1
|
Raby A, Missiroli S, Sanatine P, Langui D, Pansiot J, Beaude N, Vezzana L, Saleh R, Marinello M, Laforge M, Pinton P, Buj-Bello A, Burgo A. Spastin regulates ER-mitochondrial contact sites and mitochondrial homeostasis. iScience 2024; 27:110683. [PMID: 39252960 PMCID: PMC11382127 DOI: 10.1016/j.isci.2024.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) emerged to play critical roles in numerous cellular processes, and their dysregulation has been associated to neurodegenerative disorders. Mutations in the SPG4 gene coding for spastin are among the main causes of hereditary spastic paraplegia (HSP). Spastin binds and severs microtubules, and the long isoform of this protein, namely M1, spans the outer leaflet of ER membrane where it interacts with other ER-HSP proteins. Here, we showed that overexpressed M1 spastin localizes in ER-mitochondria intersections and that endogenous spastin accumulates in MERCs. We demonstrated in different cellular models that downregulation of spastin enhances the number of MERCs, alters mitochondrial morphology, and impairs ER and mitochondrial calcium homeostasis. These effects are associated with reduced mitochondrial membrane potential, oxygen species levels, and oxidative metabolism. These findings extend our knowledge on the role of spastin in the ER and suggest MERCs deregulation as potential causes of SPG4-HSP disease.
Collapse
Affiliation(s)
- Amelie Raby
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | | | - Dominique Langui
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Julien Pansiot
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Nissai Beaude
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Lucie Vezzana
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Rachelle Saleh
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Martina Marinello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Mireille Laforge
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Ana Buj-Bello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Andrea Burgo
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
2
|
Yoo H, Park H. Altered mitochondrial Ca 2+ uptake in presynaptic terminals of cultured striatal and cortical neurons from the zQ175 knock-in mouse model of Huntington's disease. Biochem Biophys Res Commun 2024; 716:150010. [PMID: 38704892 DOI: 10.1016/j.bbrc.2024.150010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Calcium (Ca2+) in mitochondria plays crucial roles in neurons including modulating metabolic processes. Moreover, excessive Ca2+ in mitochondria can lead to cell death. Thus, altered mitochondrial Ca2+ regulation has been implicated in several neurodegenerative diseases including Huntington's disease (HD). HD is a progressive hereditary neurodegenerative disorder that results from abnormally expanded cytosine-adenine-guanine trinucleotide repeats in the huntingtin gene. One neuropathological hallmark of HD is neuronal loss in the striatum and cortex. However, mechanisms underlying selective loss of striatal and cortical neurons in HD remain elusive. Here, we measured the basal Ca2+ levels and Ca2+ uptake in single presynaptic mitochondria during 100 external electrical stimuli using highly sensitive mitochondria-targeted Ca2+ indicators in cultured cortical and striatal neurons of a knock-in mouse model of HD (zQ175 mice). We observed elevated presynaptic mitochondrial Ca2+ uptake during 100 electrical stimuli in HD cortical neurons compared with wild-type (WT) cortical neurons. We also found the highly elevated presynaptic mitochondrial basal Ca2+ level and Ca2+ uptake during 100 stimuli in HD striatal neurons. The elevated presynaptic mitochondrial basal Ca2+ level in HD striatal neurons and Ca2+ uptake during stimulation in HD striatal and cortical neurons can disrupt neurotransmission and induce mitochondrial Ca2+ overload, eventually leading to neuronal death in the striatum and cortex of HD.
Collapse
Affiliation(s)
- Hanna Yoo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
4
|
Baev AY, Vinokurov AY, Potapova EV, Dunaev AV, Angelova PR, Abramov AY. Mitochondrial Permeability Transition, Cell Death and Neurodegeneration. Cells 2024; 13:648. [PMID: 38607087 PMCID: PMC11011324 DOI: 10.3390/cells13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024] Open
Abstract
Neurodegenerative diseases are chronic conditions occurring when neurons die in specific brain regions that lead to loss of movement or cognitive functions. Despite the progress in understanding the mechanisms of this pathology, currently no cure exists to treat these types of diseases: for some of them the only help is alleviating the associated symptoms. Mitochondrial dysfunction has been shown to be involved in the pathogenesis of most the neurodegenerative disorders. The fast and transient permeability of mitochondria (the mitochondrial permeability transition, mPT) has been shown to be an initial step in the mechanism of apoptotic and necrotic cell death, which acts as a regulator of tissue regeneration for postmitotic neurons as it leads to the irreparable loss of cells and cell function. In this study, we review the role of the mitochondrial permeability transition in neuronal death in major neurodegenerative diseases, covering the inductors of mPTP opening in neurons, including the major ones-free radicals and calcium-and we discuss perspectives and difficulties in the development of a neuroprotective strategy based on the inhibition of mPTP in neurodegenerative disorders.
Collapse
Affiliation(s)
- Artyom Y. Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan;
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Elena V. Potapova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Andrey V. Dunaev
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| |
Collapse
|
5
|
Twyning MJ, Tufi R, Gleeson TP, Kolodziej KM, Campesan S, Terriente-Felix A, Collins L, De Lazzari F, Giorgini F, Whitworth AJ. Partial loss of MCU mitigates pathology in vivo across a diverse range of neurodegenerative disease models. Cell Rep 2024; 43:113681. [PMID: 38236772 DOI: 10.1016/j.celrep.2024.113681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/01/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024] Open
Abstract
Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson's, Huntington's, Alzheimer's, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention.
Collapse
Affiliation(s)
- Madeleine J Twyning
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Roberta Tufi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Thomas P Gleeson
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Kinga M Kolodziej
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Ana Terriente-Felix
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Lewis Collins
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Federica De Lazzari
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| |
Collapse
|
6
|
Fatima J, Siddique YH. Application of Nanocomposites and Nanoparticles in Treating Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1217-1233. [PMID: 38288843 DOI: 10.2174/0118715273283338240104112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 08/28/2024]
Abstract
Neurodegenerative diseases represent a formidable global health challenge, affecting millions and imposing substantial burdens on healthcare systems worldwide. Conditions, like Alzheimer's, Parkinson's, and Huntington's diseases, among others, share common characteristics, such as neuronal loss, misfolded protein aggregation, and nervous system dysfunction. One of the major obstacles in treating these diseases is the presence of the blood-brain barrier, limiting the delivery of therapeutic agents to the central nervous system. Nanotechnology offers promising solutions to overcome these challenges. In Alzheimer's disease, NPs loaded with various compounds have shown remarkable promise in preventing amyloid-beta (Aβ) aggregation and reducing neurotoxicity. Parkinson's disease benefits from improved dopamine delivery and neuroprotection. Huntington's disease poses its own set of challenges, but nanotechnology continues to offer innovative solutions. The promising developments in nanoparticle-based interventions for neurodegenerative diseases, like amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), have offered new avenues for effective treatment. Nanotechnology represents a promising frontier in biomedical research, offering tailored solutions to the complex challenges posed by neurodegenerative diseases. While much progress has been made, ongoing research is essential to optimize nanomaterial designs, improve targeting, and ensure biocompatibility and safety. Nanomaterials possess unique properties that make them excellent candidates for targeted drug delivery and neuroprotection. They can effectively bypass the blood-brain barrier, opening doors to precise drug delivery strategies. This review explores the extensive research on nanoparticles (NPs) and nanocomposites in diagnosing and treating neurodegenerative disorders. These nanomaterials exhibit exceptional abilities to target neurodegenerative processes and halt disease progression.
Collapse
Affiliation(s)
- Javeria Fatima
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
7
|
Fjodorova M, Noakes Z, De La Fuente DC, Errington AC, Li M. Dysfunction of cAMP-Protein Kinase A-Calcium Signaling Axis in Striatal Medium Spiny Neurons: A Role in Schizophrenia and Huntington's Disease Neuropathology. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:418-429. [PMID: 37519464 PMCID: PMC10382711 DOI: 10.1016/j.bpsgos.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Striatal medium spiny neurons (MSNs) are preferentially lost in Huntington's disease. Genomic studies also implicate a direct role for MSNs in schizophrenia, a psychiatric disorder known to involve cortical neuron dysfunction. It remains unknown whether the two diseases share similar MSN pathogenesis or if neuronal deficits can be attributed to cell type-dependent biological pathways. Transcription factor BCL11B, which is expressed by all MSNs and deep layer cortical neurons, was recently proposed to drive selective neurodegeneration in Huntington's disease and identified as a candidate risk gene in schizophrenia. Methods Using human stem cell-derived neurons lacking BCL11B as a model, we investigated cellular pathology in MSNs and cortical neurons in the context of these disorders. Integrative analyses between differentially expressed transcripts and published genome-wide association study datasets identified cell type-specific disease-related phenotypes. Results We uncover a role for BCL11B in calcium homeostasis in both neuronal types, while deficits in mitochondrial function and PKA (protein kinase A)-dependent calcium transients are detected only in MSNs. Moreover, BCL11B-deficient MSNs display abnormal responses to glutamate and fail to integrate dopaminergic and glutamatergic stimulation, a key feature of striatal neurons in vivo. Gene enrichment analysis reveals overrepresentation of disorder risk genes among BCL11B-regulated pathways, primarily relating to cAMP-PKA-calcium signaling axis and synaptic signaling. Conclusions Our study indicates that Huntington's disease and schizophrenia are likely to share neuronal pathophysiology where dysregulation of intracellular calcium homeostasis is found in both striatal and cortical neurons. In contrast, reduction in PKA signaling and abnormal dopamine/glutamate receptor signaling is largely specific to MSNs.
Collapse
Affiliation(s)
- Marija Fjodorova
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zoe Noakes
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel C. De La Fuente
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Adam C. Errington
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Meng Li
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Neuroscience, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
8
|
Kalra J. Crosslink between mutations in mitochondrial genes and brain disorders: implications for mitochondrial-targeted therapeutic interventions. Neural Regen Res 2023. [PMID: 35799515 PMCID: PMC9241418 DOI: 10.4103/1673-5374.343884] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
9
|
Barry J, Peng A, Levine MS, Cepeda C. Calcium imaging: A versatile tool to examine Huntington's disease mechanisms and progression. Front Neurosci 2022; 16:1040113. [PMID: 36408400 PMCID: PMC9669372 DOI: 10.3389/fnins.2022.1040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Huntington's disease (HD) is a fatal, hereditary neurodegenerative disorder that causes chorea, cognitive deficits, and psychiatric symptoms. It is characterized by accumulation of mutant Htt protein, which primarily impacts striatal medium-sized spiny neurons (MSNs), as well as cortical pyramidal neurons (CPNs), causing synapse loss and eventually cell death. Perturbed Ca2+ homeostasis is believed to play a major role in HD, as altered Ca2+ homeostasis often precedes striatal dysfunction and manifestation of HD symptoms. In addition, dysregulation of Ca2+ can cause morphological and functional changes in MSNs and CPNs. Therefore, Ca2+ imaging techniques have the potential of visualizing changes in Ca2+ dynamics and neuronal activity in HD animal models. This minireview focuses on studies using diverse Ca2+ imaging techniques, including two-photon microscopy, fiber photometry, and miniscopes, in combination of Ca2+ indicators to monitor activity of neurons in HD models as the disease progresses. We then discuss the future applications of Ca2+ imaging to visualize disease mechanisms and alterations associated with HD, as well as studies showing how, as a proof-of-concept, Ca2+imaging using miniscopes in freely-behaving animals can help elucidate the differential role of direct and indirect pathway MSNs in HD symptoms.
Collapse
Affiliation(s)
| | | | | | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center (IDDRC), Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Lopes C, Ferreira IL, Maranga C, Beatriz M, Mota SI, Sereno J, Castelhano J, Abrunhosa A, Oliveira F, De Rosa M, Hayden M, Laço MN, Januário C, Castelo Branco M, Rego AC. Mitochondrial and redox modifications in early stages of Huntington's disease. Redox Biol 2022; 56:102424. [PMID: 35988447 PMCID: PMC9420526 DOI: 10.1016/j.redox.2022.102424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 01/30/2023] Open
Abstract
Deficits in mitochondrial function and redox deregulation have been attributed to Huntington's disease (HD), a genetic neurodegenerative disorder largely affecting the striatum. However, whether these changes occur in early stages of the disease and can be detected in vivo is still unclear. In the present study, we analysed changes in mitochondrial function and production of reactive oxygen species (ROS) at early stages and with disease progression. Studies were performed in vivo in human brain by PET using [64Cu]-ATSM and ex vivo in human skin fibroblasts of premanifest and prodromal (Pre-M) and manifest HD carriers. In vivo brain [64Cu]-ATSM PET in YAC128 transgenic mouse and striatal and cortical isolated mitochondria were assessed at presymptomatic (3 month-old, mo) and symptomatic (6–12 mo) stages. Pre-M HD carriers exhibited enhanced whole-brain (with exception of caudate) [64Cu]-ATSM labelling, correlating with CAG repeat number. Fibroblasts from Pre-M showed enhanced basal and maximal respiration, proton leak and increased hydrogen peroxide (H2O2) levels, later progressing in manifest HD. Mitochondria from fibroblasts of Pre-M HD carriers also showed reduced circularity, while higher number of mitochondrial DNA copies correlated with maximal respiratory capacity. In vivo animal PET analysis showed increased accumulation of [64Cu]-ATSM in YAC128 mouse striatum. YAC128 mouse (at 3 months) striatal isolated mitochondria exhibited a rise in basal and maximal mitochondrial respiration and in ATP production, and increased complex II and III activities. YAC128 mouse striatal mitochondria also showed enhanced mitochondrial H2O2 levels and circularity, revealed by brain ultrastructure analysis, and defects in Ca2+ handling, supporting increased striatal susceptibility. Data demonstrate both human and mouse mitochondrial overactivity and altered morphology at early HD stages, facilitating redox unbalance, the latter progressing with manifest disease. Pre-manifest HD carriers and presymptomatic YAC128 mice show increased brain [64Cu]-ATSM labelling. Increased [64Cu]-ATSM brain retention correlates with raised ROS levels in human and mouse samples. Increased [64Cu]-ATSM correlates with enhanced mitochondrial activity and mtDNA copy number. Presymptomatic YAC128 mouse striatal mitochondria show altered morphology and Ca2+ handling.
Collapse
Affiliation(s)
- Carla Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - I Luísa Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Carina Maranga
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Margarida Beatriz
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Sandra I Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - José Sereno
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - João Castelhano
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Antero Abrunhosa
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Francisco Oliveira
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Maura De Rosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Michael Hayden
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Mário N Laço
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Medical Genetics Unit, Pediatric Hospital of Coimbra, Coimbra University Hospital (CHUC), Coimbra, Portugal.
| | | | - Miguel Castelo Branco
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD + in preserving DNA integrity. J Biol Chem 2022; 298:102037. [PMID: 35595095 PMCID: PMC9194868 DOI: 10.1016/j.jbc.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
13
|
Interaction of Mitochondrial Calcium and ROS in Neurodegeneration. Cells 2022; 11:cells11040706. [PMID: 35203354 PMCID: PMC8869783 DOI: 10.3390/cells11040706] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative disorders are currently incurable devastating diseases which are characterized by the slow and progressive loss of neurons in specific brain regions. Progress in the investigation of the mechanisms of these disorders helped to identify a number of genes associated with familial forms of these diseases and a number of toxins and risk factors which trigger sporadic and toxic forms of these diseases. Recently, some similarities in the mechanisms of neurodegenerative diseases were identified, including the involvement of mitochondria, oxidative stress, and the abnormality of Ca2+ signaling in neurons and astrocytes. Thus, mitochondria produce reactive oxygen species during metabolism which play a further role in redox signaling, but this may also act as an additional trigger for abnormal mitochondrial calcium handling, resulting in mitochondrial calcium overload. Combinations of these factors can be the trigger of neuronal cell death in some pathologies. Here, we review the latest literature on the crosstalk of reactive oxygen species and Ca2+ in brain mitochondria in physiology and beyond, considering how changes in mitochondrial metabolism or redox signaling can convert this interaction into a pathological event.
Collapse
|
14
|
Dong Z, Yao X. Insight of the role of mitochondrial calcium homeostasis in hepatic insulin resistance. Mitochondrion 2021; 62:128-138. [PMID: 34856389 DOI: 10.1016/j.mito.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/06/2022]
Abstract
Due to the rapid rise in the prevalence of chronic metabolic disease, more and more clinicians and basic medical researchers focus their eyesight on insulin resistance (IR), an early and central event of metabolic diseases. The occurrence and development of IR are primarily caused by excessive energy intake and reduced energy consumption. Liver is the central organ that controls glucose homeostasis, playing a considerable role in systemic IR. Decreased capacity of oxidative metabolism and mitochondrial dysfunction are being blamed as the direct reason for the development of IR. Mitochondrial Ca2+ plays a fundamental role in maintaining proper mitochondrial function and redox stability. The maintaining of mitochondrial Ca2+ homeostasis requires the cooperation of ion channels in the inner and outer membrane of mitochondria, such as mitochondrial calcium uniporter complex (MCUC) and voltage-dependent anion channels (VDACs). In addition, the crosstalk between the endoplasmic reticulum (ER), lysosome and plasma membrane with mitochondria is also significant for mitochondrial calcium homeostasis, which is responsible for an efficient network of cellular Ca2+ signaling. Here, we review the recent progression in the research about the regulation factors for mitochondrial Ca2+ and how the dysregulation of mitochondrial Ca2+ homeostasis is involved in the pathogenesis of hepatic IR, providing a new perspective for further exploring the role of ion in the onset and development of IR.
Collapse
Affiliation(s)
- Zhanchen Dong
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China.
| |
Collapse
|
15
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
16
|
Kaye J, Reisine T, Finkbeiner S. Huntington's disease mouse models: unraveling the pathology caused by CAG repeat expansion. Fac Rev 2021; 10:77. [PMID: 34746930 PMCID: PMC8546598 DOI: 10.12703/r/10-77] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease that results in motor and cognitive dysfunction, leading to early death. HD is caused by an expansion of CAG repeats in the huntingtin gene (HTT). Here, we review the mouse models of HD. They have been used extensively to better understand the molecular and cellular basis of disease pathogenesis as well as to provide non-human subjects to test the efficacy of potential therapeutics. The first and best-studied in vivo rodent model of HD is the R6/2 mouse, in which a transgene containing the promoter and exon 1 fragment of human HTT with 150 CAG repeats was inserted into the mouse genome. R6/2 mice express rapid, robust behavioral pathologies and display a number of degenerative abnormalities in neuronal populations most vulnerable in HD. The first conditional full-length mutant huntingtin (mHTT) mouse model of HD was the bacterial artificial chromosome (BAC) transgenic mouse model of HD (BACHD), which expresses human full-length mHTT with a mixture of 97 CAG-CAA repeats under the control of endogenous HTT regulatory machinery. It has been useful in identifying the role of mHTT in specific neuronal populations in degenerative processes. In the knock-in (KI) model of HD, the expanded human CAG repeats and human exon 1 are inserted into the mouse Htt locus, so a chimera of the full-length mouse protein with the N-terminal human portion is expressed. Many of aspects of the pathology and behavioral deficits in the KI model better mimic disease characteristics found in HD patients than other models. Accordingly, some have proposed that these mice may be preferable models of the disease over others. Indeed, as our understanding of HD advances, so will the design of animal models to test and develop HD therapies.
Collapse
Affiliation(s)
- Julia Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
17
|
Wang Y, Guo X, Ye K, Orth M, Gu Z. Accelerated expansion of pathogenic mitochondrial DNA heteroplasmies in Huntington's disease. Proc Natl Acad Sci U S A 2021; 118:e2014610118. [PMID: 34301881 PMCID: PMC8325154 DOI: 10.1073/pnas.2014610118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction is found in the brain and peripheral tissues of patients diagnosed with Huntington's disease (HD), an irreversible neurodegenerative disease of which aging is a major risk factor. Mitochondrial function is encoded by not only nuclear DNA but also DNA within mitochondria (mtDNA). Expansion of mtDNA heteroplasmies (coexistence of mutated and wild-type mtDNA) can contribute to age-related decline of mitochondrial function but has not been systematically investigated in HD. Here, by using a sensitive mtDNA-targeted sequencing method, we studied mtDNA heteroplasmies in lymphoblasts and longitudinal blood samples of HD patients. We found a significant increase in the fraction of mtDNA heteroplasmies with predicted pathogenicity in lymphoblasts from 1,549 HD patients relative to lymphoblasts from 182 healthy individuals. The increased fraction of pathogenic mtDNA heteroplasmies in HD lymphoblasts also correlated with advancing HD stages and worsened disease severity measured by HD motor function, cognitive function, and functional capacity. Of note, elongated CAG repeats in HTT promoted age-dependent expansion of pathogenic mtDNA heteroplasmies in HD lymphoblasts. We then confirmed in longitudinal blood samples of 169 HD patients that expansion of pathogenic mtDNA heteroplasmies was correlated with decline in functional capacity and exacerbation of HD motor and cognitive functions during a median follow-up of 6 y. The results of our study indicate accelerated decline of mtDNA quality in HD, and highlight monitoring mtDNA heteroplasmies longitudinally as a way to investigate the progressive decline of mitochondrial function in aging and age-related diseases.
Collapse
Affiliation(s)
- Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Xiaoxian Guo
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Kaixiong Ye
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Michael Orth
- Department of Neurology, Ulm University Hospital, D-89081 Ulm, Germany
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
18
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Abstract
Significance: The molecular processes that determine Huntington's disease (HD) pathogenesis are not yet fully understood, and until now no effective neuroprotective therapeutic strategies have been developed. Mitochondria are one of most important organelles required for neuronal homeostasis, by providing metabolic pathways relevant for energy production, regulating calcium homeostasis, or controlling free radical generation and cell death. Because augmented reactive oxygen species (ROS) accompanied by mitochondrial dysfunction are relevant early HD mechanisms, targeting these cellular mechanisms may constitute relevant therapeutic approaches. Recent Advances: Previous findings point toward a close relationship between mitochondrial dysfunction and redox changes in HD. Mutant huntingtin (mHTT) can directly interact with mitochondrial proteins, as translocase of the inner membrane 23 (TIM23), disrupting mitochondrial proteostasis and favoring ROS production and HD progression. Furthermore, abnormal brain and muscle redox signaling contributes to altered proteostasis and motor impairment in HD, which can be improved with the mitochondria-targeted antioxidant mitoquinone or resveratrol, an SIRT1 activator that ameliorates mitochondrial biogenesis and function. Critical Issues: Various antioxidants and metabolic enhancers have been studied in HD; however, the real outcome of these molecules is still debatable. New compounds have proven to ameliorate mitochondrial and redox-based signaling pathways in early stages of HD, potentially precluding selective neurodegeneration. Future Directions: Unraveling the molecular etiology of deregulated mitochondrial function and dynamics, and oxidative stress opens new prospects for HD therapeutics. In this review, we explore the role of redox unbalance and mitochondrial dysfunction in HD progression, and further describe advances on clinical trials in HD based on mitochondrial and redox-based therapeutic strategies.
Collapse
Affiliation(s)
- Lígia Fão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
20
|
Konno T, Melo EP, Chambers JE, Avezov E. Intracellular Sources of ROS/H 2O 2 in Health and Neurodegeneration: Spotlight on Endoplasmic Reticulum. Cells 2021; 10:233. [PMID: 33504070 PMCID: PMC7912550 DOI: 10.3390/cells10020233] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species (ROS) are produced continuously throughout the cell as products of various redox reactions. Yet these products function as important signal messengers, acting through oxidation of specific target factors. Whilst excess ROS production has the potential to induce oxidative stress, physiological roles of ROS are supported by a spatiotemporal equilibrium between ROS producers and scavengers such as antioxidative enzymes. In the endoplasmic reticulum (ER), hydrogen peroxide (H2O2), a non-radical ROS, is produced through the process of oxidative folding. Utilisation and dysregulation of H2O2, in particular that generated in the ER, affects not only cellular homeostasis but also the longevity of organisms. ROS dysregulation has been implicated in various pathologies including dementia and other neurodegenerative diseases, sanctioning a field of research that strives to better understand cell-intrinsic ROS production. Here we review the organelle-specific ROS-generating and consuming pathways, providing evidence that the ER is a major contributing source of potentially pathologic ROS.
Collapse
Affiliation(s)
- Tasuku Konno
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Eduardo Pinho Melo
- CCMAR—Centro de Ciências do Mar, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal;
| | - Joseph E. Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK;
| | - Edward Avezov
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| |
Collapse
|
21
|
Genome-Wide Functional Screen for Calcium Transients in Escherichia coli Identifies Increased Membrane Potential Adaptation to Persistent DNA Damage. J Bacteriol 2021; 203:JB.00509-20. [PMID: 33199283 DOI: 10.1128/jb.00509-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Calcium plays numerous critical roles in signaling and homeostasis in eukaryotic cells. Far less is known about calcium signaling in bacteria than in eukaryotic cells, and few genes controlling influx and efflux have been identified. Previous work in Escherichia coli showed that calcium influx was induced by voltage depolarization, which was enhanced by mechanical stimulation, which suggested a role in bacterial mechanosensation. To identify proteins and pathways affecting calcium handling in bacteria, we designed a live-cell screen to monitor calcium dynamics in single cells across a genome-wide knockout panel in E. coli The screen measured cells from the Keio collection of knockouts and quantified calcium transients across the population. Overall, we found 143 gene knockouts that decreased levels of calcium transients and 32 gene knockouts that increased levels of transients. Knockouts of proteins involved in energy production and regulation appeared, as expected, as well as knockouts of proteins of a voltage sink, F1Fo-ATPase. Knockouts of exopolysaccharide and outer membrane synthesis proteins showed reduced transients which refined our model of electrophysiology-mediated mechanosensation. Additionally, knockouts of proteins associated with DNA repair had reduced calcium transients and voltage. However, acute DNA damage did not affect voltage, and the results suggested that only long-term adaptation to DNA damage decreased membrane potential and calcium transients. Our work showed a distinct separation between the acute and long-term DNA damage responses in bacteria, which also has implications for mitochondrial DNA damage in eukaryotes.IMPORTANCE All eukaryotic cells use calcium as a critical signaling molecule. There is tantalizing evidence that bacteria also use calcium for cellular signaling, but much less is known about the molecular actors and physiological roles. To identify genes regulating cytoplasmic calcium in Escherichia coli, we created a single-cell screen for modulators of calcium dynamics. The genes uncovered in this screen helped refine a model for voltage-mediated bacterial mechanosensation. Additionally, we were able to more carefully dissect the mechanisms of adaptation to long-term DNA damage, which has implications for both bacteria and mitochondria in the face of unrepaired DNA.
Collapse
|
22
|
Setting the Stage: Genes Controlling Mechanosensation and Ca 2+ Signaling in Escherichia coli. J Bacteriol 2021; 203:JB.00595-20. [PMID: 33199281 DOI: 10.1128/jb.00595-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although mechanistic understanding of calcium signaling in bacteria remains inchoate, current evidence clearly links Ca2+ signaling with membrane potential and mechanosensation. Adopting a radically new approach, Luder et al. scanned the Keio collection of Escherichia coli gene knockouts (R. Luder, G. N. Bruni, and J. M. Kralj, J Bacteriol 203:e00509-20, 2021, https://doi.org/10.1128/JB.00509-20) to identify mutations that cause changes in Ca2+ transients. They identify genes associating Ca2+ signaling with outer membrane biogenesis, proton motive force, and, surprisingly, long-term DNA damage. Their work has major implications for electrophysiological communication between bacteria and their environment.
Collapse
|
23
|
|
24
|
Jung H, Kim SY, Canbakis Cecen FS, Cho Y, Kwon SK. Dysfunction of Mitochondrial Ca 2+ Regulatory Machineries in Brain Aging and Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8:599792. [PMID: 33392190 PMCID: PMC7775422 DOI: 10.3389/fcell.2020.599792] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Calcium ions (Ca2+) play critical roles in neuronal processes, such as signaling pathway activation, transcriptional regulation, and synaptic transmission initiation. Therefore, the regulation of Ca2+ homeostasis is one of the most important processes underlying the basic cellular viability and function of the neuron. Multiple components, including intracellular organelles and plasma membrane Ca2+-ATPase, are involved in neuronal Ca2+ control, and recent studies have focused on investigating the roles of mitochondria in synaptic function. Numerous mitochondrial Ca2+ regulatory proteins have been identified in the past decade, with studies demonstrating the tissue- or cell-type-specific function of each component. The mitochondrial calcium uniporter and its binding subunits are major inner mitochondrial membrane proteins contributing to mitochondrial Ca2+ uptake, whereas the mitochondrial Na+/Ca2+ exchanger (NCLX) and mitochondrial permeability transition pore (mPTP) are well-studied proteins involved in Ca2+ extrusion. The level of cytosolic Ca2+ and the resulting characteristics of synaptic vesicle release properties are controlled via mitochondrial Ca2+ uptake and release at presynaptic sites, while in dendrites, mitochondrial Ca2+ regulation affects synaptic plasticity. During brain aging and the progress of neurodegenerative disease, mitochondrial Ca2+ mishandling has been observed using various techniques, including live imaging of Ca2+ dynamics. Furthermore, Ca2+ dysregulation not only disrupts synaptic transmission but also causes neuronal cell death. Therefore, understanding the detailed pathophysiological mechanisms affecting the recently discovered mitochondrial Ca2+ regulatory machineries will help to identify novel therapeutic targets. Here, we discuss current research into mitochondrial Ca2+ regulatory machineries and how mitochondrial Ca2+ dysregulation contributes to brain aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Hyunsu Jung
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| | - Su Yeon Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Fatma Sema Canbakis Cecen
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| | - Yongcheol Cho
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Seok-Kyu Kwon
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
25
|
Wang J, Swanson RA. Superoxide and Non-ionotropic Signaling in Neuronal Excitotoxicity. Front Neurosci 2020; 4:861. [PMID: 33013314 PMCID: PMC7497801 DOI: 10.3389/fnins.2020.00861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023] Open
Abstract
Excitotoxicity is classically attributed to Ca2+ influx through NMDA receptors (NMDAr), leading to production of nitric oxide by neuronal nitric oxide synthase and superoxide by mitochondria, which react to form highly cytotoxic peroxynitrite. More recent observations warrant revision of the classic view and help to explain some otherwise puzzling aspects of excitotoxic cell injury. Studies using pharmacological and genetic approaches show that superoxide produced by NMDAr activation originates primarily from NADPH oxidase rather than from mitochondria. As NADPH oxidase is localized to the plasma membrane, this also provides an explanation for the extracellular release of superoxide and cell-to-cell "spread" of excitotoxic injury observed in vitro and in vivo. The signaling pathway linking NMDAr to NADPH oxidase involves Ca2+ influx, phosphoinositol-3-kinase, and protein kinase Cζ, and interventions at any of these steps can prevent superoxide production and excitotoxic injury. Ca2+ influx specifically through NMDAr is normally required to induce excitotoxicity, through a mechanism presumed to involve privileged Ca2+ access to local signaling domains. However, experiments using selective blockade of the NMDAr ion channel and artificial reconstitution of Ca2+ by other routes indicate that the special effects of NMDAr activation are attributable instead to concurrent non-ionotropic NMDAr signaling by agonist binding to NMDAr. The non-ionotropic signaling driving NADPH oxidase activation is mediated in part by phosphoinositol-3-kinase binding to the C-terminal domain of GluN2B receptor subunits. These more recently identified aspects of excitotoxicity expand our appreciation of the complexity of excitotoxic processes and suggest novel approaches for limiting neuronal injury.
Collapse
Affiliation(s)
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
26
|
Liu G, Lovell JF, Zhang L, Zhang Y. Stimulus-Responsive Nanomedicines for Disease Diagnosis and Treatment. Int J Mol Sci 2020; 21:E6380. [PMID: 32887466 PMCID: PMC7504550 DOI: 10.3390/ijms21176380] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Stimulus-responsive drug delivery systems generally aim to release the active pharmaceutical ingredient (API) in response to specific conditions and have recently been explored for disease treatments. These approaches can also be extended to molecular imaging to report on disease diagnosis and management. The stimuli used for activation are based on differences between the environment of the diseased or targeted sites, and normal tissues. Endogenous stimuli include pH, redox reactions, enzymatic activity, temperature and others. Exogenous site-specific stimuli include the use of magnetic fields, light, ultrasound and others. These endogenous or exogenous stimuli lead to structural changes or cleavage of the cargo carrier, leading to release of the API. A wide variety of stimulus-responsive systems have been developed-responsive to both a single stimulus or multiple stimuli-and represent a theranostic tool for disease treatment. In this review, stimuli commonly used in the development of theranostic nanoplatforms are enumerated. An emphasis on chemical structure and property relationships is provided, aiming to focus on insights for the design of stimulus-responsive delivery systems. Several examples of theranostic applications of these stimulus-responsive nanomedicines are discussed.
Collapse
Affiliation(s)
- Gengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA;
| | - Lei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
27
|
Li E, Park HR, Hong CP, Kim Y, Choi J, Lee S, Park HJ, Lee B, Kim TA, Kim SJ, Kim HS, Song J. Neural stem cells derived from the developing forebrain of YAC128 mice exhibit pathological features of Huntington's disease. Cell Prolif 2020; 53:e12893. [PMID: 32865873 PMCID: PMC7574873 DOI: 10.1111/cpr.12893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Huntington's disease (HD) is a devastating neurodegenerative disease caused by polyglutamine (polyQ) expansion in the huntingtin (HTT) gene. Mutant huntingtin (mHTT) is the main cause of HD and is associated with impaired mitochondrial dynamics, ubiquitin‐proteasome system and autophagy, as well as tauopathy. In this study, we aimed to establish a new neural stem cell line for HD studies. Materials and methods YAC128 mice are a yeast artificial chromosome (YAC)‐based transgenic mouse model of HD. These mice express a full‐length human mutant HTT gene with 128 CAG repeats and exhibit various pathophysiological features of HD. In this study, we isolated a new neural stem cell line from the forebrains of YAC128 mouse embryos (E12.5) and analysed its characteristics using cellular and biochemical methods. Results Compared to wild‐type (WT) NSCs, the YAC128 NSC line exhibited greater proliferation and migration capacity. In addition to mHTT expression, increased intracellular Ca2+ levels and dysfunctional mitochondrial membrane potential were observed in the YAC128 NSCs. YAC128 NSCs had defects in mitochondrial dynamics, including a deficit in mitochondrial axonal transport and unbalanced fusion and fission processes. YAC128 NSCs also displayed decreased voltage response variability and Na+ current amplitude. Additionally, the ubiquitin‐proteasome and autophagy systems were impaired in the YAC128 NSCs. Conclusions We have established a new neural stem line from YAC128 transgenic mice, which may serve as a useful resource for studying HD pathogenesis and drug screening.
Collapse
Affiliation(s)
- Endan Li
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | | | | | - Younghoon Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Jiwoo Choi
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Suji Lee
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Hyun Jung Park
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Bomi Lee
- iPS Bio, Inc., Seongnam-si, Korea
| | - Tae Aug Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | | | - Hyun Sook Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea.,iPS Bio, Inc., Seongnam-si, Korea
| |
Collapse
|
28
|
Moreno-Delgado D, Puigdellívol M, Moreno E, Rodríguez-Ruiz M, Botta J, Gasperini P, Chiarlone A, Howell LA, Scarselli M, Casadó V, Cortés A, Ferré S, Guzmán M, Lluís C, Alberch J, Canela EI, Ginés S, McCormick PJ. Modulation of dopamine D 1 receptors via histamine H 3 receptors is a novel therapeutic target for Huntington's disease. eLife 2020; 9:51093. [PMID: 32513388 PMCID: PMC7282811 DOI: 10.7554/elife.51093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/26/2020] [Indexed: 01/11/2023] Open
Abstract
Early Huntington's disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic brain slices we found that D1R-induced cell death signaling and neuronal degeneration, are mitigated by an H3R antagonist. We demonstrate that the D1R-H3R heteromer is expressed in HD mice at early but not late stages of HD, correlating with HD progression. In accordance, we found this target expressed in human control subjects and low-grade HD patients. Finally, treatment of HD mice with an H3R antagonist prevented cognitive and motor learning deficits and the loss of heteromer expression. Taken together, our results indicate that D1R - H3R heteromers play a pivotal role in dopamine signaling and represent novel targets for treating HD.
Collapse
Affiliation(s)
- David Moreno-Delgado
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mar Puigdellívol
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Department of Biomedical Science, Faculty of Medicine, University of Barcelona, Institut of Neuroscience, Barcelona, Spain.,Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mar Rodríguez-Ruiz
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Joaquín Botta
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Paola Gasperini
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Anna Chiarlone
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Instituto Universitario de Investigación Neuroquímica, and Instituto Ramón y Cajal de Investigación Sanitaria, Complutense University of Madrid, Madrid, Spain
| | - Lesley A Howell
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Antoni Cortés
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Sergi Ferré
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, United States
| | - Manuel Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Instituto Universitario de Investigación Neuroquímica, and Instituto Ramón y Cajal de Investigación Sanitaria, Complutense University of Madrid, Madrid, Spain
| | - Carmen Lluís
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jordi Alberch
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Department of Biomedical Science, Faculty of Medicine, University of Barcelona, Institut of Neuroscience, Barcelona, Spain.,Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Enric I Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Silvia Ginés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Department of Biomedical Science, Faculty of Medicine, University of Barcelona, Institut of Neuroscience, Barcelona, Spain.,Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter J McCormick
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
29
|
Sun SC, Ma D, Li MY, Zhang RX, Huang C, Huang HJ, Xie YZ, Wang ZJ, Liu J, Cai DC, Liu CX, Yang Q, Bao FX, Gong XL, Li JR, Hui Z, Wei XF, Zhong JM, Zhou WJ, Shang X, Zhang C, Liu XG, Tang BS, Xiong F, Xu XM. Mutations in C1orf194, encoding a calcium regulator, cause dominant Charcot-Marie-Tooth disease. Brain 2020; 142:2215-2229. [PMID: 31199454 DOI: 10.1093/brain/awz151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Charcot-Marie-Tooth disease is a hereditary motor and sensory neuropathy exhibiting great clinical and genetic heterogeneity. Here, the identification of two heterozygous missense mutations in the C1orf194 gene at 1p21.2-p13.2 with Charcot-Marie-Tooth disease are reported. Specifically, the p.I122N mutation was the cause of an intermediate form of Charcot-Marie-Tooth disease, and the p.K28I missense mutation predominately led to the demyelinating form. Functional studies demonstrated that the p.K28I variant significantly reduced expression of the protein, but the p.I122N variant increased. In addition, the p.I122N mutant protein exhibited the aggregation in neuroblastoma cell lines and the patient's peroneal nerve. Either gain-of-function or partial loss-of-function mutations to C1ORF194 can specify different causal mechanisms responsible for Charcot-Marie-Tooth disease with a wide range of clinical severity. Moreover, a knock-in mouse model confirmed that the C1orf194 missense mutation p.I121N led to impairments in motor and neuromuscular functions, and aberrant myelination and axonal phenotypes. The loss of normal C1ORF194 protein altered intracellular Ca2+ homeostasis and upregulated Ca2+ handling regulatory proteins. These findings describe a novel protein with vital functions in peripheral nervous systems and broaden the causes of Charcot-Marie-Tooth disease, which open new avenues for the diagnosis and treatment of related neuropathies.
Collapse
Affiliation(s)
- Shun-Chang Sun
- Department of Clinical Laboratory, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Di Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Mei-Yi Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Ru-Xu Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Cheng Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Hua-Jie Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yong-Zhi Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhong-Ju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - De-Cheng Cai
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cui-Xian Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Qi Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Fei-Xiang Bao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Xiao-Li Gong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jie-Ru Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zheng Hui
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiao-Feng Wei
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jian-Mei Zhong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Wan-Jun Zhou
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Xuan Shang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cheng Zhang
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xing-Guo Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, P.R. China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, P.R.China
| | - Xiang-Min Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, P.R. China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, P.R.China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
30
|
Urulangodi M, Mohanty A. DNA damage response and repair pathway modulation by non-histone protein methylation: implications in neurodegeneration. J Cell Commun Signal 2020; 14:31-45. [PMID: 31749026 PMCID: PMC7176765 DOI: 10.1007/s12079-019-00538-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Protein post-translational modifications (PTMs) have emerged to be combinatorial, essential mechanisms used by eukaryotic cells to regulate local chromatin structure, diversify and extend their protein functions and dynamically coordinate complex intracellular signalling processes. Most common types of PTMs include enzymatic addition of small chemical groups resulting in phosphorylation, glycosylation, poly(ADP-ribosyl)ation, nitrosylation, methylation, acetylation or covalent attachment of complete proteins such as ubiquitin and SUMO. Protein arginine methyltransferases (PRMTs) and protein lysine methyltransferases (PKMTs) enzymes catalyse the methylation of arginine and lysine residues in target proteins, respectively. Rapid progress in quantitative proteomic analysis and functional assays have not only documented the methylation of histone proteins post-translationally but also identified their occurrence in non-histone proteins which dynamically regulate a plethora of cellular functions including DNA damage response and repair. Emerging advances have now revealed the role of both histone and non-histone methylations in the regulating the DNA damage response (DDR) proteins, thereby modulating the DNA repair pathways both in proliferating and post-mitotic neuronal cells. Defects in many cellular DNA repair processes have been found primarily manifested in neuronal tissues. Moreover, fine tuning of the dynamicity of methylation of non-histone proteins as well as the perturbations in this dynamic methylation processes have recently been implicated in neuronal genomic stability maintenance. Considering the impact of methylation on chromatin associated pathways, in this review we attempt to link the evidences in non-histone protein methylation and DDR with neurodegenerative research.
Collapse
Affiliation(s)
- Madhusoodanan Urulangodi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, PIN-695011, India.
| | - Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, PIN-110085, India.
| |
Collapse
|
31
|
An Z, Yan J, Zhang Y, Pei R. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. J Mater Chem B 2020; 8:8748-8767. [DOI: 10.1039/d0tb01380c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanomaterials with excellent ROS-scavenging ability and biodistribution are considered as promising candidates in alleviating oxidative stress and restoring redox balance in CNS diseases, further facilitating the function recovery of the CNS.
Collapse
Affiliation(s)
- Zhen An
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Jincong Yan
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
32
|
Kallianpur KJ, Walker M, Gerschenson M, Shikuma CM, Gangcuangco LMA, Kohorn L, Libutti DE, Nir TM, Jahanshad N, Thompson PM, Paul R. Systemic Mitochondrial Oxidative Phosphorylation Protein Levels Correlate with Neuroimaging Measures in Chronically HIV-Infected Individuals. AIDS Res Hum Retroviruses 2019; 36:83-91. [PMID: 31617381 DOI: 10.1089/aid.2019.0240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Few studies have examined systemic mitochondrial function in conjunction with brain imaging in human immunodeficiency virus (HIV) disease. Oxidative phosphorylation enzyme protein levels of peripheral blood mononuclear cells were measured in association with neuroimaging indices in 28 HIV+ individuals. T1-weighted magnetic resonance imaging yielded volumes of seven brain regions of interest; diffusion tensor imaging determined fractional anisotropy (FA) and mean diffusivity (MD) in the corpus callosum (CC). Higher nicotinamide adenine dinucleotide dehydrogenase levels correlated with lower volumes of thalamus (p = .005) and cerebral white matter (p = .049) and, in the CC, with lower FA (p = .011, body; p = .005, genu; p = .009, total CC) and higher MD (p = .023, body; p = .035, genu; p = .019, splenium; p = .014, total CC). Greater cytochrome c oxidase levels correlated with lower thalamic (p = .034) and cerebellar gray matter (p = .021) volumes. The results indicate that systemic mitochondrial cellular bioenergetics are associated with brain health in HIV.
Collapse
Affiliation(s)
- Kalpana J. Kallianpur
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
- Center for Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii
| | - Maegen Walker
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Louie Mar A. Gangcuangco
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Lindsay Kohorn
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Daniel E. Libutti
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Talia M. Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck USC School of Medicine, Marina del Rey, California
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck USC School of Medicine, Marina del Rey, California
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck USC School of Medicine, Marina del Rey, California
| | - Robert Paul
- Missouri Institute of Mental Health, University of Missouri, St. Louis, Missouri
| |
Collapse
|
33
|
Ballance WC, Qin EC, Chung HJ, Gillette MU, Kong H. Reactive oxygen species-responsive drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials 2019; 217:119292. [PMID: 31279098 PMCID: PMC7081518 DOI: 10.1016/j.biomaterials.2019.119292] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases and disorders seriously impact memory and cognition and can become life-threatening. Current medical techniques attempt to combat these detrimental effects mainly through the administration of neuromedicine. However, drug efficacy is limited by rapid dispersal of the drugs to off-target sites while the site of administration is prone to overdose. Many neuropathological conditions are accompanied by excessive reactive oxygen species (ROS) due to the inflammatory response. Accordingly, ROS-responsive drug delivery systems have emerged as a promising solution. To guide intelligent and comprehensive design of ROS-responsive drug delivery systems, this review article discusses the two following topics: (1) the biology of ROS in both healthy and diseased nervous systems and (2) recent developments in ROS-responsive, drug delivery system design. Overall, this review article would assist efforts to make better decisions about designing ROS-responsive, neural drug delivery systems, including the selection of ROS-responsive functional groups.
Collapse
Affiliation(s)
- William C Ballance
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ellen C Qin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martha U Gillette
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
34
|
Zhang C, Sun F, Xiong B, Zhang Z. Preparation of mitochondria to measure superoxide flashes in angiosperm flowers. PeerJ 2019; 7:e6708. [PMID: 30997289 PMCID: PMC6462395 DOI: 10.7717/peerj.6708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/02/2019] [Indexed: 11/20/2022] Open
Abstract
Background Mitochondria are the center of energy metabolism and the production of reactive oxygen species (ROS). ROS production results in a burst of “superoxide flashes”, which is always accompanied by depolarization of mitochondrial membrane potential. Superoxide flashes have only been studied in the model plant Arabidopsis thaliana using a complex method to isolate mitochondria. In this study, we present an efficient, easier method to isolate functional mitochondria from floral tissues to measure superoxide flashes. Method We used 0.5 g samples to isolate mitochondria within <1.5 h from flowers of two non-transgenic plants (Magnolia denudata and Nelumbo nucifera) to measure superoxide flashes. Superoxide flashes were visualized by the pH-insensitive indicator MitoSOX Red, while the mitochondrial membrane potential (ΔΨ m) was labelled with TMRM. Results Mitochondria isolated using our method showed a high respiration ratio. Our results indicate that the location of ROS and mitochondria was in a good coincidence. Increased ROS together with a higher frequency of superoxide flashes was found in mitochondria isolated from the flower pistil. Furthermore, a higher rate of depolarization of the ΔΨ m was observed in the pistil. Taken together, these results demonstrate that the frequency of superoxide flashes is closely related to depolarization of the ΔΨ m in petals and pistils of flowers.
Collapse
Affiliation(s)
- Chulan Zhang
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fengshuo Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Biao Xiong
- College of Tea Science, Guizhou University, Guizhou Province, China
| | - Zhixiang Zhang
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
35
|
Sbodio JI, Snyder SH, Paul BD. Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:1450-1499. [PMID: 29634350 PMCID: PMC6393771 DOI: 10.1089/ars.2017.7321] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Once considered to be mere by-products of metabolism, reactive oxygen, nitrogen and sulfur species are now recognized to play important roles in diverse cellular processes such as response to pathogens and regulation of cellular differentiation. It is becoming increasingly evident that redox imbalance can impact several signaling pathways. For instance, disturbances of redox regulation in the brain mediate neurodegeneration and alter normal cytoprotective responses to stress. Very often small disturbances in redox signaling processes, which are reversible, precede damage in neurodegeneration. Recent Advances: The identification of redox-regulated processes, such as regulation of biochemical pathways involved in the maintenance of redox homeostasis in the brain has provided deeper insights into mechanisms of neuroprotection and neurodegeneration. Recent studies have also identified several post-translational modifications involving reactive cysteine residues, such as nitrosylation and sulfhydration, which fine-tune redox regulation. Thus, the study of mechanisms via which cell death occurs in several neurodegenerative disorders, reveal several similarities and dissimilarities. Here, we review redox regulated events that are disrupted in neurodegenerative disorders and whose modulation affords therapeutic opportunities. CRITICAL ISSUES Although accumulating evidence suggests that redox imbalance plays a significant role in progression of several neurodegenerative diseases, precise understanding of redox regulated events is lacking. Probes and methodologies that can precisely detect and quantify in vivo levels of reactive oxygen, nitrogen and sulfur species are not available. FUTURE DIRECTIONS Due to the importance of redox control in physiologic processes, organisms have evolved multiple pathways to counteract redox imbalance and maintain homeostasis. Cells and tissues address stress by harnessing an array of both endogenous and exogenous redox active substances. Targeting these pathways can help mitigate symptoms associated with neurodegeneration and may provide avenues for novel therapeutics. Antioxid. Redox Signal. 30, 1450-1499.
Collapse
Affiliation(s)
- Juan I. Sbodio
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
36
|
Paul BD, Snyder SH. Impaired Redox Signaling in Huntington's Disease: Therapeutic Implications. Front Mol Neurosci 2019; 12:68. [PMID: 30941013 PMCID: PMC6433839 DOI: 10.3389/fnmol.2019.00068] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease triggered by expansion of polyglutamine repeats in the protein huntingtin. Mutant huntingtin (mHtt) aggregates and elicits toxicity by multiple mechanisms which range from dysregulated transcription to disturbances in several metabolic pathways in both the brain and peripheral tissues. Hallmarks of HD include elevated oxidative stress and imbalanced redox signaling. Disruption of antioxidant defense mechanisms, involving antioxidant molecules and enzymes involved in scavenging or reversing oxidative damage, have been linked to the pathophysiology of HD. In addition, mitochondrial function is compromised in HD leading to impaired bioenergetics and elevated production of free radicals in cells. However, the exact mechanisms linking redox imbalance to neurodegeneration are still elusive. This review will focus on the current understanding of aberrant redox homeostasis in HD and potential therapeutic interventions.
Collapse
Affiliation(s)
- Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
37
|
Pinho BR, Reis SD, Hartley RC, Murphy MP, Oliveira JMA. Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. Free Radic Biol Med 2019; 130:318-327. [PMID: 30389496 PMCID: PMC6340810 DOI: 10.1016/j.freeradbiomed.2018.10.446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023]
Abstract
Superoxide generation by mitochondria respiratory complexes is a major source of reactive oxygen species (ROS) which are capable of initiating redox signaling and oxidative damage. Current understanding of the role of mitochondrial ROS in health and disease has been limited by the lack of experimental strategies to selectively induce mitochondrial superoxide production. The recently-developed mitochondria-targeted redox cycler MitoParaquat (MitoPQ) overcomes this limitation, and has proven effective in vitro and in Drosophila. Here we present an in vivo study of MitoPQ in the vertebrate zebrafish model in the context of Parkinson's disease (PD), and in a human cell model of Huntington's disease (HD). We show that MitoPQ is 100-fold more potent than non-targeted paraquat in both cells and in zebrafish in vivo. Treatment with MitoPQ induced a parkinsonian phenotype in zebrafish larvae, with decreased sensorimotor reflexes, spontaneous movement and brain tyrosine hydroxylase (TH) levels, without detectable effects on heart rate or atrioventricular coordination. Motor phenotypes and TH levels were partly rescued with antioxidant or monoaminergic potentiation strategies. In a HD cell model, MitoPQ promoted mutant huntingtin aggregation without increasing cell death, contrasting with the complex I inhibitor rotenone that increased death in cells expressing either wild-type or mutant huntingtin. These results show that MitoPQ is a valuable tool for cellular and in vivo studies of the role of mitochondrial superoxide generation in redox biology, and as a trigger or co-stressor to model metabolic and neurodegenerative disease phenotypes.
Collapse
Affiliation(s)
- Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sara D Reis
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT London, UK.
| |
Collapse
|
38
|
Yusuf M, Khan M, Robaian MA, Khan RA. Biomechanistic insights into the roles of oxidative stress in generating complex neurological disorders. Biol Chem 2018; 399:305-319. [PMID: 29261511 DOI: 10.1515/hsz-2017-0250] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
Abstract
Neurological diseases like Alzheimer's disease, epilepsy, parkinsonism, depression, Huntington's disease and amyotrophic lateral sclerosis prevailing globally are considered to be deeply influenced by oxidative stress-based changes in the biochemical settings of the organs. The excess oxygen concentration triggers the production of reactive oxygen species, and even the intrinsic antioxidant enzyme system, i.e. SOD, CAT and GSHPx, fails to manage their levels and keep them under desirable limits. This consequently leads to oxidation of protein, lipids and nucleic acids in the brain resulting in apoptosis, proteopathy, proteasomes and mitochondrion dysfunction, glial cell activation as well as neuroinflammation. The present exploration deals with the evidence-based mechanism of oxidative stress towards development of key neurological diseases along with the involved biomechanistics and biomaterials.
Collapse
Affiliation(s)
- Mohammad Yusuf
- College of Pharmacy, Taif University, Taif-Al-Haweiah 21974, Saudi Arabia
| | - Maria Khan
- College of Pharmacy, Taif University, Taif-Al-Haweiah 21974, Saudi Arabia
| | - Majed A Robaian
- College of Pharmacy, Taif University, Taif-Al-Haweiah 21974, Saudi Arabia
| | - Riaz A Khan
- Medicinal Chemistry Department, Qassim University, Qassim 51452, Saudi Arabia
- Department of Chemistry, MRIU, Faridabad, HR 121 001, India
| |
Collapse
|
39
|
Zheng J, Winderickx J, Franssens V, Liu B. A Mitochondria-Associated Oxidative Stress Perspective on Huntington's Disease. Front Mol Neurosci 2018; 11:329. [PMID: 30283298 DOI: 10.3389/fnmol.2018.00329/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/24/2018] [Indexed: 05/25/2023] Open
Abstract
Huntington's disease (HD) is genetically caused by mutation of the Huntingtin (HTT) gene. At present, the mechanisms underlying the defect of HTT and the development of HD remain largely unclear. However, increasing evidence shows the presence of enhanced oxidative stress in HD patients. In this review article, we focus on the role of oxidative stress in the pathogenesis of HD and discuss mediators and potential mechanisms involved in mutant HTT-mediated oxidative stress generation and progression. Furthermore, we emphasize the role of the unicellular organism Saccharomyces cerevisiae in investigating mutant HTT-induced oxidative stress. Overall, this review article provides an overview of the latest findings regarding oxidative stress in HD and potential therapeutic targets for HD.
Collapse
Affiliation(s)
- Ju Zheng
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Vanessa Franssens
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Center for Large-scale Cell-based Screening, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
40
|
Zheng J, Winderickx J, Franssens V, Liu B. A Mitochondria-Associated Oxidative Stress Perspective on Huntington's Disease. Front Mol Neurosci 2018; 11:329. [PMID: 30283298 PMCID: PMC6156126 DOI: 10.3389/fnmol.2018.00329] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is genetically caused by mutation of the Huntingtin (HTT) gene. At present, the mechanisms underlying the defect of HTT and the development of HD remain largely unclear. However, increasing evidence shows the presence of enhanced oxidative stress in HD patients. In this review article, we focus on the role of oxidative stress in the pathogenesis of HD and discuss mediators and potential mechanisms involved in mutant HTT-mediated oxidative stress generation and progression. Furthermore, we emphasize the role of the unicellular organism Saccharomyces cerevisiae in investigating mutant HTT-induced oxidative stress. Overall, this review article provides an overview of the latest findings regarding oxidative stress in HD and potential therapeutic targets for HD.
Collapse
Affiliation(s)
- Ju Zheng
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Vanessa Franssens
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.,Center for Large-scale Cell-based Screening, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
RNA Aptamers Rescue Mitochondrial Dysfunction in a Yeast Model of Huntington's Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:45-56. [PMID: 30195782 PMCID: PMC6023792 DOI: 10.1016/j.omtn.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 03/27/2018] [Accepted: 04/25/2018] [Indexed: 01/27/2023]
Abstract
Huntington’s disease (HD) is associated with the misfolding and aggregation of mutant huntingtin harboring an elongated polyglutamine stretch at its N terminus. A distinguishing pathological hallmark of HD is mitochondrial dysfunction. Any strategy that can restore the integrity of the mitochondrial environment should have beneficial consequences for the disease. Specific RNA aptamers were selected that were able to inhibit aggregation of elongated polyglutamine stretch containing mutant huntingtin fragment (103Q-htt). They were successful in reducing the calcium overload, which leads to mitochondrial membrane depolarization in case of HD. In one case, the level of Ca2+ was restored to the level of cells not expressing 103Q-htt, suggesting complete recovery. The presence of aptamers was able to increase mitochondrial mass in cells expressing 103Q-htt, along with rescuing loss of mitochondrial genome. The oxidative damage to the proteome was prevented, which led to increased viability of cells, as monitored by flow cytometry. Thus, the presence of aptamers was able to inhibit aggregation of mutant huntingtin fragment and restore mitochondrial dysfunction in the HD cell model, confirming the advantage of the strategy in a disease-relevant parameter.
Collapse
|
42
|
Abstract
Huntington disease is a monogenic neurodegenerative disorder that displays an autosomal-dominant pattern of inheritance. It is characterized by motor, psychiatric, and cognitive symptoms that progress over 15-20 years. Since the identification of the causative genetic mutation in 1993 much has been discovered about the underlying pathogenic mechanisms, but as yet there are no disease-modifying therapies available. This chapter reviews the epidemiology, genetic basis, pathogenesis, presentation, and clinical management of Huntington disease. The principles of genetic testing are explained. We also describe recent developments in the ongoing search for therapeutics and for biomarkers to track disease progression.
Collapse
Affiliation(s)
- Rhia Ghosh
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.
| |
Collapse
|
43
|
Protein Glutathionylation in the Pathogenesis of Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2818565. [PMID: 29456785 PMCID: PMC5804111 DOI: 10.1155/2017/2818565] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
Abstract
Protein glutathionylation is a redox-mediated posttranslational modification that regulates the function of target proteins by conjugating glutathione with a cysteine thiol group on the target proteins. Protein glutathionylation has several biological functions such as regulation of metabolic pathways, calcium homeostasis, signal transduction, remodeling of cytoskeleton, inflammation, and protein folding. However, the exact role and mechanism of glutathionylation during irreversible oxidative stress has not been completely defined. Irreversible oxidative damage is implicated in a number of neurological disorders. Here, we discuss and highlight the most recent findings and several evidences for the association of glutathionylation with neurodegenerative diseases and the role of glutathionylation of specific proteins in the pathogenesis of neurodegenerative diseases. Understanding the important role of glutathionylation in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions.
Collapse
|
44
|
Ratheesh G, Tian L, Venugopal JR, Ezhilarasu H, Sadiq A, Fan TP, Ramakrishna S. Role of medicinal plants in neurodegenerative diseases. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40898-017-0004-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Liao Y, Dong Y, Cheng J. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders. Int J Mol Sci 2017; 18:ijms18020248. [PMID: 28208618 PMCID: PMC5343785 DOI: 10.3390/ijms18020248] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial calcium uniporter (MCU)-a calcium uniporter on the inner membrane of mitochondria-controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP); however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yajin Liao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100039, China.
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yuan Dong
- Department of Biochemistry, Qingdao University Medical College, Qingdao 266071, China.
| | - Jinbo Cheng
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
46
|
Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery. J Neuroimmune Pharmacol 2017; 12:51-83. [PMID: 28160121 DOI: 10.1007/s11481-016-9724-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Neurological diseases and disorders (NDDs) present a significant societal burden and currently available drug- and biological-based therapeutic strategies have proven inadequate to alleviate it. Gene therapy is a suitable alternative to treat NDDs compared to conventional systems since it can be tailored to specifically alter select gene expression, reverse disease phenotype and restore normal function. The scope of gene therapy has broadened over the years with the advent of RNA interference and genome editing technologies. Consequently, encouraging results from central nervous system (CNS)-targeted gene delivery studies have led to their transition from preclinical to clinical trials. As we shift to an exciting gene therapy era, a retrospective of available literature on CNS-associated gene delivery is in order. This review is timely in this regard, since it analyzes key challenges and major findings from the last two decades and evaluates future prospects of brain gene delivery. We emphasize major areas consisting of physiological and pharmacological challenges in gene therapy, function-based selection of a ideal cellular target(s), available therapy modalities, and diversity of viral vectors and nanoparticles as vehicle systems. Further, we present plausible answers to key questions such as strategies to circumvent low blood-brain barrier permeability and most suitable CNS cell types for targeting. We compare and contrast pros and cons of the tested viral vectors in the context of delivery systems used in past and current clinical trials. Gene vector design challenges are also evaluated in the context of cell-specific promoters. Key challenges and findings reported for recent gene therapy clinical trials, assessing viral vectors and nanoparticles are discussed from the perspective of bench to bedside gene therapy translation. We conclude this review by tying together gene delivery challenges, available vehicle systems and comprehensive analyses of neuropathogenesis to outline future prospects of CNS-targeted gene therapies.
Collapse
|
47
|
Liot G, Valette J, Pépin J, Flament J, Brouillet E. Energy defects in Huntington's disease: Why “in vivo” evidence matters. Biochem Biophys Res Commun 2017; 483:1084-1095. [DOI: 10.1016/j.bbrc.2016.09.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/12/2023]
|
48
|
Feng G, Liu B, Hou T, Wang X, Cheng H. Mitochondrial Flashes: Elemental Signaling Events in Eukaryotic Cells. Handb Exp Pharmacol 2017; 240:403-422. [PMID: 28233181 DOI: 10.1007/164_2016_129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondrial flashes (mitoflashes) are recently discovered mitochondrial activity which reflects chemical and electrical excitation of the organelle. Emerging evidence indicates that mitoflashes represent highly regulated, elementary signaling events that play important roles in physiological and pathophysiological processes in eukaryotes. Furthermore, they are regulated by mitochondrial ROS, Ca2+, and protons, and are intertwined with mitochondrial metabolic processes. As such, targeting mitoflash activity may provide a novel means for the control of mitochondrial metabolism and signaling in health and disease. In this brief review, we summarize salient features and mechanisms of biogenesis of mitoflashes, and synthesize data on mitoflash biology in the context of metabolism, cell differentiation, stress response, disease, and ageing.
Collapse
Affiliation(s)
- Gaomin Feng
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Beibei Liu
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Tingting Hou
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xianhua Wang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
49
|
Arun S, Liu L, Donmez G. Mitochondrial Biology and Neurological Diseases. Curr Neuropharmacol 2016; 14:143-54. [PMID: 26903445 PMCID: PMC4825945 DOI: 10.2174/1570159x13666150703154541] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/20/2015] [Accepted: 07/02/2015] [Indexed: 01/02/2023] Open
Abstract
Mitochondria are extremely active organelles that perform a variety of roles in the cell including energy production, regulation of calcium homeostasis, apoptosis, and population maintenance through fission and fusion. Mitochondrial dysfunction in the form of oxidative stress and mutations can contribute to the pathogenesis of various neurodegenerative diseases such as Parkinson’s (PD), Alzheimer’s (AD), and Huntington’s diseases (HD). Abnormalities of Complex I function in the electron transport chain have been implicated in some neurodegenerative diseases, inhibiting ATP production and generating reactive oxygen species that can cause major damage to mitochondria Mutations in both nuclear and mitochondrial DNA can contribute to neurodegenerative disease, although the pathogenesis of these conditions tends to focus on nuclear mutations. In PD, nuclear genome mutations in the PINK1 and parkin genes have been implicated in neurodegeneration [1], while mutations in APP, PSEN1 and PSEN2 have been implicated in a variety of clinical symptoms of AD [5]. Mutant htt protein is known to cause HD [2]. Much progress has been made to determine some causes of these neurodegenerative diseases, though permanent treatments have yet to be developed. In this review, we discuss the roles of mitochondrial dysfunction in the pathogenesis of these diseases.
Collapse
Affiliation(s)
| | | | - Gizem Donmez
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave. Boston MA, 02111, USA.
| |
Collapse
|
50
|
Wang W, Gong G, Wang X, Wei-LaPierre L, Cheng H, Dirksen R, Sheu SS. Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology. Antioxid Redox Signal 2016; 25:534-49. [PMID: 27245241 PMCID: PMC5035371 DOI: 10.1089/ars.2016.6739] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Recent breakthroughs in mitochondrial research have advanced, reshaped, and revolutionized our view of the role of mitochondria in health and disease. These discoveries include the development of novel tools to probe mitochondrial biology, the molecular identification of mitochondrial functional proteins, and the emergence of new concepts and mechanisms in mitochondrial function regulation. The discovery of "mitochondrial flash" activity has provided unique insights not only into real-time visualization of individual mitochondrial redox and pH dynamics in live cells but has also advanced understanding of the excitability, autonomy, and integration of mitochondrial function in vivo. RECENT ADVANCES The mitochondrial flash is a transient and stochastic event confined within an individual mitochondrion and is observed in a wide range of organisms from plants to Caenorhabditis elegans to mammals. As flash events involve multiple transient concurrent changes within the mitochondrion (e.g., superoxide, pH, and membrane potential), a number of different mitochondrial targeted fluorescent indicators can detect flash activity. Accumulating evidence indicates that flash events reflect integrated snapshots of an intermittent mitochondrial process arising from mitochondrial respiration chain activity associated with the transient opening of the mitochondrial permeability transition pore. CRITICAL ISSUES We review the history of flash discovery, summarize current understanding of flash biology, highlight controversies regarding the relative roles of superoxide and pH signals during a flash event, and bring forth the integration of both signals in flash genesis. FUTURE DIRECTIONS Investigations using flash as a biomarker and establishing its role in cell signaling pathway will move the field forward. Antioxid. Redox Signal. 25, 534-549.
Collapse
Affiliation(s)
- Wang Wang
- 1 Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington , Seattle, Washington
| | - Guohua Gong
- 1 Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington , Seattle, Washington
| | - Xianhua Wang
- 2 State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University , Beijing, China
| | - Lan Wei-LaPierre
- 3 Department of Pharmacology and Physiology, University of Rochester Medical Center , Rochester, New York
| | - Heping Cheng
- 2 State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University , Beijing, China
| | - Robert Dirksen
- 3 Department of Pharmacology and Physiology, University of Rochester Medical Center , Rochester, New York
| | - Shey-Shing Sheu
- 4 Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|