1
|
Liermann-Wooldrik KT, Kosmacek EA, Oberley-Deegan RE. Adipose Tissues Have Been Overlooked as Players in Prostate Cancer Progression. Int J Mol Sci 2024; 25:12137. [PMID: 39596205 PMCID: PMC11594286 DOI: 10.3390/ijms252212137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a common risk factor in multiple tumor types, including prostate cancer. Obesity has been associated with driving metastasis, therapeutic resistance, and increased mortality. The effect of adipose tissue on the tumor microenvironment is still poorly understood. This review aims to highlight the work conducted in the field of obesity and prostate cancer and bring attention to areas where more research is needed. In this review, we have described key differences between healthy adipose tissues and obese adipose tissues, as they relate to the tumor microenvironment, focusing on mechanisms related to metabolic changes, abnormal adipokine secretion, altered immune cell presence, and heightened oxidative stress as drivers of prostate cancer formation and progression. Interestingly, common treatment options for prostate cancer ignore the adipose tissue located near the site of the tumor. Because of this, we have outlined how excess adipose tissue potentially affects therapeutics' efficacy, such as androgen deprivation, chemotherapy, and radiation treatment, and identified possible drug targets to increase prostate cancer responsiveness to clinical treatments. Understanding how obesity affects the tumor microenvironment will pave the way for understanding why some prostate cancers become metastatic or treatment-resistant, and why patients experience recurrence.
Collapse
Affiliation(s)
| | | | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, 985870 University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.T.L.-W.)
| |
Collapse
|
2
|
Xia J, Yin S, Yu J, Wang J, Jin X, Wang Y, Liu H, Sun G. Improvement in Glycolipid Metabolism Parameters After Supplementing Fish Oil-Derived Omega-3 Fatty Acids Is Associated with Gut Microbiota and Lipid Metabolites in Type 2 Diabetes Mellitus. Nutrients 2024; 16:3755. [PMID: 39519588 PMCID: PMC11547733 DOI: 10.3390/nu16213755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to investigate the effects of fish oil-derived omega-3 polyunsaturated fatty acids (omega-3 PUFAs) on gut microbiota and serum lipid metabolites in T2DM. METHODS In a three-month, randomized, double-blind, placebo-controlled study, 110 T2DM patients received either fish oil (n = 55) or corn oil (n = 55) capsules daily. Serum lipids, glycemic parameters, gut microbiota diversity, and lipidomics were assessed. RESULTS This study found that fish oil-derived omega-3 PUFAs intervention did not significantly lower the fasting plasma glucose levels when compared with the baseline level (p > 0.05). However, serum fasting blood glucose (p = 0.039), glycosylated hemoglobin levels (p = 0.048), HOMA-IR (p = 0.022), total cholesterol (p < 0.001), triglyceride (p = 0.034), LDL cholesterol (p = 0.048), and non-HDL levels (p = 0.046) were significantly lower in the fish oil group compared with the corn oil group after three months of intervention. Also, it altered glycerophospholipid metabolism and gut microbiota. After three months, the fish oil group showed a significantly lower abundance of Desulfobacterota compared with the corn oil control group (p = 0.003), with reduced levels of Colidextribacter (p = 0.002), Ralstonia (p = 0.021), and Klebsiella (p = 0.013). Conversely, the abundance of Limosilactobacillus (p = 0.017), Lactobacillus (p = 0.011), and Haemophilus (p = 0.018) increased significantly. In addition, relevant glycolipid metabolism indicators showed significant correlations with the altered profiles of serum lipid metabolites, intestinal bacteria, and fungi. CONCLUSIONS This study highlights the impact of fish oil-derived omega-3 PUFAs on intestinal microbiota structure and function in patients with type 2 diabetes. The observed decrease in pathogenic bacterial species and the enhancement of beneficial species may have significant implications for gut health and systemic inflammation, both of which are pivotal in managing diabetes. Further research is warranted to comprehensively elucidate the long-term benefits and underlying mechanisms of these microbiota alterations.
Collapse
Affiliation(s)
- Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shiyu Yin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Junhui Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiongnan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xingyi Jin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hechun Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
3
|
Sánchez V, Baumann A, Kromm F, Yergaliyev T, Brandt A, Scholda J, Kopp F, Camarinha-Silva A, Bergheim I. Oral supplementation of choline attenuates the development of alcohol-related liver disease (ALD). Mol Med 2024; 30:181. [PMID: 39425011 PMCID: PMC11488139 DOI: 10.1186/s10020-024-00950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Chronic alcohol intake is associated with alterations of choline metabolism in various tissues. Here, we assessed if an oral choline supplementation attenuated the development of alcohol-related liver disease (ALD) in mice. METHODS Female C57BL/6 J mice (n = 8/group) were either pair-fed a liquid control diet, or a Lieber DeCarli liquid diet (5% ethanol) ± 2.7 g choline/kg diet for 29 days. Liver damage, markers of intestinal permeability and intestinal microbiota composition were determined. Moreover, the effects of choline on ethanol-induced intestinal permeability were assessed in an ex vivo model. RESULTS ALD development as determined by liver histology and assessing markers of inflammation (e.g., nitric oxide, interleukin 6 and 4-hydroxynonenal protein adducts) was attenuated by the supplementation of choline. Intestinal permeability in small intestine being significantly higher in ethanol-fed mice was at the level of controls in ethanol-fed mice receiving choline. In contrast, no effects of the choline supplementation were found on intestinal microbiota composition. Choline also significantly attenuated the ethanol-induced intestinal barrier dysfunction in small intestinal tissue ex vivo, an effect almost entirely abolished by the choline oxidase inhibitor dimbunol. CONCLUSION Our results suggest that an oral choline supplementation attenuates the development of ALD in mice and is related to a protection from intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Franziska Kromm
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Timur Yergaliyev
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Julia Scholda
- Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Vienna, Austria
| | - Florian Kopp
- Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Vienna, Austria
| | - Amélia Camarinha-Silva
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria.
| |
Collapse
|
4
|
Korbecki J, Bosiacki M, Kupnicka P, Barczak K, Ziętek P, Chlubek D, Baranowska-Bosiacka I. Biochemistry and Diseases Related to the Interconversion of Phosphatidylcholine, Phosphatidylethanolamine, and Phosphatidylserine. Int J Mol Sci 2024; 25:10745. [PMID: 39409074 PMCID: PMC11477190 DOI: 10.3390/ijms251910745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Phospholipids are crucial structural components of cells. Phosphatidylcholine and phosphatidylethanolamine (both synthesized via the Kennedy pathway) and phosphatidylserine undergo interconversion. The dysregulation of this process is implicated in various diseases. This paper discusses the role of enzymes involved in the interconversion of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, specifically phosphatidylethanolamine N-methyltransferase (PEMT), phosphatidylserine synthases (PTDSS1 and PTDSS2), and phosphatidylserine decarboxylase (PISD), with a focus on their biochemical properties. Additionally, we describe the effects of the deregulation of these enzymes and their roles in both oncological and non-oncological diseases, including nonalcoholic fatty liver disease (NAFLD), Alzheimer's disease, obesity, insulin resistance, and type II diabetes. Current knowledge on inhibitors of these enzymes as potential therapeutic agents is also reviewed, although in most cases, inhibitors are yet to be developed. The final section of this article presents a bioinformatic analysis using the GEPIA portal to explore the significance of these enzymes in cancer processes.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (P.K.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (P.K.); (D.C.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (P.K.); (D.C.)
| |
Collapse
|
5
|
Kang W, Xu X, Yang X, Wu Q, Li S, Gao K, Zeng R, Sun L, Lin X. Associations of Plasma Lipidomic Profiles with Uric Acid and Hyperuricemia Risk in Middle-Aged and Elderly Chinese. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:352-364. [PMID: 39583309 PMCID: PMC11584823 DOI: 10.1007/s43657-024-00157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 11/26/2024]
Abstract
Little is known about the links of disturbed lipid metabolism with hyperuricemia (HUA). We aimed to investigate the associations of lipidomic profiles with uric acid (UA)/HUA and their modifying factors in middle-aged and elderly Chinese. A total of 350 lipids were quantified in 2247 community-based Chinese aged 50-70 years by high-coverage targeted lipidomics. HUA was defined by plasma UA > 420 μmol/L in men or > 360 μmol/L in women. The prevalence of HUA in this population was 10.4%. After multivariable adjustment including BMI and lifestyle, 123 lipids were significantly associated with UA, predominantly glycerolipids (GLs) and glycerophospholipids (GPs). Specifically, diacylglycerol [DAG (16:0/22:5), DAG (16:0/22:6), DAG (18:1/20:5), DAG (18:1/22:6)], phosphatidylcholine [PC (16:0/20:5)), and triacylglycerol (TAG (53:0)] were the most significant lipid signatures positively associated with HUA risk, while lysophosphatidylcholine (LPC (20:2)) was inversely associated with HUA risk (p < 0.05). Network analysis also showed a positive association between TAGs/PCs/DAGs contained module and HUA risk (p < 0.01). Notably, HUA-related lipids were associated with de novo lipogenesis fatty acids, especially 16:1n-7 (Spearman correlation coefficients = 0.32-0.41, p < 0.001). Reduced rank regression showed that increased aquatic products intake was correlated to elevated HUA risk and HUA-associated lipids; while high dairy consumption was correlated with low level of HUA-associated lipids (|factor loadings| ≥ 0.2). Moreover, mediation analyses suggested that the lipid-HUA associations were partially mediated by retinol-binding protein 4 (RBP4, mediation proportion 5-14%), an adipokine linked with dyslipidemia and insulin resistance. In conclusion, disturbed specific metabolisms of GLs and GPs were associated with high prevalent HUA, partially mediated by RBP4 and/or influenced by certain dietary factors. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-024-00157-x.
Collapse
Affiliation(s)
- Wanhui Kang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshanzhi Ln., Hangzhou, 310024 China
| | - Xinming Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, 130 Dongan Rd., Shanghai, 200032 China
| | - Xiaowei Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue-Yang Rd., Shanghai, 200031 China
| | - Qingqing Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yue‑Yang Rd., Shanghai, 200031 China
| | - Shuning Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshanzhi Ln., Hangzhou, 310024 China
| | - Keran Gao
- Schulich School of Medicine and Dentistry, Western University, 1465 Richmond St, London, ON N6G 2M1 Canada
| | - Rong Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshanzhi Ln., Hangzhou, 310024 China
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yue‑Yang Rd., Shanghai, 200031 China
| | - Liang Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, 130 Dongan Rd., Shanghai, 200032 China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue-Yang Rd., Shanghai, 200031 China
| | - Xu Lin
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshanzhi Ln., Hangzhou, 310024 China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue-Yang Rd., Shanghai, 200031 China
| |
Collapse
|
6
|
Wang Y, Li Y, Nong Q, Zhang G, Liu N, Guo H, He Q, Liu L, Qu G, He B, Hu L, Jiang G. Zinc-associated phospholipid metabolic alterations and their impacts on ALT levels in workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173152. [PMID: 38735327 DOI: 10.1016/j.scitotenv.2024.173152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Zinc (Zn) is an essential trace element that is required for various biological functions, but excessive exposure to Zn is associated with many disorders and even diseases. However, the health effects and underlying mechanisms of long-term and high concentration exposure of Zn remain to be unclear. In the present study, we investigated the association between occupational exposure to Zn and liver function indicators (like alanine aminotransferase (ALT)) in workers. We found a positive association between Zn exposure and ALT level in workers. Workers having higher blood Zn (7735.65 (1159.15) μg/L) shows a 30.4 % increase in ALT level compared to those with lower blood Zn (5969.30 (989.26) μg/L). Furthermore, we explored the effects of phospholipids (PLs) and their metabolism on ALT level and discovered that Zn exposure in workers was associated with changes in PL levels and metabolism, which had further effects on increased ALT levels in workers. The study provides insights into the relationship between occupational Zn exposure and liver function, highlights the risk of long-term exposure to high concentrations of Zn, and paves the way for understanding the underlying mechanisms of Zn exposure on human health.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiling Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiying Nong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guohuan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nian Liu
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Hua Guo
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Qinghao He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Hanning ARZ, Hassanabad MF, Hashemi Z, Wang X, Chan CB. Low-fat cheese ameliorates glucose intolerance and normalizes insulin secretion in a rat model of type 2 diabetes by promoting β-cell recovery. Can J Physiol Pharmacol 2024; 102:422-428. [PMID: 38669698 DOI: 10.1139/cjpp-2023-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
We aimed to determine if cheese could reduce glucose intolerance in aged rats with overt type 2 diabetes (T2D). Male Sprague-Dawley rats treated with high-fat diet (HFD) and streptozotocin (STZ) to elicit T2D were hyperglycemic. One week after STZ injection, low-fat (LOW) or regular-fat (REG) cheese was provided for 5 weeks and compared with T2D and low-fat diet reference (REF) groups. Food intake and weight gain were similar in all groups. Oral glucose tolerance tests revealed glucose intolerance in T2D rats that was partially ameliorated by LOW but not REG. Insulin secretion during the oral glucose tolerance test was impaired in T2D and REG at 10 min (p < 0.05) but the iAUC was highly variable in all groups and statistical differences were not detected (p > 0.05). β-cell mass and pancreatic insulin content in T2D and REG were 50% lower than REF (p < 0.05), whereas LOW was not significantly different. Although isolated islets from all groups responded to glucose, the absolute amount of insulin secreted by T2D and REG was markedly reduced compared with REF, while LOW islets had relatively normal secretion. In conclusion, LOW but not REG cheese enhanced β-cell recovery from HFD/STZ treatment that led to amelioration of glucose tolerance within 5 weeks.
Collapse
Affiliation(s)
- Anik R Z Hanning
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Zohre Hashemi
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Xiaofeng Wang
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Catherine B Chan
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
8
|
Chen X, Zheng Z, Xie D, Xia L, Chen Y, Dong H, Feng Y. Serum lipid metabolism characteristics and potential biomarkers in patients with unilateral sudden sensorineural hearing loss. Lipids Health Dis 2024; 23:205. [PMID: 38951804 PMCID: PMC11218322 DOI: 10.1186/s12944-024-02189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/16/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Glycerophospholipids (GPLs) are essential for cell membrane structure and function. Sphingomyelin and its metabolites regulate cell growth, apoptosis, and stress responses. This study aimed to investigate lipid metabolism in patients experiencing sudden sensorineural hearing loss across all frequencies (AF-SSNHL). METHODS The study included 60 patients diagnosed with unilateral AF-SSNHL, among whom 30 patients had a level of hearing improvement ≥ 15 dB after 6 months of follow-up. A propensity score-matched (2:1) control group was used. Liquid chromatography‒mass spectrometry based untargeted lipidomics analysis combined with multivariate statistics was performed to investigate the lipids change. The "lipidome" R package and weighted gene co-expression network analysis (WGCNA) were utilised to assess the lipids' structural features and the association between lipids and hearing. RESULTS Lipidomics successfully differentiated the AF-SSNHL group from the control group, identifying 17 risk factors, mainly including phosphatidylcholine (PC), phosphatidylethanolamine (PE), and related metabolites. The ratios of lysophosphatidylcholine/PC, lysophosphatidylethanolamine/PE, and lysodimethylphosphatidylethanolamine/PE were upregulated, while some glycerophospholipid (GPL)-plasmalogens were downregulated in the AF-SSNHL group, indicating abnormal metabolism of GPLs. Trihexosylceramide (d34:1), PE (18:1e_22:5), and sphingomyelin (d40:3) were significantly different between responders and nonresponders, and positively correlated with hearing improvement. Additionally, the results of the WGCNA also suggested that partial GPL-plasmalogens were positively associated with hearing improvement. CONCLUSION AF-SSNHL patients exhibited abnormally high blood lipids and pronounced GPLs metabolic abnormalities. Sphingolipids and GPL-plasmalogens had an association with the level of hearing improvement. By understanding the lipid changes, clinicians may be able to predict the prognosis of hearing recovery and personalize treatment approaches.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhong Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Daoyu Xie
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Liang Xia
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hongjun Dong
- Department of Otolaryngology-Head and Neck Surgery, Zhangjiagang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu Province, China.
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| |
Collapse
|
9
|
Jin H, Xia P, Deng Z, Hou T, Li J, Li B. Effects of Konjac Glucomannan on Weight Management and Liver Health: Insights from Liver Lipidomics in Obese and Nonobese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7906-7918. [PMID: 38530902 DOI: 10.1021/acs.jafc.3c09540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Konjac glucomannan (KGM) is a water-soluble dietary fiber and is used for weight management. However, there is a lack of research on KGM for weight management in nonobese groups and the effects of high-dose KGM supplementation on liver function. This study investigated the metabolic responses to KGM intervention in obese and nonobese mice and explored the underlying mechanisms based on lipidomics. The findings demonstrated that KGM supplementation decreased body weight and mitigated lipid metabolism disorders at the mRNA and protein levels in obese mice. In contrast, no significant impact on these parameters was observed in nonobese mice. Interestingly, KGM had a more significant impact on remodeling hepatic lipid composition in obese mice compared to nonobese mice, leading to reducing harmful lipids and increasing beneficial lipids. However, high-dose KGM increased the risk of hepatocyte bile acid toxicity in obese mice and did not promote liver antioxidant status in nonobese mice. In summary, this study identified distinct metabolic responses to KGM intervention between obese and nonobese mice, providing insights for weight management using KGM.
Collapse
Affiliation(s)
- Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhichang Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Li Y, Wang X, Zhang Z, Shi L, Cheng L, Zhang X. Effect of the gut microbiome, plasma metabolome, peripheral cells, and inflammatory cytokines on obesity: a bidirectional two-sample Mendelian randomization study and mediation analysis. Front Immunol 2024; 15:1348347. [PMID: 38558794 PMCID: PMC10981273 DOI: 10.3389/fimmu.2024.1348347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background Obesity is a metabolic and chronic inflammatory disease involving genetic and environmental factors. This study aimed to investigate the causal relationship among gut microbiota abundance, plasma metabolomics, peripheral cell (blood and immune cell) counts, inflammatory cytokines, and obesity. Methods Summary statistics of 191 gut microbiota traits (N = 18,340), 1,400 plasma metabolite traits (N = 8,299), 128 peripheral cell counts (blood cells, N = 408,112; immune cells, N = 3,757), 41 inflammatory cytokine traits (N = 8,293), and 6 obesity traits were obtained from publicly available genome-wide association studies. Two-sample Mendelian randomization (MR) analysis was applied to infer the causal links using inverse variance-weighted, maximum likelihood, MR-Egger, weighted median, weighted mode, and Wald ratio methods. Several sensitivity analyses were also utilized to ensure reliable MR results. Finally, we used mediation analysis to identify the pathway from gut microbiota to obesity mediated by plasma metabolites, peripheral cells, and inflammatory cytokines. Results MR revealed a causal effect of 44 gut microbiota taxa, 281 plasma metabolites, 27 peripheral cells, and 8 inflammatory cytokines on obesity. Among them, five shared causal gut microbiota taxa belonged to the phylum Actinobacteria, order Bifidobacteriales, family Bifidobacteriaceae, genus Lachnospiraceae UCG008, and species Eubacterium nodatum group. Furthermore, we screened 42 shared causal metabolites, 7 shared causal peripheral cells, and 1 shared causal inflammatory cytokine. Based on known causal metabolites, we observed that the metabolic pathways of D-arginine, D-ornithine, linoleic acid, and glycerophospholipid metabolism were closely related to obesity. Finally, mediation analysis revealed 20 mediation relationships, including the causal pathway from gut microbiota to obesity, mediated by 17 metabolites, 2 peripheral cells, and 1 inflammatory cytokine. Sensitivity analysis represented no heterogeneity or pleiotropy in this study. Conclusion Our findings support a causal relationship among gut microbiota, plasma metabolites, peripheral cells, inflammatory cytokines, and obesity. These biomarkers provide new insights into the mechanisms underlying obesity and contribute to its prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ying Li
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Xin Wang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liang Cheng
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xue Zhang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Zhou Z, Yao Y, Sun Y, Wang X, Huang S, Hou J, Wang L, Wei F. Serum betaine and dimethylglycine in mid-pregnancy and the risk of gestational diabetes mellitus: a case-control study. Endocrine 2024:10.1007/s12020-024-03732-4. [PMID: 38448678 DOI: 10.1007/s12020-024-03732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/04/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE To investigate the associations of choline, betaine, dimethylglycine (DMG), L-carnitine, and Trimethylamine-N-oxide (TMAO) with the risk of Gestational diabetes mellitus (GDM) as well as the markers of glucose homeostasis. METHODS We performed a case-control study including 200 diagnosed GDM cases and 200 controls matched by maternal age (±2 years) and gestational age (±2 weeks). Concentrations of serum metabolites were measured by the high-performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS). RESULTS Compared to the control group, GDM group had significantly lower serum betaine concentration and betaine/choline ratio, and higher DMG concentration. Furthermore, decreased betaine concentration and betaine/choline ratio, increased DMG concentration showed significant association with the risk of GDM. In addition, serum betaine concentrations were negatively associated with blood glucose levels at 1-h post-glucose load (OGTT-1h), and both betaine and L-carnitine concentrations were positively associated with 1,5-anhydroglucitol levels. Betaine/choline ratio was negatively associated with OGTT-1h and blood glucose levels at 2-h post-glucose load (OGTT-2h) and serum choline concentrations were negatively associated with fasting blood glucose and positively associated with OGTT-2h. CONCLUSION Decreased serum betaine concentrations and betaine/choline ratio, and elevated DMG concentrations could be significant risk factors for GDM. Furthermore, betaine may be associated with blood glucose regulation and short-term glycemic fluctuations.
Collapse
Affiliation(s)
- Ziqing Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
| | - Yao Yao
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
| | - Yanan Sun
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Medical Insurance Office of Shenzhen Longgang Central Hospital, Shenzhen, Guangdong Province, China
| | - Xin Wang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Shang Huang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Shenzhen Children's Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Jianli Hou
- Department of Gynecology and Obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.
| | - Fengxiang Wei
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China.
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China.
| |
Collapse
|
12
|
Li S, Zhi Y, Mu W, Li M, Lv G. Exploring the effects of epigallocatechin gallate on lipid metabolism in the rat steatotic liver during normothermic machine perfusion: Insights from lipidomics and RNA sequencing. Eur J Pharmacol 2024; 964:176300. [PMID: 38141939 DOI: 10.1016/j.ejphar.2023.176300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Hepatic steatosis is the leading cause of discarded liver grafts. Defatting steatotic liver grafts using drug combinations during ex vivo normothermic machine perfusion (NMP) has been reported. However, the effectiveness of NMP in reducing fat content using epigallocatechin gallate (EGCG) as a single defatting agent and its effect on lipid metabolism are poorly investigated. METHODS In this study, an NMP system was set up to perfuse a steatotic liver from a rat model with 10 mM EGCG. Livers without EGCG served as NMP controls, whereas static cold-preserved livers in the University of Wisconsin medium were used as static cold storage controls. Liver enzyme, reactive oxygen species (ROS), histology, and lipid content assessments were conducted post-perfusion, complemented by lipidomics, RNA sequencing, and western blotting to determine the lipid metabolism changes. RESULTS EGCG during NMP reduced hepatocellular injury markers and defatted steatotic liver grafts. Additionally, we observed a significant increase in triglyceride (TG) content in the perfusate post-NMP in the NMP + EGCG group, suggesting TG output from the liver. Furthermore, lipidomics analysis revealed that EGCG primarily affected metabolites involved in glycerophospholipid (GP) and glycerolipid (GL) metabolism. Further, the RNA sequencing indicated the modulation of these metabolic pathways via ECGC, which was associated with the downregulated Lpin1 and Gpat3 expression. CONCLUSIONS EGCG defats steatotic livers as a single defatting agent during NMP by promoting GL and GP metabolism via decreasing Lpin1 and Agpat9 levels.
Collapse
Affiliation(s)
- Shuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
13
|
Jin T, Kang G, Song S, Lee H, Chen Y, Kim SE, Shin MS, Park YH, Lee JE. The effects of dietary self-monitoring intervention on anthropometric and metabolic changes via a mobile application or paper-based diary: a randomized trial. Nutr Res Pract 2023; 17:1238-1254. [PMID: 38053827 PMCID: PMC10694420 DOI: 10.4162/nrp.2023.17.6.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/05/2023] [Accepted: 09/21/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Weight loss via a mobile application (App) or a paper-based diary (Paper) may confer favorable metabolic and anthropometric changes. SUBJECTS/METHODS A randomized parallel trial was conducted among 57 adults whose body mass indices (BMIs) were 25 kg/m2 or greater. Participants randomly assigned to either the App group (n = 30) or the Paper group (n = 27) were advised to record their foods and supplements through App or Paper during the 12-week intervention period. Relative changes of anthropometries and biomarker levels were compared between the 2 intervention groups. Untargeted metabolic profiling was identified to discriminate metabolic profiles. RESULTS Out of the 57 participants, 54 participants completed the trial. Changes in body weight and BMI were not significantly different between the 2 groups (P = 0.11). However, body fat and low-density lipoprotein (LDL)-cholesterol levels increased in the App group but decreased in the Paper group, and the difference was statistically significant (P = 0.03 for body fat and 0.02 for LDL-cholesterol). In the metabolomics analysis, decreases in methylglyoxal and (S)-malate in pyruvate metabolism and phosphatidylcholine (lecithin) in linoleic acid metabolism from pre- to post-intervention were observed in the Paper group. CONCLUSIONS In the 12-week randomized parallel trial of weight loss through a App or a Paper, we found no significant difference in change in BMI or weight between the App and Paper groups, but improvement in body fatness and LDL-cholesterol levels only in the Paper group under the circumstances with minimal contact by dietitians or health care providers. Trial Registration Clinical Research Information Service Identifier: KCT0004226.
Collapse
Affiliation(s)
- Taiyue Jin
- Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, Goyang 10408, Korea
| | - Gyumin Kang
- School of Bio-Medical Science, Korea University, Sejong 30019, Korea
| | - Sihan Song
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Heejin Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Yang Chen
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
| | - Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong 30019, Korea
| | - Youngja H Park
- College of Pharmacy, Korea University, Sejong 30019, Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
- The Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
14
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of carnitine palmitoyltransferase 1a reduces docosahexaenoic acid-containing phospholipids and drives sexually dimorphic liver disease in mice. Mol Metab 2023; 78:101815. [PMID: 37797918 PMCID: PMC10568566 DOI: 10.1016/j.molmet.2023.101815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND AND AIMS Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the role of liver-specific CPT1a on hepatic lipid metabolism. APPROACH AND RESULTS Male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (60% kcal fat) for 15 weeks. Mice were necropsied after a 16 h fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging, kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis (Plin2, Cidec, G0S2) and in polyunsaturated fatty acid metabolism (Elovl5, Fads1, Elovl2), while only female LKO mice increased genes involved in inflammation (Ly6d, Mmp12, Cxcl2). Kinase profiling showed decreased protein kinase A activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. CONCLUSIONS Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury.
Collapse
Affiliation(s)
- Mikala M Zelows
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Corissa Cady
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nikitha Dharanipragada
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Anna E Mead
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nathan R Shelman
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Harrison A Clarke
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tara R Hawkinson
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Terrymar Medina
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - J Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samir Softic
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Gregory A Graf
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
15
|
Sun C, Holstein DJF, Garcia-Cubero N, Moulla Y, Stroh C, Dietrich A, Schön MR, Gärtner D, Lohmann T, Dressler M, Stumvoll M, Blüher M, Kovacs P, Guiu-Jurado E. The Role of Phosphatidylethanolamine N-Methyltransferase ( PEMT) and Its Waist-Hip-Ratio-Associated Locus rs4646404 in Obesity-Related Metabolic Traits and Liver Disease. Int J Mol Sci 2023; 24:16850. [PMID: 38069170 PMCID: PMC10706059 DOI: 10.3390/ijms242316850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
In previous genome-wide association studies (GWAS), genetic loci associated with obesity and impaired fat distribution (FD) have been identified. In the present study, we elucidated the role of the PEMT gene, including the waist-hip-ratio-associated single nucleotide polymorphism rs4646404, and its influence on obesity-related metabolic traits. DNA from 2926 metabolically well-characterized subjects was used for genotyping. PEMT expression was analyzed in paired visceral (vis) and subcutaneous (sc) adipose tissue (AT) from a subset of 574 individuals. Additionally, PEMT expression was examined in vis, sc AT and liver tissue in a separate cohort of 64 patients with morbid obesity and liver disease. An in vitro Pemt knockdown was conducted in murine epididymal and inguinal adipocytes. Our findings highlight tissue-specific variations in PEMT mRNA expression across the three studied tissues. Specifically, vis PEMT mRNA levels correlated significantly with T2D and were implicated in the progression of non-alcoholic steatohepatitis (NASH), in contrast to liver tissue, where no significant associations were found. Moreover, sc PEMT expression showed significant correlations with several anthropometric- and metabolic-related parameters. The rs4646404 was associated with vis AT PEMT expression and also with diabetes-related traits. Our in vitro experiments supported the influence of PEMT on adipogenesis, emphasizing its role in AT biology. In summary, our data suggest that PEMT plays a role in regulating FD and has implications in metabolic diseases.
Collapse
Affiliation(s)
- Chang Sun
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - David J. F. Holstein
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Natalia Garcia-Cubero
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Yusef Moulla
- Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Christine Stroh
- Department of General, Abdominal and Pediatric Surgery, Municipal Hospital, 07548 Gera, Germany
| | - Arne Dietrich
- Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Michael R. Schön
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, 76133 Karlsruhe, Germany
| | - Daniel Gärtner
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, 76133 Karlsruhe, Germany
| | - Tobias Lohmann
- Municipal Clinic Dresden-Neustadt, 01129 Dresden, Germany
| | | | - Michael Stumvoll
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Peter Kovacs
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Esther Guiu-Jurado
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung e.V., 85764 Neuherberg, Germany
| |
Collapse
|
16
|
Zhou X, Zhang J, Shen J, Cheng B, Bi C, Ma Q. Branched-chain amino acid modulation of lipid metabolism, gluconeogenesis, and inflammation in a finishing pig model: targeting leucine and valine. Food Funct 2023; 14:10119-10134. [PMID: 37882496 DOI: 10.1039/d3fo03899h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Branched-chain amino acids (BCAAs) play a regulatory role in adipogenesis and energy balance. Therefore, this study aimed to investigate the impact of BCAA supplements, especially leucine (Leu) and valine (Val) supplementation, on lipid metabolism and related disorders in a finishing pig model. The results demonstrated that Leu (1%) and Val decreased serum as well as hepatic lipid accumulation. Moreover, metabolomics and lipidomics analyses revealed that Leu and Val markedly downregulated the level of various lipid species in the liver. This outcome may be explained by Leu and Val promoting cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathways. Leu and Val altered the fatty acid composition in distinct adipose tissues and decreased the levels of inflammatory factors. Additionally, they significantly decreased back fat thickness, and the results of the fatty acid profiles demonstrated that Leu and Val significantly increased the levels of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) while decreasing those of saturated fatty acids (SFAs), especially in back fat and abdominal fat. Besides, Leu and Val restored glucose homeostasis by suppressing gluconeogenesis through the serine/threonine protein kinase (AKT)/transcription factor forkhead box O1 (FOXO1) signaling pathway in the liver and back fat. In summary, these results suggest that Leu and Val may serve as key regulators for modulating lipid metabolism and steatosis.
Collapse
Affiliation(s)
- Xinbo Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Junjie Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Jian Shen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Baojing Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Chongpeng Bi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Qingquan Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
Mazumdar P, Jalaluddin NSM, Nair I, Tian Tian T, Rejab NAB, Harikrishna JA. A review of Hydrocotyle bonariensis, a promising functional food and source of health-related phytochemicals. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2503-2516. [PMID: 37599849 PMCID: PMC10439074 DOI: 10.1007/s13197-022-05516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 08/22/2023]
Abstract
Hydrocotyle bonariensis is an edible herb, that is also used for traditional medical purposes. It is high in antioxidants, phenols, and flavonoids. However, there is limited information on the nutritional composition and the mechanisms by which nutritional and functional constituents of H. bonariensis affect human metabolism. With an aim to identify gaps in evidence to support the mainstream use of H. bonariensis for health and as a functional food, this review summarises current knowledge of the taxonomy, habitat characteristics, nutritional value and health-related benefits of H. bonariensis and its extracts. Ethno-medical practices for the plant are supported by pharmacological studies, yet animal model studies, clinical trials and food safety assessments are needed to support the promotion of H. bonariensis and its derivatives as superfoods and for use in the modern pharmaceutical industry.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Indiran Nair
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tan Tian Tian
- Green World Genetics Sdn. Bhd, 52200 Kuala Lumpur, Malaysia
| | - Nur Ardiyana Binti Rejab
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Chiang YP, Li Z, He M, Jones Q, Pan M, Han X, Jiang XC. Sphingomyelin synthase-related protein SMSr is a phosphatidylethanolamine phospholipase C that promotes nonalcoholic fatty liver disease. J Biol Chem 2023; 299:105162. [PMID: 37586586 PMCID: PMC10494463 DOI: 10.1016/j.jbc.2023.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Sphingomyelin synthase (SMS)-related protein (SMSr) is a phosphatidylethanolamine phospholipase C (PE-PLC) that is conserved and ubiquitous in mammals. However, its biological function is still not clear. We previously observed that SMS1 deficiency-mediated glucosylceramide accumulation caused nonalcoholic fatty liver diseases (NAFLD), including nonalcoholic steatohepatitis (NASH) and liver fibrosis. Here, first, we evaluated high-fat diet/fructose-induced NAFLD in Smsr KO and WT mice. Second, we evaluated whether SMSr deficiency can reverse SMS1 deficiency-mediated NAFLD, using Sms1/Sms2 double and Sms1/Sms2/Smsr triple KO mice. We found that SMSr/PE-PLC deficiency attenuated high-fat diet/fructose-induced fatty liver and NASH, and attenuated glucosylceramide accumulation-induced NASH, fibrosis, and tumor formation. Further, we found that SMSr/PE-PLC deficiency reduced the expression of many inflammatory cytokines and fibrosis-related factors, and PE supplementation in vitro or in vivo mimicked the condition of SMSr/PE-PLC deficiency. Furthermore, we demonstrated that SMSr/PE-PLC deficiency or PE supplementation effectively prevented membrane-bound β-catenin transfer to the nucleus, thereby preventing tumor-related gene expression. Finally, we observed that patients with NASH had higher SMSr protein levels in the liver, lower plasma PE levels, and lower plasma PE/phosphatidylcholine ratios, and that human plasma PE levels are negatively associated with tumor necrosis factor-α and transforming growth factor β1 levels. In conclusion, SMSr/PE-PLC deficiency causes PE accumulation, which can attenuate fatty liver, NASH, and fibrosis. These results suggest that SMSr/PE-PLC inhibition therapy may mitigate NAFLD.
Collapse
Affiliation(s)
- Yeun-Po Chiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Zhiqiang Li
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Mulin He
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Quiana Jones
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Meixia Pan
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, New York, USA.
| |
Collapse
|
19
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of Carnitine Palmitoyltransferase 1a Reduces Docosahexaenoic Acid-Containing Phospholipids and Drives Sexually Dimorphic Liver Disease in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553705. [PMID: 37645721 PMCID: PMC10462091 DOI: 10.1101/2023.08.17.553705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background and Aims Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the impact by which liver-specific CPT1a deletion impacts hepatic lipid metabolism. Approach and Results Six-to-eight-week old male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (HFD; 60% kcal fat) for 15 weeks. Mice were necropsied after a 16 hour fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase (ALT) levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in both whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis ( Plin2 , Cidec , G0S2 ) and in polyunsaturated fatty acid (PUFA) metabolism ( Elovl5, Fads1, Elovl2 ), while only female LKO mice increased genes involved in inflammation ( Ly6d, Mmp12, Cxcl2 ). Kinase profiling showed decreased protein kinase A (PKA) activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. Conclusions Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury. Graphical Summary
Collapse
|
20
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Epigenetic Regulation in Lean Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:12864. [PMID: 37629043 PMCID: PMC10454848 DOI: 10.3390/ijms241612864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most prominent cause of chronic liver disease worldwide, is a rapidly growing epidemic. It consists of a wide range of liver diseases, from steatosis to nonalcoholic steatohepatitis, and predisposes patients to liver fibrosis, cirrhosis, and even hepatocellular carcinoma. NAFLD is strongly correlated with obesity; however, it has been extensively reported among lean/nonobese individuals in recent years. Although lean patients demonstrate a lower prevalence of diabetes mellitus, central obesity, dyslipidemia, hypertension, and metabolic syndrome, a percentage of these patients may develop steatohepatitis, advanced liver fibrosis, and cardiovascular disease, and have increased all-cause mortality. The pathophysiological mechanisms of lean NAFLD remain vague. Studies have reported that lean NAFLD demonstrates a close association with environmental factors, genetic predisposition, and epigenetic modifications. In this review, we aim to discuss and summarize the epigenetic mechanisms involved in lean NAFLD and to introduce the interaction between epigenetic patterns and genetic or non genetic factors. Several epigenetic mechanisms have been implicated in the regulation of lean NAFLD. These include DNA methylation, histone modifications, and noncoding-RNA-mediated gene regulation. Epigenetics is an area of special interest in the setting of lean NAFLD as it could provide new insights into the therapeutic options and noninvasive biomarkers that target this under-recognized and challenging disorder.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece;
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
21
|
Capelo-Diz A, Lachiondo-Ortega S, Fernández-Ramos D, Cañas-Martín J, Goikoetxea-Usandizaga N, Serrano-Maciá M, González-Rellan MJ, Mosca L, Blazquez-Vicens J, Tinahones-Ruano A, Fondevila MF, Buyan M, Delgado TC, Gutierrez de Juan V, Ayuso-García P, Sánchez-Rueda A, Velasco-Avilés S, Fernández-Susavila H, Riobello-Suárez C, Dziechciarz B, Montiel-Duarte C, Lopitz-Otsoa F, Bizkarguenaga M, Bilbao-García J, Bernardo-Seisdedos G, Senra A, Soriano-Navarro M, Millet O, Díaz-Lagares Á, Crujeiras AB, Bao-Caamano A, Cabrera D, van Liempd S, Tamayo-Carro M, Borzacchiello L, Gomez-Santos B, Buqué X, Sáenz de Urturi D, González-Romero F, Simon J, Rodríguez-Agudo R, Ruiz A, Matute C, Beiroa D, Falcon-Perez JM, Aspichueta P, Rodríguez-Cuesta J, Porcelli M, Pajares MA, Ameneiro C, Fidalgo M, Aransay AM, Lama-Díaz T, Blanco MG, López M, Villa-Bellosta R, Müller TD, Nogueiras R, Woodhoo A, Martínez-Chantar ML, Varela-Rey M. Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting. Cell Metab 2023; 35:1373-1389.e8. [PMID: 37527658 PMCID: PMC10432853 DOI: 10.1016/j.cmet.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023]
Abstract
There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)-the principal methyl donor-acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, β-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive β-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.
Collapse
Affiliation(s)
- Alba Capelo-Diz
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - David Fernández-Ramos
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de salud Carlos III, 28029 Madrid, Spain
| | - Jorge Cañas-Martín
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Marina Serrano-Maciá
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Maria J González-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain
| | - Laura Mosca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Joan Blazquez-Vicens
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Alberto Tinahones-Ruano
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, A Coruña 15706, Spain
| | - Mason Buyan
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Virginia Gutierrez de Juan
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Paula Ayuso-García
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Alejandro Sánchez-Rueda
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Sergio Velasco-Avilés
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Héctor Fernández-Susavila
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Cristina Riobello-Suárez
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Bartlomiej Dziechciarz
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Cristina Montiel-Duarte
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Maider Bizkarguenaga
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Jon Bilbao-García
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Ganeko Bernardo-Seisdedos
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Ana Senra
- CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain
| | - Mario Soriano-Navarro
- Electron Microscopy Core Facility, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Ángel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, A Coruña 15706, Spain
| | - Ana B Crujeiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, A Coruña 15706, Spain; Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Diana Cabrera
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Sebastiaan van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Miguel Tamayo-Carro
- Nerve Disorders Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Luigi Borzacchiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Beatriz Gomez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Xabier Buqué
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Diego Sáenz de Urturi
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Francisco González-Romero
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Jorge Simon
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Asier Ruiz
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Department of Neurosciences, University of Basque Country (UPV/EHU), Centro de investigación Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Carlos Matute
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Department of Neurosciences, University of Basque Country (UPV/EHU), Centro de investigación Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Daniel Beiroa
- Experimental Biomedicine Center (CEBEGA), University of Santiago de Compostela, A Coruña 15706, Spain
| | - Juan M Falcon-Perez
- Centro de investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de salud Carlos III, 28029 Madrid, Spain; Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain
| | - Patricia Aspichueta
- Centro de investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de salud Carlos III, 28029 Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Juan Rodríguez-Cuesta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - María A Pajares
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Cristina Ameneiro
- Stem Cells and Human Diseases, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain
| | - Miguel Fidalgo
- Stem Cells and Human Diseases, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain
| | - Ana M Aransay
- Genome Analysis Plataform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Tomas Lama-Díaz
- DNA Repair and Genome Integrity Laboratory, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain
| | - Miguel G Blanco
- DNA Repair and Genome Integrity Laboratory, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain; Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, A Coruña 15706, Spain
| | - Ricardo Villa-Bellosta
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain; Metabolic Homeostasis and Vascular Calcification Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum Munich, and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, A Coruña 15706, Spain; Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain; Nerve Disorders Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain; Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain; Department of Functional Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de salud Carlos III, 28029 Madrid, Spain.
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de salud Carlos III, 28029 Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain.
| |
Collapse
|
22
|
Wu CH, Chang TY, Chen YC, Huang RFS. PEMT rs7946 Polymorphism and Sex Modify the Effect of Adequate Dietary Choline Intake on the Risk of Hepatic Steatosis in Older Patients with Metabolic Disorders. Nutrients 2023; 15:3211. [PMID: 37513629 PMCID: PMC10383596 DOI: 10.3390/nu15143211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In humans, PEMT rs7946 polymorphism exerts sex-specific effects on choline requirement and hepatic steatosis (HS) risk. Few studies have explored the interaction effect of the PEMT rs7946 polymorphism and sex on the effect of adequate choline intake on HS risk. In this cross-sectional study, we investigated the association between PEMT polymorphism and adequate choline intake on HS risk. We enrolled 250 older patients with metabolic disorders with (n = 152) or without (n = 98; control) ultrasonically diagnosed HS. An elevated PEMT rs7946 A allele level was associated with a lower HS risk and body mass index in both men and women. Dietary choline intake-assessed using a semiquantitative food frequency questionnaire-was associated with reduced obesity in men only (p for trend < 0.05). ROC curve analysis revealed that the cutoff value of energy-adjusted choline intake for HS diagnosis was 448 mg/day in women (AUC: 0.62; 95% CI: 0.57-0.77) and 424 mg/day in men (AUC: 0.63, 95% CI: 0.57-0.76). In women, GG genotype and high choline intake (>448 mg/day) were associated with a 79% reduction in HS risk (adjusted OR: 0.21; 95% CI: 0.05-0.82); notably, GA or AA genotype was associated with a reduced HS risk regardless of choline intake (p < 0.05). In men, GG genotype and high choline intake (>424 mg/day) were associated with a 3.7-fold increase in HS risk (OR: 3.7; 95% CI: 1.19-11.9). Further adjustments for a high-density lipoprotein level and body mass index mitigated the effect of choline intake on HS risk. Current dietary choline intake may be inadequate for minimizing HS risk in postmenopausal Taiwanese women carrying the PEMT rs7946 GG genotype. Older men consuming more than the recommended amount of choline may have an increased risk of nonalcoholic fatty liver disease; this risk is mediated by a high-density lipoprotein level and obesity.
Collapse
Affiliation(s)
- Chien-Hsien Wu
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Gastroenterology and Hepatology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242033, Taiwan
| | - Ting-Yu Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yen-Chu Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Rwei-Fen S Huang
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
23
|
Anari M, Montgomery MK. Phospholipid metabolism in the liver - Implications for phosphatidylserine in non-alcoholic fatty liver disease. Biochem Pharmacol 2023; 213:115621. [PMID: 37217141 DOI: 10.1016/j.bcp.2023.115621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Mammalian cells contain more than a thousand different glycerophospholipid species that are essential membrane components and signalling molecules, with phosphatidylserine (PS) giving membranes their negative surface charge. Depending on the tissue, PS is important in apoptosis, blood clotting, cancer pathogenesis, as well as muscle and brain function, processes that are dependent on the asymmetrical distribution of PS on the plasma membrane and/or the capacity of PS to act as anchorage for various signalling proteins. Recent studies have implicated hepatic PS in the progression of non-alcoholic fatty liver disease (NAFLD), either as beneficial in the context of suppressing hepatic steatosis and fibrosis, or on the other hand as a potential contributor to the progression of liver cancer. This review provides an extensive overview of hepatic phospholipid metabolism, including its biosynthetic pathways, intracellular trafficking and roles in health and disease, further taking a deeper dive into PS metabolism, including associate and causative evidence of the role of PS in advanced liver disease.
Collapse
Affiliation(s)
- Marziyeh Anari
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
24
|
DiStefano JK. The Role of Choline, Soy Isoflavones, and Probiotics as Adjuvant Treatments in the Prevention and Management of NAFLD in Postmenopausal Women. Nutrients 2023; 15:2670. [PMID: 37375574 DOI: 10.3390/nu15122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition among postmenopausal women that can lead to severe liver dysfunction and increased mortality. In recent years, research has focused on identifying potential lifestyle dietary interventions that may prevent or treat NAFLD in this population. Due to the complex and multifactorial nature of NAFLD in postmenopausal women, the disease can present as different subtypes, with varying levels of clinical presentation and variable treatment responses. By recognizing the significant heterogeneity of NAFLD in postmenopausal women, it may be possible to identify specific subsets of individuals who may benefit from targeted nutritional interventions. The purpose of this review was to examine the current evidence supporting the role of three specific nutritional factors-choline, soy isoflavones, and probiotics-as potential nutritional adjuvants in the prevention and treatment of NAFLD in postmenopausal women. There is promising evidence supporting the potential benefits of these nutritional factors for NAFLD prevention and treatment, particularly in postmenopausal women, and further research is warranted to confirm their effectiveness in alleviating hepatic steatosis in this population.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| |
Collapse
|
25
|
Sheykhsaran E, Abbasi A, Ebrahimzadeh Leylabadlo H, Sadeghi J, Mehri S, Naeimi Mazraeh F, Feizi H, Bannazadeh Baghi H. Gut microbiota and obesity: an overview of microbiota to microbial-based therapies. Postgrad Med J 2023; 99:384-402. [PMID: 35140178 DOI: 10.1136/postgradmedj-2021-141311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/15/2022] [Indexed: 12/14/2022]
Abstract
The increasing prevalence of obesity and overweight is a significant public concern throughout the world. Obesity is a complex disorder involving an excessive amount of body fat. It is not just a cosmetic concern. It is a medical challenge that increases the risk of other diseases and health circumstances, such as diabetes, heart disease, high blood pressure and certain cancers. Environmental and genetic factors are involved in obesity as a significant metabolic disorder along with diabetes. Gut microbiota (GM) has a high potential for energy harvesting from the diet. In the current review, we aim to consider the role of GM, gut dysbiosis and significant therapies to treat obesity. Dietary modifications, probiotics, prebiotics, synbiotics compounds, using faecal microbiota transplant, and other microbial-based therapies are the strategies to intervene in obesity reducing improvement. Each of these factors serves through various mechanisms including a variety of receptors and compounds to control body weight. Trial and animal investigations have indicated that GM can affect both sides of the energy-balancing equation; first, as an influencing factor for energy utilisation from the diet and also as an influencing factor that regulates the host genes and energy storage and expenditure. All the investigated articles declare the clear and inevitable role of GM in obesity. Overall, obesity and obesity-relevant metabolic disorders are characterised by specific modifications in the human microbiota's composition and functions. The emerging therapeutic methods display positive and promising effects; however, further research must be done to update and complete existing knowledge.
Collapse
Affiliation(s)
- Elham Sheykhsaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Sciences and Technology Research Institute, Faculty of Nutrition Sciences and food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Javid Sadeghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Mehri
- Department of Biochemistry and structural Biology, University of Alabama, Birmingham, Alabama, USA
| | - Fariba Naeimi Mazraeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Harada S, Taketomi Y, Aiba T, Kawaguchi M, Hirabayashi T, Uranbileg B, Kurano M, Yatomi Y, Murakami M. The Lysophospholipase PNPLA7 Controls Hepatic Choline and Methionine Metabolism. Biomolecules 2023; 13:biom13030471. [PMID: 36979406 PMCID: PMC10046082 DOI: 10.3390/biom13030471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The in vivo roles of lysophospholipase, which cleaves a fatty acyl ester of lysophospholipid, remained unclear. Recently, we have unraveled a previously unrecognized physiological role of the lysophospholipase PNPLA7, a member of the Ca2+-independent phospholipase A2 (iPLA2) family, as a key regulator of the production of glycerophosphocholine (GPC), a precursor of endogenous choline, whose methyl groups are preferentially fluxed into the methionine cycle in the liver. PNPLA7 deficiency in mice markedly decreases hepatic GPC, choline, and several metabolites related to choline/methionine metabolism, leading to various symptoms reminiscent of methionine shortage. Overall metabolic alterations in the liver of Pnpla7-null mice in vivo largely recapitulate those in methionine-deprived hepatocytes in vitro. Reduction of the methyl donor S-adenosylmethionine (SAM) after methionine deprivation decreases the methylation of the PNPLA7 gene promoter, relieves PNPLA7 expression, and thereby increases GPC and choline levels, likely as a compensatory adaptation. In line with the view that SAM prevents the development of liver cancer, the expression of PNPLA7, as well as several enzymes in the choline/methionine metabolism, is reduced in human hepatocellular carcinoma. These findings uncover an unexplored role of a lysophospholipase in hepatic phospholipid catabolism coupled with choline/methionine metabolism.
Collapse
Affiliation(s)
- Sayaka Harada
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toshiki Aiba
- Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Mai Kawaguchi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Correspondence: ; Tel.: +81-3-5841-1431
| |
Collapse
|
27
|
Hirabayashi T, Kawaguchi M, Harada S, Mouri M, Takamiya R, Miki Y, Sato H, Taketomi Y, Yokoyama K, Kobayashi T, Tokuoka SM, Kita Y, Yoda E, Hara S, Mikami K, Nishito Y, Kikuchi N, Nakata R, Kaneko M, Kiyonari H, Kasahara K, Aiba T, Ikeda K, Soga T, Kurano M, Yatomi Y, Murakami M. Hepatic phosphatidylcholine catabolism driven by PNPLA7 and PNPLA8 supplies endogenous choline to replenish the methionine cycle with methyl groups. Cell Rep 2023; 42:111940. [PMID: 36719796 DOI: 10.1016/j.celrep.2022.111940] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/31/2023] Open
Abstract
Choline supplies methyl groups for regeneration of methionine and the methyl donor S-adenosylmethionine in the liver. Here, we report that the catabolism of membrane phosphatidylcholine (PC) into water-soluble glycerophosphocholine (GPC) by the phospholipase/lysophospholipase PNPLA8-PNPLA7 axis enables endogenous choline stored in hepatic PC to be utilized in methyl metabolism. PNPLA7-deficient mice show marked decreases in hepatic GPC, choline, and several metabolites related to the methionine cycle, accompanied by various signs of methionine insufficiency, including growth retardation, hypoglycemia, hypolipidemia, increased energy consumption, reduced adiposity, increased fibroblast growth factor 21 (FGF21), and an altered histone/DNA methylation landscape. Moreover, PNPLA8-deficient mice recapitulate most of these phenotypes. In contrast to wild-type mice fed a methionine/choline-deficient diet, both knockout strains display decreased hepatic triglyceride, likely via reductions of lipogenesis and GPC-derived glycerol flux. Collectively, our findings highlight the biological importance of phospholipid catabolism driven by PNPLA8/PNPLA7 in methyl group flux and triglyceride synthesis in the liver.
Collapse
Affiliation(s)
- Tetsuya Hirabayashi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Mai Kawaguchi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Sayaka Harada
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Misa Mouri
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Biology, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Rina Takamiya
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kohei Yokoyama
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tetsuyuki Kobayashi
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Kyohei Mikami
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Norihito Kikuchi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara, 630-8506, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kohji Kasahara
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Toshiki Aiba
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kazutaka Ikeda
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
28
|
Barboza TK, Susta L, zur Linden A, Gardhouse S, Beaufrère H. Association of plasma metabolites and diagnostic imaging findings with hepatic lipidosis in bearded dragons (Pogona vitticeps) and effects of gemfibrozil therapy. PLoS One 2023; 18:e0274060. [PMID: 36735707 PMCID: PMC9897564 DOI: 10.1371/journal.pone.0274060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/21/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES To evaluate the association between plasma metabolites, biochemical analytes, diagnostic imaging findings, and the histologic diagnosis of hepatic lipidosis in bearded dragons. To assess the effects of gemfibrozil therapy on hepatic lipid accumulation and associated diagnostic tests. ANIMALS Fourteen bearded dragons (Pogona vitticeps) with varying severity of hepatic lipid accumulation (with and without hepatic lipidosis) were included. PROCEDURES Animals underwent coelomic ultrasound, computed tomography (CT) scans, and coelioscopic hepatic biopsies. Clinical pathology tests included lipidologic tests, hepatic biomarkers, and mass spectrometry-based metabolomics. Animals were medicated with gemfibrozil 6mg/kg orally once a day for 2 months in a randomized blinded clinical trial prior to repeating previous diagnostic testing. RESULTS Hounsfield units on CT were negatively associated with increased hepatic vacuolation, while ultrasound and gross evaluation of the liver were not reliable. Beta-hydroxybutyric-acid (BHBA) concentrations were significantly associated with hepatic lipidosis. Metabolomics and lipidomics data found BHBA and succinic acid to be potential biomarkers for diagnosing hepatic lipidosis in bearded dragons. Succinic acid concentrations were significantly lower in the gemfibrozil treatment group. There was a tendency for improvement in the biomarkers and reduced hepatic fat in bearded dragons with hepatic lipidosis when treated with gemfibrozil, though the improvement was not statistically significant. CONCLUSIONS These findings provide information on the antemortem assessment of hepatic lipidosis in bearded dragons and paves the way for further research in diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Trinita K. Barboza
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Alex zur Linden
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sara Gardhouse
- Health Sciences Center, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Hugues Beaufrère
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
29
|
Trzaskalski NA, Vulesevic B, Nguyen MA, Jeraj N, Fadzeyeva E, Morrow NM, Locatelli CA, Travis N, Hanson AA, Nunes JR, O’Dwyer C, van der Veen JN, Lorenzen-Schmidt I, Seymour R, Pulente SM, Clément AC, Crawley AM, Jacobs RL, Doyle MA, Cooper CL, Kim KH, Fullerton MD, Mulvihill EE. Hepatocyte-derived DPP4 regulates portal GLP-1 bioactivity, modulates glucose production, and when absent influences NAFLD progression. JCI Insight 2023; 8:154314. [PMID: 36472923 PMCID: PMC9977314 DOI: 10.1172/jci.insight.154314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Elevated circulating dipeptidyl peptidase-4 (DPP4) is a biomarker for liver disease, but its involvement in gluconeogenesis and metabolic associated fatty liver disease progression remains unclear. Here, we identified that DPP4 in hepatocytes but not TEK receptor tyrosine kinase-positive endothelial cells regulates the local bioactivity of incretin hormones and gluconeogenesis. However, the complete absence of DPP4 (Dpp4-/-) in aged mice with metabolic syndrome accelerates liver fibrosis without altering dyslipidemia and steatosis. Analysis of transcripts from the livers of Dpp4-/- mice displayed enrichment for inflammasome, p53, and senescence programs compared with littermate controls. High-fat, high-cholesterol feeding decreased Dpp4 expression in F4/80+ cells, with only minor changes in immune signaling. Moreover, in a lean mouse model of severe nonalcoholic fatty liver disease, phosphatidylethanolamine N-methyltransferase mice, we observed a 4-fold increase in circulating DPP4, in contrast with previous findings connecting DPP4 release and obesity. Last, we evaluated DPP4 levels in patients with hepatitis C infection with dysglycemia (Homeostatic Model Assessment of Insulin Resistance > 2) who underwent direct antiviral treatment (with/without ribavirin). DPP4 protein levels decreased with viral clearance; DPP4 activity levels were reduced at long-term follow-up in ribavirin-treated patients; but metabolic factors did not improve. These data suggest elevations in DPP4 during hepatitis C infection are not primarily regulated by metabolic disturbances.
Collapse
Affiliation(s)
- Natasha A. Trzaskalski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Branka Vulesevic
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - My-Anh Nguyen
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Natasha Jeraj
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Evgenia Fadzeyeva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Nadya M. Morrow
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Cassandra A.A. Locatelli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Nicole Travis
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Antonio A. Hanson
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Julia R.C. Nunes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Conor O’Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Jelske N. van der Veen
- Li Ka Shing (LKS) Centre for Health Research Innovation, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | - Rick Seymour
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Serena M. Pulente
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Andrew C. Clément
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Angela M. Crawley
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - René L. Jacobs
- Li Ka Shing (LKS) Centre for Health Research Innovation, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Mary-Anne Doyle
- Division of Endocrinology & Metabolism, Department of Medicine
| | - Curtis L. Cooper
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Division of Infectious Diseases, Department of Medicine, and
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Erin E. Mulvihill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Montréal Diabetes Research Group, Montréal, Québec, Canada
| |
Collapse
|
30
|
Cao P, Wu Y, Li Y, Xiang L, Cheng B, Hu Y, Jiang X, Wang Z, Wu S, Si L, Yang Q, Xu J, Huang J. The important role of glycerophospholipid metabolism in the protective effects of polyphenol-enriched Tartary buckwheat extract against alcoholic liver disease. Food Funct 2022; 13:10415-10425. [PMID: 36149348 DOI: 10.1039/d2fo01518h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alcoholic liver disease (ALD) is a mounting public health problem with significant medical, economic and social burdens. Tartary buckwheat (F. tataricum (L.) Gaertn, bitter buckwheat) is a kind of healthy and nutritious food, which has been demonstrated to protect against ALD, but the underlying mechanism has not been fully studied. Herein, we aimed to elucidate the beneficial effects of Tartary buckwheat extract (mainly composed of polyphenols including rutin, quercetin, kaempferol and kaempferol-3-O-rutinoside) in terms of lipid metabolism with the aid of lipidomic analysis. In our study, we employed C57BL/6J mice and a Lieber-DeCarli alcohol liquid diet to construct an ALD model and found that Tartary buckwheat extract was able to prevent ALD-induced histopathological lesions, liver injury and abnormal plasma lipid levels. These beneficial effects might be attributed to the regulation of energy metabolism-related genes (SIRT1, LKB1 and AMPK), lipid synthesis-related genes (ACC, SREBP1c and HMGR) and lipid oxidation-related genes (PPARα, CPT1 and CPT2). In addition, lipidomic profiling and KEGG pathway analysis showed that glycerophospholipid metabolism contributed the most to elucidating the regulatory mechanism of Tartary buckwheat extract. In specific, chronic ethanol intake reduced the level of phosphatidylcholines (PC) and increased the level of phosphatidylethanolamines (PE) in the liver, resulting in a decrease in the PC/PE ratio, which could be all significantly restored by Tartary buckwheat extract intervention, indicating that the Tartary buckwheat extract might regulate PC/PE homeostasis to exert its lipid-lowering effect. Overall, we demonstrated that Tartary buckwheat extract could prevent ALD by modulating hepatic glycerophospholipid metabolism, providing the theoretical basis for its further exploitation as a medical plant or nutritional food.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Yue Wu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Yaping Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Liping Xiang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Bingyu Cheng
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yixin Hu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xin Jiang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhe Wang
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qiang Yang
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Jian Xu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
31
|
Zhou Q, Zhang F, Kerbl-Knapp J, Korbelius M, Kuentzel KB, Vujić N, Akhmetshina A, Hörl G, Paar M, Steyrer E, Kratky D, Madl T. Phosphatidylethanolamine N-Methyltransferase Knockout Modulates Metabolic Changes in Aging Mice. Biomolecules 2022; 12:1270. [PMID: 36139111 PMCID: PMC9496051 DOI: 10.3390/biom12091270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/11/2022] Open
Abstract
Phospholipid metabolism, including phosphatidylcholine (PC) biosynthesis, is crucial for various biological functions and is associated with longevity. Phosphatidylethanolamine N-methyltransferase (PEMT) is a protein that catalyzes the biosynthesis of PC, the levels of which change in various organs such as the brain and kidneys during aging. However, the role of PEMT for systemic PC supply is not fully understood. To address how PEMT affects aging-associated energy metabolism in tissues responsible for nutrient absorption, lipid storage, and energy consumption, we employed NMR-based metabolomics to study the liver, plasma, intestine (duodenum, jejunum, and ileum), brown/white adipose tissues (BAT and WAT), and skeletal muscle of young (9-10 weeks) and old (91-132 weeks) wild-type (WT) and PEMT knockout (KO) mice. We found that the effect of PEMT-knockout was tissue-specific and age-dependent. A deficiency of PEMT affected the metabolome of all tissues examined, among which the metabolome of BAT from both young and aged KO mice was dramatically changed in comparison to the WT mice, whereas the metabolome of the jejunum was only slightly affected. As for aging, the absence of PEMT increased the divergence of the metabolome during the aging of the liver, WAT, duodenum, and ileum and decreased the impact on skeletal muscle. Overall, our results suggest that PEMT plays a previously underexplored, critical role in both aging and energy metabolism.
Collapse
Affiliation(s)
- Qishun Zhou
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| | - Fangrong Zhang
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
- Key Laboratory of Gastrointestinal Cancer, Fujian Medical University, Ministry of Education, Fuzhou 350122, China
| | - Jakob Kerbl-Knapp
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Katharina Barbara Kuentzel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Gerd Hörl
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Margret Paar
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Steyrer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Tobias Madl
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
32
|
Guerrero L, Paradela A, Corrales FJ. Targeted Proteomics for Monitoring One-Carbon Metabolism in Liver Diseases. Metabolites 2022; 12:metabo12090779. [PMID: 36144184 PMCID: PMC9501948 DOI: 10.3390/metabo12090779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Liver diseases cause approximately 2 million deaths per year worldwide and had an increasing incidence during the last decade. Risk factors for liver diseases include alcohol consumption, obesity, diabetes, the intake of hepatotoxic substances like aflatoxin, viral infection, and genetic determinants. Liver cancer is the sixth most prevalent cancer and the third in mortality (second in males). The low survival rate (less than 20% in 5 years) is partially explained by the late diagnosis, which remarks the need for new early molecular biomarkers. One-carbon metabolism integrates folate and methionine cycles and participates in essential cell processes such as redox homeostasis maintenance and the regulation of methylation reactions through the production of intermediate metabolites such as cysteine and S-Adenosylmethionine. One-carbon metabolism has a tissue specific configuration, and in the liver, the participating enzymes are abundantly expressed—a requirement to maintain hepatocyte differentiation. Targeted proteomics studies have revealed significant differences in hepatocellular carcinoma and cirrhosis, suggesting that monitoring one-carbon metabolism enzymes can be useful for stratification of liver disease patients and to develop precision medicine strategies for their clinical management. Here, reprogramming of one-carbon metabolism in liver diseases is described and the role of mass spectrometry to follow-up these alterations is discussed.
Collapse
Affiliation(s)
- Laura Guerrero
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Fernando J. Corrales
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-585-46-96
| |
Collapse
|
33
|
Piras IS, Raju A, Don J, Schork NJ, Gerhard GS, DiStefano JK. Hepatic PEMT Expression Decreases with Increasing NAFLD Severity. Int J Mol Sci 2022; 23:ijms23169296. [PMID: 36012560 PMCID: PMC9409182 DOI: 10.3390/ijms23169296] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Choline deficiency causes hepatic fat accumulation, and is associated with a higher risk of nonalcoholic fatty liver disease (NAFLD) and more advanced NAFLD-related hepatic fibrosis. Reduced expression of hepatic phosphatidylethanolamine N-methyltransferase (PEMT), which catalyzes the production of phosphatidylcholine, causes steatosis, inflammation, and fibrosis in mice. In humans, common PEMT variants impair phosphatidylcholine synthesis, and are associated with NAFLD risk. We investigated hepatic PEMT expression in a large cohort of patients representing the spectrum of NAFLD, and examined the relationship between PEMT genetic variants and gene expression. Hepatic PEMT expression was reduced in NAFLD patients with inflammation and fibrosis (i.e., nonalcoholic steatohepatitis or NASH) compared to participants with normal liver histology (β = −1.497; p = 0.005). PEMT levels also declined with increasing severity of fibrosis with cirrhosis < incomplete cirrhosis < bridging fibrosis (β = −1.185; p = 0.011). Hepatic PEMT expression was reduced in postmenopausal women with NASH compared to those with normal liver histology (β = −3.698; p = 0.030). We detected a suggestive association between rs7946 and hepatic fibrosis (p = 0.083). Although none of the tested variants were associated with hepatic PEMT expression, computational fine mapping analysis indicated that rs4646385 may impact PEMT levels in the liver. Hepatic PEMT expression decreases with increasing severity of NAFLD in obese individuals and postmenopausal women, and may contribute to disease pathogenesis in a subset of NASH patients.
Collapse
Affiliation(s)
- Ignazio S. Piras
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Anish Raju
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Janith Don
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | - Glenn S. Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
| | - Johanna K. DiStefano
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
- Correspondence:
| |
Collapse
|
34
|
Xu R, Pan J, Zhou W, Ji G, Dang Y. Recent advances in lean NAFLD. Biomed Pharmacother 2022; 153:113331. [PMID: 35779422 DOI: 10.1016/j.biopha.2022.113331] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/09/2023] Open
Abstract
As the predominant type of chronic liver disease, the growing prevalence of nonalcoholic fatty liver disease (NAFLD) has become a concern worldwide. Although obesity plays the most pivotal role in NAFLD, approximately 10-20% of individuals with NAFLD who are not overweight or obese (BMI < 25 kg/m2, or BMI < 23 kg/m2 in Asians) have "lean NAFLD." Lean individuals with NAFLD have a lower prevalence of diabetes, hypertension, hypertriglyceridemia, central obesity, and metabolic syndrome than nonlean individuals with NAFLD, but higher fibrosis scores and rates of cardiovascular morbidity and all-cause mortality in advanced stages. The pathophysiological mechanisms of lean NAFLD remain poorly understood. Studies have shown that lean NAFLD is more correlated with factors such as environmental, genetic susceptibility, and epigenetic regulation. This review will examine the way in which the research progress and characteristic of lean NAFLD, and explore the function of epigenetic modification to provide the basis for the clinical treatment and diagnosis of lean NAFLD.
Collapse
Affiliation(s)
- Ruohui Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jiashu Pan
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Department of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
35
|
Gao J, Xu W, Zeng T, Tian Y, Wu C, Liu S, Zhao Y, Zhou S, Lin X, Cao H, Lu L. Genome-Wide Association Study of Egg-Laying Traits and Egg Quality in LingKun Chickens. Front Vet Sci 2022; 9:877739. [PMID: 35795788 PMCID: PMC9251537 DOI: 10.3389/fvets.2022.877739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Egg production is the most important trait of laying hens. To identify molecular markers and candidate genes associated with egg production and quality, such as body weight at first oviposition (BWF), the number of eggs produced in 500 days (EN500), egg weight (EW), egg shell thickness (EST), egg shell strength (ESS), and Haugh unit (HU), a genome-wide analysis was performed in 266 LingKun Chickens. The results showed that thirty-seven single nucleotide polymorphisms (SNPs) were associated with all traits (p < 9.47 × 10−8, Bonferroni correction). These SNPs were located in close proximity to or within the sequence of the thirteen candidate genes, such as Galanin And GMAP Prepropeptide (GAL), Centromere Protein (CENPF), Glypican 2 (GPC2), Phosphatidylethanolamine N-Methyltransferase (PEMT), Transcription Factor AP-2 Delta (TFAP2D), and Carboxypeptidase Q (CPQ) gene related to egg-laying and Solute Carrier Family 5 Member 7 (SLC5A7), Neurocalcin Delta (NCALD), Proteasome 20S Subunit Beta 2 (PSMB2), Slit Guidance Ligand 3 (SLIT3), and Tubulin Tyrosine Ligase Like 7 (TTLL7) genes related to egg quality. Interestingly, one of the genes involved in bone formation (SLIT3) was identified as a candidate gene for ESS. Our candidate genes and SNPs associated with egg-laying traits were significant for molecular breeding of egg-laying traits and egg quality in LingKun chickens.
Collapse
Affiliation(s)
- Jinfeng Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chunqin Wu
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Suzhen Liu
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Yan Zhao
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Shuhe Zhou
- Wenzhou Golden Land Agricultural Development Co., Ltd., Wenzhou, China
| | - Xinqin Lin
- Wenzhou Golden Land Agricultural Development Co., Ltd., Wenzhou, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Hongguo Cao
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- *Correspondence: Lizhi Lu
| |
Collapse
|
36
|
Reed D, Kumar D, Kumar S, Raina K, Punia R, Kant R, Saba L, Cruickshank-Quinn C, Tabakoff B, Reisdorph N, Edwards MG, Wempe M, Agarwal C, Agarwal R. Transcriptome and metabolome changes induced by bitter melon ( Momordica charantia)- intake in a high-fat diet induced obesity model. J Tradit Complement Med 2022; 12:287-301. [PMID: 35493312 PMCID: PMC9039170 DOI: 10.1016/j.jtcme.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background and aim Metabolic syndrome (MetS) is a complex disease of physiological imbalances interrelated to abnormal metabolic conditions, such as abdominal obesity, type II diabetes, dyslipidemia and hypertension. In the present pilot study, we investigated the nutraceutical bitter melon (Momordica charantia L) -intake induced transcriptome and metabolome changes and the converging metabolic signaling networks underpinning its inhibitory effects against MetS-associated risk factors. Experimental procedure Metabolic effects of lyophilized bitter melon juice (BMJ) extract (oral gavage 200 mg/kg/body weight-daily for 40 days) intake were evaluated in diet-induced obese C57BL/6J male mice [fed-high fat diet (HFD), 60 kcal% fat]. Changes in a) serum levels of biochemical parameters, b) gene expression in the hepatic transcriptome (microarray analysis using Affymetrix Mouse Exon 1.0 ST arrays), and c) metabolite abundance levels in lipid-phase plasma [liquid chromatography mass spectrometry (LC-MS)-based metabolomics] after BMJ intervention were assessed. Results and conclusion BMJ-mediated changes showed a positive trend towards enhanced glucose homeostasis, vitamin D metabolism and suppression of glycerophospholipid metabolism. In the liver, nuclear peroxisome proliferator-activated receptor (PPAR) and circadian rhythm signaling, as well as bile acid biosynthesis and glycogen metabolism targets were modulated by BMJ (p < 0.05). Thus, our in-depth transcriptomics and metabolomics analysis suggests that BMJ-intake lowers susceptibility to the onset of high-fat diet associated MetS risk factors partly through modulation of PPAR signaling and its downstream targets in circadian rhythm processes to prevent excessive lipogenesis, maintain glucose homeostasis and modify immune responses signaling.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- BMJ, bitter melon juice
- Bitter melon
- DIO, diet-induced obese
- Diet intervention
- HDL, high density lipoprotein (cholesterol)
- HFD, high fat diet
- HMDB, Human Metabolome Database
- High fat diet-induced obesity
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LC-MS, liquid-chromatography mass spectrometry
- LDL, low density lipoprotein (cholesterol)
- MetS, Metabolic syndrome
- Metabolic syndrome
- Momordica charantia
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PPARs, Peroxisome proliferator-activated receptors
Collapse
Affiliation(s)
- Dominique Reed
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sushil Kumar
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Reenu Punia
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charmion Cruickshank-Quinn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Michael Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
37
|
Gosis BS, Wada S, Thorsheim C, Li K, Jung S, Rhoades JH, Yang Y, Brandimarto J, Li L, Uehara K, Jang C, Lanza M, Sanford NB, Bornstein MR, Jeong S, Titchenell PM, Biddinger SB, Arany Z. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 2022; 376:eabf8271. [PMID: 35420934 PMCID: PMC9811404 DOI: 10.1126/science.abf8271] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) remain without effective therapies. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is a potential therapeutic target, but conflicting interpretations have been proposed for how mTORC1 controls lipid homeostasis. We show that selective inhibition of mTORC1 signaling in mice, through deletion of the RagC/D guanosine triphosphatase-activating protein folliculin (FLCN), promotes activation of transcription factor E3 (TFE3) in the liver without affecting other mTORC1 targets and protects against NAFLD and NASH. Disease protection is mediated by TFE3, which both induces lipid consumption and suppresses anabolic lipogenesis. TFE3 inhibits lipogenesis by suppressing proteolytic processing and activation of sterol regulatory element-binding protein-1c (SREBP-1c) and by interacting with SREBP-1c on chromatin. Our data reconcile previously conflicting studies and identify selective inhibition of mTORC1 as a potential approach to treat NASH and NAFLD.
Collapse
Affiliation(s)
- Bridget S Gosis
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shogo Wada
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chelsea Thorsheim
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Joshua H Rhoades
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yifan Yang
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey Brandimarto
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Matthew Lanza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan B Sanford
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc R Bornstein
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunhye Jeong
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications. Biochem Pharmacol 2022; 200:115033. [PMID: 35395242 DOI: 10.1016/j.bcp.2022.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
As a chronic metabolic disease affecting epidemic proportions worldwide, the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD) is not clear yet. There is also a lack of precise biomarkers and specific medicine for the diagnosis and treatment of NAFLD. Methionine metabolic cycle, which is critical for the maintaining of cellular methylation and redox state, is involved in the pathophysiology of NAFLD. However, the molecular basis and mechanism of methionine metabolism in NAFLD are not completely understood. Here, we mainly focus on specific enzymes that participates in methionine cycle, to reveal their interconnections with NAFLD, in order to recognize the pathogenesis of NAFLD from a new angle and at the same time, explore the clinical characteristics and therapeutic strategies.
Collapse
Affiliation(s)
- Haoyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| |
Collapse
|
39
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) can develop in lean individuals. Despite a better metabolic profile, the risk of disease progression to hepatic inflammation, fibrosis, and decompensated cirrhosis in the lean is similar to that in obesity-related NAFLD and lean individuals may experience more severe hepatic consequences and higher mortality relative to those with a higher body mass index (BMI). In the absence of early symptoms and abnormal laboratory findings, lean individuals are not likely to be screened for NAFLD or related comorbidities; however, given the progressive nature of the disease and the increased risk of morbidity and mortality, a clearer understanding of the natural history of NAFLD in lean individuals, as well as efforts to raise awareness of the potential health risks of NAFLD in lean individuals, are warranted. In this review, we summarize available data on NAFLD prevalence, clinical characteristics, outcomes, and mortality in lean individuals and discuss factors that may contribute to the development of NAFLD in this population, including links between dietary and genetic factors, menopausal status, and ethnicity. We also highlight the need for greater representation of lean individuals in NAFLD-related clinical trials, as well as more studies to better characterize lean NAFLD, develop improved screening algorithms, and determine specific treatment strategies based on underlying etiology.
Collapse
Affiliation(s)
- Johanna K. DiStefano
- Diabetes and Fibrotic Disease Research Unit, Translational Genomics Research Institute, Phoenix, USA
| | - Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA 19140 USA
| |
Collapse
|
40
|
Zhang LY, Shi HH, Wang CC, Wang YM, Wei ZH, Xue CH, Mao XZ, Zhang TT. Targeted Lipidomics Reveal the Effects of Different Phospholipids on the Phospholipid Profiles of Hepatic Mitochondria and Endoplasmic Reticulum in High-Fat/High-Fructose-Diet-Induced Nonalcoholic Fatty Liver Disease Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3529-3540. [PMID: 35212227 DOI: 10.1021/acs.jafc.1c07538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lipid alternation in mitochondria and endoplasmic reticulum (ER) might be indicative of their abnormal morphology and function, which contribute to development of nonalcoholic fatty liver disease (NAFLD). However, the influence of dietary phospholipids (PLs) on the PL composition of the organellar membrane is largely unknown. High-fat/high-fructose (HFHF)-diet-induced NAFLD mice were administrated with different PLs (2%, w/w) with specific fatty acids and headgroups, including eicosapentaenoic acid (EPA)-phosphatidylcholine (PC)/phosphatidylethanolamine (PE)/phosphatidylserine (PS), docosahexaenoic acid (DHA)-PC/PE/PS, egg-PC/PE/PS, and soy-PC/PE/PS. After 8 weeks of feeding, PLs dramatically decreased hepatic lipid accumulation, in which EPA/DHA-PS had the best efficiency. Furthermore, lipidomic analysis revealed that the HFHF diet narrowed the difference in PL composition between mitochondria and ER, significantly reduced the PC/PE ratio, and changed the unsaturation of cardiolipin in mitochondria. Dietary PLs reversed these alterations. Heatmap analysis indicated that dietary PL groups containing the same fatty acids clustered together. Moreover, dietary PLs significantly increased the ratio of PC/PE in both hepatic mitochondria and ER, especially EPA-PE. This study showed that fatty acid composition of PLs might represent greater impact on the PL composition of the organellar membrane than headgroups.
Collapse
Affiliation(s)
- Ling-Yu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Zi-Hao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Xiang-Zhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| |
Collapse
|
41
|
Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis. Nat Commun 2022; 13:1096. [PMID: 35232994 PMCID: PMC8888704 DOI: 10.1038/s41467-022-28749-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Altered methionine metabolism is associated with weight gain in obesity. The methionine adenosyltransferase (MAT), catalyzing the first reaction of the methionine cycle, plays an important role regulating lipid metabolism. However, its role in obesity, when a plethora of metabolic diseases occurs, is still unknown. By using antisense oligonucleotides (ASO) and genetic depletion of Mat1a, here, we demonstrate that Mat1a deficiency in diet-induce obese or genetically obese mice prevented and reversed obesity and obesity-associated insulin resistance and hepatosteatosis by increasing energy expenditure in a hepatocyte FGF21 dependent fashion. The increased NRF2-mediated FGF21 secretion induced by targeting Mat1a, mobilized plasma lipids towards the BAT to be catabolized, induced thermogenesis and reduced body weight, inhibiting hepatic de novo lipogenesis. The beneficial effects of Mat1a ASO were abolished following FGF21 depletion in hepatocytes. Thus, targeting Mat1a activates the liver-BAT axis by increasing NRF2-mediated FGF21 secretion, which prevents obesity, insulin resistance and hepatosteatosis.
Collapse
|
42
|
Chen S, Zong G, Wu Q, Yun H, Niu Z, Zheng H, Zeng R, Sun L, Lin X. Associations of plasma glycerophospholipid profile with modifiable lifestyles and incident diabetes in middle-aged and older Chinese. Diabetologia 2022; 65:315-328. [PMID: 34800146 DOI: 10.1007/s00125-021-05611-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/17/2021] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Glycerophospholipid (GPL) perturbance was linked to the pathogenesis of diabetes in animal studies but prospective studies in humans are rare, particularly in Asians. We aimed to investigate the associations between plasma GPLs and incident diabetes and to explore effects of lifestyle on the associations in a Chinese population. METHODS The study included 1877 community-dwelling Chinese individuals aged 50-70 years (751 men and 1126 women), free of diabetes at baseline and followed for 6 years. A total of 160 GPL species were quantified in plasma at baseline by using high-throughput targeted lipidomics. Log-Poisson regression was used to assess the associations between GPLs and incidence of diabetes. RESULTS Over the 6 years of follow-up, 499 participants (26.6%) developed diabetes. After multivariable adjustment, eight GPLs were positively associated with incident diabetes (RRper SD 1.13-1.25; all false-discovery rate [FDR]-corrected p < 0.05), including five novel GLPs, namely phosphatidylcholines (PCs; 16:0/18:1, 18:0/16:1, 18:1/20:3), lysophosphatidylcholine (LPC; 20:3) and phosphatidylethanolamine (PE; 16:0/16:1), and three reported GPLs (PCs 16:0/16:1, 16:0/20:3 and 18:0/20:3). In network analysis, a PC-containing module was positively associated with incident diabetes (RRper SD 1.16 [95% CI 1.06, 1.26]; FDR-corrected p < 0.05). Notably, three of the diabetes-associated PCs (16:0/16:1, 16:0/18:1 and 18:0/16:1) and PE (16:0/16:1) were associated not only with fatty acids in the de novo lipogenesis (DNL) pathway, especially 16:1n-7 (Spearman correlation coefficients = 0.35-0.62, p < 0.001), but also with an unhealthy dietary pattern high in refined grains and low in fish, dairy and soy products (|factor loadings| ≥0.2). When stratified by physical activity levels, the associations of the eight GPLs and the PC module with incident diabetes were stronger in participants with lower physical activity (RRper SD 1.24-1.49, FDR-corrected p < 0.05) than in those with the median and higher physical activity levels (RRper SD 1.03-1.12, FDR-corrected p ≥ 0.05; FDR-corrected pinteraction < 0.05). CONCLUSIONS/INTERPRETATION Eight GPLs, especially PCs associated with the DNL pathway, were positively associated with incident diabetes in a cohort of Chinese men and women. The associations were most prominent in participants with a low level of physical activity.
Collapse
Affiliation(s)
- Shuangshuang Chen
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Geng Zong
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingqing Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Huan Yun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenhua Niu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Zheng
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Liang Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Xu Lin
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
43
|
Kodidela S, Shaik FB, Mittameedi CM, Nallanchakravarthula V. Alcohol exacerbated biochemical and biophysical alterations in liver mitochondrial membrane of diabetic male wistar rats – A possible amelioration by Green tea. CLINICAL NUTRITION OPEN SCIENCE 2022. [DOI: 10.1016/j.nutos.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
44
|
Chang TY, Wu CH, Chang CY, Lee FJ, Wang BW, Doong JY, Lin YS, Kuo CS, Huang RFS. Optimal Dietary Intake Composition of Choline and Betaine Is Associated with Minimized Visceral Obesity-Related Hepatic Steatosis in a Case-Control Study. Nutrients 2022; 14:261. [PMID: 35057441 PMCID: PMC8779168 DOI: 10.3390/nu14020261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Few studies on humans have comprehensively evaluated the intake composition of methyl-donor nutrients (MDNs: choline, betaine, and folate) in relation to visceral obesity (VOB)-related hepatic steatosis (HS), the hallmark of non-alcoholic fatty liver diseases. In this case-control study, we recruited 105 patients with HS and 104 without HS (controls). HS was diagnosed through ultrasound examination. VOB was measured using a whole-body analyzer. MDN intake was assessed using a validated quantitative food frequency questionnaire. After adjustment for multiple HS risk factors, total choline intake was the most significant dietary determinant of HS in patients with VOB (Beta: -0.41, p = 0.01). Low intake of choline (<6.9 mg/kg body weight), betaine (<3.1 mg/kg body weight), and folate (<8.8 μg/kg body weight) predicted increased odds ratios (ORs) of VOB-related HS (choline: OR: 22, 95% confidence interval [CI]: 6.5-80; betaine: OR: 14, 95% CI: 4.4-50; and folate: OR: 19, 95% CI: 5.2-74). Combined high intake of choline and betaine, but not folate, was associated with an 81% reduction in VOB-related HS (OR: 0.19, 95% CI: 0.05-0.69). Our data suggest that the optimal intake of choline and betaine can minimize the risk of VOB-related HS in a threshold-dependent manner.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.C.); (J.-Y.D.); (Y.-S.L.)
| | - Chien-Hsien Wu
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Department of Gastroenterology and Hepatology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
| | - Chi-Yang Chang
- Department of Gastroenterology and Hepatology, Fu Jen Catholic University Hospital, New Taipei City 243089, Taiwan; (C.-Y.C.); (F.-J.L.)
| | - Fu-Jen Lee
- Department of Gastroenterology and Hepatology, Fu Jen Catholic University Hospital, New Taipei City 243089, Taiwan; (C.-Y.C.); (F.-J.L.)
| | - Bei-Wen Wang
- Department of Nutrition, Fu Jen Catholic University Hospital, New Taipei City 243089, Taiwan;
| | - Jia-Yau Doong
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.C.); (J.-Y.D.); (Y.-S.L.)
| | - Yu-Shun Lin
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.C.); (J.-Y.D.); (Y.-S.L.)
| | - Chang-Sheng Kuo
- Department of Nutrition, Fu Jen Catholic University Hospital, New Taipei City 243089, Taiwan;
| | - Rwei-Fen S. Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.C.); (J.-Y.D.); (Y.-S.L.)
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| |
Collapse
|
45
|
Li W, Li Y, Chen Z, King-Yin Lam A, Li Z, Liu X, Zhu B, Qiao B. The analysis of metabolomics and transcriptomics data in head and neck squamous cell carcinoma. Oral Dis 2022; 29:1464-1479. [PMID: 34990052 DOI: 10.1111/odi.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Studies have shown that cancer progression of head and neck squamous cell carcinoma (HNSCC) is related with metabolic alterations. The aim of this study is to identify the clinical roles of metabolic alterations in HNSCC. MATERIALS AND METHODS Metabolism-related genes associated with HNSCC were searched in public databases. A predictive and efficacious LASSO model was fabricated to optimize the diagnosis that was based on these genes. Meantime, Ultra-Performance Liquid Chromatography-Quadrupole/Orbitrap High Resolution Mass Spectrometry (UHPLC-Q-Orbitrap HRMS) was used to compare patients with HNSCC (n=73) with healthy controls (HC) (n=51) for serum metabolites. Potential biomarkers and alterations in serum metabolites were analysed and evaluated using t-test analysis, principal component analysis and orthogonal partial least square discrimination analysis (OPLS-DA). RESULTS Overall, 21 differential metabolites were probed in serum, of which 8 metabolites had potential for clinical uses. Transcriptome analysis showed that 4 genes in the constructed LASSO model were found to be associated with 7 differential metabolites. Metabolic pathway analysis by MetaboAnalyst showed that the biomarkers that were related with HNSCC were closely related to 4 metabolism pathways (p<0.05). CONCLUSION To conclude, future research on HNSCC should be directed toward multi-omics to provide treatment, intervention, or diagnosis of the disease.
Collapse
Affiliation(s)
- Wen Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuo Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | - Zeping Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoling Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baoyu Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Qiao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Chen CC, Hsu LW, Chen KD, Chiu KW, Chen CL, Huang KT. Emerging Roles of Calcium Signaling in the Development of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2021; 23:ijms23010256. [PMID: 35008682 PMCID: PMC8745268 DOI: 10.3390/ijms23010256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
The liver plays a central role in energy metabolism. Dysregulated hepatic lipid metabolism is a major cause of non-alcoholic fatty liver disease (NAFLD), a chronic liver disorder closely linked to obesity and insulin resistance. NAFLD is rapidly emerging as a global health problem with currently no approved therapy. While early stages of NAFLD are often considered benign, the disease can progress to an advanced stage that involves chronic inflammation, with increased risk for developing end-stage disease including fibrosis and liver cancer. Hence, there is an urgent need to identify potential pharmacological targets. Ca2+ is an essential signaling molecule involved in a myriad of cellular processes. Intracellular Ca2+ is intricately compartmentalized, and the Ca2+ flow is tightly controlled by a network of Ca2+ transport and buffering proteins. Impaired Ca2+ signaling is strongly associated with endoplasmic reticulum stress, mitochondrial dysfunction and autophagic defects, all of which are etiological factors of NAFLD. In this review, we describe the recent advances that underscore the critical role of dysregulated Ca2+ homeostasis in lipid metabolic abnormalities and discuss the feasibility of targeting Ca2+ signaling as a potential therapeutic approach.
Collapse
Affiliation(s)
- Chien-Chih Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Li-Wen Hsu
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (K.-D.C.); (K.-W.C.); (C.-L.C.)
| | - Kuang-Den Chen
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (K.-D.C.); (K.-W.C.); (C.-L.C.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - King-Wah Chiu
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (K.-D.C.); (K.-W.C.); (C.-L.C.)
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chao-Long Chen
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (K.-D.C.); (K.-W.C.); (C.-L.C.)
| | - Kuang-Tzu Huang
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (K.-D.C.); (K.-W.C.); (C.-L.C.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8193)
| |
Collapse
|
47
|
Briolay A, Bessueille L, Magne D. TNAP: A New Multitask Enzyme in Energy Metabolism. Int J Mol Sci 2021; 22:ijms221910470. [PMID: 34638808 PMCID: PMC8509042 DOI: 10.3390/ijms221910470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is mainly known for its necessary role in skeletal and dental mineralization, which relies on the hydrolysis of the mineralization inhibitor inorganic pyrophosphate (PPi). Mutations in the gene encoding TNAP leading to severe hypophosphatasia result in strongly reduced mineralization and perinatal death. Fortunately, the relatively recent development of a recombinant TNAP with a bone anchor has allowed to correct the bone defects and prolong the life of affected babies and children. Researches on TNAP must however not be slowed down, because accumulating evidence indicates that TNAP activation in individuals with metabolic syndrome (MetS) is associated with enhanced cardiovascular mortality, presumably in relation with cardiovascular calcification. On the other hand, TNAP appears to be necessary to prevent the development of steatohepatitis in mice, suggesting that TNAP plays protective roles. The aim of the present review is to highlight the known or suspected functions of TNAP in energy metabolism that may be associated with the development of MetS. The location of TNAP in liver and its function in bile excretion, lipopolysaccharide (LPS) detoxification and fatty acid transport will be presented. The expression and function of TNAP in adipocyte differentiation and thermogenesis will also be discussed. Given that TNAP is a tissue- and substrate-nonspecific phosphatase, we believe that it exerts several crucial pathophysiological functions that are just beginning to be discovered.
Collapse
|
48
|
Ayer A, Fazakerley DJ, Suarna C, Maghzal GJ, Sheipouri D, Lee KJ, Bradley MC, Fernández-Del-Rio L, Tumanov S, Kong SM, van der Veen JN, Yang A, Ho JWK, Clarke SG, James DE, Dawes IW, Vance DE, Clarke CF, Jacobs RL, Stocker R. Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q. Redox Biol 2021; 46:102127. [PMID: 34521065 PMCID: PMC8435697 DOI: 10.1016/j.redox.2021.102127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial energy production and function rely on optimal concentrations of the essential redox-active lipid, coenzyme Q (CoQ). CoQ deficiency results in mitochondrial dysfunction associated with increased mitochondrial oxidative stress and a range of pathologies. What drives CoQ deficiency in many of these pathologies is unknown, just as there currently is no effective therapeutic strategy to overcome CoQ deficiency in humans. To date, large-scale studies aimed at systematically interrogating endogenous systems that control CoQ biosynthesis and their potential utility to treat disease have not been carried out. Therefore, we developed a quantitative high-throughput method to determine CoQ concentrations in yeast cells. Applying this method to the Yeast Deletion Collection as a genome-wide screen, 30 genes not known previously to regulate cellular concentrations of CoQ were discovered. In combination with untargeted lipidomics and metabolomics, phosphatidylethanolamine N-methyltransferase (PEMT) deficiency was confirmed as a positive regulator of CoQ synthesis, the first identified to date. Mechanistically, PEMT deficiency alters mitochondrial concentrations of one-carbon metabolites, characterized by an increase in the S-adenosylmethionine to S-adenosylhomocysteine (SAM-to-SAH) ratio that reflects mitochondrial methylation capacity, drives CoQ synthesis, and is associated with a decrease in mitochondrial oxidative stress. The newly described regulatory pathway appears evolutionary conserved, as ablation of PEMT using antisense oligonucleotides increases mitochondrial CoQ in mouse-derived adipocytes that translates to improved glucose utilization by these cells, and protection of mice from high-fat diet-induced insulin resistance. Our studies reveal a previously unrecognized relationship between two spatially distinct lipid pathways with potential implications for the treatment of CoQ deficiencies, mitochondrial oxidative stress/dysfunction, and associated diseases. Mitochondrial CoQ deficiency results in oxidative stress and a range of pathologies The drivers of mitochondrial CoQ deficiency remain largely unknown PEMT deficiency is the first identified positive regulator of mitochondrial CoQ PEMT deficiency increases CoQ by increasing the mitochondrial SAM-to-SAH ratio PEMT deficiency prevents insulin resistance by increasing mitochondrial CoQ
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia; Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Cacang Suarna
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | - Diba Sheipouri
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Kevin J Lee
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - Lucía Fernández-Del-Rio
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - Sergey Tumanov
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Stephanie My Kong
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Jelske N van der Veen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Andrian Yang
- Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Joshua W K Ho
- Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; Laboratory for Data Discovery for Health, Hong Kong Science Park, Hong Kong SAR, China
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Dennis E Vance
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
49
|
Perspectives on Mitochondria-ER and Mitochondria-Lipid Droplet Contact in Hepatocytes and Hepatic Lipid Metabolism. Cells 2021; 10:cells10092273. [PMID: 34571924 PMCID: PMC8472694 DOI: 10.3390/cells10092273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence suggests that mitochondrion–endoplasmic reticulum (ER) and mitochondrion–lipid droplet (LD) contact sites are critical in regulating lipid metabolism in cells. It is well established that intracellular organelles communicate with each other continuously through membrane contact sites to maintain organelle function and cellular homeostasis. The accumulation of LDs in hepatocytes is an early indicator of non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD), which may indicate a breakdown in proper inter-organelle communication. In this review, we discuss previous findings in mitochondrion–ER and mitochondrion–LD contact, focusing on their roles in lipid metabolism in hepatocytes. We also present evidence of a unique mitochondrion–LD contact structure in hepatocytes under various physiological and pathological conditions and propose a working hypothesis to speculate about the role of these structures in regulating the functions of mitochondria and LDs and their implications in NAFLD and ALD.
Collapse
|
50
|
Di Sessa A, Riccio S, Pirozzi E, Verde M, Passaro AP, Umano GR, Guarino S, Miraglia del Giudice E, Marzuillo P. Advances in paediatric nonalcoholic fatty liver disease: Role of lipidomics. World J Gastroenterol 2021; 27:3815-3824. [PMID: 34321846 PMCID: PMC8291022 DOI: 10.3748/wjg.v27.i25.3815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Due its close relationship with obesity, nonalcoholic fatty liver disease (NAFLD) has become a major worldwide health issue even in childhood. The most accepted pathophysiological hypothesis is represented by the “multiple hits” theory, in which both hepatic intracellular lipid accumulation and insulin resistance mainly contribute to liver injury through several factors. Among these, lipotoxicity has gained particular attention. In this view, the pathogenic role of different lipid classes in NAFLD (e.g., sphingolipids, fatty acids, ceramides, etc.) has been highlighted in recent lipidomics studies. Although there is some contrast between plasma and liver findings, lipidomic profile in the NAFLD context provides novel insights by expanding knowledge in the intricate field of NAFLD pathophysiology as well as by suggesting innovative therapeutic approaches in order to improve both NAFLD prevention and treatment strategies. Selective changes of distinct lipid species might be an attractive therapeutic target for treating NAFLD. Herein the most recent evidence in this attractive field has been summarized to provide a comprehensive overview of the lipidomic scenario in paediatric NAFLD.
Collapse
Affiliation(s)
- Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Simona Riccio
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emilia Pirozzi
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Martina Verde
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Antonio Paride Passaro
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|