 38622072 DOI: 10.1080/14728222.2024.2342517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a prevalent and debilitating condition, necessitating novel therapeutic strategies due to the limited efficacy and adverse effects of current treatments. We explored how galanin receptor 2 (GALR2) and Neuropeptide Y1 Receptor (NPYY1R) agonists, working together, can boost brain cell growth and increase antidepressant-like effects in rats. This suggests new ways to treat Major Depressive Disorder (MDD). RESEARCH DESIGN AND METHODS In a controlled laboratory setting, adult naive Sprague-Dawley rats were administered directly into the brain's ventricles, a method known as intracerebroventricular (ICV) administration, with GALR2 agonist (M1145), NPYY1R agonist, both, or in combination with a GALR2 antagonist (M871). Main outcome measures included long-term neuronal survival, differentiation, and behavioral. RESULTS Co-administration of M1145 and NPYY1R agonist significantly enhanced neuronal survival and maturation in the ventral dentate gyrus, with a notable increase in Brain-Derived Neurotrophic Factor (BDNF) expression. This neurogenic effect was associated with an antidepressant-like effect, an outcome partially reversed by M871. CONCLUSIONS GALR2 and NPYY1R agonists jointly promote hippocampal neurogenesis and exert antidepressant-like effects in rats without adverse outcomes, highlighting their therapeutic potential for MDD. The study's reliance on an animal model and intracerebroventricular delivery warrants further clinical exploration to confirm these promising results.
Collapse
MESH Headings
- Animals
- Male
- Rats
- Antidepressive Agents/pharmacology
- Antidepressive Agents/administration & dosage
- Brain-Derived Neurotrophic Factor/metabolism
- Cell Survival/drug effects
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/physiopathology
- Disease Models, Animal
- Neurons/drug effects
- Neurons/metabolism
- Peptides
- Rats, Sprague-Dawley
- Receptor, Galanin, Type 2/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Neuropeptide
- Receptors, Neuropeptide Y/metabolism
- Receptors, Neuropeptide Y/antagonists & inhibitors
Collapse
Affiliation(s)
- Dasiel Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Pedro Serrano-Castro
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
- Vithas Málaga, Vithas Málaga, Grupo Hospitalario Vithas, Málaga, Spain
| | - Jose Andrés Sánchez-Pérez
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Psychiatry, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
- Vithas Málaga, Vithas Málaga, Grupo Hospitalario Vithas, Málaga, Spain
| |
Collapse
|
11
|
Sánchez-Varo R, López-Salas A, Beltran-Casanueva R, Díaz-Sánchez E, Alvarez-Contino JE, Barbancho-Fernández MA, Serrano-Castro P, Fuxe K, Borroto-Escuela DO, García-Casares N, Narváez M. Enhancement of neurogenesis and cognition through intranasal co-delivery of galanin receptor 2 (GALR2) and neuropeptide Y receptor 1 (NPY1R) agonists: a potential pharmacological strategy for cognitive dysfunctions. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:6. [PMID: 38549164 PMCID: PMC10976774 DOI: 10.1186/s12993-024-00230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Spatial memory deficits and reduced neuronal survival contribute to cognitive decline seen in the aging process. Current treatments are limited, emphasizing the need for innovative therapeutic strategies. This research explored the combined effects of intranasally co-administered galanin receptor 2 (GALR2) and neuropeptide Y1 receptor (NPY1R) agonists, recognized for their neural benefits, on spatial memory, neuronal survival, and differentiation in adult rats. After intranasal co-delivery of the GALR2 agonist M1145 and a NPY1R agonist to adult rats, spatial memory was tested with the object-in-place task 3 weeks later. We examined neuronal survival and differentiation by assessing BrdU-IR profiles and doublecortin (DCX) labeled cells, respectively. We also used the GALR2 antagonist M871 to confirm GALR2's crucial role in promoting cell growth. RESULTS Co-administration improved spatial memory and increased the survival rate of mature neurons. The positive effect of GALR2 in cell proliferation was confirmed by the nullifying effects of its antagonist. The treatment boosted DCX-labeled newborn neurons and altered dendritic morphology, increasing cells with mature dendrites. CONCLUSIONS Our results show that intranasal co-delivery of GALR2 and NPY1R agonists improves spatial memory, boosts neuronal survival, and influences neuronal differentiation in adult rats. The significant role of GALR2 is emphasized, suggesting new potential therapeutic strategies for cognitive decline.
Collapse
Affiliation(s)
- Raquel Sánchez-Varo
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Alexander López-Salas
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Receptomics and Brain Disorders Lab, Universidad de Málaga. Facultad de Medicina., Edificio Lopez-Peñalver, Jimenez Fraud 10, 29071, Málaga, Spain
| | - Rasiel Beltran-Casanueva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Universidad de Málaga. Facultad de Medicina., Edificio Lopez-Peñalver, Jimenez Fraud 10, 29071, Málaga, Spain
| | - Estela Díaz-Sánchez
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Vithas Málaga., Vithas Málaga. Grupo Hospitalario Vithas, Málaga, Spain
| | - Jose Erik Alvarez-Contino
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Receptomics and Brain Disorders Lab, Universidad de Málaga. Facultad de Medicina., Edificio Lopez-Peñalver, Jimenez Fraud 10, 29071, Málaga, Spain
| | - Miguel Angel Barbancho-Fernández
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain
| | - Pedro Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain
- Vithas Málaga., Vithas Málaga. Grupo Hospitalario Vithas, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dasiel O Borroto-Escuela
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Universidad de Málaga. Facultad de Medicina., Edificio Lopez-Peñalver, Jimenez Fraud 10, 29071, Málaga, Spain
| | - Natalia García-Casares
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain
- Departamento de Medicina y Dermatología. , Facultad de Medicina. Universidad de Málaga. , Málaga, Spain
| | - Manuel Narváez
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain.
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain.
- Vithas Málaga., Vithas Málaga. Grupo Hospitalario Vithas, Málaga, Spain.
| |
Collapse
|
12
|
Mitra J, Dharmalingam P, Kodavati MM, Guerrero EN, Rao KS, Garruto R, Hegde ML. Endogenous TDP-43 mislocalization in a novel knock-in mouse model reveals DNA repair impairment, inflammation, and neuronal senescence. RESEARCH SQUARE 2024:rs.3.rs-3879966. [PMID: 38343852 PMCID: PMC10854316 DOI: 10.21203/rs.3.rs-3879966/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
TDP-43 mislocalization and aggregation are key pathological features of motor neuron diseases (MND) including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, transgenic hTDP-43 WT or ∆NLS-overexpression animal models mainly capture late-stages TDP-43 proteinopathy, and do not provide a complete understanding of early motor neuron-specific pathology during pre-symptomatic phases. We have now addressed this shortcoming by generating a new endogenous knock-in (KI) mouse model using a combination of CRISPR/Cas9 and FLEX Cre-switch strategy for the conditional expression of a mislocalized Tdp-43∆NLS variant of mouse Tdp-43. This variant is either expressed conditionally in whole mice or specifically in the motor neurons. The mice exhibit loss of nuclear Tdp-43 concomitant with its cytosolic accumulation and aggregation in targeted cells, leading to increased DNA double-strand breaks (DSBs), signs of inflammation and DNA damage-associated cellular senescence. Notably, unlike WT Tdp43 which functionally interacts with Xrcc4 and DNA Ligase 4, the key DSB repair proteins in the non-homologous end-joining (NHEJ) pathway, the Tdp-43∆NLS mutant sequesters them into cytosolic aggregates, exacerbating neuronal damage in mice brain. The mutant mice also exhibit myogenic degeneration in limb muscles and distinct motor deficits, consistent with the characteristics of MND. Our findings reveal progressive degenerative mechanisms in motor neurons expressing endogenous Tdp-43∆NLS mutant, independent of TDP-43 overexpression or other confounding etiological factors. Thus, this unique Tdp-43 KI mouse model, which displays key molecular and phenotypic features of Tdp-43 proteinopathy, offers a significant opportunity to further characterize the early-stage progression of MND and also opens avenues for developing DNA repair-targeted approaches for treating TDP-43 pathology-linked neurodegenerative diseases.
Collapse
|
13
|
Badawi AH, Mohamad NA, Stanslas J, Kirby BP, Neela VK, Ramasamy R, Basri H. In Vitro Blood-Brain Barrier Models for Neuroinfectious Diseases: A Narrative Review. Curr Neuropharmacol 2024; 22:1344-1373. [PMID: 38073104 PMCID: PMC11092920 DOI: 10.2174/1570159x22666231207114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 05/16/2024] Open
Abstract
The blood-brain barrier (BBB) is a complex, dynamic, and adaptable barrier between the peripheral blood system and the central nervous system. While this barrier protects the brain and spinal cord from inflammation and infection, it prevents most drugs from reaching the brain tissue. With the expanding interest in the pathophysiology of BBB, the development of in vitro BBB models has dramatically evolved. However, due to the lack of a standard model, a range of experimental protocols, BBB-phenotype markers, and permeability flux markers was utilized to construct in vitro BBB models. Several neuroinfectious diseases are associated with BBB dysfunction. To conduct neuroinfectious disease research effectively, there stems a need to design representative in vitro human BBB models that mimic the BBB's functional and molecular properties. The highest necessity is for an in vitro standardised BBB model that accurately represents all the complexities of an intact brain barrier. Thus, this in-depth review aims to describe the optimization and validation parameters for building BBB models and to discuss previous research on neuroinfectious diseases that have utilized in vitro BBB models. The findings in this review may serve as a basis for more efficient optimisation, validation, and maintenance of a structurally- and functionally intact BBB model, particularly for future studies on neuroinfectious diseases.
Collapse
Affiliation(s)
- Ahmad Hussein Badawi
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Afiqah Mohamad
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Centre for Foundation Studies, Lincoln University College, 47301, Petaling Jaya, Selangor, Malaysia
| | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Brian Patrick Kirby
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Vasantha Kumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Yugami M, Hayakawa-Yano Y, Ogasawara T, Yokoyama K, Furukawa T, Hara H, Hashikami K, Tsuji I, Takebayashi H, Araki S, Okano H, Yano M. Sbp2l contributes to oligodendrocyte maturation through translational control in Tcf7l2 signaling. iScience 2023; 26:108451. [PMID: 38213786 PMCID: PMC10783607 DOI: 10.1016/j.isci.2023.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/09/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
Oligodendrocytes (OLs) are the myelin-forming cells in the CNS that support neurons through the insulating sheath of axons. This unique feature and developmental processes are achieved by extrinsic and intrinsic gene expression programs, where RNA-binding proteins can contribute to dynamic and fine-tuned post-transcriptional regulation. Here, we identified SECIS-binding protein 2-like (Sbp2l), which is specifically expressed in OLs by integrated transcriptomics. Histological analysis revealed that Sbp2l is a molecular marker of OL maturation. Sbp2l knockdown (KD) led to suppression of matured OL markers, but not a typical selenoprotein, Gpx4. Transcriptome analysis demonstrated that Sbp2l KD decreased cholesterol-biosynthesis-related genes regulated by Tcf7l2 transcription factor. Indeed, we confirmed the downregulation of Tcf7l2 protein without changing its mRNA in Sbp2l KD OPCs. Furthermore, Sbp2l KO mice showed the decrease of Tcf7l2 protein and deficiency of OL maturation. These results suggest that Sbp2l contributes to OL maturation by translational control of Tcf7l2.
Collapse
Affiliation(s)
- Masato Yugami
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshika Hayakawa-Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahisa Ogasawara
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazumasa Yokoyama
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takako Furukawa
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Hiroe Hara
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kentaro Hashikami
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Isamu Tsuji
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Shinsuke Araki
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
15
|
Vogt BA, Rosene DL. Comparison of monkey and human retrosplenial neurocytology. J Comp Neurol 2023; 531:2044-2061. [PMID: 38062543 DOI: 10.1002/cne.25561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 12/31/2023]
Abstract
Retrosplenial cortex (RSC) has unique problems for human neuroimaging studies as its divisions are small, at the lower end of functional scanner spatial resolution, and it is buried in the callosal sulcus. The present study sought to define the cytoarchitecture of RSC in human and monkey brains along its entire anteroposterior extent. The results show anterior extensions, a newly defined dichotomy of area 30, a new area p30, and an area p29v in monkey that differentiates into three divisions in human. Accordingly, anterior (a), intermediate (i), and posterior (p) divisions of areas 29l, 29m, 30l, and 30m were identified. Posterior area 29 has higher neuron packing in the granular layer than anterior and intermediate divisions of area 29. A newly detected dysgranular area p30 has larger neurons in layers II-IIIab than a30 and i30 and with substantially higher NFP expression in layer IIIab of posterior areas than areas a30 and i30. Medial area 30 has larger pyramids and higher NFP expression in all layers than area 30l. The new area p30 was seen between areas p29m and p30I in both species. Finally, a ventral area p29v is present in monkeys. This latter area appears to differentiate into three divisions in human with the most extensive granular layer adjacent to layer I in p29vm and p29vl. Functional imaging has identified pRSC as part of a cognitive map which is engaged in spatial navigation and localization of personally relevant objects.
Collapse
Affiliation(s)
- Brent A Vogt
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Cingulum Neurosciences Institute, Manlius, New York, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Maltseva D, Tonevitsky A. RNA-binding proteins regulating the CD44 alternative splicing. Front Mol Biosci 2023; 10:1326148. [PMID: 38106992 PMCID: PMC10722200 DOI: 10.3389/fmolb.2023.1326148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Alternative splicing is often deregulated in cancer, and cancer-specific isoform switches are part of the oncogenic transformation of cells. Accumulating evidence indicates that isoforms of the multifunctional cell-surface glycoprotein CD44 play different roles in cancer cells as compared to normal cells. In particular, the shift of CD44 isoforms is required for epithelial to mesenchymal transition (EMT) and is crucial for the maintenance of pluripotency in normal human cells and the acquisition of cancer stem cells phenotype for malignant cells. The growing and seemingly promising use of splicing inhibitors for treating cancer and other pathologies gives hope for the prospect of using such an approach to regulate CD44 alternative splicing. This review integrates current knowledge about regulating CD44 alternative splicing by RNA-binding proteins.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Zhu B, Fisher E, Li L, Zhong P, Yan Z, Feng J. PTBP2 attenuation facilitates fibroblast to neuron conversion by promoting alternative splicing of neuronal genes. Stem Cell Reports 2023; 18:2268-2282. [PMID: 37832540 PMCID: PMC10679656 DOI: 10.1016/j.stemcr.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The direct conversion of human skin fibroblasts to neurons has a low efficiency and unclear mechanism. Here, we show that the knockdown of PTBP2 significantly enhanced the transdifferentiation induced by ASCL1, MIR9/9∗-124, and p53 shRNA (AMp) to generate mostly GABAergic neurons. Longitudinal RNA sequencing analyses identified the continuous induction of many RNA splicing regulators. Among these, the knockdown of RBFOX3 (NeuN), significantly abrogated the transdifferentiation. Overexpression of RBFOX3 significantly enhanced the conversion induced by AMp; the enhancement was occluded by PTBP2 knockdown. We found that PTBP2 attenuation significantly favored neuron-specific alternative splicing (AS) of many genes involved in synaptic transmission, signal transduction, and axon formation. RBFOX3 knockdown significantly reversed the effect, while RBFOX3 overexpression occluded the enhancement. The study reveals the critical role of neuron-specific AS in the direct conversion of human skin fibroblasts to neurons by showing that PTBP2 attenuation enhances this mechanism in concert with RBFOX3.
Collapse
Affiliation(s)
- Binglin Zhu
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Emily Fisher
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Li Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Zhen Yan
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jian Feng
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
18
|
Ceylan T, Akin AT, Karabulut D, Tan FC, Taşkiran M, Yakan B. Therapeutic effect of thymoquinone on brain damage caused by nonylphenol exposure in rats. J Biochem Mol Toxicol 2023; 37:e23471. [PMID: 37466128 DOI: 10.1002/jbt.23471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Nonylphenol (NP), causes various harmful effects such as cognitive impairment and neurotoxicity. Thymoquinone (TQ), has antioxidant, anti-inflammatory, and neuroprotective properties. In this study, our aim is to investigate the effects of TQ on the brain damage caused by NP. Corn oil was applied to the control group. NP (100 mg/kg/day) was administered to the NP and NP + TQ groups for 21 days. TQ (5 mg/kg/day) was administered to the NP + TQ and TQ groups for 7 after 21 days. At the end of the experiment, the new object recognition test was applied to the rats and the rats were killed and their brain tissues were removed. Sections taken from brain tissues were stained with hematoxylin-eosin for histopathological evaluation. In addition, neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), Cas-3, and nerve growth factor (NGF) immunoreactivities were evaluated in brain tissue sections. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) activities were determined. Comet assay was applied to determine DNA damage in cells. The results of our study showed that NP, caused behavioral disorders and damage to the cerebral cortex in rats. This damage in the form of neuron degeneration seen in the cortex was associated with apoptosis involving Cas-3 activation, increased DNA damage, and free oxygen radicals. NP, SOD, and CAT caused a decrease in enzyme activities. In addition, the cellular protein NeuN was decreased, astrocytosis-associated GFAP was increased, and growth factor NGF was decreased. When all our evaluations are taken together, treatment with TQ showed an ameliorative effect on the behavioral impairment and brain damage caused by NP exposure.
Collapse
Affiliation(s)
- Tayfun Ceylan
- Department of Histology and Embryology, Faculty of Dentistry, Cappadocia University, Nevsehir, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ali Tuğrul Akin
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fazile Cantürk Tan
- Department of Biophysics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Taşkiran
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
19
|
Farshadyeganeh P, Nazim M, Zhang R, Ohkawara B, Nakajima K, Rahman MA, Nasrin F, Ito M, Takeda JI, Ohe K, Miyasaka Y, Ohno T, Masuda A, Ohno K. Splicing regulation of GFPT1 muscle-specific isoform and its roles in glucose metabolisms and neuromuscular junction. iScience 2023; 26:107746. [PMID: 37744035 PMCID: PMC10514471 DOI: 10.1016/j.isci.2023.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Glutamine:fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP). A 54-bp exon 9 of GFPT1 is specifically included in skeletal and cardiac muscles to generate a long isoform of GFPT1 (GFPT1-L). We showed that SRSF1 and Rbfox1/2 cooperatively enhance, and hnRNP H/F suppresses, the inclusion of human GFPT1 exon 9 by modulating recruitment of U1 snRNP. Knockout (KO) of GFPT1-L in skeletal muscle markedly increased the amounts of GFPT1 and UDP-HexNAc, which subsequently suppressed the glycolytic pathway. Aged KO mice showed impaired insulin-mediated glucose uptake, as well as muscle weakness and fatigue likely due to abnormal formation and maintenance of the neuromuscular junction. Taken together, GFPT1-L is likely to be acquired in evolution in mammalian striated muscles to attenuate the HBP for efficient glycolytic energy production, insulin-mediated glucose uptake, and the formation and maintenance of the neuromuscular junction.
Collapse
Affiliation(s)
- Paniz Farshadyeganeh
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mohammad Nazim
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ruchen Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Mohammad Alinoor Rahman
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Biochemistry and Molecular Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Farhana Nasrin
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Biochemistry and Molecular Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenji Ohe
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
20
|
Primiani CT, Lee JK, O’Brien CE, Chen MW, Perin J, Kulikowicz E, Santos P, Adams S, Lester B, Rivera-Diaz N, Olberding V, Niedzwiecki MV, Ritzl EK, Habela CW, Liu X, Yang ZJ, Koehler RC, Martin LJ. Hypothermic Protection in Neocortex Is Topographic and Laminar, Seizure Unmitigating, and Partially Rescues Neurons Depleted of RNA Splicing Protein Rbfox3/NeuN in Neonatal Hypoxic-Ischemic Male Piglets. Cells 2023; 12:2454. [PMID: 37887298 PMCID: PMC10605428 DOI: 10.3390/cells12202454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
The effects of hypothermia on neonatal encephalopathy may vary topographically and cytopathologically in the neocortex with manifestations potentially influenced by seizures that alter the severity, distribution, and type of neuropathology. We developed a neonatal piglet survival model of hypoxic-ischemic (HI) encephalopathy and hypothermia (HT) with continuous electroencephalography (cEEG) for seizures. Neonatal male piglets received HI-normothermia (NT), HI-HT, sham-NT, or sham-HT treatments. Randomized unmedicated sham and HI piglets underwent cEEG during recovery. Survival was 2-7 days. Normal and pathological neurons were counted in different neocortical areas, identified by cytoarchitecture and connectomics, using hematoxylin and eosin staining and immunohistochemistry for RNA-binding FOX-1 homolog 3 (Rbfox3/NeuN). Seizure burden was determined. HI-NT piglets had a reduced normal/total neuron ratio and increased ischemic-necrotic/total neuron ratio relative to sham-NT and sham-HT piglets with differing severities in the anterior and posterior motor, somatosensory, and frontal cortices. Neocortical neuropathology was attenuated by HT. HT protection was prominent in layer III of the inferior parietal cortex. Rbfox3 immunoreactivity distinguished cortical neurons as: Rbfox3-positive/normal, Rbfox3-positive/ischemic-necrotic, and Rbfox3-depleted. HI piglets had an increased Rbfox3-depleted/total neuron ratio in layers II and III compared to sham-NT piglets. Neuronal Rbfox3 depletion was partly rescued by HT. Seizure burdens in HI-NT and HI-HT piglets were similar. We conclude that the neonatal HI piglet neocortex has: (1) suprasylvian vulnerability to HI and seizures; (2) a limited neuronal cytopathological repertoire in functionally different regions that engages protective mechanisms with HT; (3) higher seizure burden, insensitive to HT, that is correlated with more panlaminar ischemic-necrotic neurons in the somatosensory cortex; and (4) pathological RNA splicing protein nuclear depletion that is sensitive to HT. This work demonstrates that HT protection of the neocortex in neonatal HI is topographic and laminar, seizure unmitigating, and restores neuronal depletion of RNA splicing factor.
Collapse
Affiliation(s)
- Christopher T. Primiani
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Caitlin E. O’Brien
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - May W. Chen
- Department Pediatrics, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Jamie Perin
- Department of Biostatistics and Epidemiology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Polan Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Shawn Adams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Bailey Lester
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Natalia Rivera-Diaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Valerie Olberding
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Mark V. Niedzwiecki
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Eva K. Ritzl
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Christa W. Habela
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Lee J. Martin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- The Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| |
Collapse
|
21
|
Veshchitskii AA, Kirik OV, Korzhevskii DE, Merkulyeva N. Development of neurochemical labeling in the intermediolateral nucleus of cats' spinal cord. Anat Rec (Hoboken) 2023; 306:2400-2410. [PMID: 35500068 DOI: 10.1002/ar.24943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 08/11/2023]
Abstract
NeuN is a neuron-specific nuclear protein expressed in most mature neuronal cell types, with some exceptions. These exceptions are known mainly for the brain but not for the spinal cord or the spinal visceral networks for which only scarce information is available. One of the most defined visceral structures in the spinal cord is the sympathetic intermediolateral nucleus located within the thoracolumbar segments. We investigated the NeuN staining in the intermediolateral nucleus and compared it with the staining for two neurochemical markers of visceral neurons: nitric oxide synthase and calcium-binding protein calretinin in adult cats and in kittens aged 0, 14, and 35 days. A clear NeuN-immunonegativity was obtained for intermediolateral neurons labeled for nitric oxide synthase for both adult cats and kittens. In contrast, a matched immunopositivity for the NeuN and calretinin was obtained, showing an age-dependent degree of this colocalization, which was high in newborn kittens, decreased on postnatal 14 and 35 days and persisted at a moderate level up to adulthood. Perhaps our data displayed a heterogeneity of the intermediolateral neurons.
Collapse
Affiliation(s)
| | - Olga V Kirik
- Laboratory of Functional Morphology of Central and Peripheral Nervous System, Institute of Experimental Medicine RAS, Saint-Petersburg, Russia
| | - Dmitriy E Korzhevskii
- Laboratory of Functional Morphology of Central and Peripheral Nervous System, Institute of Experimental Medicine RAS, Saint-Petersburg, Russia
| | - Natalia Merkulyeva
- Laboratory of Neuromorphology, Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| |
Collapse
|
22
|
Meah A, Vedarethinam V, Bronstein R, Gujarati N, Jain T, Mallipattu SK, Li Y, Wang J. Single-Cell Spatial MIST for Versatile, Scalable Detection of Protein Markers. BIOSENSORS 2023; 13:852. [PMID: 37754086 PMCID: PMC10526469 DOI: 10.3390/bios13090852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
High-multiplex detection of protein biomarkers across tissue regions has been an attractive spatial biology approach due to significant advantages over traditional immunohistochemistry (IHC) methods. Different from most methods, spatial multiplex in situ tagging (MIST) transfers the spatial protein expression information to an ultrahigh-density, large-scale MIST array. This technique has been optimized to reach single-cell resolution by adoption of smaller array units and 30% 8-arm PEG polymer as transfer medium. Tissue cell nuclei stained with lamin B have been clearly visualized on the MIST arrays and are colocalized with detection of nine mouse brain markers. Pseudocells defined at 10 μm in size have been used to fully profile tissue regions including cells and the intercellular space. We showcased the versatility of our technology by successfully detecting 20 marker proteins in kidney samples with the addition of five minutes atop the duration of standard immunohistochemistry protocols. Spatial MIST is amenable to iterative staining and detection on the same tissue samples. When 25 proteins were co-detected on 1 mouse brain section for each round and 5 rounds were executed, an ultrahigh multiplexity of 125 proteins was obtained for each pseudocell. With its unique abilities, this single-cell spatial MIST technology has the potential to become an important method in advanced diagnosis of complex diseases.
Collapse
Affiliation(s)
- Arafat Meah
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Vadanasundari Vedarethinam
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Robert Bronstein
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY 11794, USA
| | - Nehaben Gujarati
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY 11794, USA
| | - Tanya Jain
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Sandeep K. Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY 11794, USA
- Renal Section, Northport VA Medical Center, Northport, NY 11768, USA
| | - Yueming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| |
Collapse
|
23
|
Pilski A, Graves SM. Repeated Methamphetamine Administration Results in Axon Loss Prior to Somatic Loss of Substantia Nigra Pars Compacta and Locus Coeruleus Neurons in Male but Not Female Mice. Int J Mol Sci 2023; 24:13039. [PMID: 37685846 PMCID: PMC10487759 DOI: 10.3390/ijms241713039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Methamphetamine (meth) is a neurotoxic psychostimulant that increases monoamine oxidase (MAO)-dependent mitochondrial oxidant stress in axonal but not somatic compartments of substantia nigra pars compacta (SNc) and locus coeruleus (LC) neurons. Chronic meth administration results in the degeneration of SNc and LC neurons in male mice, and MAO inhibition is neuroprotective, suggesting that the deleterious effects of chronic meth begin in axons before advancing to the soma of SNc and LC neurons. To test this hypothesis, mice were administered meth (5 mg/kg) for 14, 21, or 28 days, and SNc and LC axonal lengths and numbers of neurons were quantified. In male mice, the SNc and LC axon lengths decreased with 14, 21, and 28 days of meth, whereas somatic loss was only observed after 28 days of meth; MAO inhibition (phenelzine; 20 mg/kg) prevented axonal and somatic loss of SNc and LC neurons. In contrast, chronic (28-day) meth had no effect on the axon length or numbers of SNc or LC neurons in female mice. The results demonstrate that repeated exposure to meth produces SNc and LC axonal deficits prior to somatic loss in male subjects, consistent with a dying-back pattern of degeneration, whereas female mice are resistant to chronic meth-induced degeneration.
Collapse
Affiliation(s)
| | - Steven M. Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
24
|
Bjorklund GR, Wong J, Brafman D, Bowser R, Stabenfeldt SE. Traumatic brain injury induces TDP-43 mislocalization and neurodegenerative effects in tissue distal to the primary injury site in a non-transgenic mouse. Acta Neuropathol Commun 2023; 11:137. [PMID: 37608352 PMCID: PMC10463884 DOI: 10.1186/s40478-023-01625-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Traumatic brain injury (TBI) initiates tissue and cellular damage to the brain that is immediately followed by secondary injury sequalae with delayed and continual damage. This secondary damage includes pathological processes that may contribute to chronic neurodegeneration and permanent functional and cognitive deficits. TBI is also associated with an increased risk of developing neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS) as indicated by shared pathological features. For example, abnormalities in the TAR DNA-binding Protein 43 (TDP-43) that includes cytoplasmic mislocalization, cytosolic aggregation, and an increase in phosphorylation and ubiquitination are seen in up to 50% of FTD cases, up to 70% of AD cases, and is considered a hallmark pathology of ALS occurring in > 97% of cases. Yet the prevalence of TDP-43 pathology post-TBI has yet to be fully characterized. Here, we employed a non-transgenic murine controlled cortical injury model of TBI and observed injury-induced hallmark TDP-43 pathologies in brain and spinal cord tissue distal to the primary injury site and did not include the focally damaged tissue within the primary cortical injury site. Analysis revealed a temporal-dependent and significant increase in neuronal TDP-43 mislocalization in the cortical forebrain rostral to and distant from the primary injury site up to 180 days post injury (DPI). TDP-43 mislocalization was also detected in neurons located in the ventral horns of the cervical spinal cord following a TBI. Moreover, a cortical layer-dependent affect was identified, increasing from superficial to deeper cortical layers over time from 7 DPI up to 180 DPI. Lastly, RNAseq analysis confirmed an injury-induced misregulation of several key biological processes implicated in neurons that increased over time. Collectively, this study demonstrates a connection between a single moderate TBI event and chronic neurodegenerative processes that are not limited to the primary injury site and broadly distributed throughout the cortex and corticospinal tract.
Collapse
Affiliation(s)
- George R Bjorklund
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jennifer Wong
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Robert Bowser
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
25
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
26
|
Lotun A, Li D, Xu H, Su Q, Tuncer S, Sanmiguel J, Mooney M, Baer CE, Ulbrich R, Eyles SJ, Strittmatter L, Hayward LJ, Gessler DJ, Gao G. Renewal of oligodendrocyte lineage reverses dysmyelination and CNS neurodegeneration through corrected N-acetylaspartate metabolism. Prog Neurobiol 2023; 226:102460. [PMID: 37149081 PMCID: PMC10330635 DOI: 10.1016/j.pneurobio.2023.102460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/18/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Myelinating oligodendrocytes are essential for neuronal communication and homeostasis of the central nervous system (CNS). One of the most abundant molecules in the mammalian CNS is N-acetylaspartate (NAA), which is catabolized into L-aspartate and acetate by the enzyme aspartoacylase (ASPA) in oligodendrocytes. The resulting acetate moiety is thought to contribute to myelin lipid synthesis. In addition, affected NAA metabolism has been implicated in several neurological disorders, including leukodystrophies and demyelinating diseases such as multiple sclerosis. Genetic disruption of ASPA function causes Canavan disease, which is hallmarked by increased NAA levels, myelin and neuronal loss, large vacuole formation in the CNS, and early death in childhood. Although NAA's direct role in the CNS is inconclusive, in peripheral adipose tissue, NAA-derived acetate has been found to modify histones, a mechanism known to be involved in epigenetic regulation of cell differentiation. We hypothesize that a lack of cellular differentiation in the brain contributes to the disruption of myelination and neurodegeneration in diseases with altered NAA metabolism, such as Canavan disease. Our study demonstrates that loss of functional Aspa in mice disrupts myelination and shifts the transcriptional expression of neuronal and oligodendrocyte markers towards less differentiated stages in a spatiotemporal manner. Upon re-expression of ASPA, these oligodendrocyte and neuronal lineage markers are either improved or normalized, suggesting that NAA breakdown by Aspa plays an essential role in the maturation of neurons and oligodendrocytes. Also, this effect of ASPA re-expression is blunted in old mice, potentially due to limited ability of neuronal, rather than oligodendrocyte, recovery.
Collapse
Affiliation(s)
- Anoushka Lotun
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Danning Li
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hongxia Xu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; University of Science and Technology of Kunming, People's Republic of China
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Julio Sanmiguel
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Morgan Mooney
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christina E Baer
- Sanderson Center for Optical Experimentation, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Russell Ulbrich
- ScientiaLux LLC, Tissue-Gnostics USA-East, Worcester, MA, USA
| | - Stephen J Eyles
- Mass Spectrometry Core, University of Massachusetts, Amherst, MA, USA
| | - Lara Strittmatter
- Electron Microscopy Core, University of Massachusetts Chan Medical School, MA, USA
| | - Lawrence J Hayward
- Department of Neurology, University of Massachusetts Chan Medical School, MA, USA
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology & Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
27
|
Castro-Fonseca E, Morais V, da Silva CG, Wollner J, Freitas J, Mello-Neto AF, Oliveira LE, de Oliveira VC, Leite REP, Alho AT, Rodriguez RD, Ferretti-Rebustini REL, Suemoto CK, Jacob-Filho W, Nitrini R, Pasqualucci CA, Grinberg LT, Tovar-Moll F, Lent R. The influence of age and sex on the absolute cell numbers of the human brain cerebral cortex. Cereb Cortex 2023; 33:8654-8666. [PMID: 37106573 PMCID: PMC10321098 DOI: 10.1093/cercor/bhad148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The human cerebral cortex is one of the most evolved regions of the brain, responsible for most higher-order neural functions. Since nerve cells (together with synapses) are the processing units underlying cortical physiology and morphology, we studied how the human neocortex is composed regarding the number of cells as a function of sex and age. We used the isotropic fractionator for cell quantification of immunocytochemically labeled nuclei from the cerebral cortex donated by 43 cognitively healthy subjects aged 25-87 years old. In addition to previously reported sexual dimorphism in the medial temporal lobe, we found more neurons in the occipital lobe of men, higher neuronal density in women's frontal lobe, but no sex differences in the number and density of cells in the other lobes and the whole neocortex. On average, the neocortex has ~10.2 billion neurons, 34% in the frontal lobe and the remaining 66% uniformly distributed among the other 3 lobes. Along typical aging, there is a loss of non-neuronal cells in the frontal lobe and the preservation of the number of neurons in the cortex. Our study made possible to determine the different degrees of modulation that sex and age evoke on cortical cellularity.
Collapse
Affiliation(s)
- Emily Castro-Fonseca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Viviane Morais
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila G da Silva
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Wollner
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaqueline Freitas
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arthur F Mello-Neto
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vilson C de Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata E P Leite
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Medical Research in Aging (LIM-66), University of São Paulo Medical School, São Paulo, Brazil
| | - Ana T Alho
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
| | - Roberta D Rodriguez
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Renata E L Ferretti-Rebustini
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Medical Surgical Nursing, University of São Paulo School of Nursing, São Paulo, Brazil
| | - Claudia K Suemoto
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Medical Research in Aging (LIM-66), University of São Paulo Medical School, São Paulo, Brazil
| | - Wilson Jacob-Filho
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Medical Research in Aging (LIM-66), University of São Paulo Medical School, São Paulo, Brazil
| | - Ricardo Nitrini
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Carlos A Pasqualucci
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Lea T Grinberg
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States
| | - Fernanda Tovar-Moll
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- National Institute of Translational Neuroscience, Ministry of Science and Technology, São Paulo, Brazil
| |
Collapse
|
28
|
Paganin M, Tebaldi T, Lauria F, Viero G. Visualizing gene expression changes in time, space, and single cells with expressyouRcell. iScience 2023; 26:106853. [PMID: 37250782 PMCID: PMC10220493 DOI: 10.1016/j.isci.2023.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
The last decade has witnessed massive advancements in high-throughput techniques capable of producing increasingly complex gene expression datasets across time and space and at the resolution of single cells. Yet, the large volume of big data available and the complexity of experimental designs hamper an easy understanding and effective communication of the results. We present expressyouRcell, an easy-to-use R package to map the multi-dimensional variations of transcript and protein levels in dynamic cell pictographs. expressyouRcell visualizes gene expression variations as pictographic representations of cell-type thematic maps. expressyouRcell visually reduces the complexity of displaying gene expression and protein level changes across multiple measurements (time points or single-cell trajectories) by generating dynamic representations of cellular pictographs. We applied expressyouRcell to single cell, bulk RNA sequencing (RNA-seq), and proteomics datasets, demonstrating its flexibility and usability in the visualization of complex variations in gene expression. Our approach improves the standard quantitative interpretation and communication of relevant results.
Collapse
Affiliation(s)
| | - Toma Tebaldi
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department CIBIO, University of Trento, Trento, Italy
| | - Fabio Lauria
- Institute of Biophysics, CNR Unit Trento, Trento, Italy
| | | |
Collapse
|
29
|
Cocco C, Manca E, Corda G, Angioni MM, Noli B, Congia M, Loy F, Isola M, Chessa E, Floris A, Lorefice L, Saba L, Mathieu A, Ferri GL, Cauli A, Piga M. Brain-reactive autoantibodies in neuropsychiatric systemic lupus erythematosus. Front Immunol 2023; 14:1157149. [PMID: 37383228 PMCID: PMC10294074 DOI: 10.3389/fimmu.2023.1157149] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction The pathogenesis of neuropsychiatric systemic lupus erythematosus (NPSLE) is widely unknown, and the role of autoantibodies is still undetermined. Methods To identify brain-reactive autoantibodies possibly related to NPSLE, immunofluorescence (IF) and transmission electron microscopy (TEM) on rat and human brains were performed. ELISA was used to reveal the presence of known circulating autoantibodies, while western blot (WB) was applied to characterize potential unknown autoantigen(s). Results We enrolled 209 subjects, including patients affected by SLE (n=69), NPSLE (n=36), Multiple Sclerosis (MS, n=22), and 82 age- and gender-matched healthy donors (HD). Autoantibody reactivity by IF was observed in almost the entire rat brain (cortex, hippocampus, and cerebellum) using sera from NPSLE and SLE patients and was virtually negative in MS and HD. NPSLE showed higher prevalence (OR 2.4; p = 0.047), intensity, and titer of brain-reactive autoantibodies than SLE patients. Most of the patient sera with brain-reactive autoantibodies (75%) also stained human brains. Double staining experiments on rat brains mixing patients' sera with antibodies directed against neuronal (NeuN) or glial markers showed autoantibody reactivity restricted to NeuN-containing neurons. Using TEM, the targets of brain-reactive autoantibodies were located in the nuclei and, to a lesser extent, in the cytoplasm and mitochondria. Given the high degree of colocalization between NeuN and brain-reactive autoantibodies, we assumed NeuN was a possible autoantigen. However, WB analysis with HEK293T cell lysates expressing or not expressing the gene encoding for NeuN protein (RIBFOX3) showed that patients' sera carrying brain-reactive autoantibodies did not recognize the NeuN corresponding band size. Among the panel of NPSLE-associated autoantibodies (e.g., anti-NR2, anti-P-ribosomal protein, antiphospholipid) investigated by ELISA assay, only the anti-β2-glycoprotein-I (aβ2GPI) IgG was exclusively found in those sera containing brain-reactive autoantibodies. Conclusion In conclusion, SLE and NPSLE patients possess brain-reactive autoantibodies but with higher frequency and titers found in NPSLE patients. Although many target antigens of brain-reactive autoantibodies are still undetermined, they likely include β2GPI.
Collapse
Affiliation(s)
- Cristina Cocco
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Elias Manca
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Giulia Corda
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Maddalena Angioni
- Rheumatology Unit, University Clinic, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Mattia Congia
- Rheumatology Unit, University Clinic, AOU Cagliari, Cagliari, Italy
| | - Francesco Loy
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Michela Isola
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | | - Alberto Floris
- Rheumatology Unit, University Clinic, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, ASSL Cagliari, Cagliari, Italy
| | - Luca Saba
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
- Radiology Department, University Clinic, AOU Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
| | - Gian Luca Ferri
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Alberto Cauli
- Rheumatology Unit, University Clinic, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
| | - Matteo Piga
- Rheumatology Unit, University Clinic, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
| |
Collapse
|
30
|
Santamaría G, Rengifo AC, Torres-Fernández O. NeuN distribution in brain structures of normal and Zika-infected suckling mice. J Mol Histol 2023:10.1007/s10735-023-10128-7. [PMID: 37199896 DOI: 10.1007/s10735-023-10128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Microcephaly is the more severe brain malformation because of Zika virus infection. Increased vulnerability of neural stem and progenitor cells to Zika infection during prenatal neurodevelopment impairs the complete formation of cortical layers. Normal development of cerebellum is also affected. However, the follow-up of apparently healthy children born to Zika exposed mothers during pregnancy has revealed other neurological sequelae. This suggests Zika infection susceptibility remains in nervous tissue after neurogenesis end, when differentiated neuronal populations predominate. The neuronal nuclear protein (NeuN) is an exclusive marker of postmitotic neurons. Changes in NeuN expression are associated with neuronal degeneration. We have evaluated immunohistochemical expression of NeuN protein in cerebral cortex, hippocampus, and cerebellum of normal and Zika-infected neonatal Balb/c mice. The highest NeuN immunoreactivity was found mainly in neurons of all cortical layers, pyramidal layer of hippocampus, granular layer of dentate gyrus and in internal granular layer of cerebellum. Viral infection caused marked loss of NeuN immunostaining in all these brain areas. This suggests neurodegenerative effects of Zika virus infection during postmitotic neuron maturation and contribute to interpretation of neuropathogenic mechanisms of Zika.
Collapse
Affiliation(s)
- Gerardo Santamaría
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, 111321, DC, Colombia
| | - Aura Caterine Rengifo
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, 111321, DC, Colombia
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, 111321, DC, Colombia.
| |
Collapse
|
31
|
Babkina AS, Yadgarov MY, Lyubomudrov MA, Ostrova IV, Volkov AV, Kuzovlev AN, Grechko AV, Golubev AM. Morphologic Findings in the Cerebral Cortex in COVID-19: Association of Microglial Changes with Clinical and Demographic Variables. Biomedicines 2023; 11:biomedicines11051407. [PMID: 37239078 DOI: 10.3390/biomedicines11051407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the enormous interest in COVID-19, there is no clear understanding of the mechanisms underlying the neurological symptoms in COVID-19. Microglia have been hypothesized to be a potential mediator of the neurological manifestations associated with COVID-19. In most existing studies to date, morphological changes in internal organs, including the brain, are considered in isolation from clinical data and defined as a consequence of COVID-19. We performed histological immunohistochemical (IHC) studies of brain autopsy materials of 18 patients who had died from COVID-19. We evaluated the relationship of microglial changes with the clinical and demographic characteristics of the patients. The results revealed neuronal alterations and circulatory disturbances. We found an inverse correlation between the integral density Iba-1 (microglia/macrophage-specific marker) IHC staining and the duration of the disease (R = -0.81, p = 0.001), which may indicate a reduced activity of microglia and do not exclude their damage in the long-term course of COVID-19. The integral density of Iba-1 IHC staining was not associated with other clinical and demographic factors. We observed a significantly higher number of microglial cells in close contact with neurons in female patients, which confirms gender differences in the course of the disease, indicating the need to study the disease from the standpoint of personalized medicine.
Collapse
Affiliation(s)
- Anastasiya S Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Mikhail Ya Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Maxim A Lyubomudrov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Irina V Ostrova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Alexey V Volkov
- Department of Pathological Anatomy, Institute of Medicine, Peoples' Friendship University of Russia, Moscow 117198, Russia
| | - Artem N Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Arkady M Golubev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| |
Collapse
|
32
|
Tomioka R, Takemoto M, Song WJ. Neurochemical properties for defining subdivisions of the mouse medial geniculate body. Hear Res 2023; 431:108724. [PMID: 36871497 DOI: 10.1016/j.heares.2023.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
The medial geniculate body (MGB) exhibits anatomical and physiological properties that underlie its role in the auditory system. Anatomical properties, including myelo- and cyto-architecture, are used to identify MGB subdivisions. Recently, neurochemical properties, including calcium-binding proteins, have also been employed to define the MGB subdivisions. Because these properties do not show clear boundaries in the MGB and do not involve anatomical connectivity, whether the MGB subdivisions can be defined based on anatomical and neurochemical properties remains unclear. In this study, 11 different neurochemical markers were employed for defining the MGB subdivisions. In terms of anatomical connectivity, immunoreactivities for vesicular transporter demonstrated glutamatergic, GABAergic and glycinergic afferents and provided clues about the boundaries of the MGB subdivisions. On the other hand, the distribution of novel neurochemical markers of the MGB demonstrated distinct boundaries of the MGB subdivisions and resulted in the discovery of a putative homolog of the rabbit internal division of the MGB. Additionally, corticotropin-releasing factor was expressed in the larger neurons in the medial division of the MGB (MGm), particularly in the caudal MGm. Lastly, the analysis of anatomical details by measuring the size and density of vesicular transporters revealed heterogeneity among the MGB subdivisions. Our results demonstrate that the MGB is composed of five subdivisions based on their anatomical and neurochemical properties.
Collapse
Affiliation(s)
- Ryohei Tomioka
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Makoto Takemoto
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
33
|
Nadal-Nicolás FM, Galindo-Romero C, Lucas-Ruiz F, Marsh-Amstrong N, Li W, Vidal-Sanz M, Agudo-Barriuso M. Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques. Zool Res 2023; 44:226-248. [PMID: 36594396 PMCID: PMC9841181 DOI: 10.24272/j.issn.2095-8137.2022.308] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Univocal identification of retinal ganglion cells (RGCs) is an essential prerequisite for studying their degeneration and neuroprotection. Before the advent of phenotypic markers, RGCs were normally identified using retrograde tracing of retinorecipient areas. This is an invasive technique, and its use is precluded in higher mammals such as monkeys. In the past decade, several RGC markers have been described. Here, we reviewed and analyzed the specificity of nine markers used to identify all or most RGCs, i.e., pan-RGC markers, in rats, mice, and macaques. The best markers in the three species in terms of specificity, proportion of RGCs labeled, and indicators of viability were BRN3A, expressed by vision-forming RGCs, and RBPMS, expressed by vision- and non-vision-forming RGCs. NEUN, often used to identify RGCs, was expressed by non-RGCs in the ganglion cell layer, and therefore was not RGC-specific. γ-SYN, TUJ1, and NF-L labeled the RGC axons, which impaired the detection of their somas in the central retina but would be good for studying RGC morphology. In rats, TUJ1 and NF-L were also expressed by non-RGCs. BM88, ERRβ, and PGP9.5 are rarely used as markers, but they identified most RGCs in the rats and macaques and ERRβ in mice. However, PGP9.5 was also expressed by non-RGCs in rats and macaques and BM88 and ERRβ were not suitable markers of viability.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | - Caridad Galindo-Romero
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
| | - Fernando Lucas-Ruiz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
| | - Nicholas Marsh-Amstrong
- Department of Ophthalmology and Vision Science, University of California, Davis, CA 95817, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | - Manuel Vidal-Sanz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain. E-mail:
| | - Marta Agudo-Barriuso
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain. E-mail:
| |
Collapse
|
34
|
Fekete Z, Zátonyi A, Kaszás A, Madarász M, Slézia A. Transparent neural interfaces: challenges and solutions of microengineered multimodal implants designed to measure intact neuronal populations using high-resolution electrophysiology and microscopy simultaneously. MICROSYSTEMS & NANOENGINEERING 2023; 9:66. [PMID: 37213820 PMCID: PMC10195795 DOI: 10.1038/s41378-023-00519-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 05/23/2023]
Abstract
The aim of this review is to present a comprehensive overview of the feasibility of using transparent neural interfaces in multimodal in vivo experiments on the central nervous system. Multimodal electrophysiological and neuroimaging approaches hold great potential for revealing the anatomical and functional connectivity of neuronal ensembles in the intact brain. Multimodal approaches are less time-consuming and require fewer experimental animals as researchers obtain denser, complex data during the combined experiments. Creating devices that provide high-resolution, artifact-free neural recordings while facilitating the interrogation or stimulation of underlying anatomical features is currently one of the greatest challenges in the field of neuroengineering. There are numerous articles highlighting the trade-offs between the design and development of transparent neural interfaces; however, a comprehensive overview of the efforts in material science and technology has not been reported. Our present work fills this gap in knowledge by introducing the latest micro- and nanoengineered solutions for fabricating substrate and conductive components. Here, the limitations and improvements in electrical, optical, and mechanical properties, the stability and longevity of the integrated features, and biocompatibility during in vivo use are discussed.
Collapse
Affiliation(s)
- Z. Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience & Psychology, Eotvos Lorand Research Network, Budapest, Hungary
| | - A. Zátonyi
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - A. Kaszás
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541 Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| | - M. Madarász
- János Szentágothai PhD Program of Semmelweis University, Budapest, Hungary
- BrainVision Center, Budapest, Hungary
| | - A. Slézia
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
35
|
Iwasa A, Hanaoka N, Ohwada K, Iwamuro S, Toyoda F, Kikuyama S, Hasunuma I. Cell proliferation and neurogenesis in the adult telencephalon of the newt Cynops pyrrhogaster. Dev Growth Differ 2022; 64:474-485. [PMID: 36398337 DOI: 10.1111/dgd.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Abstract
Urodele amphibians have the ability to regenerate several organs, including the brain. For this reason, the research on neurogenesis in these species after ablation of some parts of the brain has markedly progressed. However, detailed information on the characteristics and fate of proliferated cells as well as the function of newly generated neurons under normal conditions is still limited. In this study, we focused on investigating the proliferative and neurogenic zones as well as the fate of proliferated cells in the adult brain of the Japanese red-bellied newt to clarify the significance of neurogenesis in adulthood. We found that the proximal region of the lateral ventricles in the telencephalon and the preoptic area in the diencephalon were the main sites for continuous cell proliferation in the adult brain. Furthermore, we characterized proliferative cells and analyzed neurogenesis through a combination of 5-ethynyl-2'-deoxyuridine (EdU) labeling and immunohistochemistry using antibodies against the stem cell marker Sox2 and neuronal marker NeuN. Twenty-four hours after EdU injection, most of the EdU-positive cells were Sox2-immunopositive, whereas, EdU-positive signals and NeuN-immunoreactivities were not colocalized. Two months after EdU injection, the colocalization ratio of EdU-positive signals with Sox2-immunoreactivities decreased to approximately 10%, whereas the ratio of colocalization of EdU-positive signals with NeuN-immunoreactivities increased to approximately 60%. Furthermore, a portion of the EdU-incorporated cells developed into γ-aminobutyric acid-producing cells, which are assumed to function as interneurons. On the basis of these results, the significance of newly generated neurons was discussed with special reference to their reproductive behavior.
Collapse
Affiliation(s)
- Ami Iwasa
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Naoki Hanaoka
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Kosuke Ohwada
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Shawichi Iwamuro
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Fumiyo Toyoda
- Department of Neurophysiology, Nara Medical University, Nara, Japan
| | - Sakae Kikuyama
- Department of Biology, Faculty of Education and Integrated Sciences, Center for Advanced Biomedical Sciences, Waseda University, Tokyo, Japan
| | - Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| |
Collapse
|
36
|
Reddy DS, Abeygunaratne HN. Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders. Int J Mol Sci 2022; 23:11734. [PMID: 36233034 PMCID: PMC9570151 DOI: 10.3390/ijms231911734] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
This article describes commonly used experimental and clinical biomarkers of neuronal injury and neurodegeneration for the evaluation of neuropathology and monitoring of therapeutic interventions. Biomarkers are vital for diagnostics of brain disease and therapeutic monitoring. A biomarker can be objectively measured and evaluated as a proxy indicator for the pathophysiological process or response to therapeutic interventions. There are complex hurdles in understanding the molecular pathophysiology of neurological disorders and the ability to diagnose them at initial stages. Novel biomarkers for neurological diseases may surpass these issues, especially for early identification of disease risk. Validated biomarkers can measure the severity and progression of both acute neuronal injury and chronic neurological diseases such as epilepsy, migraine, Alzheimer's disease, Parkinson's disease, Huntington's disease, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and other brain diseases. Biomarkers are deployed to study progression and response to treatment, including noninvasive imaging tools for both acute and chronic brain conditions. Neuronal biomarkers are classified into four core subtypes: blood-based, immunohistochemical-based, neuroimaging-based, and electrophysiological biomarkers. Neuronal conditions have progressive stages, such as acute injury, inflammation, neurodegeneration, and neurogenesis, which can serve as indices of pathological status. Biomarkers are critical for the targeted identification of specific molecules, cells, tissues, or proteins that dramatically alter throughout the progression of brain conditions. There has been tremendous progress with biomarkers in acute conditions and chronic diseases affecting the central nervous system.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hasara Nethma Abeygunaratne
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
37
|
Congdon EE, Pan R, Jiang Y, Sandusky-Beltran LA, Dodge A, Lin Y, Liu M, Kuo MH, Kong XP, Sigurdsson EM. Single domain antibodies targeting pathological tau protein: Influence of four IgG subclasses on efficacy and toxicity. EBioMedicine 2022; 84:104249. [PMID: 36099813 PMCID: PMC9475275 DOI: 10.1016/j.ebiom.2022.104249] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Eleven tau immunoglobulin G (IgG) antibodies have entered clinical trials to treat tauopathies, including Alzheimer's disease, but it is unclear which IgG subclass/subtype has the ideal efficacy and safety profile. Only two subtypes, with or without effector function, have been examined in the clinic and not for the same tau antibody. The few preclinical studies on this topic have only compared two subtypes of one antibody each and have yielded conflicting results. METHODS We selected two single domain antibodies (sdAbs) derived from a llama immunized with tau proteins and utilized them to generate an array of Fc-(sdAb)2 subclasses containing identical tau binding domains but differing Fc region. Unmodified sdAbs and their IgG subclasses were tested for efficacy in primary cultures and in vivo microdialysis using JNPL3 tauopathy mice. FINDINGS Unmodified sdAbs were non-toxic, blocked tau toxicity and promoted tau clearance. However, the efficacy/safety profile of their Fc-(sdAb)2 subclasses varied greatly within and between sdAbs. For one of them, all its subtypes were non-toxic, only those with effector function cleared tau, and were more effective in vivo than unmodified sdAb. For the other sdAb, all its subtypes were toxic in tauopathy cultures but not in wild-type cells, suggesting that bivalent binding of its tau epitope stabilizes a toxic conformation of tau, with major implications for tau pathogenesis. Likewise, its subclasses were less effective than the unmodified sdAb in clearing tau in vivo. INTERPRETATION These findings indicate that tau antibodies with effector function are safe and better at clearing pathological tau than effectorless antibodies, Furthermore, tau antibodies can provide a valuable insight into tau pathogenesis, and some may aggravate it. FUNDING Funding for these studies was provided by the National Institute of Health (R01 AG032611, R01 NS077239, RF1 NS120488, R21 AG 069475, R21 AG 058282, T32AG052909), and the NYU Alzheimer's Disease Center Pilot Grant Program (via P30 AG008051).
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Leslie A Sandusky-Beltran
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Andie Dodge
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
38
|
Blando S, Raffaele I, Chiricosta L, Valeri A, Gugliandolo A, Silvestro S, Pollastro F, Mazzon E. Cannabidiol Promotes Neuronal Differentiation Using Akt and Erk Pathways Triggered by Cb1 Signaling. Molecules 2022; 27:molecules27175644. [PMID: 36080415 PMCID: PMC9457834 DOI: 10.3390/molecules27175644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, the scientific community has started to focus on the neurogenic potential of cannabinoids. The phytocompound cannabidiol (CBD) shows different mechanism of signaling on cannabinoid receptor 1 (CB1), depending on its concentration. In this study, we investigated if CBD may induce in vitro neuronal differentiation after treatment at 5 µM and 10 µM. For this purpose, we decided to use the spinal cord × neuroblastoma hybrid cell line (NSC-34) because of its proliferative and undifferentiated state. The messenger RNAs (mRNAs) expression profiles were tested using high-throughput sequencing technology and Western blot assay was used to determine the number of main proteins in different pathways. Interestingly, the treatment shows different genes associated with neurodifferentiation statistically significant, such as Rbfox3, Tubb3, Pax6 and Eno2. The CB1 signaling pathway is responsible for neuronal differentiation at 10 µM, as suggested by the presence of p-ERK and p-AKT, but not at 5 µM. A new correlation between CBD, neurodifferentiation and retinoic acid receptor-related orphan receptors (RORs) has been observed.
Collapse
Affiliation(s)
- Santino Blando
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Ivana Raffaele
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
- Correspondence:
| |
Collapse
|
39
|
Parsons RB, Kocinaj A, Ruiz Pulido G, Prendergast SA, Parsons AE, Facey PD, Hirth F. Alpha-synucleinopathy reduces NMNAT3 protein levels and neurite formation that can be rescued by targeting the NAD+ pathway. Hum Mol Genet 2022; 31:2918-2933. [PMID: 35397003 PMCID: PMC9433734 DOI: 10.1093/hmg/ddac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease is characterized by the deposition of α-synuclein, which leads to synaptic dysfunction, the loss of neuronal connections and ultimately progressive neurodegeneration. Despite extensive research into Parkinson's disease pathogenesis, the mechanisms underlying α-synuclein-mediated synaptopathy have remained elusive. Several lines of evidence suggest that altered nicotinamide adenine dinucleotide (NAD+) metabolism might be causally related to synucleinopathies, including Parkinson's disease. NAD+ metabolism is central to the maintenance of synaptic structure and function. Its synthesis is mediated by nicotinamide mononucleotide adenylyltransferases (NMNATs), but their role in Parkinson's disease is not known. Here we report significantly decreased levels of NMNAT3 protein in the caudate nucleus of patients who have died with Parkinson's disease, which inversely correlated with the amount of monomeric α-synuclein. The detected alterations were specific and significant as the expression levels of NMNAT1, NMNAT2 and sterile alpha and TIR motif containing 1 (SARM1) were not significantly different in Parkinson's disease patients compared to controls. To test the functional significance of these findings, we ectopically expressed wild-type α-synuclein in retinoic acid-differentiated dopaminergic SH-SY5Y cells that resulted in decreased levels of NMNAT3 protein plus a neurite pathology, which could be rescued by FK866, an inhibitor of nicotinamide phosphoribosyltransferase that acts as a key enzyme in the regulation of NAD+ synthesis. Our results establish, for the first time, NMNAT3 alterations in Parkinson's disease and demonstrate in human cells that this phenotype together with neurite pathology is causally related to α-synucleinopathy. These findings identify alterations in the NAD+ biosynthetic pathway as a pathogenic mechanism underlying α-synuclein-mediated synaptopathy.
Collapse
Affiliation(s)
- Richard B Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Altin Kocinaj
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Gustavo Ruiz Pulido
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Sarah A Prendergast
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Anna E Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Paul D Facey
- Swansea University, Singleton Park Campus, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neurosciences Institute, Department of Basic & Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
40
|
Du Y, Choi S, Pilski A, Graves SM. Differential vulnerability of locus coeruleus and dorsal raphe neurons to chronic methamphetamine-induced degeneration. Front Cell Neurosci 2022; 16:949923. [PMID: 35936499 PMCID: PMC9354074 DOI: 10.3389/fncel.2022.949923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
Methamphetamine (meth) increases monoamine oxidase (MAO)-dependent mitochondrial stress in axons of substantia nigra pars compacta (SNc), and ventral tegmental area (VTA) dopamine neurons. Chronic administration of meth results in SNc degeneration and MAO inhibition is neuroprotective, whereas, the VTA is resistant to degeneration. This differential vulnerability is attributed, at least in part, to the presence of L-type Ca2+ channel-dependent mitochondrial stress in SNc but not VTA dopamine neurons. MAO is also expressed in other monoaminergic neurons such as noradrenergic locus coeruleus (LC) and serotonergic dorsal raphe (DR) neurons. The impact of meth on mitochondrial stress in LC and DR neurons is unknown. In the current study we used a genetically encoded redox biosensor to investigate meth-induced MAO-dependent mitochondrial stress in LC and DR neurons. Similar to SNc and VTA neurons, meth increased MAO-dependent mitochondrial stress in axonal but not somatic compartments of LC norepinephrine and DR serotonin neurons. Chronic meth administration (5 mg/kg; 28-day) resulted in degeneration of LC neurons and MAO inhibition was neuroprotective whereas DR neurons were resistant to degeneration. Activating L-type Ca2+ channels increased mitochondrial stress in LC but not DR axons and inhibiting L-type Ca2+ channels in vivo with isradipine prevented meth-induced LC degeneration. These data suggest that similar to recent findings in SNc and VTA dopamine neurons, the differential vulnerability between LC and DR neurons can be attributed to the presence of L-type Ca2+ channel-dependent mitochondrial stress. Taken together, the present study demonstrates that both meth-induced MAO- and L-type Ca2+ channel-dependent mitochondrial stress are necessary for chronic meth-induced neurodegeneration.
Collapse
|
41
|
Arenas-Mosquera D, Pinto A, Cerny N, Berdasco C, Cangelosi A, Geoghegan PA, Malchiodi EL, De Marzi M, Goldstein J. Cytokines expression from altered motor thalamus and behavior deficits following sublethal administration of Shiga toxin 2a involve the induction of the globotriaosylceramide receptor. Toxicon 2022; 216:115-124. [PMID: 35835234 DOI: 10.1016/j.toxicon.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
Encephalopathy associated with hemolytic uremic syndrome is produced by enterohemorrhagic E. coli (EHEC) infection, which releases the virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS). Neurological compromise is a poor prognosis and mortality factor of the disease, and the thalamus is one of the brain areas most frequently affected. We have previously demonstrated the effectiveness of anti-inflammatory drugs to ameliorate the deleterious effects of these toxins. However, the thalamic production of cytokines involved in pro-inflammatory processes has not yet been acknowledged. The aim of this work attempts to determine whether systemic sublethal Stx2a or co-administration of Stx2a with LPS are able to rise a proinflammatory profile accompanying alterations of the neurovascular unit in anterior and lateral ventral nuclei of the thalamus (VA-VL) and motor behavior in mice. After 4 days of treatment, Stx2a affected the lectin-bound microvasculature distribution while increasing the expression of GFAP in reactive astrocytes and producing aberrant NeuN distribution in degenerative neurons. In addition, increased swimming latency was observed in a motor behavioral test. All these alterations were heightened when Stx2a was co-administered with LPS. The expression of pro-inflammatory cytokines TNFα, INF-γ and IL-2 was detected in VA-VL. All these effects were concomitant with increased expression of the Stx receptor globotriaosylceramide (Gb3), which hints at receptor involvement in the neuroinflammatory process as a key finding of this study. In conclusion, Stx2a to Gb3 may be determinant in triggering a neuroinflammatory event, which may resemble clinical outcomes and should thus be considered in the development of preventive strategies.
Collapse
Affiliation(s)
- David Arenas-Mosquera
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| | - Alipio Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| | - Natacha Cerny
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología e Instituto de Estudios de La Inmunidad Humoral (IDEHU), UBA-CONICET, Junín 956 Piso 4, 1113, Ciudad de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología e Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Paraguay 2155 Piso 12, 1121, Ciudad de Buenos Aires, Argentina
| | - Clara Berdasco
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| | - Adriana Cangelosi
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), "ANLIS, Dr. Carlos G. Malbrán", Avenida Vélez Sarsfield 563, 1282, Ciudad de Buenos Aires, Argentina
| | - Patricia Andrea Geoghegan
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), "ANLIS, Dr. Carlos G. Malbrán", Avenida Vélez Sarsfield 563, 1282, Ciudad de Buenos Aires, Argentina
| | - Emilio Luis Malchiodi
- Universidad de Buenos Aires, IDEHU-CONICET, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Junín 956, Piso 4°, 1113, Ciudad de Buenos Aires, Argentina
| | - Mauricio De Marzi
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Ruta 5 y Avenida Constitución (6700) Luján, Buenos Aires, Argentina; Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES)-CONICET, Laboratorio de Inmunología, Ruta 5 y Avenida Constitución (6700) Luján, Buenos Aires, Argentina
| | - Jorge Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
42
|
NMDA and P2X7 Receptors Require Pannexin 1 Activation to Initiate and Maintain Nociceptive Signaling in the Spinal Cord of Neuropathic Rats. Int J Mol Sci 2022; 23:ijms23126705. [PMID: 35743148 PMCID: PMC9223805 DOI: 10.3390/ijms23126705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Pannexin 1 (Panx1) is involved in the spinal central sensitization process in rats with neuropathic pain, but its interaction with well-known, pain-related, ligand-dependent receptors, such as NMDA receptors (NMDAR) and P2X7 purinoceptors (P2X7R), remains largely unexplored. Here, we studied whether NMDAR- and P2X7R-dependent nociceptive signaling in neuropathic rats require the activation of Panx1 channels to generate spinal central sensitization, as assessed by behavioral (mechanical hyperalgesia) and electrophysiological (C-reflex wind-up potentiation) indexes. Administration of either a selective NMDAR agonist i.t. (NMDA, 2 mM) or a P2X7R agonist (BzATP, 150 μM) significantly increased both the mechanical hyperalgesia and the C-reflex wind-up potentiation, effects that were rapidly reversed (minutes) by i.t. administration of a selective pannexin 1 antagonist (10panx peptide, 300 μM), with the scores even reaching values of rats without neuropathy. Accordingly, 300 μM 10panx completely prevented the effects of NMDA and BzATP administered 1 h later, on mechanical hyperalgesia and C-reflex wind-up potentiation. Confocal immunofluorescence imaging revealed coexpression of Panx1 with NeuN protein in intrinsic dorsal horn neurons of neuropathic rats. The results indicate that both NMDAR- and P2X7R-mediated increases in mechanical hyperalgesia and C-reflex wind-up potentiation require neuronal Panx1 channel activation to initiate and maintain nociceptive signaling in neuropathic rats.
Collapse
|
43
|
Hosoya M, Fujioka M, Okahara J, Yoshimatsu S, Okano H, Ozawa H. Early development of the cochlea of the common marmoset, a non-human primate model. Neural Dev 2022; 17:6. [PMID: 35524278 PMCID: PMC9077934 DOI: 10.1186/s13064-022-00162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Background Fine-tuned cochlear development is essential for hearing. Owing to the difficulty in using early human fetal samples, most of our knowledge regarding cochlear development has been obtained from rodents. However, several inter-species differences in cochlear development between rodents and humans have been reported. To bridge these differences, we investigated early otic development of a non-human primate model animal, the common marmoset (Callithrix jacchus). Methods We examined 20 genes involved in early cochlear development and described the critical developmental steps for morphogenesis, which have been reported to vary between rodents and marmosets. Results The results revealed that several critical genes involved in prosensory epithelium specifications showed higher inter-species differences, suggesting that the molecular process for hair cell lineage acquisition in primates differs considerably from that of rodents. We also observed that the tempo of cochlear development was three times slower in the primate than in rodents. Conclusions Our data provide new insights into early cochlear development in primates and humans and imply that the procedures used for manipulating rodent cochlear sensory cells cannot be directly used for the research of primate cells due to the intrinsic inter-species differences in the cell fate determination program.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Molecular Genetics, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, 2-1 Hirosawa Wako, Saitama, 351-0193, Japan.,Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, 3-25-12 Tonomachi Kawasaki-ku Kawasaki, Kanagawa, 210-0821, Japan
| | - Sho Yoshimatsu
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, 2-1 Hirosawa Wako, Saitama, 351-0193, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, 2-1 Hirosawa Wako, Saitama, 351-0193, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
44
|
Rong ZJ, Cai HH, Wang H, Liu GH, Zhang ZW, Chen M, Huang YL. Ursolic Acid Ameliorates Spinal Cord Injury in Mice by Regulating Gut Microbiota and Metabolic Changes. Front Cell Neurosci 2022; 16:872935. [PMID: 35602557 PMCID: PMC9115468 DOI: 10.3389/fncel.2022.872935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 02/02/2023] Open
Abstract
Background: Spinal cord injury (SCI) damages the autonomic nervous system and affects the homeostasis of gut microbiota. Ursolic acid (UA) is a candidate drug for treating nervous system injury due to its neuroprotective and antioxidant functions. The purpose of our study was to investigate the role of UA on SCI and its mechanism. Methods: UA was administered to SCI mice and the solvent corn oil was used as control. The weight of the mice was recorded daily. Mice feces were collected 21 days after surgery for 16S rRNA-amplicon sequencing and untargeted metabolomics analysis. The expressions of NF-κB, IL-1β, and TNF-α in the spinal cord and colon tissues of mice were detected by Western blot and Enzyme-linked immunosorbent assay, respectively. Immunohistochemistry was used to analyze the expression of NeuN, NF-200, and synapsin in the spinal cord tissues. Results: UA treatment increased body weight and soleus muscle weight of SCI mice. UA treatment inhibited inflammatory response and protected neuronal activity in SCI mice. UA improved the relative abundance of Muribaculaceae, Lachnospiraceae_NK4A136_group, and Alloprevotell genus in the gut tract of SCI mice. SCI destroyed the Glutamine_and_D-glutamate_metabolism, Nitrogen_metabolism, Aminoacyl-tRNA_biosynthesis, and Taurine_and_hypotaurine_metabolism in the gut of mice, which might be alleviated by UA. Conclusions: UA treatment could inhibit SCI progression by improving the gut environment and metabolic changes, promoting synaptic regeneration and anti-inflammatory effects.
Collapse
Affiliation(s)
- Zi-Jie Rong
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Hong-Hua Cai
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Hao Wang
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Gui-Hua Liu
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Zhi-Wen Zhang
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
| | - Min Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
- *Correspondence: Min Chen Yu-Liang Huang
| | - Yu-Liang Huang
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
- *Correspondence: Min Chen Yu-Liang Huang
| |
Collapse
|
45
|
Intrinsic innervation of the ovary and its variations in the rat senescence process. J Mol Histol 2022; 53:347-356. [PMID: 35217964 PMCID: PMC9117379 DOI: 10.1007/s10735-022-10069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/20/2022] [Indexed: 11/03/2022]
Abstract
Ovarian functions decrease with perimenopause. The ovary has extrinsic innervation, but the neural influence on ovarian functions and dysfunction is not well-studied. The present study aimed to biochemically and morphometrically characterize the intrinsic neurons in ovaries from young adult, middle-aged, and senescent Long Evans CII-ZV rats (3, 12, and 15 months old, respectively). Ovaries were extracted from four rats of each age group (n = 12 total), cryopreserved, and processed for immunofluorescence studies with the primary NeuN/β-tubulin and NeuN/tyrosine hydroxylase (TH) antibodies. The soma area and number of intrinsic neurons in the ovarian stroma, surrounding follicles, corpus luteum, or cyst were evaluated. The intrinsic neurons were grouped in cluster-like shapes in ovarian structures. In senescent rats, the intrinsic neurons were mainly localized in the ovarian stroma and around the cysts. The number of neurons was lower in senescent rats than in young adult rats (p < 0.05), but the soma size was larger than in young adult rats. Immunoreactivity to TH indicated the presence of noradrenergic neurons in the ovary with the same characteristics as NeuN/β-tubulin, which indicates that they are part of the same neuronal group. Taken together, the findings indicate that the intrinsic neurons may be related to the loss of ovarian functions associated with aging.
Collapse
|
46
|
Karthik S, Huang D, Delgado Y, Laing JJ, Peltekian L, Iverson GN, Grady F, Miller RL, McCann CM, Fritzsch B, Iskusnykh IY, Chizhikov VV, Geerling JC. Molecular ontology of the parabrachial nucleus. J Comp Neurol 2022; 530:1658-1699. [PMID: 35134251 PMCID: PMC9119955 DOI: 10.1002/cne.25307] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/07/2022]
Abstract
This article has been removed because of a technical problem in the rendering of the PDF. 11 February 2022.
Collapse
Affiliation(s)
| | - Dake Huang
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | | | | | - Lila Peltekian
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | | | - Fillan Grady
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | - Rebecca L. Miller
- Department of Anatomy and NeurobiologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Corey M. McCann
- Department of Anatomy and NeurobiologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Bernd Fritzsch
- Iowa Neuroscience InstituteIowa CityIowaUSA
- Department of BiologyUniversity of IowaIowa CityIowaUSA
| | - Igor Y. Iskusnykh
- Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Victor V. Chizhikov
- Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Joel C. Geerling
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteIowa CityIowaUSA
| |
Collapse
|
47
|
Sanchez-Arias JC, Carrier M, Frederiksen SD, Shevtsova O, McKee C, van der Slagt E, Gonçalves de Andrade E, Nguyen HL, Young PA, Tremblay MÈ, Swayne LA. A Systematic, Open-Science Framework for Quantification of Cell-Types in Mouse Brain Sections Using Fluorescence Microscopy. Front Neuroanat 2021; 15:722443. [PMID: 34949993 PMCID: PMC8691181 DOI: 10.3389/fnana.2021.722443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023] Open
Abstract
The ever-expanding availability and evolution of microscopy tools has enabled ground-breaking discoveries in neurobiology, particularly with respect to the analysis of cell-type density and distribution. Widespread implementation of many of the elegant image processing tools available continues to be impeded by the lack of complete workflows that span from experimental design, labeling techniques, and analysis workflows, to statistical methods and data presentation. Additionally, it is important to consider open science principles (e.g., open-source software and tools, user-friendliness, simplicity, and accessibility). In the present methodological article, we provide a compendium of resources and a FIJI-ImageJ-based workflow aimed at improving the quantification of cell density in mouse brain samples using semi-automated open-science-based methods. Our proposed framework spans from principles and best practices of experimental design, histological and immunofluorescence staining, and microscopy imaging to recommendations for statistical analysis and data presentation. To validate our approach, we quantified neuronal density in the mouse barrel cortex using antibodies against pan-neuronal and interneuron markers. This framework is intended to be simple and yet flexible, such that it can be adapted to suit distinct project needs. The guidelines, tips, and proposed methodology outlined here, will support researchers of wide-ranging experience levels and areas of focus in neuroscience research.
Collapse
Affiliation(s)
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | | | - Olga Shevtsova
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma van der Slagt
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Hai Lam Nguyen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Penelope A Young
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Department of Molecular Medicine, Université de Laval, Québec City, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
48
|
Wang J, Rattner A, Nathans J. A transcriptome atlas of the mouse iris at single-cell resolution defines cell types and the genomic response to pupil dilation. eLife 2021; 10:e73477. [PMID: 34783308 PMCID: PMC8594943 DOI: 10.7554/elife.73477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The iris controls the level of retinal illumination by controlling pupil diameter. It is a site of diverse ophthalmologic diseases and it is a potential source of cells for ocular auto-transplantation. The present study provides foundational data on the mouse iris based on single nucleus RNA sequencing. More specifically, this work has (1) defined all of the major cell types in the mouse iris and ciliary body, (2) led to the discovery of two types of iris stromal cells and two types of iris sphincter cells, (3) revealed the differences in cell type-specific transcriptomes in the resting vs. dilated states, and (4) identified and validated antibody and in situ hybridization probes that can be used to visualize the major iris cell types. By immunostaining for specific iris cell types, we have observed and quantified distortions in nuclear morphology associated with iris dilation and clarified the neural crest contribution to the iris by showing that Wnt1-Cre-expressing progenitors contribute to nearly all iris cell types, whereas Sox10-Cre-expressing progenitors contribute only to stromal cells. This work should be useful as a point of reference for investigations of iris development, disease, and pharmacology, for the isolation and propagation of defined iris cell types, and for iris cell engineering and transplantation.
Collapse
Affiliation(s)
- Jie Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Ophthalmology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
49
|
Ogino Y, Bernas T, Greer JE, Povlishock JT. Axonal injury following mild traumatic brain injury is exacerbated by repetitive insult and is linked to the delayed attenuation of NeuN expression without concomitant neuronal death in the mouse. Brain Pathol 2021; 32:e13034. [PMID: 34729854 PMCID: PMC8877729 DOI: 10.1111/bpa.13034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/06/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Mild traumatic brain injury (mTBI) affects brain structure and function and can lead to persistent abnormalities. Repetitive mTBI exacerbates the acute phase response to injury. Nonetheless, its long‐term implications remain poorly understood, particularly in the context of traumatic axonal injury (TAI), a player in TBI morbidity via axonal disconnection, synaptic loss and retrograde neuronal perturbation. In contrast to the examination of these processes in the acute phase of injury, the chronic‐phase burden of TAI and/or its implications for retrograde neuronal perturbation or death have received little consideration. To critically assess this issue, murine neocortical tissue was investigated at acute (24‐h postinjury, 24hpi) and chronic time points (28‐days postinjury, 28dpi) after singular or repetitive mTBI induced by central fluid percussion injury (cFPI). Neurons were immunofluorescently labeled for NeuroTrace and NeuN (all neurons), p‐c‐Jun (axotomized neurons) and DRAQ5 (cell nuclei), imaged in 3D and quantified in automated manner. Single mTBI produced axotomy in 10% of neurons at 24hpi and the percentage increased after repetitive injury. The fraction of p‐c‐Jun+ neurons decreased at 28dpi but without neuronal loss (NeuroTrace), suggesting their reorganization and/or repair following TAI. In contrast, NeuN+ neurons decreased with repetitive injury at 24hpi while the corresponding fraction of NeuroTrace+ neurons decreased over 28dpi. Attenuated NeuN expression was linked exclusively to non‐axotomized neurons at 24hpi which extended to the axotomized at 28dpi, revealing a delayed response of the axotomized neurons. Collectively, we demonstrate an increased burden of TAI after repetitive mTBI, which is most striking in the acute phase response to the injury. Our finding of widespread axotomy in large fields of intact neurons contradicts the notion that repetitive mTBI elicits progressive neuronal death, rather, emphasizing the importance of axotomy‐mediated change.
Collapse
Affiliation(s)
- Yasuaki Ogino
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John E Greer
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Surgery, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
50
|
Characterisation of lamina I anterolateral system neurons that express Cre in a Phox2a-Cre mouse line. Sci Rep 2021; 11:17912. [PMID: 34504158 PMCID: PMC8429737 DOI: 10.1038/s41598-021-97105-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
A recently developed Phox2a::Cre mouse line has been shown to capture anterolateral system (ALS) projection neurons. Here, we used this line to test whether Phox2a-positive cells represent a distinct subpopulation among lamina I ALS neurons. We show that virtually all lamina I Phox2a cells can be retrogradely labelled from injections targeted on the lateral parabrachial area (LPb), and that most of those in the cervical cord also belong to the spinothalamic tract. Phox2a cells accounted for ~ 50–60% of the lamina I cells retrogradely labelled from LPb or thalamus. Phox2a was preferentially associated with smaller ALS neurons, and with those showing relatively weak neurokinin 1 receptor expression. The Phox2a cells were also less likely to project to the ipsilateral LPb. Although most Phox2a cells phosphorylated extracellular signal-regulated kinases following noxious heat stimulation, ~ 20% did not, and these were significantly smaller than the activated cells. This suggests that those ALS neurons that respond selectively to skin cooling, which have small cell bodies, may be included among the Phox2a population. Previous studies have defined neurochemical populations among the ALS cells, based on expression of Tac1 or Gpr83. However, we found that the proportions of Phox2a cells that expressed these genes were similar to the proportions reported for all lamina I ALS neurons, suggesting that Phox2a is not differentially expressed among cells belonging to these populations. Finally, we used a mouse line that resulted in membrane labelling of the Phox2a cells and showed that they all possess dendritic spines, although at a relatively low density. However, the distribution of the postsynaptic protein Homer revealed that dendritic spines accounted for a minority of the excitatory synapses on these cells. Our results confirm that Phox2a-positive cells in lamina I are ALS neurons, but show that the Phox2a::Cre line preferentially captures specific types of ALS cells.
Collapse
|