1
|
Koelsch N, Mirshahi F, Aqbi HF, Seneshaw M, Idowu MO, Olex AL, Sanyal AJ, Manjili MH. Effective anti-tumor immune responses are orchestrated by immune cell partnership network that functions through tissue homeostatic pathways, not direct cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598563. [PMID: 38903113 PMCID: PMC11188117 DOI: 10.1101/2024.06.12.598563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The liver hosts a diverse array of immune cells that play pivotal roles in both maintaining tissue homeostasis and responding to disease. However, the precise contributions of these immune cells in the progression of nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) remain unclear. Utilizing a systems immunology approach, we reveal that liver immune responses are governed by a dominant-subdominant hierarchy of ligand-receptor-mediated homeostatic pathways. In healthy individuals, inflammatory immune responses operate within these pathways, challenging the notion of the liver as a purely tolerogenic organ. Chronic consumption of a Western diet (WD) disrupts hepatocyte function and reconfigures immune interactions, resulting in hepatic stellate cells (HSCs), cancer cells, and NKT cells driving 80% of the immune activity during NAFLD. In HCC, 80% of immune response involves NKT cells and monocytes collaborating with hepatocytes and myofibroblasts to restore disrupted homeostasis. Interestingly, dietary correction during NAFLD yields nonlinear outcomes: tumor progression coincides with the failure of mounting homeostatic immune responses, whereas tumor prevention is associated with sustained immune responses, predominantly orchestrated by monocytes. These monocytes actively target fibroblasts and myofibroblasts, creating a tumor-suppressive microenvironment. Notably, only 5% of T cells displayed apoptosis-inducing activity, selectively contributing to the turnover of hepatic stromal cells, particularly myofibroblasts and fibroblasts. Our findings suggest that effective anti-tumor immune responses in the liver are primarily mediated by immune cells sustaining tissue homeostasis, rather than relying on direct cytotoxic mechanisms.
Collapse
Affiliation(s)
- Nicholas Koelsch
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Faridoddin Mirshahi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
| | - Hussein F. Aqbi
- College of Science, Mustansiriyah University, Baghdad, P.O. Box 14022, Iraq
| | - Mulugeta Seneshaw
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
| | - Michael O. Idowu
- Department of Pathology, VCU School of Medicine, Richmond, VA 23298, USA
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Amy L. Olex
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine
| | - Arun J. Sanyal
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Masoud H. Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Richmond VA 23298
| |
Collapse
|
2
|
Mendoza M, Ballesteros A, Rendon-Correa E, Tonk R, Warren J, Snow AL, Stowell SR, Blois SM, Dveksler G. Modulation of galectin-9 mediated responses in monocytes and T-cells by pregnancy-specific glycoprotein 1. J Biol Chem 2024; 300:107638. [PMID: 39121996 PMCID: PMC11403483 DOI: 10.1016/j.jbc.2024.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Successful pregnancy relies on a coordinated interplay between endocrine, immune, and metabolic processes to sustain fetal growth and development. The orchestration of these processes involves multiple signaling pathways driving cell proliferation, differentiation, angiogenesis, and immune regulation necessary for a healthy pregnancy. Among the molecules supporting placental development and maternal tolerance, the families of pregnancy-specific glycoproteins and galectins are of great interest in reproductive biology. We previously found that PSG1 can bind to galectin-1 (GAL-1). Herein, we characterized the interaction between PSG1 and other members of the galectin family expressed during pregnancy, including galectin-3, -7, -9, and -13 (GAL-3, GAL-7, GAL-9, and GAL-13). We observed that PSG1 binds to GAL-1, -3, and -9, with the highest apparent affinity seen for GAL-9, and that the interaction of PSG1 with GAL-9 is carbohydrate-dependent. We further investigated the ability of PSG1 to regulate GAL-9 responses in human monocytes, a murine macrophage cell line, and T-cells, and determined whether PSG1 binds to both carbohydrate recognition domains of GAL-9. Additionally, we compared the apparent affinity of GAL-9 binding to PSG1 with other known GAL-9 ligands in these cells, Tim-3 and CD44. Lastly, we explored functional conservation between murine and human PSGs by determining that Psg23, a highly expressed member of the murine Psg family, can bind some murine galectins despite differences in amino acid composition and domain structure.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Angela Ballesteros
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Rendon-Correa
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rohan Tonk
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sean R Stowell
- Department of Pathology, Brigham and Women's Hospital, Boston Massachusetts, USA
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Glyco-HAM, a cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| |
Collapse
|
3
|
von Roemeling CA, Patel JA, Carpenter SL, Yegorov O, Yang C, Bhatia A, Doonan BP, Russell R, Trivedi VS, Klippel K, Ryu DH, Grippin A, Futch HS, Ran Y, Hoang-Minh LB, Weidert FL, Golde TE, Mitchell DA. Adeno-associated virus delivered CXCL9 sensitizes glioblastoma to anti-PD-1 immune checkpoint blockade. Nat Commun 2024; 15:5871. [PMID: 38997283 PMCID: PMC11245621 DOI: 10.1038/s41467-024-49989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
There are numerous mechanisms by which glioblastoma cells evade immunological detection, underscoring the need for strategic combinatorial treatments to achieve appreciable therapeutic effects. However, developing combination therapies is difficult due to dose-limiting toxicities, blood-brain-barrier, and suppressive tumor microenvironment. Glioblastoma is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment and activation. Herein, we develop a recombinant adeno-associated virus (AAV) gene therapy that enables focal and stable reconstitution of the tumor microenvironment with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for lymphocytes. By manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by cytotoxic lymphocytes, sensitizing glioblastoma to anti-PD-1 immune checkpoint blockade in female preclinical tumor models. These effects are accompanied by immunologic signatures evocative of an inflamed tumor microenvironment. These findings support AAV gene therapy as an adjuvant for reconditioning glioblastoma immunogenicity given its safety profile, tropism, modularity, and off-the-shelf capability.
Collapse
Affiliation(s)
- Christina A von Roemeling
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| | - Jeet A Patel
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Savannah L Carpenter
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Oleg Yegorov
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Changlin Yang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Alisha Bhatia
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Bently P Doonan
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
- Department of Medicine, Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | - Rylynn Russell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Vrunda S Trivedi
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Kelena Klippel
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Daniel H Ryu
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Grippin
- Department of Radiation Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Hunter S Futch
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Ran
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Lan B Hoang-Minh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Frances L Weidert
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Jansen SA, Cutilli A, de Koning C, van Hoesel M, Frederiks CL, Saiz Sierra L, Nierkens S, Mokry M, Nieuwenhuis EE, Hanash AM, Mocholi E, Coffer PJ, Lindemans CA. Chemotherapy-induced intestinal epithelial damage directly promotes galectin-9-driven modulation of T cell behavior. iScience 2024; 27:110072. [PMID: 38883813 PMCID: PMC11176658 DOI: 10.1016/j.isci.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
The intestine is vulnerable to chemotherapy-induced damage due to the high rate of intestinal epithelial cell (IEC) proliferation. We have developed a human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced IEC damage on T cell behavior. Exposure of intestinal organoids to busulfan, fludarabine, and clofarabine induced damage-related responses affecting both the capacity to regenerate and transcriptional reprogramming. In ex vivo co-culture assays, prior intestinal organoid damage resulted in increased T cell activation, proliferation, and migration. We identified galectin-9 (Gal-9) as a key molecule released by damaged organoids. The use of anti-Gal-9 blocking antibodies or CRISPR/Cas9-mediated Gal-9 knock-out prevented intestinal organoid damage-induced T cell proliferation, interferon-gamma release, and migration. Increased levels of Gal-9 were found early after HSCT chemotherapeutic conditioning in the plasma of patients who later developed acute GVHD. Taken together, chemotherapy-induced intestinal damage can influence T cell behavior in a Gal-9-dependent manner which may provide novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Suze A. Jansen
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Coco de Koning
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Marliek van Hoesel
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Cynthia L. Frederiks
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Leire Saiz Sierra
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Michal Mokry
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
| | - Edward E.S. Nieuwenhuis
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- University College Roosevelt, Utrecht University, Middelburg 4331CB, the Netherlands
| | - Alan M. Hanash
- Departments of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - Enric Mocholi
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Paul J. Coffer
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Caroline A. Lindemans
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| |
Collapse
|
5
|
Hu W, Song X, Yu H, Fan S, Shi A, Sun J, Wang H, Zhao L, Zhao Y. Suppression of B-Cell Activation by Human Cord Blood-Derived Stem Cells (CB-SCs) through the Galectin-9-Dependent Mechanism. Int J Mol Sci 2024; 25:1830. [PMID: 38339108 PMCID: PMC10855911 DOI: 10.3390/ijms25031830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
We developed the Stem Cell Educator therapy among multiple clinical trials based on the immune modulations of multipotent cord blood-derived stem cells (CB-SCs) on different compartments of immune cells, such as T cells and monocytes/macrophages, in type 1 diabetes and other autoimmune diseases. However, the effects of CB-SCs on the B cells remained unclear. To better understand the molecular mechanisms underlying the immune education of CB-SCs, we explored the modulations of CB-SCs on human B cells. CB-SCs were isolated from human cord blood units and confirmed by flow cytometry with different markers for their purity. B cells were purified by using anti-CD19 immunomagnetic beads from human peripheral blood mononuclear cells (PBMCs). Next, the activated B cells were treated in the presence or absence of coculture with CB-SCs for 7 days before undergoing flow cytometry analysis of phenotypic changes with different markers. Reverse transcription-polymerase chain reaction (RT-PCR) was utilized to evaluate the levels of galectin expressions on CB-SCs with or without treatment of activated B cells in order to find the key galectin that was contributing to the B-cell modulation. Flow cytometry demonstrated that the proliferation of activated B cells was markedly suppressed in the presence of CB-SCs, leading to the downregulation of immunoglobulin production from the activated B cells. Phenotypic analysis revealed that treatment with CB-SCs increased the percentage of IgD+CD27- naïve B cells, but decreased the percentage of IgD-CD27+ switched B cells. The transwell assay showed that the immune suppression of CB-SCs on B cells was dependent on the galectin-9 molecule, as confirmed by the blocking experiment with the anti-galectin-9 monoclonal antibody. Mechanistic studies demonstrated that both calcium levels of cytoplasm and mitochondria were downregulated after the treatment with CB-SCs, causing the decline in mitochondrial membrane potential in the activated B cells. Western blot exhibited that the levels of phosphorylated Akt and Erk1/2 signaling proteins in the activated B cells were also markedly reduced in the presence of CB-SCs. CB-SCs displayed multiple immune modulations on B cells through the galectin-9-mediated mechanism and calcium flux/Akt/Erk1/2 signaling pathways. The data advance our current understanding of the molecular mechanisms underlying the Stem Cell Educator therapy to treat autoimmune diseases in clinics.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
| | - Sophia Fan
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Andrew Shi
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (J.S.); (H.W.)
| | - Hongjun Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (J.S.); (H.W.)
| | - Laura Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
- Throne Biotechnologies, Paramus, NJ 07652, USA
| |
Collapse
|
6
|
Lefebvre A, Trioën C, Renaud S, Laine W, Hennart B, Bouchez C, Leroux B, Allorge D, Kluza J, Werkmeister E, Grolez GP, Delhem N, Moralès O. Extracellular vesicles derived from nasopharyngeal carcinoma induce the emergence of mature regulatory dendritic cells using a galectin-9 dependent mechanism. J Extracell Vesicles 2023; 12:e12390. [PMID: 38117000 PMCID: PMC10731827 DOI: 10.1002/jev2.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Nasopharyngeal carcinoma-derived small extracellular vesicles (NPCSEVs) have an immunosuppressive impact on the tumour microenvironment. In this study, we investigated their influence on the generation of tolerogenic dendritic cells and the potential involvement of the galectin-9 (Gal9) they carry in this process. We analysed the phenotype and immunosuppressive properties of NPCSEVs and explored the ability of DCs exposed to NPCSEVs (NPCSEV-DCs) to regulate T cell proliferation. To assess their impact at the pathophysiological level, we performed real-time fluorescent chemoattraction assays. Finally, we analysed phenotype and immunosuppressive functions of NPCSEV-DCs using a proprietary anti-Gal9 neutralising antibody to assess the role of Gal9 in this effect. We described that NPCSEV-DCs were able to inhibit T cell proliferation despite their mature phenotype. These mature regulatory DCs (mregDCs) have a specific oxidative metabolism and secrete high levels of IL-4. Chemoattraction assays revealed that NPCSEVs could preferentially recruit NPCSEV-DCs. Finally, and very interestingly, the reduction of the immunosuppressive function of NPCSEV-DCs using an anti-Gal9 antibody clearly suggested an important role for vesicular Gal9 in the induction of mregDCs. These results revealed for the first time that NPCSEVs promote the emergence of mregDCs using a galectin-9 dependent mechanism and open new perspectives for antitumour immunotherapy targeting NPCSEVs.
Collapse
Affiliation(s)
- Anthony Lefebvre
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - Camille Trioën
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - Sarah Renaud
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - William Laine
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020‐U1277 ‐ CANTHER ‐ Cancer Heterogeneity Plasticity and Resistance to TherapiesLilleFrance
| | | | - Clément Bouchez
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - Bertrand Leroux
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | | | - Jérôme Kluza
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020‐U1277 ‐ CANTHER ‐ Cancer Heterogeneity Plasticity and Resistance to TherapiesLilleFrance
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 – UAR 2014 – PLBSLilleFrance
| | - Guillaume Paul Grolez
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - Nadira Delhem
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - Olivier Moralès
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020‐U1277 ‐ CANTHER ‐ Cancer Heterogeneity Plasticity and Resistance to TherapiesLilleFrance
| |
Collapse
|
7
|
von Roemeling C, Yegorov O, Yang C, Klippel K, Russell R, Trivedi V, Bhatia A, Doonan B, Carpenter S, Ryu D, Grippen A, Futch H, Ran Y, Hoang-Minh L, Weidert F, Golde T, Mitchell D. CXCL9 recombinant adeno-associated virus (AAV) virotherapy sensitizes glioblastoma (GBM) to anti-PD-1 immune checkpoint blockade. RESEARCH SQUARE 2023:rs.3.rs-3463730. [PMID: 38014191 PMCID: PMC10680939 DOI: 10.21203/rs.3.rs-3463730/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The promise of immunotherapy to induce long-term durable responses in conventionally treatment resistant tumors like glioblastoma (GBM) has given hope for patients with a dismal prognosis. Yet, few patients have demonstrated a significant survival benefit despite multiple clinical trials designed to invigorate immune recognition and tumor eradication. Insights gathered over the last two decades have revealed numerous mechanisms by which glioma cells resist conventional therapy and evade immunological detection, underscoring the need for strategic combinatorial treatments as necessary to achieve appreciable therapeutic effects. However, new combination therapies are inherently difficult to develop as a result of dose-limiting toxicities, the constraints of the blood-brain barrier, and the suppressive nature of the GBM tumor microenvironment (TME). GBM is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment, infiltration, and activation. We have developed a novel recombinant adeno-associated virus (AAV) gene therapy strategy that enables focal and stable reconstitution of the GBM TME with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for cytotoxic T lymphocytes (CTLs). By precisely manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by CD8-postive cytotoxic lymphocytes, sensitizing GBM to anti-PD-1 immune checkpoint blockade (ICB). These effects are accompanied by immunologic signatures evocative of an inflamed and responsive TME. These findings support targeted AAV gene therapy as a promising adjuvant strategy for reconditioning GBM immunogenicity given its excellent safety profile, TME-tropism, modularity, and off-the-shelf capability, where focal delivery bypasses the constrains of the blood-brain barrier, further mitigating risks observed with high-dose systemic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Frances Weidert
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida
| | | | | |
Collapse
|
8
|
Ameen SG, Zidan MAEA, Amer AS, Elshahat NF, Elhalim WAEA. A study of the association between Galectin-9 gene (LGALS9) polymorphisms and rheumatoid arthritis in Egyptian patients. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2023; 50:30. [DOI: 10.1186/s43166-023-00198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 09/01/2023] Open
Abstract
Abstract
Background
Rheumatoid arthritis (RA) is an incessant synovial inflammation of an autoimmune origin, destroying articular cartilages and bones. Galectins are an evolutionarily conserved family of immune-modulatory animal lectins detected in a number of immune cells like T cells, fibroblasts and macrophages. Galectin 9 (Gal-9) has been the subject of many studies for being linked to regulation of both innate and adaptive immune reactions. The objective of the study was to evaluate the link between the Galectin-9 gene (LGALS9) polymorphisms and the susceptibility of RA in Egyptian patients, as well as, detection of the serum level of Gal-9 in RA and its association with LGALS9 polymorphisms, the activity of RA and radiological damage.
Methods
A study of 85 participants; group (I): 60 RA cases and group (II): 25 apparently healthy subjects. RA Disease activity index (DAS-28) and Larsen index score were assessed. LGALS9 gene and serum Gal-9 were investigated.
Results
rs4239242 TT genotype and T allele occurred more frequently in RA cases than controls with a significant difference (P = 0.006; P < 0.001 respectively). Gal-9 level was significantly higher among RA cases than control group (P = 0.017). The Gal-9 level showed negative significant correlations with DAS-28 and Larsen score (P < 0.001).
Conclusion
RA is strongly linked to genetic alterations in the LGALS9 gene and the single nucleotide polymorphism (SNP) rs4239242 TT genotype in the Egyptian population. RA cases in remission or those with low disease activity had higher levels of serum Gal-9 in comparison to cases with moderate and high disease activity and this would be promising in the future of RA treatment.
Collapse
|
9
|
Choukrani G, Visser N, Ustyanovska Avtenyuk N, Olthuis M, Marsman G, Ammatuna E, Lourens HJ, Niki T, Huls G, Bremer E, Wiersma VR. Galectin-9 has non-apoptotic cytotoxic activity toward acute myeloid leukemia independent of cytarabine resistance. Cell Death Discov 2023; 9:228. [PMID: 37407572 DOI: 10.1038/s41420-023-01515-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy still associated with poor survival rates, among others, due to frequent occurrence of therapy-resistant relapse after standard-of-care treatment with cytarabine (AraC). AraC triggers apoptotic cell death, a type of cell death to which AML cells often become resistant. Therefore, therapeutic options that trigger an alternate type of cell death are of particular interest. We previously identified that the glycan-binding protein Galectin-9 (Gal-9) has tumor-selective and non-apoptotic cytotoxicity towards various types of cancer, which depended on autophagy inhibition. Thus, Gal-9 could be of therapeutic interest for (AraC-resistant) AML. In the current study, treatment with Gal-9 was cytotoxic for AML cells, including for CD34+ patient-derived AML stem cells, but not for healthy cord blood-derived CD34+ stem cells. This Gal-9-mediated cytotoxicity did not rely on apoptosis but was negatively associated with autophagic flux. Importantly, both AraC-sensitive and -resistant AML cell lines, as well as AML patient samples, were sensitive to single-agent treatment with Gal-9. Additionally, Gal-9 potentiated the cytotoxic effect of DNA demethylase inhibitor Azacytidine (Aza), a drug that is clinically used for patients that are not eligible for intensive AraC treatment. Thus, Gal-9 is a potential therapeutic agent for the treatment of AML, including AraC-resistant AML, by inducing caspase-independent cell death.
Collapse
Affiliation(s)
- Ghizlane Choukrani
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nienke Visser
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Natasha Ustyanovska Avtenyuk
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Surflay Nanotec GmbH, Berlin, Germany
| | - Mirjam Olthuis
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Glenn Marsman
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm Jan Lourens
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Jansen SA, Cutilli A, de Koning C, van Hoesel M, Sierra LS, Nierkens S, Mokry M, Nieuwenhuis EES, Hanash AM, Mocholi E, Coffer PJ, Lindemans CA. Chemotherapy-induced intestinal injury promotes Galectin-9-driven modulation of T cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538862. [PMID: 37163028 PMCID: PMC10168344 DOI: 10.1101/2023.04.30.538862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The intestine is vulnerable to chemotherapy-induced toxicity due to its high epithelial proliferative rate, making gut toxicity an off-target effect in several cancer treatments, including conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT). In allo-HCT, intestinal damage is an important factor in the development of Graft-versus-Host Disease (GVHD), an immune complication in which donor immune cells attack the recipient's tissues. Here, we developed a novel human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced intestinal epithelial damage on T cell behavior. Chemotherapy treatment using busulfan, fludarabine, and clofarabine led to damage responses in organoids resulting in increased T cell migration, activation, and proliferation in ex- vivo co-culture assays. We identified galectin-9 (Gal-9), a beta-galactoside-binding lectin released by damaged organoids, as a key molecule mediating T cell responses to damage. Increased levels of Gal-9 were also found in the plasma of allo-HCT patients who later developed acute GVHD, supporting the predictive value of the model system in the clinical setting. This study highlights the potential contribution of chemotherapy-induced epithelial damage to the pathogenesis of intestinal GVHD through direct effects on T cell activation and trafficking promoted by galectin-9.
Collapse
|
11
|
Rahmati A, Bigam S, Elahi S. Galectin-9 promotes natural killer cells activity via interaction with CD44. Front Immunol 2023; 14:1131379. [PMID: 37006235 PMCID: PMC10060867 DOI: 10.3389/fimmu.2023.1131379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Natural killer (NK) cells are a potent innate source of cytokines and cytoplasmic granules. Their effector functions are tightly synchronized by the balance between the stimulatory and inhibitory receptors. Here, we quantified the proportion of NK cells and the surface presence of Galectin-9 (Gal-9) from the bone marrow, blood, liver, spleen, and lungs of adult and neonatal mice. We also examined the effector functions of Gal-9+NK cells compared with their Gal-9- counterparts. Our results revealed that Gal-9+NK cells are more abundant in tissues, in particular, in the liver than in the blood and bone marrow. We found Gal-9 presence was associated with enhanced cytotoxic effector molecules granzyme B (GzmB) and perforin expression. Likewise, Gal-9 expressing NK cells displayed greater IFN-γ and TNF-α expression than their negative counterparts under hemostatic circumstances. Notably, the expansion of Gal-9+NK cells in the spleen of mice infected with E. coli implies that Gal-9+NK cells may provide a protective role against infection. Similarly, we found the expansion of Gal-9+NK cells in the spleen and tumor tissues of melanoma B16-F10 mice. Mechanistically, our results revealed the interaction of Gal-9 with CD44 as noted by their co-expression/co-localization. Subsequently, this interaction resulted in enhanced expression of Phospho-LCK, ERK, Akt, MAPK, and mTOR in NK cells. Moreover, we found Gal-9+NK cells exhibited an activated phenotype as evidenced by increased CD69, CD25, and Sca-1 but reduced KLRG1 expression. Likewise, we found Gal-9 preferentially interacts with CD44high in human NK cells. Despite this interaction, we noted a dichotomy in terms of effector functions in NK cells from COVID-19 patients. We observed that the presence of Gal-9 on NK cells resulted in a greater IFN-γ expression without any changes in cytolytic molecule expression in these patients. These observations suggest differences in Gal-9+NK cell effector functions between mice and humans that should be considered in different physiological and pathological conditions. Therefore, our results highlight the important role of Gal-9 via CD44 in NK cell activation, which suggests Gal-9 is a potential new avenue for the development of therapeutic approaches to modulate NK cell effector functions.
Collapse
Affiliation(s)
- Amirhossein Rahmati
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Steven Bigam
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Shokrollah Elahi,
| |
Collapse
|
12
|
Tsai MT, Yang RB, Ou SM, Tseng WC, Lee KH, Yang CY, Chang FP, Tarng DC. Plasma Galectin-9 Is a Useful Biomarker for Predicting Renal Function in Patients Undergoing Native Kidney Biopsy. Arch Pathol Lab Med 2023; 147:167-176. [PMID: 35687787 DOI: 10.5858/arpa.2021-0466-oa] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/05/2023]
Abstract
CONTEXT.— Galectin-9 reduces tissue damage in certain immune-mediated glomerular diseases. However, its role in structural and functional renal changes in patients with varying types of chronic kidney disease (CKD) is less clear. OBJECTIVE.— To investigate the association between plasma galectin-9 levels, proteinuria, tubulointerstitial lesions, and renal function in different CKD stages. DESIGN.— We measured plasma galectin-9 levels in 243 patients undergoing renal biopsy for determining the CKD etiology. mRNA and protein expression levels of intrarenal galectin-9 were assessed by quantitative real-time polymerase chain reaction and immunostaining. Relationships between plasma galectin-9, clinical characteristics, and tubulointerstitial damage were analyzed with logistic regression. We investigated galectin-9 expression patterns in vitro in murine J774 macrophages treated with differing stimuli. RESULTS.— To analyze the relationship between galectin-9 and clinical features, we divided the patients into 2 groups according to median plasma galectin-9 levels. The high galectin-9 group tended to be older and to have decreased renal function, higher proteinuria, and greater interstitial fibrosis. After multivariable adjustment, elevated plasma galectin-9 levels were independently associated with stage 3b or higher CKD. An analysis of gene expression in the tubulointerstitial compartment in the biopsy samples showed a significant positive correlation between intrarenal galectin-9 mRNA expression and plasma galectin-9 levels. Immunohistochemistry confirmed increased galectin-9 expression in the renal interstitium of patients with advanced CKD, and most galectin-9-positive cells were macrophages, as determined by double-immunofluorescence staining. In vitro experiments showed that galectin-9 expression in macrophages was significantly increased after interferon-γ stimulation. CONCLUSIONS.— Our findings suggest that plasma galectin-9 is a good biomarker for diagnosing advanced CKD.
Collapse
Affiliation(s)
- Ming-Tsun Tsai
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan.,Tsai and R-B Yang contributed equally to this manuscript
| | - Ruey-Bing Yang
- From the Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (R-B Yang).,Tsai and R-B Yang contributed equally to this manuscript
| | - Shuo-Ming Ou
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Cheng Tseng
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuo-Hua Lee
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Yu Yang
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Pang Chang
- From the Department of Pathology and Laboratory Medicine (Chang), Taipei Veterans General Hospital, Taipei, Taiwan
| | - Der-Cherng Tarng
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan.,From the Department and Institute of Physiology (Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
13
|
Bozorgmehr N, Hnatiuk M, Peters AC, Elahi S. Depletion of polyfunctional CD26 highCD8 + T cells repertoire in chronic lymphocytic leukemia. Exp Hematol Oncol 2023; 12:13. [PMID: 36707896 PMCID: PMC9881277 DOI: 10.1186/s40164-023-00375-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND CD8+ T cells play an essential role against tumors but the role of human CD8+CD26+ T cell subset against tumors, in particular, haematological cancers such as chronic lymphocytic leukemia (CLL) remains unknown. Although CD4+CD26high T cells are considered for adoptive cancer immunotherapy, the role of CD8+CD26+ T cells is ill-defined. Therefore, further studies are required to better determine the role of CD8+CD26+ T cells in solid tumors and haematological cancers. METHODS We studied 55 CLL and 44 age-sex-matched healthy controls (HCs). The expression of CD26 on different T cell subsets (e.g. naïve, memory, effector, and etc.) was analyzed. Also, functional properties of CD8+CD26+ and CD8+CD26- T cells were evaluated. Finally, the plasma cytokine/chemokine and Galectin-9 (Gal-9) levels were examined. RESULTS CD26 expression identifies three CD8+ T cell subsets with distinct immunological properties. While CD26negCD8+ T cells are mainly transitional, effector memory and effectors, CD26lowCD8+ T cells are mainly naïve, stem cell, and central memory but CD26high T cells are differentiated to transitional and effector memory. CD26+CD8+ T cells are significantly reduced in CLL patients versus HCs. CD26high cells are enriched with Mucosal Associated Invariant T (MAIT) cells co-expressing CD161TVα7.2 and IL-18Rα. Also, CD26high cells have a rich chemokine receptor profile (e.g. CCR5 and CCR6), profound cytokine (TNF-α, IFN-γ, and IL-2), and cytolytic molecules (Granzyme B, K, and perforin) expression upon stimulation. CD26high and CD26low T cells exhibit significantly lower frequencies of CD160, 2B4, TIGIT, ICOS, CD39, and PD-1 but higher levels of CD27, CD28, and CD73 versus CD26neg cells. To understand the mechanism linked to CD26high depletion, we found that malignant B cells by shedding Galectin-9 (Gal-9) contribute to the elevation of plasma Gal-9 in CLL patients. In turn, Gal-9 and the inflammatory milieu (IL-18, IL-12, and IL-15) in CLL patients contribute to increased apoptosis of CD26high T cells. CONCLUSIONS Our results demonstrate that CD26+ T cells possess a natural polyfunctionality to traffic and exhibit effector functions and resist exhaustion. Therefore, they can be proposed for adoptive cancer immunotherapy. Finally, neutralizing and/or inhibiting Gal-9 may preserve CD26highCD8+ T cells in CLL.
Collapse
Affiliation(s)
- Najmeh Bozorgmehr
- grid.17089.370000 0001 2190 316XSchool of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Mark Hnatiuk
- grid.17089.370000 0001 2190 316XDepatment of Medicine Division of Hematology, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Anthea C. Peters
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Division of Medical Oncology, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Shokrollah Elahi
- grid.17089.370000 0001 2190 316XSchool of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB T6G 2E1 Canada ,grid.17089.370000 0001 2190 316XDepartment of Oncology, Division of Medical Oncology, University of Alberta, Edmonton, AB T6G 2E1 Canada ,grid.17089.370000 0001 2190 316XLi Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
14
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
15
|
Čoma M, Manning JC, Kaltner H, Gál P. The sweet side of wound healing: galectins as promising therapeutic targets in hemostasis, inflammation, proliferation, and maturation/remodeling. Expert Opin Ther Targets 2023; 27:41-53. [PMID: 36716023 DOI: 10.1080/14728222.2023.2175318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Understanding the molecular and cellular processes involved in skin wound healing may pave the way for the development of innovative approaches to transforming the identified natural effectors into therapeutic tools. Based on the extensive involvement of the ga(lactoside-binding)lectin family in (patho)physiological processes, it has been well established that galectins are involved in a wide range of cell-cell and cell-matrix interactions. AREAS COVERED In the present paper, we provide an overview of the biological role of galectins in repair and regeneration, focusing on four main phases (hemostasis, inflammation, proliferation, and maturation/remodeling) of skin repair using basic wound models (open excision vs. sutured incision). EXPERT OPINION The reported data make a strong case for directing further efforts to treat excisional and incisional wounds differently. Functions of galectins essentially result from their modular presentation. In fact, Gal-1 seems to play a role in the early phases of healing (anti-inflammatory) and wound contraction, Gal-3 accelerates re-epithelization and increases tensile strength (scar inductor). Galectins have also become subject of redesigning by engineering to optimize the activity. Clinically relevant, these new tools derived from the carbohydrate recognition domain platform may also prove helpful for other purposes, such as potent antibacterial agglutinins and opsonins.
Collapse
Affiliation(s)
- Matúš Čoma
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Peter Gál
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic.,Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
16
|
Shete A, Bhat M, Sawant J, Deshpande S. Both N- and C-terminal domains of galectin-9 are capable of inducing HIV reactivation despite mediating differential immunomodulatory functionalities. Front Immunol 2022; 13:994830. [PMID: 36569879 PMCID: PMC9772452 DOI: 10.3389/fimmu.2022.994830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background The shock-and-kill strategy for HIV cure requires the reactivation of latent HIV followed by the killing of the reactivated cellular reservoir. Galectin-9, an immunomodulatory protein, is shown to induce HIV reactivation as well as contribute to non-AIDS- and AIDS-defining events. The protein is prone to cleavage by inflammatory proteases at its linker region separating the N- and C-terminal carbohydrate-binding domains (N- and C-CRDs) which differ in their binding specificities. It is important to study the activity of its cleaved as well as uncleaved forms in mediating HIV reactivation and immunomodulation in order to understand their role in HIV pathogenesis and their further utilization for the shock-and-kill strategy. Methodology The PBMCs of HIV patients on virally suppressive ART (n = 11) were stimulated using 350 nM of the full-length protein and N- and C-CRDs of Gal-9. HIV reactivation was determined by analyzing gag RNA copies using qPCR using isolated CD4 cells and intracellular P24 staining of PBMCs by flow cytometry. Cytokine responses induced by the full-length protein and N- and C-CRDs of Gal-9 were also assessed by flow cytometry, Luminex, and gene expression assays. Changes in T helper cell gene expression pattern after the stimulation were also determined by real-time PCR array. Results Both N- and C-CRDs of galectin-9 induced HIV reactivation in addition to the full-length galectin-9 protein. The two domains elicited higher cytokine responses than the full-length protein, possibly capable of mediating higher perturbations in the immune system if used for HIV reactivation. N-CRD was found to induce the development of Treg cells, whereas C-CRD inhibited the induction of Treg cells. Despite this, both domains elicited IL-10 secretory response although targeting different CD4 cell phenotypes. Conclusion N- and C-CRDs were found to induce HIV reactivation similar to that of the full-length protein, indicating their possible usefulness in the shock-and-kill strategy. The study indicated an anti-inflammatory role of N-CRD versus the proinflammatory properties of C-CRD of galectin-9 in HIV infection.
Collapse
|
17
|
Yeung ST, Premeaux TA, Du L, Niki T, Pillai SK, Khanna KM, Ndhlovu LC. Galectin-9 protects humanized-ACE2 immunocompetent mice from SARS-CoV-2 infection. Front Immunol 2022; 13:1011185. [PMID: 36325323 PMCID: PMC9621319 DOI: 10.3389/fimmu.2022.1011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 remains a global health crisis even with effective vaccines and the availability of FDA approved therapies. Efforts to understand the complex disease pathology and develop effective strategies to limit mortality and morbidity are needed. Recent studies reveal circulating Galectin-9 (gal-9), a soluble beta-galactoside binding lectin with immunoregulatory properties, are elevated in SARS-CoV-2 infected individuals with moderate to severe disease. Moreover, in silico studies demonstrate gal-9 can potentially competitively bind the ACE2 receptor on susceptible host cells. Here, we determined whether early introduction of exogenous gal-9 following SARS-CoV-2 infection in humanized ACE2 transgenic mice (K18-hACE2) may reduce disease severity. Mice were infected and treated with a single dose of a human recombinant form of gal-9 (rh-gal-9) and monitored for morbidity. Subgroups of mice were humanely euthanized at 2- and 5- days post infection (dpi) for viral levels by plaque assay, immune changes measures by flow cytometry, and soluble mediators by protein analysis from lung tissue and bronchoalveolar Lavage fluid (BALF). Mice treated with rh-gal-9 during acute infection had improved survival compared to PBS treated controls. At 5 dpi, rh-gal-9 treated mice had enhanced viral clearance in the BALF, but not in the lung parenchyma. Increased T and dendritic cells and decreased neutrophil frequencies in the lung at 5 dpi were observed, whereas BALF had elevated levels of type-I interferons and proinflammatory cytokines. These results suggest a role for rh-gal-9 in limiting acute COVID-19. Further studies are required to determine the optimal design of gal-9 treatment to effectively ameliorate COVID-19 disease.
Collapse
Affiliation(s)
- Stephen T. Yeung
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Thomas A. Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Li Du
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Toshiro Niki
- Departments of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Satish K. Pillai
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Kamal M. Khanna
- Department of Microbiology, New York University, New York, NY, United States
- *Correspondence: Lishomwa C. Ndhlovu, ; Kamal M. Khanna,
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Lishomwa C. Ndhlovu, ; Kamal M. Khanna,
| |
Collapse
|
18
|
Mansour AA, Raucci F, Sevim M, Saviano A, Begum J, Zhi Z, Pezhman L, Tull S, Maione F, Iqbal AJ. Galectin-9 supports primary T cell transendothelial migration in a glycan and integrin dependent manner. Biomed Pharmacother 2022; 151:113171. [PMID: 35643073 DOI: 10.1016/j.biopha.2022.113171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 11/26/2022] Open
Abstract
Adaptive immunity relies on the efficient recruitment of T cells from the blood into peripheral tissues. However, the current understanding of factor(s) coordinating these events is incomplete. Previous studies on galectin-9 (Gal-9), have proposed a functionally significant role for this lectin in mediating leukocyte adhesion and transmigration. However, very little is known about its function in T cell migration. Here, we have investigated the role of the Gal-9 on the migration behaviour of both human primary CD4+ and CD8+ T cells. Our data indicate that Gal-9 supports both CD4+ and CD8+ T cell adhesion and transmigration in a glycan dependent manner, inducing L-selectin shedding and upregulation of LFA-1 and CXCR4 expression. Additionally, when immobilized, Gal-9 promoted capture and firm adhesion of T cells under flow, in a glycan and integrin-dependent manner. Using an in vivo model, dorsal air pouch, we found that Gal-9 deficient mice display impaired leukocyte trafficking, with a reduction in pro-inflammatory cytokines/chemokines generated locally. Furthermore, we also demonstrate that Gal-9 inhibits the chemotactic function of CXCL12 through direct binding. In conclusion, our study characterises, for the first time, the capture, adhesion, and migration behaviour of CD4+ and CD8+ T cells to immobilised /endothelial presented Gal-9, under static and physiological flow conditions. We also demonstrate the differential binding characteristics of Gal-9 to T cell subtypes, which could be of potential therapeutic significance, particularly in the treatment of inflammatory-based diseases, given Gal-9 ability to promote apoptosis in pathogenic T cell subsets.
Collapse
Affiliation(s)
- Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Federica Raucci
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Mustafa Sevim
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Physiology Department, School of Medicine, Marmara University, İstanbul, Turkey
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Jenefa Begum
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zhaogong Zhi
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Laleh Pezhman
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samantha Tull
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
19
|
Development and characterization of anti-galectin-9 antibodies that protect T cells from galectin-9-induced cell death. J Biol Chem 2022; 298:101821. [PMID: 35283189 PMCID: PMC9006662 DOI: 10.1016/j.jbc.2022.101821] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Antibodies that target immune checkpoint proteins such as programmed cell death protein 1, programmed death ligand 1, and cytotoxic T-lymphocyte–associated antigen 4 in human cancers have achieved impressive clinical success; however, a significant proportion of patients fail to respond to these treatments. Galectin-9 (Gal-9), a β-galactoside-binding protein, has been shown to induce T-cell death and facilitate immunosuppression in the tumor microenvironment by binding to immunomodulatory receptors such as T-cell immunoglobulin and mucin domain–containing molecule 3 and the innate immune receptor dectin-1, suggesting that it may have potential as a target for cancer immunotherapy. Here, we report the development of two novel Gal-9-neutralizing antibodies that specifically react with the N-carbohydrate-recognition domain of human Gal-9 with high affinity. We also show using cell-based functional assays that these antibodies efficiently protected human T cells from Gal-9-induced cell death. Notably, in a T-cell/tumor cell coculture assay of cytotoxicity, these antibodies significantly promoted T cell-mediated killing of tumor cells. Taken together, our findings demonstrate potent inhibition of human Gal-9 by neutralizing antibodies, which may open new avenues for cancer immunotherapy.
Collapse
|
20
|
Raymond F, Lefebvre G, Texari L, Pruvost S, Metairon S, Cottenet G, Zollinger A, Mateescu B, Billeaud C, Picaud JC, Silva-Zolezzi I, Descombes P, Bosco N. Longitudinal Human Milk miRNA Composition over the First 3 mo of Lactation in a Cohort of Healthy Mothers Delivering Term Infants. J Nutr 2022; 152:94-106. [PMID: 34510208 DOI: 10.1093/jn/nxab282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small noncoding RNAs involved in posttranscriptional regulation. miRNAs can be secreted and found in many body fluids, and although they are particularly abundant in breastmilk, their functions remain elusive. Human milk (HM) miRNAs start to raise considerable interest, but a comprehensive understanding of the repertoire and expression profiles along lactation has not been well characterized. OBJECTIVES This study aimed to characterize the longitudinal profile of HM miRNA between the second week and third month postpartum. METHODS We used a new sensitive technology to measure HM miRNAs in a cohort of 44 French mothers [mean ± SD age: 31 ± 3.5; BMI (in kg/m2) 21.8 ± 2.3] who delivered at term and provided HM samples at 3 time points (17 ± 3 d, 60 ± 3 d, and 90 ± 3 d) during follow-up visits. RESULTS We detected 685 miRNAs, of which 35 showed a high and stable expression along the lactation period analyzed. We also described for the first time a set of 11 miRNAs with a dynamic expression profile. To gain insight into the potential functional relevance of this set of miRNAs, we selected miR-3126 and miR-3184 to treat undifferentiated Caco-2 human intestinal cells and then assessed differentially expressed genes and modulation of related biological pathways. CONCLUSIONS Overall, our study provides new insights into HM miRNA composition and, to our knowledge, the first description of its longitudinal dynamics in mothers who delivered at term. Our in vitro results obtained in undifferentiated Caco-2 human intestinal cells transfected with HM miRNAs also provide further support to the hypothesized mother-to-neonate signaling role of HM miRNAs. This trial was registered at clinicaltrials.gov as NCT01894893.
Collapse
Affiliation(s)
- Frederic Raymond
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Gregory Lefebvre
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Lorane Texari
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Solenn Pruvost
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sylviane Metairon
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Geoffrey Cottenet
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Alix Zollinger
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Bogdan Mateescu
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Claude Billeaud
- Neonatology Nutrition, Lactarium Bordeaux-Marmande, Bordeaux, France
| | - Jean-Charles Picaud
- Neonatal Intensive Care Unit, University Hospital Croix Rousse, Lyon, France.,CarMeN unit, Claude Bernard University Lyon 1, 69310 Pierre Benite, France
| | | | - Patrick Descombes
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland.,Nestlé Research, Singapore
| |
Collapse
|
21
|
Adeniji OS, Giron LB, Abdel-Mohsen M. Examining the Impact of Galectin-9 on Latent HIV Transcription. Methods Mol Biol 2022; 2442:463-474. [PMID: 35320541 DOI: 10.1007/978-1-0716-2055-7_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The β-galactoside-binding protein Galectin-9 (Gal-9) functions as a double-edged sword during HIV infection. On the one hand, Gal-9 can reactivate HIV latently infected cells, the main barrier to achieving HIV eradication, making them visible to immune clearance. On the other hand, Gal-9 induces latent HIV transcription by activating T cell Receptor (TCR) signaling pathways. These signaling pathways induce undesirable pro-inflammatory responses. While these unwanted responses can be mitigated by rapamycin without impacting Gal-9-mediated latent HIV reactivation, this effect raises the concern that Gal-9 may play a role in the chronic immune activation/inflammation that persists in people living with HIV despite antiretroviral therapy. Together, these data highlight the need to understand the positive and negative impacts of galectin interactions on immunological functions during HIV infection. In this chapter, we describe methods that can be used to investigate the effects of galectins, in particular Gal-9, on latent HIV transcription in vitro and ex vivo.
Collapse
Affiliation(s)
| | | | - Mohamed Abdel-Mohsen
- The Wistar Institute, Philadelphia, PA, USA.
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Galectin-9 Triggers Neutrophil-Mediated Anticancer Immunity. Biomedicines 2021; 10:biomedicines10010066. [PMID: 35052746 PMCID: PMC8772786 DOI: 10.3390/biomedicines10010066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
In earlier studies, galectin-9 (Gal-9) was identified as a multifaceted player in both adaptive and innate immunity. Further, Gal-9 had direct cytotoxic and tumor-selective activity towards cancer cell lines of various origins. In the current study, we identified that treatment with Gal-9 triggered pronounced membrane alterations in cancer cells. Specifically, phosphatidyl serine (PS) was rapidly externalized, and the anti-phagocytic regulator, CD47, was downregulated within minutes. In line with this, treatment of mixed neutrophil/tumor cell cultures with Gal-9 triggered trogocytosis and augmented antibody-dependent cellular phagocytosis of cancer cells. Interestingly, this pro-trogocytic effect was also due to the Gal-9-mediated activation of neutrophils with upregulation of adhesion markers and mobilization of gelatinase, secretory, and specific granules. These activation events were accompanied by a decrease in cancer cell adhesion in mixed cultures of leukocytes and cancer cells. Further, prominent cytotoxicity was detected when leukocytes were mixed with pre-adhered cancer cells, which was abrogated when neutrophils were depleted. Taken together, Gal-9 treatment potently activated neutrophil-mediated anticancer immunity, resulting in the elimination of epithelial cancer cells.
Collapse
|
23
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
24
|
Premeaux TA, Moser CB, McKhann A, Hoenigl M, Laws EI, Aquino DL, Lederman MM, Landay AL, Gianella S, Ndhlovu LC. Plasma galectin-9 as a predictor of adverse non-AIDS events in persons with chronic HIV during suppressive antiretroviral therapy. AIDS 2021; 35:2489-2495. [PMID: 34366381 PMCID: PMC8631144 DOI: 10.1097/qad.0000000000003048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND People with HIV (PWH) on antiretroviral therapy (ART) still experience an increased risk of morbidity and mortality, presumably driven by chronic inflammation, yet predictors of discrete or combinatorial outcomes remain unclear. Galectin-9 (Gal-9), a driver of both inflammatory and immunosuppressive responses, has been associated with HIV disease progression and multimorbidity. OBJECTIVE To determine whether plasma Gal-9 levels are associated with the occurrence of specific non-AIDS events (NAEs) in PWH initiating ART. DESIGN We performed a nested case-control study of PWH enrolled from 2001 to 2009 and evaluated pre-ART (66 cases, 97 controls), a year post-ART (112 cases, 211 controls), and immediately preceding an event (89 cases, 162 controls). Events included myocardial infarction/stroke, malignancy, serious bacterial infection, or death. METHODS Plasma Gal-9 levels were assessed by ELISA. Conditional logistic regression assessed associations with NAEs and Spearman's correlations compared Gal-9 with other previously assessed biomarkers. RESULTS NAEs occurred at a median of 2.8 years (1.7-4.6) after ART initiation. Higher Gal-9 levels were associated with increased risk of NAEs at year 1 and preevent [odds ratio (OR) per 1 interquartile range = 1.4-1.6; all P < 0.05], specifically myocardial infarction/stroke at year 1 (OR = 1.9; P = 0.029). Gal-9 also correlated with multiple inflammatory and immune activation predictors of NAEs (all timepoints). CONCLUSION Elevated Gal-9 levels are predictive of deleterious NAEs, particularly cardiovascular complications. Whether the Gal-9 pathway, potentially binding to its putative ligands, is active in the pathogenesis of these outcomes warrants further investigation to determine if targeting Gal-9 may slow or reverse the risk of NAEs.
Collapse
Affiliation(s)
- Thomas A. Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Carlee B. Moser
- Center for Biostatistics in AIDS Research in the Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Ashley McKhann
- Center for Biostatistics in AIDS Research in the Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA
| | - Elizabeth I. Laws
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI
| | - Draven L. Aquino
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI
| | - Michael M. Lederman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Alan L. Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
25
|
Schlichtner S, Meyer NH, Yasinska IM, Aliu N, Berger SM, Gibbs BF, Fasler-Kan E, Sumbayev VV. Functional role of galectin-9 in directing human innate immune reactions to Gram-negative bacteria and T cell apoptosis. Int Immunopharmacol 2021; 100:108155. [PMID: 34543981 DOI: 10.1016/j.intimp.2021.108155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Galectin-9 is a member of the galectin family of proteins, which were first identified to specifically bind to carbohydrates containing β-galactosides. Galectin-9 is conserved through evolution and recent evidence demonstrated its involvement in innate immune reactions to bacterial infections as well as the suppression of cytotoxic immune responses of T and natural killer cells. However, the molecular mechanisms underlying such differential immunological functions of galectin-9 remain largely unknown. In this work we confirmed that soluble galectin-9 derived from macrophages binds to Gram-negative bacteria by interacting with lipopolysaccharide (LPS), which forms their cell wall. This opsonisation effect most likely interferes with the mobility of bacteria leading to their phagocytosis by innate immune cells. Galectin-9-dependent opsonisation also promotes the innate immune reactions of macrophages to these bacteria and significantly enhances the production of pro-inflammatory cytokines - interleukin (IL) 6, IL-1β and tumour necrosis factor alpha (TNF-α). In contrast, galectin-9 did not bind peptidoglycan (PGN), which forms the cell wall of Gram-positive bacteria. Moreover, galectin-9 associated with cellular surfaces (studied in primary human embryonic cells) was not involved in the interaction with bacteria or bacterial colonisation. However, galectin-9 expressed on the surface of primary human embryonic cells, as well as soluble forms of galectin-9, were able to target T lymphocytes and caused apoptosis in T cells expressing granzyme B. Furthermore, "opsonisation" of T cells by galectin-9 led to the translocation of phosphatidylserine onto the cell surface and subsequent phagocytosis by macrophages through Tim-3, the receptor, which recognises both galectin-9 and phosphatidylserine as ligands.
Collapse
Affiliation(s)
- Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany; Division of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Nijas Aliu
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Bernhard F Gibbs
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland; Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.
| |
Collapse
|
26
|
Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers (Basel) 2021; 13:cancers13184529. [PMID: 34572756 PMCID: PMC8469970 DOI: 10.3390/cancers13184529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This review compiles our current knowledge of one of the main pathways activated by tumors to escape immune attack. Indeed, it integrates the current understanding of how tumor-derived circulating galectins affect the elicitation of effective anti-tumor immunity. It focuses on several relevant topics: which are the main galectins produced by tumors, how soluble galectins circulate throughout biological liquids (taking a body-settled gradient concentration into account), the conditions required for the galectins’ functions to be accomplished at the tumor and tumor-distant sites, and how the physicochemical properties of the microenvironment in each tissue determine their functions. These are no mere semantic definitions as they define which functions can be performed in said tissues instead. Finally, we discuss the promising future of galectins as targets in cancer immunotherapy and some outstanding questions in the field. Abstract Current data indicates that anti-tumor T cell-mediated immunity correlates with a better prognosis in cancer patients. However, it has widely been demonstrated that tumor cells negatively manage immune attack by activating several immune-suppressive mechanisms. It is, therefore, essential to fully understand how lymphocytes are activated in a tumor microenvironment and, above all, how to prevent these cells from becoming dysfunctional. Tumors produce galectins-1, -3, -7, -8, and -9 as one of the major molecular mechanisms to evade immune control of tumor development. These galectins impact different steps in the establishment of the anti-tumor immune responses. Here, we carry out a critical dissection on the mechanisms through which tumor-derived galectins can influence the production and the functionality of anti-tumor T lymphocytes. This knowledge may help us design more effective immunotherapies to treat human cancers.
Collapse
|
27
|
Dunsmore G, Rosero EP, Shahbaz S, Santer DM, Jovel J, Lacy P, Houston S, Elahi S. Neutrophils promote T-cell activation through the regulated release of CD44-bound Galectin-9 from the cell surface during HIV infection. PLoS Biol 2021; 19:e3001387. [PMID: 34411088 PMCID: PMC8407585 DOI: 10.1371/journal.pbio.3001387] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/31/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
The interaction of neutrophils with T cells has been the subject of debate and controversies. Previous studies have suggested that neutrophils may suppress or activate T cells. Despite these studies, the interaction between neutrophils and T cells has remained a largely unexplored field. Here, based on our RNA sequencing (RNA-seq) analysis, we found that neutrophils have differential transcriptional and functional profiling depending on the CD4 T-cell count of the HIV-infected individual. In particular, we identified that neutrophils in healthy individuals express surface Galectin-9 (Gal-9), which is down-regulated upon activation, and is consistently down-regulated in HIV-infected individuals. However, down-regulation of Gal-9 was associated with CD4 T-cell count of patients. Unstimulated neutrophils express high levels of surface Gal-9 that is bound to CD44, and, upon stimulation, neutrophils depalmitoylate CD44 and induce its movement out of the lipid raft. This process causes the release of Gal-9 from the surface of neutrophils. In addition, we found that neutrophil-derived exogenous Gal-9 binds to cell surface CD44 on T cells, which promotes LCK activation and subsequently enhances T-cell activation. Furthermore, this process was regulated by glycolysis and can be inhibited by interleukin (IL)-10. Together, our data reveal a novel mechanism of Gal-9 shedding from the surface of neutrophils. This could explain elevated plasma Gal-9 levels in HIV-infected individuals as an underlying mechanism of the well-characterized chronic immune activation in HIV infection. This study provides a novel role for the Gal-9 shedding from neutrophils. We anticipate that our results will spark renewed investigation into the role of neutrophils in T-cell activation in other acute and chronic conditions, as well as improved strategies for modulating Gal-9 shedding. This study shows that HIV-infected individuals have different neutrophil profiles depending on their CD4 T cell count. In particular, neutrophils express high levels of surface Gal-9 but this is shed upon stimulation; this exogenous Gal-9 binds to CD44 on T cells, which promotes LCK activation and subsequently enhances T cell activation.
Collapse
Affiliation(s)
- Garett Dunsmore
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Eliana Perez Rosero
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shima Shahbaz
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Deanna M. Santer
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Juan Jovel
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Paige Lacy
- Department of Medicine, Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Stan Houston
- Department of Medicine, Division of Infectious Disease, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
28
|
Xu WD, Huang Q, Huang AF. Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmun Rev 2021; 20:102847. [PMID: 33971347 DOI: 10.1016/j.autrev.2021.102847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022]
Abstract
Galectin family is a group of glycan-binding proteins. Members in this family are expressed in different tissues, immune or non-immune cells. These molecules are important regulators in innate and adaptive immune response, performing significantly in a broad range of cellular and pathophysiological functions, such as cell proliferation, adhesion, migration, and invasion. Findings have shown that expression of galectins is abnormal in many inflammatory autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, sjögren's syndrome, systemic sclerosis. Galectins also function as intracellular and extracellular disease regulators mainly through the binding of their carbohydrate recognition domain to glycoconjugates. Here, we review the state-of-the-art of the role that different galectin family members play in immune cells, contributing to the complex inflammatory diseases. Hopefully collection of the information will provide a preliminary theoretical basis for the exploration of new targets for treatment of the disorders.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qi Huang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
29
|
Iwasaki-Hozumi H, Chagan-Yasutan H, Ashino Y, Hattori T. Blood Levels of Galectin-9, an Immuno-Regulating Molecule, Reflect the Severity for the Acute and Chronic Infectious Diseases. Biomolecules 2021; 11:biom11030430. [PMID: 33804076 PMCID: PMC7998537 DOI: 10.3390/biom11030430] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Galectin-9 (Gal-9) is a β-galactoside-binding lectin capable of promoting or suppressing the progression of infectious diseases. This protein is susceptible to cleavage of its linker-peptides by several proteases, and the resulting cleaved forms, N-terminal carbohydrate recognition domain (CRD) and C-terminal CRD, bind to various glycans. It has been suggested that full-length (FL)-Gal-9 and the truncated (Tr)-Gal-9s could exert different functions from one another via their different glycan-binding activities. We propose that FL-Gal-9 regulates the pathogenesis of infectious diseases, including human immunodeficiency virus (HIV) infection, HIV co-infected with opportunistic infection (HIV/OI), dengue, malaria, leptospirosis, and tuberculosis (TB). We also suggest that the blood levels of FL-Gal-9 reflect the severity of dengue, malaria, and HIV/OI, and those of Tr-Gal-9 markedly reflect the severity of HIV/OI. Recently, matrix metallopeptidase-9 (MMP-9) was suggested to be an indicator of respiratory failure from coronavirus disease 2019 (COVID-19) as well as useful for differentiating pulmonary from extrapulmonary TB. The protease cleavage of FL-Gal-9 may lead to uncontrolled hyper-immune activation, including a cytokine storm. In summary, Gal-9 has potential to reflect the disease severity for the acute and chronic infectious diseases.
Collapse
Affiliation(s)
- Hiroko Iwasaki-Hozumi
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
| | - Haorile Chagan-Yasutan
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
- Mongolian Psychosomatic Medicine Department, International Mongolian Medicine Hospital of Inner Mongolia, Hohhot 010065, China
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Sendai 982-8502, Japan;
| | - Toshio Hattori
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
- Correspondence: ; Tel.: +81-866-22-9454
| |
Collapse
|
30
|
Sun J, Sui Y, Wang Y, Song L, Li D, Li G, Liu J, Shu Q. Galectin-9 expression correlates with therapeutic effect in rheumatoid arthritis. Sci Rep 2021; 11:5562. [PMID: 33692448 PMCID: PMC7946964 DOI: 10.1038/s41598-021-85152-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/25/2021] [Indexed: 11/24/2022] Open
Abstract
Galectin-9 (Gal-9) is a multifunctional immunomodulatory factor highly expressed in RA. This study aimed to investigate the expression of Gal-9 and its correlation with disease activity and therapeutic response in RA patients. Active RA patients were enrolled and treated with tacrolimus (TAC) alone or in combination therapy for 12 weeks in a prospective cohort study. Clinical and immunological parameters were recorded at baseline and week 12. We measured Gal-9 expression in different T cell subsets and in plasma. The disease activity of RA patients decreased after treatment. At baseline, the Gal-9 expression percentage was higher in the group with severe disease than in mild or moderate groups. After treatment, the Gal-9 expression in CD3+, CD4+, CD8+ and CD4-CD8− cell subsets decreased, as well as Gal-9 mean fluorescence intensity in CD3+, CD4+ and CD8+ T cells. Similarly, plasma Gal-9 levels were lower at week 12 than at baseline. Good responders showed significantly lower Gal-9 expression on CD3+ and CD4+ T cell subsets and lower plasma Gal-9 levels than poor responders. Gal-9 expression positively correlates with disease activity in RA patients. Gal-9 can be regarded as a new biomarker for evaluating RA activity and therapeutic effect, including TAC.
Collapse
Affiliation(s)
- Jiao Sun
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Nephrology and Immunology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, Shandong, China
| | - Yameng Sui
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Rheumatology and Immunology, Yantai Mountain Hospital, Yantai, 264001, Shandong, China
| | - Yunqing Wang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, GuangzhouGuangdong, 510317, China
| | - Lijun Song
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Shenzhen Research Institute of Shandong University, Guangdong, 518057, Shenzhen, China
| | - Dong Li
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Cryomedicine Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Guosheng Li
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jianwei Liu
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Qiang Shu
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shenzhen Research Institute of Shandong University, Guangdong, 518057, Shenzhen, China.
| |
Collapse
|
31
|
Serial transplantation unmasks galectin-9 contribution to tumor immune escape in the MB49 murine model. Sci Rep 2021; 11:5227. [PMID: 33664349 PMCID: PMC7933353 DOI: 10.1038/s41598-021-84270-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
Mechanisms of tumor immune escape are quite diverse and require specific approaches for their exploration in syngeneic tumor models. In several human malignancies, galectin-9 (gal-9) is suspected to contribute to the immune escape. However, in contrast with what has been done for the infiltrating cells, the contribution of gal-9 produced by malignant cells has never been demonstrated in an animal model. Therefore, we derived isogenic clones—either positive or negative for gal-9—from the MB49 murine bladder carcinoma cell line. A progressive and consistent reduction of tumor growth was observed when gal-9-KO cells were subjected to serial transplantations into syngeneic mice. In contrast, tumor growth was unaffected during parallel serial transplantations into nude mice, thus linking tumor inhibition to the enhancement of the immune response against gal-9-KO tumors. This stronger immune response was at least in part explained by changing patterns of response to interferon-γ. One consistent change was a more abundant production of CXCL10, a major inflammatory factor whose production is often induced by interferon-γ. Overall, these observations demonstrate for the first time that serial transplantation into syngeneic mice can be a valuable experimental approach for the exploration of novel mechanisms of tumor immune escape.
Collapse
|
32
|
Yang R, Sun L, Li CF, Wang YH, Yao J, Li H, Yan M, Chang WC, Hsu JM, Cha JH, Hsu JL, Chou CW, Sun X, Deng Y, Chou CK, Yu D, Hung MC. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun 2021; 12:832. [PMID: 33547304 PMCID: PMC7864927 DOI: 10.1038/s41467-021-21099-2] [Citation(s) in RCA: 279] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023] Open
Abstract
The two T cell inhibitory receptors PD-1 and TIM-3 are co-expressed during exhausted T cell differentiation, and recent evidence suggests that their crosstalk regulates T cell exhaustion and immunotherapy efficacy; however, the molecular mechanism is unclear. Here we show that PD-1 contributes to the persistence of PD-1+TIM-3+ T cells by binding to the TIM-3 ligand galectin-9 (Gal-9) and attenuates Gal-9/TIM-3-induced cell death. Anti-Gal-9 therapy selectively expands intratumoral TIM-3+ cytotoxic CD8 T cells and immunosuppressive regulatory T cells (Treg cells). The combination of anti-Gal-9 and an agonistic antibody to the co-stimulatory receptor GITR (glucocorticoid-induced tumor necrosis factor receptor-related protein) that depletes Treg cells induces synergistic antitumor activity. Gal-9 expression and secretion are promoted by interferon β and γ, and high Gal-9 expression correlates with poor prognosis in multiple human cancers. Our work uncovers a function for PD-1 in exhausted T cell survival and suggests Gal-9 as a promising target for immunotherapy.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/immunology
- Adenocarcinoma/mortality
- Adenocarcinoma/therapy
- Animals
- Antibodies/pharmacology
- Antineoplastic Agents, Immunological/pharmacology
- Colonic Neoplasms/genetics
- Colonic Neoplasms/immunology
- Colonic Neoplasms/mortality
- Colonic Neoplasms/therapy
- Galectins/antagonists & inhibitors
- Galectins/genetics
- Galectins/immunology
- Gene Expression Regulation, Neoplastic/immunology
- Glucocorticoid-Induced TNFR-Related Protein/agonists
- Glucocorticoid-Induced TNFR-Related Protein/genetics
- Glucocorticoid-Induced TNFR-Related Protein/immunology
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/immunology
- Humans
- Immunotherapy/methods
- Jurkat Cells
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/mortality
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Protein Binding
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/mortality
- Skin Neoplasms/therapy
- Survival Analysis
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Riyao Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Linlin Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ching-Fei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Han Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Meisi Yan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Wei-Chao Chang
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jong-Ho Cha
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cheng-Wei Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Xian Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yalan Deng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
33
|
Choi BK, Lee HW. The Murine CD137/CD137 Ligand Signalosome: A Signal Platform Generating Signal Complexity. Front Immunol 2020; 11:553715. [PMID: 33362756 PMCID: PMC7758191 DOI: 10.3389/fimmu.2020.553715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
CD137, a member of the TNFR family, is a costimulatory receptor, and CD137L, a member of the TNF family, is its ligand. Studies using CD137- and CD137L-deficient mice and antibodies against CD137 and CD137L have revealed the diverse and paradoxical effects of these two proteins in various cancers, autoimmunity, infections, and inflammation. Both their cellular diversity and their spatiotemporal expression patterns indicate that they mediate complex immune responses. This intricacy is further enhanced by the bidirectional signal transduction events that occur when these two proteins interact in various types of immune cells. Here, we review the biology of murine CD137/CD137L, particularly, the complexity of their proximal signaling pathways, and speculate on their roles in immune responses.
Collapse
Affiliation(s)
- Beom K Choi
- Biomedicine Production Branch, Program for Immunotherapy Research, National Cancer Center, Goyang, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
34
|
Transforming growth factor beta type 1 (TGF-β) and hypoxia-inducible factor 1 (HIF-1) transcription complex as master regulators of the immunosuppressive protein galectin-9 expression in human cancer and embryonic cells. Aging (Albany NY) 2020; 12:23478-23496. [PMID: 33295886 PMCID: PMC7762483 DOI: 10.18632/aging.202343] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022]
Abstract
Galectin-9 is one of the key proteins employed by a variety of human malignancies to suppress anti-cancer activities of cytotoxic lymphoid cells and thus escape immune surveillance. Human cancer cells in most cases express higher levels of galectin-9 compared to non-transformed cells. However, the biochemical mechanisms underlying this phenomenon remain unclear. Here we report for the first time that in human cancer as well as embryonic cells, the transcription factors hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are involved in upregulation of transforming growth factor beta 1 (TGF-β1) expression, leading to activation of the transcription factor Smad3 through autocrine action. This process triggers upregulation of galectin-9 expression in both malignant (mainly in breast and colorectal cancer as well as acute myeloid leukaemia (AML)) and embryonic cells. The effect, however, was not observed in mature non-transformed human cells. TGF-β1-activated Smad3 therefore displays differential behaviour in human cancer and embryonic vs non-malignant cells. This study uncovered a self-supporting biochemical mechanism underlying high levels of galectin-9 expression operated by the human cancer and embryonic cells employed in our investigations. Our results suggest the possibility of using the TGF-β1 signalling pathway as a potential highly efficient target for cancer immunotherapy.
Collapse
|
35
|
Yasinska IM, Meyer NH, Schlichtner S, Hussain R, Siligardi G, Casely-Hayford M, Fiedler W, Wellbrock J, Desmet C, Calzolai L, Varani L, Berger SM, Raap U, Gibbs BF, Fasler-Kan E, Sumbayev VV. Ligand-Receptor Interactions of Galectin-9 and VISTA Suppress Human T Lymphocyte Cytotoxic Activity. Front Immunol 2020; 11:580557. [PMID: 33329552 PMCID: PMC7715031 DOI: 10.3389/fimmu.2020.580557] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML), a blood/bone marrow cancer, is a severe and often fatal malignancy. AML cells are capable of impairing the anti-cancer activities of cytotoxic lymphoid cells. This includes the inactivation of natural killer (NK) cells and killing of T lymphocytes. Here we report for the first time that V-domain Ig-containing suppressor of T cell activation (VISTA), a protein expressed by T cells, recognizes galectin-9 secreted by AML cells as a ligand. Importantly, we found that soluble VISTA released by AML cells enhances the effect of galectin-9, most likely by forming multiprotein complexes on the surface of T cells and possibly creating a molecular barrier. These events cause changes in the plasma membrane potential of T cells leading to activation of granzyme B inside cytotoxic T cells, resulting in apoptosis.
Collapse
Affiliation(s)
- Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | | | | | - Maxwell Casely-Hayford
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cloe Desmet
- European Commission Joint Research Centre, Ispra, Italy
| | | | - Luca Varani
- Institute for Research in Biomedicine, Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Department of Biomedical Research, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Ulrike Raap
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Bernhard F Gibbs
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.,Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Department of Biomedical Research, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
36
|
Mo R, Feng XX, Wu YN, Wang H, He YP, Sun HH, Guo F, Chen Q, Yan W, Li PY, Liu M, Zhang GM, Tian DA, Feng ZH. Hepatocytes paradoxically affect intrahepatic IFN-γ production in autoimmune hepatitis due to Gal-9 expression and TLR2/4 ligand release. Mol Immunol 2020; 123:106-115. [PMID: 32485469 DOI: 10.1016/j.molimm.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Hepatocytes are the targets in autoimmune hepatitis (AIH) that results in T cell-dependent liver injury. However, hepatocytes may also affect the hepatic T cells in AIH, but the underlying mechanisms are not fully understood. Here we report that hepatocytes could secrete galectin-9 (Gal-9) to suppress the intrahepatic production of Th1 cytokine IFN-γ and restrict AIH development, but hepatocyte damage resulted in opposite effects due to release of TLR2/4 ligands that promoted the intrahepatic production of IL-1β, IL-6, and IL-12. Through Tim-3, Gal-9 could efficiently suppress the intrahepatic T cell activation despite presence of TLR2/4 ligands, thus attenuating Th1 response in AIH. Intriguingly, intrahepatic IL-6/IL-12 suppressed the effect of TGF-β on Treg cells. Therefore, in AIH, Gal-9 promoted Foxp3 expression and function of hepatic Treg cells through TL1A signaling, although Treg function was still impaired, compared with that in naive state. Due to its promoting effect on Treg function, together with its effect on T effector cells in a Tim-3-independent way, Gal-9 could attenuate intrahepatic IFN-γ production by hindering the increase of hepatic CD4+CD43+ T cells resulting from extrahepatic T cell activation. TLR2/4 ligands attenuated the effects of Gal-9 on Treg cells and CD4+CD43+ T cells by increasing intrahepatic IL-6 and IL-12. Blocking TLR2/4 ligands could efficiently suppress intrahepatic IFN-γ production, liver injury, and hepatic fibrosis. These findings suggest that hepatocytes paradoxically affect Th1 response in AIH due to Gal-9 expression and TLR2/4 ligands release, and that targeting TLR2/4 signaling may provide an important approach in the therapeutic strategy for AIH.
Collapse
Affiliation(s)
- Ran Mo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Xin-Xia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China.
| | - Ya-Nan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Yong-Pei He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Huan-Huan Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Fang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Qian Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Pei-Yuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Gui-Mei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - De-An Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Zuo-Hua Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
37
|
Chen HY, Wu YF, Chou FC, Wu YH, Yeh LT, Lin KI, Liu FT, Sytwu HK. Intracellular Galectin-9 Enhances Proximal TCR Signaling and Potentiates Autoimmune Diseases. THE JOURNAL OF IMMUNOLOGY 2020; 204:1158-1172. [PMID: 31969388 DOI: 10.4049/jimmunol.1901114] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
Galectin-9 is a risk gene in inflammatory bowel disease. By transcriptomic analyses of ileal biopsies and PBMCs from inflammatory bowel disease patients, we identified a positive correlation between galectin-9 expression and colitis severity. We observed that galectin-9-deficient T cells were less able to induce T cell-mediated colitis. However, several mouse-based studies reported that galectin-9 treatment induces T cell apoptosis and ameliorates autoimmune diseases in an exogenously modulated manner, indicating a complicated regulation of galectin-9 in T cells. We found that galectin-9 is expressed mainly inside T cells, and its secreted form is barely detected under physiological conditions. Endogenous galectin-9 was recruited to immune synapses upon T cell activation. Moreover, proximal TCR signaling was impaired in galectin-9-deficient T cells, and proliferation of these cells was decreased through an intracellularly modulated manner. Th17 cell differentiation was downregulated in galectin-9-deficient T cells, and this impairment can be rescued by strong TCR signaling. Taken together, these findings suggest that intracellular galectin-9 is a positive regulator of T cell activation and modulates the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Heng-Yi Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
| | - Yen-Fei Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Feng-Cheng Chou
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan.,Laboratory of Translational Medicine Office, Development Center for Biotechnology, Taipei 115, Taiwan
| | - Yu-Hsuan Wu
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; and
| | - Li-Tzu Yeh
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; .,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan.,Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
38
|
Galectin-9 Is a Possible Promoter of Immunopathology in Rheumatoid Arthritis by Activation of Peptidyl Arginine Deiminase 4 (PAD-4) in Granulocytes. Int J Mol Sci 2019; 20:ijms20164046. [PMID: 31430907 PMCID: PMC6721145 DOI: 10.3390/ijms20164046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
The aetiology of rheumatoid arthritis (RA) is unknown, but citrullination of proteins is thought to be an initiating event. In addition, it is increasingly evident that the lung can be a potential site for the generation of autoimmune triggers before the development of joint disease. Here, we identified that serum levels of galectin-9 (Gal-9), a pleiotropic immunomodulatory protein, are elevated in RA patients, and are even further increased in patients with comorbid bronchiectasis, a lung disease caused by chronic inflammation. The serum concentrations of Gal-9 correlate with C-reactive protein levels and DAS-28 score. Gal-9 activated polymorphonuclear leukocytes (granulocytes) in vitro, which was characterized by increased cytokine secretion, migration, and survival. Further, granulocytes treated with Gal-9 upregulated expression of peptidyl arginine deiminase 4 (PAD-4), a key enzyme required for RA-associated citrullination of proteins. Correspondingly, treatment with Gal-9 triggered citrullination of intracellular granulocyte proteins that are known contributors to RA pathogenesis (i.e., myeloperoxidase, alpha-enolase, MMP-9, lactoferrin). In conclusion, this study identifies for the first time an immunomodulatory protein, Gal-9, that triggers activation of granulocytes leading to increased PAD-4 expression and generation of citrullinated autoantigens. This pathway may represent a potentially important mechanism for development of RA.
Collapse
|
39
|
Balogh A, Toth E, Romero R, Parej K, Csala D, Szenasi NL, Hajdu I, Juhasz K, Kovacs AF, Meiri H, Hupuczi P, Tarca AL, Hassan SS, Erez O, Zavodszky P, Matko J, Papp Z, Rossi SW, Hahn S, Pallinger E, Than NG. Placental Galectins Are Key Players in Regulating the Maternal Adaptive Immune Response. Front Immunol 2019; 10:1240. [PMID: 31275299 PMCID: PMC6593412 DOI: 10.3389/fimmu.2019.01240] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1β, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.
Collapse
Affiliation(s)
- Andrea Balogh
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Katalin Parej
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diana Csala
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nikolett L Szenasi
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Istvan Hajdu
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arpad F Kovacs
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Offer Erez
- Division of Obstetrics and Gynecology, Maternity Department "D", Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Peter Zavodszky
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Eva Pallinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
40
|
Colomb F, Giron LB, Trbojevic-Akmacic I, Lauc G, Abdel-Mohsen M. Breaking the Glyco-Code of HIV Persistence and Immunopathogenesis. Curr HIV/AIDS Rep 2019; 16:151-168. [PMID: 30707400 PMCID: PMC6441623 DOI: 10.1007/s11904-019-00433-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Glycoimmunology is an emerging field focused on understanding how immune responses are mediated by glycans (carbohydrates) and their interaction with glycan-binding proteins called lectins. How glycans influence immunological functions is increasingly well understood. In a parallel way, in the HIV field, it is increasingly understood how the host immune system controls HIV persistence and immunopathogenesis. However, what has mostly been overlooked, despite its potential for therapeutic applications, is the role that the host glycosylation machinery plays in modulating the persistence and immunopathogenesis of HIV. Here, we will survey four areas in which the links between glycan-lectin interactions and immunology and between immunology and HIV are well described. For each area, we will describe these links and then delineate the opportunities for the HIV field in investigating potential interactions between glycoimmunology and HIV persistence/immunopathogenesis. RECENT FINDINGS Recent studies show that the human glycome (the repertoire of human glycan structures) plays critical roles in driving or modulating several cellular processes and immunological functions that are central to maintaining HIV infection. Understanding the links between glycoimmunology and HIV infection may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication, functional cure, or improved tolerance of lifelong infection.
Collapse
Affiliation(s)
- Florent Colomb
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Leila B Giron
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb, Croatia
| | | |
Collapse
|
41
|
Colomb F, Giron LB, Premeaux TA, Mitchell BI, Niki T, Papasavvas E, Montaner LJ, Ndhlovu LC, Abdel-Mohsen M. Galectin-9 Mediates HIV Transcription by Inducing TCR-Dependent ERK Signaling. Front Immunol 2019; 10:267. [PMID: 30842775 PMCID: PMC6391929 DOI: 10.3389/fimmu.2019.00267] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
Endogenous plasma levels of the immunomodulatory carbohydrate-binding protein galectin-9 (Gal-9) are elevated during HIV infection and remain elevated after antiretroviral therapy (ART) suppression. We recently reported that Gal-9 regulates HIV transcription and potently reactivates latent HIV. However, the signaling mechanisms underlying Gal-9-mediated viral transcription remain unclear. Given that galectins are known to modulate T cell receptor (TCR)-signaling, we hypothesized that Gal-9 modulates HIV transcriptional activity, at least in part, through inducing TCR signaling pathways. Gal-9 induced T cell receptor ζ chain (CD3ζ) phosphorylation (11.2 to 32.1%; P = 0.008) in the J-Lat HIV latency model. Lck inhibition reduced Gal-9-mediated viral reactivation in the J-Lat HIV latency model (16.8-0.9%; P < 0.0001) and reduced both Gal-9-mediated CD4+ T cell activation (10.3 to 1.65% CD69 and CD25 co-expression; P = 0.0006), and IL-2/TNFα secretion (P < 0.004) in primary CD4+ T cells from HIV-infected individuals on suppressive ART. Using phospho-kinase antibody arrays, we found that Gal-9 increased the phosphorylation of the TCR-downstream signaling molecules ERK1/2 (26.7-fold) and CREB (6.6-fold). ERK and CREB inhibitors significantly reduced Gal-9-mediated viral reactivation (16.8 to 2.6 or 12.6%, respectively; P < 0.0007). Given that the immunosuppressive rapamycin uncouples HIV latency reversal from cytokine-associated toxicity, we also investigated whether rapamycin could uncouple Gal-9-mediated latency reactivation from its concurrent pro-inflammatory cytokine production. Rapamycin reduced Gal-9-mediated secretion of IL-2 (4.4-fold, P = 0.001) and TNF (4-fold, P = 0.02) without impacting viral reactivation (16.8% compared to 16.1%; P = 0.2). In conclusion, Gal-9 modulates HIV transcription by activating the TCR-downstream ERK and CREB signaling pathways in an Lck-dependent manner. Our findings could have implications for understanding the role of endogenous galectin interactions in modulating TCR signaling and maintaining chronic immune activation during ART-suppressed HIV infection. In addition, uncoupling Gal-9-mediated viral reactivation from undesirable pro-inflammatory effects, using rapamycin, may increase the potential utility of recombinant Gal-9 within the reversal of HIV latency eradication framework.
Collapse
Affiliation(s)
- Florent Colomb
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Leila B. Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Thomas A. Premeaux
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Brooks I. Mitchell
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Toshiro Niki
- GalPharma Co. Ltd., Takamatsu-shi, Takamatsu, Japan
- Department of Immunology and Immunopathology, Kagawa University, Takamatsu, Japan
| | - Emmanouil Papasavvas
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
42
|
Lhuillier C, Barjon C, Baloche V, Niki T, Gelin A, Mustapha R, Claër L, Hoos S, Chiba Y, Ueno M, Hirashima M, Wei M, Morales O, Raynal B, Delhem N, Dellis O, Busson P. Characterization of neutralizing antibodies reacting with the 213-224 amino-acid segment of human galectin-9. PLoS One 2018; 13:e0202512. [PMID: 30204750 PMCID: PMC6133441 DOI: 10.1371/journal.pone.0202512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023] Open
Abstract
Extra-cellular galectin-9 (gal-9) is an immuno-modulatory protein with predominant immunosuppressive effects. Inappropriate production of gal-9 has been reported in several human malignancies and viral diseases like nasopharyngeal, pancreatic and renal carcinomas, metastatic melanomas and chronic active viral hepatitis. Therefore therapeutic antibodies neutralizing extra-cellular gal-9 are expected to contribute to immune restoration in these pathological conditions. Two novel monoclonal antibodies targeting gal-9 –Gal-Nab 1 and 2—have been produced and characterized in this study. We report a protective effect of Gal-Nab1 and Gal-Nab2 on the apoptotic cell death induced by gal-9 in primary T cells. In addition, they inhibit late phenotypic changes observed in peripheral T cells that survive gal-9-induced apoptosis. Gal-Nab1 and Gal-Nab2 bind nearly identical, overlapping linear epitopes contained in the 213–224 amino-acid segments of gal-9. Nevertheless, they have some distinct functional characteristics suggesting that their three-dimensional epitopes are distinct. These differences are best demonstrated when gal-9 is applied on Jurkat cells where Gal-Nab1 is less efficient than Gal-Nab2 in the prevention of apoptotic cell death. In addition, Gal-Nab1 stimulates non-lethal phosphatidylserine translocation at the plasma membrane and calcium mobilization triggered by gal-9 in these cells. Both Gal-Nab1 and 2 cross-react with murine gal-9. They bind its natural as well as its recombinant form. This cross-species recognition will be an advantage for their assessment in pre-clinical tumor models.
Collapse
Affiliation(s)
- Claire Lhuillier
- CNRS, UMR 8126, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Cellvax, Romainville, France
| | - Clément Barjon
- CNRS, UMR 8126, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Cellvax, Romainville, France
| | - Valentin Baloche
- CNRS, UMR 8126, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Toshiro Niki
- Department of Immunology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, Japan
- GalPharma Co., Ltd., Takamatsu, Kagawa, Japan
| | - Aurore Gelin
- CNRS, UMR 8126, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Rami Mustapha
- CNRS, UMR 8161, IRCV group, Institut de Biologie de Lille, Lille, France
| | | | - Sylviane Hoos
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, Japan
| | - Mitsuomi Hirashima
- GalPharma Co., Ltd., Takamatsu, Kagawa, Japan
- Department of Gastroenterology & Neurology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, Japan
| | | | - Olivier Morales
- CNRS, UMR 8161, IRCV group, Institut de Biologie de Lille, Lille, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Nadira Delhem
- CNRS, UMR 8161, IRCV group, Institut de Biologie de Lille, Lille, France
| | - Olivier Dellis
- INSERM, UMR-S 1174, Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Pierre Busson
- CNRS, UMR 8126, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
43
|
Yang S, Wang J, Chen F, Liu G, Weng Z, Chen J. Elevated Galectin-9 Suppresses Th1 Effector Function and Induces Apoptosis of Activated CD4 + T Cells in Osteoarthritis. Inflammation 2018; 40:1062-1071. [PMID: 28393295 DOI: 10.1007/s10753-017-0549-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T cell immunoglobulin and mucin domain 3 (Tim-3) is a critical regulatory molecule found on activated Th1 cells, exhausted CD8+ T cells, and resting monocytes/macrophages. Galectin-9 (Gal-9) is an identified ligand for Tim-3. Interaction between Tim-3 and Gal-9 is thought to inhibit Th1 responses. The regulation and function of Tim-3 and Gal-9 in osteoarthritis (OA) have not been intensively investigated. We found that in peripheral blood, CD4+ T cells, but not CD8+ T cells or CD14+ monocytes, from OA patients presented significantly elevated Tim-3 and Gal-9 expression compared to those from healthy controls (HC). The CD4+ T cells from OA did not present altered Th1, Th2, and Th17 composition in the peripheral blood, but secreted less Th1 cytokine interleukin 2 (IL-2) and interferon gamma (IFN-γ) after activation. Further investigation demonstrated that Gal-9 induced high levels of apoptosis in activated CD4+ T cells from OA patients. Inhibition of Gal-9 resulted in significantly higher IL-2 and IFN-γ expression that was directly correlated with the number of non-apoptotic cells. In the synovial fluid, both secreted Gal-9 and surface Gal-9 levels were significantly higher in less-severe grade 2 OA patients than in more-severe grade 4 OA patients. Surface Tim-3 was also higher in synovial fluid CD8+ T cells and CD14+ monocytes from grade 2 OA patients and lower in grade 4 OA patients. Together, these results suggested that Tim-3 and Gal-9 could downregulate T cell inflammation in OA, and could be utilized as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Shufeng Yang
- Department of Orthopedics, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, 34 Yanggongjing Road, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Jin Wang
- Department of Orthopedics, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, 34 Yanggongjing Road, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Fengrong Chen
- Department of Orthopedics, Xiamen University Affiliated Chenggong Hospital, Xiamen, Fujian, 361000, People's Republic of China
| | - Guoyin Liu
- Department of Orthopedics, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, 34 Yanggongjing Road, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Zhiqiang Weng
- Department of Outpatient, Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, People's Republic of China.
| | - Jianmin Chen
- Department of Orthopedics, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, 34 Yanggongjing Road, Nanjing, Jiangsu, 210002, People's Republic of China.
| |
Collapse
|
44
|
Galectin Targeted Therapy in Oncology: Current Knowledge and Perspectives. Int J Mol Sci 2018; 19:ijms19010210. [PMID: 29320431 PMCID: PMC5796159 DOI: 10.3390/ijms19010210] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
The incidence and mortality of cancer have increased over the past decades. Significant progress has been made in understanding the underpinnings of this disease and developing therapies. Despite this, cancer still remains a major therapeutic challenge. Current therapeutic research has targeted several aspects of the disease such as cancer development, growth, angiogenesis and metastases. Many molecular and cellular mechanisms remain unknown and current therapies have so far failed to meet their intended potential. Recent studies show that glycans, especially oligosaccharide chains, may play a role in carcinogenesis as recognition patterns for galectins. Galectins are members of the lectin family, which show high affinity for β-galactosides. The galectin–glycan conjugate plays a fundamental role in metastasis, angiogenesis, tumor immunity, proliferation and apoptosis. Galectins’ action is mediated by a structure containing at least one carbohydrate recognition domain (CRD). The potential prognostic value of galectins has been described in several neoplasms and helps clinicians predict disease outcome and determine therapeutic interventions. Currently, new therapeutic strategies involve the use of inhibitors such as competitive carbohydrates, small non-carbohydrate binding molecules and antibodies. This review outlines our current knowledge regarding the mechanism of action and potential therapy implications of galectins in cancer.
Collapse
|
45
|
Chávez-Galán L, Ramon-Luing L, Carranza C, Garcia I, Sada-Ovalle I. Lipoarabinomannan Decreases Galectin-9 Expression and Tumor Necrosis Factor Pathway in Macrophages Favoring Mycobacterium tuberculosis Intracellular Growth. Front Immunol 2017; 8:1659. [PMID: 29230224 PMCID: PMC5711832 DOI: 10.3389/fimmu.2017.01659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022] Open
Abstract
Lipoarabinomannan (LAM) is a lipid virulent factor secreted by Mycobacterium tuberculosis (Mtb). LAM can be found in the sputum and urine of patients with active tuberculosis. When human monocytes are differentiated into macrophages [monocyte-derived macrophages (MDM)] in the presence of LAM, MDM are poorly functional which may limit the immune response to Mtb infection. Our previous studies have shown that TIM3 and galectin (GAL)9 interaction induces anti-mycobacterial activity, and the expression levels of TIM3 and GAL9 are downregulated during Mtb infection. We postulated that LAM affects GAL9/TIM3 pathway, and, in consequence, the ability of the macrophage to control bacterial growth could be affected. In this work, we have generated MDM in the presence of LAM and observed that the expression of TIM3 was not affected; in contrast, GAL9 expression was downregulated at the transcriptional and protein levels. We observed that the cell surface and the soluble form of tumor necrosis factor (TNF) receptor 2 were decreased. We also found that when LAM-exposed MDM were activated with LPS, they produced less TNF, and the transcription factor proteinase-activated receptor-2 (PAR2), which is involved in host immune responses to infection, was not induced. Our data show that LAM-exposed MDM were deficient in the control of intracellular growth of Mtb. In conclusion, LAM-exposed MDM leads to MDM with impaired intracellular signal activation affecting GAL9, TNF, and PAR2 pathways, which are important to restrict Mtb growth.
Collapse
Affiliation(s)
- Leslie Chávez-Galán
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosio Villegas, Mexico City, Mexico
| | - Lucero Ramon-Luing
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosio Villegas, Mexico City, Mexico
| | - Claudia Carranza
- Department of Microbiology, National Institute of Respiratory Diseases Ismael Cosio Villegas, Mexico City, Mexico
| | - Irene Garcia
- Department of Pathology and Immunology, Centre Medical Universitaire, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabel Sada-Ovalle
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
46
|
Translational Implication of Galectin-9 in the Pathogenesis and Treatment of Viral Infection. Int J Mol Sci 2017; 18:ijms18102108. [PMID: 28991189 PMCID: PMC5666790 DOI: 10.3390/ijms18102108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
The interaction between galectin-9 and its receptor, Tim-3, triggers a series of signaling events that regulate immune responses. The expression of galectin-9 has been shown to be increased in a variety of target cells of many different viruses, such as hepatitis C virus (HCV), hepatitis B virus (HBV), herpes simplex virus (HSV), influenza virus, dengue virus (DENV), and human immunodeficiency virus (HIV). This enhanced expression of galectin-9 following viral infection promotes significant changes in the behaviors of the virus-infected cells, and the resulting events tightly correlate with the immunopathogenesis of the viral disease. Because the human immune response to different viral infections can vary, and the lack of appropriate treatment can have potentially fatal consequences, understanding the implications of galectin-9 is crucial for developing better methods for monitoring and treating viral infections. This review seeks to address how we can apply the current understanding of galectin-9 function to better understand the pathogenesis of viral infection and better treat viral diseases.
Collapse
|