1
|
Marino L, Kim A, Ni B, Celi FS. Thyroid hormone action and liver disease, a complex interplay. Hepatology 2025; 81:651-669. [PMID: 37535802 PMCID: PMC11737129 DOI: 10.1097/hep.0000000000000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Thyroid hormone action is involved in virtually all physiological processes. It is well known that the liver and thyroid are intimately linked, with thyroid hormone playing important roles in de novo lipogenesis, beta-oxidation (fatty acid oxidation), cholesterol metabolism, and carbohydrate metabolism. Clinical and mechanistic research studies have shown that thyroid hormone can be involved in chronic liver diseases, including alcohol-associated or NAFLD and HCC. Thyroid hormone action and synthetic thyroid hormone analogs can exert beneficial actions in terms of lowering lipids, preventing chronic liver disease and as liver anticancer agents. More recently, preclinical and clinical studies have indicated that some analogs of thyroid hormone could also play a role in the treatment of liver disease. These synthetic molecules, thyromimetics, can modulate lipid metabolism, particularly in NAFLD/NASH. In this review, we first summarize the thyroid hormone signaling axis in the context of liver biology, then we describe the changes in thyroid hormone signaling in liver disease and how liver diseases affect the thyroid hormone homeostasis, and finally we discuss the use of thyroid hormone-analog for the treatment of liver disease.
Collapse
Affiliation(s)
- Luigi Marino
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Adam Kim
- Division of Gastroenterology and Hepatology, Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Bin Ni
- Alliance Pharma, Philadelphia, Pennsylvania, USA
| | - Francesco S. Celi
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol 2025; 22:9-22. [PMID: 39420154 PMCID: PMC7616774 DOI: 10.1038/s41575-024-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Thyroid hormones (triiodothyronine and thyroxine) are pivotal for metabolic balance in the liver and entire body. Dysregulation of the hypothalamus-pituitary-thyroid axis can contribute to hepatic metabolic disturbances, affecting lipid metabolism, glucose regulation and protein synthesis. In addition, reductions in circulating and intrahepatic thyroid hormone concentrations increase the risk of metabolic dysfunction-associated steatotic liver disease by inducing lipotoxicity, inflammation and fibrosis. Amelioration of hepatic metabolic disease by thyroid hormones in preclinical and clinical studies has spurred the development of thyromimetics that target THRB (the predominant thyroid hormone receptor isoform in the liver) and/or the liver itself to provide more selective activation of hepatic thyroid hormone-regulated metabolic pathways while reducing thyrotoxic side effects in tissues that predominantly express THRA such as the heart and bone. Resmetirom, a liver and THRB-selective thyromimetic, recently became the first FDA-approved drug for metabolic dysfunction-associated steatohepatitis (MASH). Thus, a better understanding of the metabolic actions of thyroid hormones and thyromimetics in the liver is timely and clinically relevant. Here, we describe the roles of thyroid hormones in normal liver function and pathogenesis of MASH, as well as some potential clinical issues that might arise when treating patients with MASH with thyroid hormone supplementation or thyromimetics.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Soares De Oliveira L, Ritter MJ. Thyroid hormone and the Liver. Hepatol Commun 2025; 9:e0596. [PMID: 39699315 DOI: 10.1097/hc9.0000000000000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/20/2024] Open
Abstract
It is known that thyroid hormone can regulate hepatic metabolic pathways including cholesterol, de novo lipogenesis, fatty acid oxidation, lipophagy, and carbohydrate metabolism. Thyroid hormone action is mediated by the thyroid hormone receptor (THR) isoforms and their coregulators, and THRβ is the main isoform expressed in the liver. Dysregulation of thyroid hormone levels, as seen in hypothyroidism, has been associated with dyslipidemia and metabolic dysfunction-associated fatty liver disease. Given the beneficial effects of thyroid hormone in liver metabolism and the advances illuminating the use of thyroid hormone analogs such as resmetirom as therapeutic agents in the treatment of metabolic dysfunction-associated fatty liver disease, this review aims to further explore the relationship between TH, the liver, and metabolic dysfunction-associated fatty liver disease. Herein, we summarize the current clinical therapies and highlight future areas of research.
Collapse
Affiliation(s)
- Lorraine Soares De Oliveira
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Chauhan A, Patel SS. Thyroid Hormone and Diabetes Mellitus Interplay: Making Management of Comorbid Disorders Complicated. Horm Metab Res 2024; 56:845-858. [PMID: 39159661 DOI: 10.1055/a-2374-8756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Insulin and thyroid hormones play important roles in our body. Insulin helps regulate the glucose level while the thyroid hormones affect various cells and tissues, metabolizing protein, lipids, and glucose. Hyperthyroidism and thyrotoxicosis are potential hazards for type 2 diabetes mellitus. There is a high prevalence of hypothyroidism being more common compared to hyperthyroidism coexisting with diabetes mellitus. Thyroid hormones affect glucose metabolism through its action on peripheral tissues (gastrointestinal tract, liver, skeletal muscles, adipose tissue, and pancreas). High-level thyroid hormone causes hyperglycemia, upregulation of glucose transport, and reduction in glycogen storage. The reverse is observed during low levels of thyroid hormone along with insulin clearance. The net result of thyroid disorder is insulin resistance. Type 2 diabetes mellitus can downsize the regulation of thyroid stimulating hormones and impair the conversion of thyroxine to triiodothyronine in peripheral tissues. Furthermore, poorly managed type 2 diabetes mellitus may result in insulin resistance and hyperinsulinemia, contributing to the proliferation of thyroid tissue and an increase in nodule formation and goiter size. Although metformin proves advantageous for both type 2 diabetes mellitus and thyroid disorder patients, other antidiabetics like sulfonylureas, pioglitazone, and thiazolidinediones may have adverse effects on thyroid disorders. Moreover, antithyroid drugs such as methimazole can weaken glycemic control in individuals with diabetes. Thus, an interplay between both endocrinopathies is observed and individualized care and management of the disorder needs to be facilitated.
Collapse
Affiliation(s)
- Ayush Chauhan
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Snehal S Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
5
|
Zheng X, Huang J, Meng J, Wang H, Chen L, Yao J. Identification and Experimental Verification of PDK4 as a Potential Biomarker for Diagnosis and Treatment in Rheumatoid Arthritis. Mol Biotechnol 2024:10.1007/s12033-024-01297-1. [PMID: 39466354 DOI: 10.1007/s12033-024-01297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by sustained joint inflammation, with an etiology that remains elusive. Achieving an early and precise diagnosis poses significant challenges. This study aims to elucidate the molecular pathways involved in RA pathogenesis by screening genes associated with its occurrence, analyzing the related molecular activities, and ultimately developing more effective molecular-level treatments for RA. METHODS Microarray expression profiling datasets GSE1919, GSE10500, GSE15573, GSE77298, GSE206848, and GSE236924 were sourced from the Gene Expression Omnibus (GEO) database. Samples were divided into experimental (RA) and control (normal) groups. Differentially expressed genes (DEGs) were identified using R software packages such as limma, glmnet, e1071 as well as randomForest. Cross-validation of DEGs was conducted using lasso regression and the random forest (RF) algorithm in R software to pinpoint intersecting genes that met the criteria. Among these, one gene was selected as the target for correlation analysis to identify DEGs related to the target gene. Enrichment analysis utilized the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases and Gene Ontology (GO) data. Gene Set Enrichment Analysis (GSEA) was performed to compare the expression levels of the target gene (PDK4) across various biological pathways and functions in groups with high and low expression. The relationship between target gene expression levels and cellular immune function was assessed using the immune function score technique. The discrepancy in immune cell distribution between the control and experimental groups, as well as their correlation with target gene expression levels, was elucidated using CIBERSORT. The relationships between mRNA, lncRNA, and miRNA were depicted in the ceRNA regulation network. The expression levels of the target gene were validated using Western blot and qRT-PCR. RESULTS In this study, six intersecting genes meeting the criteria were identified through cross-validation, and PDK4 was chosen as the target gene for further investigation. Functional analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that PDK4-associated DEGs are primarily enriched in the PPAR signaling pathway, thereby regulating synovial cell proliferation and migration, ultimately influencing the onset and progression of rheumatoid arthritis (RA). Immune infiltration analysis suggested that eosinophil quantity may influence the progression of RA. Experimental results from PCR and Western blot confirmed the downregulation of PDK4 in the RA group. CONCLUSION The significant downregulation of PDK4 expression in patients diagnosed with rheumatoid arthritis (RA) was confirmed. PDK4 may function as a novel regulatory factor in the onset and progression of RA, with potential applications as a diagnostic biomarker for the condition.
Collapse
Affiliation(s)
- Xifan Zheng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junpu Huang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinzhi Meng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hongtao Wang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lingyun Chen
- Spine Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Yao
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
Chen Y, Xiao H, Liu Z, Teng F, Yang A, Geng B, Sheng X, Xia Y. Sirt1: An Increasingly Interesting Molecule with a Potential Role in Bone Metabolism and Osteoporosis. Biomolecules 2024; 14:970. [PMID: 39199358 PMCID: PMC11352324 DOI: 10.3390/biom14080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoporosis (OP) is a common metabolic bone disease characterized by low bone mass, decreased bone mineral density, and degradation of bone tissue microarchitecture. However, our understanding of the mechanisms of bone remodeling and factors affecting bone mass remains incomplete. Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase that regulates a variety of cellular metabolisms, including inflammation, tumorigenesis, and bone metabolism. Recent studies have emphasized the important role of SIRT1 in bone homeostasis. This article reviews the role of SIRT1 in bone metabolism and OP and also discusses therapeutic strategies and future research directions for targeting SIRT1.
Collapse
Affiliation(s)
- Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Zirui Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Fei Teng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Ao Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Xiaoyun Sheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
7
|
Sinha RA, Yen PM. Metabolic Messengers: Thyroid Hormones. Nat Metab 2024; 6:639-650. [PMID: 38671149 PMCID: PMC7615975 DOI: 10.1038/s42255-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/15/2024] [Indexed: 04/28/2024]
Abstract
Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Div. Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Ramanathan R, Patwa SA, Ali AH, Ibdah JA. Thyroid Hormone and Mitochondrial Dysfunction: Therapeutic Implications for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cells 2023; 12:2806. [PMID: 38132126 PMCID: PMC10741470 DOI: 10.3390/cells12242806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly termed nonalcoholic fatty liver disease (NAFLD), is a widespread global health concern that affects around 25% of the global population. Its influence is expanding, and it is anticipated to overtake alcohol as the leading cause of liver failure and liver-related death worldwide. Unfortunately, there are no approved therapies for MASLD; as such, national and international regulatory health agencies undertook strategies and action plans designed to expedite the development of drugs for treatment of MASLD. A sedentary lifestyle and an unhealthy diet intake are important risk factors. Western countries have a greater estimated prevalence of MASLD partly due to lifestyle habits. Mitochondrial dysfunction is strongly linked to the development of MASLD. Further, it has been speculated that mitophagy, a type of mitochondrial quality control, may be impaired in MASLD. Thyroid hormone (TH) coordinates signals from the nuclear and mitochondrial genomes to control mitochondrial biogenesis and function in hepatocytes. Mitochondria are known TH targets, and preclinical and clinical studies suggest that TH, thyroid receptor β (TR-β) analogs, and synthetic analogs specific to the liver could be of therapeutic benefit in treating MASLD. In this review, we highlight how mitochondrial dysfunction contributes to development of MASLD, and how understanding the role of TH in improving mitochondrial function paved the way for innovative drug development programs of TH-based therapies targeting MASLD.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
| | - Sohum A. Patwa
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
9
|
Yang R, Cao J, Speakman JR, Zhao Z. Limits to sustained energy intake. XXXIII. Thyroid hormones play important roles in milk production but do not define the heat dissipation limit in Swiss mice. J Exp Biol 2023; 226:jeb245393. [PMID: 37767758 DOI: 10.1242/jeb.245393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The limits to sustained energy intake set physiological upper boundaries that affect many aspects of human and animal performance. The mechanisms underlying these limits, however, remain unclear. We exposed Swiss mice to either supplementary thyroid hormones (THs) or the inhibitor methimazole during lactation at 21 or 32.5°C, and measured food intake, resting metabolic rate (RMR), milk energy output (MEO), serum THs and mammary gland gene expression of females, and litter size and mass of their offspring. Lactating females developed hyperthyroidism following exposure to supplementary THs at 21°C, but they did not significantly change body temperature, asymptotic food intake, RMR or MEO, and litter and mass were unaffected. Hypothyroidism, induced by either methimazole or 32.5°C exposure, significantly decreased asymptotic food intake, RMR and MEO, resulting in significantly decreased litter size and litter mass. Furthermore, gene expression of key genes in the mammary gland was significantly decreased by either methimazole or heat exposure, including gene expression of THs and prolactin receptors, and Stat5a and Stat5b. This suggests that endogenous THs are necessary to maintain sustained energy intake and MEO. Suppression of the thyroid axis seems to be an essential aspect of the mechanism by which mice at 32.5°C reduce their lactation performance to avoid overheating. However, THs do not define the upper limit to sustained energy intake and MEO at peak lactation at 21°C. Another, as yet unknown, factor prevents supplementary thyroxine exerting any stimulatory metabolic impacts on lactating mice at 21°C.
Collapse
Affiliation(s)
- Rui Yang
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhijun Zhao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
10
|
Gonçalves LED, Andrade-Silva M, Basso PJ, Câmara NOS. Vitamin D and chronic kidney disease: Insights on lipid metabolism of tubular epithelial cell and macrophages in tubulointerstitial fibrosis. Front Physiol 2023; 14:1145233. [PMID: 37064892 PMCID: PMC10090472 DOI: 10.3389/fphys.2023.1145233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Chronic kidney disease (CKD) has been recognized as a significant global health problem due to being an important contributor to morbidity and mortality. Inflammation is the critical event that leads to CKD development orchestrated by a complex interaction between renal parenchyma and immune cells. Particularly, the crosstalk between tubular epithelial cells (TECs) and macrophages is an example of the critical cell communication in the kidney that drives kidney fibrosis, a pathological feature in CKD. Metabolism dysregulation of TECs and macrophages can be a bridge that connects inflammation and fibrogenesis. Currently, some evidence has reported how cellular lipid disturbances can affect kidney disease and cause tubulointerstitial fibrosis highlighting the importance of investigating potential molecules that can restore metabolic parameters. Vitamin D (VitD) is a hormone naturally produced by mammalian cells in a coordinated manner by the skin, liver, and kidneys. VitD deficiency or insufficiency is prevalent in patients with CKD, and serum levels of VitD are inversely correlated with the degree of kidney inflammation and renal function. Proximal TECs and macrophages produce the active form of VitD, and both express the VitD receptor (VDR) that evidence the importance of this nutrient in regulating their functions. However, whether VitD signaling drives physiological and metabolism improvement of TECs and macrophages during kidney injury is an open issue to be debated. In this review, we brought to light VitD as an important metabolic modulator of lipid metabolism in TECs and macrophages. New scientific approaches targeting VitD e VDR signaling at the cellular metabolic level can provide a better comprehension of its role in renal physiology and CKD progression.
Collapse
Affiliation(s)
- Luís Eduardo D. Gonçalves
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Magaiver Andrade-Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Paulo José Basso
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| | - Niels O. S. Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| |
Collapse
|
11
|
Hepatic Energy Metabolism under the Local Control of the Thyroid Hormone System. Int J Mol Sci 2023; 24:ijms24054861. [PMID: 36902289 PMCID: PMC10002997 DOI: 10.3390/ijms24054861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The energy homeostasis of the organism is orchestrated by a complex interplay of energy substrate shuttling, breakdown, storage, and distribution. Many of these processes are interconnected via the liver. Thyroid hormones (TH) are well known to provide signals for the regulation of energy homeostasis through direct gene regulation via their nuclear receptors acting as transcription factors. In this comprehensive review, we summarize the effects of nutritional intervention like fasting and diets on the TH system. In parallel, we detail direct effects of TH in liver metabolic pathways with regards to glucose, lipid, and cholesterol metabolism. This overview on hepatic effects of TH provides the basis for understanding the complex regulatory network and its translational potential with regards to currently discussed treatment options of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) involving TH mimetics.
Collapse
|
12
|
Lu C, Zhao H, Liu Y, Yang Z, Yao H, Liu T, Gou T, Wang L, Zhang J, Tian Y, Yang Y, Zhang H. Novel Role of the SIRT1 in Endocrine and Metabolic Diseases. Int J Biol Sci 2023; 19:484-501. [PMID: 36632457 PMCID: PMC9830516 DOI: 10.7150/ijbs.78654] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Silent information regulator 1 (SIRT1), a highly conserved NAD+-dependent deacetylase, is a cellular regulator that has received extensive attention in recent years and regarded as a sensor of cellular energy and metabolism. The accumulated evidence suggests that SIRT1 is involved in the development of endocrine and metabolic diseases. In a variety of organisms, SIRT1 regulates gene expression through the deacetylation of histone, transcription factors, and lysine residues of other modified proteins including several metabolic and endocrine signal transcription factors, thereby enhancing the therapeutic effects of endocrine and metabolic diseases. These evidences indicate that targeting SIRT1 has promising applications in the treatment of endocrine and metabolic diseases. This review focuses on the role of SIRT1 in endocrine and metabolic diseases. First, we describe the background and structure of SIRT1. Then, we outline the role of SIRT1 in endocrine and metabolic diseases such as hyperuricemia, diabetes, hypertension, hyperlipidemia, osteoporosis, and polycystic ovarian syndrome. Subsequently, the SIRT1 agonists and inhibitors in the above diseases are summarized and future research directions are proposed. Overall, the information presents here may highlight the potential of SIRT1 as a future biomarker and therapeutic target for endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Chenxi Lu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yanqing Liu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Hairong Yao
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Tong Liu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Tiantian Gou
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Li Wang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Juan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,✉ Corresponding authors: Yang Yang: . Huan Zhang: . Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,✉ Corresponding authors: Yang Yang: . Huan Zhang: . Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| |
Collapse
|
13
|
Important Hormones Regulating Lipid Metabolism. Molecules 2022; 27:molecules27207052. [PMID: 36296646 PMCID: PMC9607181 DOI: 10.3390/molecules27207052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
There is a wide variety of kinds of lipids, and complex structures which determine the diversity and complexity of their functions. With the basic characteristic of water insolubility, lipid molecules are independent of the genetic information composed by genes to proteins, which determine the particularity of lipids in the human body, with water as the basic environment and genes to proteins as the genetic system. In this review, we have summarized the current landscape on hormone regulation of lipid metabolism. After the well-studied PI3K-AKT pathway, insulin affects fat synthesis by controlling the activity and production of various transcription factors. New mechanisms of thyroid hormone regulation are discussed, receptor α and β may mediate different procedures, the effect of thyroid hormone on mitochondria provides a new insight for hormones regulating lipid metabolism. Physiological concentration of adrenaline induces the expression of extrapituitary prolactin in adipose tissue macrophages, which promotes fat weight loss. Manipulation of hormonal action has the potential to offer a new therapeutic horizon for the global burden of obesity and its associated complications such as morbidity and mortality.
Collapse
|
14
|
López-Mateo I, Rodríguez-Muñoz D, de La Rosa JV, Castrillo A, Alemany S, Aranda A. Regulation of metabolic and transcriptional responses by the thyroid hormone in cellular models of murine macrophages. Front Immunol 2022; 13:923727. [PMID: 35935955 PMCID: PMC9353060 DOI: 10.3389/fimmu.2022.923727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Oncogene-immortalized bone marrow-derived macrophages are considered to be a good model for the study of immune cell functions, but the factors required for their survival and proliferation are still unknown. Although the effect of the thyroid hormones on global metabolic and transcriptional responses in macrophages has not yet been examined, there is increasing evidence that they could modulate macrophage functions. We show here that the thyroid hormone T3 is an absolute requirement for the growth of immortal macrophages. The hormone regulates the activity of the main signaling pathways required for proliferation and anabolic processes, including the phosphorylation of ERK and p38 MAPKs, AKT, ribosomal S6 protein, AMPK and Sirtuin-1. T3 also alters the levels of metabolites controlling transcriptional and post-transcriptional actions in macrophages, and causes widespread transcriptomic changes, up-regulating genes needed for protein synthesis and cell proliferation, while down-regulating genes involved in immune responses and endocytosis, among others. This is not observed in primary bone marrow-derived macrophages, where only p38 and AMPK activation is regulated by T3 and in which the metabolic and transcriptomic effects of the hormone are much weaker. However, the response to IFN-γ is reduced by T3 similarly in immortalized macrophages and in the primary cells, confirming previous results showing that the thyroid hormones can antagonize JAK/STAT-mediated signaling. These results provide new perspectives on the relevant pathways involved in proliferation and survival of macrophage cell culture models and on the crosstalk between the thyroid hormones and the immune system.
Collapse
Affiliation(s)
- Irene López-Mateo
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Rodríguez-Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Vladimir de La Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Ana Aranda,
| |
Collapse
|
15
|
Liao CJ, Huang PS, Chien HT, Lin TK, Yeh CT, Lin KH. Effects of Thyroid Hormones on Lipid Metabolism Pathologies in Non-Alcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10061232. [PMID: 35740254 PMCID: PMC9219876 DOI: 10.3390/biomedicines10061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
The typical modern lifestyle contributes to the development of many metabolic-related disorders, as exemplified by metabolic syndrome. How to prevent, resolve, or avoid subsequent deterioration of metabolic disturbances and the development of more serious diseases has become an important and much-discussed health issue. Thus, the question of the physiological and pathological roles of thyroid hormones (THs) in metabolism has never gone out of fashion. Although THs influence almost all organs, the liver is one of the most important targets as well as the hub of metabolic homeostasis. When this homeostasis is out of balance, diseases may result. In the current review, we summarize the common features and actions of THs, first focusing on their effects on lipid metabolism in the liver. In the second half of the review, we turn to a consideration of non-alcoholic fatty liver disease (NAFLD), a disease characterized by excessive accumulation of fat in the liver that is independent of heavy alcohol consumption. NAFLD is a growing health problem that currently affects ~25% of the world’s population. Unfortunately, there are currently no approved therapies specific for NAFLD, which, if left uncontrolled, may progress to more serious diseases, such as cirrhosis or liver cancer. This absence of effective treatment can also result in the development of non-alcoholic steatohepatitis (NASH), an aggressive form of NAFLD that is the leading cause of liver transplantation in the United States. Because THs play a clear role in hepatic fat metabolism, their potential application in the prevention and treatment of NAFLD has attracted considerable research attention. Studies that have investigated the use of TH-related compounds in the management of NAFLD are also summarized in the latter part of this review. An important take-home point of this review is that a comprehensive understanding of the physiological and pathological roles of THs in liver fat metabolism is possible, despite the complexities of this regulatory axis—an understanding that has clinical value for the specific management of NAFLD.
Collapse
Affiliation(s)
- Chia-Jung Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-J.L.); (P.-S.H.)
| | - Po-Shuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-J.L.); (P.-S.H.)
| | - Hui-Tzu Chien
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Tzu-Kang Lin
- Neurosurgery, Fu Jen Catholic University Hospital School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Kwang-Huei Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-J.L.); (P.-S.H.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
- Department of Biochemistry, Chang Gung University, 259 Wen-Hwa 1 Road, Taoyuan 333, Taiwan
- Correspondence: ; Tel./Fax: +886-3-2118263
| |
Collapse
|
16
|
Rodriguez-Muñoz D, Sánchez Á, Pérez-Benavente S, Contreras-Jurado C, Montero-Pedrazuela A, Toledo-Castillo M, Gutiérrez-Hernández M, Rodrigues-Díez R, Folgueira C, Briones AM, Sabio G, Monedero-Cobeta I, Chávez-Coira I, Castejón D, Fernández-Valle E, Regadera J, Bautista JM, Aranda A, Alemany S. Hypothyroidism confers tolerance to cerebral malaria. SCIENCE ADVANCES 2022; 8:eabj7110. [PMID: 35385300 PMCID: PMC8985923 DOI: 10.1126/sciadv.abj7110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The modulation of the host's metabolism to protect tissue from damage induces tolerance to infections increasing survival. Here, we examined the role of the thyroid hormones, key metabolic regulators, in the outcome of malaria. Hypothyroidism confers protection to experimental cerebral malaria by a disease tolerance mechanism. Hypothyroid mice display increased survival after infection with Plasmodium berghei ANKA, diminishing intracranial pressure and brain damage, without altering pathogen burden, blood-brain barrier disruption, or immune cell infiltration. This protection is reversed by treatment with a Sirtuin 1 inhibitor, while treatment of euthyroid mice with a Sirtuin 1 activator induces tolerance and reduces intracranial pressure and lethality. This indicates that thyroid hormones and Sirtuin 1 are previously unknown targets for cerebral malaria treatment, a major killer of children in endemic malaria areas.
Collapse
Affiliation(s)
- Diego Rodriguez-Muñoz
- Departament of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángela Sánchez
- Departament of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Susana Pérez-Benavente
- Department of Biochemistry and Molecular Biology, Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Constanza Contreras-Jurado
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Alfonso X El Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Ana Montero-Pedrazuela
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Toledo-Castillo
- Departament of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Gutiérrez-Hernández
- Departament of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Rodrigues-Díez
- Departament of Pharmacology, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | - Cintia Folgueira
- Departament of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares, ISCIII, 28029 Madrid, Spain
| | - Ana M. Briones
- Departament of Pharmacology, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | - Guadalupe Sabio
- Departament of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares, ISCIII, 28029 Madrid, Spain
| | | | - Irene Chávez-Coira
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Castejón
- MNR Unit (CAI de Bioimagen), Universidad Complutense de Madrid, Madrid, Spain
| | | | - Javier Regadera
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology, Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Aranda
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Biomedicine Unit (Unidad Asociada al CSIC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Corresponding author. (A.A.); (S.A.)
| | - Susana Alemany
- Departament of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Biomedicine Unit (Unidad Asociada al CSIC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
- Corresponding author. (A.A.); (S.A.)
| |
Collapse
|
17
|
Zhao M, Xie H, Shan H, Zheng Z, Li G, Li M, Hong L. Development of Thyroid Hormones and Synthetic Thyromimetics in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:1102. [PMID: 35163026 PMCID: PMC8835192 DOI: 10.3390/ijms23031102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the fastest-growing liver disease in the world. Despite targeted agents which are needed to provide permanent benefits for patients with NAFLD, no drugs have been approved to treat NASH. Thyroid hormone is an important signaling molecule to maintain normal metabolism, and in vivo and vitro studies have shown that regulation of the 3,5,3'-triiodothyronine (T3)/ thyroid hormone receptor (TR) axis is beneficial not only for metabolic symptoms but also for the improvement of NAFLD and even for the repair of liver injury. However, the non-selective regulation of T3 to TR subtypes (TRα/TRβ) could cause unacceptable side effects represented by cardiotoxicity. To avoid deleterious effects, TRβ-selective thyromimetics were developed for NASH studies in recent decades. Herein, we will review the development of thyroid hormones and synthetic thyromimetics based on TR selectivity for NAFLD, and analyze the role of TR-targeted drugs for the treatment of NAFLD in the future.
Collapse
Affiliation(s)
- Man Zhao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Huazhong Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Hao Shan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Zhihua Zheng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Guofeng Li
- Health Science Centre, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China;
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| |
Collapse
|
18
|
Di Dalmazi G, Giuliani C. Plant constituents and thyroid: A revision of the main phytochemicals that interfere with thyroid function. Food Chem Toxicol 2021; 152:112158. [PMID: 33789121 DOI: 10.1016/j.fct.2021.112158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023]
Abstract
In the past few decades, there has been a lot of interest in plant constituents for their antioxidant, anti-inflammatory, anti-microbial and anti-proliferative properties. However, concerns have been raised on their potential toxic effects particularly when consumed at high dose. The anti-thyroid effects of some plant constituents have been known for some time. Indeed, epidemiological observations have shown the causal association between staple food based on brassicaceae or soybeans and the development of goiter and/or hypothyroidism. Herein, we review the main plant constituents that interfere with normal thyroid function such as cyanogenic glucosides, polyphenols, phenolic acids, and alkaloids. In detail, we summarize the in vitro and in vivo studies present in the literature, focusing on the compounds that are more abundant in foods or that are available as dietary supplements. We highlight the mechanism of action of these compounds on thyroid cells by giving a particular emphasis to the experimental studies that can be significant for human health. Furthermore, we reveal that the anti-thyroid effects of these plant constituents are clinically evident only when they are consumed in very large amounts or when their ingestion is associated with other conditions that impair thyroid function.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy; Department of Medicine and Aging Science, Translational Medicine PhD Program, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
19
|
Chen X, Wu M, Liang N, Lu J, Qu S, Chen H. Thyroid Hormone-Regulated Expression of Period2 Promotes Liver Urate Production. Front Cell Dev Biol 2021; 9:636802. [PMID: 33869182 PMCID: PMC8047155 DOI: 10.3389/fcell.2021.636802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 11/15/2022] Open
Abstract
The relationship between thyroid hormones and serum urate is unclear. Our aim is to analyze the correlation between uric acid and thyroid hormones in gout patients and to explore the effect and mechanism of triiodothyronine on liver uric acid production. Eighty men patients with gout were selected to analyze the correlation between blood urate and thyroid function-related hormone levels. Stepwise multiple linear regression was used to analyze factors affecting blood urate in patients with gout. Levels of urate in serum, liver, and cell culture supernatant were measured after triiodothyronine treatment. Purine levels (adenine, guanine, and hypoxanthine) were also measured. Expression levels of Period2 and nucleotide metabolism enzymes were analyzed after triiodothyronine treatment and Period2-shRNA lentivirus transduction. Chromatin immunoprecipitation was used to analyze the effects of triiodothyronine and thyroid hormone receptor-β on Period2 expression. The results showed that in patients FT3 influenced the serum urate level. Furthermore, urate level increased in mouse liver and cell culture supernatant following treatment with triiodothyronine. Purine levels in mouse liver increased, accompanied by upregulation of enzymes involved in nucleotide metabolism. These phenomena were reversed in Period2 knockout mice. Triiodothyronine promoted the binding of thyroid hormone receptor-β to the Period2 promoter and subsequent transcription of Period2. Triiodothyronine also enhanced nuclear expression of Sirt1, which synergistically enhanced Period2 expression. The study demonstrated that triiodothyronine is independently positively correlated with serum urate and liver uric acid production through Period2, providing novel insights into the purine metabolism underlying hyperuricemia/gout pathophysiology.
Collapse
Affiliation(s)
- Xiaoting Chen
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mian Wu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Nan Liang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junxi Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Regulation of gene transcription by thyroid hormone receptor β agonists in clinical development for the treatment of non-alcoholic steatohepatitis (NASH). PLoS One 2020; 15:e0240338. [PMID: 33306682 PMCID: PMC7732128 DOI: 10.1371/journal.pone.0240338] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Thyroid hormones are important modulators of metabolic activity in mammals and alter cholesterol and fatty acid levels through activation of the nuclear thyroid hormone receptor (THR). Currently, there are several THRβ agonists in clinical trials for the treatment of non-alcoholic steatohepatitis (NASH) that have demonstrated the potential to reduce liver fat and restore liver function. In this study, we tested three THRβ-agonism-based NASH treatment candidates, GC-1 (sobetirome), MGL-3196 (resmetirom), and VK2809, and compared their selectivity for THRβ and their ability to modulate the expression of genes specific to cholesterol and fatty acid biosynthesis and metabolism in vitro using human hepatic cells and in vivo using a rat model. Treatment with GC-1 upregulated the transcription of CPT1A in the human hepatocyte-derived Huh-7 cell line with a dose-response comparable to that of the native THR ligand, triiodothyronine (T3). VK2809A (active parent of VK2809), MGL-3196, and VK2809 were approximately 30-fold, 1,000-fold, and 2,000-fold less potent than T3, respectively. Additionally, these relative potencies were confirmed by quantification of other direct gene targets of THR, namely, ANGPTL4 and DIO1. In primary human hepatocytes, potencies were conserved for every compound except for VK2809, which showed significantly increased potency that was comparable to that of its active counterpart, VK2809A. In high-fat diet fed rats, a single dose of T3 significantly reduced total cholesterol levels and concurrently increased liver Dio1 and Me1 RNA expression. MGL-3196 treatment resulted in concentration-dependent decreases in total and low-density lipoprotein cholesterol with corresponding increases in liver gene expression, but the compound was significantly less potent than T3. In conclusion, we have implemented a strategy to rank the efficacy of THRβ agonists by quantifying changes in the transcription of genes that lead to metabolic alterations, an effect that is directly downstream of THR binding and activation.
Collapse
|
21
|
Ritter MJ, Amano I, Hollenberg AN. Thyroid Hormone Signaling and the Liver. Hepatology 2020; 72:742-752. [PMID: 32343421 DOI: 10.1002/hep.31296] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Thyroid hormone (TH) plays a critical role in maintaining metabolic homeostasis throughout life. It is well known that the liver and thyroid are intimately linked, with TH playing important roles in de novo lipogenesis, beta-oxidation (fatty acid oxidation), cholesterol metabolism, and carbohydrate metabolism. Indeed, patients with hypothyroidism have abnormal lipid panels with higher levels of low-density lipoprotein levels, triglycerides (triacylglycerol; TAG), and apolipoprotein B levels. Even in euthyroid patients, lower serum-free thyroxine levels are associated with higher total cholesterol levels, LDL, and TAG levels. In addition to abnormal serum lipids, the risk of nonalcoholic fatty liver disease (NAFLD) increases with lower free thyroxine levels. As free thyroxine rises, the risk of NAFLD is reduced. This has led to numerous animal studies and clinical trials investigating TH analogs and TH receptor agonists as potential therapies for NAFLD and hyperlipidemia. Thus, TH plays an important role in maintaining hepatic homeostasis, and this continues to be an important area of study. A review of TH action and TH actions on the liver will be presented here.
Collapse
Affiliation(s)
- Megan J Ritter
- Division of Endocrinology, Weill Cornell Medicine, New York, NY
| | - Izuki Amano
- Division of Endocrinology, Weill Cornell Medicine, New York, NY.,Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | |
Collapse
|
22
|
Zhou J, Dong X, Liu Y, Jia Y, Wang Y, Zhou J, Jiang Z, Chen K. Gestational hypothyroidism elicits more pronounced lipid dysregulation in mice than pre-pregnant hypothyroidism. Endocr J 2020; 67:593-605. [PMID: 32161203 DOI: 10.1507/endocrj.ej19-0455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thyroid hormone is crucial for regulating lipid and glucose metabolism, which plays essential role in maintaining the health of pregnant women and their offspring. However, the current literature is just focusing on the development of offspring born to the untreated mothers with hypothyroidism, rather than mothers themselves. Additionally, the interaction between hypothyroidism and pregnancy, and its impact on the women's health are still elusive. Therefore, this study was designed to compare the metabolic differences in dams with hypothyroidism starting before pregnancy and after pregnancy. Pre-pregnant hypothyroidism was generated in 5-week-old female C57/BL/6J mice using iodine-deficient diet containing 0.15% propylthiouracil for 4 weeks, and the hypothyroidism was maintained until delivery. Gestational hypothyroidism was induced in dams after mating, using the same diet intervention until delivery. Compared with normal control, gestational hypothyroidism exhibited more prominent increase than pre-pregnant hypothyroidism in plasma total cholesterol and low-density lipoprotein cholesterol, and caused hepatic triglycerides accumulation. Similarly, more significant elevations of protein expressions of SREBP1c and p-ACL, while more dramatic inhibition of CPT1A and LDL-R levels were also observed in murine livers with gestational hypothyroidism than those with pre-pregnant hypothyroidism. Moreover, the murine hepatic levels of total cholesterol and gluconeogenesis were dramatically and equally enhanced in two hypothyroid groups, while plasma triglycerides and protein expressions of p-AKT, p-FoxO1 and APOC3 were reduced substantially in two hypothyroid groups. Taken together, our current study illuminated that gestational hypothyroidism may elicit more pronounced lipid dysregulation in dams than dose the pre-pregnant hypothyroidism.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Xuan Dong
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Yajing Liu
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Yajing Jia
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Yang Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Ji Zhou
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230021, China
| | - Keyang Chen
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
- Department of Ophthalmology, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230021, China
| |
Collapse
|
23
|
Low Expression of Sirtuin 1 in the Dairy Cows with Mild Fatty Liver Alters Hepatic Lipid Metabolism. Animals (Basel) 2020; 10:ani10040560. [PMID: 32230804 PMCID: PMC7222401 DOI: 10.3390/ani10040560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Sirtuin 1 (SIRT1), a NAD-dependent histone deacetylase, is involved in oxidative stress and lipid metabolism regulation. Limited studies exist regarding the role of SIRT1 in lipid metabolism disorder in periparturient dairy cows. This study explores the effect of hepatic steatosis on the expression of the SIRT1 gene and protein and the proteins encoded by the genes downstream to it, all of which are involved in lipid metabolism in the liver. Control cows (n = 6, parity 3.0 ± 2.0, milk production 28 ± 47 kg/d) and mild fatty liver cows (n = 6, parity 2.3 ± 1.5, milk production 20 ± 6 kg/d) were retrospectively selected based on liver triglycerides (TG) content (% wet liver). The present study indicates that low SIRT1 expression caused by hepatic steatosis promotes hepatic fatty acid synthesis and inhibits fatty acid β-oxidation. We believe that our study makes a significant contribution to the literature because it demonstrates that hepatic steatosis is associated with increased hepatic fatty acid synthesis, inhibited fatty acid β-oxidation and reduced lipid transport. Abstract Dairy cows usually experience negative energy balance coupled with an increased incidence of fatty liver during the periparturient period. The purpose of this study was to investigate the effect of hepatic steatosis on the expression of the sirtuin 1 (SIRT1), along with the target mRNA and protein expressions and activities related to lipid metabolism in liver tissue. Control cows (n = 6, parity 3.0 ± 2.0, milk production 28 ± 7 kg/d) and mild fatty liver cows (n = 6, parity 2.3 ± 1.5, milk production 20 ± 6 kg/d) were retrospectively selected based on liver triglycerides (TG) content (% wet liver). Compared with the control group, fatty liver cows had greater concentrations of cholesterol and TG along with the typically vacuolated appearance and greater lipid droplets in the liver. Furthermore, fatty liver cows had greater mRNA and protein abundance related to hepatic lipid synthesis proteins sterol regulatory element binding proteins (SREBP-1c), long-chain acyl-CoA synthetase (ACSL), acyl-CoA carbrolase (ACC) and fatty acid synthase (FAS) and lipid transport proteins Liver fatty acid binding protein (L-FABP), apolipoprotein E (ApoE), low density lipoprotein receptor (LDLR) and microsomal TG transfer protein (MTTP) (p < 0.05). However, they had lower mRNA and protein abundance associated with fatty acid β-oxidation proteins SIRT1, peroxisome proliferator-activated receptor co-activator-1 (PGC-1α), peroxisome proliferator–activated receptor-α (PPARα), retinoid X receptor (RXRα), acyl-CoA 1 (ACO), carnitine palmitoyltransferase 1 (CPT1), carnitine palmitoyltransferase 2 (CPT2) and long- and medium-chain 3-hydroxyacyl-CoA dehydrogenases (LCAD) (p < 0.05). Additionally, mRNA abundance and enzyme activity of enzymes copper/zinc superoxide dismutase (Cu/Zn SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and manganese superoxide dismutase (Mn SOD) decreased and mRNA and protein abundance of p45 nuclear factor-erythroid 2 (p45 NF-E2)-related factor 1 (Nrf1), mitochondrial transcription factor A (TFAM) decreased (p < 0.05). Lower enzyme activities of SIRT1, PGC-1α, Cu/Zn SOD, CAT, GSH-Px, SREBP-1c and Mn SOD (p < 0.05) and concentration of reactive oxygen species (ROS) were observed in dairy cows with fatty liver. These results demonstrate that decreased SIRT1 associated with hepatic steatosis promotes hepatic fatty acid synthesis and inhibits fatty acid β-oxidation. Hence, SIRT1 may represent a novel therapeutic target for the treatment of the fatty liver disease in dairy cows.
Collapse
|
24
|
Jin S, Yang L, Fan X, Wu M, Xu Y, Chen X, Lin Z, Geng Z. Effect of divergence in residual feed intake on expression of lipid metabolism-related genes in the liver of meat-type ducks1. J Anim Sci 2019; 97:3947-3957. [PMID: 31325379 DOI: 10.1093/jas/skz241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism is considered one of the important factors affecting residual feed intake (RFI). However, the relationship between RFI and expression of lipid metabolism-related genes is unknown in meat-type ducks. To address this issue, a total of 1,000 male meat-type ducks with similar body weight were randomly selected to measure body weight gain and feed intake from 21 to 42 d of age to estimate RFI. The 8 greatest- (high RFI [HRFI]) and lowest- (low RFI [LRFI]) ranking birds were then selected for the present study. Relative expressions of key genes, namely sirtuin 1 (Sirt1), forkhead box O1 (Foxo1), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor 1c (SREBP-1c), fas cell surface death receptor (FAS), acetyl-CoA carboxylase alpha (ACC), carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA oxidase 1 (ACOX1), were then determined in the HRFI and LRFI ducks by quantitative PCR. The results showed that RFI, feed conversion ratio (FCR), and average daily feed intake (ADFI) were significantly lower (P < 0.05) in LRFI ducks than in HRFI ducks. In addition, expression of Sirt1, Foxo1, CPT1A, and ACOX1 were significantly higher in LRFI ducks than in HRFI ducks (P < 0.05), whereas PPARγ and FAS expression levels were significantly lower in LRFI ducks than in HRFI ducks (P < 0.01). Correlation analysis showed that Sirt1, CPT1A, and ACOX1 expressions were significantly negatively correlated with FCR (r = -0.81 to -0.93; P < 0.01), whereas PPARγ and FAS expressions were significantly positively correlated with FCR (r = 0.74 to 0.87; P < 0.01). PPARγ expression was significantly positively correlated with RFI (r = 0.83; P < 0.01), whereas CPT1A and ACOX1 expressions were significantly negatively correlated with RFI (r = -0.84 to -0.89; P < 0.01). Sirt1 mRNA expression was positively correlated with Foxo1, CPT1A, and ACOX1 mRNA expression (r = 0.78 to 0.92; P < 0.01). Association of Foxo1 with CPT1A and ACOX1 was positive (r = 0.88 to 0.96; P < 0.01). These results suggest that genes related to fatty acid oxidation are upregulated in the liver of ducks with high feed efficiency, while genes associated with lipid synthesis are downregulated. Furthermore, the inclusion of lipid metabolism-related genes in future breeding programs might be beneficial for selecting ducks with greater feed efficiency phenotype.
Collapse
Affiliation(s)
- Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lei Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xinfeng Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Minghui Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xianzen Chen
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Biobreeding, Hefei, China
| | - Zhiqiang Lin
- Huangshan Qiangying Duck Breeding Co. Ltd., Huangshan, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
25
|
Sinha RA, Bruinstroop E, Singh BK, Yen PM. Nonalcoholic Fatty Liver Disease and Hypercholesterolemia: Roles of Thyroid Hormones, Metabolites, and Agonists. Thyroid 2019; 29:1173-1191. [PMID: 31389309 PMCID: PMC6850905 DOI: 10.1089/thy.2018.0664] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Thyroid hormones (THs) exert a strong influence on mammalian lipid metabolism at the systemic and hepatic levels by virtue of their roles in regulating circulating lipoprotein, triglyceride (TAG), and cholesterol levels, as well as hepatic TAG storage and metabolism. These effects are mediated by intricate sensing and feedback systems that function at the physiological, metabolic, molecular, and transcriptional levels in the liver. Dysfunction in the pathways involved in lipid metabolism disrupts hepatic lipid homeostasis and contributes to the pathogenesis of metabolic diseases, such as nonalcoholic fatty liver disease (NAFLD) and hypercholesterolemia. There has been strong interest in understanding and employing THs, TH metabolites, and TH mimetics as lipid-modifying drugs. Summary: THs regulate many processes involved in hepatic TAG and cholesterol metabolism to decrease serum cholesterol and intrahepatic lipid content. TH receptor β analogs designed to have less side effects than the natural hormone are currently being tested in phase II clinical studies for NAFLD and hypercholesterolemia. The TH metabolites, 3,5-diiodo-l-thyronine (T2) and T1AM (3-iodothyronamine), have different beneficial effects on lipid metabolism compared with triiodothyronine (T3), although their clinical application is still under investigation. Also, prodrugs and glucagon/T3 conjugates have been developed that direct TH to the liver. Conclusions: TH-based therapies show clinical promise for the treatment of NAFLD and hypercholesterolemia. Strategies for limiting side effects of TH are being developed and may enable TH metabolites and analogs to have specific effects in the liver for treatments of these conditions. These liver-specific effects and potential suppression of the hypothalamic/pituitary/thyroid axis raise the issue of monitoring liver-specific markers of TH action to assess clinical efficacy and dosing of these compounds.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
26
|
Bae SA, Fang MZ, Rustgi V, Zarbl H, Androulakis IP. At the Interface of Lifestyle, Behavior, and Circadian Rhythms: Metabolic Implications. Front Nutr 2019; 6:132. [PMID: 31555652 PMCID: PMC6722208 DOI: 10.3389/fnut.2019.00132] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Nutrient metabolism is under circadian regulation. Disruption of circadian rhythms by lifestyle and behavioral choices such as work schedules, eating patterns, and social jetlag, seriously impacts metabolic homeostasis. Metabolic dysfunction due to chronic misalignment of an organism's endogenous rhythms is detrimental to health, increasing the risk of obesity, metabolic and cardiovascular disease, diabetes, and cancer. In this paper, we review literature on recent findings on the mechanisms that communicate metabolic signals to circadian clocks and vice versa, and how human behavioral changes imposed by societal and occupational demands affect the physiological networks integrating peripheral clocks and metabolism. Finally, we discuss factors possibly contributing to inter-individual variability in response to circadian changes in the context of metabolic (dys)function.
Collapse
Affiliation(s)
- Seul-A Bae
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ, United States
| | - Ming Zhu Fang
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Piscataway, NJ, United States.,National Institute for Environmental Health Sciences (NIEHS) Center for Environmental Exposures and Disease, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, United States.,Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Vinod Rustgi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Helmut Zarbl
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Piscataway, NJ, United States.,National Institute for Environmental Health Sciences (NIEHS) Center for Environmental Exposures and Disease, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, United States.,Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Ioannis P Androulakis
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ, United States.,Biomedical Engineering Department, Rutgers University, Piscataway, NJ, United States.,Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
27
|
Guan Y, Zhang T, He J, Jia J, Zhu L, Wang Z. Bisphenol A disturbed the lipid metabolism mediated by sterol regulatory element binding protein 1 in rare minnow Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:179-186. [PMID: 30579156 DOI: 10.1016/j.aquatox.2018.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/31/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA), a representative endocrine disrupting compound, exists ubiquitously in the aquatic environment. Several studies on fish have validated the role of BPA in the lipid metabolism. However, the action mechanisms of BPA on lipid metabolism have been little studied. To clarify how BPA regulates lipid metabolism, Gobiocypris rarus were exposed to 15 μg/L BPA for 3 and 6 weeks. Results showed that BPA altered lipid content by regulating some metabolism-related genes. The BPA's inhibiting effect on fatty acid β-oxidation might be stronger than on lipid synthesis. BPA disturbed the expression of acaca (acetyl-CoA carboxylase), fasn (fatty acid synthase) and cpt1α (carnitine palmitoyltransferase 1α) by altering the sterol regulatory element binding protein 1 (SREBP-1) binding to their sterol regulatory elements (SREs). Our result also revealed that DNA methylation in the 5' flanking regions of cpt1α could perturb the SREBP-1 binding adjacent to its SRE in females under BPA exposure. Besides, BPA exposure led to gender-specific effect on fatty acid β-oxidation in G. rarus. This will contribute to our understanding of the regulation mechanisms of BPA on lipid metabolism in fish.
Collapse
Affiliation(s)
- Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiafa He
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
28
|
Forini F, Nicolini G, Pitto L, Iervasi G. Novel Insight Into the Epigenetic and Post-transcriptional Control of Cardiac Gene Expression by Thyroid Hormone. Front Endocrinol (Lausanne) 2019; 10:601. [PMID: 31555215 PMCID: PMC6727178 DOI: 10.3389/fendo.2019.00601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) signaling is critically involved in the regulation of cardiovascular physiology. Even mild reductions of myocardial TH levels, as occur in hypothyroidism or low T3 state conditions, are thought to play a role in the progression of cardiac disorders. Due to recent advances in molecular mechanisms underlying TH action, it is now accepted that TH-dependent modulation of gene expression is achieved at multiple transcriptional and post-transcriptional levels and involves the cooperation of many processes. Among them, the epigenetic remodeling of chromatin structure and the interplay with non-coding RNA have emerged as novel TH-dependent pathways that add further degrees of complexity and broaden the network of genes controlled by TH signaling. Increasing experimental and clinical findings indicate that aberrant function of these regulatory mechanisms promotes the evolution of cardiac disorders such as post-ischemic injury, pathological hypertrophy, and heart failure, which may be reversed by the correction of the underlying TH dyshomeostasis. To encourage the clinical implementation of a TH replacement strategy in cardiac disease, here we discuss the crucial effect of epigenetic modifications and control of non-coding RNA in TH-dependent regulation of biological processes relevant for cardiac disease evolution.
Collapse
|
29
|
Meroni SB, Galardo MN, Rindone G, Gorga A, Riera MF, Cigorraga SB. Molecular Mechanisms and Signaling Pathways Involved in Sertoli Cell Proliferation. Front Endocrinol (Lausanne) 2019; 10:224. [PMID: 31040821 PMCID: PMC6476933 DOI: 10.3389/fendo.2019.00224] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sertoli cells are somatic cells present in seminiferous tubules which have essential roles in regulating spermatogenesis. Considering that each Sertoli cell is able to support a limited number of germ cells, the final number of Sertoli cells reached during the proliferative period determines sperm production capacity. Only immature Sertoli cells, which have not established the blood-testis barrier, proliferate. A number of hormonal cues regulate Sertoli cell proliferation. Among them, FSH, the insulin family of growth factors, activin, and cytokines action must be highlighted. It has been demonstrated that cAMP/PKA, ERK1/2, PI3K/Akt, and mTORC1/p70SK6 pathways are the main signal transduction pathways involved in Sertoli cell proliferation. Additionally, c-Myc and hypoxia inducible factor are transcription factors which participate in the induction by FSH of various genes of relevance in cell cycle progression. Cessation of proliferation is a pre-requisite to Sertoli cell maturation accompanied by the establishment of the blood-testis barrier. With respect to this barrier, the participation of androgens, estrogens, thyroid hormones, retinoic acid and opioids has been reported. Additionally, two central enzymes that are involved in sensing cell energy status have been associated with the suppression of Sertoli cell proliferation, namely AMPK and Sirtuin 1 (SIRT1). Among the molecular mechanisms involved in the cessation of proliferation and in the maturation of Sertoli cells, it is worth mentioning the up-regulation of the cell cycle inhibitors p21Cip1, p27Kip, and p19INK4, and of the gap junction protein connexin 43. A decrease in Sertoli cell proliferation due to administration of certain therapeutic drugs and exposure to xenobiotic agents before puberty has been experimentally demonstrated. This review focuses on the hormones, locally produced factors, signal transduction pathways, and molecular mechanisms controlling Sertoli cell proliferation and maturation. The comprehension of how the final number of Sertoli cells in adulthood is established constitutes a pre-requisite to understand the underlying causes responsible for the progressive decrease in sperm production that has been observed during the last 50 years in humans.
Collapse
|
30
|
Sun M, Du M, Zhang W, Xiong S, Gong X, Lei P, Zha J, Zhu H, Li H, Huang D, Gu X. Survival and Clinicopathological Significance of SIRT1 Expression in Cancers: A Meta-Analysis. Front Endocrinol (Lausanne) 2019; 10:121. [PMID: 30930849 PMCID: PMC6424908 DOI: 10.3389/fendo.2019.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Silent information regulator 2 homolog 1 (SIRT1) is an evolutionarily conserved enzymes with nicotinamide adenine dinucleotide (NAD)+-dependent deacetylase activity. SIRT1 is involved in a large variety of cellular processes, such as genomic stability, energy metabolism, senescence, gene transcription, and oxidative stress. SIRT1 has long been recognized as both a tumor promoter and tumor suppressor. Its prognostic role in cancers remains controversial. Methods: A meta-analysis of 13,138 subjects in 63 articles from PubMed, EMBASE, and Cochrane Library was performed to evaluate survival and clinicopathological significance of SIRT1 expression in various cancers. Results: The pooled results of meta-analysis showed that elevated expression of SIRT1 implies a poor overall survival (OS) of cancer patients [Hazard Ratio (HR) = 1.566, 95% CI: 1.293-1.895, P < 0.0001], disease free survival (DFS) (HR = 1.631, 95% CI: 1.250-2.130, P = 0.0003), event free survival (EFS) (HR = 2.534, 95% CI: 1.602-4.009, P = 0.0001), and progress-free survival (PFS) (HR = 3.325 95% CI: 2.762-4.003, P < 0.0001). Elevated SIRT1 level was associated with tumor stage [Relative Risk (RR) = 1.299, 95% CI: 1.114-1.514, P = 0.0008], lymph node metastasis (RR = 1.172, 95% CI: 1.010-1.360, P = 0.0363), and distant metastasis (RR = 1.562, 95% CI: 1.022-2.387, P = 0.0392). Meta-regression and subgroup analysis revealed that ethnic background has influence on the role of SIRT1 expression in predicting survival and clinicopathological characteristics of cancers. Overexpression of SIRT1 predicted a worse OS and higher TNM stage and lymphatic metastasis in Asian population especially in China. Conclusion: Our data suggested that elevated expression of SIRT1 predicted a poor OS, DFS, EFS, PFS, but not for recurrence-free survival (RFS) and cancer-specific survival (CCS). SIRT1 overexpression was associated with higher tumor stage, lymph node metastasis, and distant metastasis. SIRT1-mediated molecular events and biological processes could be an underlying mechanism for metastasis and SIRT1 is a therapeutic target for inhibiting metastasis, leading to good prognosis.
Collapse
Affiliation(s)
- Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengyu Du
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wenhua Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Sisi Xiong
- School of Nursing, Hubei University of Medicine, Shiyan, China
| | - Xingrui Gong
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peijie Lei
- The First Clinical School, Hubei University of Medicine, Shiyan, China
| | - Jin Zha
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongrui Zhu
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Heng Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dong Huang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Dong Huang
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Xinsheng Gu
| |
Collapse
|
31
|
Singh BK, Sinha RA, Yen PM. Novel Transcriptional Mechanisms for Regulating Metabolism by Thyroid Hormone. Int J Mol Sci 2018; 19:E3284. [PMID: 30360449 PMCID: PMC6214012 DOI: 10.3390/ijms19103284] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
The thyroid hormone plays a key role in energy and nutrient metabolisms in many tissues and regulates the transcription of key genes in metabolic pathways. It has long been believed that thyroid hormones (THs) exerted their effects primarily by binding to nuclear TH receptors (THRs) that are associated with conserved thyroid hormone response elements (TREs) located on the promoters of target genes. However, recent transcriptome and ChIP-Seq studies have challenged this conventional view as discordance was observed between TH-responsive genes and THR binding to DNA. While THR association with other transcription factors bound to DNA, TH activation of THRs to mediate effects that do not involve DNA-binding, or TH binding to proteins other than THRs have been invoked as potential mechanisms to explain this discrepancy, it appears that additional novel mechanisms may enable TH to regulate the mRNA expression. These include activation of transcription factors by SIRT1 via metabolic actions by TH, the post-translational modification of THR, the THR co-regulation of transcription with other nuclear receptors and transcription factors, and the microRNA (miR) control of RNA transcript expression to encode proteins involved in the cellular metabolism. Together, these novel mechanisms enlarge and diversify the panoply of metabolic genes that can be regulated by TH.
Collapse
Affiliation(s)
- Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Paul Michael Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
32
|
Cogburn LA, Trakooljul N, Chen C, Huang H, Wu CH, Carré W, Wang X, White HB. Transcriptional profiling of liver during the critical embryo-to-hatchling transition period in the chicken (Gallus gallus). BMC Genomics 2018; 19:695. [PMID: 30241500 PMCID: PMC6151027 DOI: 10.1186/s12864-018-5080-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Background Although hatching is perhaps the most abrupt and profound metabolic challenge that a chicken must undergo; there have been no attempts to functionally map the metabolic pathways induced in liver during the embryo-to-hatchling transition. Furthermore, we know very little about the metabolic and regulatory factors that regulate lipid metabolism in late embryos or newly-hatched chicks. In the present study, we examined hepatic transcriptomes of 12 embryos and 12 hatchling chicks during the peri-hatch period—or the metabolic switch from chorioallantoic to pulmonary respiration. Results Initial hierarchical clustering revealed two distinct, albeit opposing, patterns of hepatic gene expression. Cluster A genes are largely lipolytic and highly expressed in embryos. While, Cluster B genes are lipogenic/thermogenic and mainly controlled by the lipogenic transcription factor THRSPA. Using pairwise comparisons of embryo and hatchling ages, we found 1272 genes that were differentially expressed between embryos and hatchling chicks, including 24 transcription factors and 284 genes that regulate lipid metabolism. The three most differentially-expressed transcripts found in liver of embryos were MOGAT1, DIO3 and PDK4, whereas THRSPA, FASN and DIO2 were highest in hatchlings. An unusual finding was the “ectopic” and extremely high differentially expression of seven feather keratin transcripts in liver of 16 day embryos, which coincides with engorgement of liver with yolk lipids. Gene interaction networks show several transcription factors, transcriptional co-activators/co-inhibitors and their downstream genes that exert a ‘ying-yang’ action on lipid metabolism during the embryo-to-hatching transition. These upstream regulators include ligand-activated transcription factors, sirtuins and Kruppel-like factors. Conclusions Our genome-wide transcriptional analysis has greatly expanded the hepatic repertoire of regulatory and metabolic genes involved in the embryo-to-hatchling transition. New knowledge was gained on interactive transcriptional networks and metabolic pathways that enable the abrupt switch from ectothermy (embryo) to endothermy (hatchling) in the chicken. Several transcription factors and their coactivators/co-inhibitors appear to exert opposing actions on lipid metabolism, leading to the predominance of lipolysis in embryos and lipogenesis in hatchlings. Our analysis of hepatic transcriptomes has enabled discovery of opposing, interconnected and interdependent transcriptional regulators that provide precise ying-yang or homeorhetic regulation of lipid metabolism during the critical embryo-to-hatchling transition. Electronic supplementary material The online version of this article (10.1186/s12864-018-5080-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Larry A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| | - Nares Trakooljul
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Present Address: Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196, Dummerstorf, Germany
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Wilfrid Carré
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Laboratoire de Génétique Moléculaire et Génomique, CHU Pontchaillou, 35033, Rennes, France
| | - Xiaofei Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Harold B White
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
33
|
Singh BK, Sinha RA, Tripathi M, Mendoza A, Ohba K, Sy JAC, Xie SY, Zhou J, Ho JP, Chang CY, Wu Y, Giguère V, Bay BH, Vanacker JM, Ghosh S, Gauthier K, Hollenberg AN, McDonnell DP, Yen PM. Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci Signal 2018; 11:eaam5855. [PMID: 29945885 DOI: 10.1126/scisignal.aam5855] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Thyroid hormone receptor β1 (THRB1) and estrogen-related receptor α (ESRRA; also known as ERRα) both play important roles in mitochondrial activity. To understand their potential interactions, we performed transcriptome and ChIP-seq analyses and found that many genes that were co-regulated by both THRB1 and ESRRA were involved in mitochondrial metabolic pathways. These included oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and β-oxidation of fatty acids. TH increased ESRRA expression and activity in a THRB1-dependent manner through the induction of the transcriptional coactivator PPARGC1A (also known as PGC1α). Moreover, TH induced mitochondrial biogenesis, fission, and mitophagy in an ESRRA-dependent manner. TH also induced the expression of the autophagy-regulating kinase ULK1 through ESRRA, which then promoted DRP1-mediated mitochondrial fission. In addition, ULK1 activated the docking receptor protein FUNDC1 and its interaction with the autophagosomal protein MAP1LC3B-II to induce mitophagy. siRNA knockdown of ESRRA, ULK1, DRP1, or FUNDC1 inhibited TH-induced autophagic clearance of mitochondria through mitophagy and decreased OXPHOS. These findings show that many of the mitochondrial actions of TH are mediated through stimulation of ESRRA expression and activity, and co-regulation of mitochondrial turnover through the PPARGC1A-ESRRA-ULK1 pathway is mediated by their regulation of mitochondrial fission and mitophagy. Hormonal or pharmacologic induction of ESRRA expression or activity could improve mitochondrial quality in metabolic disorders.
Collapse
Affiliation(s)
- Brijesh K Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| | - Rohit A Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Arturo Mendoza
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Kenji Ohba
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
- Department of Internal Medicine, Enshu Hospital, Hamamatsu, Shizuoka 430-0929, Japan
| | - Jann A C Sy
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sherwin Y Xie
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jia Pei Ho
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Sujoy Ghosh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Donald P McDonnell
- Department of Internal Medicine, Enshu Hospital, Hamamatsu, Shizuoka 430-0929, Japan
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| |
Collapse
|
34
|
Abstract
It has been known for a long time that thyroid hormones have prominent effects on hepatic fatty acid and cholesterol synthesis and metabolism. Indeed, hypothyroidism has been associated with increased serum levels of triglycerides and cholesterol as well as non-alcoholic fatty liver disease (NAFLD). Advances in areas such as cell imaging, autophagy and metabolomics have generated a more detailed and comprehensive picture of thyroid-hormone-mediated regulation of hepatic lipid metabolism at the molecular level. In this Review, we describe and summarize the key features of direct thyroid hormone regulation of lipogenesis, fatty acid β-oxidation, cholesterol synthesis and the reverse cholesterol transport pathway in normal and altered thyroid hormone states. Thyroid hormone mediates these effects at the transcriptional and post-translational levels and via autophagy. Given these potentially beneficial effects on lipid metabolism, it is possible that thyroid hormone analogues and/or mimetics might be useful for the treatment of metabolic diseases involving the liver, such as hypercholesterolaemia and NAFLD.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
- ;
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- ;
| |
Collapse
|
35
|
Iwen KA, Oelkrug R, Brabant G. Effects of thyroid hormones on thermogenesis and energy partitioning. J Mol Endocrinol 2018; 60:R157-R170. [PMID: 29434028 DOI: 10.1530/jme-17-0319] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
Abstract
Thyroid hormones (TH) are of central importance for thermogenesis, energy homeostasis and metabolism. Here, we will discuss these aspects by focussing on the physiological aspects of TH-dependent regulation in response to cold exposure and fasting, which will be compared to alterations in primary hyperthyroidism and hypothyroidism. In particular, we will summarise current knowledge on regional thyroid hormone status in the central nervous system (CNS) and in peripheral cells. In contrast to hyperthyroidism and hypothyroidism, where parallel changes are observed, local alterations in the CNS differ to peripheral compartments when induced by cold exposure or fasting. Cold exposure is associated with low hypothalamic TH concentrations but increased TH levels in the periphery. Fasting results in a reversed TH pattern. Primary hypothyroidism and hyperthyroidism disrupt these fine-tuned adaptive mechanisms and both, the hypothalamus and the periphery, will have the same TH status. These important mechanisms need to be considered when discussing thyroid hormone replacement and other therapeutical interventions to modulate TH status.
Collapse
Affiliation(s)
- K Alexander Iwen
- Medizinische Klinik IExperimentelle und Klinische Endokrinologie, Universität zu Lübeck, Lübeck, Germany
- Department of Molecular EndocrinologyCenter of Brain, Behavior and Metabolism, Universität zu Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Department of Molecular EndocrinologyCenter of Brain, Behavior and Metabolism, Universität zu Lübeck, Lübeck, Germany
| | - Georg Brabant
- Medizinische Klinik IExperimentelle und Klinische Endokrinologie, Universität zu Lübeck, Lübeck, Germany
- Department of EndocrinologyThe Christie Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
36
|
Bi Y, Shi X, Zhu J, Guan X, Garbacz WG, Huang Y, Gao L, Yan J, Xu M, Ren S, Ren S, Liu Y, Ma X, Li S, Xie W. Regulation of Cholesterol Sulfotransferase SULT2B1b by Hepatocyte Nuclear Factor 4α Constitutes a Negative Feedback Control of Hepatic Gluconeogenesis. Mol Cell Biol 2018; 38:e00654-17. [PMID: 29378829 PMCID: PMC5854833 DOI: 10.1128/mcb.00654-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/04/2018] [Accepted: 01/18/2018] [Indexed: 01/10/2023] Open
Abstract
The cholesterol sulfotransferase SULT2B1b converts cholesterol to cholesterol sulfate (CS). We previously reported that SULT2B1b inhibits hepatic gluconeogenesis by antagonizing the gluconeogenic activity of hepatocyte nuclear factor 4α (HNF4α). In this study, we showed that the SULT2B1b gene is a transcriptional target of HNF4α, which led to our hypothesis that the induction of SULT2B1b by HNF4α represents a negative feedback to limit the gluconeogenic activity of HNF4α. Indeed, downregulation of Sult2B1b enhanced the gluconeogenic activity of HNF4α, which may have been accounted for by the increased acetylation of HNF4α as a result of decreased expression of the HNF4α deacetylase sirtuin 1 (Sirt1). The expression of Sult2B1b was also induced by HNF4α upon fasting, and the Sult2B1b null (Sult2B1b-/-) mice showed increased gluconeogenic gene expression and an elevated fasting glucose level, suggesting that SULT2B1b also plays a restrictive role in HNF4α-mediated fasting-responsive gluconeogenesis. We also developed thiocholesterol, a hydrolysis-resistant derivative of CS, which showed superior activity to that of the native CS in inhibiting gluconeogenesis and improving insulin sensitivity in high-fat-diet-induced diabetic mice. We conclude that the HNF4α-SULT2B1b-CS axis represents a key endogenous mechanism to prevent uncontrolled gluconeogenesis. Thiocholesterol may be used as a therapeutic agent to manage hyperglycemia.
Collapse
Affiliation(s)
- Yuhan Bi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiongjie Shi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Junjie Zhu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wojciech G Garbacz
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yixian Huang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Gao
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Jiong Yan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shunlin Ren
- Department of Medicine, Virginia Commonwealth University, Veterans Affairs McGuire Medical Center, Richmond, Virginia, USA
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Song Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
37
|
Kowalik MA, Columbano A, Perra A. Thyroid Hormones, Thyromimetics and Their Metabolites in the Treatment of Liver Disease. Front Endocrinol (Lausanne) 2018; 9:382. [PMID: 30042736 PMCID: PMC6048875 DOI: 10.3389/fendo.2018.00382] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022] Open
Abstract
The signaling pathways activated by thyroid hormone receptors (THR) are of fundamental importance for organogenesis, growth and differentiation, and significantly influence energy metabolism, lipid utilization and glucose homeostasis. Pharmacological control of these pathways would likely impact the treatment of several human diseases characterized by altered metabolism, growth or differentiation. Not surprisingly, biomedical research has been trying for the past decades to pharmacologically target the 3,5,3'-triiodothyronine (T3)/THR axis. In vitro and in vivo studies have provided evidence of the potential utility of the activation of the T3-dependent pathways in metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), and in the treatment of hepatocellular carcinoma (HCC). Unfortunately, supra-physiological doses of the THR agonist T3 cause severe thyrotoxicosis thus hampering its therapeutic use. However, the observation that most of the desired beneficial effects of T3 are mediated by the activation of the beta isoform of THR (THRβ) in metabolically active organs has led to the synthesis of a number of THRβ-selective thyromimetics. Among these drugs, GC-1, GC-24, KB141, KB2115, and MB07344 displayed a promising therapeutic strategy for liver diseases. However, although these drugs exhibited encouraging results when tested in the treatment of experimentally-induced obesity, dyslipidemia, and HCC, significant adverse effects limited their use in clinical trials. More recently, evidence has been provided that some metabolites of thyroid hormones (TH), mono and diiodothyronines, could also play a role in the treatment of liver disease. These molecules, for a long time considered inactive byproducts of the metabolism of thyroid hormones, have now been proposed to be able to modulate and control lipid and cell energy metabolism. In this review, we will summarize the current knowledge regarding T3, its metabolites and analogs with reference to their possible clinical application in the treatment of liver disease. In particular, we will focus our attention on NAFLD, non-alcoholic steatohepatitis (NASH) and HCC. In addition, the possible therapeutic use of mono- and diiodothyronines in metabolic and/or neoplastic liver disease will be discussed.
Collapse
|
38
|
Singh BK, Sinha RA, Ohba K, Yen PM. Role of thyroid hormone in hepatic gene regulation, chromatin remodeling, and autophagy. Mol Cell Endocrinol 2017; 458:160-168. [PMID: 28216439 DOI: 10.1016/j.mce.2017.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 01/21/2023]
Abstract
Thyroid hormone (TH) actions on development and metabolism have been studied ever since the discovery of thyroxine almost a century ago. Initial studies focused on the physiological and biochemical actions of TH. Later, the cloning of the thyroid hormone receptor (THR) isoforms and the development of techniques enabled the study of TH regulation of complex cellular processes (such as gene transcription). Recently we found that TH activates secondary transcription factors such as FOXO1, to amplify gene transcription; and also is a potent inducer of autophagy that was critical for fatty acid β-oxidation in the liver. This review summarizes the recent advancements in our understanding of TH regulation of gene expression of metabolic genes (via co-regulators/transcription factors and epigenetic control) and autophagy in the liver. Our deeper understanding of TH action recently has led to the development of tissue- and THR isoform-specific TH mimetics that may be useful for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857, Singapore
| | - Rohit Anthony Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857, Singapore
| | - Kenji Ohba
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857, Singapore; Department of Internal Medicine, Enshu Hospital, Hamamatsu, Shizuoka 430-0929, Japan
| | - Paul Michael Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857, Singapore.
| |
Collapse
|
39
|
Sabir MS, Khan Z, Hu C, Galligan MA, Dussik CM, Mallick S, Stone AD, Batie SF, Jacobs ET, Whitfield GK, Haussler MR, Heck MC, Jurutka PW. SIRT1 enzymatically potentiates 1,25-dihydroxyvitamin D 3 signaling via vitamin D receptor deacetylation. J Steroid Biochem Mol Biol 2017; 172. [PMID: 28636886 PMCID: PMC5584940 DOI: 10.1016/j.jsbmb.2017.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The hormonal metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), binds to the vitamin D receptor (VDR) and promotes heterodimerization of VDR with a retinoid-X-receptor (RXR) to genomically regulate diverse cellular processes. Herein, it is revealed for the first time that VDR is post-translationally acetylated, and that VDR immunoprecipitated from human embryonic kidney (HEK293) cells displays a dramatic decrease in acetylated receptor in the presence of 1,25D-ligand, sirtuin-1 (SIRT1) deacetylase, or the resveratrol activator of SIRT1. To elucidate the functional significance of VDR deacetylation, vitamin-d-responsive-element (VDRE)-based transcriptional assays were performed to determine if deacetylase overexpression affects VDR/VDRE-driven transcription. In HEK293 kidney and TE85 bone cells, co-transfection of low amounts (1-5ng) of a SIRT1-expression vector elicits a reproducible and statistically significant enhancement (1.3- to 2.6-fold) in transcription mediated by VDREs from the CYP3A4 and cyp24a1 genes, where the magnitude of response to 1,25D-ligand is 6- to 30-fold. Inhibition of SIRT1 via EX-527, or utilization of a SIRT1 loss-of-function mutant (H363Y), resulted in abrogation of SIRT1-mediated VDR potentiation. Studies with a novel, non-acetylatable VDR mutant (K413R) showed that the mutant VDR possesses enhanced responsiveness to 1,25D, in conjunction with reduced, but still significant, sensitivity to exogenous SIRT1, indicating that acetylation of lysine 413 is relevant, but that other acetylated residues in VDR contribute to modulation of its activity. We conclude that the acetylation of VDR comprises a negative feedback loop that attenuates 1,25D-VDR signaling. This regulatory loop is reversed by SIRT1-catalyzed deacetylation of VDR to amplify VDR signaling and 1,25D actions.
Collapse
Affiliation(s)
- Marya S Sabir
- Arizona State University, School of Mathematical and Natural Sciences, 4701 W. Thunderbird Road Glendale, AZ 85306, USA.
| | - Zainab Khan
- Arizona State University, School of Mathematical and Natural Sciences, 4701 W. Thunderbird Road Glendale, AZ 85306, USA.
| | - Chengcheng Hu
- University of Arizona Colleges of Public Health and Medicine-Phoenix, Epidemiology and Biostatistics Department, 714 E. Van Buren Street Phoenix, AZ 85006, USA.
| | - Michael A Galligan
- Arizona State University, School of Mathematical and Natural Sciences, 4701 W. Thunderbird Road Glendale, AZ 85306, USA.
| | - Christopher M Dussik
- Arizona State University, School of Mathematical and Natural Sciences, 4701 W. Thunderbird Road Glendale, AZ 85306, USA.
| | - Sanchita Mallick
- Arizona State University, School of Mathematical and Natural Sciences, 4701 W. Thunderbird Road Glendale, AZ 85306, USA.
| | - Angelika Dampf Stone
- Arizona State University, School of Mathematical and Natural Sciences, 4701 W. Thunderbird Road Glendale, AZ 85306, USA.
| | - Shane F Batie
- Arizona State University, School of Mathematical and Natural Sciences, 4701 W. Thunderbird Road Glendale, AZ 85306, USA; University of Arizona College of Medicine-Phoenix, Department of Basic Medical Sciences, 425 N. 5th Street Phoenix, AZ 85004, USA.
| | - Elizabeth T Jacobs
- University of Arizona Cancer Center,1501 N. Campbell Avenue, Tucson, AZ 85719, USA; University of Arizona, Mel and Enid Zuckerman College of Public Health,1295 N. Martin Avenue Tucson, AZ 85724, USA.
| | - G Kerr Whitfield
- University of Arizona College of Medicine-Phoenix, Department of Basic Medical Sciences, 425 N. 5th Street Phoenix, AZ 85004, USA.
| | - Mark R Haussler
- University of Arizona College of Medicine-Phoenix, Department of Basic Medical Sciences, 425 N. 5th Street Phoenix, AZ 85004, USA.
| | - Michael C Heck
- Arizona State University, School of Mathematical and Natural Sciences, 4701 W. Thunderbird Road Glendale, AZ 85306, USA.
| | - Peter W Jurutka
- Arizona State University, School of Mathematical and Natural Sciences, 4701 W. Thunderbird Road Glendale, AZ 85306, USA; University of Arizona College of Medicine-Phoenix, Department of Basic Medical Sciences, 425 N. 5th Street Phoenix, AZ 85004, USA; University of Arizona Cancer Center,1501 N. Campbell Avenue, Tucson, AZ 85719, USA.
| |
Collapse
|
40
|
Gothié JD, Sébillot A, Luongo C, Legendre M, Nguyen Van C, Le Blay K, Perret-Jeanneret M, Remaud S, Demeneix BA. Adult neural stem cell fate is determined by thyroid hormone activation of mitochondrial metabolism. Mol Metab 2017; 6:1551-1561. [PMID: 29107300 PMCID: PMC5681236 DOI: 10.1016/j.molmet.2017.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
Objective In the adult brain, neural stem cells (NSCs) located in the subventricular zone (SVZ) produce both neuronal and glial cells. Thyroid hormones (THs) regulate adult NSC differentiation towards a neuronal phenotype, but also have major roles in mitochondrial metabolism. As NSC metabolism relies mainly on glycolysis, whereas mature cells preferentially use oxidative phosphorylation, we studied how THs and mitochondrial metabolism interact on NSC fate determination. Methods We used a mitochondrial membrane potential marker in vivo to analyze mitochondrial activity in the different cell types in the SVZ of euthyroid and hypothyroid mice. Using primary adult NSC cultures, we analyzed ROS production, SIRT1 expression, and phosphorylation of DRP1 (a mitochondrial fission mediator) as a function of TH availability. Results We observed significantly higher mitochondrial activity in cells adopting a neuronal phenotype in vivo in euthyroid mice. However, prolonged hypothyroidism reduced not only neuroblast numbers but also their mitochondrial activity. In vitro studies showed that TH availability favored a neuronal phenotype and that blocking mitochondrial respiration abrogated TH-induced neuronal fate determination. DRP1 phosphorylation was preferentially activated in cells within the neuronal lineage and was stimulated by TH availability. Conclusions These results indicate that THs favor NSC fate choice towards a neuronal phenotype in the adult mouse SVZ through effects on mitochondrial metabolism. Thyroid hormones (TH) favor neuronal fate decision in the adult sub-ventricular zone (SVZ). Mitochondrial activity and ROS production are higher in cells differentiating to neuronal fate. TH activate the fission-inducing factor DRP1 in cells acquiring a neuronal fate. TH favor a neuronal fate in the adult SVZ through induction of mitochondrial respiration.
Collapse
Affiliation(s)
- J D Gothié
- CNRS, UMR 7221, Sorbonne Universités, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - A Sébillot
- CNRS, UMR 7221, Sorbonne Universités, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - C Luongo
- CNRS, UMR 7221, Sorbonne Universités, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - M Legendre
- CNRS, UMR 7221, Sorbonne Universités, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - C Nguyen Van
- CNRS, UMR 7221, Sorbonne Universités, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - K Le Blay
- CNRS, UMR 7221, Sorbonne Universités, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - M Perret-Jeanneret
- CNRS, UMR 7221, Sorbonne Universités, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - S Remaud
- CNRS, UMR 7221, Sorbonne Universités, Muséum National d'Histoire Naturelle, F-75005 Paris France.
| | - B A Demeneix
- CNRS, UMR 7221, Sorbonne Universités, Muséum National d'Histoire Naturelle, F-75005 Paris France.
| |
Collapse
|
41
|
Brown DI, Parry TL, Willis MS. Ubiquitin Ligases and Posttranslational Regulation of Energy in the Heart: The Hand that Feeds. Compr Physiol 2017. [PMID: 28640445 DOI: 10.1002/cphy.c160024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) is a costly and deadly syndrome characterized by the reduced capacity of the heart to adequately provide systemic blood flow. Mounting evidence implicates pathological changes in cardiac energy metabolism as a contributing factor in the development of HF. While the main source of fuel in the healthy heart is the oxidation of fatty acids, in the failing heart the less energy efficient glucose and glycogen metabolism are upregulated. The ubiquitin proteasome system plays a key role in regulating metabolism via protein-degradation/regulation of autophagy and regulating metabolism-related transcription and cell signaling processes. In this review, we discuss recent research that describes the role of the ubiquitin-proteasome system (UPS) in regulating metabolism in the context of HF. We focus on ubiquitin ligases (E3s), the component of the UPS that confers substrate specificity, and detail the current understanding of how these E3s contribute to cardiac pathology and metabolism. © 2017 American Physiological Society. Compr Physiol 7:841-862, 2017.
Collapse
Affiliation(s)
- David I Brown
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
Jiang Z, Knudsen NH, Wang G, Qiu W, Naing ZZC, Bai Y, Ai X, Lee CH, Zhou X. Genetic Control of Fatty Acid β-Oxidation in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2017; 56:738-748. [PMID: 28199134 PMCID: PMC5516290 DOI: 10.1165/rcmb.2016-0282oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/31/2017] [Indexed: 12/17/2022] Open
Abstract
Bioenergetics homeostasis is important for cells to sustain normal functions and defend against injury. The genetic controls of bioenergetics homeostasis, especially lipid metabolism, remain poorly understood in chronic obstructive pulmonary disease (COPD), the third leading cause of death in the world. Additionally, the biological function of most of the susceptibility genes identified from genome-wide association studies (GWASs) in COPD remains unclear. Here, we aimed to address (1) how fatty acid oxidation (FAO), specifically β-oxidation, a key lipid metabolism pathway that provides energy to cells, contributes to cigarette smoke (CS)-induced COPD; and (2) whether-and if so, how-FAM13A (family with sequence similarity 13 member A), a well-replicated COPD GWAS gene, modulates the FAO pathway. We demonstrated that CS induced expression of carnitine palmitoyltransferase 1A (CPT1A), a key mitochondrial enzyme for the FAO pathway, thereby enhancing FAO. Pharmacological inhibition of FAO by etomoxir blunted CS-induced reactive oxygen species accumulation and cell death in lung epithelial cells. FAM13A promoted FAO, possibly by interacting with and activating sirutin 1, and increasing expression of CPT1A. Furthermore, CS-induced cell death was reduced in lungs from Fam13a-/- mice. Our results suggest that FAM13A, the COPD GWAS gene, shapes the cellular metabolic response to CS exposure by promoting the FAO pathway, which may contribute to COPD development.
Collapse
Affiliation(s)
| | - Nelson H. Knudsen
- Departments of Genetics and Complex Diseases, and
- Nutrition, Division of Biological Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, and
| | - Gang Wang
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
| | | | | | - Yan Bai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
| | - Xingbin Ai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
| | - Chih-Hao Lee
- Departments of Genetics and Complex Diseases, and
- Nutrition, Division of Biological Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, and
| | - Xiaobo Zhou
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
| |
Collapse
|
43
|
Bae SA, Androulakis IP. The Synergistic Role of Light-Feeding Phase Relations on Entraining Robust Circadian Rhythms in the Periphery. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017702393. [PMID: 28469414 PMCID: PMC5404903 DOI: 10.1177/1177625017702393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
The feeding and fasting cycles are strong behavioral signals that entrain biological rhythms of the periphery. The feeding rhythms synchronize the activities of the metabolic organs, such as liver, synergistically with the light/dark cycle primarily entraining the suprachiasmatic nucleus. The likely phase misalignment between the feeding rhythms and the light/dark cycles appears to induce circadian disruptions leading to multiple physiological abnormalities motivating the need to investigate the mechanisms behind joint light-feeding circadian entrainment of peripheral tissues. To address this question, we propose a semimechanistic mathematical model describing the circadian dynamics of peripheral clock genes in human hepatocyte under the control of metabolic and light rhythmic signals. The model takes the synergistically acting light/dark cycles and feeding rhythms as inputs and incorporates the activity of sirtuin 1, a cellular energy sensor and a metabolic enzyme activated by nicotinamide adenine dinucleotide. The clock gene dynamics was simulated under various light-feeding phase relations and intensities, to explore the feeding entrainment mechanism as well as the convolution of light and feeding signals in the periphery. Our model predicts that the peripheral clock genes in hepatocyte can be completely entrained to the feeding rhythms, independent of the light/dark cycle. Furthermore, it predicts that light-feeding phase relationship is a critical factor in robust circadian oscillations.
Collapse
Affiliation(s)
- Seul-A Bae
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
44
|
Vazquez-Anaya G, Martinez B, Soñanez-Organis JG, Nakano D, Nishiyama A, Ortiz RM. Exogenous thyroxine improves glucose intolerance in insulin-resistant rats. J Endocrinol 2017; 232:501-511. [PMID: 27980001 PMCID: PMC5419047 DOI: 10.1530/joe-16-0428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022]
Abstract
Both hypothyroidism and hyperthyroidism are associated with glucose intolerance, calling into question the contribution of thyroid hormones (TH) on glucose regulation. TH analogues and derivatives may be effective treatment options for glucose intolerance and insulin resistance (IR), but their potential glucoregulatory effects during conditions of impaired metabolism are not well described. To assess the effects of thyroxine (T4) on glucose intolerance in a model of insulin resistance, an oral glucose tolerance test (oGTT) was performed on three groups of rats (n = 8): (1) lean, Long Evans Tokushima Otsuka (LETO), (2) obese, Otsuka Long Evans Tokushima Fatty (OLETF) and (3) OLETF + T4 (8.0 µg/100 g BM/day × 5 weeks). T4 attenuated glucose intolerance by 15% and decreased IR index (IRI) by 34% in T4-treated OLETF compared to untreated OLETF despite a 31% decrease in muscle Glut4 mRNA expression. T4 increased the mRNA expressions of muscle monocarboxylate transporter 10 (Mct10), deiodinase type 2 (Di2), sirtuin 1 (Sirt1) and uncoupling protein 2 (Ucp2) by 1.8-, 2.2-, 2.7- and 1.4-fold, respectively, compared to OLETF. Activation of AMP-activated protein kinase (AMPK) and insulin receptor were not significantly altered suggesting that the improvements in glucose intolerance and IR were independent of enhanced insulin-mediated signaling. The results suggest that T4 treatment increased the influx of T4 in skeletal muscle and, with an increase of DI2, increased the availability of the biologically active T3 to upregulate key factors such SIRT1 and UCP2 involved in cellular metabolism and glucose homeostasis.
Collapse
Affiliation(s)
| | - Bridget Martinez
- Department of Molecular & Cellular BiologyUniversity of California, Merced, California, USA
| | - José G Soñanez-Organis
- Division of Science and EngineeringDepartment of Chemical Biological and Agropecuary Sciences, University of Sonora, Navojoa, Sonora, Mexico
| | - Daisuke Nakano
- Department of PharmacologyFaculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of PharmacologyFaculty of Medicine, Kagawa University, Kagawa, Japan
| | - Rudy M Ortiz
- Department of Molecular & Cellular BiologyUniversity of California, Merced, California, USA
| |
Collapse
|
45
|
Sinha RA, Singh BK, Zhou J, Wu Y, Farah BL, Ohba K, Lesmana R, Gooding J, Bay BH, Yen PM. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy 2016; 11:1341-57. [PMID: 26103054 DOI: 10.1080/15548627.2015.1061849] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Currently, there is limited understanding about hormonal regulation of mitochondrial turnover. Thyroid hormone (T3) increases oxidative phosphorylation (OXPHOS), which generates reactive oxygen species (ROS) that damage mitochondria. However, the mechanism for maintenance of mitochondrial activity and quality control by this hormone is not known. Here, we used both in vitro and in vivo hepatic cell models to demonstrate that induction of mitophagy by T3 is coupled to oxidative phosphorylation and ROS production. We show that T3 induction of ROS activates CAMKK2 (calcium/calmodulin-dependent protein kinase kinase 2, β) mediated phosphorylation of PRKAA1/AMPK (5' AMP-activated protein kinase), which in turn phosphorylates ULK1 (unc-51 like autophagy activating kinase 1) leading to its mitochondrial recruitment and initiation of mitophagy. Furthermore, loss of ULK1 in T3-treated cells impairs both mitophagy as well as OXPHOS without affecting T3 induced general autophagy/lipophagy. These findings demonstrate a novel ROS-AMPK-ULK1 mechanism that couples T3-induced mitochondrial turnover with activity, wherein mitophagy is necessary not only for removing damaged mitochondria but also for sustaining efficient OXPHOS.
Collapse
Affiliation(s)
- Rohit A Sinha
- a Program of Cardiovascular and Metabolic Disorders; Duke-NUS Graduate Medical School ; Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 2016; 229:R99-R115. [PMID: 27094040 DOI: 10.1530/joe-16-0021] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by glucose metabolic disturbance. A number of transcription factors and coactivators are involved in this process. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is an important transcription coactivator regulating cellular energy metabolism. Accumulating evidence has indicated that PGC-1α is involved in the regulation of T2DM. Therefore, a better understanding of the roles of PGC-1α may shed light on more efficient therapeutic strategies. Here, we review the most recent progress on PGC-1α and discuss its regulatory network in major glucose metabolic tissues such as the liver, skeletal muscle, pancreas and kidney. The significant associations between PGC-1α polymorphisms and T2DM are also discussed in this review.
Collapse
Affiliation(s)
- Haijiang Wu
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Xinna Deng
- Departments of Oncology & ImmunotherapyHebei General Hospital, Shijiazhuang, China
| | - Yonghong Shi
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Ye Su
- Mathew Mailing Centre for Translational Transplantation StudiesLawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada Departments of Medicine and PathologyUniversity of Western Ontario, London, Ontario, Canada
| | - Jinying Wei
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Huijun Duan
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| |
Collapse
|
47
|
Singh BK, Sinha RA, Zhou J, Tripathi M, Ohba K, Wang ME, Astapova I, Ghosh S, Hollenberg AN, Gauthier K, Yen PM. Hepatic FOXO1 Target Genes Are Co-regulated by Thyroid Hormone via RICTOR Protein Deacetylation and MTORC2-AKT Protein Inhibition. J Biol Chem 2015; 291:198-214. [PMID: 26453307 DOI: 10.1074/jbc.m115.668673] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 12/21/2022] Open
Abstract
MTORC2-AKT is a key regulator of carbohydrate metabolism and insulin signaling due to its effects on FOXO1 phosphorylation. Interestingly, both FOXO1 and thyroid hormone (TH) have similar effects on carbohydrate and energy metabolism as well as overlapping transcriptional regulation of many target genes. Currently, little is known about the regulation of MTORC2-AKT or FOXO1 by TH. Accordingly, we performed hepatic transcriptome profiling in mice after FOXO1 knockdown in the absence or presence of TH, and we compared these results with hepatic FOXO1 and THRB1 (TRβ1) ChIP-Seq data. We identified a subset of TH-stimulated FOXO1 target genes that required co-regulation by FOXO1 and TH. TH activation of FOXO1 was directly linked to an increase in SIRT1-MTORC2 interaction and RICTOR deacetylation. This, in turn, led to decreased AKT and FOXO1 phosphorylation. Moreover, TH increased FOXO1 nuclear localization, DNA binding, and target gene transcription by reducing AKT-dependent FOXO1 phosphorylation in a THRB1-dependent manner. These events were associated with TH-mediated oxidative phosphorylation and NAD(+) production and suggested that downstream metabolic effects by TH can post-translationally activate other transcription factors. Our results showed that RICTOR/MTORC2-AKT can integrate convergent hormonal and metabolic signals to provide coordinated and sensitive regulation of hepatic FOXO1-target gene expression.
Collapse
Affiliation(s)
- Brijesh K Singh
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Rohit A Sinha
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Jin Zhou
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Madhulika Tripathi
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and the Stroke Trial Unit, National Neuroscience Institute Singapore, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Kenji Ohba
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Mu-En Wang
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and the Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Inna Astapova
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Sujoy Ghosh
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and Centre for Computational Biology, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
| | - Anthony N Hollenberg
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Karine Gauthier
- the Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46, Allée d'Italie 69364, Lyon Cedex 07, France
| | - Paul M Yen
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| |
Collapse
|
48
|
Strakovsky RS, Wang H, Engeseth NJ, Flaws JA, Helferich WG, Pan YX, Lezmi S. Developmental bisphenol A (BPA) exposure leads to sex-specific modification of hepatic gene expression and epigenome at birth that may exacerbate high-fat diet-induced hepatic steatosis. Toxicol Appl Pharmacol 2015; 284:101-12. [PMID: 25748669 DOI: 10.1016/j.taap.2015.02.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/25/2022]
Abstract
Developmental bisphenol A (BPA) exposure increases adulthood hepatic steatosis with reduced mitochondrial function. To investigate the potential epigenetic mechanisms behind developmental BPA-induced hepatic steatosis, pregnant Sprague-Dawley rats were dosed with vehicle (oil) or BPA (100μg/kg/day) from gestational day 6 until postnatal day (PND) 21. After weaning, offspring were either challenged with a high-fat (HF; 45% fat) or remained on a control (C) diet until PND110. From PND60 to 90, both BPA and HF diet increased the fat/lean ratio in males only, and the combination of BPA and HF diet appeared to cause the highest ratio. On PND110, Oil-HF, BPA-C, and BPA-HF males had higher hepatic lipid accumulation than Oil-C, with microvesicular steatosis being marked in the BPA-HF group. Furthermore, on PND1, BPA increased and modified hepatic triglyceride (TG) and free fatty acid (FFA) compositions in males only. In PND1 males, BPA increased hepatic expression of FFA uptake gene Fat/Cd36, and decreased the expression of TG synthesis- and β-oxidation-related genes (Dgat, Agpat6, Cebpα, Cebpβ, Pck1, Acox1, Cpt1a, Cybb). BPA altered DNA methylation and histone marks (H3Ac, H4Ac, H3Me2K4, H3Me3K36), and decreased the binding of several transcription factors (Pol II, C/EBPβ, SREBP1) within the male Cpt1a gene, the key β-oxidation enzyme. In PND1 females, BPA only increased the expression of genes involved in FFA uptake and TG synthesis (Lpl, Fasn, and Dgat). These data suggest that developmental BPA exposure alters and reprograms hepatic β-oxidation capacity in males, potentially through the epigenetic regulation of genes, and further alters the response to a HF diet.
Collapse
Affiliation(s)
- Rita S Strakovsky
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, USA
| | - Huan Wang
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, USA
| | - Nicki J Engeseth
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, USA
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, USA
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, USA.
| | - Stéphane Lezmi
- Department of Pathobiology, University of Illinois Urbana-Champaign, USA.
| |
Collapse
|
49
|
Zhang A, Sieglaff DH, York JP, Suh JH, Ayers SD, Winnier GE, Kharitonenkov A, Pin C, Zhang P, Webb P, Xia X. Thyroid hormone receptor regulates most genes independently of fibroblast growth factor 21 in liver. J Endocrinol 2015; 224:289-301. [PMID: 25501997 DOI: 10.1530/joe-14-0440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thyroid hormone (TH) acts through specific receptors (TRs), which are conditional transcription factors, to induce fibroblast growth factor 21 (FGF21), a peptide hormone that is usually induced by fasting and that influences lipid and carbohydrate metabolism via local hepatic and systemic endocrine effects. While TH and FGF21 display overlapping actions when administered, including reductions in serum lipids, according to the current models these hormones act independently in vivo. In this study, we examined mechanisms of regulation of FGF21 expression by TH and tested the possibility that FGF21 is required for induction of hepatic TH-responsive genes. We confirm that active TH (triiodothyronine (T3)) and the TRβ-selective thyromimetic GC1 increase FGF21 transcript and peptide levels in mouse liver and that this effect requires TRβ. T3 also induces FGF21 in cultured hepatocytes and this effect involves direct actions of TRβ1, which binds a TRE within intron 2 of FGF21. Gene expression profiles of WT and Fgf21-knockout mice are very similar, indicating that FGF21 is dispensable for the majority of hepatic T3 gene responses. A small subset of genes displays diminished T3 response in the absence of FGF21. However, most of these are not obviously directly involved in T3-dependent hepatic metabolic processes. Consistent with these results, T3-dependent effects on serum cholesterol are maintained in the Fgf21(-/-) background and we observe no effect of the Fgf21-knockout background on serum triglycerides and glucose. Our findings indicate that T3 regulates the genes involved in classical hepatic metabolic responses independently of FGF21.
Collapse
Affiliation(s)
- Aijun Zhang
- Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Douglas H Sieglaff
- Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Jean Philippe York
- Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Ji Ho Suh
- Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Stephen D Ayers
- Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Glenn E Winnier
- Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Alexei Kharitonenkov
- Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Christopher Pin
- Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Pumin Zhang
- Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Paul Webb
- Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Xuefeng Xia
- Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China Houston Methodist Research InstituteGenomic Medicine Program, 6670 Bertner Ave, Houston, Texas 77030, USACollege of Arts and SciencesChemistry Department, Indiana University Bloomington, Bloomington, Indiana, USADepartments of PaediatricsOncology, and Physiology and Pharmacology, University of Western Ontario, London, Ontario, CanadaChildren's Health Research InstituteLondon, Ontario, CanadaDepartment of Molecular Physiology and BiophysicsBaylor College of Medicine, Houston, Texas, USAThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| |
Collapse
|
50
|
Diverse roles of SIRT1 in cancer biology and lipid metabolism. Int J Mol Sci 2015; 16:950-65. [PMID: 25569080 PMCID: PMC4307284 DOI: 10.3390/ijms16010950] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 12/24/2014] [Indexed: 12/18/2022] Open
Abstract
SIRT1, an NAD+-dependent deacetylase, has been described in the literature as a major player in the regulation of cellular stress responses. Its expression has been shown to be altered in cancer cells, and it targets both histone and non-histone proteins for deacetylation and thereby alters metabolic programs in response to diverse physiological stress. Interestingly, many of the metabolic pathways that are influenced by SIRT1 are also altered in tumor development. Not only does SIRT1 have the potential to regulate oncogenic factors, it also orchestrates many aspects of metabolism and lipid regulation and recent reports are beginning to connect these areas. SIRT1 influences pathways that provide an alternative means of deriving energy (such as fatty acid oxidation and gluconeogenesis) when a cell encounters nutritive stress, and can therefore lead to altered lipid metabolism in various pathophysiological contexts. This review helps to show the various connections between SIRT1 and major pathways in cellular metabolism and the consequence of SIRT1 deregulation on carcinogenesis and lipid metabolism.
Collapse
|